
ROBUSTNESS PROPERTIES IN FICTITIOUS-PLAY-TYPE
ALGORITHMS∗

BRIAN SWENSON† , SOUMMYA KAR‡ , JOÃO XAVIER§ , AND DAVID S. LESLIE¶

Abstract. Fictitious play (FP) is a canonical game-theoretic learning algorithm which has been
deployed extensively in decentralized control scenarios. However standard treatments of FP, and of
many other game-theoretic models, assume rather idealistic conditions which rarely hold in realistic
control scenarios. This paper considers a broad class of best response learning algorithms that we
refer to as FP-type algorithms. In such an algorithm, given some (possibly limited) information
about the history of actions, each individual forecasts the future play and chooses a (myopic) best
response strategy given their forecast. We provide a unified analysis of the behavior of FP-type
algorithms under an important class of perturbations, thus demonstrating robustness to deviations
from the idealistic operating conditions that have been previously assumed. This robustness result
is then used to derive convergence results for two control-relevant relaxations of standard game-
theoretic applications: distributed (network-based) implementation without full observability and
asynchronous deployment (including in continuous time). In each case the results follow as a direct
consequence of the main robustness result.

1. Introduction. Decentralized control scenarios are naturally modeled using
the framework of game theory [2]. In this context, solution concepts such as Nash or
correlated equilibrium can represent desirable operating conditions for the system. A
game-theoretic learning algorithm is a distributed procedure that allows a group of
agents to cooperatively learn such equilibria.

The fictitious play (FP) algorithm [3, 4] is a well-known and highly prototypical
game-theoretic learning algorithm that has been studied in a wide range of control
and optimization problems [5, 6, 7, 8, 9, 10, 11, 12, 13]. Loosely speaking, the FP
algorithm may be described as follows. A group of players repeatedly face off in some
fixed game. Players observe the actions taken by others and use this information to
(possibly incorrectly) forecast the future behavior of opponents. In particular, in each
iteration of FP, each player chooses an action that (myopically) optimizes her utility

∗Received by the editors September 9, 2016; accepted for publication (in revised form) August 18,
2017; published electronically October 24, 2017. A preliminary version of the work on asynchronous
FP was presented at the Asilomar Conference on Signals, Systems, and Computers, IEEE, Piscat-
away, NJ, [1].

http://www.siam.org/journals/sicon/55-5/M109322.html
Funding: The work was partially supported by the FCT projects FCT [UID/EEA/5009/2013]

and FCT [UID/EEA/50009/2013] through the Carnegie Mellon/Portugal Program managed by ICTI
from FCT and by FCT Grant CMU-PT/SIA/0026/2009 and was partially supported by NSF grant
CCF 1513936.

†Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, and Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico,
University of Lisbon, Lisbon, Portugal (brianswe@ece.cmu.edu).

‡Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213 (soummyak@andrew.cmu.edu).

§Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, University
of Lisbon, Lisbon, Portugal (jxavier@isr.ist.utl.pt).

¶Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United
Kingdom (d.leslie@lancaster.ac.uk).

Key words. Game Theory, Learning, Multi-agent, Distributed

AMS subject classifications. 93A14, 93A15, 91A06, 91A26, 91A80

http://www.siam.org/journals/sicon/55-5/M109322.html
mailto:brianswe@ece.cmu.edu
mailto:soummyak@andrew.cmu.edu
mailto:jxavier@isr.ist.utl.pt
mailto:d.leslie@lancaster.ac.uk

given her current forecast of opponent behavior, i.e., players act according to “myopic
best response dynamics.”

FP is known to converge to the set of Nash equilibria (NE) in many important
classes of games [14, 15, 16, 17, 18, 19, 20], (though, not all games [21, 22]).

Standard treatments of FP (as well as many other learning algorithms) assume
that rather idealistic conditions hold [23]. For example, in the traditional treatment of
FP, players are assumed to act in perfect synchrony, be capable of perfectly computing
the best response in each stage, and are assumed to have instantaneous access to all
information required to compute the best response. Such assumptions are often ex-
tremely impractical—particularly, in large-scale distributed settings. This motivates
the study of the robustness of learning results to perturbations occurring in practical
real-world scenarios.

This paper studies the robustness of a class of FP-type algorithms in which players
are assumed to track some statistics related to the history of the game (not necessarily
the empirical frequency distribution of classical FP [4]) and form a forecast of oppo-
nent behavior using this information. As in FP, each player chooses their next-stage
action as a myopic best response given their forecast.

Our main theoretical result is to show that FP-type algorithms are robust in the
presence of a certain important class of perturbations. In particular, suppose that the
myopic best response is perturbed so that players may sometimes choose suboptimal
actions, but that the degree of suboptimality decays to zero over time. (In the spirit
of [24], we sometimes call an FP-type process that is perturbed in this manner a
weakened FP-type process.) We show that the fundamental learning property of an
FP-type algorithm is retained in the presence of such a perturbation. In the case of
classical FP, this means that convergence to NE is preserved. More generally, if an
FP-type algorithm converges to some equilibrium set in the absence of perturbations,
then our result can be applied to study convergence to the same equilibrium set in
the presence of perturbations.

Robustness results of this kind were first studied in [25] for the case of classi-
cal FP. The present paper extends the approach of [25] to demonstrate robustness
of FP-type algorithms. This greatly enhances the applicability of game-theoretical
learning theory to real-world control problems. Moreover, the results of this paper
have required the development of useful new technical tools. For example, Lemma 4.7
studies ε-best response sequences and demonstrates that such sequences may in fact
be considered in terms of a more amenable sequence of so called δ-perturbations (see
section 3). In order to demonstrate how the result can be applied to real-world control
problems, we consider two example applications to control scenarios.

As a first application, we study the problem of implementing an FP-type algo-
rithm in a distributed setting. In traditional implementations of FP-type algorithms
it is assumed that players have instantaneous access to the information required to
generate their forecast. However, in practical scenarios this information may often be
distributed among the agents and must be disseminated using an overlaid communi-
cation graph. We present a generic method for implementing an FP-type algorithm
in this setting, and we show that convergence of such an algorithm can be ensured as
a consequence of the robustness result.

Distributed implementations of FP were previously studied in [26]—the robust-
ness result of this paper significantly expands the class of distributed communication
protocols that can be used and extends the results to the class of FP-type algorithms.
In particular, [26] requires that any errors in the system decay at some minimum
rate, whereas the robustness results in this paper do not require a minimum error

decay rate. In communication schemes with channel noise or random link failures, it
may not be possible to achieve the error decay rates needed by [26]. These important
practical scenarios can, however, be handled by the methods developed in this paper.

As a second application, we consider the problem of asynchronous implementa-
tion. In many game-theoretic learning algorithms, it is assumed that players act in
a perfectly synchronous manner. This assumption is unrealistic in large-scale dis-
tributed scenarios where players do not have access to a global clock. We study a
practical variant of FP where players are permitted to choose actions in an asyn-
chronous manner, and derive a mild condition under which convergence can be shown
to occur.1 The proofs of these results follow as a simple consequence of the robustness
result, and do not require the use of additional stochastic approximation techniques.

Applications of the robustness result are by no means limited to those presented
here. For example, the companion work [28] utilizes the robustness result to develop
a Monte Carlo based method that significantly mitigates the computational burden
of FP, and [29] uses the robustness result to develop a variant of FP that achieves
convergence in “strategic intentions” [30].

The selected applications are intended to serve as a sample of the manner in which
the robustness result can be applied. Each of these applications has been studied in a
variety of contexts, e.g., [7, 26, 28, 31, 32, 33, 34, 35]. In this paper, we demonstrate
how they can be treated in a unified manner and demonstrate how the robustness
result can advance the state of the art in each.

The remainder of the paper is organized as follows. Section 2 sets up the notation.
Section 3 sets up the mathematical tools to be used in the proof of the main theoretical
result. Section 4 presents the notion of an FP-type algorithm, and presents our
robustness result. Section 5 presents an example FP-type process in the context of
the robustness result. Section 6 studies distributed implementation and section 7
studies asynchronous implementation. Finally, section 8 concludes the paper.

2. Preliminaries. A game in normal form is represented by the tuple Γ :=
(N , (Yi, ui)i∈N), where N = {1, . . . , N} denotes the set of players, Yi denotes the
finite set of actions available to player i, and ui :

∏
i∈N Yi → R denotes the utility

function of player i. Denote by Y :=
∏

i∈N Yi the joint action space.
For a finite set X , let Δ(X) denote the set of probability distributions over X .

In particular, let Δi := Δ(Yi) be the set of mixed strategies available to player i,
let Δ(Y−i) be the set of mixed strategies (possibly correlated) available to all players
other than i, and let Δ(Y) denote the set of joint mixed strategies (possibly correlated)
available to all players.

In large-scale distributed settings it is often convenient to study mixed strategies
where players act independently. Denote by ΔN :=

∏
i∈N Δi the set of (indepen-

dent) joint mixed strategies. That is, a strategy2 p = (p1, . . . , pN) ∈ ΔN—where
pi denotes the marginal strategy of player i—may be represented in the space Δ(Y)
as the product

∏N
i=1 pi ∈ Δ(Y). In this context we define Δ−i :=

∏
j �=i Δj to be

the set of (independent) mixed strategies of players other than i. When convenient,

1We remark that while these applications are interesting in and of themselves, additional util-
ity may be gained by considering them in conjunction with one another. For example, the first
application allows for synchronous distributed implementation and the second allows for generic
asynchronous implementation. Together, they allow one to study asynchronous distributed imple-
mentation of an FP-type algorithm, using, for example, asynchronous gossip [27] as a means of
disseminating information amongst agents.

2As a matter of convention, we use the letters p and q when referring to strategies in ΔN

throughout the paper.

we represent a mixed strategy p ∈ ΔN by p = (pi, p−i), where pi ∈ Δi denotes the
marginal strategy of player i and p−i = (p1, . . . , pN)\pi ∈ Δ−i denotes the strategies
of players other than i.

In the context of mixed strategies, we often wish to retain the notion of playing
a single deterministic action. For this purpose, let 1yi denote the mixed strategy
placing probability one on the action yi ∈ Yi.

For x ∈ Δ(Y), the expected utility of player i is given by

(2.1) Ui(x) :=
∑
y∈Y

ui(y)x(y1, . . . , yn),

and for p ∈ ΔN , the expected utility of player i is given by

Ui(p) :=
∑
y∈Y

ui(y)p1(y1) . . . pN (yN).

Given a strategy x−i ∈ Δ(Y−i), define the best response set for player i by
BRi(x−i) := arg maxxi∈Δi Ui(xi, x−i) and, more generally, let the ε-best-response set
be given by

BRi,ε(x−i) :=
{

x̃i ∈ Δ(Yi) : Ui(x̃i, x−i) ≥ max
xi∈Δ(Yi)

Ui(xi, x−i) − ε

}
.(2.2)

To keep notation simple, we sometimes employ the following abuses. The notation
yi ∈ BRi,ε(x−i) means that 1yi ∈ BRi,ε(x−i). Similarly, for yi ∈ Yi the notation
Ui(yi, x−i) refers to the expected utility Ui(1yi , x−i).

The set of Nash equilibria is given by
NE := {p ∈ ΔN : Ui(pi, p−i) ≥ Ui(p′

i, p−i), ∀p′
i ∈ Δi, ∀i ∈ N}.

The distance between a point x ∈ R
m and a set S ⊂ R

m is given by d(x, S) =
inf{‖x − x′‖ : x′ ∈ S}. Throughout the paper ‖ · ‖ denotes the L2 Euclidean norm
unless otherwise specified. We let N := {0, 1, 2, . . .} denote the nonnegative integers,
and N+ := {1, 2, . . .} denote the positive integers.

Throughout, we assume the existence of probability spaces rich enough to carry
out the construction of the various random variables required. As a matter of con-
vention, all equalities, inequalities, and set inclusions involving random quantities are
interpreted almost surely (a.s.) with respect to the underlying probability measure,
unless otherwise stated.

2.1. Repeated play. Unless otherwise stated, the learning algorithms consid-
ered in this paper all assume the following format of repeated play [4, 30]. Let a
normal form game Γ be fixed. Let players repeatedly face off in the game Γ, and for
n ∈ {1, 2, . . .}, let σi(n) ∈ Δ(Yi) denote the strategy used by player i in round n. Let
the N -tuple σ(n) = (σ1(n), . . . , σN (n)) ∈ ΔN denote the joint strategy at time n.

3. Difference inclusions and differential inclusions. In this section we in-
troduce the mathematical tools necessary to prove our main theoretical result. In
particular, in section 4 we will study the limiting behavior of a (discrete-time) FP-
type process using the stochastic approximation techniques discussed in this section.

Following the approach of [36], let F : R
m ⇒ R

m denote a set-valued function
mapping each point ξ ∈ R

m to a set F (ξ) ⊆ R
m. We assume the following.

Assumption 1.
(i) F is a closed set-valued map.3

(ii) F (ξ) is a nonempty compact convex subset of R
m for all ξ ∈ R

m.
3In other words, Graph(F) := {(ξ, η) : η ∈ F (ξ)} is a closed subset of R

m × R
m.

(iii) For some norm ‖ · ‖ on R
m, there exists c > 0 such that for all ξ ∈ R

m,
supη∈F (ξ) ‖η‖ ≤ c(1 + ‖ξ‖).

Definition 3.1. A solution for the differential inclusion

(3.1)
dx

dt
∈ F (x)

with initial point ξ ∈ R
m is an absolutely continuous mapping x : R → R

m such that
x(0) = ξ and dx(t)

dt ∈ F (x(t)) for almost every t ∈ R.

In order to study the asymptotic behavior of discrete-time processes in this con-
text, one may study the continuous-time interpolation. Formally, given a step-size
sequence {γ(n)}n≥1, we define the continuous-time interpolation as follows.

Definition 3.2. Let {x(n)}n≥1 be a sequence in R
m. Set τ0 = 0 and τn =∑n

i=1 γ(i) for n ≥ 1 and define the continuous-time interpolation of {x(n)}n≥1 to
be the process w : [0, ∞) → R

m satisfying

w(τn + s) = x(n) + s
x(n + 1) − x(n)

τn+1 − τn
, s ∈ [0, γ(n + 1)).

In general, the continuous-time interpolation of a discrete-time process will not
itself be a precise solution for the differential inclusion as stated in Definition 3.1.
However, the interpolated process may be shown to satisfy a more relaxed solution
concept, namely, that of a perturbed solution of the differential inclusion. We first
define the notion of a δ-perturbation which we then use to define the notion of a
perturbed solution.

Definition 3.3. Let F : R
m ⇒ R

m be a set-valued map, and let δ > 0. The
δ-perturbation of F is given by

F δ(x) := {y ∈ R
m : ∃z ∈ R

m s.t. ‖z − x‖ < δ, d(y, F (z)) < δ}.

Definition 3.4. A continuous function y : [0, ∞) → R
m will be called a per-

turbed solution of (3.1) if it satisfies the following set of conditions:
(i) y is absolutely continuous;
(ii) there exists a locally integrable function t �→ U(t) such that for all T > 0

lim
t→∞

sup
0≤ν≤T

∥∥∥∥
∫ t+ν

t

U(s)ds

∥∥∥∥ = 0;

and
(iii) dy(t)

dt − U(t) ∈ F δ(t)(y(t)) for almost every t > 0, for some function δ :
[0, ∞) → R with δ(t) → 0 as t → ∞.

The following proposition gives sufficient conditions under which an interpolated
process will in fact be a perturbed solution of (3.1).

Proposition 3.5. Consider a discrete-time process {x(n)}n≥1 such that

γ(n)−1(x(n + 1) − x(n)
)

− U(n + 1) ∈ F δn(x(n)),

where {γ(n)}n≥1 is a sequence of positive numbers such that γ(n) → 0 and
∑∞

n=1 γ(n) =
∞, {U(n)}n≥2 is a sequence of stochastic or deterministic perturbations satisfying

lim
n→∞

sup
k

{∥∥∥∥∥
k−1∑
s=n

γ(s)U(s + 1)

∥∥∥∥∥ :
k−1∑
s=n

γ(s) ≤ T

}
= 0 ∀T > 0,

{δn}n≥1 is a sequence of nonnegative numbers converging to 0, and supn ‖x(n)‖ < ∞.
Then the continuous-time interpolation of {x(n)}n≥1 is a perturbed solution of (3.1).

The proof of Proposition 3.5 follows similar reasoning to the proof of [36, Propo-
sition 1.3].

Our end goal is to characterize the set of limit points of the discrete-time process
{x(n)}n≥1 by characterizing the set of limit points of its continuous-time interpolation.
With that end in mind, it is useful to consider the notion of an internally chain
recurrent set—a set of natural limit points for perturbed processes.4

Definition 3.6. Let ‖·‖ be a norm on R
m, and let F : R

m ⇒ R
m be a set-valued

map satisfying Assumption 1. Consider the differential inclusion (3.1).
(a) Given a set X ⊂ R

m and points ξ and η, we write ξ ↪→ η if for every ε > 0 and
T > 0 there exist an integer n∗ ≥ 1, solutions x1, . . . , xn∗ to the differential
inclusion (3.1), and real numbers t1, . . . , tn∗ greater than T such that
(i) xi(s) ∈ X ∀0 ≤ s ≤ ti and ∀i = 1, . . . , n∗,
(ii) ‖xi(ti) − xi+1(0)‖ ≤ ε ∀i = 1, . . . , n∗ − 1,
(iii) ‖x1(0) − ξ‖ ≤ ε and ‖xn∗(tn∗) − η‖ ≤ ε.

(b) X is said to be internally chain recurrent if X is compact and ξ ↪→ ξ′ for all
ξ, ξ′ ∈ X.

The following theorem from [36] allows one to relate the set of limit points of a
perturbed solution of (3.1) to the internally chain recurrent sets of (3.1).

Theorem 3.7 (see [36, Theorem 3.6]). Let y be a bounded perturbed solution
of (3.1). Then the limit set of y, L(y) =

⋂
t≥0 {y(s) : s ≥ t}, is internally chain

recurrent.

In order to eventually prove Theorem 4.6 (in the following section) we will show
that the continuous-time interpolation of an FP-type process is in fact a bounded
perturbed solution of the associated differential inclusion (4.6), and hence by Theo-
rem 3.7, the limit points of the FP-type process are contained in the internally chain
recurrent sets of the associated differential inclusion.

4. FP-type process. In this section we will formally define the general frame-
work of FP-type processes, and demonstrate how this encompasses several existing
learning procedures. We will then introduce the weakening of FP-type processes
which allows consideration of robustness to perturbations, before proving general
convergence properties of the framework.

We begin by reviewing the classical FP algorithm.

4.1. Fictitious play. Define the empirical history distribution (or empirical dis-
tribution) of player i by5

(4.1) qi(n) :=
1
n

n∑
s=1

σi(s),

4We note that in some texts, e.g., [36], this is referred to as an “internally chain transitive set.”
We prefer to use the term “internally chain recurrent” in order to emphasize the fact that we are
describing an extension of recurrence.

5We note that the empirical distribution is typically defined in terms of a sequence of actions,
i.e., σi(n) is restricted to vertices of the simplex Δi. For convenience, we consider a slightly broader
definition of the empirical distribution here in which we permit σi(n) to be an arbitrary element
of Δi. In general, however, we will usually assume that players view the realized actions played
by others (or some function thereof) and not their mixed strategies. This is discussed further in
section 4.3.1.

where {σi(s)} is a strategy sequence as defined in section 2.1, and let the joint empir-
ical distribution profile (or just joint empirical distribution) be given by the N -tuple
q(n) = (q1(n), . . . , qN (n)) ∈ ΔN . The sequence {q(n)}n≥1 is said to be an FP process
if for all i ∈ N and n ≥ 1,6

σi(n + 1) ∈ BRi(q−i(n)).(4.2)

In an FP process, it may be interpreted that players track the (marginal) empirical
distribution of the strategies of each opponent and treat this empirical distribution
as a prediction (or forecast) of the future (mixed) strategy of that opponent. Players
choose their next-stage strategies as a myopic best response given this prediction.

In what follows, we will see that an FP-type algorithm generalizes this idea—
players will still form a forecast and choose their next-stage strategy as a myopic best
response, but the manner in which the forecast can be formed will be significantly
generalized.

4.2. FP-type process. An FP-type algorithm generalizes FP in two ways: (i)
players are permitted to track and react to a function of the empirical history, and (ii)
players consider an empirical history that may be nonuniformly weighted over time.7

In particular, let Z denote a compact subset of R
m for some m ∈ N+ where

the information that players keep track of is assumed to live. We refer to Z as the
observation space. Let

g : Δ(Y) → Z

be a map from the joint mixed strategy space to the observation space. We assume
the following.

Assumption 2. The observation map g is uniformly continuous.

Let {z(n)}n≥1 be a sequence in Z that is defined recursively by letting z(1) ∈ Z
be arbitrary and for n ≥ 1

(4.3) z(n + 1) = z(n) + γ(n)
(
g(σ(n + 1)) − z(n)

)
,

where σ(n + 1) ∈ ΔN is the strategy used by players in round n + 1 and {γ(n)}n≥1
is a predefined sequence of weights satisfying the following.

Assumption 3. limn→∞ γ(n) = 0,
∑

n≥1 γ(n) = ∞.

We refer to z(n) as the observation state (the state z(n) plays an analogous role to
the empirical distribution q(n) in classical FP). In an FP-type algorithm, each player
forms a prediction (or forecast) of the future behavior of opponents as a function of
the observation state z(n). In particular, for each player i, let fi : Z → Δ(Y−i) be
a function mapping from the observation state to a forecast of opponents strategies.
We make the following assumption.

Assumption 4. The forecast map fi is continuous for each i ∈ N .

Given f = (f1, . . . , fN), we define the best-response function BRf : Z → Δ(Y)
associated with an FP-type algorithm as BRf (z) =

∏N
i=1 BRi(fi(z)), where BRi is

as defined in section 2.

6The initial strategy σ(1) may be chosen arbitrarily.
7The class of FP-type algorithms considered here is similar to the class of best-response algorithms

considered in [22].

When players are engaged in repeated play, we say the sequence {z(n)}n≥1 is
an FP-type process if each player’s stage (n + 1) strategy is chosen as a myopic
best response given their prediction of opponents strategies. That is, σi(n + 1) ∈
BRi(fi(z(n))) for all i ∈ N for all n ≥ 1 or, equivalently, in recursive form (see (4.3))

z(n + 1) − z(n) ∈ γ(n)
(
g(BRf (z(n))) − z(n)

)
.

Example 4.1. Classical FP is recovered by letting γ(n) = 1
n+1 , letting the observa-

tion space be given by Z = ΔN , letting g : Δ(Y) → ΔN with g(x) = (g1(x), . . . , gN(x)),
where gi : Δ(Y) → Δ(Yi) is given by gi(x) =

∑
y−i∈Y−i

x(yi, y−i), and for each i let-
ting fi : ΔN → Δ(Y−i) with fi(z) = (z1, . . . , zi−1, zi+1 . . . , zN).

Example 4.2. Joint strategy FP (JSFP) [6] is recovered by letting γ(n) = 1
n+1 ,

setting the observations space be Z = Δ(Y), letting g : Δ(Y) → Δ(Y) be the identity
function, and letting fi : Δ(Y) → Δ(Y−i) be given by fi(z) =

∑
yi∈Yi

z(yi, y−i).

Example 4.3. Suppose all players use an identical action space given by Yi = Ȳ
for all i. In this case, empirical centroid FP (ECFP) [26] is recovered by letting
γ(n) = 1

n+1 , letting the observation space be given by Z = Δ(Ȳ), letting g : Δ(Y) →
Δ(Ȳ) be given by g(x) = N−1∑N

i=1 xi, where yi �→ xi(yi) =
∑

y−i∈Y−i
x(yi, y−i), and

letting fi : Δ(Ȳ) → Δ(Y−i) be given by fi(z) = (z, . . . , z), i.e., the (N − 1)-tuple
containing repeated copies of z.8

We denote an instance of an FP-type algorithm as Ψ = ({γ(n)}n≥1, g, (fi)N
i=1).

4.3. Weakened FP-type process. In an FP-type algorithm it is assumed that
players strategies are always chosen to be optimal (best-response) strategies—a strong
assumption. In the spirit of [24, 25], we wish to study the robustness of the convergence
of an FP-type algorithm in a setting where agents may sometimes choose suboptimal
strategies. As we will see in later sections, this relaxation allows for a breadth of
practical applications.

Formally, let the ε-best response in this context be given by BRf,ε : Z → Δ(Y),
where BRf,ε(z) :=

∏N
i=1 BRi,ε(fi(z)), and where BRi,ε is as defined in (2.2). Suppose

that players choose their next-stage strategies as

(4.4) σ(n + 1) ∈ BRf,εn(z(n)),

where we assume the sequence {εn}n≥1 satisfies the following.

Assumption 5. limn→∞ εn = 0.

Let the observation state be updated as

(4.5) z(n + 1) − z(n) = γ(n)
(

g
(
σ(n + 1)

)
− z(n) + M(n + 1)

)
,

where we assume the sequence {M(n)}n≥2 satisfies the following.

Assumption 6. For any T > 0 there holds

lim
n→∞

sup
k

{∥∥∥∥∥
k−1∑
s=n

γ(s)M(s + 1)

∥∥∥∥∥ :
k−1∑
s=n

γ(s) ≤ T

}
= 0.

8The ECFP algorithm is explored in more depth in section 5 in connection with the robustness
result.

We refer to the sequence {εn}n≥1 in (4.4) as a best-response perturbation. We
refer to a sequence {z(n)}n≥1 satisfying (4.4)–(4.5) as a weakened FP-type process
(cf. [24, 25]).

4.3.1. Observation of strategies. In a game-theoretic learning process, it is
generally assumed that players observe the “realized actions” played by others, but
may not observe the mixed strategies used to generate the realized actions. In contrast,
(4.5) suggests that players have access to the full joint mixed strategies σ(n + 1). In
an FP-type algorithm, however, this issue is muddied by the observation map g. In
this section we address the issue of when players may be permitted to observe realized
actions versus mixed strategies within the context of FP-type algorithms.

Let σi(n) denote the mixed strategy used by player i ∈ N in round n ≥ 1 and
let yi(n) denote the realized action used by player i in round n. The action yi(n) is
assumed to be drawn as a random sample from σi(n). Let σ(n) := σ1(n)×· · ·×σN (n)
be the joint mixed strategy used in round n and let y(n) = (y1(n), . . . , yN(n)) be the
joint action tuple played in round n.

If an application permits players to directly observe the sequence (g(σ(n)))n≥1,
then one may assume that the observation state is updated towards the mapping of
the underlying mixed strategy g(σ(n + 1)) and put M(n + 1) = 0 for all n ≥ 1. That
is

z(n + 1) − z(n) = γ(n)
(
g(σ(n + 1)) − z(n)

)
.

However, in some applications it may be preferable to assume that players may only
observe (g(1y(n)))n≥1, rather than being able to observe (g(σ(n)))n≥1 directly. Below,
we present two conditions (Conditions 4.4–4.5) under either of which it is sufficient for
players to observe only (g(1y(n)))n≥1. Condition 4.4 can be shown to hold in a variety
of applications, including asynchronous FP as presented in section 7 (see Remark 7.2)
as well as in reduced-complexity implementations of FP-type algorithms that utilize
sampling-based techniques as in [28].9 Condition 4.5 can be shown to hold for many
FP-type algorithms including FP, JSFP, and ECFP.

The first condition is the following.

Condition 4.4. The FP-type process is such that for any sequence of admissible
observation states {z(n)}n≥1, there exists a sequence {εn}n≥1 such that εn → 0 and
for any σi(n + 1) ∈ BRi,εn(fi(z(n))), the support of the mixed strategy σi(n + 1)
contains only pure strategies that are εn-best responses.

If this condition holds, then one may assume that the observation state is updated
towards the mapping of the realized action g(1y(n+1)) and that M(n + 1) = 0 for all
n ≥ 1. That is,

z(n + 1) − z(n) = γ(n)
(
g(1y(n+1)) − z(n)

)
.

See Remark 7.2 for a discussion of this condition in the context of asynchronous FP.
The second condition is the following.

Condition 4.5. The observation map g is linear.

If this condition holds, then one may assume that the observation state is updated
towards the mapping of the realized action g(1y(n+1)) as

z(n + 1) − z(n) = γ(n)
(
g(σ(n + 1)) − z(n) + M(n + 1)

)
,

9See also [37] for a discussion of FP-type algorithms in the context of these applications.

where the random variable M(n + 1) is given by

M(n + 1) = g(1y(n+1)) − g(σ(n + 1)).

As long as γ(n) is deterministic and γ(n) = o(1
log n), then {M(n)}n≥2 is a martingale

difference sequence satisfying Assumption 6 with probability 1. We note that in
classical FP, JSFP, and ECFP, the mapping g is linear.

Thus, despite appearances in (4.5), the only time it is necessary to assume that
players have access to the mixed strategies of opponents is when Conditions 4.4 and
4.5 fail to hold and, even then, this access to σ(n+1) is through the observation map
g.

4.4. Main theoretical result: Robustness property for FP-type process.
The following theorem is the main theoretical result of the paper. It shows that if
Assumptions 2–5 are satisfied, then the set of limit points of a discrete-time FP-type
process are contained in an internally chain recurrent set of the associated differential
inclusion

(4.6) ż(t) ∈ g(BRf (z(t))) − z(t).

Theorem 4.6. Let Ψ = ({γ(n)}n≥1, g, (fi)N
i=1) be an FP-type algorithm satisfying

Assumptions 2–4 and consider a weakened FP-type process whose associated sequence
{εn}n≥1 satisfies Assumption 5 and associated sequence {M(n)}n≥1 satisfies Assump-
tion 6. Then the weakened FP-type process converges to the internally chain recurrent
set of the associated differential inclusion (4.6).

After proving the theorem, we give an example of how the theorem can be applied
to study various notions of learning in the case of a particular FP-type algorithm (see
section 5).

The proof of Theorem 4.6 follows directly from the following lemma together with
Proposition 3.5 and Theorem 3.7. The lemma shows that for sufficiently small ε, there
exists a δ such that the ε-best responses are contained in the δ-perturbations of BR
for all z. While this is clearly true pointwise, the uniformity in z has not previously
been shown. This observation was not made in [25] and results in a gap in the proof
presented there.

Lemma 4.7. Let εn → 0 as n → ∞. Then there exists a sequence δn → 0 such
that BRf,εn(z) ⊆ BRδn

f (z) uniformly for z ∈ Z.

Proof. We work with the supremum norm on Z and Δ(Yi) throughout the proof.
Fix an arbitrary δ > 0. Following [38], define the “stability set” of a (joint) action

y ∈ Y as
St(y) := {z ∈ Z : yi ∈ BRi(fi(z)) ∀i}.

Note that the closer that z is to boundary of St(y), the smaller that ε must be to ensure
that ε-best responses place a large mass on y, and hence are δ-perturbations of y =
BR(z). To gain the uniform inclusion of the ε-best responses in the δ-perturbations
we consider the interior of the sets St(y) separately from neighborhoods of boundaries
of the stability sets. To this end, extend the stability set concept to sets of actions
T ⊆ Y by defining

St(T) :=
⋂
y∈T

St(y)

to be the set of z ∈ Z such that all actions y ∈ T are best responses to z. In what
follows, we will use the stability sets St(T) to construct a finite cover {D(T)}T⊆Y of

Z such that BR(f(z)) ⊆ T for each z ∈ D(T). This allows us to show that ε-best
responses to elements in D(T) place most of their mass on T , and in particular it can
be shown that for each set D(T) ⊆ Z there holds

(4.7) BRf,ε(z) ⊆ BRδ
f (z) ∀z ∈ D(T)

for all ε sufficiently small. Since the cover is finite, we can show that in fact

(4.8) BRf,ε(z) ⊆ BRδ
f (z) ∀z ∈ Z

holds for all ε sufficiently small. (We note, however, that we proceed along a slightly
more direct route, showing (4.8) without directly verifying (4.7).)

To this end, note that by the upper hemicontinuity of BRi and continuity of
fi, we have that St(y) and St(T) are closed sets. For any η > 0 and any T ⊆ Y ,
let B(St(T), η) be the open ball of radius η about St(T) which is empty if St(T) is
empty. Let M =

∏
i∈N |Yi| and for each k ∈ {1, 2, . . . , M} let T k be the collection of

all subsets T ⊆ Y such that |T | = k. For the tuple η>k = (ηk+1, . . . , ηM) define the
“exclusion set”

Ek(η>k) :=
M⋃

κ=k+1

⋃
T∈T κ

B(St(T), ηκ)

to be the set of z ∈ Z that is close to some stability set St(T) with |T | > k, where
close is measured by the tuple η>k.

We now work recursively from k = M down to k = 1. Start by letting ηM = δ
and let

D(Y) := B(St(Y), ηM).

Now let k ∈ {1, . . . , M −1} and suppose η>k is given. Suppose T ∈ T k, and let T̃ ⊆ Y
such that T̃
⊆ T. Then |T ∪ T̃ | > k, so by the definition of Ek(η>k) we have that
St(T) ∩ St(T̃) = St(T ∪ T̃) ⊆ Ek(η>k). Therefore St(T) ∩ St(T̃) ∩ Ek(η>k)c = ∅.
Since Ek(η>k) is open by definition, the complement is closed. Therefore the sets
St(T) ∩ Ek(η>k)c and St(T̃) are disjoint compact sets and either have a minimal
separating distance or at least one is empty. We can therefore fix an ηk such that, for
each T ∈ T k,

D(T) := B(St(T), ηk) ∩ Ek(η>k)c

satisfies the following properties.

Property 4.8. D(T) is separated from St(T̃) for all T̃ ⊆ Y such that T̃
⊆ T .

Property 4.9. D(T) is separated from D(T̃) for all T̃ ∈ T k with T̃
= T .

Iterating this reasoning down to k = 1 defines the full set of ηk values as well as D(T)
for all T ⊆ Y with T
= ∅.

We now show that the sets {D(T)}T⊆Y partition Z. By definition we have that
D(Y) = B(St(Y), ηM); using a backwards induction argument one may verify that

(4.9)
M⋃

k=1

⋃
T∈T k

D(T) =
M⋃

k=1

⋃
T∈T k

B(St(T), ηk).

Hence, Z =
⋃

T⊆Y St(T) ⊆
⋃

T⊆Y D(T) ⊆ Z, where the equality holds because
there exists a best response to any z ∈ Z, and the first containment holds by (4.9).
Furthermore, by Property 4.9 (and the fact that, by construction, D(T) ∩ D(T̃) = ∅

for |T |
= |T̃ |) we have that D(T) ∩ D(T̃) = ∅, for all T, T̃ ⊆ Y, T̃
= T . Hence the
sets {D(T)}T⊆Y partition Z.

We wish to show that for z ∈ D(T), the ε-best responses place most of their mass
on elements in T . To this end, let T ∈ T k for arbitrary 1 ≤ k ≤ M , and let D̄(T) be
the closure of D(T). We claim that if z ∈ D̄(T), then all pure strategy best responses
to z are contained in T . To see this, suppose contrariwise that z ∈ D̄(T) has a pure
strategy best response not contained in T . Then z ∈ St(T̃) for some T̃
⊆ T , which
violates Property 4.8.

Now define, for z ∈ Z, the set T (z) to be the T ⊆ Y such that z ∈ D(T). Also
define Ti(z) := {yi ∈ Yi : (yi, y−i) ∈ T (z) for some y−i ∈ Y−i} so that all of Player i’s
pure strategy best responses to z ∈ Z are contained in Ti(z). Thus, for z ∈ D̄(T), for
each i there exists a ξi,δ(z) > 0 such that

max
yi∈Yi

Ui(1yi , f(z)) − max
ỹi �∈Ti(z)

Ui(1ỹi , f(z)) = ξi,δ(z).10

Since D̄(T) is compact and Ui (and hence ξi) is continuous, we get infz∈D̄(T) ξi,δ(z) > 0
for all i. Since there are finitely many T ⊆ Y and i ∈ N , there exists a ξδ > 0 such
that for each i and z ∈ Z, maxyi∈Yi Ui(1yi , fi(z)) − maxỹi /∈Ti(z) Ui(1ỹi , fi(z)) ≥ ξδ.
We have shown that for any i and any z, any action not in Ti(z) receives utility less
than the best response by at least an amount ξδ.

Invoking the linearity of zi �→ Ui(zi, z−i), it follows that for z ∈ Z, for each i, an
ε-best response to z can put probability at most ε/ξδ on actions not in Ti(z). That
is, for any z ∈ Z and for any i ∈ N ,

BRi,ε(fi(z)) ⊆

⎧⎨
⎩xi ∈ Δ(Yi) :

∑
yi∈Ti(z)

xi(yi) ≥ 1 − ε

ξδ

⎫⎬
⎭ .

Let ε ≤ min{δξδ, δ} and let x ∈ BRf,ε(z). By the above, x is a distance at
most δ from a strategy x′ which places all its mass on T (z). Simultaneously, by the
construction of D(T), z is a distance at most δ from the set St(T (z)), i.e., there exists
a z′ ∈ St(T (z)) such that d(z, z′) ≤ δ. By the definition of the stability set, we have
x′ ∈ BRf (z′). This shows that x ∈ BRδ

f (z). Since z was arbitrary, and this holds for
any x ∈ BRf,ε(z), we have BRf,ε(z) ⊆ BRδ

f (z) for all z ∈ Z.
Suppose we have a sequence εn → 0. Let c := max{εn}n≥1 and for k ∈ N+, let

ηk := min{ c
k ξ c

k
, c

k}. Note that ηk > 0 for all k and ηk → 0. Choose {Nk}k≥0 to be
an increasing sequence of integers such that N0 = 1, Nk → ∞, and for each index
k there holds n ≥ Nk−1 =⇒ εn ≤ ηk. For n ∈ N+ satisfying Nk−1 ≤ n < Nk, let
δn := c

k . This gives us a sequence {δn}n≥1 such that δn → 0 and εn ≤ min(δnξδn , δn),
which by the above implies BRf,εn(z) ⊆ BRδn

f (z) for any z ∈ Z.

We now prove Theorem 4.6.

Proof. By assumption, players choose their strategies according to (4.4). Apply-
ing (4.5) we get the recursive form γ(n)−1(z(n+1)−z(n))−M(n+1)∈g(BRf,εn(z(n)))−
z(n), where εn → 0. By Lemma 4.7, we know that γ(n)−1(z(n+1)−z(n))−M(n+1) ∈
g(BRδn

f (z(n))) − z(n) for some sequence δn → 0. Let F : Z ⇒ Z be given by
F (z) = g(BRf (z))−z. Since g is uniformly continuous, the previous equation implies
that γ(n)−1(z(n + 1) − z(n)) − M(n + 1) ∈ F ηn(z(n)) for some sequence ηn → 0.
By Proposition 3.5, the continuous-time interpolation of {z(n)}n≥1 is a bounded per-

10For completeness we emphasize that ξi,δ is in fact a function of δ, as well as z.

turbed solution of the associated differential inclusion (4.6). The result then follows
by Theorem 3.7.

An important consequence of Theorem 4.6 is that, if one wishes to show conver-
gence of an FP-type algorithm to some equilibrium set, one need only verify that the
associated internally chain recurrent set is contained in the equilibrium set.

This has been shown, for example, with the set of NE and classical FP in potential
games [36], two-player zero-sum games [39], and generic 2 × m games [16]. Thus, the
following important result (see [25, Corollary 5]) may also be seen as a consequence
of Theorem 4.6. As this result will arise in the subsequent discussion, we find it
convenient to state it here.

Corollary 4.10 (see [25, Corollary 5]). Let Γ be a potential game, two-player
zero-sum game, or generic 2×m game. Consider a weakened FP process whose asso-
ciated sequence {εn}n≥1 satisfies Assumption 5 and associated sequence {M(n)}n≥1
satisfies Assumption 6. Then the corresponding FP process converges to the set of NE
in the sense that limn→∞ d(q(n), NE) = 0.

5. Example: Empirical centroid FP. In classical FP each player i is required
to track the marginal empirical distribution zj , j
= i, of every other player (see (4.2)).
The memory size of this vector (that must be tracked by each player) grows linearly
with the number of players. In large-scale settings it can be impractical for players to
track such a large quantity of information.

In this section we consider a variant of FP in which players only track an aggregate
statistic which preserves some (though not necessarily all) of the relevant information
about the game action history. In the spirit of an FP-type algorithm, players form a
prediction of the future behavior of opponents using the aggregate statistic.

In order to ensure the process is well defined, assume the following.

Assumption 7. All players use an identical action space Ȳ ; i.e., Yi = Ȳ for all i.
Moreover, all players use an identical permutation-invariant utility function.

More details regarding this class of games and the manner in which this assump-
tion can be weakened can be found in [26].

In ECFP, players track and best respond to the empirical centroid distribution
q̄(n) ∈ ΔN , defined as q̄(n) := 1

N

∑N
i=1 qi(n), where qi(n) is as defined in (4.1). In

particular, each player i chooses their next-stage strategy according to the rule

(5.1) σi(n) ∈ BRi(q̄−i(n − 1)),

where q̄−i(n) ∈ Δ(Y−i) is given by q̄−i(n) := (q̄(n), . . . , q̄(n)), i.e., the (N − 1)-tuple
containing repeated copies of q̄(n).

Two notions of learning have been studied for ECFP. Note that both use ECFP
dynamics, but achieve different learning results by using different observation spaces.
Below, we briefly review each notion in the context of the robustness result.

In order to study the first notion of learning, we make the following assignments
to terms from section 4. Let γ(n) = 1

n+1 , let Z = Δ(Ȳ), let g : Δ(Y) → Δ(Ȳ)
be given by g(x) = N−1∑N

i=1 xi, where yi �→ xi(yi) =
∑

y−i∈Y−i
xi(yi, y−i), and let

fi : Δ(Ȳ) → Δ(Y) be given by fi(z) = (z, . . . , z), i.e., the (N − 1)-tuple containing
repeated copies of z. Note that the induced dynamics comport with (5.1).

For strategies p ∈ ΔN , we define the set of consensus Nash equilibria (CNE) by
CNE := {p ∈ NE : p1 = · · · = pN}. Define CNE := {p̄ ∈ Δ(Ȳ) : p = (p̄, . . . , p̄) ∈
NE}, and note that a strategy p ∈ ΔN is a CNE if and only if there exists a p̄ ∈ CNE
such that p = (p̄, . . . , p̄).

It has been shown in [40] that the internally chain recurrent sets of the associated
differential inclusion (4.6) are contained in the CNE set. We thus obtain the following
corollary to Theorem 4.6.

Corollary 5.1. Let Γ satisfy Assumption 7. Suppose players are engaged in a
repeated play process on Γ and choose their next stage strategies according to the rule
(5.1). Then players learn CNE strategies in the sense that limn→∞ d(z(n), CNE) = 0
or, equivalently, limn→∞ d(zN(n), CNE) = 0, where zN (n) = (z(n), . . . , z(n)) is the
N -tuple containing repeated copies of z(n).

In order to study the second notion of learning we let γ(n) = 1
n+1 , let Z = ΔN ,

let g : Δ(Y) → ΔN be given by g(x) = (g1(x), . . . , gN (x)), where gi : Δ(Y) �→ Δ(Ȳ)
with gi(x) =

∑
y−i∈Y−i

x(yi, y−i), and let fi : ΔN → Δ(Y) be given by fi(z) =∏N
i=1 z̄i, where z̄i(yi) = N−1∑N

j=1 zj(yi), yi ∈ Ȳ . Note that the induced dynamics
again comport with (5.1). In this case, note that the observation state lives in ΔN

and corresponds to the standard time-averaged empirical distribution familiar from
classical FP.

For a strategy p = (p1, . . . , pN) ∈ ΔN , define p̄ := N−1∑N
i=1 pi ∈ Δ(Ȳ), and

define p̄−i :=
∏

j �=i p̄ ∈ Δ(Y−i). Let the set of mean-centric equilibria be defined by
MCE := {p ∈ ΔN : Ui(pi, p̄−i) ≥ Ui(p′

i, p̄−i), ∀p′
i ∈ Δ(Ȳ)}. It has been shown

in [40] that the internally chain recurrent sets of the associated differential inclusion
(4.6) are contained in the set of MCE. Invoking Theorem 4.6 we obtain a second mode
of learning as stated in the following corollary.

Corollary 5.2. Let Γ satisfy Assumption 7. Suppose players are engaged in a
repeated play process on Γ and choose their next stage strategies according to the rule
(5.1). Then players learn MCE strategies in the sense that limn→∞ d(z(n), MCE) =
0.

6. Application: Distributed implementation of an FP-type algorithm.
In the formulation of FP, as well as the FP-type algorithm, it is implicitly assumed
that each agent has instantaneous access to all information required to compute her
next-stage strategy. For example, in classical FP (section 4.1) each agent is assumed
to have perfect knowledge of the empirical distribution q(n) (see (4.1)) in order to
choose a strategy in stage n + 1. This assumption can be impractical in large-scale
settings where physical limitations may hinder agents’ ability to directly communicate
with one another.

One approach to mitigate this problem is to assume that agents are equipped
with an overlaid communication graph through which information may be gradually
disseminated through the course of the learning process [26, 32, 41]. In particular,
suppose the following assumption holds.

Assumption 8. Agents may observe only their own strategies. However, agents
are equipped with a (possibly sparse) interagent communication graph G = (V , E).
Agents may exchange information with neighboring agents (as defined by the graph
G) once per iteration of the repeated play.

Within this framework, agents engaged in an FP-type process may not have
perfect knowledge of the observation state z(n). Instead, let ẑi(n) be an estimate
that agent i maintains of z(n).

Before presenting the prototypical distributed implementation of an FP-type al-
gorithm, one remark is in order.

Remark 6.1 (observation of strategies). In section 4.3.1 we discussed the issue
of observation of strategies in FP-type algorithms. We note that in a distributed
implementation of an FP-type algorithm (section 6.1, below) players are assumed to
be incapable of observing either the realized actions or the mixed strategies used by
others (see Assumption 8). Players observe their own realized actions and mixed
strategies, and communicate some function of this information to other agents via the
overlaid communication graph.

6.1. Distributed FP-type algorithm.
Initialize
(i) Initialize the state estimate ẑi(1).11 Let players choose an arbitrary initial

strategy.
Iterate (n ≥ 1)
(ii) Each agent i chooses a next-stage strategy according to the rule σi(n + 1) ∈

BRi(fi(ẑi(n)), where fi(·) satisfies Assumption 4. The (true) observation
state at time (n + 1) is given by z(n + 1) = z(n) + γ(n)(g(σ(n + 1)) − z(n)).
(It is not assumed that players have knowledge of (z(n)).)

(iii) Each agent i may engage in one round of information exchange with neigh-
boring agents (as defined by G) and update their estimate ẑi(n+1) using the
information obtained.

6.2. Discussion. Analysis of the above algorithm prototype reveals that step
(ii) may be seen as a best-response perturbation (this follows from the Lipschitz
continuity of Ui). It is straightforward to show that if ‖ẑi(n) − z(n)‖ → 0 for all i,
as n → ∞ then Assumption 5 holds, and hence the process falls under the purview of
Theorem 4.6.

This has been applied, for example, in order to develop distributed implementa-
tions of FP and ECFP [26], where the update of the empirical distribution estimate
in step (iii) is carried out using a type of (synchronous) consensus recursion [27].
We note, however, that the convergence results for the distributed algorithms in [26]
relies on an alternative form of the robustness property which required strong as-
sumptions. In particular, it was required that error in players estimates decay as
‖ẑi(n) − z(n)‖ = O(log t

tr), r > 0.
The robustness result in this paper relies on the significantly weaker assumption

that ‖ẑi(n) − z(n)‖ → 0 (cf. Assumption 5); in particular, the rate at which this goes
to zero does not matter.

The protocol used to form the estimate ẑi(n) in step (iii) is intentionally crafted
to be broad in order to emphasize that a wide variety of information dissemination
protocols may be used. Using the more powerful robustness result of this paper one
may extend the approach of [26], demonstrating convergence of distributed imple-
mentations of FP-type algorithms in settings where players use more realistic com-
munication protocols, e.g., asynchronous gossip [27] (cf., section 7), a communication
framework in which the communication graph suffers from random link dropouts [42]
or otherwise changing topology [43].

7. Application: Asynchronous implementation of FP. The classical FP
algorithm (4.2) implicitly assumes a form of global synchronization. In particular,
note that each agent must choose their stage n action before any other agent chooses

11The initialization of ẑi(n) may be subject to some conditions depending on the particular
information dissemination scheme used [26, 27]. See discussion below for more details.

their stage (n + 1) action. In practice, such synchronization is often infeasible in
large-scale distributed systems.

In this section we use the robustness result to study a variant of FP in which
agents are permitted to act in an asynchronous manner. While asynchronous learn-
ing schemes would usually be analyzed using asynchronous stochastic approximation
(e.g., [34]) we show in this section that asynchronicity can be handled in a more
straightforward manner by simply using our robustness results. In particular, using
Theorem 4.6 we develop a mild sufficient condition under which an “asynchronous FP
process” can be shown to converge to the set of NE in the same sense as classical FP.

The initial model of asynchronous FP that we study in section 7.2 is somewhat
abstract—it is this feature that allows us to capture a broad range of asynchronous
processes. After introducing this model and proving convergence results (section 7.2),
we then provide simple examples of highly practical real world models that readily
fall within this framework (sections 7.3–7.5).

We begin by introducing the notion of asynchronous repeated play learning—a
slight modification of classical repeated play introduced in section 2.1.

7.1. Asynchronous repeated play learning. In order to model asynchrony,
we consider an extension of the classical repeated play framework of section 2.1 in
which players may be “active” in some rounds and “idle” in others.

Let n ∈ N and let {Xi(n)}n≥1, be a sequence of (deterministic or random) vari-
ables Xi(n) ∈ {0, 1} indicating the rounds in which player i is active. Let Ni(n)
count the number of rounds in which player i has been active up to and including
time n, i.e., Ni(n) :=

∑n
s=1 Xi(s). Let σi(n) represent the strategy chosen by player

i in round n. Let the empirical distribution of player i be defined in this setting as
qi(n) := 1

Ni(n)

∑n
s=1 σi(s)Xi(s).

7.2. FP with asynchronous updates. Within the generalized repeated-play
framework given above, we say a sequence of strategies {σ(n)}n≥1 is a FP process
with asynchronous updates (or an asynchronous FP process) if for n ≥ 1,12

(7.1) σi(n + 1) ∈
{

BRi(q−i(n)) if Xi(n + 1) = 1,

σi(n) otherwise.

This models a scenario in which each player i may update her strategy in round (n+1)
according to traditional best-response dynamics only if Xi(n + 1) = 1; otherwise, the
strategy of player i persists from the previous round.13

As a consequence of Corollary 4.10, the following assumption is sufficient (to be
shown) to ensure that the FP process defined in (7.1) leads to NE learning in potential
games.

Assumption 9. (i) For each i there holds limn→∞ Ni(n) = ∞; (ii) for all i, j there
holds, limn→∞

Ni(n)
Nj(n) = 1.

Part (i) in the above assumption ensures that players are active in infinitely
many rounds. Part (ii) ensures that the number of actions taken by each player

12Let Xi(1) = 1 for all i and let the initial action σi(1) be chosen arbitrarily for all i. Moreover,
for convenience in notation we have used an inclusion in (7.1). However, if Xi(n + 1) �= 1, then the
inclusion should be interpreted as an equality σi(n + 1) = σi(n).

13Note that classical FP of section 4.1 may be seen as a special case within this framework with
Xi(n) = 1 for all i, n.

remain relatively close; effectively, (ii) ensures that players obtain a weak form of
synchronization.

The following theorem is the main theoretical result of this section. It shows that
under the above assumption, FP with asynchronous updates achieves NE learning. It
will be shown to follow as a consequence of the robustness result.

Theorem 7.1. Let Γ be a potential game. Let the strategy sequence {σ(n)}n≥1
be determined according to an FP process with asynchronous updates and assume
Assumption 9 holds. Then players learn NE strategies in the sense that
limn→∞ d(q(n), NE) = 0.

In order to prove Theorem 7.1 we will study an underlying (synchronous) FP
process that is embedded in the asynchronous FP process defined in (7.1). We begin
by presenting some additional definitions that allow us to study the embedded process.

In particular, for s ∈ N+ define the following terms:
τi(s) := sup{n ∈ N+ : Ni(n) ≤ s}, σ̃i(s) := σi(τi(s)), σ̃(s) := (σ̃1(s), . . . , σ̃N (s)),

q̃i(s) := qi(τi(s)), q̃(s) := (q̃1(s), . . . , q̃N (s)), q̂i
j(s) := qj(τi(s + 1) − 1), q̂i(s) :=

(q̂i
1(s), . . . , q̂

i
N (s)).

In words, the term τi(s) denotes the round number when player i is active for the
sth time. The terms marked with a ∼ correspond to the embedded (synchronous) FP
process that we will study in the proof of Theorem 7.1.

When studying the embedded (synchronous) FP process {σ̃(s)}s≥1, it will be
important to characterize the terms to which players are playing a best response.
With this in mind, note that per (7.1), the strategy at time τi(s + 1) is chosen as
σi(τi(s + 1)) ∈ arg maxαi∈Ai Ui(αi, q−i(τi(s + 1) − 1)). Thus, by construction, the
(s + 1)th strategy of player i in the embedded (synchronous) FP process is chosen as
σ̃i(s + 1) ∈ BRi(q̂i

−i(s)). In the embedded (synchronous) FP process, the term q̃j(s)
may be thought of as the “true” empirical distribution of player j, and the term q̂i

j(s)
may be thought of as an estimate which player i maintains of q̃j(s), and the term q̂i(s)
(note the superscript) may be thought of as player i’s estimate of the joint empirical
distribution q̃(s) at the time of player i’s (s + 1)th best response. Loosely speaking,
if we can show that q̂i(s) → q̃(s) for all i, then convergence of the embedded process
(q̃(s)) (and eventually the original process (q(n))) will follow from the robustness
result.

Before proceeding to the proof of Theorem 7.1, we point out a few useful properties
that will arise in the proof. Note that for i ∈ N and s ∈ {1, 2, . . .}, we have

(7.2) Ni(τi(s)) = s,

and for i ∈ N and t ∈ {1, 2, . . .} we have

(7.3) Xi(n) = 1 =⇒ τi(Ni(n)) = n.

Furthermore, note that Xi(n) = 0 implies that Ni(n) = Ni(n − 1) and, in particular,

Xi(n) = 0 =⇒ qi(n) = qi(n − 1).(7.4)

These facts are readily verified by conferring with the definitions of τi, Ni, and Xi.
We now prove Theorem 7.1.

Proof. As a first step, we wish to show that lims→∞ d(q̃(s), NE) = 0. We
accomplish this by invoking the robustness result. In particular, we wish to show that
there exists a sequence {εs}s≥1 such that lims→∞ εs = 0 and

(7.5) Ui(σi(s + 1), q̃−i(s)) ≥ max
αi∈Ai

Ui(αi, q̃−i(s)) − εs ∀s ≥ 1.

To that end, for i ∈ N define vi : Δ−i → R by vi(q−i) := maxαi∈Ai Ui(αi, q−i), and
note that by (7.1), Ui(σi(τi(s + 1)), q−i(τi(s + 1) − 1)) = vi(q−i(τi(s + 1) − 1)) or,
equivalently, by the definitions of σ̃(s) and q̂i(s),

Ui(σ̃i(s + 1), q̂i
−i(s)) = vi(q̂i

−i(s)).

Using Lemma A.1 in the appendix, it is straightforward to verify that
lims→∞ ‖q̂i(s) − q̃(s)‖ = 0. Since Ui is Lipschitz continuous, this gives

lim
s→∞

|Ui(σ̃i(s + 1)), q̃−i(s)) − vi(q̃−i(s))| = 0 ∀i;

i.e., there exists a sequence {εs}s≥1 such that εs → 0 and (7.5) holds.14 It follows by
Corollary 4.10 that

(7.6) lim
s→∞

d(q̃(s), NE) = 0.

We now show that limn→∞ d(q(n), NE) = 0. Let ε > 0 be given. By Lemma A.1
(see appendix), for each i ∈ N there exists a time Si > 0 such that for all s ≥ Si,
‖q(τi(s)) − q̃(s)‖ < ε

2 . Let S
′
= maxi{Si}. By (7.6) there exists a time S

′′
such that

for all s ≥ S
′′
, d(q̃(s), NE) < ε

2 . Let S = max{S
′
, S

′′}. Then

(7.7) d(q(τi(s)), NE) < ε ∀i ∀s ≥ S.

Let T = maxi{τi(S)}. Note that for some i, q(T) = q(τi(S)), and hence by (7.7),

(7.8) d(q(T), NE) < ε.

Also note that for any n0 > T , it holds that Ni(n0) ≥ S (since Ni(τi(S)) = S, and
Ni(n) is nondecreasing in n) and, moreover,

Xi(n0) = 1 for some i =⇒ q(n0) = q(τi(Ni(n0))),
Xi(n0) = 0 ∀i =⇒ q(n0) = q(n0 − 1),(7.9)

where the first implication holds with Ni(n0) ≥ S. In the above, the first line follows
from (7.3) and the second line follows from (7.4). Consider n ≥ T . If for some
i, Xi(n) = 1, then by (7.9) and (7.7), d(q(n), NE) = d(q(τi(Ni(n))), NE) < ε.
Otherwise, if Xi(n) = 0 for all i, then q(n) = q(n − 1).

Iterate this argument m times until either (i) Xi(n−m) = 1 for some i, or (ii) t−
m = T . In the case of (i), d(q(n), NE) = d(q(n−m), NE) = d(q(τi(Ni(n−m))), NE)
< ε, where the inequality again follows from (7.7) and the fact that n − m > T =⇒
Ni(n − m) ≥ S. In the case of (ii), d(q(n), NE) = d(q(T), NE) < ε, where the
inequality follows from (7.8). Since ε > 0 was arbitrary, the result follows.

Remark 7.2 (observation of strategies). As discussed in footnote 14, the embed-
ded weakened FP process (q̃(s))s≥1 satisfies Condition 4.4. Hence, following the dis-
cussion in section 4.3.1, the empirical distribution (q̃(s))s≥1 may be updated using the
realized action sequence rather than the underlying mixed strategy sequence. Using
the definition of (q̃(s))s≥1 and (7.1) it follows that the empirical distribution (q(n))n≥1

14 Note that, by construction, we have σi(τi(s)) ∈ BRi(q̂i
−i(s − 1)). Since Ui is multilinear, this

means that every pure strategy in the support of σi(τi(s)) is a best response to q̂i
−i(s − 1). Using

the Lipschitz continuity of Ui and the fact that lims→∞ ‖q̂i(s) − q̃(s)‖ = 0, we see that there exists
a sequence (εs)s≥1 such that lims→∞ εs = 0 and each pure strategy yi in the support of σi(τi(s)) is
an εs best response to q̃−i(s). By Remark 7.2, this implies that Condition 4.4 is satisfied and, hence,
players engaged in an asynchronous FP process need only observe the image of realized actions rather
than the underlying mixed strategies of others.

of the asynchronous FP process as defined in section 7.1 may also be updated using
the realized action sequence.

We also note that since we consider classical FP in this section, and since the
observation map g in FP is linear (see Example 4.1), Condition 4.5 is satisfied for the
embedded weakened FP process (q̃(s))s≥1. Thus, by the discussion in section 4.3.1, it
immediately follows that players need only observe realized actions of others. However,
we have taken the somewhat longer route of showing that Condition 4.4 is satisfied
in this application in order to emphasize the manner in which Condition 4.4 may be
used in a variety of applications,15 even if the observation map g is nonlinear.

7.3. Continuous-time embedding of FP. The asynchronous FP algorithm
discussed in section 7.2 is a somewhat abstract discrete-time process. In this section we
give a concrete interpretation of the process within a practical setting. In particular,
we consider the implementation of the (discrete-time) FP algorithm in a continuous-
time setting where agents do not have access to a global clock. Effectively, this
results in a discrete-time asynchronous FP process embedded within a continuous-
time framework.

We first introduce the continuous-time embedding and derive a sufficient con-
dition for convergence using Theorem 7.1. Subsequently, we give two simple and
practical implementations that achieve the condition. The example implementations
are prototypical in that one uses a synchronization rule that is entirely stochastic,
and the other, entirely deterministic.

As in the previous models of repeated play learning, assume each player executes
a (countable) sequence of actions (or strategies) {σi(n)}n≥1. Furthermore, assume
that each action is taken at some instant in real time t ∈ [0, ∞) as measured by
some universal clock.16 In particular, for each player i, let {τi(n)}∞

n=1 ⊂ [0, ∞) be an
increasing sequence where τi(n) indicates the time (as measured by the universal clock)
at which player i chooses an action for the nth time. Let σi(n) denote the nth action
taken by player i, i.e., the action taken by player i at time t = τi(n). For t ∈ [0, ∞),
let Ni(t) = sup{n : τi(n) ≤ t} denote the number of actions taken by player i by
time t. For t ∈ [0, ∞), we define the empirical distribution of player i in this setting
as qi(t) := 1

Ni(t)

∑Ni(t)
k=1 σi(k). In particular, for t ∈ [0, ∞), let qi(t−) := limt̃↑t qi(t̃).

In this context, we say the sequence {σi(n)}n≥1 is an asynchronous FP action
process if for n ≥ 1 each player i chooses their stage-n action according to the rule17

σi(n) ∈ BRi(q−i(τi(n)−)).

We call the sequence {τi(n)}n≥1 the action-timing process for player i, and we refer
to any method used to generate {τi(n)}n≥1 (whether deterministic or stochastic) as
an action-timing rule. Together, we refer to the joint sequence {τi(n), σi(n)}i∈N ,n≥1
as a continuous-time embedded FP process.

The following assumption provides a sufficient condition on the action-timing
process in order to ensure convergence of the continuous-time embedded FP process.
The assumption is essentially a restatement of Assumption 9, but in a continuous-time
setting.

15For example, Condition 4.4 also holds in sampling-based FP-type algorithms [7, 28, 37].
16We use the term “universal clock” to refer to some reference clock by which we can compare the

timing of actions taken by individual players. However, the universal clock is merely an artifice for
analyzing the process, and we do not suppose that players have any particular knowledge concerning
it.

17Let τi(1) = 0 for all i, and let the initial action σi(1) be chosen arbitrarily for all i.

Assumption 10. (i) For each i there holds limt→∞ Ni(t) = ∞, (ii) for each i, j
there holds limt→∞ Ni(t)/Nj(t) = 1.

Part (i) of the above assumption may be satisfied, for instance, as long as the clock
skew of each agent stays bounded (with respect to the universal clock), and each agent
takes actions infinitely often with respect to their local clock. In order to ensure (ii)
is satisfied, slightly more care is needed, as demonstrated by the specific application
scenarios below.

The following theorem demonstrates that if the action-timing sequence is chosen
to satisfy Assumption 10, then the continuous-time embedding of FP will converge to
the set of NE.

Theorem 7.3. Let Γ be a potential game. Suppose that {σi(n), τi(n)}i∈N , n≥1 is
a continuous-time embedding of FP satisfying Assumption 10. Then players learn NE
strategies in the sense that limt→∞ d(q(t), NE) = 0.

The proof of Theorem 7.3 follows readily from Theorem 7.1.
In the following two subsections, we give two simple examples of action-timing

rules that illustrate different methods for achieving Assumption 10 (and hence achiev-
ing NE learning in the continuous-time embedded FP process).

7.4. Independent Poisson clocks. Let wi(n) = τi(n + 1) − τi(n) denote the
stage n “waiting time” for player i. Suppose that for each player i and n ≥ 1, wi(n)
is an independent random variable with distribution wi(n) ∼ exp(λ), where λ > 0 is
some parameter that is common among all i. In this case, the action-timing process
{τi(n)}n≥1 is said to be a homogenous Poisson process.

The following theorem shows that if the action-timing process is randomly gen-
erated in this manner, then players will achieve NE learning.

Theorem 7.4. Let Γ be potential game. Suppose that players are engaged in a
continuous-time embedded asynchronous FP process and the action-timing sequences
{τi(n)}n≥1 are generated as independent homogenous Poisson processes with common
parameter λ. Then players learn NE strategies in the sense that limt→∞ d(q(t), NE) =
0, a.s.

Proof. By Theorem 7.1 it is sufficient to show that limt→∞ Ni(t) = ∞ for all i,
and limt→∞

Ni(t)
Nj(t)

= 1 for all i, j.
First, note that for any i and n ≥ 1, wi(n) < ∞ a.s. Hence, τi(n) =

∑n
k=1 wi(k) <

∞ for all i, a.s. Equivalently, for any M > 0, a.s. there exists a (random) time T > 0
such that Ni(t) ≥ M for all t ≥ T . Hence, limt→∞ Ni(t) = ∞, a.s.

Now we show that limt→∞
Ni(t)
Nj(t)

= 1 for all i, j. Note that by footnote 17, we have
τi(1) = 0 for all i. Let τ(1) := 0 and let T1 := {τi(n)}i∈N ,n≥1\τ(1). For n ≥ 2, let
τ(n) := min Tn−1 and let Tn := Tn−1\τ(n). In this manner, we produce the sequence
{τ(n)}. For n ≥ 1, i ∈ N , define Xi(n) ∈ {0, 1} to be an indicator variable with
Xi(n) = 1 if τ(n) ∈ {τi(k)}k≥1 and Xi(n) = 0 otherwise.

Let F0 := ∅ and for n ≥ 1, let Fn := σ({τ(k)}n
k=1).

18 Since for each i, {τi(n)}n≥1
is a Poisson process with common parameter λ, there holds ξi(n) = 1

N for all i and

18Here we use the notation σ(·) according to its standard usage in probability theory, to denote
the σ-algebra generated by a collection of random variables [44]. This usage of σ here is different
from its usage throughout the rest of the paper.

n.19 By Levi’s extension of the Borel–Cantelli lemma (see [44, p. 124]) there holds

(7.10) lim
n→∞

(
n∑

k=1

Xi(k)

)/(
n∑

k=1

ξi(k)

)
= 1, a.s.

Note that for each i,
∑n

k=1 Xi(k) = Ni(τ(n)) and
∑n

k=1 ξi(k) = n
N . Thus by (7.10),

limn→∞
Ni(τ(n))
Nj(τ(n)) = limn→∞

Ni(τ(n))
n/N

n/N
Nj(τ(n)) = 1, a.s. for all i, j.

Finally, note that limn→∞ τ(n) = ∞, a.s., and for each i Ni(t) is constant on
[0, ∞)\{τ(n)}n≥1. Thus, limt→∞

Ni(t)
Nj(t)

= 1, a.s.

7.5. Adaptive clock rates. In this section we consider a scenario in which each
player chooses the timing of her actions (deterministically) according to a personal
clock with a skew rate that may be different among players.

Let wi(n) = τi(n + 1) − τi(n) again denote the stage n waiting time for player i.
For each i, let wi,0 denote a base waiting time for player i. The base waiting time
of player i may be interpreted as the amount of time which expires according to the
universal clock during one unit of time as measured by player i’s personal clock. The
disparity in the wi,0 thus reflects disparate skew rates among players’ personal clocks.

Let Nmin(t) := mini Ni(t). At time t, we suppose that player i has knowledge of
Nmin(s) at the time instances s ∈ {kwi,0 : k ∈ N+, kwi,0 ≤ t} (i.e., player i is aware
of the value of Nmin at instances when her “clock ticks”). For each i, let Bi ∈ R be a
number satisfying Bi > maxi wi,0.

Suppose that player i adaptively chooses her stage n waiting time according to
the rule

wi(n) = min
{
kwi,0 : k ∈ N+, Nmin(τi(n) + kwi,0) ≥ Ni(τi(n)) − Bi

}
.(7.11)

In words, this rule may be described as follows: Player i periodically observes Nmin(t).
If Ni(t)−Nmin(t) ≤ Bi then player i takes a new action. If Ni(t)−Nmin(t) > Bi then
player i waits for Nmin(t) to increase sufficiently (satisfying Ni(t) − Nmin(t) ≤ Bi)
before taking a new action.

Theorem 7.5. Let Γ be a potential game. Suppose that players are engaged in
a continuous-time embedded asynchronous FP process in which the action-timing se-
quence {τi(n)}n≥1 is generated according to the adaptive rule (7.11). Then players
learn NE strategies in the sense that limt→∞ d(q(t), NE) = 0.

Proof. By Theorem 7.1, it is sufficient to show that limt→∞ Ni(t) = ∞ for some
(and hence all) i and that limt→∞

Ni(t)
Nj(t)

= 1.
Note that for i∗ ∈ arg maxi wi,0, there holds Ni∗(t) = � t

wi∗,0
� + 1 and, hence,

limt→∞ Ni∗(t) = ∞. Furthermore, by construction, |Ni(t) − Ni∗(t)| ≤ 2 maxi Bi, for
all i and for all t ≥ 0. Hence, limt→∞

Ni(t)
Nj(t)

= 1 for i, j.

8. Concluding remarks. We have studied the robustness of a class of best-
response-based algorithms that we refer to as FP-type algorithms. It has been shown
that the convergence of such algorithms can be retained under a form of best-response
perturbation in which players are permitted to sometimes make errors in their best
response action, so long as the degree of suboptimality asymptotically decays to zero.

19Recall that N denotes the number of players.

We have shown that this form of robustness can be used to develop practical algo-
rithms, including distributed algorithms, reduced-complexity algorithms, and asyn-
chronous algorithms.

Appendix A.

Lemma A.1. Let i, j ∈ N , let τi(s) and q̃j(s) be defined as in section 7.2, and
assume Assumption 9 holds. Then lims→∞ ‖qj(τi(s)) − q̃j(s)‖ = 0.

Proof. Note that by the definitions of τj , Nj , and q̃j there holds qj(n) =
qj(τj(Nj(n))) = q̃j(Nj(n)) for any n ∈ N+. Noting that

√
2 = maxp′,p′′∈Δ(Yj)

‖p′ − p′′‖, we also have ‖q̃j(s + 1) − q̃j(s)‖ ≤
√

2
s for s ∈ N+ and, more generally,

for s1, s2 ∈ N+, we have ‖q̃j(s1) − q̃j(s2)‖ ≤
∑max(s1,s2)−1

s=min(s1,s2) ‖q̃j(s + 1) − q̃j(s)‖ ≤
|s2−s1|

min(s1,s2)

√
2. Hence,

|qj(τi(s)) − q̃j(s)‖ = ‖q̃j(Nj(τi(s))) − q̃j(s)‖ = ‖q̃j(Nj(τi(s))) − q̃j(Ni(τi(s)))‖

≤ |Nj(τi(s)) − Ni(τi(s))|
min(Ni(τi(s)), Nj(τi(s)))

√
2,

where the second equality follows from the fact that Ni(τi(s)) = s (see (7.2)). Thus,
it suffices to show that

lim
s→∞

|Nj(τi(s)) − Ni(τi(s))|
min(Ni(τi(s)), Nj(τi(s)))

= 0.

But, by Assumption 9, for any i, j there holds

0 = lim
n→∞

Ni(n)
Nj(n)

− 1 = lim
s→∞

Ni(τi(s))
Nj(τi(s))

− 1 = lim
s→∞

Ni(τi(s)) − Nj(τi(s))
Nj(τi(s))

,

where the second equality follows from the fact that (again by Assumption 9
lims→∞ τi(s) = ∞.

Acknowledgment. We are grateful to an anonymous reviewer for insightful
suggestions, comments, and criticisms.

REFERENCES

[1] B. Swenson, S. Kar, and J. Xavier, On asynchronous implementations of fictitious play for
distributed learning, in Asilomar Conference on Signals, Systems and Computers, IEEE,
Piscataway, NJ, 2015, pp. 1119–1124.

[2] J. R. Marden, J. S. Shamma, et al., Game theory and distributed control, in Handbook of
Game Theory, Vol. 4, North-Holland, Amsterdam, 2014, pp. 861–899.

[3] G. W. Brown, Iterative Solutions of Games by Fictitious Play, in Activity Analysis of Pro-
duction and Allocation, Wiley, New York, 1951.

[4] D. Fudenberg and D. K. Levine, The Theory of Learning in Games, Vol. 2, MIT Press,
Cambridge, MA, 1998.

[5] J. S. Shamma and G. Arslan, Dynamic fictitious play, dynamic gradient play, and distributed
convergence to Nash equilibria, IEEE Trans. Automat. Control, 50 (2005), pp. 312–327.

[6] J. R. Marden, G. Arslan, and J. S. Shamma, Joint strategy fictitious play with inertia for
potential games, IEEE Trans. Automat. Control, 54 (2009), pp. 208–220.

[7] T. J. Lambert, M. A. Epelman, and R. L. Smith, A fictitious play approach to large-scale
optimization, Oper. Res., 53 (2005), pp. 477–489.

[8] A. Garcia, D. Reaume, and R. L. Smith, Fictitious play for finding system optimal routings
in dynamic traffic networks, Transport. Res. Part B Methodol., 34 (2000), pp. 147–156.

[9] T. J. Lambert and H. Wang, Fictitious Play Approach to a Mobile Unit Situation Awareness
Problem, Technical report, University of Michigan, Ann Arbor, MI, 2003.

[10] H. Tembine, Distributed Strategic Learning for Wireless Engineers, CRC, Boca Raton, FL,
2012.

[11] S. I. Gass and P. M. R. Zafra, Modified fictitious play for solving matrix games and linear-
programming problems, Comput. Oper. Res., 22 (1995), pp. 893–903.

[12] W. Saad, Z. Han, H. V. Poor, and T. Basar, Game-theoretic methods for the smart grid:
An overview of microgrid systems, demand-side management, and smart grid communi-
cations, IEEE Signal Process. Mag., 29 (2012), pp. 86–105.

[13] M. Benäım and O. Raimond, A class of self-interacting processes with applications to games
and reinforced random walks, SIAM J. Control Optim., 48 (2010), pp. 4707–4730.

[14] J. Robinson, An iterative method of solving a game, Ann. Math. (2), 54 (1951), pp. 296–301.
[15] K. Miyasawa, On the Convergence of the Learning Process in a 2 × 2 Non-Zero-Sum Two-

person Game, Research Memorandum 33, Economic Research Program, Princeton Univer-
sity, Princeton, NJ, 1961.

[16] U. Berger, Fictitious play in 2×n games, J. Econom. Theory, 120 (2005), pp. 139–154.
[17] D. Monderer and L. S. Shapley, Fictitious play property for games with identical interests,

J. Econom. Theory, 68 (1996), pp. 258–265.
[18] D. Monderer and L. Shapley, Potential games, Games Econom. Behav., 14 (1996), pp. 124–

143.
[19] A. Sela and D. Herreiner, Fictitious play in coordination games, Internat. J. Game Theory,

28 (1999), pp. 189–197.
[20] U. Berger, Learning in games with strategic complementarities revisited, J. Econom. Theory,

143 (2008), pp. 292–301.
[21] L. S. Shapley, Some topics in two-person games, Adv. Game Theory, 52 (1964), pp. 1–29.
[22] J. S. Jordan, Three problems in learning mixed-strategy Nash equilibria, Games Econom.

Behav., 5 (1993), pp. 368–386.
[23] M. Bravo and M. Faure, Reinforcement learning with restrictions on the action set, SIAM

J. Control Optim., 53 (2015), pp. 287–312.
[24] B. Van der Genugten, A weakened form of fictitious play in two-person zero-sum games,

Internat. Game Theory Rev., 2 (2000), pp. 307–328.
[25] D. S. Leslie and E. J. Collins, Generalised weakened fictitious play, Games Econom. Behav.,

56 (2006), pp. 285–298.
[26] B. Swenson, S. Kar, and J. Xavier, Empirical centroid fictitious play: An approach for dis-

tributed learning in multi-agent games, IEEE Trans. Signal Process., 63 (2015), pp. 3888–
3901.

[27] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, Gossip algo-
rithms for distributed signal processing, Proc. IEEE, 98 (2010), pp. 1847–1864.

[28] B. Swenson, S. Kar, and J. Xavier, Single sample fictitious play, IEEE Trans. Automat.
Control, http://ieeexplore.ieee.org/document/7935409/ (2017).

[29] B. Swenson, S. Kar, and J. Xavier, Strong convergence to mixed equilibria in fictitious play,
in IEEE 48th Annual Conference on Information Sciences and Systems, IEEE, Piscataway,
NJ, 2014, pp. 1–6.

[30] H. P. Young, Strategic Learning and its Limits, Oxford University Press, Oxford, 2004.
[31] A. Olshevsky and J. N. Tsitsiklis, Convergence speed in distributed consensus and averaging,

SIAM J. Control Optim., 48 (2009), pp. 33–55.
[32] J. Koshal, A. Nedić, and U. V. Shanbhag, A gossip algorithm for aggregative games

on graphs, in IEEE Conference on Decision and Control, IEEE, Piscataway, NJ, 2012,
pp. 4840–4845.

[33] V. S. Borkar, Stochastic approximation with two time scales, Systems Control Lett., 29 (1997),
pp. 291–294.

[34] S. Perkins and D. S. Leslie, Asynchronous stochastic approximation with differential inclu-
sions, Stoch. Syst., 2 (2012), pp. 409–446.

[35] D. Fudenberg, Learning mixed equilibria, Games Econom. Behav., 5 (1993), pp. 320–367.
[36] M. Benäım, J. Hofbauer, and S. Sorin, Stochastic approximations and differential inclusions,

SIAM J. Control Optim., 44 (2005), pp. 328–348.
[37] B. Swenson, Myopic Best-Response Learning in Large-Scale Games, Ph.D. thesis, Carnegie

Mellon University, Pittsburgh, PA, 2017.
[38] S. Hurkens, Learning by forgetful players, Games Econom. Behav., 11 (1995), pp. 304–329.
[39] J. Hofbauer, Stability for the Best Response Dynamics, Technical report, Institut für Math-

ematik, Universität Wien, Vienna, Austria, 1995.
[40] B. Swenson, S. Kar, and J. Xavier, On robustness properties in empirical centroid fictitious

play, in IEEE Conference on Decision and Control, IEEE, Piscataway, NJ, 2015, pp. 3324–
3330.

http://ieeexplore.ieee.org/document/7935409/

[41] C. Eksin and A. Ribeiro, Distributed fictitious play in potential games of incomplete infor-
mation, in 2015 54th IEEE Conference on Decision and Control, IEEE, Piscataway, NJ,
2015, pp. 5190–5196.

[42] S. Kar and J. M.F. Moura, Distributed consensus algorithms in sensor networks with im-
perfect communication: Link failures and channel noise, IEEE Trans. Signal Process., 57
(2009), pp. 355–369.

[43] W. Ren, R. W. Beard, et al., Consensus seeking in multiagent systems under dynamically
changing interaction topologies, IEEE Trans. Automat. Control, 50 (2005), pp. 655–661.

[44] D. Williams, Probability with Martingales, Cambridge University Press, Cambridge, 1991.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

tripp
Stamp

	Introduction
	Preliminaries
	Repeated play

	Difference inclusions and differential inclusions
	FP-type process
	Fictitious play
	FP-type process
	Weakened FP-type process
	Observation of strategies

	Main theoretical result: Robustness property for FP-type process

	Example: Empirical centroid FP
	Application: Distributed implementation of an FP-type algorithm
	Distributed FP-type algorithm
	Discussion

	Application: Asynchronous implementation of FP
	Asynchronous repeated play learning
	FP with asynchronous updates
	Continuous-time embedding of FP
	Independent Poisson clocks
	Adaptive clock rates

	Concluding remarks
	Appendix A.
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

