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Abstract— This paper discusses a novel wind generation 

balancing technique to improve renewable energy integration to 

the system. Novel individual hot water heater controllers were 

modelled with the ability to forecast and look ahead the required 

energy, while responding to electricity grid imbalance. Artificial 

intelligence and machine learning techniques were used to learn 

and predict energy usage. In this research wind power data was 

used in most cases to represent the supply side, where focus was 

on the actual generation deviation from plan. It proved to be 

possible to balance the generation and increase system efficiency 

while maintaining user satisfaction. The methods developed in 

this research are not limited to wind power balancing and can 

also be used with any other type of renewable generation source. 

Keywords— energy management; renewable sources; 

residential hot water heaters; smart grid 

I.  INTRODUCTION  

The electricity supply-demand balancing becomes 
increasingly more difficult with the increased use of renewable 
energy sources in the energy production mix. Most renewable 
energy sources are intermittent and inherently hard to control 
with the existing techniques, where the current electricity grid 
operations remain relatively unchanged in the major part of the 
world. The technological advancement in communications, 
computational power and sensing needs to be adapted to the 
electricity sector for more optimal renewable energy 
integration. In general, there is a lot of room for research and 
development in the area of Smart Grid and to find alternative 
ways to better manage renewable generation. 

This research aims to improve wind power integration and 
overall system reliability and covers alternative methods to 
substitute traditional backup power up to a certain limit with 
the help of energy storage at consumer level. Individual hot 
water forecasting methods are developed for smart hot water 
heaters and consequently, these forecasting models are used to 
develop smart distributed hot water heating system to enable 
demand response. Basically, these individual hot water heater 
controllers were modelled with the ability to forecast and look 
ahead the required energy, while responding to electricity grid 
imbalance.   

II. METHODOLOGY AND MODELLING 

A. Wind Power Data 

In this research, the primary objective of the proposed 
demand side management technique was to generate a backup 
power aggregator to cover the forecasting error associated in 
the wind power generation. Previously measured and 
forecasted wind power generation data, provided by the 
Lithuanian National Transmission System Operators (NTSO), 
was used to assess the performance of the system [1]. The wind 
generation forecast is shown in the below Fig. 1 and it is based 
on the next day-ahead predictions to comprise the electricity 
day-ahead market. 

 

Figure 1: Actual wind generation (black), forecasted wind 
generation (blue) and the imbalance (red) in MW for a 
duration of one week. The installed capacity of the wind 
power plant is 222 MW. 

B. Hot Water Consumption Data 

The hot water consumption data used in this research was 
provided by the Energy Saving Trust, UK [2]. The data set 
consisted data collected during the years 2006 – 2007 
corresponding to about 120 individual residential houses. It 
included temperature information from various locations, 
where hot water was supplied, and total volumetric 
consumption measured. For the purpose of this research, some 
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data sets were discarded to reduce errors in the hot water 
consumption measurements. The sampling rate of initial data 
was not constant. Measurements were recorded every 10 min, 
but when a run-off was detected, the sampling rate increased to 
5 s. Before analysis started, the data were resampled at hourly 
intervals, by aggregating the volumetric consumption of every 
hour. 

 

Figure 2: Average hot water consumption (kg) for 95 
individual residential houses for a duration of one week. 

C. Forecast Individual Hot Water Consumption   

It is necessary to accurately forecast individual hot water 
consumption and compare it with aggregate forecasting results. 
This was done using different forecasting techniques including 
artificial neural network autoregressive modelling (NAR), 
artificial neutral network autoregressive with exogenous inputs 
modeling (NARX), seasonal decomposition of time series by 
Loess (STL), exponential smoothing (ETS), seasonal 
autoregressive integrated moving average (ARIMA) and other 
combinations of these models. The performance of these 
models was compared with benchmark models (mean, naïve, 
and seasonal naïve models) and the best model was chosen. 

A NAR model was created using one hidden layer with 10 
neurons; Fig. 3 (a) shows a simplified model diagram. The data 
division for training, testing and validation was chosen to be 
random for these time series, where the performance was 
measured using Mean Square Error (MSE). ANN was trained 
using Levenberg-Marquardt back-propagation training 
algorithm. An individual dwelling hourly volumetric hot water 
consumption time series were used to train the network. 
According to auto-correlation analysis, different sets of lags 
were tested to find the best performance. 

 

(a) 

 

 

(b) 

 

 

 

 

Figure 3: (a) NAR and (b) NARX model topologies 

The model was then converted from NAR to NARX by 
adding external inputs as shown in Fig. 3 (b). Here the ANN 
should be supplied with information containing the day of the 
week and whether it is a weekend or not. As a result, 6 dummy 
variables were constructed to represent weekday and additional 
dummy variable was used as a Boolean for marking weekends. 
Also, average hourly consumption profile (average value for 
the hour that is being predicted) was fed in as an external input. 
The performance of the models was measured by comparing 
regression value (R), normalized mean absolute error (nMAE), 
normalized root mean square error (nRMSE) and mean 
absolute scaled error (MASE).  

D. Smart Hot Water Heater 

The smart hot water heater controller in the proposed 
system derived based on open system energy balance. The 
controller can compute water temperature for the next 12 hours 
period. It controls the heating element according to the 
consumption forecasts (using the trained artificial neural 
network (ANN) model based on the past hot water 
consumption information [2]) and the signal sent from the 
smart grid (showing the requested duty cycle of the heating 
element) [3]-[5]. The signal from the grid is percentage-wise, 
where 0% means that the grid experiences a shortage of 
electricity, thus requesting to turn the heating element off, and 
100% means a surplus of energy in the grid. The complete 
model was implemented in the Matlab Simulink software 
environment, where the amount of energy consumed by the 
electric heating element is added to the model as an input. The 
outputs of the model are energy consumed by hot water usage 
and   thermal energy losses due to imperfect thermal insulation 
(calculated based on thermal conductivity and considering the 
temperature difference between water and ambient 
temperature).   

E. Overall Behaviour of the System 

The main goal of the proposed system is to generate a 
backup power aggregator to cover the day-ahead wind 
generation forecast errors. It enables the supply of the exact 
amount of wind energy that was sold in the day-ahead market 
and avoids charges for costly regulation ancillary services. 
Power to be regulated calculated comparing day-ahead forecast 
with the actual wind power generation. Since water heaters can 
only consume electricity (regulate down), the imbalance is 
added on top of the predicted normal consumption to enable up 
regulation. The predicted normal water heater consumption 
information can be taken from the distribution system operator 
or, in this work, it is modelled by the same ANN. Secondly, the 
actual electricity usage is aggregated and subtracted from the 
reference load. It is then used by the demand response 
controller to compute the request signal for the water heaters, 
which in turn decides whether to participate in the demand 
response or not. Every 5 min, the controller forecasts individual 
demand for the next 12 h and computes the ability to 
participate in the demand response. Forecast for 12 hours ahead 
is sufficient as 200 litres tank (with 1.5 kW heating element) 
takes similar amount of time to raise the temperature by 50 
degrees.  In the case of participation, the water heater reacts to 
the request signal and alters the energy use accordingly to 
balance wind forecast error.  



III. RESULTS AND DISCUSSION 

A. Forcasting Results 

 
The simulation framework comprises 95 dwellings 

equipped with resistive hot water heater models of different 
sizes and power ratings, as well as ANN models for each 
dwelling.  Figure 4 compares correlation values for different 
ANN lag scenarios of NAR and NARX, where 10 arbitrary 
cases were chosen. It can be seen that NARX model predicts 
better in all cases, though the relative difference is small in 
some cases. By looking at Table 1, it can be seen that cases 7 
and 8 perform the best. 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of Mean R values from ANN 

simulations (scenarios of NAR, NAR extended, NARX 

and NARX extended) for 10 different cases (see each case 

details in Table 1). 

 

Table 1: The R values of NAR and NARX models for 

different cases  

 
 

Table 1 and Fig. 4 summarise how well the models performed 

by showing the average performance measures from the best 

fitting model for every dwelling. For a particular dwelling, the 

best-performing models (case 7) were chosen by adjusting the 

parameters, for example p, d and q values in the ARIMA 

model were chosen using the Akaike or the Bayesian 

information criterion [6]. A standard deviation is also 

presented showing how much performance measures differ 

between houses (Figure 5). It can be seen that seasonal 

decomposition in conjunction with exponential smoothing  
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Figure 5: Model fitting results for individual dwelling 

consumption. Lines are: Blue - correlation coefficient; Red 

- normalise mean absolute error; Green - normalise root 

mean square error; Black - mean absolute scaled error. 

Methods are: A - mean method; B - naïve method; C - 

seasonal naïve (daily); D - seasonal naïve (weekly); E - 

seasonal decomposition of time series by Loess model 

(STL); F - exponential smoothing (ETS); G - seasonal 

autoregressive integrated moving average (ARIMA) 24 

hours model; H – ARIMA 168 hours model; I – STL and 

ETS; J - STL and ARIMA. 

 

(STL and ETS(A,N,N)) and ARIMA (STL and ARIMA(p, d, 

q)) perform the best. On average, they perform more than 30% 

better than the seasonal naive benchmark model. 

 

B. Complete System Results   

Normal power usage, wind imbalance, power usage with 
DSM and final system imbalance are shown in Fig. 6. The 
result is clearly evident that the proposed DSM technique is 
capable of lowering the energy requirements for hot water 
preparation and supplying an ancillary service (power 
regulation) to the grid with a minor change in user comfort. 
The average energy required to supply the same amount of hot 
water is decreased due to increased efficiency. The 1.5kW per 
household of installed wind power has been observed to be 
optimal, as higher values cause the system to saturate and 
increase the final imbalance, which contradicts the key 
objective of this work.  

C. Summary   

 The technological advancement in communications, 
computational power and sensing needs to be adapted to the 
electricity sector for more optimal renewable energy 
integration. This is a key requirement as most renewable 
generation is decentralised. In this paper, a method to improve 
wind power integrity has been presented with a way of 
substituting traditional backup power at consumer level. 
Individual hot water forecasting methods are developed for 
smart hot water heaters, and then these forecasting models are 
used to develop smart distributed hot water heating system to 
enable demand response. These methods can be considered to  
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be part of the emerging concept of demand side management, 
particularly managing renewable intermittency in smart grid. 
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Figure 6: Simulated power variations results for a duration of one week. 

 


