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Abstract

The independence sampler is one of the most commonly used MCMC
algorithms usually as a component of a Metropolis-within-Gibbs algo-
rithm. The common focus for the independence sampler is on the
choice of proposal distribution to obtain an as high as possible accep-
tance rate. In this paper we have a somewhat different focus concen-
trating on the use of the independence sampler for updating augmented
data in a Bayesian framework where a natural proposal distribution for
the independence sampler exists. Thus we concentrate on the propor-
tion of the augmented data to update to optimise the independence
sampler. Generic guidelines for optimising the independence sampler
are obtained for independent and identically distributed product den-
sities mirroring findings for the random walk Metropolis algorithm.
The generic guidelines are shown to be informative beyond the narrow
confines of idealised product densities in two epidemic examples.

Keywords: Augmented data; Birth-Death-Mutation model; Markov jump
process; MCMC; SIR epidemic model.

1 Introduction

The independence sampler is the incorporation of rejection sampling within
an MCMC framework. The rejection sampler obtains samples from a ran-
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dom variable, X, with probability density function f(·) by first proposing
a candidate value y from a random variable, Y , with probability density
function q(·), and secondly accepting y as a sample from X with probabil-
ity f(y)/{Kq(y)}, where K = supx f(x)/q(x). Otherwise y is rejected, see
Ripley (1987), page 60. The success of the rejection sampler depends upon
making a good choice of q(·) such that K(≥ 1) is small and that q(·) is
straightforward to sample from. The MCMC independence sampler is the
modification of the above where a Markov chain X0, X1, . . . is constructed
with at iteration t, a candidate y proposed from Y and if accepted Xt is set
equal to y. Otherwise Xt = Xt−1. The rejection sampler, and consequently,
the independence sampler can usually be implemented in a straightforward
and efficient manner for low dimensional (target) distributions but as the di-
mension of X increases it becomes increasingly more challenging to obtain a
good choice of q(·). Therefore the independence sampler is rarely used as an
MCMC algorithm in its own right but instead independence sampler moves
are often incorporated within Metropolis-within-Gibbs to effectively update
low dimensional subsets of X, see Dellaportas and Roberts (2013), page 15.

The main focus for independence samplers has been to choose the proposal
density q(·) so as to have an acceptance probability as close to 1 as possible.
Whilst this makes intuitive sense, the aim of the current paper is to challenge
the idea of aiming for an acceptance probability as close to 1 as possible
within the context of using independence samplers for updating augmented
data in MCMC algorithms. Specifically, we are interested in the Bayesian
statistical problem of obtaining samples from the posterior distribution of
the parameters θ of a model given data x, π(θ|x) in the case where the
likelihood, π(x|θ) is intractable. We assume that given augmented data y,
π(y,x|θ) is tractable and an MCMC algorithm can be constructed to obtain
samples from the joint posterior of θ and y, π(θ,y|x). Then it is natural
to construct an MCMC algorithm which alternates between updating the
parameters and the augmented data as follows:

1. Update θ given x and y. i.e. Use π(θ|x,y).

2. Update y given x and θ. i.e. Use π(y|x,θ).

Our focus is the use of independence samplers to update y given x and θ.
For updating augmented data a natural independence sampler often presents
itself. For example, in an epidemic modelling context where x denotes the
removal times of infected individuals, θ denotes the infection and infectious
period parameters and y denotes the infection times of individuals, a natural
candidate for the infection time of individual i who is removed at time xi is
yi = xi−D, where D denotes the infectious period distribution, see Neal and
Roberts (2005), Xiang and Neal (2014) and Section 3.2. For non-centered
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parameterisations, Papaspoliopoulos et al. (2003), we can often denote Y
as a deterministic function h(θ,U) with π(x|y,θ) easy to compute, where
U is a vector of independent and identically distributed uniform random
variables, see Neal and Huang (2015) and Section 3.3. Then to update Ui
we can propose a new value from U(0, 1). The dimension of the augmented
data, y, can be orders of magnitude higher than θ and x, so updating one
component of y at a time can be prohibitive. Therefore we seek generic
guidelines for updating multiple components of y at a time and optimising
the performance of the resulting independent sampler. Specifically, this work
formalises findings in Xiang and Neal (2014) and Neal and Huang (2015) in
using the independence sampler for data augmentation giving simple guide-
lines for producing close to optimal independence samplers. The guidelines
obtained are similar to those given in Roberts et al. (1997) for the random
walk Metropolis algorithm and comparisons with the random walk Metropo-
lis algorithm are made.

The paper is structured as follows. In Section 2, we study the properties
of the independence sampler for independent and identically distributed
product densities π(x) =

∏n
i=1 f(xi). This idealised scenario mimics the

set up in Roberts et al. (1997) where optimal scaling of the random walk
Metropolis algorithm was first explored and as in Roberts et al. (1997) al-
lows us to get a handle on understanding the key factors in optimising the
independence sampler. In particular, we show that the optimal number of
components, k, of x to update, is the k which maximises the mean num-
ber of components per move. In the case where this optimal k is large this
corresponds to a mean acceptance rate of approximately 23.4%. Thus there
is a somewhat surprising link with the optimal scaling of the random walk
Metropolis algorithm, Roberts et al. (1997) with which we make comparison
and highlight the benefits of the independence sampler. In Section 3, we ex-
plore the optimal performance of the independence sampler for increasingly
complex problems. In Section 3.1, we study product Gaussian target densi-
ties with Gaussian and t-distribution proposals demonstrating the optimal
scaling results obtained in Section 2. In Sections 3.2 and 3.3 we apply the
independence sampler to two epidemic models, the classic homogeneously
mixing SIR epidemic model, Bailey (1975) and O’Neill and Roberts (1999)
and a birth-death-mutation (BDM) model for an emerging, evolving disease,
Tanaka et al. (2006) and Fearnhead and Prangle (2012). In Section 3.2, we
show that for the homogeneously mixing SIR epidemic model updating a
proportion of the infection times so as to obtain a mean acceptance rate
of approximately 23.4% is optimal. This demonstrates that as observed
with the random walk Metropolis algorithm the findings of Section 2 are
informative in designing independence samplers beyond the limited confines
of product densities. For the BDM model in Section 3.3 the findings are
somewhat different with a lower optimal mean acceptance rate correspond-
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ing to large scale data augmentation. Finally, in Section 4, we make some
concluding remarks highlighting the possible benefits of the independence
sampler over random walk Metropolis for large scale data augmentation and
the differences seen between the two epidemic models in Sections 3.2 and
3.3.

2 Theoretical properties of the independent sam-
pler

In this Section we consider the theoretical properties of the independence
sampler for the special case where πn(xn) =

∏n
i=1 f(xi), a product of in-

dependent and identically distributed univariate densities, f(x). The main
focus is on the asymptotic behaviour as the number of components, n→∞
mirroring analysis performed in Roberts et al. (1997) for the random walk
Metropolis algorithm. The aim is to characterise the optimal performance of
the independence sampler in terms of the number of components to update
and to draw interesting comparisons of similarities and differences with the
random walk Metropolis algorithm.

For the independence sampler we propose to select uniformly at random k
components {I1, I2, . . . , Ik} from {1, 2, . . . , n} to update. For j ∈ {I1, I2, . . . , Ik},
yj is drawn from Y with probability density function q(y), whilst for l 6∈
{I1, I2, . . . , Ik}, yl = xl. Therefore the acceptance probability for the pro-
posed move from xn to yn is

min

{
1,
πn(yn)

πn(xn)
× q(yn → xn)

q(xn → yn)

}
= min

1,

k∏
j=1

f(yIj )/q(yIj )

f(xIj )/q(xIj )

 . (2.1)

For n = 1, 2, . . . and t = 0, 1, . . ., let Xn
t = (Xn

t,1, X
n
t,2, . . . , X

n
t,n) denote the

position of the Markov chain after t iterations. As in Roberts et al. (1997),
we assume that the Markov chain is initiated with Xn

0 drawn from πn(·) and
thus for all t ≥ 0, Xn

t ∼ πn(·). The independent and identically distributed
nature of the stationary and proposal distributions means that as in Roberts
et al. (1997) it suffices to focus on the behaviour and performance of the
independence sampler on the first component only. Specifically, for t ≥ 0,
letting Znt = Xn

[nt] we show that for fixed k, as n → ∞, the movement in
the first component of Znt converges to a Markov jump process with jumps
governed by f(·) and q(·).

Let ω(x) = f(x)/q(x), then for the independence sampler to be well-behaved
we require that supx ω(x) < ∞, see Tiernay (1994) and we make this as-
sumption throughout. For a move to occur in the first component we must
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propose to move the first component and k − 1 other components from
{2, 3, . . . , n}. Let {J1, J2, . . . , Jk−1} be a random sample from {2, 3, . . . , n}
with Wk−1(x

n−) =
∏k−1
i=1 ω(YJi)/ω(xJi), where xn− = (x2, x3, . . . xn). De-

fine Yn−, Xn− and yn− in the obvious fashion. Then we define

H(y,xn) = H(y, x1,x
n−)

= EYn−,Jk−1

[
1 ∧ ω(y)

ω(x1)
Wk−1(x

n−)

]
= EYn−,Jk−1

[
1 ∧ ω(y)

ω(x1)

k−1∏
i=1

ω(YJi)

ω(xJi)

]
, (2.2)

where Jk−1 = (J1, J2, . . . , Jk−1). A useful observation is that the pro-
posed values (Y1, YJ1 , . . . , YJk−1

) are independent of xn. Let H∗(y, x1) =
EXn− [H(y, x1,X

n−)] and let

An =

{
xn;

∫
|H(y,xn)−H∗(y, x1)|q(y) dy ≤ n−1/8

}
(2.3)

We have the following Lemma which mirrors Roberts et al. (1997), Lemma
2.1, which states that with sufficiently high probability we can focus upon
Xn

[nt] (Znt ) contained in An. The proof of Lemma 2.1 is given in appendix
A.

Lemma 2.1 For t > 0,

P(Zns ∈ An, 0 ≤ s ≤ t)→ 1 as n→∞. (2.4)

We are now in position to state and prove the main result of this Section,
Theorem 2.2.

Theorem 2.2 For k ∈ N, let Xn
0 ∼ πn, then

Zn·,1 ⇒ Z· as n→∞, (2.5)

where Z· is a Markov jump process with infinitesimal generator

Gh(x) = k

∫
{h(y)− h(x)}H∗(y, x)q(y) dy, (2.6)

for any C∞c function h.

Proof. We begin by defining the (discrete time) generator of Xn,

Gnh(xn) = nE
[
{h(Yn)− h(xn)}

{
1 ∧ πn(Yn)

πn(xn)

}]
, (2.7)
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where h is any C∞c function of the first component. Note that if there is
no proposed update in the first component then Y n

1 = x1. Therefore letting
χn = 1 if there is a proposed update of the first component and 0 otherwise,
we have that

Gnh(xn) =

1∑
i=0

nP(χn = i)E
[
{h(Yn)− h(xn)}

{
1 ∧ πn(Yn)

πn(xn)

}∣∣∣∣χn = i

]
= n× k

n
× E

[
{h(Yn)− h(xn)}

{
1 ∧ πn(Yn)

πn(xn)

}∣∣∣∣χn = 1

]

= kEY1

(h(Y1)− h(x1))EYn−,Jk−1

1 ∧ ω(Y1)

ω(x1)

k−1∏
j=1

ω(YJj )

ω(xJj )

 .
(2.8)

We compare Gnh(xn) with the generator Gh(x) defined in (2.6) for the
limiting jump process. Now by (2.3), for all xn ∈ An and h ∈ C∞c ,

|Gnh(xn)−Gh(x1)|

=

∣∣∣∣∣∣
∫
{h(y)− h(x1)}q(y)

E

1 ∧ ω(y)

ω(x1)

k−1∏
j=1

ω(YJj )

ω(xJj )

−H∗(y, x)

 dy

∣∣∣∣∣∣
=

∣∣∣∣∫ {h(y)− h(x1)}q(y)
(
H(y, x1,x

n−)−H∗(y, x)
)
dy

∣∣∣∣
≤ 2 sup

z
|h(z)|

∫
q(y) (H(y,xn)−H∗(y, x)) dy

≤ 2 sup
z
|h(z)|n−

1
8 → 0 as n→∞. (2.9)

Hence,

sup
xn∈An

|Gnh(xn)−Gh(x1)| → 0 as n→∞. (2.10)

The Theorem follows along identical lines to Roberts et al. (1997), Theorem
1.1. Since C∞c separates points (see, Ethier and Kurtz (1986), page 113), the
Theorem follows from (2.10) and Lemma 2.1 by Corollary 8.7 (f) of Chapter
4 of Ethier and Kurtz (1986). �

We proceed by discussing properties of the limiting jump process. Let

W ∗k
D
=

k∏
i=1

ω(Yi)

ω(Xi)
, (2.11)

where Yi ∼ q(·) and Xi ∼ f(·). Then E[1∧W ∗k ] denotes the mean acceptance
probability, in stationarity, of a proposed move and kE[1∧W ∗k ] denotes the
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corresponding mean number of components updated. Moreover, kE[1∧W ∗k ]
denotes the mean number of jumps, per unit time, of the limiting jump
process, and hence, we seek k which maximises kE[1 ∧W ∗k ].

The distribution of W ∗k depends largely on the closeness of the target (f(·))
and proposal (q(·)) distributions with W ∗k ≡ 1 if for all x, f(x) ≡ q(x). Let
g(x) = logω(x) = log f(x)− log q(x), then

logW ∗k
D
=

k∑
i=1

{g(Yi)− g(Xi)}, (2.12)

where the {g(Yi)−g(Xi)} are independent and identically distributed. Note
that E[g(Y1)] = −D(q‖f) and E[g(X1)] = D(f‖q), where for two probability
density functions u and v,

D(u‖v) =

∫
u(x) log{u(x)/v(x)} dx (2.13)

is the Kullback-Leibler divergence. Hence,

E[g(Y1)− g(X1)] = −{D(q‖f) +D(f‖q)} = −I, say, (2.14)

which makes explicit the role played by the closeness of the two densities.
It should be noted that I = ∞ if there exists x such that q(x) > 0 and
f(x) = 0, in such cases efficient independence sampling may still exist, for
example, X ∼ U(0, 1) and Y ∼ U(0, 1 + ε) for small, positive ε.

For finite I, it follows from (2.12) by the Central limit Theorem that for
large k, logW ∗k is approximately Gaussian with mean kE[g(Y1) − g(X1)]
and variance kvar(g(Y1) − g(X1)) = kJ , say. Now if I is small, which
will be the case where the Central limit theorem is relevant, then q(x) ≈
f(x). Moreover, if f(x) = q(x){1 + ε(x)} where ε(x) is small, then it is
straightforward to show that I =

∫
q(x){ε(x)2 + O(ε(x)3} dx and that J =

2
∫
q(x){ε(x)2 + O(ε(x)3} dx ≈ 2I. Thus for k large, with logW ∗k ≈ V ∗k ≡

N(−kI, kJ), we have by Roberts et al. (1997), Proposition 2.4, that

kE[1 ∧ exp(logW ∗k )] ≈ kE[1 ∧ exp(V ∗k )]

= k ×
{

Φ

(
− kI√

kJ

)
+ exp

(
−kI +

kJ

2

)
Φ

(
−
√
kJ +

kI√
kJ

)}
≈ k × 2Φ

(
−
√
kI

2

)
, (2.15)

where the latter approximation follows from setting J = 2I. Replacing
k by z2 and I by Ĩ =

√
2I in the right hand side of (2.15), we obtain

j(z) = 2z2Φ(−z
√
Ĩ/2), which is the function maximized in Roberts et al.
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(1997), Corollary 1.2 to maximise the optimal scaling of the random walk
Metropolis algorithm. The only difference is the form of I which here de-
pends upon the Kullback-Leibler divergence between the target and proposal
distribution, whereas in Roberts et al. (1997) I ≡ Ef [(f ′(X)/f(X))2] and
depends upon the smoothness of f(·). Most importantly, z2I = 2.835 max-
imises j(z) and therefore k should be chosen approximately equal to 2.835/I.
Thus if I is small (there is close agreement between f(·) and q(·)) k will be
large. Moreover, mirroring Roberts et al. (1997), Corollary 1.2, such a k cor-
responds to a mean acceptance probability of (approximately) 0.234. Thus
it is not necessary to compute I but instead suffices to monitor the mean
acceptance probability. This will be shown to be a useful guiding principle
in the examples below. However, it should be noted that scenarios exist, see
Section 3.2 below, where the acceptance rate is above (below) 0.234 for all
k, in such cases it is optimal to choose k = n (k = 1).

Returning to optimising the independence sampler in the case X ∼ U(0, 1)
and Y ∼ U(0, 1 + ε), it is straightforward to show that the probability a
proposed move is accepted is (1 + ε)−k. Optimising the function k(1 + ε)−k

gives k = 1/ log(1 + ε), and hence for small ε, k ≈ 1/ε. Thus as ε ↓ 0, the
optimal acceptance probability ((1 + ε)−1/ log(1+ε) ≈ (1− ε)1/ε) converges to
exp(−1) = 0.368. Therefore non-trivial asymptotic acceptance probabilities
can exist in the case I =∞ and typically these will be different from 0.234.

A key question is how does the independence sampler compare to the ran-
dom walk Metropolis algorithm. Provided supx ω(x) < ∞, Theorem 2.2
holds and we have that the mixing of the independence sampler algorithm
is O(n), the same order of mixing as for the random walk Metropolis al-
gorithm for continuous (and sufficiently differentiable) densities. The mix-
ing of the random walk Metropolis algorithm for discontinuous densities is
O(n2), Neal et al. (2012) whilst modifications such as Metropolis adjusted
Langevin algorithms (MALA) and hybrid Monte Carlo (HMC) algorithms

mix in O(n
1
3 ) and O(n

1
4 ) iterations, see Roberts and Rosenthal (1998) and

Beskos et al. (2013), respectively, for sufficiently well behaved (continuous)
target densities. Thus the independence sampler is competitive with the
random walk Metropolis algorithm and Theorem 2.2 holds under very weak
conditions compared with those imposed for corresponding random walk
Metropolis algorithms. The similarity of the right hand side of (2.15) to
j(z) might suggest that computing I for the two algorithms would assist in
comparing there performances with smaller I the better. However, the dif-
ferent nature of the moves, global in the independence sampler and local in
the random walk Metropolis, means that this is not the case. In simulation
studies with X ∼ N(0, 1), Y ∼ N(0, φ2) and a range of n ≥ 50, the inde-
pendence sampler, with appropriately chosen k was found to outperform the
optimal random walk Metropolis algorithm (σ = 2.4/

√
n) for 1 ≤ φ ≤ 2.4.
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Thus the independence sampler is competitive with, and often superior to,
random walk Metropolis, for continuous target densities so long as a reason-
able choice of q(·) is made, and is clearly preferable for discontinuous target
densities which is often the case in real life Bayesian problems, see Section
3.

3 Examples

3.1 Introduction

In this Section we illustrate how large scale independence sampling can be
exploited to construct effective MCMC algorithms. We start with an in-
dependent and identically distributed Gaussian product density as the tar-
get distribution and consider both Gaussian and t-distribution proposals.
Specifically, we take π(x) =

∏n
i=1 f(xi), where f(x) is a standard Gaussian

density. The proposal distributions are symmetric about 0 with Gaussian
proposals qN (y) = (

√
2πλ)−1 exp(−y2/2λ2), where λ ≥ 1 and t-distribution

proposals qt(y) = Γ((ν + 1)/2)/(
√
νπΓ(ν/2))(1 + x2/ν)−

ν+1
2 (ν ∈ N). We

conducted a simulation study using 5 Gaussian and 5 t-distribution propos-
als with n = 1000 and 106 iterations of the MCMC algorithm starting from
the stationary distribution. For each proposal distribution we considered 50
choices of k, the exact choices of which depended on I and were chosen to
give acceptance rates on the full range 0 to 1.

For the Gaussian proposal it is straightforward to show that I = 1/2(λ −
1/λ)2. We considered λ = 1.05, 1.1, 1.2, 1.5, 2 with corresponding I =
0.0048, 0.0182, 0.0672, 0.347, 1.125. A key quantity for comparing the in-
dependence sampler for different choices of λ, and hence I, is the nor-
malised efficiency. We define the normalised efficiency for k as the mean
number of components updated (k× acceptance rate) when proposing to
update k components divided through by the maximum mean number of
components updated for j = 1, 2, . . . , n. Correspondingly the normalised
theoretical efficiency is given by j(z) = 2z2Φ(−z/2)/ supy{2y2Φ(−y/2)} =
2z2Φ(−z/2)/1.3257 from applying the central limit theorem approximation
obtained in Section 2. The plots in Figure 1 show that in all cases the
optimal acceptance rate is close to 0.234 with very similar behaviour for
the normalised efficiency varying with acceptance rate, even for λ = 2 with
I = 1.125. Similar results are obtained in Section in Neal and Roberts
(2006), Section 6 for the optimal performance of the random walk Metropo-
lis algorithm. As λ ↓ 1, I ↓ 0 and the agreement between the observed
normalised efficiency normalised theoretical efficiency becomes very close.
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Figure 1: Gaussian proposal λ = 1.05(©), 1.1(�), 1.2(♦), 1.5(4), 2.0(5).
(a) Solid line given by j(z) = 2z2Φ(−z/2)/1.3257 plotted against acceptance
rate. (b) Solid line x = y.

For the t-distribution, I =∞ for ν = 1, 2, otherwise

I =
1

ν − 2
+
ν + 1

2

{
E[log(1 +X2/ν)]− E[log(1 + Y 2

ν /ν)]
}
,

where X ∼ N(0, 1) and Y ∼ tν . It is not possible to obtain a closed
form analytical expression for I but it is straightforward to estimate using
Monte Carlo integration. We consider ν = 1, 2, 5, 10, 20 with correspond-
ing I = ∞,∞, 0.1582, 0.0338, 0.0083. The plots in Figure 2 show that the
optimal acceptance rate is higher than 0.234 for a t-distribution proposal
with an optimal acceptance rate of 0.383 corresponding to k = 3 for a t1
proposal. Note that this is close to exp(−1), the optimal acceptance rate
of the uniform distributions example given in Section 2. It is worth noting
that choosing k to obtain an acceptance rate of approximately 0.234 is in
general a good approach as only a small loss in efficiency is observed. As ν
increases the optimal acceptance rate converges towards 0.234 and the nor-
malised efficiency tends towards the theoretical normalised efficiency given
by the central limit theorem approximation. This is further demonstrated
in Figure 2b by plotting normalised efficiency against normalised theoretical
efficiency. Note that ν = 1 and ν = 2 do not feature on this plot as I =∞.
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Figure 2: Gaussian proposal t = 1(©), 2(�), 5(♦), 10(4), 20(5). (a) Solid
line given by j(z) = 2z2Φ(−z/2)/1.3257 plotted against acceptance rate.
(b) Solid line x = y.

3.2 Homogeneously mixing SIR epidemic

In this Section we show how the importance sampler can be applied to
temporally observed, homogeneously mixing SIR epidemic models, Bailey
(1975); O’Neill and Roberts (1999). We assume that there is a population
of size N with the disease introduced into the population via a single in-
troductory case. (The extension to multiple introductory cases is trivial.)
We assume that the disease follows an SIR epidemic model, where initially
all individuals, except the introductory case, are susceptible. On becoming
infectious, an individual is infectious for a given period of time, distributed
according to a Gamma random variable Q ∼ Gamma(α, δ). (Alternative
infectious period distributions can easily be considered.) Whilst infectious,
an individual i, say, makes infectious contacts at the points of a homoge-
neous Poisson point process with rate β with the individual contacted chosen
uniformly at random from the entire population. Infectious contacts with
susceptible individuals result in the immediate infection of the individual
and the start of their infectious period. Infectious contacts with infectives
have no effect on the recipient.

Suppose that m individuals are infected during the course of the epidemic
and we are analysing the completed epidemic data. For each individual, i
say, infected during the course of the epidemic there will be an infection
time, Ii and a removal (recovery) time, Ri, which mark the start and end of
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the infectious period, respectively. We follow O’Neill and Roberts (1999),
Neal and Roberts (2005) and Xiang and Neal (2014) in assuming that the
removal times, R = (R1, . . . , Rm) are observed, whilst the infection times
I = (I1, . . . , Im) are unobserved. Furthermore, we assume that the removal
times are ordered such that R1 ≤ R2 ≤ . . . ≤ Rm. The key interest is in
the posterior distribution of π(β, α, δ|R) and to obtain samples from this
distribution imputation of I is required.

We use the MCMC algorithm proposed in Xiang and Neal (2014), Section
3 with the modification that the number of components to be updated is
fixed to k ∈ {1, 2, . . . ,m}. As with Xiang and Neal (2014), the MCMC al-
gorithm is applied to the extensively studied Abakaliki smallpox outbreak,
(Bailey, 1975, p.125), O’Neill and Roberts (1999); O’Neill and Becker (2001);
McKinley et al. (2014), where m = 30 and N = 120. We considered various
fixed values of α = 1, 3, 10 with optimal k = 9, 17 and 30, respectively, based
upon the maximised mean number of components updated over 100000 it-
erations, see Figure 3. For α = 1, 3, 10, the corresponding values of k which
had acceptance rates closest to 23.4% were k = 10, 19 and 29, respectively.
Thus choosing k so that the acceptance rate is close to 23.4% is effective in
obtaining a close to optimal algorithm. In Xiang and Neal (2014), the situa-
tion where α is assumed to be unknown is also considered with the posterior
mean of α being 33.8. For unknown α, the acceptance rate is above 23.4%
for all k and thus k = m(= 30) performs optimally.

We can go further in illustrating the usefulness of the theoretical results
derived in Section 2 for choosing k. In Figure 4, we plot the normalised
efficiency for α = 1, 2, . . . , 9, since for α > 9, the acceptance rate is always
above 23.4%. Also on the plot (in red) is the normalised theoretical curve
j(z) = 2z2Φ(−z/2)/1.3257 given by (2.15) against acceptance rate 2Φ(−z).
In a similar fashion to Section 3.1 this illustrates that the asymptotic re-
sults which are valid as the number of components updated tend to ∞ are
applicable for small k.

A simulation study was conducted to study the general applicability of the
results obtained above for the Abakaliki data. Data sets were simulated
with N = 200, 400, 600, 800, 1000, 1200, m = 0.25N, 0.5N, 0.75N and α =
1, 2, 3, 5, 10, 15, 20 with δ = 0.1α chosen to give a mean infectious period
of 10 and β to give the mean size of a major epidemic outbreak to be 10.
For each α, the optimal k increases with N and vice versa. Throughout
choosing k with acceptance rate closest to 23.4% produced close to optimal
performance. Plots of the normalised efficiency against the acceptance rate
showed increasing agreement with the asymptotic theoretical curve as N
increases.
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Figure 3: Acceptance rate (left) and mean number of components updated
(right) against k for α = 1 (solid), 3 (dashed), 10 (dot-dashed) and unknown
(posterior mean 33.8) (long dashed).
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Figure 4: Normalised mean number of components updated against ac-
ceptance rate, overlaid by the theoretical normalised curve (red), given by
j(z) = 2z2Φ(−z/2)/1.3257.
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Table 1: Observed cluster size distribution of Tuberculosis bacteria geno-
type data, Small et al. (1994).

Cluster size 1 2 3 4 5 8 10 15 23 30

Number of clusters 282 20 13 4 2 1 1 1 1 1

3.3 Birth-Death-Mutation model

In this section we consider a birth-death-mutation (BDM) model which is
applicable to the early stages of a mutating disease. The model has pre-
viously been used by Tanaka et al. (2006); Sisson et al. (2007); Fearnhead
and Prangle (2012); Del Moral et al. (2012); Neal and Huang (2015) to anal-
yse data from a tuberculosis outbreak in San Francisco in the early 1990s
reported in Small et al. (1994). We explore and seek to optimise the perfor-
mance of the forward simulation MCMC algorithm introduced by Neal and
Huang (2015). Note that all the other analyses reported above used ABC
algorithms.

The data consist of the genotypes of 473 bacteria samples sampled from indi-
viduals infected with tuberculosis in San Francisco during an observational
period in 1991-92. The data are clustered by genotype and summarised
in Table 1. Let Nt denote the total number of tuberculosis cases at time
t. The data are assumed to be a random sample taken at time T , where
T = min{t;Nt = 10000} evolving from N0 = 1.

The BDM model is a Markov process defined as follows. Individuals are
classified by (geno)type. Each individual born into the process has an expo-
nentially distributed lifetime (infectious period) with mean 1/δ. Whilst alive
individuals give birth (infects) and mutates at the points of independent ho-
mogeneous Poisson point processes with rates α and ϑ, respectively. Each
individual born inherits the (geno)type of their parent and all mutations
result in the creation of a new, previously unseen (geno)type (infinite allele
model, Kimura and Crow (1964)). We reparameterise the model by setting
φ = α + δ + ϑ, a = α/φ and d = δ/φ, where φ is the rate at which events
occur for an individual, a is the probability that the event is a birth (infec-
tion) and d is the probability that the event is a death (recovery). Since the
stopping time T at which the population is observed only depends upon the
number of individuals alive in the population, there is no information in the
data about φ. Thus, without loss of generality, we assume φ = 1 making
inference about (a, d) given the genotype data x. In order to construct a
tractable likelihood it is necessary to generate the state of the population at
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time T , NT = 10000. This can be done using a non-centered parameterisa-
tion Papaspoliopoulos et al. (2003) where the augmented data y = (u,w,v)
consist of realisations of U(0, 1) with (u,w) combine with (a, d) to generate
the underlying state of the BDM model at time T and v is used to estimate
the probability of observing x. Details of the construction are given in Neal
and Huang (2015), Section 4.

The time consuming step of the MCMC algorithm for the BDM model is
the simulation of the state of the process using (u,w) and (a, d). In Neal
and Huang (2015), (a, d) are updated using random walk Metropolis keeping
(u,w) fixed and (u,w) are updated using an independence sampler, draws
from U(0, 1), keeping (a, d) fixed. We thus focus on the independence sam-
pler for updating (u,w). Note that v is updated by a separate independence
sampler but this is very fast to implement (no need to simulate the BDM
process), and so we don’t comment on this step. The dimensions of u and
w are the same but vary from iteration to iteration, typically being around
30000. To circumvent issues with this Neal and Huang (2015) used random
vectors of a fixed length n = 100000 with only those elements needed to
simulate the process used. In this paper we also used a fixed length vector
updating k out of n components in u and w noting that in each simulation
not all (updated) components will be used.

In Neal and Huang (2015), u and w are broken down into blocks of 50
components with 1 component in each block proposed to be updated. This
amounts to proposing to update n/50 = 2000 values in each iteration of
which typically around 600 are used in the simulation. In this paper we
propose to update k components each of u and w, (uIu1 , uIu2 , . . . , uIuk ) and
(wIw1 , wIw2 , . . . , wIwk ), where {Iu1 , Iu2 , . . . , Iuk } ({Iw1 , Iw2 , . . . , Iwk }) is a uniformly
random sample without replacement from {1, 2, . . . , n}, for the sake of con-
sistency with the updating strategy throughout this paper. In addition to
using different values for k, we also examine the performance of the algo-
rithm using n = 60000, 80000 and the original 100000, which are all found
to be empirically sufficient. We ran the MCMC algorithm for 1.1×106 itera-
tions with the first 105 iterations discarded as burn-in. The acceptance rate
is plotted against k for all three values of n on the left of Figure 5, which is
analogous to Figure 3, with the mean number of components updated on the
right. The results shown in Figures 5 demonstrate an interesting departure
from those found earlier in the paper with an optimal acceptance rate of
23.4%. The mean number of components updated increases with k even as
the acceptance rate drops below 5%. However, for both parameters a and
d, the effective sample size levels off at around 3000 for all k ≥ 2000, which
suggests that seeking to optimise the mean number of components updated
does not tell the full story in this case.
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Figure 5: Acceptance rate (left) and mean number of components updated
(right) against k for n = 60000 (black), 80000 (red) and 100000 (blue).

4 Conclusions

In this paper we have demonstrated the potential benefits, both theoretical
and practical, of the independence sampler over the random walk Metropo-
lis algorithm. In particular, we have shown that simple choices of proposal
distributions can be used to construct effective independence samplers and
that similar considerations to the tuning of the random walk Metropolis
algorithm are required. There are a number of points to consider in the
wider application of the results derived in Section 2 and applied in Section
3. Firstly, we have not considered the computational time required to up-
date k components. In the homogeneously mixing epidemic model (Section
3.2), and in particular, the BDM model (Section 3.3) the time taken per
iteration was essentially independent of k. However, it is possible for the
homogeneously mixing epidemic model by careful updating of the calcu-
lation of the likelihood for the time taken per iteration to be smaller for
smaller k. In such cases the optimal acceptance rate will be larger than
23.4% and if the time per iteration is proportional to k it will be optimal
to update a single component at a time. Secondly, the theoretical results of
Section 2 for independent and identically distributed product densities are
shown to give clear guidance for optimising the independence sampler for
the homogeneously mixing epidemic model but not for the BDM model. The
reason for this difference is not immediately obvious but is likely to depend
on the relationship of the observed data to the augmented data. For the
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homogeneously mixing epidemics the local behaviour of I is important, for
example ensuring I is consistent with an epidemic outbreak, whereas for the
BDM model it is global properties of (U,W), the total numbers of births,
deaths and mutations which are most important. For the random walk
Metropolis algorithm optimal scaling results differ depending upon whether
the acceptance probability depends on local behaviour (discontinuous prod-
uct densities, Neal et al. (2012)) or global behaviour (continuous product
densities, Roberts et al. (1997), elliptically symmetric densities Sherlock and
Roberts (2009)) of the proposed moves.
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A Proof of Lemma 2.1

Since Zn0 ∼ πn, for all 0 ≤ s ≤ t, Zns ∼ πn, since πn is the stationary
distribution of Znt . Therefore, we have that

P(Zns 6∈ An, for some 0 ≤ s ≤ t) ≤ tnP(Xn
0 6∈ An). (A.1)

Now,

P(Xn
0 6∈ An) = P

(∫
|H(y,Xn

0 )−H∗(y,X0,1)|q(y) dy > n−
1
8

)
=

∫
P
(∫
|H(y,xn)−H∗(y, x1)|q(y) dy > n−

1
8

)
πn(xn) dxn.

(A.2)

Applying Markov’s inequality to the right hand side of (A.2), we have that

P(Xn
0 6∈ An) ≤

∫ √
n

{∫
|H(y,xn)−H∗(y, x1)|q(y) dy

}4

πn(xn) dxn.

(A.3)

It then follows by Jensen’s inequality that

P(Xn
0 6∈ An) ≤

∫ √
n

{∫
(H(y,xn)−H∗(y, x1))4q(y) dy

}
πn(xn) dxn

=
√
n

∫ {∫
(H(y,xn)−H∗(y, x1))4πn(xn) dxn

}
q(y) dy.

(A.4)
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We now focus on the inner integral on the right hand side of (A.4). Since
EXn− [H(y, x1,X

n−)] = H∗(y, x1), we have that∫
(H(y,xn)−H∗(y, x1))4πn(xn) dxn

=

∫
E[(H(y, x1,X

n−
0 )− EXn−

0
[H(y, x1,X

n−
0 )])4]f(x1) dx1. (A.5)

Let In = {i ∈ {2, 3, . . . , n}k−1; i1 < i2 < . . . < ik−1}. Then letting

Ĥi(y, x1,x
n−) = EYn

[
1 ∧ ω(Y1)

ω(x1)

k−1∏
l=1

ω(Yil)

ω(xil)

]
, (A.6)

we note that for all i, j ∈ In, Ĥi(y, x1,X
n−
0 )

D
= Ĥi(y, x1,X

n−
0 ), where

D
=

denotes equality in distribution. Hence for all i ∈ In, E[Ĥi(y, x1,X
n−
0 )] =

H∗(y, x1). Therefore given that

H(y, x1,X
n−
0 ) =

(
n− 1

k − 1

)−1∑
i

Ĥi(y, x1,X
n−
0 ), (A.7)

it follows that

E[(H(y, x1,X
n−
0 )− EXn−

0
[H(y, x1,X

n−
0 )])4]

=

(
n− 1

k − 1

)−4 ∑
i1∈In

∑
i2∈In

∑
i3∈In

∑
i4∈In

E

 4∏
j=1

(Ĥij (y, x1,X
n−
0 )− E[Ĥij (y, x1,X

n−
0 )])

 .
(A.8)

Note that if i, j ∈ In have no elements in common then Ĥi(y, x1,X
n−
0 )

and Ĥj(y, x1,X
n−
0 ) are independent. Therefore E[

∏4
j=1(Ĥij (y, x1,X

n−
0 ) −

E[Ĥij (y, x1,X
n−
0 )])] is only non-zero if and only if for j = 1, 2, 3, 4, ij

has at least an element in common with one the other indices. Moreover,
|E[
∏4
j=1(Ĥij (y, x1,X

n−
0 )− E[Ĥij (y, x1,X

n−
0 )])]| ≤ 1.

The number of combinations of i1, i2 ∈ In such that i1 and i2 have at least
one element in common is(

n− 1

k − 1

){(
n− 1

k − 1

)
−
(
n− k
k − 1

)}
, (A.9)

which is bounded above by n2k−3/{(k − 2)!}2 for all sufficiently large n.
Similarly, the number of combinations of i1, i2, 〉3, 〉4 ∈ In such that i2, i3
and i4 all have at least one element in common with i1 is(

n− 1

k − 1

){(
n− 1

k − 1

)
−
(
n− k
k − 1

)}3

, (A.10)
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which is bounded above by (k − 1)2n4k−7/{(k − 2)!}4 for all sufficiently
large n. Now E[

∏4
j=1(Ĥij (y, x1,X

n−
0 ) − E[Ĥij (y, x1,X

n−
0 )])] is only non-

zero if either i1, i2, 〉3, 〉4 ∈ In can be grouped into two pairs such that both
pairs have at least one element in common or if three of the components all
have at least one element in common with the fourth. (Note that there is
overlap between these two classifications.) Thus using (A.9) and (A.10), it
is straightforward to combine with (A.8) to show that

E[(H(y, x1,X
n−
0 )− EXn−

0
[H(y, x1,X

n−
0 )])4]

≤
(
n− 1

k − 1

)−4{
3

(
n2k−3

{(k − 2)!}2

)2

+ 4
(k − 1)2n4k−7

{(k − 2)!}4

}

≤ (k − 1)4

(n− k)4k−4

{
3n4k−6 + 4(k − 1)2n4k−7

}
. (A.11)

Since the bound obtained in (A.11), holds for all y, x1 ∈ R, it follows from
(A.4) and (A.5) that

nP(Xn
0 6∈ An) ≤ n

√
n

(k − 1)4

(n− k)4k−4

{
3n4k−6 + 4(k − 1)2n4k−7

}
→ 0 as n→∞. (A.12)

The lemma immediately follows by combining (A.12) and (A.1).
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