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Abstract

This paper considers a family of cutting planes, recently developed for mixed 0-1
polynomial programs and shows that they define facets for the maximum edge-weighted
clique problem. There exists a polynomial time exact separation algorithm for these in-
equalities. The result of this paper may contribute to the development of more efficient
algorithms for the maximum edge-weighted clique problem that use cutting planes.
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1 Introduction

The maximum edge-weighted clique problem (MEWCP) is a well known combinatorial op-
timisation problem which consists of finding a maximum weight clique with no more than
b nodes in a node- and edge-weighted complete graph. The weight of a clique is defined
as the sum of the weights of all its nodes and edges. More formally, the MEWCP is de-
fined as follows. Given a complete undirected graph G = (N,E) with node set N , edge
set E, an integer number b ≤ |N | − 1, weights wi ∈ R associated with each node i ∈ N
and weights ce ∈ R associated with each edge e ∈ E, the MEWCP consists of finding a
sub-clique C = (U,F ) of G such that the sum of the weights of nodes in U and edges in F
is maximised and |U | ≤ b. It can be formulated as follows:

max
∑
i∈N

wixi +
∑
e∈E

ceye (1a)

s.t.
∑
i∈N

xi ≤ b (1b)

yij ≤ xi for (i, j) ∈ E (1c)

yij ≤ xj for (i, j) ∈ E (1d)

xi + xj ≤ yij + 1 for (i, j) ∈ E (1e)

xi ∈ {0, 1} for i ∈ N (1f)

ye ∈ {0, 1} for e ∈ E (1g)
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Note that due to the McCormick inequalities [12] (1c)–(1e) and the constraint (1f), the
variables ye, e ∈ E can be assumed to be continuous between 0 and 1.

The MEWCP has many applications, especially in certain facility location problems, see
[18, 17, 3, 10]. Other important applications of the MEWCP that arise in molecular biology
are given in Hunting [6]. The MEWCP is a generalization of the well studied maximum
clique problem, which is known to be NP-hard, see [20] for a review of solution approaches
for the maximum clique problem. On the other hand, the above formulation of the MEWCP
can also be seen as a particular case of the quadratic knapsack problem for which plenty of
exact and heuristic methods exist, see [16, 2, 5].

Numerous solution methods have been proposed in the literature for the MEWCP. We
refer the reader to Wu and Hao [20] for a recent review of exact and heuristic solution
methods for the MEWCP. The most successful algorithms proposed in the literature for the
MEWCP use a branch-and-cut framework. The availability of strong valid inequalities is key
to the success of these algorithms. Ideally, one would like to use cutting planes that are facet
defining and computationally ‘easy’ to generate. Several families of facet defining inequalities
are proposed in the literature for this purpose, see for example [19, 7, 13, 11, 9, 8, 14].

In this paper, we first consider a family of cutting planes that have recently been de-
veloped by Djeumou Fomeni et al. [4] for the general mixed 0-1 polynomial programs, and
which can be separated efficiently in polynomial time. Then we prove that under certain
conditions, one of the inequalities in this family defines a facet for the MEWCP. This result
may contribute to the development of more efficient algorithms for the MEWCP that use
cutting planes.

The rest of this paper is organised as follows. In Section 2, we review the relevant
literature, and in Section 3 we provide the proof that the (s, t) inequalities define facets of
the MEWCP.

2 Literature review

We refer the reader to [19, 7, 13, 11, 9, 8, 14, 3, 1] for more details on other existing facet
defining inequalities and solution methods for the MEWCP. For the sake of brevity, we
restrict our literature review to the paper of Djeumou Fomeni et al. [4] in which they
presented the cutting planes that are discussed in this paper.

2.1 The family of (s, t) inequalities for 0-1 quadratic programs

Given a linear inequality αTx ≤ β, with α ∈ Qn, β ∈ Q let us define the corresponding
quadratic knapsack polytope as

Q := conv
{

(x, y) ∈ {0, 1}n+(n
2) : αTx ≤ β, yij = xixj for (i, j) ∈ E

}
For any S ⊂ N and any α ∈ Qn, we will let α(S) denote

∑
i∈S αi, S

+ denote {i ∈ S : αi > 0}
and S− denote {i ∈ S : αi < 0}.

The method for generating inequalities presented in [4] is based on the following idea.
First, we construct a cubic valid inequality, by which we mean a non-linear inequality that
involves products of up to three x variables, but no y variables. Then, we weaken the cubic
inequality, in order to make it valid for Q. For example, we can take the inequality αTx ≤ b,
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and two binary variables, say xs and xt, and form the following three cubic inequalities:

(β − αTx)xsxt ≥ 0 (2)

(β − αTx)xs(1− xt) ≥ 0 (3)

(β − αTx)(1− xs)(1− xt) ≥ 0. (4)

Since quadratic terms of the form xixj can be replaced with yij , and linear and constant
terms can be left unchanged, the only real issue is how to deal with cubic terms, of the form
xixjxk. The following lemma addresses this issue:

Lemma 1. Let xi, xj and xk be three variables, all constrained to lie in the interval [0, 1].
Let yij = xixj, and similarly for yik and yjk. Then we have the following lower bounds on
xixjxk:

xixjxk ≥ max {0, yij + yik − xi, yij + yjk − xj , yik + yjk − xk} , (5)

and the following upper bounds:

xixjxk ≤ min {yij , yik, yjk, 1− xi − xj − xk + yij + yik + yjk} . (6)

It is shown in [4] that (5) and (6) provide the best possible under- and over-estimators
of the product term xixjxk.

The following theorem characterises the cutting planes that can be derived by weakening
the cubic inequalities (2), (3) and (4), respectively. It turns out that they give rise to three
huge (exponentially-large) families of valid inequalities for Q.

Theorem 1. For any pair {s, t} ⊂ N , let S, T and W be disjoint subsets of N \ {s, t} and
let R denote N \ ({s, t} ∪ S ∪ T ∪W ).

1. Then the following (s, t) inequalities are valid for Q:∑
i∈S∪W

αiyis +
∑

i∈T∪W
αiyit −

∑
i∈W

αixi ≤ −α(W−) + α(S+ ∪W−)xs

+ α(T+ ∪W−)xt +
(
β − α({s, t} ∪ S+ ∪ T+ ∪W− ∪R−)

)
yst. (7)

2. The following mixed (s, t) inequalities are valid for Q:∑
i∈W

αixi +
∑

i∈T∪R
αiyis −

∑
i∈T∪W

αiyit ≤ α(W+) +
(
β − α({s} ∪ S− ∪W+)

)
xs

− α(W+ ∪ T−)xt +
(
α({s} ∪ S− ∪ T− ∪W+ ∪R+)− β

)
yst. (8)

3. The following reverse (s, t) inequalities are valid for Q:∑
i∈S∪T∪R

αixi −
∑

i∈T∪R
αiyis −

∑
i∈S∪R

αiyit ≤ β − α(W−) +
(
α(S+ ∪W−)− β

)
xs

+
(
α(T+ ∪W−)− β

)
xt +

(
β − α(S+ ∪ T+ ∪W− ∪R−)

)
yst. (9)

These inequalities can be strengthened further, see [4] for details. Our contribution
in this paper consists of proving that under certain conditions, the (s, t) inequalities (7)
are facet defining. We also remark that the particular case of the mixed (s, t) inequalities
obtained when S = T = R = ∅ and α = (1, . . . , 1) was previously given in [7] and proved to
be facet defining for the MEWCP.
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2.2 Separation of the (s, t) inequalities in O(n3) time

Since the inequalities presented in Theorem 1 are exponential in number, we need separation
algorithms. For a given family of inequalities, the separation algorithm takes a fractional
point (x∗, y∗), solution of the LP relaxation, as input, and outputs a violated inequality in
that family, if one exists.

It turns out that the separation problems for the (s, t) inequalities (7), mixed (s, t)
inequalities (8) and reverse (s, t) inequalities (9) can each be solved exactly in O(n3) time
[4]. Indeed, there are

(
n
2

)
choices for the pair {s, t}. Now assume that s and t are fixed.

The (s, t) inequality can be rewritten as:∑
i∈S+

αi(yis + yst − xs) +
∑
i∈T+

αi(yit + yst − xt) +
∑

i∈W+

αi(yis + yit − xi)

+
∑
i∈S−

αiyis +
∑
i∈T−

αiyit +
∑

i∈W−

αi(1− xi − xs − xt + yis + yit + yst)

+
∑
i∈R−

αiyst ≤ (β − αs − αt)yst.

Observe that, in this form, the right-hand side is a constant for the given α, b, s and t. Then,
to find a most-violated (s, t) inequality, if any exists, it suffices to maximise the left-hand
side. This can be done using the following algorithm. Consider each node i ∈ N \ {s, t} in
turn. If αi > 0, place i in one of the sets S, T , W or R, according to which of the following
four quantities is largest: y∗is + y∗st − x∗s, y∗it + y∗st − x∗t , y∗is + y∗it − x∗i and zero. (Ties can be
broken arbitrarily.) If αi < 0, place i in S, T , W or R according to which of the following
four quantities is smallest: y∗is, y

∗
it, 1 − x∗i − x∗s − x∗t + y∗is + y∗it + y∗st and y∗st. (Again, ties

can be broken arbitrarily.) If αi = 0, then i can be placed in an arbitrary set, since it has
no effect on the violation. Note that, for any i, only a constant number of comparisons is
needed. Therefore the algorithm runs in O(n) time for the given α, b, s and t.

3 Facet proof

In this Section, we provide the proof that under certain conditions, the family of (s, t)
inequalities (7) are facets defining for the MEWCP. We can note from the cardinality
constraint (1b) that the coefficients αi, i = 1, . . . , n, are all positive and equal to 1, i.e.
S = S+, T = T+,W = W+, R = R+ and for each of these sets, the sum of coefficients
α is simply equal to its cardinality (for example α(S) = |S|). For these reasons, the (s, t)
inequality for the MEWCP can be written as follows:∑

i∈S∪W
yis +

∑
i∈T∪W

yit −
∑
i∈W

xi ≤ (|S|)xs + (|T |)xt + (b− 2− |S| − |T |) yst. (10)

For the rest of this paper, the set Q corresponds to

Q := conv

{
(x, y) ∈ {0, 1}n+(n

2) :

n∑
i=1

xi ≤ b, yij = xixj for (i, j) ∈ E

}
Theorem 2. Let s, t, S, T and W be defined as in Section 2. If S and T are non empty,
|S| ≤ b− 2, |T | ≤ b− 2, W = ∅ and |S ∪ T | ≥ b− 1, then the (s, t) inequalities (10) define
facets of Q.
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Note that with the settings of Theorem 2, the supporting graph of the (s, t) inequalities
(10) is a double star tree as follows.

• •

��������������

•

???????? •

oooooooooooooo

s t

•

��������
•

>>>>>>>

•

//////////////

Proof. Under the hypothesis that W = ∅, the (s, t) inequalities (10) becomes∑
i∈S

yis +
∑
i∈T

yit ≤ (|S|)xs + (|T |)xt + (b− 2− |S| − |T |) yst. (11)

Let F = {(x, y) ∈ Q : (11) holds with equality} , and a(x, y) ≤ a0 i.e. let

a1x1 + a2x2 + . . .+ anxn + a12y12 + a13y13 + . . . an−1,nyn−1,n ≤ a0
be an inequality valid for Q such that every point (x, y) ∈ F satisfies a(x, y) = a0. We will
use some integer points in Q that satisfy (11) to equality i.e integer points in F to find the
coefficients a and a0 uniquely up to scalar multiplication.

Let ei be ith unit vector of size n, eij the
(
n
2

)
-vector with all components equal to zero

except the (i, j)− th component which is equal to 1.

1. The vector (x, y) = (0, 0) ∈ F ; this implies that a0 = 0.

2. (ei, 0) ∈ F for i 6= s, t; this implies that ai = 0 for all i 6= s, t. Note that the nodes s
and t can be isolated in the set N without ambiguity since |S| ≤ b−2 and |T | ≤ b−2.

3. (ei + ej , eij) ∈ F for all i, j 6= s, t and i 6= j; it follows that aij = 0 for all i, j 6= s, t
and i 6= j.

4. We now prove that ait = 0 for any node i ∈ N \ (T ∪ {s, t}). Let i ∈ N \ (T ∪ {s, t}),
we define:

• Cs
it to be a star tree with node set T ∪ {i, t} (possible to have such a star tree

since T 6= ∅) such that all the edges are incident to t. Since Cs
it ∈ F , it follows

that
at +

∑
k∈T

akt + ait = 0 (i)

• Ci
t to be a star tree with node set T ∪ {t} such that all the edges are incident to

t this is the same as the star tree Cs
it without the edge (i, t). Since Ci

t ∈ F , it
follows that

at +
∑
k∈T

akt = 0 (ii)

Subtracting (ii) from (i) yields ait = 0 for i ∈ N \ (T ∪ {s, t}).
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5. Similarly to the above point, ajs = 0 for j ∈ N \ (S ∪ {s, t}), also using the fact that
S 6= ∅.

6. For i, j ∈ S ∪ T , we want to show that: a) ais = ajs when i, j ∈ S, b) ait = ajt when
i, j ∈ T , and c) ais = ajt when i ∈ S and j ∈ T . Let i, j ∈ S ∪ T with i 6= j and let

A ⊆ S ∪ T \ {i, j} such that |A| = b− 3, (since |S ∪ T | ≥ b− 1). Let Cj
ist be a double

star tree with node set A∪ {i, s, t} obtained by linking all the nodes in A∩ S to s, all
the nodes in A ∩ T to t and connecting the node s to the node t.

• Since Cj
i,s,t ∈ F , it follows that

as + at +
∑

k∈A∩S

aks +
∑

k∈A∩T

akt + ais + ait + ast = 0 (iii).

• Since Ci
j,s,t ∈ F , it follows that

as + at +
∑

k∈A∩S

aks +
∑

k∈A∩T

akt + ajs + ajt + ast = 0 (iv).

Subtracting (iii) from (iv) yields ais + ait = ajs + ajt. So,using steps 4 and 5 we have
the following:

a) If i, j ∈ S then ais = ajs.

b) If i, j ∈ T then ait = ajt.

c) If i ∈ S and j ∈ T , then ais = ajt.

7. Using ait = ajt for i, j ∈ T , as given by b) in the above point, and considering equation

(ii), we have at + |T |ait = 0 for i ∈ T . Therefore, ait = − at
|T |

, (since T 6= ∅).

Similarly, as + |S|ais = 0 for i ∈ S, i.e ais = − as
|S|

, (since S 6= ∅).

8. Let i ∈ S and j ∈ T , we define the set A as in step 6 and denote ωs = |A ∩ S| + 1
and ωt = |A ∩ T |. It follows from (iii) that as + at + αsais + αtajt + ast = 0 i.e.

ast = −as − at +
asω

|S|
+
atωt

|T |
for i ∈ S and j ∈ T .

9. Finally, considering the above steps, the inequality

a1x1 + a2x2 + . . .+ anxn + a12y12 + a13y13 + . . . an−1,nyn−1,n ≤ a0

reduces to
asxs + atxt +

∑
i∈S

aisyis +
∑
i∈T

aityit + astyst ≤ 0

which, using the identities ais = ajt, ajt = − at
|T |

and ais = − as
|S|

for i ∈ S, j ∈ T , is

equivalent to

asxs + atxt −
as
|S|
∑
i∈S

yis −
at
|T |
∑
i∈T

yit +

(
asωs

|S|
+
atωt

|T |
− as − at

)
yst ≤ 0.
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We finally have

as
|S|

[
|S|xs + |T |xt −

∑
i∈S

yis −
∑
i∈T

yit − (|S|+ |T | − ωs − ωt)yst

]
≤ 0.

Since (es, 0) satisfies the inequality a(x, y) ≤ a0, i.e as ≤ 0, and given that ωs + ωt =
b− 2, this ends the proof.
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