
A General Purpose Intelligent Surveillance System

For Mobile Devices using Deep Learning

Antreas Antoniou

School of Computing and Communications

Lancaster University, Lancaster, UK

a.antoniou@lancaster.ac.uk

Plamen Angelov, FIEEE

School of Computing and Communication

Lancaster University, Lancaster, UK

p.angelov@lancaster.ac.uk

Abstract—In this paper the design, implementation, and

evaluation of a general purpose smartphone based intelligent

surveillance system is presented. It has two main elements; i) a

detection module, and ii) a classification module. The detection

module is based on the recently introduced approach that

combines the well-known background subtraction method with

the optical flow and recursively estimated density. The

classification module is based on a neural network using Deep

Learning methodology. Firstly, the architecture design of the

convolutional neural network is presented and analyzed in the

context of the four selected architectures (two of them recent

successful types) and two custom modifications specifically made

for the problem at hand. The results are carefully evaluated, and

the best one is selected to be used within the proposed system. In

addition, the system is implemented on both a PC (using Linux

type OS) and on a smartphone (using Android). In addition to

the compatibility with all modern Android-based devices, most

GPU-powered platforms such as Raspberry Pi, Nvidia Tegra X1

and Jetson run on Linux. The proposed system can easily be

installed on any such device benefiting from the advantage of

parallelisation for faster execution. The proposed system

achieved a performance which surpasses that of a human

(classification accuracy of the top 1 class >95.9% for automatic

recognition of a detected object into one of the seven selected

categories. For the top-2 classes, the accuracy is even higher

(99.85%). That means, at least, one of the two top classes

suggested by the system is correct. Finally, a number of visual

examples are showcased of the system in use in both PC and

Android devices.

I. INTRODUCTION

Surveillance systems are widespread (in the UK there are

reported 4.2 Million surveillance cameras in use ten years ago

[1]; now this number is obviously much higher), and most of

them are being computerised. However, the dramatic increase

of the power and lowering the cost of the devices such as

smartphones, GPU (graphic processing units) as well as the

developments in the area of computational intelligence and

neural networks, in particular, open new horizons for the

confluence of the advanced platforms and advanced

algorithms.

In this paper, we present a general purpose surveillance

system that has at its core two main elements: i) a detection

module, and ii) a classification module. The detection module

is based on the recently developed and published SARIVA

method [2] and WhatMovesApp [3] application for detecting

objects that move using smart-phone devices. The detection

module was a subject of a recent publication [2] and will only

briefly be outlined in section II. The main novelty of this

paper is the classification module which is based on

convolutional neural network (CNN) using Deep Learning

methodology [4]. This module classifies the object into one of

the seven pre-defined categories using a pre-trained CNN

based on the DL methodology. These categories include

“human”, “cat”, “dog”, “car/4-wheeled vehicle”, “motorbike”,

“bird”, and “trees/forest”. The reason only seven categories

were chosen is because maximum accuracy was desired on

categories that are valuable for a general purpose home or pet

security system. The system is general purpose as the user can

select which categories should trigger notifications and what

actions to be taken after a category has been identified such as

raise an alarm, send an SMS, email and/or a photograph using

GSM or Wifi, etc. Having a smartphone as a platform makes it

possible to get a two-way communication with the remote user

who may ask specific type of requests following a detection of

object of a certain class at a certain time instant. For example,

if an object is being autonomously being detected and this has

been classified as being a human, the system can send a

message to the remote user. The user may or may not request a

photo snapshot. The user may also request that all further

images where objects of type human are being detected are

also sent to him/her and/or saved.

The proposed system and smartphone application can be

very useful for general use, for social science research, traffic

studies and control, robotics-based image recognition

applications and video surveillance.

Studying different architectures and their suitability for the

specific task, the following recent benchmark deep neural

network architectures were investigated: VGG-Net [4],

GoogLeNet [5], AlexNet [6]. In this paper, we present the

results of two custom made architectures which borrow some

elements of the above in comparison with the original designs.

They proved to be very competitive and particularly suitable

for the low memory and processing capacity requirements of a

contemporary smart phone as well as ensuring no latency so

that a real-time applications is possible. The accuracy of the

proposed system is 95.9% in the Top-1 category. This level of

accuracy is comparable and surpassing human level object

recognition ability [7]. Therefore, the system can rightfully be

called intelligent, and it is also very powerful.

The system is efficient to be used on currently available

high-end mobile devices, as well as embedded system

platforms such as Android-based smartphones, Raspberry Pi

[8] and Tegra X1 [9].

Finally, we compare and contrast all the architectures

investigated and identify future work and possible additions to

the system. To test in a real world scenario, we implemented

the system as a PC application as well as an Android app.

The remainder of the paper is organized as follows. Section

II briefly outlines the SARIVA method used to autonomously

detect any moving object. Further details on SARIVA method

can be found in [2]. Section III describes the image

classification module in general. Section IV then goes into the

architectures of the proposed two custom Deep Learning

classifiers as well as of two benchmark classifiers (AlexNet

and GoogLeNet). Section V describes the data pre-processing

and augmentation. Section VI provides details of the

Experimental Results and Analysis. Section VII describes the

specifics and demonstrates the computer and smartphone

applications. Finally, the conclusions and the outline of the

further work are given in Section VIII.

II. MOVING OBJECT DETECTION MODULE

The detection module of the proposed system is based on the

recently introduced SARIVA approach [2] which is also

implemented as an Android app and available on Google play

Store [3]. SARIVA overcomes the main issue related with the

use of a moving camera to detect moving objects, namely that

the prior information about the objects to be tracked is

assumed to be available. Other existing approaches also suffer

from high computational complexity. In SARIVA this is

overcome by the use of recursive calculation of the similarity

between different images using data density [10]. The high

computational complexity combined with the limited

(although growing in recent years dramatically)

computational, memory and energy resources of a handheld

device mean that traditional approaches will not run real time

on a smartphone. This leads to a reduced detection rate,

restrictions on the movement of the camera/phone and makes

the whole system not viable. The recently proposed SARIVA

approach allows real-time object detection by introducing a

new method called Optical ORB [2]. It has the ability to detect

multiple objects without the need of prior knowledge about

these objects. The main advantage of Optical ORB used in

SARIVA and ,respectively, in the proposed system and also

implemented and available on Google Play Store under the

name WhatMoves app [3] is that there is no need for so-called

“image stitching” to eliminate the effect of moving camera

and get the ego-motion [2]. This operation used in traditional

approaches as well as in the recently introduced ARTOT

method [10] is most computationally costly within the object

detection module. At its first stage, Optical ORB method used

and implemented within SARIVA extracts the features from

the previous image frame using ORB feature detector which is

a pyramidal approach to the FAST feature detection algorithm

aiming to detect stable keypoints [2]. The ORB detector can be

tuned to detect a lot of features in a short amount of time

compared to the standard methods [2] without degrading the

quality of the detected points. Once the features have been

selected, the Lucas-Kanade optical flow algorithm [11] is used

to locate each feature’s position in the current frame and,

therefore, the optical flow displacement vector which

describes the movement of the feature. Then the detection

module applies an evolving clustering algorithm called ELM

[12] that was also recently introduced by the authors which

groups the features and thus removes the influence of the

number and velocity of the moving objects. That is to say, on

a scene there may be more than one object moving with

different velocity vectors (speed, direction) and ideally, we

would like to group the feature points that were detected into

clusters or groups that correspond to these objects. Moreover,

the cluster with the majority of the optical flow vectors is

considered to represent the background. The features that

relate to the background are then removed. More details on

SARIVA and Optical ORB are provided in [2]. At the end of

the detection module an area around each detected object is

being cropped and each of these regions containing a single

physical object is passed to the classification module which is

described in the next section.

III. IMAGE CLASSIFICATION MODULE

In this module, the proposed system classifies the cropped part

of the image frame with detected object into one of the seven

pre-defined categories, namely: “human”, “cat”, “dog”,

“bird”, “motorbike”, “car/vehicle” or “tree/forest”. The

architecture of the neural network and the training

methodology used including the feature extraction falls within

the so called Deep Convolutional Neural Networks [13]

(CNN). A Deep CNN is composed of stacked convolutional

layers that are used for feature training and extraction,

followed by additional fully connected MLPs at the end to

classify the features to each category and, thus, successfully

classify the images. The deep learning framework “Caffe”

[14] was used in combination with the tools provided by

Nvidia called “Digits” [15] to train and visualize our models.

The existing state of the art architectures that were studied as a

starting point were:

1. GoogLeNet [5]

2. AlexNet [6]

3. VGG Net [4]

To allow a proper comparison all of the above three state of

the art Deep CNN were build and trained as described in [5]-

[6]. The only exception was with VGG Net because of its

massive size and number of parameters (180 million

parameters) the system (running on a 960 GTX) would need

about a week to train it. Such an amount of time was not

acceptable due to time-frame constraints and as such smaller

networks inspired by it were trained instead as described in the

next section. In addition, such an amount of parameters will

consume too much memory, and access to them will not allow

real-time application on a smart phone platform which is the

ultimate aim of this study.

IV. DEEP NEURAL NETWORK ARCHITECTURE DESIGNS

As it is well known [13], the term Deep Learning was coined

recently, although the problem with the amount of neurons,

structure and architecture of the neural networks, so called

“vanishing gradient”, recurrent type networks and links with

the memory [16]-[17] exist and were a subject of analysis

much earlier (as early as 1990s) and all of them found a new

angle of interest within the Deep Learning paradigm. Some

define formally the Deep Learning (DL) type NN as ones in

which there is a large number of layers, millions or billions of

neurons and parameters. However, there is more to DL NN

than just the size and quantitative factors. Within DL NN it is

now considered also an automatic feature selection using CNN

which found numerous applications to image [18]-[19] and

speech processing [16]-[17] recently grabbing some of the

headlines even outside of the scientific circles. In what

follows, we briefly analyze the two existing popular

architectures that we used as a starting point as well as the two

proposed custom designs which borrow from the first two but

go further.

A. AlexNet (Original)

AlexNet [6] was the network architecture that won the

ImageNet competition in 2012, in which a computer system

was required to classify 1000 different classes of animals and

objects. AlexNet improved the state-of-the-art that year,

bringing the error rate down astonishingly almost twice (to

about 15% from the previous 26.5%). The AlexNet

architecture is composed of cascading convolutional, Max-

Pooling layers of size 3x3, local response normalization

(LRN) layers and 3 fully connected multilayer perceptron

(MLP) layers to synthesize the features and classify the

objects.

More specifically, a data layer is used that prepares the

mini-batches and feeds them into the input layer. The reason a

dedicated data layer is used is that by asynchronously building

the next mini-batch while the network is training then a speed

increase is achieved as no time will be spent building the

batches in between iterations. The next component is the input

layer that receives an image of size 224x224 in red-green-blue

(RGB) format, thus, having a total size of 224x224x3. The

next component is the first convolutional layer which

convolves patches of the image of size 11x11 with stride 4 and

creates a total of 96 feature maps. Then the next component is

the linear normalization layer that normalizes all values before

sending them to the Max pool layer of size 3x3 and stride 2

that selects the dominant feature neurons to send to the next

layer. After that the data is sent to the second convolutional

layer that uses a patch of 5x5 with stride 1 and creates a total

of 256 feature maps, followed by a Max pool and a

normalization layer. Finally, the extracted features are sent to

3 cascading convolutional layers of filter sizes 512, 1024 and

256 with patch size 3x3, stride 1 and pad 1. Then, the high-

level features obtained from the final convolutional layer are

then sent to a Max pool layer that selects the strongest

activations to send to the fully connected layer of size 4096,

which then connects to a dropout layer with parameter 0.5. In

other words, this layer will randomly drop half its connections

in the training session to prevent overfitting (this is a

regularization instrument). The next module is another fully

connected MLP of the same size with a dropout layer with a

parameter of 0.5 [20]. Finally, the last component is a fully

connected MLP of size 7 which sends out activations into a

SoftMax Layer to output the result.

B. GoogLeNet (2015 BN Revision) with PReLU

GoogLeNet [5] was Google’s submission to the ImageNet

competition in 2014, which also won the competition with an

impressive error rate of 6.65%. GoogLeNet is a convolutional

type network that uses an advanced architecture layer called

Inception Layer; the inception layer takes advantage of the

speed of parallel execution to process huge convolutional

layers in smaller bits and then concatenate them back together.

This approach reduces the number of parameters by a factor of

10 and increases execution speed by a factor of 2. In 2015,

Google also presented a new layer architecture called Batch

Normalization, then by making slight changes to GoogLeNet

and adding batch normalization [20] it was able to achieve the

astonishing 4.82% error rate which surpasses the human

performance at 5.01% error rate [21]. GoogLeNet takes

advantage of parallelization of multiple smaller convolutional

layers in parallel rather than in series. This results in a network

with a much smaller amount of parameters with a performance

that exceeded all the other networks (for comparison,

GoogLeNet has 13.6 M parameters vs. 180 M parameters for

the VGG-Net). In our implementation, the ReLU (rectified

linear unit) activation type functions used in the original

architecture were replaced by parametric ReLU or PReLU in

an attempt to improve the performance. The number of

parameters in our implementation is

approximately 13.6 𝑥 106, therefore, making the file which

contains the weights and has to be stored and accessed in real

time on the smart phone only 13.6 MB which is not much and

is especially important since a mobile app should be compact.

C. Custom Network 1

The first of the two newly proposed architectures was inspired

by both the AlexNet and VGG. The Local Response

Normalization [20] layer contributions to error rate

minimization have been proven in practice to be very low if

TABLE 1: PARALAYER DETAILS

Layer Type

Feature

Maps

Other

Parameters

Activation

Function

Patch

Size/Stride

Convolutional 128 - PReLU 7x7/2

Convolutional 128 - PReLU 3x3/2

Convolutional 128 - PReLU 3x3/1

Maxpool - - - 3x3/2

Fully Connected

MLP
-

512

Neurons
PReLU -

Dropout -

Dropout

Parameter:
0.5

- -

Fully Connected

MLP
-

512

Neurons
PReLU -

any. Therefore, it was decided not to use an LRN layer in the

proposed network architecture. In addition, the new PReLU

activation function has proven to be better on average than the

ReLU type activation function used in the above-mentioned

benchmark architectures. In addition, because in this particular

application of a general purpose intelligent surveillance

system only seven classes are considered (as opposed to the

1000 classes considered by AlexNet and VGG) the fully

connected layers were with a significantly reduced size (only

1024x1024x7 as opposed to 4096x4096x1000 used in AlexNet

and VGG. This leads to a reduction in the memory usage and

speeds up the training and deployment. An increase in the

feature maps in convolutional layers 3, 4, and 5 from 384, 384,

256 to 512, 1024, 512 was experimentally proven to be

contributing to improving the accuracy. The proposed network

architecture is using much less memory than AlexNet and

produces better accuracy results for the problem at hand we

have. The larger feature maps provide richer results though

can be a reason for over-fitting if the training is not stopped on

time.

D. Custom Network 2 – ParaNet (VGG-Inspired)

The second network architecture that is proposed in this paper

is ParaNet. It draws ideas from a variety of networks; first, the

parallelism of GoogLeNet; the smaller receptive fields of

VGG and the idea of Multi-Task learning [19]. In Multi-Task

learning, a network can achieve multiple tasks, through the use

of dedicated parallel pipelines where each one of them is

responsible for carrying out a specific task. For example, one

pipeline can be responsible for image classification; another

pipeline for caption generation, etc. In our case, we used

separate pipelines for each class allowing the network to have

dedicated convolutional and MLP layers for each

category/class. Parallel layers were designed with identical

architecture and called “ParaLayers” for simplicity. In Table 1

the specific details for each one of those layers are tabulated.

The architecture of the network is composed initially of 2

cascading convolutional layers plus a Max-Pooling and then

of seven ParaLayers (one for each class, e.g. one for “human”;

another one for “cat”, etc).

V. DATA PRE-PROCESSING AND AUGMENTATION

One of the most important steps in training a model using

supervised learning and especially for DL-NN architectures

and image processing tasks is the data pre-processing and

augmentation. The level of accuracy for the state of the art

techniques can be greatly impacted by it, as it has been

experimentally shown that 10-15% higher accuracy rates can

be reached. In our particular problem, this step includes:

A. Resizing

Each and every one of the images was transformed into

256x256 size using the method of “squashing” or, in other

words, resizing without having any considerations about the

previous aspect ratio, see Figure 4, for example.

B. Mean Subtraction

For better results subtracting the mean of all the images from

each image is recommended, as it prevents saturation and

makes the differences between images more apparent.

C. Data Augmentation

Because large neural networks need massive amounts of data,

it was decided that applying data augmentation to our dataset

was appropriate. By generating new samples based on the

existing ones in a way that preserves the objects to be

recognized allows the training data set to increase multiple

times which leads to a much better-performing network and

much higher generalization results. By increasing our data,

over-fitting is significantly reduced which allows the accuracy

of the network to increase. The following techniques were

used to augment the dataset we considered.

D. Random Rotations from 0 to 360 degrees

Rotating the images to random angles ranging from 0 to 360

degrees not only increases the data but also allows for better

generalizations of the model.

E. Random Cropping

Randomly crop 224x224 pixel size patches from the original

images and add these to the training data set, thus producing

new images in each mini-batch.

F. Mirroring

Creating mirrored versions of the images.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Model Training and Evaluation

The models were trained using stochastic gradient descent

method and error back-propagation. The initial learning rate

was 0.1 and the learning rate decay was 0.9. The batch sizes

varied with the models (for AlexNet and CustomNet 1 a batch

size of 128 was used whilst for GoogLeNet the batch size was

48 and in the case of CustomNet 2 the batch size was 12). The

cross-entropy type loss function was considered (see figure 1).

Finally, for each epoch the accuracy of correct predictions was

also calculated. The dataset was split into 85% of the data for

training and 15% for validation. Naturally, in the validation

data set (the 15%) only original images were used, not

augmented data. Finally, the system was trained for 10 epochs

in order to select the best model out of the 4 and then

additional 20 epochs on the best model to allow it to reach a

much better score. This took approximately 4 to 12 hours on a

laptop depending on the network.

B. Results

In Figure 1 one can clearly see that GoogLeNet is by far the

best of all four architectures. However, it is worth noting that

CustomNet 1 had very similar performance to GoogLeNet and

needed only 3 hours to train compared to GoogLeNet that

needed 10 hours to train as shown in Table 2. This is an

important factor to consider when choosing an architecture as

decreased training time can save both time and resources.

FIGURE 1: LOSS FUNCTION ON THE VALIDATION DATA

For that reason, it was chosen as the architecture to be further

trained with the available limited GPU handheld device.

Validation

Loss

Validation

Accuracy

Network Type Total Time

to needed

for training

0.436948 0.839887 GoogLeNet (2015

Revision)

10 hours

0.665369 0.81925 CustomNet 1 3 hours

0.745423 0.773935 CustomNet 2 -

ParaNet

9 hours

0.708225 0.769173 AlexNet 2 hours

TABLE 2: LOSS AND ACCURACY OF ALL ARCHITECTURES AFTER 10 EPOCHS

FIGURE 2: TRAINING AND VALIDATION LOSS OF GOOGLENET

In Figure 2 the performance of the GoogLeNet over 30 epochs

can be seen. Its final validation loss is 0.122971 which is very

small and translates to a very high-performance network.

FIGURE 3: GOOGLENET VALIDATION ACCURACY

In Figure 3 one can see the performance in terms of accuracy

of the GoogLeNet over 30 epochs. The final Top-1 accuracy is

95.9924%. In other words, the system can predict the correct

label in its top-1 choice at a level that is on par or better

than a human would do it [7], [21]. This is extremely

important for the overall system as it relies on the model being

very reliable and accurate in its predictions. Also, the top-2

error is 99.85%. In other words by using a top-2 prediction,

one can have an extremely high accuracy rate. The table below

shows the performance of all the networks. Additionally,

given that some images may have 2 or more objects in them,

we can deduce that some of the erroneous classifications were,

in fact, not real errors.

C. Action/Notification

Finally, after detecting a moving object and classifying it

successfully, our proposed system also offers an intelligent

action which may be a two-way communication process. For

example, the system can enable an alarm autonomously or

inform the remote user by SMS, email, etc. Moreover, it can

get back the response from the user who may want specific

image frames to be sent to him/her remotely or other action

(e.g. call security firm/police, relatives etc.) to be taken

automatically on his/her behalf. The system is general purpose

and as such one can change its functionality from pet detector

to theft detector or even car detector (for parking spaces).

FIGURE 4: EXAMPLES OF CLASS HUMAN USED FOR TRAINING

FIGURE 5: EXAMPLES OF TRAINING DATA FOR THE CLASS TREE

D. PC API and Android App Implementation

1) PC Application

After training, fine tuning and selecting the best model the

implementation of the PC and Android apps was initiated.

First, SARIVA, including Optical ORB, was implemented

using the OpenCV API. The programming language for the

PC app was Python as its prototyping speed is among the best

available. Along with Python, we used the PyCharm IDE,

which allowed even quicker iteration speed. After building the

moving object detector, classification module was built using

the Caffe Python API, which allows quick and easy

deployment of models trained in Caffe. Finally, the

action/notification module was built using Python. On the PC

application, a GUI based solution was not implemented but

instead a terminal based system that could quickly and

efficiently find moving objects, classify, make a decision and

act on it using email and SMS. Because of the speed of the

Caffe framework which is written in C++, the system could

easily be used on a Raspberry Pi [8].

2) Android Application

The tools used for implementing the Android app were

Android Studio with the Android Development Kit (SDK) and

Android Development Tools (ADT). Additionally, a “Caffe”

port to Android was used that allowed the C++ code of

“Caffe” to interface with Android. In addition, the Android

Native Development Kit (NDK) was used to combine C++

and Java. Features of the app include a selection of activation

labels as well as the availability of email and SMS messages.

The object movement detector was first implemented in

Python using OpenCV and then directly translated into Java

OpenCV API. This was rather simple as the method names are

consistent. Special care was taken to drive all module-tasks

using multi-threading and, thus, maximize the performance

and responsiveness of the app. The classification pipeline was

implemented using the Caffe port and the trained model. The

model that was already trained on the GPU was copied to the

mobile device’s hard drive and accessed when the app is

launched. The trained DL CNN architecture required 15Mb of

memory. Finally, the action/notification module was

implemented in Java. The UI was built using the Android

Development Tools. The size of the app was additionally

reduced by the fact that the OpenCV library is pre-installed on

the phone as a separate app that allows sharing of the API with

multiple apps. Thus, the app only needed to access the already

installed tools. Also, a prompt was added to automatically

download OpenCV toolkit in case the user did not have them

installed beforehand.

E. Real World Testing

The app was tested module by the module during production,

and then system-level tests followed the full implementation.

In this sub-section, only some of the tests carried out are

presented.

1) Object Classification Tests in Real-Time:

In Figures 6 and seven we can see some real-time

classifications that took place as we moved with the smart

phone and the App enabled.

FIGURE 6: CLASSIFICATION OF CARS

FIGURE 7: CLASSIFICATION OF TREES

F. Movement Detection:

The movement detector was tested, and results showed

adequate performance, see Figure 8.

FIGURE 8 ANDROID MOVEMENT DETECTION

FIGURE 9: “MORE” MENU

Allows further options from the main menu

FIGURE 10: MAIN MENU

Allows selection of detection type, resolution, phone numbers,

emails and more

FIGURE 11: ACTIVATION MENU

Allows the selection of which objects should trigger a

response (SMS, email, alarm) from the system.

FIGURE 12: EMAIL SENT WITH OBJECT CATEGORY AND PICTURE

VII. CONCLUSION AND FURTHER WORK

A. Conclusion

In this paper, we present and analyze a novel general purpose

intelligent video surveillance system portable on a smart

phone. The procedure of the design and training a deep neural

network capable of 95.9% accuracy in the top-1 category over

seven categories is described. In addition, we proposed two

new custom architectures capable of performance comparable

to the best-known state of the art. Additionally, it is worth

noting that CustomNet 1 had a very fast training of only 3

hours compared to GoogLeNet’s 10 hours. In addition the

GoogLeNet trained used PReLU instead of ReLU as the

original architecture did. Furthermore, we present and outline

the design and implementation of both a PC and Android

application that can be used for the intelligent surveillance

systems. We have demonstrated that deep neural networks can

be used for classification on Android devices with high frame

rate and human-like performance. The PC app can also be

used on Raspberry Pi and other Linux-based embedded

devices. Future applications could include real-time learning

as well as classification through the use of combined

unsupervised and supervised learning given that the mobile

devices of the future have powerful GPUs like the Tegra X1

[9].

B. Future Work:

The system presented in this paper is only capable of using a

pre-trained model for its classification. The truly game-

changing capability is to allow a mobile device to learn as it

collects samples of images. This is currently only possible

through the use of Cloud GPU servers and combination of

unsupervised learning with deep neural networks. As mobile

devices become increasingly more powerful, we believe that

GPUs such as Tegra X1 will become part of the mainstream

smartphone hardware. Further ways to achieve learning in real

time is the use of reinforcement learning in combination with

a deep neural network [7]. In addition online learning can also

be implemented through the use of self-learning and

dynamically evolving systems [22] which, however, for the

case of Deep Neural Networks are not yet developed. Further

studies will be directed to this. When that is achieved new

more powerful systems will be able to learn on the device

itself without the need of the Internet or wireless

communication.

REFERENCES

[1] K. Ball, D. Lyon, D. M. Wood, C. Norris, C. Raab, A report on the
Surveillance Scoiety, Sept. 2006, available online at

http://news.bbc.co.uk/1/hi/uk/6108496.stm, accessed on 18 January
2016.

[2] C. Clarke, P. Angelov, Y. Majid, P. Sadeghi-Tehran, SARIVA:
Smartphone App for Real-time Intelligent Video Analytics, Journal

of Automation, Mobile Robotics and Intelligent Systems, vol.8 (4),

2014, pp.15-19.

[3] WhatMovesApp,

https://play.google.com/store/apps/details?id=lancs.free, accessed
on 18 January 2016.

[4] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” Sep. 2014.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper with

Convolutions,” Sep. 2014.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,” in

Advances in Neural Information Processing Systems, 2012, pp.
1097–1105.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.

Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no.

7540, pp. 529–533, Feb. 2015.

[8] Raspberry-Pi 2 [Online] https://www.adafruit.com/pdfs/raspberrypi

2modelb.pdf

[9] “Tegra X1 Super Chip | NVIDIA Tegra | NVIDIA.” [Online].

Available: http://www.nvidia.com/object/tegra-x1-processor.html.
[Accessed: 11-Aug-2015].

[10] P. Angelov, C. Gude, P. Sadeghi-Tehran, and T. Ivanov, “ARTOT:
Autonomous real-time object detection and tracking by a moving

camera,” in 2012 6th IEEE International Conference on Intelligent

Systems, pp. 446–452.

[11] J. Y. Bouguet, Pyramidal implementation of the affine Lucas

Kanade feature tracker description of the algorithm, Intel Corp.
Microprocessor Research Labs, 1999.

[12] R. D. Baruah, P. Angelov, Evolving Local Means Method for
Clustering of Streaming Data, Proc. IEEE World Congress on

Computational Intelligence, 2012, Brisbane, Australia, pp. 2161-

2168.

[13] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85–117, Oct. 2014.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe,” in Proceedings of the ACM
International Conference on Multimedia - MM ’14, 2014, pp. 675–

678.

[15] NVIDIA DIGITS – Interactive Deep Learning GPU Training

System NVIDIA Developer, available online at
https://developer.nvidia.com/digits, accessed 18 January 2016.

[16] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory
Based Recurrent Neural Network Architectures for Large

Vocabulary Speech Recognition,” Feb. 2014.

[17] K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spoken

language understanding using long short-term memory neural

networks,” in 2014 IEEE Spoken Language Technology Workshop
(SLT), 2014, pp. 189–194.

[18] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and
K. Saenko, “Translating Videos to Natural Language Using Deep

Recurrent Neural Networks,” Dec. 2014.

[19] B. Yu and I. Lane, “Multi-task deep learning for image

understanding,” in 2014 6th International Conference of Soft

Computing and Pattern Recognition (SoCPaR), 2014, pp. 37–42.

[20] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift,” Feb. 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification,”
Feb. 2015.

[22] P. Angelov, Autonomous Learning Systems: From Data Streams to
Knowledge in Real time, John Willey and Sons, Dec.2012, ISBN:

978-1-1199-5152-0.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1119951526,descCd-ebook.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1119951526,descCd-ebook.html

