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SUMMARY

We present asymptotic results for the regression-adjusted version of approximate Bayesian
computation introduced by Beaumont et al. (2002). We show that for an appropriate choice of
the bandwidth, regression adjustment will lead to a posterior that, asymptotically, correctly quan-
tifies uncertainty. Furthermore, for such a choice of bandwidth we can implement an importance
sampling algorithm to sample from the posterior whose acceptance probability tends to unity
as the data sample size increases. This compares favourably to results for standard approximate
Bayesian computation, where the only way to obtain a posterior that correctly quantifies uncer-
tainty is to choose a much smaller bandwidth; one for which the acceptance probability tends to
zero and hence for which Monte Carlo error will dominate.

Keywords: Approximate Bayesian computation; Importance sampling; Local-linear regres-
sion; Partial information.

1. INTRODUCTION

Modern statistical applications increasingly require the fitting of complex statistical models.
Often these models are intractable in the sense that it is impossible to evaluate the likelihood
function. This excludes standard implementation of likelihood-based methods, such as maximum
likelihood estimation or Bayesian analysis. To overcome this problem there has been substantial
interest in likelihood-free or simulation-based methods. These methods replace calculating the
likelihood by simulation of pseudo datasets from the model. Inference can then be performed
by comparing these pseudo datasets, simulated for a range of different parameter values, to the
actual data.

Examples of such likelihood-free methods include simulated methods of moments (Duffie &
Singleton, 1993), indirect inference (Gouriéroux & Ronchetti, 1993; Heggland & Frigessi, 2004),
synthetic likelihood (Wood, 2010) and approximate Bayesian computation (Beaumont et al.,
2002). Of these, approximate Bayesian computation methods are arguably the most common
methods for Bayesian inference, and have been popular in population genetics (e.g. Beaumont
et al., 2002; Cornuet et al., 2008), ecology (e.g. Beaumont, 2010) and systems biology (e.g.



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

2

Toni et al., 2009); more recently they have seen increased use in other application areas, such as
econometrics (Calvet & Czellar, 2015) and epidemiology (Drovandi & Pettitt, 2011).

The idea of approximate Bayesian computation is to first summarize the data using low-
dimensional summary statistics, such as sample means or autocovariances or suitable quantiles
of the data. The posterior density given the summary statistics is then approximated as follows.
Assume the data are Yobs = (yobs,1, . . . , yobs,n) and modelled as a draw from a parametric model
with parameter θ ∈ Rp. Let K(x) be a positive kernel, where maxxK(x) = 1, and ε > 0 is the
bandwidth. For a given d-dimensional summary statistic s(Y ), our model will define a density
fn(s | θ). We then define a joint density, πε(θ, s | sobs), for (θ, s) as

π(θ)fn(s | θ)K{ε−1(s− sobs)}´
Rp×Rd π(θ)fn(s | θ)K{ε−1(s− sobs)} dθds

, (1)

where sobs = s(Yobs). Our approximation to the posterior density is the marginal of this joint
density,

πε(θ | sobs) =

ˆ
πε(θ, s | sobs) ds. (2)

We call πε(θ | sobs) the approximate Bayesian computation posterior density. For ease of expo-
sition we will often shorten this to posterior density in the following. To distinguish it from the
actual posterior given the summary we will always call this the true posterior.

The idea of approximate Bayesian computation is that we can sample from πε(θ | sobs) with-
out needing to evaluate the likelihood function or fn(s | θ). The simplest approach is via re-
jection sampling (Beaumont et al., 2002), which proceeds by simulating a parameter value and
an associated summary statistic from π(θ)fn(s | θ). This pair is then accepted with probability
K{ε−1(s− sobs)}. The accepted pairs will be drawn from (1), and the accepted parameter val-
ues will be drawn from the posterior (2). Implementing this rejection sampler requires only the
ability to simulate pseudo data sets from the model, and then to be able to calculate the summary
statistics for those data sets.

Alternative algorithms for simulating from the posterior include adaptive or sequential impor-
tance sampling (Beaumont et al., 2009; Bonassi & West, 2015; Lenormand et al., 2013; Filippi
et al., 2013) and Markov chain Monte Carlo approaches (Marjoram et al., 2003; Wegmann et al.,
2009). These aim to propose parameter values in areas of high posterior probability, and thus can
be substantially more efficient than rejection sampling. However, the computational efficiency of
all these methods is limited by the probability of acceptance for data simulated with a parameter
value that has high posterior probability.

This paper is concerned with the asymptotic properties of approximate Bayesian computation.
It builds upon recent results by Li & Fearnhead (2015) and Frazier et al. (2016). They present
results on the asymptotic behaviour of the posterior distribution and the posterior mean of ap-
proximate Bayesian computation as the amount of data, n, increases. Their results highlight the
tension in approximate Bayesian computation between choices of the summary statistics and
bandwidth that will lead to more accurate inferences, against choices that will reduce the com-
putational cost or Monte Carlo error of algorithms for sampling from the posterior.

An informal summary of some of these earlier results is as follows. Assume a fixed dimen-
sional summary statistic and that the true posterior variance given this summary decreases like
1/n as n increases. The theoretical results compare the posterior, or posterior mean, of approxi-
mate Bayesian computation, to the true posterior, or true posterior mean, given the summary of
the data. The accuracy of using approximate Bayesian computation is governed by the choice of
bandwidth, and this choice should depend on n. Li & Fearnhead (2015) shows that the optimal
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3

choice of this bandwidth will be O(n−1/2). With this choice, estimates based on the posterior
mean of approximate Bayesian computation can, asymptotically, be as accurate as estimates
based on the true posterior mean given the summary. Furthermore the Monte Carlo error of
an importance sampling algorithm with a good proposal distribution will only inflate the mean
square error of the estimator by a constant factor of the form 1 +O(1/N), where N is the num-
ber of pseudo data sets. These results are similar to the asymptotic results of indirect inference,
where Monte Carlo error for a Monte Carlo sample of size N also inflates the overall mean
square error of estimators by a factor 1 +O(1/N) (Gouriéroux & Ronchetti, 1993). By compar-
ison choosing a bandwidth which is o(n−1/2) will lead to an acceptance probability that tends to
zero as n→∞, and the Monte Carlo error of approximate Bayesian computation will blow up.
Choosing a bandwidth that decays more slowly than O(n−1/2) will also lead to a regime where
the Monte Carlo error dominates, and can lead to a non-negligible bias in the posterior mean that
inflates the error.

While the above results for a bandwidth that is O(n−1/2) are positive in terms of point es-
timates, they are negative in terms of the calibration of the posterior. With such a bandwidth
the posterior density of approximate Bayesian computation always over-inflates the parameter
uncertainty: see Proposition 1 below and Theorem 2 of Frazier et al. (2016).

The aim of this paper is to show that a variant of approximate Bayesian computation can
yield inference that is both accurate in terms of point estimation, with its posterior mean hav-
ing the same frequentist asymptotic variance as the true posterior mean given the summaries,
and calibrated, in the sense that its posterior variance equals this asymptotic variance, when the
bandwidth converges to zero at a rate slower than O(n−1/2). Furthermore, this means that the
acceptance probability of a good approximate Bayesian computation algorithm will tend to unity
as n→∞.

2. NOTATION AND SET-UP

We denote the data by Yobs = (yobs,1, . . . , yobs,n), where n is the sample size, and each ob-
servation, yobs,i, can be of arbitrary dimension. Assume the data are modelled as a draw from
a parametric density, fn(y | θ), and consider asymptotics as n→∞. This density depends on
an unknown parameter θ ∈ Rp. Let Bp be the Borel sigma-field on Rp. We will let θ0 denote
the true parameter value, and π(θ) the prior distribution for the parameter. Denote the support of
π(θ) by P. Assume that a fixed-dimensional summary statistic sn(Y ) is chosen and its density
under our model is fn(s | θ). The shorthand Sn is used to denote the random variable with den-
sity fn(s | θ). Often we will simplify notation and write s and S for sn and Sn respectively. Let
N(x;µ,Σ) be the normal density at x with mean µ and variance Σ. Let Ac be the complement
of a set A with respect to the whole space. For a series xn we write xn = Θ(an) if there exist
constantsm andM such that 0 < m < |xn/an| < M <∞ as n→∞. For a real function g(x),
denote its gradient function at x = x0 by Dxg(x0). To simplify notation, Dθ is written as D.
Hereafter ε is considered to depend on n, so the notation εn is used.

The conditions of the theoretical results are stated below.

CONDITION 1. There exists some δ0 > 0, such that P0 = {θ : |θ − θ0| < δ0} ⊂ P, π(θ) ∈
C2(P0) and π(θ0) > 0.

CONDITION 2. The kernel satisfies (i)
´
vK(v) dv = 0; (ii)

´ ∏l
k=1 vikK(v) dv <∞ for

any coordinates (vi1 , . . . , vil) of v and l ≤ p+ 6; (iii) K(v) ∝ K(‖v‖2Λ) where ‖v‖2Λ = vTΛv
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and Λ is a positive-definite matrix, and K(v) is a decreasing function of ‖v‖Λ; (iv) K(v) =
O(e−c1‖v‖

α1 ) for some α1 > 0 and c1 > 0 as ‖v‖ → ∞.

CONDITION 3. There exists a sequence an, satisfying an →∞ as n→∞, a d-dimensional
vector s(θ) and a d× d matrix A(θ), such that for all θ ∈ P0,

an{Sn − s(θ)} → N{0, A(θ)}, n→∞,

in distribution. We also assume that sobs → s(θ0) in probability. Furthermore, (i) s(θ) and
A(θ) ∈ C1(P0), and A(θ) is positive definite for any θ; (ii) for any δ > 0 there exists
δ′ > 0 such that ‖s(θ)− s(θ0)‖ > δ′ for all θ satisfying ‖θ − θ0‖ > δ; and (iii) I(θ) =
Ds(θ)TA−1(θ)Ds(θ) has full rank at θ = θ0.

Let f̃n(s | θ) = N{s; s(θ), A(θ)/a2
n} be the density of the normal approximation to S and

introduce the standardized random variable Wn(s) = anA(θ)−1/2{S − s(θ)}. We further let
fWn(w | θ) and f̃Wn(w | θ) be the densities for Wn under the true model for S and under our
normal approximation to the model for S.

CONDITION 4. There exists αn satisfying αn/a
2/5
n →∞ and a density rmax(w)

satisfying Condition 2 (ii)-(iii) where K(v) is replaced with rmax(w), such that
supθ∈P0

αn

∣∣∣fWn(w | θ)− f̃Wn(w | θ)
∣∣∣ ≤ c3rmax(w) for some positive constant c3.

CONDITION 5. The following statements hold: (i) rmax(w) satisfies Condition 2 (iv); and (ii)
supθ∈Pc0 fWn(w | θ) = O(e−c2‖w‖

α2 ) as ‖w‖ → ∞ for some positive constants c2 and α2, and
A(θ) is bounded in P.

Conditions 1–5 are from Li & Fearnhead (2015). Condition 2 is a requirement for the ker-
nel function and is satisfied by all commonly used kernels, such as any kernel with compact
support or the Gaussian kernel. Condition 3 assumes a central limit theorem for the summary
statistic with rate an, and, roughly speaking, requires the summary statistic to accumulate infor-
mation when n. This is a natural assumption, since many common summary statistics are sample
moments, proportions, quantiles and autocorrelations, for which a central limit theorem would
apply. It is also possible to verify the asymptotic normality of auxiliary model-based or compos-
ite likelihood-based summary statistics (Drovandi et al., 2015; Ruli et al., 2016) by referring to
the rich literature on asymptotic properties of quasi maximum-likelihood estimators (Varin et al.,
2011) or quasi-posterior estimators (Chernozhukov & Hong, 2003). This assumption does not
cover ancillary statistics, using the full data as a summary statistic, or statistics based on dis-
tances, such as an asymptotically chi-square distributed test statistic. Condition 4 assumes that,
in a neighborhood of θ0, fn(s | θ) deviates from the leading term of its Edgeworth expansion
by a rate a−2/5

n . This is weaker than the standard requirement, o(a−1
n ), for the remainder from

Edgeworth expansion. It also assumes that the deviation is uniform, which is not difficult to sat-
isfy in a compact neighborhood. Condition 5 further assumes that fn(s | θ) has exponentially
decreasing tails with rate uniform in the support of π(θ). This implies that posterior moments
from approximate Bayesian computation are dominated by integrals in the neighborhood of θ0

and have leading terms with concise expressions. With Condition 5 weakened, the requirement
of εn for the proper convergence to hold might depend on the specific tail behavior of fn(s | θ).

Additionally, for the results regarding regression adjustment the following moments of the
summary statistic are required to exist.

CONDITION 6. The first two moments,
´
Rd sfn(s | θ) ds and

´
Rd ss

T fn(s | θ) ds, exist.
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3. ASYMPTOTICS OF APPROXIMATE BAYESIAN COMPUTATION

3·1. Posterior
First we consider the convergence of the posterior distribution of approximate Bayesian com-

putation, denoted by Πε(θ ∈ A | sobs) for A ∈ Bp, as n→∞. The distribution function is a
random function with the randomness due to sobs. We present two convergence results. One is
the convergence of the posterior distribution function of a properly scaled and centered version
of θ, see Proposition 1. The other is the convergence of the posterior mean, a result which comes
from Li & Fearnhead (2015) but, for convenience, is repeated as Proposition 2.

The following proposition gives three different limiting forms for Πε(θ ∈ A | sobs), corre-
sponding to different rates for how the bandwidth decreases relative to the rate of the central limit
theorem in Condition 3. We summarize these competing rates by defining cε = limn→∞ anεn.

PROPOSITION 1. Assume Conditions 1–5. Let θε denote the posterior mean of approximate
Bayesian computation. As n→∞, if εn = o(a

−3/5
n ) then the following convergence holds, de-

pending on the value of cε.

(i) If cε = 0 then

sup
A∈Bp

∣∣∣∣Πε{an(θ − θε) ∈ A | sobs} −
ˆ
A
ψ(t) dt

∣∣∣∣→ 0,

in probability, where

ψ(t) = N{t; 0, I(θ0)−1}.

(ii) If cε ∈ (0,∞) then for any A ∈ Bp,

Πε{an(θ − θε) ∈ A | sobs} →
ˆ
A
ψ(t) dt,

in distribution, where

ψ(t) ∝
ˆ
Rd
N [t; cεβ0{v − EG(v)}, I(θ0)−1]G(v) dv, β0 = I(θ0)−1Ds(θ0)TA(θ0)−1,

andG(v) is a random density of v, with meanEG(v), which depends on cε and Z ∼ N(0, Id).
(iii) If cε =∞ then

sup
A∈Bp

∣∣∣∣Πε{ε−1
n (θ − θε) ∈ A | sobs} −

ˆ
A
ψ(t) dt

∣∣∣∣→ 0,

in probability, where ψ(t) ∝ K{Ds(θ0)t}.

For a similar result, under different assumptions, see Theorem 2 of Frazier et al. (2016). See also
Soubeyrand & Haon-Lasportes (2015) for related convergence results for the true posterior given
the summaries for some specific choices of summary statistics.

The explicit form of G(v) is stated in the Supplementary Material. When we have the same
number of summary statistics and parameters, d = p, the limiting distribution simplifies to

ψ(t) ∝
ˆ
Rd
N{Ds(θ0)t; cεv,A(θ0)}K(v) dv.

The more complicated form in Proposition 1 (ii) above arises from the need to project the sum-
mary statistics onto the parameter space. The limiting distribution may depend on the value of the
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summary statistic, sobs, in the space orthogonal to Ds(θ0)TA(θ0)−1/2. Hence the limit depends
on a random quantity, Z, which can be interpreted as the noise in sobs.

The main difference between the three convergence results is the form of the limiting density
ψ(t) for the scaled random variable an,ε(θ − θε), where an,ε = an1cε<∞ + ε−1

n 1cε=∞. For case
(i) the bandwidth is sufficiently small that the approximation in approximate Bayesian computa-
tion due to accepting summaries close to the observed summary is asymptotically negligible. The
asymptotic posterior distribution is Gaussian, and equals the limit of the true posterior for θ given
the summary. For case (iii) the bandwidth is sufficiently big that this approximation dominates
and the asymptotic posterior distribution of approximate Bayesian computation is determined by
the kernel. For case (ii) the approximation is of the same order as the uncertainty in θ, which
leads to an asymptotic posterior distribution that is a convolution of a Gaussian distribution and
the kernel. Since the limit distributions of cases (i) and (iii) are non-random in the space L1(Rp),
the weak convergence is strengthened to convergence in probability in L1(Rp). See the proof in
Appendix A.

PROPOSITION 2. (Theorem 3.1 of Li & Fearnhead, 2015) Assume conditions of Proposition
1. As n→∞, if εn = o(a

−3/5
n ), an(θε − θ0)→ N{0, I−1

ABC(θ0)} in distribution. If εn = o(a−1
n )

or d = p or the covariance matrix of the kernel is proportional toA(θ0) then IABC(θ0) = I(θ0).
For other cases, I(θ0)− IABC(θ0) is semi-positive definite.

Proposition 2 helps us to compare the frequentist variability in the posterior mean of approx-
imate Bayesian computation with the asymptotic posterior distribution given in Proposition 1.
If εn = o(a−1

n ) then the posterior distribution is asymptotically normal with variance matrix
a−2
n I(θ0)−1, and the posterior mean is also asymptotically normal with the same variance ma-

trix. These results are identical to those we would get for the true posterior and posterior mean
given the summary.

For an εn which is the same order as a−1
n , the uncertainty in approximate Bayesian compu-

tation has rate a−1
n . However the limiting posterior distribution, which is a convolution of the

true limiting posterior given the summary with the kernel, will overestimate the uncertainty by a
constant factor. If εn decreases slower than a−1

n , the posterior contracts at a rate εn, and thus will
over-estimate the actual uncertainty by a factor that diverges as n→ 0.

In summary, it is much easier to get approximate Bayesian computation to accurately estimate
the posterior mean. This is possible with εn as large as o(a−3/5

n ) if the dimension of the summary
statistic equals that of the parameter. However, accurately estimating the posterior variance, or
getting the posterior to accurately reflect the uncertainty in the parameter, is much harder. As
commented in Section 1, this is only possible for values of εn for which the acceptance probabil-
ity in a standard algorithm will go to zero as n increases. In this case the Monte Carlo sample size,
and hence the computational cost, of approximate Bayesian computation will have to increase
substantially with n.

As one application of our theoretical results, consider observations that are independent and
identically distributed from a parametric density f(· | θ). One approach to construct the summary
statistics is to use the score vector of some tractable approximating auxiliary model evaluated at
the maximum auxiliary likelihood estimator (Drovandi et al., 2015). Ruli et al. (2016) constructs
an auxiliary model from a composite likelihood, so the auxiliary likelihood for a single observa-
tion is

∏
i∈I f(y ∈ Ai | θ) where {Ai : i ∈ I } is a set of marginal or conditional events for y.

Denote the auxiliary score vector for a single observation by clθ(· | θ) and the maximum auxil-
iary likelihood estimator for our data set by θ̂cl. Then the summary statistic, s, for any pseudo
data set {y1, . . . , yn} is

∑n
j=1 clθ(yj | θ̂cl)/n.
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For y ∼ f(· | θ), assume the first two moments of clθ(y | θ0) exist and clθ(y | θ) is differen-
tiable at θ. Let H(θ) = Eθ{∂clθ(y | θ0)/∂θ} and J(θ) = varθ{clθ(y | θ0)}. Then if θ̂cl is con-
sistent for θ0, Condition 3 is satisfied with

n1/2[S − Eθ{clθ(Y | θ0)}]→ N{0, J(θ)}, n→∞,

in distribution, and with I(θ0) = H(θ0)TJ(θ0)−1H(θ0).
Our results show that the posterior mean of approximate Bayesian computation, using εn =

O(n−1/2), will have asymptotic variance I(θ0)−1/n. This is identical to the asymptotic variance
of the maximum composite likelihood estimator (Varin et al., 2011). Furthermore, the posterior
variance will overestimate this just by a constant factor. As we show below, using the regression
correction of Beaumont et al. (2002) will correct this overestimation and produce a posterior that
correctly quantifies the uncertainty in our estimates.

An alternative approach to construct an approximate posterior using composite likelihood is
to use the product of the prior and the composite likelihood. In general, this leads to a poorly
calibrated posterior density which substantially underestimates uncertainty (Ribatet et al., 2012).
Adjustment of the composite likelihood is needed to obtain calibration, but this involves esti-
mation of the curvature and the variance of the composite score (Pauli et al., 2011). Empirical
evidence that approximate Bayesian computation more accurately quantifies uncertainty than
alternative composite-based posteriors is given in Ruli et al. (2016).

3·2. Regression Adjusted Approximate Bayesian Computation
The regression adjustment of Beaumont et al. (2002) involves post-processing the output of

approximate Bayesian computation to try to improve the resulting approximation to the true pos-
terior. Below we will denote a sample from the posterior of approximate Bayesian computation
by {(θi, si)}i=1,...,N . Under the regression adjustment, we obtain a new posterior sample by us-
ing {θi − β̂ε(si − sobs)}i=1,...,N where β̂ε is the least square estimate of the coefficient matrix
in the linear model

θi = α+ β(si − sobs) + ei, i = 1, . . . , N,

where ei are independent identically distributed errors.
We can view the adjusted sample as follows. Define a constant, αε, and a vector βε as

(αε, βε) = arg min
α,β

Eε[‖θ − α− β(s− sobs)‖2 | sobs],

where expectation is with respect the joint posterior distribution of (θ, s) given by approximate
Bayesian computation. Then the ideal adjusted posterior is the distribution of θ∗ = θ − βε(s−
sobs) where (θ, s) ∼ πε(θ, s). The density of θ∗ is

π∗ε(θ
∗ | sobs) =

ˆ
Rd
πε{θ∗ + βε(s− sobs), s | sobs} ds

and the sample we get from regression-adjusted approximate Bayesian computation is a draw
from π∗ε(θ

∗ | sobs) but with βε replaced by its estimator.
The variance of π∗ε(θ

∗ | sobs) is strictly smaller than that of πε(θ | sobs) provided s is corre-
lated with θ. The following results, which are analogous to Propositions 1 and 2, show that this
reduction in variation is by the correct amount to make the resulting adjusted posterior correctly
quantify the posterior uncertainty.
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THEOREM 1. Assume Conditions 1–6. Denote the mean of π∗ε(θ
∗ | sobs) by θ∗ε . As n→∞, if

εn = o(a
−3/5
n ),

sup
A∈Bp

∣∣∣∣Πε{an(θ∗ − θ∗ε) ∈ A | sobs} −
ˆ
A
N{t; 0, I(θ0)−1} dt

∣∣∣∣→ 0,

in probability, and

an(θ∗ε − θ0)→ N{0, I(θ0)−1},

in distribution. Moreover, if βε is replaced by β̃ε satisfying anεn(β̃ε − βε) = op(1), the above
results still hold.

The limit of the regression adjusted posterior distribution is the true posterior given the summary
provided εn is o(a−3/5

n ). This is a slower rate than that at which the posterior contracts, which,
as we will show in the next section, has important consequences in terms of the computational
efficiency of approximate Bayesian computation. The regression adjustment corrects both the
additional noise of the posterior mean when d > p and the overestimated uncertainty of the
posterior. This correction comes from the removal of the first order bias caused by ε. Blum (2010)
shows that the regression adjustment reduces the bias of approximate Bayesian computation
when E(θ | s) is linear and the residuals θ − E(θ | s) are homoscedastic. Our results do not
require these assumptions, and suggest that the regression adjustment should be applied routinely
with approximate Bayesian computation provided the coefficients βε can be estimated accurately.

With the simulated sample, βε is estimated by β̂ε. The accuracy of β̂ε can be seen by the
following decomposition,

β̂ε = covN (s, θ)varN (s)−1

= βε +
1

anεn
covN

{
s− sε
εn

, an(θ∗ − θ∗ε)
}

varN

{
s− sε
εn

}−1

,

where covN and varN are the sample covariance and variance matrices, and sε is the sample
mean. Since cov(s, θ∗) = 0 and the distributions of s− sε and θ∗ − θ∗ε contract at rates εn
and a−1

n respectively, the error β̂ε − βε can be shown to have the rate Op{(anεn)−1N−1/2}
as n→∞ and N →∞. We omit the proof, since it is tedious and similar to the proof of the
asymptotic expansion of βε in Lemma 4. Thus, if N increases to infinity with n, β̂ε − βε will be
op{(anεn)−1} and the convergence of Theorem 1 will hold instead.

Alternatively we can get an idea of the additional error for large N from the following propo-
sition.

PROPOSITION 3. Assume Conditions 1–6. Consider θ∗ = θ − β̂ε(s− sobs). As n→∞, if
εn = o(a

−3/5
n ) and N is large enough, for any A ∈ Bp,

Πε{an(θ∗ − θ∗ε) ∈ A | sobs} →
ˆ
A
ψ(t) dt,

in distribution, where

ψ(t) ∝
ˆ
Rd
N
[
t;

η

N1/2
{v − EG(v)}, I(θ0)−1

]
G(v) dv,
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when cε <∞,

ψ(t) ∝
ˆ
Rp
N
{
t;

η

N1/2
Ds(θ0)t′, I(θ0)−1

}
K{Ds(θ0)t′} dt′,

when cε =∞, and η = Op(1).

The limiting distribution here can be viewed as the convolution of the limiting distribution ob-
tained when the optimal coefficients are used and that of a random variable, which relates to the
error in our estimate of βε, and that is Op(N−1/2).

3·3. Acceptance Rates when ε is Negligible
Finally we present results for the acceptance probability of approximate Bayesian computa-

tion, the quantity that is central to the computational cost of importance sampling or Markov
chain Monte Carlo-based algorithms. We consider a set-up where we propose the parameter
value from a location-scale family. That is, we can write the proposal density as the density of a
random variable, σnX + µn, where X ∼ q(·), E(X) = 0 and σn and µn are constants that can
depend on n. The average acceptance probability pacc,q would then beˆ

P×Rd
qn(θ)fn(s | θ)K{ε−1

n (s− sobs)} dsdθ,

where qn(θ) is the density of σnX + µn. This covers the proposal distribution in fundamental
sampling algorithms, including the random-walk Metropolis algorithm and importance sampling
with unimodal proposal distribution, and serves as the building block for many advanced algo-
rithms where the proposal distribution is a mixture of distributions from location-scale families,
such as iterative importance sampling-type algorithms.

We further assume that σn(µn − θ0) = Op(1), which means θ0 is in the coverage of qn(θ).
This is a natural requirement for any good proposal distribution. The prior distribution and θ0 as a
point mass are included in this proposal family. This condition would also apply to many Markov
chain Monte Carlo implementations of approximate Bayesian computation after convergence.

As above, define an,ε = an1cε<∞ + ε−1
n 1cε=∞ to be the smaller of an and ε−1

n . Asymptotic
results for pacc,q when σn has the same rate as a−1

n,ε are given in Li & Fearnhead (2015). Here we
extend those results to other regimes.

THEOREM 2. Assume the conditions of Proposition 1. As n→∞, if εn = o(a
−1/2
n ): (i) if

cε = 0 or σn/a−1
n,ε →∞, then pacc,q → 0 in probability; (ii) if cε ∈ (0,∞) and σn/a

−1
n,ε →

r1 ∈ [0,∞), or cε =∞ and σn/a−1
n,ε → r1 ∈ (0,∞), then pacc,q = Θp(1); (iii) if cε =∞ and

σn/a
−1
n,ε → 0, then pacc,q → 1 in probability.

The proof of Theorem 2 can be found in the Supplementary Material. The underlying intuition
is as follows. For the summary statistic, s, sampled with parameter value θ, the acceptance prob-
ability depends on

s − sobs

εn
=

1

εn
[{s − s(θ)}+ {s(θ)− s(θ0)}+ {s(θ0)− sobs}], (3)

where s(θ) is the limit of s in Condition 3. The distance between s and sobs is at least Op(a−1
n ),

since the first and third bracketed terms areOp(a−1
n ). If εn = o(a−1

n ) then, regardless of the value
of θ, (3) will blow up as n→∞ and hence pacc,q goes to 0. If εn decreases with a rate slower
than a−1

n , (3) will go to zero providing we have a proposal which ensures that the middle term is
op(εn), and hence pacc,q goes to unity.
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Theorem 1 shows that, without the regression adjustment, approximate Bayesian computation
requires εn to be o(a−1

n ) if its posterior is to converge to the true posterior given the summary. In
this case Theorem 2 shows that the acceptance rate will degenerate to zero as n→∞ regardless
of the choice of q(·). On the other hand, with the regression adjustment, we can choose εn =

o(a
−3/5
n ) and still have convergence to the true posterior given the summary. For such a choice,

if our proposal density satisfies σn = o(εn), the acceptance rate will go to unity as n→∞.

4. NUMERICAL EXAMPLE

Here we illustrate the gain of computational efficiency from using the regression adjustment on
the g-and-k distribution, a popular model for testing approximate Bayesian computation methods
(e.g., Fearnhead & Prangle, 2012; Marin et al., 2014). The data are independent and identically
distributed from a distribution defined by its quantile function,

F−1(x;α, β, γ, κ) =α+ β

[
1 + 0.8

1− exp{−γz(x)}
1 + exp{−γz(x)}

]
{1 + z(x)2}κz(x), x ∈ [0, 1],

where α and β are location and scale parameters, γ and κ are related to the skewness and kurtosis
of the distribution, and z(x) is the corresponding quantile of a standard normal distribution. No
closed form is available for the density but simulating from the model is straightforward by
transforming realisations from the standard normal distribution.

In the following we assume the parameter vector (α, β, γ, κ) has a uniform prior in [0, 10]4

and multiple datasets are generated from the model with (α, β, γ, κ) = (3, 1, 2, 0.5). To illustrate
the asymptotic behaviour of approximate Bayesian computation, 50 data sets are generated for
each of a set of values of n ranging from 500 to 10, 000. Consider estimating the posterior
means, denoted by µ = (µ1, . . . , µ4), and standard deviations, denoted by σ = (σ1, . . . , σ4), of
the parameters. The summary statistic is a set of evenly spaced quantiles of dimension 19.

The bandwidth is chosen via fixing the proportion of the Monte Carlo sample to be accepted,
and the accepted proportions needed to achieve certain approximation accuracy for estimates
with and without the adjustment are compared. A higher proportion means more simulated pa-
rameter values can be kept for inference. The accuracy is measured by the average relative errors
of estimating µ or σ,

REµ =
1

4

4∑
k=1

|µ̂k − µk|
µk

, REσ =
1

4

4∑
k=1

|σ̂k − σk|
σk

,

for estimators µ̂ = (µ̂1, . . . , µ̂4) and σ̂ = (σ̂1, . . . , σ̂4). The proposal distribution is normal, with
the covariance matrix selected to inflate the posterior covariance matrix by a constant factor c2

and the mean vector selected to differ from the posterior mean by half of the posterior standard
deviation, which avoids the case that the posterior mean can be estimated trivially. We consider a
series of increasing c in order to investigate the impact of the proposal distribution getting worse.

The results in Figure 1 show that the required acceptance rate for the regression adjusted
estimates is higher than that for the unadjusted estimates in almost all cases. For estimating
the posterior mean, the improvement is small. For estimating the posterior standard deviations,
the improvement is much larger. To achieve each level of accuracy, the acceptance rates of the
unadjusted estimates are all close to zero. Those of the regression-adjusted estimates are higher
by up to 2 orders of magnitude, so the Monte Carlo sample size needed to achieve the same
accuracy can be reduced correspondingly.
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Fig. 1: Acceptance rates required for different degrees of accuracy of approximate Bayesian
computation and different variances of the proposal distribution (which are proportional to c). In
each plot we show results for standard (grey-line) and regression adjusted (black-line) approxi-
mate Bayesian computation and for different values of n: n = 500 (dotted), n = 3, 000 (dashed)
and n = 10, 000 (solid). The averages over 50 data sets (thick) and their 95% confidence inter-
vals (thin) are reported. Results are for a relative error of 0.08 and 0.05 in the posterior mean, in
(a) and (b) respectively, and for a relative error of 0.2 and 0.1 in the posterior standard deviation,
in (c) and (d) respectively.

5. DISCUSSION

One way to implement approximate Bayesian computation so that the acceptance probability
tends to 1 as n increases is to use importance sampling with a suitable proposal from a location-
scale family. The key difficulty with finding a suitable proposal is to ensure that the location
parameter is close to the true parameter, where close means the distance is O(εn). This can
be achieved by having a preliminary analysis of the data, and using the point estimate of the
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parameter from this preliminary analysis as the location parameter (Beaumont et al., 2009; Li &
Fearnhead, 2015).
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Proofs of lemmas and Theorem 2 are included in the online supplementary material.

APPENDIX

Proof of Result from Section 3·1
Throughout the data are considered to be random. For any integer l > 0 and a set A ⊂ Rl,

we use the convention that cA+ x denotes the set {ct+ x : t ∈ A} for c ∈ R and x ∈ Rl. For a
non-negative function h(x), integrable in Rl, denote the normalised function h(x)/

´
Rl h(x) dx

by h(x)(norm). For a vector x, denote a general polynomial of elements of xwith degree up to l by
Pl(x). For any fixed δ < δ0, let Bδ be the neighborhood {θ : ‖θ − θ0‖ < δ}. Let πδ(θ) be π(θ)

truncated in Bδ. Recall that f̃n(s | θ) denotes the normal density with mean s(θ) and covariance
matrix A(θ)/a2

n. Let t(θ) = an,ε(θ − θ0) and v(s) = ε−1
n (s− sobs), rescaled versions θ and s.

For any A ∈ Bp, let t(A) be the set {φ : φ = t(θ) for some θ ∈ A}.
Define Π̃ε(θ ∈ A | sobs) to be the normal counterpart of Πε(θ ∈ A | sobs) with truncated prior,

obtained by replacing π(θ) and fn(s | θ) in Πε by πδ(θ) and f̃n(s | θ). So let

π̃ε(θ, s | sobs) =
πδ(θ)f̃n(s | θ)K{ε−1

n (s− sobs)}´
Bδ

´
Rd πδ(θ)f̃n(s | θ)K{ε−1

n (s− sobs)} dθds
,

π̃ε(θ | sobs) =
´
Rd π̃ε(θ, s | sobs) ds and Π̃ε(θ ∈ A | sobs) be the distribution function with den-

sity π̃ε(θ | sobs). Denote the mean of Π̃ε by θ̃ε. Let Wobs = anA(θ0)−1/2{sobs − s(θ0)} and
β0 = I(θ0)−1Ds(θ0)TA(θ0)−1. By Condition 3, Wobs → Z in distribution as n→∞, where
Z ∼ N(0, Id).

Since the approximate Bayesian computation likelihood within Π̃ε is an incorrect model for
sobs, standard posterior convergence results do not apply. However, if we condition on the value
of the summary, s, then the distribution of θ is just the true posterior given s. Thus we can express
the posterior from approximate Bayesian computation as a continuous mixture of these true
posteriors. Let π̃ε,tv(t, v) = a−dn,επδ(θ0 + a−1

n,εt)f̃n(sobs + εnv | θ0 + a−1
n,εt)K(v). For any A ∈

Bp, we rewrite Π̃ε as,

Π̃ε(θ ∈ A | sobs) =

ˆ
Rd

ˆ
t(Bδ)

Π̃(θ ∈ A | sobs + εnv)π̃ε,tv(t, v)(norm) dtdv, (4)

where Π̃(θ ∈ A | s) is the posterior distribution with prior πδ(θ) and likelihood f̃n(s | θ).
Using results from Kleijn & van der Vaart (2012), the leading term of Π̃(θ ∈ A | sobs + εnv)

can be obtained and is stated in the following lemma.
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LEMMA 1. Assume Conditions 3 and 4. If εn = O(a−1
n ), for any fixed v ∈ Rd and small

enough δ,

sup
A∈Bp

∣∣∣∣Π̃{an(θ − θ0) ∈ A | sobs + εnv} −
ˆ
A
N [t;β0{A(θ0)1/2Wobs + cεv}, I(θ0)−1] dt

∣∣∣∣→ 0,

in probability as n→∞.

This leading term is Gaussian, but with a mean that depends on v. Thus asymptotically, the
posterior of approximate Bayesian computation is the distribution of the sum of a Gaussian
random variable and β0cεV , where V has density proportional to

´
π̃ε,tv(t, v) dt.

To make this argument rigorous, and to find the distribution of this sum of random variables we
need to introduce several functions that relate to the limit of π̃ε,tv(t′, v). For a rank-p d× pmatrix
A, a rank-d d× d matrix B and a d-dimensional vector c, define g(v;A,B, c) = exp[−(c+
Bv)T {I −A(ATA)−1AT }(c+Bv)/2]/(2π)(d−p)/2. Let

gn(t, v) =

{
N
{
Ds(θ0)t; anεnv +A(θ0)1/2Wobs, A(θ0)

}
K(v), cε <∞,

N
{
Ds(θ0)t; v + 1

anεn
A(θ0)1/2Wobs,

1
a2nε

2
n
A(θ0)

}
K(v), cε =∞,

Gn(v) be g{v;A(θ0)−1/2Ds(θ0), anεnA(θ0)−1/2,Wobs}K(v), and EGn(·) be the expectation
under the density Gn(v)(norm). In both cases it is straightforward to show that

´
Rp gn(t, v) dt =

|A(θ0)|−1/2Gn(v). Additionally, for the case cε =∞, define v′(v, t) = A(θ0)1/2Wobs +
anεnv − anεnDs(θ0)t and

g′n(t, v′) = N{v′; 0, A(θ0)}K
{
Ds(θ0)t+

1

anεn
v′ − 1

anεn
A(θ0)1/2Wobs

}
.

Then with the transformation v′ = v′(v, t), gn(t, v)dv = g′n(t, v′)dv′. Let

g(t, v) =

{
N{Ds(θ0)t; cεv +A(θ0)1/2Z,A(θ0)}K(v), cε <∞,
K{Ds(θ0)t}N{v; 0, A(θ0)}, cε =∞,

G(v) be g{v;A(θ0)−1/2Ds(θ0), cεA(θ0)−1/2, Z}K(v) and EG(·) be the expectation under the
density G(v)(norm). When cε <∞,

´
Rp g(t, v) dt = |A(θ0)|−1/2G(v).

Expansions of
´
Rd
´
t(Bδ)

π̃ε,tv(t, v)dtdv are given in the following lemma.

LEMMA 2. Assume Conditions 1–3. If εn = o(a
−1/2
n ), then´

Rd
´
t(Bδ)

|π̃ε,tv(t, v)− π(θ0)gn(t, v)| dtdv → 0 in probability and
´
Rd
´
t(Bδ)

gn(t, v) dtdv =

Θp(1), as n→∞. Furthermore, for l ≤ 6,
´
Rd
´
t(Bδ)

Pl(v)gn(t, v) dtdv converges

to |A(θ0)|−1/2
´
Rd Pl(v)G(v) dv in distribution when cε <∞ and converges to´

Rp Pl{Ds(θ0)t}K{Ds(θ0)t} dt in probability when cε =∞, as n→∞.

The following lemma states that Πε and Π̃ε are asymptotically the same and gives an expansion
of θ̃ε.

LEMMA 3. Assume Conditions 1–4. If εn = o(a
−1/2
n ), then

(a) for any δ < δ0, Πε(θ ∈ Bc
δ | sobs) and Π̃ε(θ ∈ Bc

δ | sobs) are op(1);

(b) there exists a δ < δ0 such that supA∈Bp

∣∣∣Πε(θ ∈ A ∩Bδ | sobs)− Π̃ε(θ ∈ A ∩Bδ | sobs)
∣∣∣ =

op(1);



625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

14

(c) if, in addition, Condition 5 holds, then an,ε(θε − θ̃ε) = op(1), and θ̃ε = θ0 +

a−1
n β0A(θ0)1/2Wobs + εnβ0EGn(v) + rn,1 where the remainder rn,1 = op(a

−1
n ).

Proof of Proposition 1. Lemma 10 in the Supplementary Material shows that Πε{an,ε(θ −
θε) ∈ A | sobs} and Π̃ε{an,ε(θ − θ̃ε) ∈ A | sobs} have the same limit, in distribution when cε ∈
(0,∞) and in total variation form when cε = 0 or∞. Therefore it is sufficient to only consider
the convergence of Π̃ε of the properly scaled and centered θ.

When anεn → cε <∞, according to (4),

Π̃ε{an(θ − θ̃ε) ∈ A | sobs} =

ˆ
Rd

ˆ
t(Bδ)

Π̃{an(θ − θ0) ∈ A+ an(θ̃ε − θ0) | sobs + εnv}π̃ε,tv(t′, v)(norm) dt′dv.

By Lemma 1 and Lemma 3(c), we have

sup
A∈Bp

∣∣∣∣Π̃{an(θ − θ0) ∈ A+ an(θ̃ε − θ0) | sobs + εnv} −
ˆ
A
N{t;µn(v), I(θ0)−1} dt

∣∣∣∣ = op(1),

where µn(v) = β0{cεv − anεnEGn(v)} − anrn,1. Then with Lemma 2, the leading term of
Π̃ε{an(θ − θ̃ε) ∈ A | sobs} equals

sup
A∈Bp

∣∣∣∣∣Π̃ε{an(θ − θ̃ε) ∈ A | sobs} −
ˆ
Rd

ˆ
t(Bδ)

ˆ
A
N{t;µn(v), I(θ0)−1}gn(t′, v)(norm) dtdt′dv

∣∣∣∣∣ = op(1).

(5)

The numerator of the leading term of (5) is in the following form,ˆ
Rd

ˆ
t(Bδ)

ˆ
A
N{t; cεβ0v + x3, I(θ0)−1}N{Ds(θ0)t′;x1v + x2, A(θ0)}K(v) dtdt′dv,

where x1 ∈ R, x2 ∈ Rd and x3 ∈ Rp. This is continuous by Lemma 9 in the Supplementary
Material. Then since EGn(v)→ EG(v) in distribution as n→∞ by Lemma 2, we haveˆ

Rd

ˆ
t(Bδ)

ˆ
A
N{t;µn(v), I(θ0)−1}gn(t′, v) dtdt′dv

→
ˆ
Rd

ˆ
Rp

ˆ
A
N [t; cεβ0{v − EG(v)}, I(θ0)−1]g(t′, v) dtdt′dv,

in distribution as n→∞. Putting the above results together, it holds that

Π̃ε{an(θ − θ̃ε) ∈ A | sobs} →
ˆ
A

ˆ
Rp
N [t; cεβ0{v − EG(v)}, I(θ0)−1]G(v)(norm) dvdt,

in distribution, and statement (ii) of the proposition holds.
When cε = 0, since µn(v) does not depend on v, (5) becomes

sup
A∈Bp

∣∣∣∣Π̃ε{an(θ − θ̃ε) ∈ A | sobs} −
ˆ
A
N{t;−anεnβ0EGn(v)− anrn,1, I(θ0)−1} dt

∣∣∣∣ = op(1),

and by the continuous mapping theorem (van der Vaart, 2000),ˆ
Rp

∣∣N{t;−anεnβ0EGn(v)− anrn,1, I(θ0)−1} −N{t; 0, I(θ0)−1}
∣∣ dt = op(1).

Therefore supA∈Bp

∣∣∣Π̃ε{an(θ − θ̃ε) ∈ A | sobs} −
´
AN{t; 0, I(θ0)−1} dt

∣∣∣ = op(1), and state-
ment (i) of the proposition holds.
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When cε =∞, Lemma 1 cannot be applied to the posterior distribution within (4) directly.
With transformation v′′ = anεnv, Π̃ε{θ ∈ A | sobs} equals,ˆ

Rd

ˆ
t(Bδ)

Π̃(θ ∈ A | sobs + a−1
n v′′)π̃ε,tv(t

′, a−1
n ε−1

n v′′)(norm) dt′dv′′,

which implies that

Π̃ε{ε−1
n (θ − θ̃ε) ∈ A | sobs} =ˆ

Rd

ˆ
t(Bδ)

Π̃{an(θ − θ0) ∈ anεnA+ an(θ̃ε − θ0) | sobs + a−1
n v′′}π̃ε,tv(t′, a−1

n ε−1
n v′′)(norm) dt′dv′′.

Then Lemma 1 can be applied. Using Lemma 2 and transforming v′′ back to v we have

sup
A∈Bp

∣∣∣Π̃ε{ε−1
n (θ − θ̃ε) ∈ A | sobs}

−
ˆ
Rd

ˆ
t(Bδ)

ˆ
A

(anεn)pN{anεnt;µ′n(v), I(θ0)−1}gn(t′, v)(norm) dtdt′dv

∣∣∣∣∣ = op(1), (6)

where µ′n(v) = β0{A(θ0)1/2Wobs + anεnv} − an(θ̃ε − θ0).
Let t′′(t, t′) = anεn(t− t′) + an(θ̃ε − θ0) and t′′(A,Bδ) be the set {t′′(t, t′) : t ∈ A, t′ ∈

t(Bδ)}. With transformations v′ = v′(v, t′) and t′′ = t′′(t, t′), since β0Ds(θ0) = Ip, we haveˆ
Rd

ˆ
t(Bδ)

ˆ
A

(anεn)pN{anεnt;µ′n(v), I(θ0)−1}gn(t′, v) dtdt′dv

=

ˆ
Rd

ˆ
t(Bδ)

ˆ
A

(anεn)pN{anεn(t− t′);β0v
′ − an(θ̃ε − θ0), I(θ0)−1}g′n(t′, v′) dtdt′dv′

=

ˆ
Rd

ˆ
t′′(A,Bδ)

ˆ
A
N{t′′;β0v

′ − an(θ̃ε − θ0), I(θ0)−1}g′n
[
t− 1

anεn
{t′′ − an(θ̃ε − θ0)}, v′

]
dtdt′′dv′.

The idea now is that as n→∞, anεn →∞, so the g′n term in the integral will tend to g′n(t, v′).
Then by integrating first with respect to t′′ and then with respect to v, we get the required result.

To make this argument rigorous, consider the following function,ˆ
Rd

ˆ
t′′(A,Bδ)

ˆ
A
N{t′′;β0v

′, I(θ0)−1}N{v′; 0, A(θ0)}

×
∣∣K{Ds(θ0)t+ x1v

′ − x2t
′′ + x3} −K{Ds(θ0)t}

∣∣ dtdt′′dv′,
where x1 ∈ R, x2 ∈ R and x3 ∈ Rd. This is continuous by Lemma 9 in the Supplementary Ma-
terial, so by the continuous mapping theorem,

sup
A∈Bp

∣∣∣∣∣
ˆ
Rd

ˆ
t′′(A,Bδ)

ˆ
A
N{t′′;β0v

′, I(θ0)−1}g′n
(
t− 1

anεn
t′′, v′

)
dtdt′′dv′ −

ˆ
A
K{Ds(θ0)t} dt

∣∣∣∣∣ = op(1).

Then using Lemma 2,

sup
A∈Bp

∣∣∣∣Π̃ε{ε−1
n (θ − θ̃ε) ∈ A | sobs} −

ˆ
A
K{Ds(θ0)t} dt/

ˆ
Rp
K{Ds(θ0)t} dt

∣∣∣∣ = op(1).

Therefore statement (iii) of the proposition holds.
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Proof of Result from Section 3·2
The intuition behind this result is that, as shown above, the joint posterior of (θ, s) under

approximate Bayesian computation can be viewed as a marginal distribution for s times a condi-
tional for θ given s. The latter is just the true posterior for θ given s, and this posterior converges
to a Gaussian limit that depends on s only through its mean. Regression adjustment works be-
cause it corrects for the dependence of this mean on s, so if we work with the regression adjusted
parameter θ∗ then the conditional distribution for θ∗ given s will tend to a Gaussian limit whose
mean is the same for all s.

The following lemma gives an expansion of the optimal linear coefficient matrix βε. The order
of the remainder leads to successful removal of the first order bias in the posterior distribution of
approximate Bayesian computation.

LEMMA 4. Assume Conditions 1-6. Then if εn = o(a
−3/5
n ), anεn(βε − β0) = op(1).

The following lemma, similar to Lemma 3, says that the approximate Bayesian computation
posterior distribution of θ∗ is asymptotically the same as Π̃ε. Recall that θ∗ε is the mean of π∗ε(θ

∗ |
sobs). Let π̃∗ε(θ

∗ | sobs) =
´
Rd π̃ε{θ

∗ + βε(s− sobs), s | sobs} ds and θ̃∗ε be the mean of π̃∗ε(θ
∗ |

sobs).

LEMMA 5. Assume Conditions 1-6. If εn = o(a
−3/5
n ), then

(a) for any δ < δ0, Πε(θ
∗ ∈ Bc

δ | sobs) and Π̃ε(θ
∗ ∈ Bc

δ | sobs) are op(1);

(b) there exists δ < δ0 such that supA∈Bp

∣∣∣Πε(θ
∗ ∈ A ∩Bδ | sobs)− Π̃ε(θ

∗ ∈ A ∩Bδ | sobs)
∣∣∣ =

op(1);
(c) an(θ∗ε − θ̃∗ε) = op(1), and θ̃∗ε = θ0 + a−1

n β0A(θ0)1/2Wobs + εn(β0 − βε)EGn(v) + rn,2
where the remainder rn,2 = op(a

−1
n ).

Proof of Theorem 1. Similar to the proof of Proposition 1, it is sufficient to only consider the
convergence of Π̃ε of the properly scaled and centered θ∗. Similar to (4)

Π̃ε(θ
∗ ∈ A | sobs) =

{´
Rd
´
t(Bδ)

Π̃(θ ∈ A+ εnβεv | sobs + εnv)π̃ε,tv(t
′, v)(norm) dt′dv, cε <∞,´

Rd
´
t(Bδ)

Π̃(θ ∈ A+ εnβεv | sobs + a−1
n v)π̃ε,tv(t

′, a−1
n ε−1

n v)(norm) dt′dv, cε =∞.

Similar to (5), by Lemma 1 and Lemma 5(c), we have

sup
A∈Bp

∣∣∣∣∣Π̃ε{an(θ∗ − θ̃∗ε) ∈ A | sobs} −
ˆ
Rd

ˆ
t(Bδ)

ˆ
A
N{t;µ∗n(v), I(θ0)−1}gn(t′, v)(norm) dtdt′dv

∣∣∣∣∣ = op(1),

(7)

where µ∗n(v) = {anεn(β0 − βε) + (cε − anεn)β01cε<∞}{v − EGn(v)}+ anrn,2. Since
anεn(βε − β0) = op(1), by Lemma 9 in the Supplementary Material and the continuous
mapping theorem,ˆ

Rd

ˆ
t(Bδ)

ˆ
Rp

∣∣N{t;µ∗n(v), I(θ0)−1} −N{t; 0, I(θ0)−1}
∣∣ gn(t′, v) dtdt′dv = op(1).

Then we have

sup
A∈Bp

∣∣∣∣Π̃ε{an(θ∗ − θ̃∗ε) ∈ A | sobs} −
ˆ
A
N{t; 0, I(θ0)−1} dt

∣∣∣∣ = op(1),

and the first convergence in the theorem holds.
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The second convergence in the theorem holds by Lemma 5(c).
Since the only requirement for βε in the above is anεn(β

′
ε − βε) = op(1), the above arguments

will hold if βε is replaced by a p× d matrix β̂ε satisfying anεn(β̂ε − βε) = op(1). �

Proof of Proposition 3. Consider θ∗ where βε is replaced by β̂ε. Let ηn = N1/2anεn(β̂ε −
βε). Since β̂ε − βε = Op{(anεn)−1N−1/2} as n→∞, ηn = Op(1) as n→∞ and let its limit
be η. In this case, if we replace µ∗n(v) in (7) with µ∗n(v) +N−1/2ηn{v − EGn(v)}, denoted by
µ̂∗n(v), the equation still holds. Denote this equation by (7′). Limits of the leading term in (7′)
can be obtained by arguments similar as those for (5).

When cε <∞, since for fixed v, µ̂∗n(v) converges to N−1/2η{v − EG(v)} in distribution, by
following the same line we have

Π̃ε{an(θ∗ − θ̃∗ε) ∈ A | sobs} →
ˆ
A

ˆ
Rp
N [t;N−1/2η{v − EG(v)}, I(θ0)−1]G(v)(norm) dvdt,

in distribution.
When cε =∞, by Lemma 2 we have EGn(v)→ 0 in probability, and´

Rd
´
t(Bδ)

gn(t′, v) dt′dv →
´
Rp K{Ds(θ0)t} dt in probability. Then with transformation

v′ = v′(v, t′), for fixed v,

µ̂∗n(v) = {anεn(β0 − βε) +N−1/2ηn}
{
Ds(θ0)t′ +

1

anεn
v′ − 1

anεn
A(θ0)1/2Wobs − EGn(v)

}
→ N−1/2ηDs(θ0)t′,

in distribution. Recall that gn(t′, v) dv = g′n(t′, v′) dv′. Then by Lemma 9 in the Supplementary
Material and the continuous mapping theorem,ˆ

Rd

ˆ
t(Bδ)

ˆ
A
N{t; µ̂∗n(v), I(θ0)−1}g′n(t′, v′) dtdt′dv

→
ˆ
Rd

ˆ
t(Bδ)

ˆ
A
N{t;N−1/2ηDs(θ0)t′, I(θ0)−1}K{Ds(θ0)t′} dtdt′dv,

in distribution. Therefore by (7′) and the above convergence results,

Π̃ε{an(θ∗ − θ̃∗ε) ∈ A | sobs} →
ˆ
A

ˆ
Rp
N{t;N−1/2ηDs(θ0)t′, I(θ0)−1}K{Ds(θ0)t′}(norm) dt′dt,

in distribution. �
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