
Leandro Soriano Marcolino

Advisor: Hitoshi Matsubara

Multi-Agent Monte Carlo Go

Thesis presented to the School of Systems

Information Science at Future University

Hakodate as a partial requirement for the

attainment of the degree of Master in Sys-

tems Information Science.

Future University Hakodate

Hakodate, August, 2011

To my parents.

Acknowledgments

Life is like a Go board, where the stones interact in complex ways. One stone is weak

and powerless and cannot do anything else beyond standing alone and clueless in the

universe. But when the stones interact, when they dance across the board, something

magic appears. Some stones connect to us, giving us power to live. Other stones are more

distant, but permit us to reach places that we could never imagine we would be able to

reach. Some stones seem to be enemies and hit us in the head, or in the shoulder, but

by doing so they force us to extend, to connect, to seek for places to live and grow. The

stones are nameless in a Go board, and we merely give names to how they connect and

relate to each other: one-point jump, bamboo, two-point jump, knight, long knight... In

life each stone has an unique name, but we also have names to their special connections:

family, teachers, friends, girlfriends, sponsors... And here am I, a small stone �oating

aimlessly in the Universe, I cannot even know if I am Black or White, but I am given this

unique opportunity in time to look above and contemplate all the stones that have been

so important to me in these two years, almost like I could for a single instant contemplate

the thoughts of The Great Player.

A battle happened in these two years, and I had to grow in order to live. A battle

happened in these two years, and here I am now, a small stone contemplating perplexed

the product of its own research, almost like it was not really done by me, and indeed I

would never be able to do it alone. I do not know if I am Black or White, if I will win

or lose. Maybe in life there is not a loser nor a winner, maybe life is more like The Great

Player playing against Himself, watching amazed how His stones can dance with harmony

and beauty. And me, a small stone �oating aimlessly in the Universe, cannot do anything

else beyond feeling gratitude and appreciation for all the ones that are so important to me:

my family, my teachers, my friends, my girlfriend, my sponsor...

The end is nothing; the road is all. (Willa Cather)

Abstract

Go is a strategic board game that is considered one of the greatest challenges for Ar-

ti�cial Intelligence. Many algorithms have been proposed, trying to tackle this problem,

but generally all of them generated players that could be easily defeated by a strong hu-

man opponent. UCT Monte Carlo Go is one of the most successful algorithms. The basic

idea is to associate a tree search with pseudo-random simulations, used to evaluate the

leaves. Nowadays, the literature is more focused on how to parallelize the UCT algorithm,

producing a stronger player by increasing the computational power. However, there is a

limit in the improvement that can be obtained. In this thesis we focus on how to improve

the algorithm itself, producing a stronger player with the same amount of computation.

We propose a Multi-Agent version of UCT Monte Carlo Go. The emergent behavior of a

great number of agents have been successfully applied in the literature to deal with a great

variety of problems. In this thesis, we use emergence and diversity to increase the quality

of the Monte Carlo simulations, increasing the strength of the arti�cial player as a whole.

Instead of one agent playing against itself, di�erent agents play in the simulation phase of

the algorithm, leading to a better exploration of the search space. However, we found that

using all possible agents leads to a weaker player. Therefore, we developed two learning

algorithms, in order to �nd a set of agents that can e�ectively generate a strong player.

The �rst learning algorithm is a simple hill-climbing approach, it tries each agent one time

and the agents that can improve the solution remain. The second learning algorithm is a

simulated annealing approach. At each iteration, it decides randomly if it is going to add

a new agent, or remove one from the database. The agent to be added/removed is selected

randomly. Modi�cations that decrease the current solution might also be accepted. With

either learning algorithm, we could signi�cantly overcome Fuego, a top Computer Go soft-

ware. Emergence seems to be the next step of Computer Go development.

Keywords: Emergent Behavior, Collective Intelligence, Multi-Agent Systems, UCTMonte

Carlo Go

概要

囲碁は戦略的なボードゲームである。現在、囲碁は人工知能の難題である。こ

の問題を解くためのたくさんアルゴリズムが存在するが簡単に強い人間に負ける。

「UCTモンテカルロ碁」と言うアルゴリズムは現在の一番強いアルゴリズムであ

る。このアルゴリズムは探索木に擬似乱数を用いて葉の評価を行う。現在、多く

の研究は「UCTモンテカルロ碁」の並列について集中している。コンピュータの

処理能力が上がれば、強いプレーヤーを作ることが可能であるが並列処理には限

りがある。そこで、本論文は「UCTモンテカルロ碁」アルゴリズムの改良につい

て注目している。同じ処理能力用いると、もっと強いプレーヤーを作る事ができ

た。本論文はマルチエージェント的な「UCTモンテカルロ碁」を示しマルチエー

ジェントの創発的な行動を使い「UCTモンテカルロ碁」のシミュレーションの質

を改良、人工知能のプレーヤーの強さを強化した。シミュレーションを行う際は、

一人のエージェントが打つだけではなく様々なエージェントが打つようにした。

こうすることで、処理に負荷を大きくかけることなく探索空間を探すの効率を上

げる事できる。しかし、実験的にすべてのエージェントに適応した場合、プレー

ヤーが弱くなると分かった。そのため、強いプレーヤーを作られるエージェント

セットを見付けるために二つ学習アルゴリズムを作った。一番目は簡単な山登り

法で、各エージェントを1回加えて見る。結果が増加させたエージェントだけエー

ジェントデータベースに残る。2番目は焼き鈍し方である。各繰り返し毎に確率

的にエージェントを加えるとか外すとか決める。加えられた／外さられたエージェ

ントは確率的に決定される。結果を減少さられた変化も確率によって受け入れる

ことができる。どちらの学習アルゴリズムでも、「Fuego」に有意に勝つことが

できた。「Fuego」は優秀コンピューター碁のソフトである。創発的な行動はコ

ンピューター碁の次のステップであると考えている。

キーワード：創発的な行動、集団的知性、マルチエージェントシステム、UCTモ

ンテカルロ碁

添削者：佐々木啓太

Abstrakto

Goo estas strategia tabulludo tio estas konsiderita unu el la plej grandaj defioj por Artefarita

Inteligenteco. Multaj algoritmoj estas proponita en la literaturo, provis pritrakti kun ĉi tiu prob-

lemo, sed ĝenerale ili ĉiuj produktis ludistojn ke povus esti facile venkita de forta homa oponanto.

Unu el la plej sukcesa algoritmo nomiĝas UCT-a Montekarla Goo. La baza ideo estas unuiĝi ar-

bon serĉon kun pseŭdohazardaj simuloj, uzata por taksi la foliojn. Nuntempe, la literaturo estas

pli koncentrata en la maniero laŭ kiu paraleli la UCT-a algoritmo, por produkti pli fortan ludiston

apud pli komputada potenco. Tamen, en ĉi tiu tezo ni decidis koncentriĝi pri kiel plibonigi la

algoritmon sin, produktantas pli fortan ludiston kun la sama kvanto de komputado. Ni proponas

Multagentan version de UCT-a Montekarla Goo. La elapereca konduto de granda nombro de

agentoj estas sukcese apliki en la literaturo al pritrakti grandan varion de problemojn. En ĉi tiu

tezo, ni uzas elaperecon kaj diversecon pliigi la kvaliton de la Montekarla simuloj, pliiganta la

forton de la artefarita ludisto. Anstataŭ unu agento ludi kontraŭ sin, malsamaj agentoj ludas en la

simula fazo de la algoritmo, kiu estigi pli bona esplorado de la serĉa spaco. Tamen, ni eltrovis kiu

uzanta ĉiuj eblaj agentoj estigas pli malforta ludisto. Sekve, ni disvolviĝis du lernantaj algoritmoj,

por trovi aron da agentoj kiu povas efike produkti fortan ludiston. La unua lernanta algoritmo

estas simpla montetogrimpa metodo, ĝi provas ĉiu agento unun fojon kaj la agentoj kiu povas

plibonigi la solvon postrestas. La dua lernanta algoritmo estas Simulata Malharda metodo. Ĝi

elektas agenton provi hazarde, kaj ĝi akceptas agentojn ke malpliigi la solvon kun iu procento.

Kun iu ajn el la lernantaj algoritmoj, ni povus signifoplene venki Fuegon, pintan Komputilan

Goan softvaron. Elapereca konduto ŝajne estas la sekvonta paŝo de Komputila Goa evoluado.

Ŝlosilvorto: Elapereca Konduto, Kolektiva Inteligenteco, Multagenta Sistemo, UCT-a Mon-

tekarla Goo

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Monte Carlo Techniques . 2

1.3 Emergence and Diversity . 3

1.4 Contributions . 4

1.5 Organization of this Work . 5

2 Background 7

2.1 Classical Approaches for Go . 8

2.2 Monte Carlo Go . 9

2.3 Parallelization of Monte Carlo Go . 11

2.4 Next Steps of Monte Carlo Go . 12

2.5 Emergence, Stigmergy and Diversity . 12

2.6 Optimization Algorithms . 17

2.7 Contributions . 18

3 Methodology 21

3.1 Learning Algorithms . 23

3.1.1 Hill-Climbing . 23

3.1.2 Simulated Annealing . 25

4 Results 29

xi

xii CONTENTS

4.1 Hill-Climbing . 29

4.2 Simulated Annealing . 40

5 Discussion 45

5.1 Why Agents? . 49

5.2 More on Emergence . 52

6 Conclusion 55

A Modi�cations in Fuego 65

List of Figures

1.1 Water crystals, formed by a natural emergent process (taken from www.

wikipedia.org). 4

3.1 Original single-agent Monte Carlo (a) and proposed Multi-Agent Monte

Carlo (b). The colors represent di�erent agents, and the arrows represent

interaction. 22

3.2 Original Fuego agent (a) and new agent database (b). 23

3.3 Agent selection in the Monte Carlo simulation process. 24

3.4 A greedy hill-climbing learning algorithm. 25

3.5 A simulated annealing learning algorithm. 27

4.1 Percentage of victory for the selected agent database. 31

4.2 Learning graph, as the algorithm tries to add each agent in the database. . 33

4.3 Percentage of victory for the selected agent database, in the not random order. 35

4.4 Learning graph in the not random order, as the algorithm tries to add each

agent in the database. 36

4.5 Percentage of victory for the selected agent database, in the second random

order. 38

4.6 Learning graph in the second random order, as the algorithm tries to add

each agent in the database. 39

4.7 Learning graph with all iterations. 40

4.8 Learning graph with only accepted iterations. 41

xiii

xiv LIST OF FIGURES

4.9 Agents that remained after the �nal iteration. 42

A.1 GoGui screenshot, taken from the o�cial website. 66

A.2 Modules of Fuego, taken from [Enzenberger et al. 2010]. 67

List of Tables

4.1 Selected agent database. 31

4.2 Percentage of victory for each individual agent. 32

4.3 Set of 15 agents that we believed to be strong. 34

4.4 Selected agent database, in the not random order. 34

4.5 Percentage of victory for each individual agent, in the not random order. . 35

4.6 Selected agent database, in the second random order. 37

4.7 Percentage of victory for each individual agent, in the second random order. 37

4.8 Selected agent database, by the Simulated Annealing learning algorithm. . 41

4.9 Iterations of the Simulated Annealing learning algorithm. 43

4.10 Iterations of the Simulated Annealing learning algorithm (continuation). . 44

xv

Chapter 1

Introduction

�I look at a Go board, and I see the whole universe�

1.1 Motivation

Go is a two-player turn-based strategy board game, that is famous for being one of the main

challenges in Arti�cial Intelligence. A small set of simple rules1 leads to a game amazingly

complex for a human being and a search tree that is unbearably large for a computer.

There are many reasons for this di�culty of developing a strong arti�cial player. First,

Go is played on a large board, 19x19, with 361 intersections, creating di�culties for tree

search based algorithms. Second, generally most of the intersections are valid movements,

increasing the number of possible states from a given state of the board. Third, the stones

interact in complex ways during the game; one stone may in�uence a distant group, for

example in situations where there is a ladder. Besides, building an evaluation function is

not trivial. Even end of game situations, that intuitively should be simpler, were proved

to be PSPACE-hard [Wolfe 2002]. According to Allis [1994], compared to the complexity

of Chess (1050), the complexity of Go (10160) is bigger by a factor of 10110. We can see,

therefore, how challenging it is to create an arti�cial player of Go.

1Available at many places, for example: http://www.pandanet.co.jp/English

1

2 1.2. MONTE CARLO TECHNIQUES

However, recently, with the development of evaluations of the board state based on

simulations (known as Monte Carlo techniques), the strength of Computer Go players

improved signi�cantly. Thanks to arti�cial players like MoGo, Crazy Stone, Fuego, Many

Faces of Go, and Zen, the best Go programs are now considered amateur level 2 dan.

Further improvement was achieved by parallelization, as it increases the computational

power, allowing a deeper exploration of the possible movements. In February 2009, Many

Faces of Go, running on a 32-core Xeon cluster, beat the professional player James Kerwin,

in a 19x19 board with a handicap of 7 stones. Many recent works are now investing in the

parallelization of Monte Carlo techniques. However, there is always a limit in the amount

of speed-up that can be gained in a parallelization design. As can be seen in Chapter 2, the

bene�ts of the parallelization saturate fast in the works that can be found in the literature.

The increase of strength is far from linear and it stops with a small number of server or

threads.

Generally, there are two ways to increase the strength of an arti�cial player: advances

in computational power, which can be achieved by parallelization, and advances in the

theory, which can be achieved by new algorithms and methods. Nowadays, the research

in Monte Carlo techniques seems to be focused on the parallelization of the current ap-

proaches. However, it is always desirable to advance the theory with the creation of better

algorithms, that lead to stronger players even when the computational power has not nec-

essarily increased. We believe that the next theoretical step lies in the investigation of

Multi-Agent methodologies.

1.2 Monte Carlo Techniques

The strength of Computer Go algorithms improved signi�cantly with the development of

Monte Carlo Techniques. The basic idea is to perform a great number of game simulations

in order to evaluate a given board state. The simulations start at the current game position,

that we want to evaluate, and end in the �nal game position. They are random, but are

heuristic-driven, in order to simulate realistic Go games. Nowadays, this approach is

CHAPTER 1. INTRODUCTION 3

combined with a tree search phase. In a tree search, many di�erent move options are

evaluated, and their possible countermoves, and the moves that follow, etc. However, it is

not possible to evaluate all the possible moves, from the current position to the end of the

game, because the number of possibilities is too large. Therefore, the tree search stops in

certain positions, called leaves. When a leaf is visited for the �rst time, it is evaluated by

one (or more) Monte Carlo simulation(s). This idea led to signi�cant improvements in the

playing strength.

1.3 Emergence and Diversity

Multi-Agent Systems have been used to solve a great range of problems in Arti�cial Intel-

ligence. The emergent behavior of a great number of simple agents have been applied in

algorithms like Ant Colony Optimization [Colorni et al. 1991], Particle Swarm Optimiza-

tion [Kennedy and Eberhart 2002], etc, in order to solve di�cult optimization problems. It

is also notable how emergence can lead to complex and intricate group behavior [Marcolino

and Chaimowicz 2008; 2009a;b, Reynolds 1987].

Emergence is a powerful concept, not only in Computer Science, but also in a variety

of disciplines, like Philosophy, Systems Theory and Art. The stock market and the In-

ternet are important systems to modern life that arise thanks to the emergence of simple

components. Emergence is also fundamental in biological systems. A notable example is

an ant colony. It is known that the queen does not order directly the ants. Each ant is

always reacting to stimuli generated by chemical scent from larvae, other ants, intruders,

food, waste, etc, and they leave chemical markers that will be used as stimuli to other ants.

Therefore, there is no centralized control, but the ant colonies exhibit complex behavior

and are able to solve complex problems. Another example is the formation of water crystals

on glass, a natural emergent process created by the random motion of water molecules, that

leads to a highly-organized structure (Figure 1.1). However, emergence is generally not a

clear concept. In this thesis we de�ne emergence as a great number of simple interactions

that occur in a system, leading to a complex result.

4 1.4. CONTRIBUTIONS

Figure 1.1: Water crystals, formed by a natural emergent process (taken from www.

wikipedia.org).

Our proposed algorithm is also inspired by the advantages of diversity. It is currently

believed by some social scientists and economists that the best teams are not necessarily

composed of the best individuals. In order to build a team that is e�ective in solving

problems, it is also important to look for diversity, to bring together people with di�erent

perspectives and solution strategies [Page 2007].

1.4 Contributions

In this thesis, we signi�cantly improve the strength of the current state of the art Computer

Go algorithms. We do not focus on parallelization, therefore the improvement is obtained

by better algorithms, and not by higher computational power. We modify the state of the

art algorithm with a Multi-Agent System approach, exploring the concepts of emergence

and diversity. Therefore, we o�er a new paradigm for the exploration of Computer Go.

We can visualize the Monte Carlo evaluations as one agent that repetitively plays

against itself using a playout strategy (heuristics). Although the playout strategy might

be simple, the combination of a great number of games with a tree exploration phase

makes intelligent game play emerge in a Monte Carlo Tree Search algorithm (MCTS). In

CHAPTER 1. INTRODUCTION 5

this thesis we explore this further, by evaluating the e�ects of having not only one, but

many di�erent agents at the playout phase of a MCTS.

At each stage of the Go board, one agent is selected to generate a movement, leading the

board to the next stage. The agents act in turn, therefore there is no spatial organization,

but a temporal organization. However, each agent acts in the environment that was left

by the previous one, and this interaction seems to lead to a higher playing strength. As

the interactions are simple, but they lead to something complex (high-level Go), we believe

emergence is a good concept to describe our approach. Each agent has a di�erent playing

style. Therefore, by using many agents during the simulation process, we are also exploring

the concept of diversity, but in a multiagent context.

We modify Fuego [Enzenberger and Müller 2009a], an open source implementation of

a powerful MCTS algorithm: UCT Monte Carlo Go. Therefore, the contribution of this

paper is to o�er a new paradigm for the exploration of Monte Carlo Go. Our experimental

analysis show that we could signi�cantly improve Fuego, and produce a stronger Computer

Go program. A shorter version of this work was published in Marcolino and Matsubara

[2011], and was selected as a best paper nominee for the 10th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2011).

1.5 Organization of this Work

This work is organized as follows: in the next chapter we present some related work. We

will talk about the classical approaches for Computer Go, the Monte Carlo method and

the parallelization of the current algorithms. Next, we present important concepts, such

as Emergence, Stigmergy and Diversity, and we comment on how they can be applied for

improving the current approaches. We also give a quick overview of the Hill-Climbing and

the Simulated Annealing algorithms, as they are going to be used later in our methodology.

In Chapter 3, we present our proposed algorithm. In our approach, it is necessary to select a

set of agents, in order to obtain a good solution. Therefore, a learning process is necessary,

and we will present two di�erent approaches: a Hill-Climbing and a Simulated-Annealing

6 1.5. ORGANIZATION OF THIS WORK

based one. In Chapter 4 we present the results obtained by the two approaches. Chapter

5 discusses the signi�cance of our results, as we believe that this work introduces a new

paradigm for Computer Go development. The context in which we use a multi-agent

system can be polemical, and we try to address the most common arguments that could be

developed against our ideas. We also present interesting possibilities for future research.

Finally, Chapter 6 presents the conclusion of this thesis.

Chapter 2

Background

�To see a world in a grain of sand

And a heaven in a wild �ower,

Hold in�nity in the palm of your hand

And eternity in an hour.�

(William Blake)

Generally, the basic idea for board games is to evaluate all possible moves, and all

possible responses for all possible moves, and all the possible counter-responses, and so

forth. This process is called a tree search. However, it is generally not possible to do this

evaluation from a certain position until all possible ends of a game, because the di�erent

possibilities grow exponentially. Therefore, the tree search has to stop in certain positions,

called leaves. In order to evaluate the leaf, it is necessary to design an evaluation function,

because it generally will not be an end-game situation. When evaluating the tree in order

to choose a movement, the computer assumes that its opponent will always choose his best

possible move (�minimax assumption� [Von Neumman 1928]). One of the most successful

versions of this algorithm is called an alpha-beta search [Hart and Edwards 1963]. However,

it does not work well for Computer Go, because of mainly two problems: the number of

di�erent move options in a given board position is huge; and it is di�cult to design a good

evaluation function [Bouzy and Cazenave 2001]. Therefore, the game is very di�cult for

7

8 2.1. CLASSICAL APPROACHES FOR GO

computers, and current software is weak. In this chapter, we are �rst going to take a look at

the classical approaches for Computer Go. Then, we are going to describe a new algorithm

that was able to increase dramatically the strength of the state of the art: Monte Carlo

Go. We will introduce the current focus of the literature, which is how to parallelize the

Monte Carlo method. Then, we are going to talk about how the strength of Computer Go

could be improved without increasing computational power, by introducing three concepts:

emergence, stigmergy and diversity. We will then take a quick look at two optimization

algorithms, as they will be useful later: Hill-Climbing and Simulated Annealing.

2.1 Classical Approaches for Go

A great variety of approaches have been proposed in the literature in order to tackle the

complexity of Go. The problem is too di�cult for a conventional alpha-beta search, forcing

the researchers to try many di�erent methods. An interesting survey of the literature can

be found in Bouzy and Cazenave [2001]. According to the survey, the history of Computer

Go can be divided in three generations. The �rst Go programs used the idea of in�uence:

a stone has an in�uence in its intersections, which decreases with distance [Zobrist 1969].

The second generation developed abstract representations for the board, and reasoned

using group of stones [Friedenbach 1980, Wilcox 1985]. This generation was the �rst to

play better than an absolute beginner. The third generation moved on to apply patterns

intensively in order to recognize typical situations [Boon 1990]. Generally a classical Go

program uses a combination of all these techniques. Other important approaches that

have been explored include learning [Cazenave 1996], cognitive modeling [Bouzy 1995] or

combinatorial game theory [Müller 1995].

Generally, in the classical way to develop a Go program, speci�c game knowledge has to

be implemented. Therefore, many algorithms were proposed to resolve speci�c subproblems

of the game [Benson 1976]. Some programs appeared that, instead of actually playing the

full game, focused on how to solve local problems. One of the most famous is Thomas

Wolf's Gotools, that solves life and death problems (Tsume-Go) [Wolf 1994; 2000].

CHAPTER 2. BACKGROUND 9

Other works reduced the complexity not by focusing on local situations, but by reducing

the size of the board itself. The game is solved for a 5x5 board in van der Werf et al. [2003].

However, the complexity increases exponentially with the size of the board, and the 9x9

board is far from being solved.

2.2 Monte Carlo Go

As we saw, many approaches have been tried for Go, but they all failed to build a strong

player. However, the Monte Carlo approach appeared, which originally used only the

simple Go rules to perform random simulations in order to discover good positions to

play [Brugmann 1993]. Later, Monte Carlo simulations were used to evaluate leafs in tree

search algorithms, and the simulations started to use heuristics, which included some Go

knowledge, in order to improve their realism, as in Coulom [2006]. The state of the art was

further advanced by the UCT Monte Carlo algorithm [Gelly et al. 2006], which contributed

with signi�cant improvements in playing strength. The proposed program, MoGo, won all

the tournaments on the international Kiseido Go Server1 in October and November 2006.

In this section, we are going to introduce UCT Monte Carlo Go, as our contribution is

an improvement of this approach. The algorithm is based on the multi-arm bandit problem.

A multi-arm bandit is like a traditional slot machine, but with many arms. Each arm has

a reward drawn from an unknown probability distribution. The objective is to maximize

the total sum of iterative plays. When choosing an arm to play, there is a balance between

selecting the best arm found so far, or exploring other arms. In Auer et al. [2002], a simple

algorithm is proposed, called UCB1, in order to solve the selection problem. Let's de�ne

the K-armed bandit problem by the random variables Xi,n, for 1 ≤ i ≤ K and n ≥ 1.

Each variable is the reward of arm i when it is played at time n. Given a certain arm i,

the rewards Xi,n are independent for all n, and are identically distributed according to an

unknown probability distribution. The rewards across arms are also independent, but they

1http://www.weddslist.com/kgs/past/index.html

10 2.2. MONTE CARLO GO

might not be identically distributed.

The algorithm selects the arm j, that maximizes X̄j +
√

2 log n
Tj(n)

, where n is the overall

number of plays up to the current iteration, Tj(n) is the number of times arm j has

been played after the �rst n plays, and X̄j is the mean of the values obtained so far

when arm j was selected . In Auer et al. [2002], a slightly more complicated algorithm is

also introduced, called UCB1-TUNED, that had better experimental results. First, they

calculate an estimation of the upper bound on the variance of arm j, by:

Vj =

(
1

Tj(n)

Tj(n)∑
y=1

X2
j,y

)
− X̄2

j +

√
2 log n

Tj(n)
(2.1)

Then, they select the arm j that maximizes the following equation:

X̄j +

√
log n

Tj(n)
min{1/4, Vj} (2.2)

In UCT Monte Carlo Go, each Go board situation is seen as a bandit, and each possible

move is seen as an arm with unknown reward of a certain distribution. Generally, the

algorithm can be de�ned by two phases: tree search and leaf evaluation (also known as

playout). The tree search phase starts at the root of the tree. At each node (Go board

situation), the child-node (possible move) that maximizes Equation 2.2 (UCB1-TUNED)

is selected as the next node to be visited. This is executed recursively, always choosing

the child-node according to UCB1-TUNED. When a node is selected that has never been

visited before, the next phase is executed: score estimation by Monte Carlo simulations,

where heuristic-driven random games are executed from the state of the leaf until the end

of the game. Generally the heuristics are designed in a way that the end game can be

easily recognized, and the �nal score easily calculated. The �nal score is used to estimate

the value of the leaf. The value of the nodes in the path are then updated iteratively, from

the father-node of the selected leaf to the root. Note that the Go board states created

during the Monte Carlo simulations will not become part of the tree, they are used only

to estimate the value of the leaf. Improving the quality of the simulations will improve the

CHAPTER 2. BACKGROUND 11

estimation of the score, leading to a stronger player [Yen et al. 2009].

2.3 Parallelization of Monte Carlo Go

In order to achieve further enhancements, parallel and distributed versions of the game

started to appear in the literature. Generally, the idea is to use a great number of ma-

chines or processors to increase computation power. According to Chaslot et al. [2008],

three di�erent parallelization approaches are possible in UCT Monte Carlo: root paral-

lelization, leaf parallelization and tree parallelization. In root parallelization each thread

is responsible for one tree, and when the time is �nished, the results are merged. In leaf

parallelization, many simulations are executed to evaluate a single leaf, each one by a sin-

gle thread. In tree parallelization, many threads execute in a single, shared tree. In Gelly

et al. [2008], a straight algorithm for multi-core parallelization is proposed, based on shared

memory, and an algorithm for cluster parallelization that uses less messages than a simple

generalization of the multi-core algorithm. The multi-core algorithm achieved a 63% per-

centage of victory against the non-parallel version by doubling the computational power

and the cluster algorithm achieved 83.8% percentage of victory by using 9 machines. Some

works propose distributed systems based on a client/server architecture in order to increase

the number of available playouts [Kato and Takeuchi 2008]. Recently, a top Computer Go

program, Zen, was run on a large cluster of computers [Kato and Takeuchi 2009]. A similar

approach is also investigated by Cazenave and Jouandeau [2008], where a percentage of

victory of 70.50% could be achieved against GnuGo, using 16 slaves. However, the results

do not improve with a higher number of slaves, and even decreased in some cases. Root

parallelization in the Fuego system was studied by Soejima et al. [2009], where experiments

with 64 cores demonstrated that although the program gets stronger, there are limitations

in the possible performance gain.

Recently, distributed versions of the top Computer Go programs have won against

professional players in handicap games. However, it is known that the overhead of the

parallelization imposes a limit on the possible improvement in game strength. In Kato

12 2.4. NEXT STEPS OF MONTE CARLO GO

and Takeuchi [2008], for example, in 9x9 boards the system saturated with 7 servers, and

the use of 4 servers brought a speed-up factor of only 1.55. In Chaslot et al. [2008], tree

parallelization only scaled well up to 4 threads. A lock-free parallelization was proposed

by Enzenberger and Müller [2009b], but it could not scale beyond 7 threads.

2.4 Next Steps of Monte Carlo Go

The next step seems to be converging into Multi-Agent System paradigms. Some works

started to apply this idea, but in order to play other games. In Obata et al. [2009], a

consultation system to play Shogi is proposed. A set of players send their opinion about

what should be the next movement, and one of the opinions is selected as the o�cial

movement. The authors show that a consultation system composed of three famous Shogi

programs plays better than each software individually. In Sugiyama et al. [2009] the authors

extend the last approach, but this time they use the position evaluation of di�erent players

in order to select a single movement. The number of agents in these works was limited,

though, with at most 6 agents. In Oguri and Kotani [2009], the authors explore a Swarm

Intelligence Algorithm, Stochastic Di�usion Search, to build an arti�cial Othello player.

We believe that the use of Multi-Agent Systems has to be further explored, and it can be

the next cornerstone in Computer Go development.

2.5 Emergence, Stigmergy and Diversity

We will start by de�ning an agent, as it is the most fundamental concept to the following

theories. According to Russell and Norvig [2003], an agent is anything that senses its

environment and, after some computation (that can be very simple, like a look-up table),

generates an action in that environment. The most concrete example is a robot, that

uses its sensors to perceive (or estimate) the state of the world, and, based on its running

program, generates a command to its actuators, that are going to generate an action in

the real world. However, we can also think about virtual agents, sensing and acting on

CHAPTER 2. BACKGROUND 13

a virtual world; software agents, that receive inputs from keystrokes or �les, and act by

writing on the screen, sending data to the Internet, etc. An agent can interact with other

agents, in a Multi-Agent System, and sometimes these interactions make a certain behavior

emerge in the group. There is no central actor, or coordinator, controlling the emergent

behavior, it is simply a product of the decentralized interactions between the agents.

Emergence is a very powerful concept, but it is still not well established and understood.

For example, even though Russell and Norvig [2003] is one of the most important books

for modern Arti�cial Intelligence, it does not dwell much on emergence. The concept does

appear in a multi-agent context, but tangentially, when the authors give the example of

birds that, by following simple rules, �y like a pseudo-rigid body, a behavior known as

�ocking. It also appears when the authors are talking about robotics, but with a single-

agent emphasis. The interplay of simple controllers and a complex environment, can make

a desired behavior of a robot emerge. But how can we actually solve problems using

emergence?

However, Russell and Norvig [2003] is more focused on single-agent Arti�cial Intelli-

gence. Important follow-ups, for Multi-Agent Systems and Distributed Arti�cial Intelli-

gence, are Weiss [1999] and Wooldridge [2001]. Therefore, we would expect that they would

dedicate long pages on explaining emergence and how to solve problems using it. That is

not what happens, however. They focus more on protocols for agent communication and

interaction, on how to build negotiation mechanisms like contracts or bids, how to dis-

tribute tasks, etc. The concept of emergence appears in Weiss [1999] only when explaining

the combinations of simple controllers in the reactive agent architectures, a single-agent

explanation. Wooldridge [2001] does not have �emergence� by itself in its index, but does

discuss emergence in a multi-agent context, when explaining about the emergence of social

laws. However, it is not yet very clear how to actually solve problems with emergence.

We can narrow-down even more and look at books that talk about Swarm Intelligence,

like Engelbrecht [2006b]. The focus is more on large scale multi-agent systems, called

swarms. Emergence is one of the main concepts in those systems, and the book starts

talking about it right in the beginning, in the Introduction. The authors say that the

14 2.5. EMERGENCE, STIGMERGY AND DIVERSITY

behavior of the swarm comes from the interactions of the individuals of the swarm over

time, and it is usually not easy to know how the swarm will behave, given a set of behaviors

for each agent. They de�ne this process as �emergence�. They also have a more formal

de�nition, saying that �emergence� is properties (or behaviors) of a given system, that come

to existence not because of a coordinated control system, but that appear because of the

interactions of the individuals of this system with their local environment. Of course, we

can consider the other individuals as part of their local environment. The term stigmergy

also appears for the �rst time, being de�ned as an indirect form of communication between

individuals. However, the book then starts to focus more on Optimization, and the authors

dwell on Evolutionary Algorithms, Particle Swarm Optimization [Kennedy and Eberhart

2002], and Ant Algorithms [Colorni et al. 1991]. Optimization problems are very important,

and a lot of situations in real life can be modeled using them. Therefore, it is very good to

see how emergence can be an important concept in solving this kind of problem. However,

we should not focus our attention only on optimization problems. Many situations cannot

be easily de�ned as an optimization problem, for example the ones of swarm coordination

that we deal with in Marcolino and Chaimowicz [2008; 2009a;b], and some board games,

like Go. This does not mean that emergence cannot be used to solve these problems, as we

did use it in our proposed solutions for swarm robotics, and, in this thesis, we are using it

to propose a way of making Computer Go stronger. But it seems that the literature still

tends to look at emergence under the cover of optimization theory.

Some might argue that board games are an optimization problem, where, given a state

of the board, we want to �nd the best possible move. However, given the impossibility

of a perfect evaluation of the value of each move, as we cannot evaluate the game until

the end in the general case, combined with the strong time constraints of the problem, it

is generally not useful to look at it in this way. It is better to apply search algorithms,

like the ones that we explained in the beginning of this chapter, instead of optimization

algorithms, like Particle Swarm Optimization, etc.

We can narrow-down even more, and look at a book about emergence itself [Johnson

2001]. Its target reader is a more general audience. The book is full of examples of

CHAPTER 2. BACKGROUND 15

emergence: in biology, like ant colonies and mold; in the organization of our cities and

in our brain. However, when it goes to computer software, it does not go far beyond

the evolutionary and optimization algorithms that the other works already covered. It

presents some examples of softwares that learn through a massive number of users, and

�arti�cial life� programs, like mold simulations made in StarLogo [Colella et al. 2001]. That

example makes us remember Conway's Game of Life [Gardner 1970], where the cells follow

simple evolution rules, based on the state of their neighboring cells, and complex patterns

emerge out of the system. Actually, it seems like John Coway actually used a Go board

when he was testing his game for the �rst time (though we have no reliable source for this

information, beyond the Wikipedia article at http://en.wikipedia.org/wiki/Conway'

s_Game_of_Life).

Emergence is a very powerful concept to solve complex problems, and, as we said, we

should not restrict our attention only to those problems that can be described in terms of

an optimization problem. It is important to go beyond that. However, it is not yet well

understood how to use emergence to solve these kinds of problems. We hope this thesis

can shed some light in this direction, by showing how an emergent process can improve

Monte Carlo Go.

Another important concept is the idea of stigmergy, that we brie�y mentioned before.

Many works on Multi-Agent Systems develop protocols for communication, negotiation and

many forms of complex interactions. However, it is sometimes possible to solve complex

problems without direct communication between the agents. They might interact in an

indirect way, by modifying the environment. As the environment is the input for the

agents, and therefore a�ects their behavior, modi�cations in the environment are also a

way to interact with other agents, and in�uence their behavior. The term was de�ned

formally for the �rst time in Grasse [1959]. In the algorithm that we propose in this thesis,

there is no direct communication between the agents. The agents perform movements in

a Go board, and each agent acts in the Go board that was left by the previous agent. The

act of one agent depends on the state of the Go board, and this state was modi�ed by

the previous agent. The act the agent selects modi�es the state of the Go board (as it

16 2.5. EMERGENCE, STIGMERGY AND DIVERSITY

performs a movement), and the state will then in�uence the act of the next agent, and so

on. Therefore, our algorithm is clearly a stigmergic process.

Some social scientists and economists currently believe that teams of diverse people

can have strong characteristics for solving di�cult problems [Page 2007]. By combining

di�erent perspectives and solution strategies, a diverse team can explore a greater range of

possible solutions for a problem; while a team with high-talented but similar individuals

might not be able to explore so many di�erent solutions, as each member will tend to

have similar results as the other members of the group. Therefore, a team of diverse

members might perform better than a team with the best individuals. This concept is

also an important point to be explored in the development of Multi-Agent paradigms for

Computer Go.

In Page's model, each person has a set of heuristics to solve problems. The heuristics

are built based on the di�erent perspectives that each person uses to look at problems. By

combining di�erent persons, we can have a greater number of perspectives, and heuristics,

and therefore we have access to more tools to solve complex problems. In our model, as

will be clear in Chapter 3, each agent has the same set of heuristics, but they give to their

heuristics a di�erent priority order, which makes them behave in a di�erent way given the

same situation. We believe that this is close to Page's model, and that his results might

apply in our situation. We can consider, for example, that our set of heuristics, given one

speci�c priority order, is one heuristic in Page's model, and then each of our agents has a

di�erent heuristic, but only one. Thinking about ways to approximate our model to Page's

is a good resource for future work, as we will discuss in Chapter 5.

Page is able to prove many interesting properties in his model. First, he proves that

Diversity Trumps Homogenicity: �If two collections of problem solvers contain problem

solvers of equal individual ability, and if those problem solvers in the �rst collection are

homogeneous and those in the second collection are diverse, that is, they have some dif-

ferences in their local optima, then the collection of diverse problem solvers, on average,

outperforms the collection of homogenous problem solvers� (Page [2007]). Next, given some

conditions on the problem solvers population, he is able to prove that Diversity Trumps

CHAPTER 2. BACKGROUND 17

Ability: �A randomly selected collection of problem solvers outperforms a collection of the

best individual problem solvers�(Page [2007]). When talking about predictions, he also

proves that �Given any collection of diverse predictive models, the collective prediction is

more accurate than the average individual predictions� (Page [2007]). Therefore, Diversity

is proven to be a powerful tool, and we should explore it to solve complex problems, for

example, to build a strong Computer Go player.

2.6 Optimization Algorithms

In one of the stages of this work, we developed optimization algorithms for selecting a

set of agents. Our algorithms can be de�ned by basically two ideas: Hill-Climbing and

Simulated Annealing. Therefore, as a matter of completeness, in this section we are going

to explain and discuss these two ideas.

A hill-climbing algorithm (also called by other names, like local search, gradient descent,

etc) is a very simple and e�cient algorithm. Any book or reference about optimization

or numerical methods should talk or at least mention this algorithm, therefore it is even

di�cult to choose the best reference. One of the places that introduces the algorithm is

Engelbrecht [2006a]. The basic idea is that given a point in the space of possible solutions,

we look for a direction that improves our current solution. Generally this direction is the

opposite of the gradient of a function that we wish to optimize, so this algorithm is also

known as gradient descent. We then make a step (whose length has to be calculated or set

previously as a parameter) in that direction, and reach a new point in the space of possible

solutions. We apply this iteratively, reaching a better solution at each new iteration. The

problem is that in some positions of the solution space, we cannot �nd a direction to

improve the current solution anymore. Any direction that we look only leads to a worse

solution. If we are following the gradient, these will be places where the gradient is zero.

These places are known as local minima. However, these are not, necessarily, the best

solution that we can �nd for the problem. A better solution might exist, but we cannot

reach it without decreasing the current solution �rst. The best possible solution is known

18 2.7. CONTRIBUTIONS

as global minima. But how can we �nd it? Using hill-climbing algorithms, we tend to get

stuck in local minima, and not �nd the best possible solution. However, they are very

simple and e�cient, and therefore, very useful. Even complex solutions for optimization

tend to use a hill-climbing algorithm as the �nal step to improve a certain solution.

A way to escape local minima is to accept solutions that are worse than the current

one. That allows us a wider exploration of the solution space, and we might reach into

better solutions in the end. One of the most famous algorithms that follows this approach

is the Simulated Annealing [Dreo et al. 2005]. The basic idea is to accept solutions that

decrease the current one, based on a certain probability, and to decrease this probability

with time. The algorithm is inspired by a physical phenomena, called annealing. When we

want to solidify a material in an organized state (a state with a minimal of energy), the

basic physical process is to heat the material, reaching a disorganized liquid state, and to

gradually decrease the temperature in a controlled manner. We can simulate this process

in order to solve optimization problems, leading to the simulated annealing algorithm. As

we accept solutions that decrease the current one, we might �nd better solutions than with

a hill-climbing algorithm. Note that, as the temperature decreases, simulated annealing

gradually transforms into a hill-climbing, and in the end, with a very low temperature, it

will not accept solutions that decrease the current one anymore, turning itself completely

into a normal hill-climbing algorithm.

2.7 Contributions

As we saw in this chapter, Go is a very hard problem, and many di�erent algorithms were

proposed in order to deal with it. Currently, the best algorithm is UCT Monte Carlo

Go, based on the execution of simulations in order to evaluate a given board position.

Nowadays, the literature is emphasizing how to parallelize UCT Monte Carlo Go, in order

to obtain better solutions. However, parallelization always has limits, and we believe it

is possible to achieve a stronger player without using parallelization, by improving UCT

Monte Carlo Go.

CHAPTER 2. BACKGROUND 19

We saw then how emergence, stigmergy and diversity can be used to solve di�cult

problems, although the literature still emphasizes emergence as a technique for optimiza-

tion algorithms (like Particle Swarm Optimization). In this work we are going to extend

the top MCTS algorithm, UCT Monte Carlo Go, with a Multi-Agent System paradigm.

Instead of showing the computational power gains that can be obtained by parallelization

or distribution, we are going to show how the emergent properties of a great number of

simple (and diverse) agents, by itself, can enhance the strength of an arti�cial Go player.

20 2.7. CONTRIBUTIONS

Chapter 3

Methodology

�When many work together for a goal, great things may be accomplished. It is said a lion

cub was killed by a single colony of ants.� (Saskya Pandita)

In this chapter we are going to explain our modi�cations of UCT Monte Carlo Go. As

will be clear later, it is necessary to select a good set of agents, so we will also present two

learning algorithms for solving that problem.

We can model the random simulations as one agent playing against itself using its

available heuristics (Figure 3.1(a)). In this work, we investigate the e�ects of having not

only one, but several agents playing against each other (Figure 3.1(b)). Each agent has a

di�erent playing style, increasing the range of exploration of the search space. As will be

further explained, at every stage of the simulation process, a di�erent agent will be selected

in an agent database, and this agent will be responsible for selecting the next movement.

Note, therefore, that (contrary to our �rst idea) in our approach we are not executing

a tournament between di�erent agents, as one agent does not play a full game against

another.

We based our implementation on Fuego, an open source UCT Monte Carlo Go algo-

rithm. The Fuego system executes several heuristics hierarchically. It starts by selecting

the �rst heuristic. In case it cannot generate a movement, it proceeds by selecting the next

one in the hierarchy. The process repeats until a heuristic generates a movement. If no

21

22

(a) (b)

Figure 3.1: Original single-agent Monte Carlo (a) and proposed Multi-Agent Monte Carlo
(b). The colors represent di�erent agents, and the arrows represent interaction.

heuristic can generate a movement, a global capture move is attempted. If no move could

be generated still, a random move is selected from the board. Generally the heuristics are

applied in the neighborhood of the last movement. The current version of Fuego (0.4) has

�ve heuristics: Nakade If there is a region of three empty points, generates a movement

in the center of this region; Atari Capture Captures an Atari; Atari Defend Defends

an Atari; Lowlib Move generator for 2-liberty blocks; Pattern Uses a set of 3x3 patterns,

this heuristic is applied in the neighborhood of the two last moves.

The hierarchical order of the heuristics is �xed. A representation of the Fuego original

agent can be seen in Figure 3.2(a), where each symbol represents a di�erent heuristic, and

the order of the symbols represent the order that each heuristic will be applied. We created

several new agents in the Fuego system by changing the order of the default heuristics of

the original agent. Therefore, each agent will give a di�erent priority to the heuristics;

which will make each agent have a di�erent playing style (Figure 3.2(b)). The set of all

agents implemented in the system form an agent database.

Every time one movement will be generated during the Monte Carlo simulations, one

agent is randomly selected in the agent database and this agent will be responsible for

selecting the movement. Therefore, at each step in the simulation process, a di�erent

agent decides the next movement on the board (Figure 3.3). This approach seems to allow

the Monte Carlo method to explore better the search space, using the same amount of

computation time. The intuition behind this idea is simple. Although some Go movements,

CHAPTER 3. METHODOLOGY 23

(a) (b)

Figure 3.2: Original Fuego agent (a) and new agent database (b).

such as the capture of a stone, can seem to be quite strong for a beginner, an experienced

player knows that preferring apparently �strong� movements all the time will lead to a

poor and unnatural game. Therefore, in order to simulate more realistic Go games, it is

necessary to diversify the movement generation process.

However, although we can use 120 di�erent agents, we empirically found out that using

all of them does not lead to a stronger player (see Chapter 4). It is necessary to select a

set of agents that e�ectively lead to better playing abilities.

3.1 Learning Algorithms

In this section we are going to introduce two learning algorithms that we implemented, in

order to �nd a good set of agents: hill-climbing and simulated annealing. The hill-climbing

algorithm is simple, fast and straight-forward, while the simulated annealing algorithm is

more complex and slow, in an attempt to obtain better solutions by escaping local minima.

3.1.1 Hill-Climbing

As testing all possible combinations of agents is very expensive, we executed a simple

greedy learning algorithm. We start with only the original Fuego agent in the database.

Then, we perform a series of games against Fuego. The result (percentage of victory) is

24 3.1. LEARNING ALGORITHMS

Value?

Monte Carlo
Simulation

Figure 3.3: Agent selection in the Monte Carlo simulation process.

saved. We then add one more agent to the database. A series of games is again performed

against Fuego. If the result is better than the best result found so far, the agent will remain

in the database. If the result gets worse, the agent will be removed from the database, and

will not be tested anymore. The algorithm proceeds by testing all the remaining possible

agents. Note that every time a �good agent� is found, it will be permanently inserted in

the agent database, and it will be used in all the following iterations of the learning process.

Also note that the original Fuego agent will always be in the agent database, because it is

used in the �rst iteration. A representation of this algorithm can be seen in Figure 3.4.

Therefore, our algorithm is a hill climbing in the space of agent sets: we add one agent

to the set and greedily keep it if the new set performs better. We test each agent exactly

one time. The most natural way is to generate a random list in which all agents appear

exactly once, and follow the order of the list. However, we also manually changed the list

in one of our experiments, in order to try to achieve a better solution. As will be seen in

the next chapter, our simple learning algorithm led to a signi�cant percentage of victory

against Fuego, showing that Multi-Agent Monte Carlo Go can e�ectively be used to create

CHAPTER 3. METHODOLOGY 25

Try

Evaluate by
experimentation

Agent Database

Set of possible agents

Figure 3.4: A greedy hill-climbing learning algorithm.

stronger players.

3.1.2 Simulated Annealing

As hill-climbing approaches are known to have a local minima problem, we also explored

a simulated annealing algorithm. The basic idea is to accept modi�cations that decrease

the percentage of victory, with a certain probability; and to decrease this probability each

time a new modi�cation is accepted. Therefore, we can escape local minima by accepting

a modi�cation that decreases the current solution, but in the �nal iterations we want to

converge to the best possible solution in the neighborhood. The acceptance of a bad agent

might also compromise the solution, so we also desire regressibility in our algorithm. Thus,

we consider as a modi�cation not only the addition of a randomly selected new agent, but

also the removal of one of the agents that are already in the database. The algorithm, in

detail, can be described as follows:

1. Start with an empty agent database, temperature t, and a percentage of victory v.

2. Choose an agent randomly to add in the database

3. Evaluate the solution by performing a series of games against Fuego, in order to

obtain a new percentage of victory v′

26 3.1. LEARNING ALGORITHMS

4. If the solution improves, accept the modi�cation.

5. If the solution decreases, accept the modi�cation with the following probability:

e
v′−v

t (3.1)

6. If a solution is accepted, decrease the temperature by:

t := α ∗ t (3.2)

And also update the percentage of victory, by v := v′.

7. Choose to either add a new agent, with probability ρ, or to remove an agent, with

probability 1− ρ. If there is only one agent in the agent database, it is automatically

chosen to add a new agent, not to remove.

(a) If it was chosen to add an agent, select randomly an agent to add that was not

in the agent database.

(b) If it was chosen to remove an agent, select randomly an agent to remove that is

in the agent database.

8. Go back to Step 3

A representation of this algorithm can be seen in Figure 3.5. In the next chapter, we

are going to see the results obtained by the two learning algorithms proposed.

CHAPTER 3. METHODOLOGY 27

Add

Evaluate by
experimentation

Agent Database

Set of possible agentsChoose
Randomly

Add

Remove

Remove

Agent Database

Set of possible agents

Accept or Reject
the modification

Figure 3.5: A simulated annealing learning algorithm.

28 3.1. LEARNING ALGORITHMS

Chapter 4

Results

�Then of their session ended they bid cry

With trumpet's regal sound the great result:

Toward the four winds four speedy Cherubim

Put to their mouths the sounding alchemy,

By herald's voice explained; the hollow Abyss

Heard far and wide, and all the host of Hell

With deafening shout returned them loud acclaim.�

(John Milton, in Paradise Lost)

4.1 Hill-Climbing

In this section we are going to present the experiments performed to validate our approach,

using the hill-climbing learning algorithm. The experiments performed with the simulated

annealing algorithm are going to be presented in the next section. All experiments were

executed on a 9x9 board, with the same time limit for both our system and Fuego. We used

Fuego's default time limit and default con�guration for the number of playouts per leaf

(1 playout per leaf, for a 9x9 board). We executed 500 games with our system playing as

White, and 500 games with our system playing as Black, giving a total of 1000 games per

29

30 4.1. HILL-CLIMBING

con�guration. The experiments were executed in a cluster of Intel(R) Xeon(R) CPU E5530,

at 2.4GHz and with 24GB of RAM. Note that our algorithm is not parallel, but we used

a cluster in order to distribute the execution of the 1000 games, decreasing signi�cantly

the time necessary to run the experiments. The cluster used is part of the InTrigger 1

platform, a group of more than 13 clusters distributed across Japan. They are intended

to be used for information technology research, both for system software and for large

scale data processing researchers. For reference, the number of Monte Carlo simulations

executed were in the order of 10000 games per second.

We �rst ran our algorithm with all the possible 120 agents. It led to a relatively low

percentage of victory: 41.20% (±2.10%). After performing several experiments with the

database, we found out that some agents seemed to decrease, while other agents seemed to

increase the percentage of victory. Therefore, we created a simple learning algorithm, that

tries to add each agent in the database, and tests if it increases or decreases the strength,

as described in the previous chapter.

First, we are going to show our results when the order in which each agent is tested is

random. The agent database selected by the learning algorithm is represented in Table 4.1,

where each line de�nes one agent and the columns de�nes the order in which each heuristic

is attempted. The �rst line corresponds to the original Fuego agent. Our algorithm was

able to �nd a set of 5 agents that seems to increase playing strength.

The result obtained with the addition of each new agent can be seen in Figure 4.1. As

can be observed, from a 48.55% (±2.20%) percentage of victory with only Fuego's original

agent, with 5 agents we could achieve 57.55% (±2.10%), a gain of 9.00%. Therefore, our

strategy seems to be e�ective at improving the strength of Computer Go algorithms. We

performed a t − test analysis that showed that the result with 5 agents is better than the

result with only Fuego's original agent with 99% con�dence.

The result of about 48% when our system has only the Fuego original agent is a little bit

di�erent from the theoretically expected 50%. We believe this might happen because the

1http://www.intrigger.jp

CHAPTER 4. RESULTS 31

Nakade Atari Capture Atari Defend Lowlib Pattern
Atari Defend Nakade Atari Capture Pattern Lowlib
Atari Defend Nakade Pattern Atari Capture Lowlib
Atari Defend Atari Capture Pattern Nakade Lowlib

Nakade Atari Capture Pattern Lowlib Atari Defend

Table 4.1: Selected agent database.

1 2 3 4 5
0.45

0.5

0.55

0.6

Agent

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.1: Percentage of victory for the selected agent database.

32 4.1. HILL-CLIMBING

Agent Number Percentage of Victory
0 48.50% ± 2.20%
5 52.85% ± 2.15%
6 53.60% ± 2.15%
64 57.30% ± 2.15%
70 29.60% ± 1.90%

Table 4.2: Percentage of victory for each individual agent.

game with only one agent is not really �Fuego� vs. �Fuego�, it is �Fuego� vs. �Fuego with

a small overhead�, as the algorithm for agent selection and agent execution is still there,

and it is run on every step of the Monte Carlo simulations. As the number of simulations

is very high, we believe this overhead might be responsible for the 48.55% result, instead

of 50%.

We also executed games with our system running with a single agent (again, against

Fuego). In each execution, we used one of the agents that were selected for the agent

database, but only that one. The objective of these experiments is to see if the result

of the agents as a group is better than the result of each individual agent. We can see

the percentage of victory obtained for each agent in Table 4.2, where the Agent Number

represents the position of the agent in the list (or, in other words, the number of the

iteration in which the agent was tested).

Many interesting observations can be drawn from these experiments. First, as can be

seen, the result of the group (57.55%) was better than the result of each individual agent,

though the di�erence between the group and the agent 64 is quite small. However, even

before adding agent 64, the group already performed quite well (56.90%), a percentage

of victory higher than each member. Second, agent 70 is clearly much weaker than the

other agents, but when it was added in the agent database the result improved 0.35%,

instead of decreasing. Therefore, it seems that there is a group phenomenon that makes

the algorithm stronger.

The learning graph of our algorithm can be seen in Figure 4.2. After adding agent

5 and 6, the system �uctuates, and is able to escape from the local minimum (lack of

CHAPTER 4. RESULTS 33

0 20 40 60 80 100 120
0.35

0.4

0.45

0.5

0.55

0.6

Agent

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.2: Learning graph, as the algorithm tries to add each agent in the database.

improvement) only with the addition of agent 64. After adding agent 70, the system

�uctuates again and is not able to �nd a better solution.

We ran our algorithm a second time, but now we tested the agents in a di�erent order.

Before we developed our learning algorithm, we had a list of 15 agents that we believed

to be strong (see Table 4.3), by intuition and trial and error experiments, and we moved

those agents to the beginning of the list. Our original intention, when we developed the

learning algorithm, was to test this set of agents. The rest of the agents followed the same

order as the previous experiment. The agents that compose the new solution found by the

learning algorithm can be seen in Table 4.4. The result obtained with the addition of each

new agent is represented in Figure 4.3, and the learning graph can be seen in Figure 4.4.

This time, we found a slightly better result, of 59.15% (±2.10%).

We executed games with our system running with a single agent. The percentage of

victory obtained for each agent can be seen in Table 4.5. The Agent Number of each agent

34 4.1. HILL-CLIMBING

Nakade Atari Capture Atari Defend Lowlib Pattern
Atari Defend Nakade Atari Capture Pattern Lowlib
Atari Defend Nakade Pattern Atari Capture Lowlib
Atari Defend Pattern Lowlib Nakade Atari Capture
Atari Defend Lowlib Pattern Atari Capture Nakade
Atari Defend Pattern Nakade Atari Capture Lowlib
Atari Capture Atari Defend Nakade Lowlib Pattern
Atari Capture Atari Defend Pattern Lowlib Nakade
Atari Defend Atari Capture Pattern Nakade Lowlib

Lowlib Atari Defend Pattern Nakade Atari Capture
Atari Defend Atari Capture Nakade Lowlib Pattern

Lowlib Atari Defend Nakade Pattern Atari Capture
Pattern Atari Defend Atari Capture Nakade Lowlib

Atari Defend Nakade Lowlib Pattern Atari Capture
Atari Defend Atari Capture Lowlib Pattern Nakade

Table 4.3: Set of 15 agents that we believed to be strong.

Nakade Atari Capture Atari Defend Lowlib Pattern
Atari Defend Nakade Atari Capture Pattern Lowlib
Atari Defend Nakade Pattern Atari Capture Lowlib
Atari Defend Pattern Lowlib Nakade Atari Capture
Atari Capture Nakade Atari Defend Lowlib Pattern

Table 4.4: Selected agent database, in the not random order.

is di�erent than last time, as the order changed, but agent 1 and 2 are the same as agent 5

and 6 of the last experiment, respectively. Again, the result of the group was better than

the result of each individual agent (although the di�erence between the group and agent

3 is small). This time, the di�erence between the group and the best agent seems to be

higher than in the previous experiment. And, for the second time, agents that are weaker

were able to increase the percentage of victory when they were added to the group. Agent

42 had a percentage of victory of only 50.90%, but was able to increase the percentage of

victory of the system in 1.20% when it was added in the group. Therefore, with this new

agent order, we were also able to show that we can increase the strength of Monte Carlo

Go using the emergent behavior of a group of agents, this time with a slightly better result.

However, we were not satis�ed that our best result needed manual intervention in the

CHAPTER 4. RESULTS 35

1 2 3 4 5
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Agent

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.3: Percentage of victory for the selected agent database, in the not random order.

Agent Number Percentage of Victory
0 48.55% ± 2.20%
1 54.40% ± 2.15%
2 54.55% ± 2.15%
3 57.05% ± 2.15%
42 50.90% ± 2.20%

Table 4.5: Percentage of victory for each individual agent, in the not random order.

36 4.1. HILL-CLIMBING

0 20 40 60 80 100 120
0.45

0.5

0.55

0.6

Agent

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.4: Learning graph in the not random order, as the algorithm tries to add each
agent in the database.

CHAPTER 4. RESULTS 37

Nakade Atari Capture Atari Defend Lowlib Pattern
Atari Capture Nakade Atari Defend Lowlib Pattern
Atari Capture Nakade Atari Defend Pattern Lowlib
Atari Defend Pattern Lowlib Atari Capture Nakade
Atari Defend Nakade Pattern Lowlib Atari Capture
Atari Defend Atari Capture Pattern Nakade Lowlib
Atari Defend Pattern Atari Capture Nakade Lowlib

Table 4.6: Selected agent database, in the second random order.

Agent Number Percentage of Victory
0 48.55% ± 2.20%
6 50.15% ±2.20%
7 53.90% ±2.15%
12 53.70% ±2.15%
15 52.65% ±2.15%
31 54.20% ±2.15%
41 54.90% ±2.15%

Table 4.7: Percentage of victory for each individual agent, in the second random order.

order that the agents were tried. Therefore, we generated again another random order to

test each agent, and we ran our learning algorithm a second time. This time we could

obtain a very good result without manual intervention. The agents that compose the new

solution found by the learning algorithm can be seen in Table 4.6. The result obtained

with the addition of each new agent is represented in Figure 4.5, and the learning graph

can be seen in Figure 4.6. This time, we found a slightly better result, of 59.5% (±2.10%).

We also executed games with our system running with a single agent. The percentage of

victory obtained for each agent can be seen in Table 4.7. The di�erence between the group

and each agent seems to be higher than in the previous experiments, but it does not seem

to be big enough yet to prove that the group is better than the best agents. We will return

to this point in Chapter 5.

As can be seen, we could �nd three agent sets that perform quite well against the

original Fuego. After analyzing the result of our experiments, we think we have strong

indications that the emergent behavior of a group of agents can lead to higher quality

simulations, creating stronger players. It is notable that we could obtain a percentage

38 4.1. HILL-CLIMBING

0 1 2 3 4 5 6 7 8
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Agent

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.5: Percentage of victory for the selected agent database, in the second random
order.

CHAPTER 4. RESULTS 39

0 20 40 60 80 100 120
0.4

0.45

0.5

0.55

0.6

0.65

Agent

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.6: Learning graph in the second random order, as the algorithm tries to add each
agent in the database.

40 4.2. SIMULATED ANNEALING

0 50 100 150 200 250 300 350 400
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iteration

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.7: Learning graph with all iterations.

of victory of around 59% against Fuego, in its default con�gurations for time limit and

number of playouts per leaf.

4.2 Simulated Annealing

In this section we are going to present the experiments performed using the simulated

annealing technique. The experiments were executed with the same con�gurations as the

previous one: 9x9 Go, with Fuego's default time limit and number of playouts per leaf.

We also executed 1000 games per con�guration, 500 with our system playing as White,

and 500 as Black. The same cluster was used, of Intel(R) Xeon(R) CPU E5530, at 2.4GHz

and with 24GB of RAM. We used the initial temperature t as 0.5, the initial percentage

of victory v as 0.4855, the temperature decrease constant α as 0.9, and the probability of

adding an agent ρ as 0.5.

The learning graph with all iterations can be seen in Figure 4.7. The result obtained

after each accepted modi�cation can be seen in Figure 4.8, and the �nal agent database is

represented in Table 4.8. In Figure 4.9, we can see the result with only the agents that

remained after the �nal iteration. As can be seen, the result was not better than the one

found by the hill-climbing algorithm. In the �nal iteration, we still had a percentage of

victory of 59.40% (±2.10%).

CHAPTER 4. RESULTS 41

0 10 20 30 40 50 60
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iteration

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.8: Learning graph with only accepted iterations.

Atari Defend Pattern Nakade Atari Capture Lowlib
Atari Defend Lowlib Atari Capture Nakade Pattern
Atari Defend Pattern Lowlib Atari Capture Nakade
Atari Defend Nakade Pattern Atari Capture Lowlib

Table 4.8: Selected agent database, by the Simulated Annealing learning algorithm.

42 4.2. SIMULATED ANNEALING

1 2 3 4
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Iteration

P
er

ce
nt

ag
e

of
 V

ic
to

ry

Figure 4.9: Agents that remained after the �nal iteration.

CHAPTER 4. RESULTS 43

Agent Set Percentage of Victory
29 0.3

29, 13 0.478
29, 13, 38 0.442
29, 38 0.364

29, 38, 56 0.3535
29, 38 0.366

29, 38, 86 0.357
29, 38, 86, 3 0.4535
29, 86, 3 0.445

29, 86, 3, 65 0.505
29, 86, 3, 65, 45 0.423

29, 86, 3, 65, 45, 83 0.491
29, 86, 3, 65, 45, 83, 24 0.429

29, 86, 3, 65, 45, 83, 24, 92 0.4145
29, 86, 65, 45, 83, 24, 92 0.41

29, 86, 65, 45, 83, 24, 92, 112 0.406
29, 86, 65, 45, 83, 92, 112 0.43
29, 86, 65, 45, 83, 112 0.4185

29, 86, 65, 45, 83, 112, 61 0.459
29, 65, 45, 83, 112, 61 0.477
29, 65, 45, 83, 112 0.459
65, 45, 83, 112 0.4635
65, 45, 83 0.494

65, 45, 83, 73 0.4685
65, 45, 83, 73, 63 0.473
65, 45, 83, 73 0.483

65, 45, 83, 73, 0 0.4855
65, 45, 83, 73 0.464
65, 45, 83 0.456
65, 45 0.446

65, 45, 44 0.4335
65, 45, 44, 62 0.459
65, 44, 62 0.493
65, 44 0.492

65, 44, 10 0.4945
65, 44, 10, 8 0.499
65, 44, 10 0.494

65, 44, 10, 49 0.494
44, 10, 49 0.492

Table 4.9: Iterations of the Simulated Annealing learning algorithm.

44 4.2. SIMULATED ANNEALING

Agent Set Percentage of Victory
44, 10, 49, 5 0.489

44, 10, 49, 5, 14 0.513
44, 10, 49, 5 0.5115
10, 49, 5 0.5225
10, 5 0.5455

10, 5, 44 0.554
10, 5 0.555

10, 5, 87 0.563
5, 87 0.561

5, 87, 36 0.5665
5, 87, 36, 1 0.5695
5, 87, 36 0.5695
5, 36 0.573

5, 36, 20 0.584
5, 36, 20, 2 0.594

Table 4.10: Iterations of the Simulated Annealing learning algorithm (continuation).

Chapter 5

Discussion

�The important thing is not to stop questioning� (Albert Einstein)

In this thesis we opened a new path for Computer Go: emergent behavior. In our

approach, di�erent agents play in the simulation phase of UCT Monte Carlo Go, which

allows a greater diversity, increasing the quality of the simulations, and of the arti�cial

player as a whole. It is possible to argue that other MCTS programs also have emergent

behavior, as intelligent game play emerges from a playout strategy executed repetitively by

a single agent. However, this work is the �rst to put Multi-Agent Systems and emergent

behavior into perspective, showing new paths that can be explored to improve the current

algorithms.

We could not achieve a signi�cant percentage of victory against Fuego using the set

of all possible 120 agents. This might happen because it would be equivalent to simply

choosing randomly one of the 5 heuristics at each simulation step. However, we noticed

that a selected set of agents could e�ectively improve the solution, and overcome Fuego.

This inspired us to create a simple greedy learning algorithm, that tests if the presence

of each agent contributes to improve the strength or not. With this algorithm, we could

�nd a set of agents that won about 59% of the games. In the not random order, the �rst

agents that the algorithm tried were already known to be good, and they were immediately

selected. However, we had a set of 15 agents that we believed to be strong (when all of

45

46

them were in the agent database, we obtained a percentage of victory of about 54%), and

we were surprised when the learning algorithm reduced this set to only 5 agents. And

also, the learning process increased the percentage of victory of our system by about 5%,

compared to the solution that we could �nd manually. Therefore, it had a signi�cant

impact in our results. We were also able to �nd, without manual intervention, a solution

that was as good as the one found with a not random order, a very good indication of the

quality of our learning process.

However, even though we could signi�cantly overcome Fuego with our agent set, it is

still not so clear if the group performs better than the best agents, as the di�erence between

them was small. As the number of possible combinations of agent sets is quite high, we

believe there might be agent sets that perform even better, and might clearly overcome

the best agents. Therefore, it is necessary to develop better algorithms for �nding strong

agent sets. In this thesis, we only presented single-agent executions with the agents that

were part of a group, because our objective was to evaluate if the group is stronger than

its components. However, as a future work, it is also interesting to show the percentage of

victory of all possible agents. After �nding the strongest agent, we could test one certain

group or run again our learning algorithms against this agent, instead of Fuego's original

agent.

We believe that our approach is in a good direction to improve MCTS. However, even

our straight O(n) learning algorithm, executing on 104 cores, takes about 120 hours to

�nish. This happens because it is necessary to perform a great number of games in order to

reach stable results, with low standard deviations. With the problems of sharing a cluster,

like system maintenances, queues, machine reservation schedules, jobs being killed, etc,

the whole execution took about one week and a half. Therefore, �nding good agents is a

di�cult, computationally intensive problem.

Nevertheless, we believe that much can still be discovered in this direction. A question

that should be answered is the e�ect of adding not one agent to the database, but a

set of agents. In other words, does each agent by itself contribute to the solution or is

there improvement only when a speci�c set of agents are all together in the database? If

CHAPTER 5. DISCUSSION 47

so, how can that set be found? It is impossible to test all combinations of agents. In

our experiments we could perceive that agents that perform bad individually are able to

increase the quality of a certain set, so the e�ect of one agent might depend on the presence

of other agents in the group.

In order to escape local minima and explore those questions, we tried in this work

to apply a simulated annealing learning algorithm, and accept agents even when they

decrease the solution. However, the result that we found was still very similar to the

one found by our simple hill-climbing approach. One of the disadvantages of Simulated

Annealing techniques is the in�uence of a great number of parameters [Dreo et al. 2005].

Therefore, it might be possible to �nd better results by trying di�erent combinations of

them. We could also try other learning algorithms. Unfortunately, it does not seem to be

possible to apply learning algorithms like evolutionary methods, due to the high cost of

testing each solution.

Another interesting idea to continue this work is to approximate our agent model to

Page's model ([Page 2007]). As we saw in Chapter 2, in Page's model each person has

a collection of heuristics and, by having a diverse team, we can have a greater collection

of heuristics and solve complex problems. However, in our agent model, every agent has

the same set of heuristics, and we varied the prioritization order of them. Therefore, an

interesting and important question is: What would happen with the result, if we have a

greater number of heuristics, and each agent has a subset of them, like in Page's model?

Another possible future research path is to study how to apply Multi-Agent System

paradigms in di�erent ways. Our system employs a great number of agents during the

simulations that are executed to evaluate the score of the leafs. It is possible to experi-

ment with di�erent applications of the paradigm. For example, what if di�erent programs

negotiate about a single move, as in Obata et al. [2009]? How can we know which is the

best movement among the ones suggested? In the case of Shogi the number of possible

movements is more limited, and the convergence seems to be easier than in Go, allowing the

application of simple majority voting algorithms. With the range of di�erent possibilities

allowed in a Go game, how can we solve the selection problem? Another possible direction

48

is to try to use Multi-Agent Systems ideas in the tree search phase. Which algorithms

could be applied? What bene�ts could we obtain? As can be seen, there is a great range

of ideas and algorithms that can be inspired by this work.

CHAPTER 5. DISCUSSION 49

5.1 Why Agents?

�The heart of all major discoveries in the physical sciences is the discovery of novel

methods of representation.� (Steven Toulmin)

Some people might argue if we really have a set of �agents�, and not simply a collection

of heuristics, each one applied with a di�erent probability. We can divide their argument

in basically two questions: 1 - Is this really a multi-agent system?; and 2 - What is the

importance of seeing this as a multi-agent system?

We will start by answering question number 1. In order to do it, we need to go back

a bit, and ask ourselves if our set of heuristics is an agent. As we saw in Chapter 2,

according to Russell and Norvig [2003], an agent is something that senses its environment

and, based on some computation (that can be extremely simple), generates an action, that

might change the state of the environment. It is very easy to see this in the case of a robot,

for example. If we consider a robot that is moving in an environment, with sensors for

obstacle detection, and when it perceives an obstacle, it generates an action to avoid it,

we can clearly consider it an agent. But the de�nition is broader than this. We can also

consider an arti�cial chess player, for example. It is an agent that, given a chess board,

generates an action on that board, after a very complex and long computation, and this

action will change the state of the board. The de�nition can go even broader than this.

Any computer software can be seen as an agent, with its environment being the state of

the available computational devices, the input given by the user or some arbitrary device,

and, after the computation, the software has an action, the output, that will be shown to

the user or will be used as input to some other device. Therefore �agent� is a very broad

concept, and we can freely use it when it is convenient for our analysis.

In the case of our research, the environment of the agent is a Go board. The agent

perceives the Go board and then, based on its heuristics, generates an action that is going

to modify the environment: a movement in the Go board. Even though an agent that

always perform the same action could still be considered an agent (though a very dull

one), in our case the action of the agent will depend on the state of the Go board. The

50 5.1. WHY AGENTS?

heuristics have a hierarchical order, which does not mean that the �rst one will always be

applied. The agent will try to apply the �rst one, and in case it cannot be applied, it will

try to apply the second one, etc. Therefore, depending on the state of the environment, it

might apply its �rst heuristic, its second heuristic, etc. Given a certain environment, it is

possible to predict the behavior of the agent, so it is possible to argue that the agent is not

really making a �decision�. We agree that our agent is a simple one, but this does not mean

that it is not an agent. We can compare it with a simple robot, that has sensors on its left

and its right, and turns right when it perceives something on the left and turns left when

it perceives something on the right. The behavior of this robot is perfectly predictable,

but it is very clear that it is an agent.

Actually, our agent architecture, composed by a set of heuristics with a hierarchical

order, can be directly related to the robot architecture called Subsumption Architecture

[Brooks 1985]. In this architecture, a robot is composed by a series of modules, and they

are organized over layers, following a hierarchical architecture. The high-level modules can

suppress the output of lower level modules. Therefore, it is possible to say that our simple

agent is following a Subsumption Architecture.

We hope it is clear now that our collection of heuristics (with an associated hierarchical

order) can be seen as an agent. As we have many agents, each one with a di�erent

hierarchical order (and, therefore, a di�erent playing style), it follows that we have a

multi-agent system, and one with heterogeneous agents, at least if we consider the agent's

internal algorithm. We know that this use of agents and multi-agent systems is not in the

context that is generally seen in the literature, so it can be quite intriguing. We believe

that this conceptual step, linking the game community and the multi-agent community is

one of the most important contributions of this work.

It follows then our answer to the next question: What is the importance of seeing this

as a multi-agent system? Giving an agent set, it is probably possible to achieve the same

e�ect by building a probabilistic decision tree [Mitchell 1997]: there is a certain probability

for each heuristic in the �rst level of the tree (that sum up to one), and as we move down

one level of the tree, there will be a certain probability for the remaining heuristics, etc,

CHAPTER 5. DISCUSSION 51

until we reach the �nal level of the tree, in which we will execute the �nal remaining

heuristic with a probability of one. If we look at the problem in this way, we lose the

conceptual step linking our research with the multi-agent community, though. The link

brings many advantages. First, it allows us to discuss and justify our results based on the

concepts of emergence, diversity and stigmergy. Second, it exposes to the general agent

community the opportunities that Monte Carlo Go might o�er to their techniques. We

hope this opens a class of agent-oriented approaches for dealing with Computer Go, one of

the main challenges for Arti�cial Intelligence. It is also a concrete, interesting, and easy to

evaluate application for Multi-Agent Systems and, therefore, it was very well-received by

the Multi-Agent community.

The metaphor also allows us to look at the problem in a di�erent way, and try to �nd

techniques for selecting agents sets, compare the result of the group with individual agents,

think about in�uences between agents, etc. And, of course, we can explain and justify our

results using theories not only from the Multi-Agent community, but also from the �wisdom

of crowds� community (such as [Page 2007]). All this would be lost if we think about this

problem only as a probabilistic decision tree.

One question that remains to be answered though, is if it is easier to learn a probabilistic

decision tree than a set of agents. Could we obtain a better result with this alternative

perspective? We still do not know the answer to this question. However, even if learning

a probabilistic decision tree is easier, it seems to be possible to always convert it back to

a set of agents, if we consider that we can have repetition in our set (what will actually

transform it into an agent bag). The mapping between the two algorithms might not be so

simple as it seems to be at �rst sight, as in our algorithm we make a random decision only

in the beginning of the movement selection process, that would correspond to a full-path

in a probabilistic decision tree, and in the tree the probability of each level will depend

on what was chosen before. However, for the sake of the argument, let's assume there is a

mapping. Therefore, we would be able to convert back the learned tree to a bag of agents,

and we would not lose the link between our research and the Multi-Agent theories.

The problem is that the same argument can be used against us. We can say that we

52 5.2. MORE ON EMERGENCE

have a good result, given by emergence, stigmergy and diversity, and one could say that

we only have to look at the solution as a probabilistic decision tree to see that there is no

agent interaction whatsoever. We believe that the best way to answer this argument is to

use the concept of a perspective [Page 2007]. A perspective is a way to look at a particular

event or problem. It is a method of representation, and it is often metaphorical. Based on a

certain perspective, we can build solutions to a problem, what Page calls heuristics. Some

solutions and ideas come easily when we use a certain perspective, and other solutions and

ideas come in a di�erent perspective. Therefore, by increasing the number of perspectives,

we can increase the number of solutions that we are able to propose, increasing our number

of available tools, and enabling us to reach better results in the end. That is exactly why

Page argues that diversity is important in order to solve complex problems, as a team of

diverse people have access to a great number of perspectives and heuristics.

Therefore, we believe that instead of discussing which perspective is right and which

one is wrong, we should simply use the perspective that seems to be more appropriate to

us in the moment, and try to have as many tools as possible to solve a certain problem.

Therefore, new perspectives should always be welcome.

Even if the reader is still not satis�ed with our perspective, we believe that this whole

discussion about the de�nitions of agents and emergence, and the limits of these de�nitions

is, by itself, already a major contribution of this work.

5.2 More on Emergence

In this section we are going to present two philosophical ideas about emergence and Go,

but they are not related to the technical aspects of our work. The reader that is more

interested in the technical work is welcome to skip this section.

First, it might be possible to think about the Go game itself as an emergent process.

The Go stones interact in simple ways, by following simple rules, but the game progresses

in a very complex system. In the case of Go, there is a central unity, the player, governing

the progress of the system, as much as he can control it. However, as there is an opponent,

CHAPTER 5. DISCUSSION 53

sometimes things go out of his control, and he has to stumble to the rules of the system,

making movements that can be considered as almost obligatory (as not performing them

is worse), but that will inevitably lead to big losses, or even the defeat of the game.

Examples of these are abundant in the Go problems books, dealing with tesuji (local

�ghting problems) and tsumego (life and death problems).

Second, according to the ideas of Situated Learning, presented in Lave and Wenger

[1991], we can see even the concept of Go itself as the result of an emergent process. Ac-

cording to the authors, knowledge and ideas are not something abstract, that are passed

from an individual to the other. Knowledge is being constantly reconstructed (and main-

tained, somehow), by the social process that occurs between mentors and apprentices, in

a community of practice. Therefore, the notion of what Go is, and the techniques for

playing it well, exist and are constantly being modi�ed and transformed by the interac-

tions between Go players, the strong (masters) and weak ones (apprentices), happening in

the Go saloons, schools, clubs, and professional leagues all over the world (communities of

practice).

54 5.2. MORE ON EMERGENCE

Chapter 6

Conclusion

�This World is not Conclusion.

A Species stands beyond�

Invisible, as Music�

But positive, as Sound�

It beckons, and it ba�es�

Philosophy�don't know��

(Emily Dickinson)

In this thesis we presented a new paradigm to the state of the art of Computer Go:

Multi-Agent Monte Carlo Go. In our approach, di�erent agents play in the simulation phase

of UCT Monte Carlo Go, increasing the realism and the quality of the simulations by their

emergent behavior. We could not achieve a signi�cant result with all possible agents, but

after selecting a good set of agents by a learning algorithm, we could signi�cantly overcome

the original system, Fuego. Therefore, we e�ectively increased the strength of UCT Monte

Carlo Go. We present several discussions about our system, including directions for further

improvement and points that should be better studied. We believe that our work presents

a new paradigm for Monte Carlo Go, and it can be used as inspiration for a variety of

di�erent works.

This work brings together the Computer Games community and the Multi-Agent com-

55

56

munity. We hope it serves as an example of how concepts like �emergence�, �stigmergy�

and �diversity� can be easily applied to solve real problems. We can see a strong focus on

the literature on using emergence only in optimization algorithms, and we hope this thesis

can give some light in how to use emergence in problems that cannot be easily de�ned as

an optimization situation. We also can see a strong focus on the computer games literature

on how to parallelize the current algorithms, and we hope this thesis can show di�erent

ways to improve the strength, that do not need more computational power. Therefore, by

making a bridge between the two communities, we hope we are bringing contributions to

both.

This thesis might also be useful for scientists interested in the emergent process by itself,

by giving an example of arti�cial emergence that could actually produce a complex result.

Nature and society is full of examples of �natural� emergence, but examples of arti�cial

emergence are not so abundant. As we said before, generally it is mostly seen only in

optimization algorithms. Therefore, the example of emergence applied to Computer Go

can be useful to scientists interested in emergence, and these ideas might also be transported

to other complex systems.

We also believe that we present a nice example for the �intelligence of crowds� com-

munity, showing how a team of diverse agents could e�ectively solve a complex problem.

Therefore, we hope that we provided empirical evidence of their theoretical work. However,

we still could not prove that our team is better than the best agents. Our agent model is

simple, though, it would be a nice future work to approximate our model to Page's model.

A more concrete contribution of this work is the actual modi�cation of the Fuego

software, enabling it to be even stronger on 9x9 Go. We plan to let this modi�cation be

publicly available, so anyone can enjoy the bene�ts of a stronger player, and we hope that

it could eventually be inserted in the o�cial version of Fuego. A stronger player is useful

not only for the popularity of Go and for the enjoyment of being able to play it on the

computer, but also to increase Go comprehension and analysis.

There are many possibilities of research that can continue the work develop in this

thesis, and we talked about many of them in Chapter 5. It is necessary to better study

CHAPTER 6. CONCLUSION 57

the Simulated Annealing algorithm and actually �nd an agent set that can bring a better

solution. It would also be interesting to explore other directions of research, for example,

discovering solutions of how to select the best move when di�erent programs cooperatively

play Go.

One important practical aspect that needs to be solved is to bring those ideas for

19x19 Go. It is more di�cult to execute experiments in the bigger board, due to the

time requirements in order to play a full game. However, it is more useful for the game

community, at least in practical aspects, to have a stronger player for the default Go

board. The small one is used mainly for educational objectives, and not for professional

Go playing. A simple experiment might be to test in the full-board an agent set that was

learned in the 9x9 board. Would that agent set remain strong?

We believe that much can still be researched, and Computer Go can be greatly improved

by exploring Multi-Agent System techniques. We hope this work is useful in opening new

ideas, and in bringing even stronger Computer Go players for the near future.

58

Bibliography

Allis, L. V. (1994). Searching for Solutions in Games and Arti�cial Intelligence. PhD

thesis, University of Limburg, Maastricht, The Netherlands.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed

bandit problem. Mach. Learn., 47:235�256.

Benson, D. B. (1976). Life in the game of Go. Inf. Sci., 10(2):17�29.

Boon, M. (1990). A pattern matcher for Goliath. Computer Go, 13:13�23.

Bouzy, B. (1995). Modelisation cognitive du joueur de Go. PhD thesis, Université Paris.

(in French).

Bouzy, B. and Cazenave, T. (2001). Computer Go: an AI oriented survey. Arti�cial

Intelligence, 132:39�103.

Brooks, R. A. (1985). A robust layered control system for a mobile robot. Technical report,

Cambridge, MA, USA.

Brugmann, B. (1993). Monte Carlo Go. Technical report, Physics Department, Syracuse

University.

Cazenave, T. (1996). Systeme d'Apprentissage par Auto-Observation. Application au Jeu

de Go. PhD thesis, Universite Pierre et Marie Curie. (in French).

59

60 BIBLIOGRAPHY

Cazenave, T. and Jouandeau, N. (2008). A parallel monte-carlo tree search algorithm.

In CG '08: Proceedings of the 6th international conference on Computers and Games,

pages 72�80, Berlin, Heidelberg. Springer-Verlag.

Chaslot, G. M.-B., Winands, M. H., and van den Herik, H. J. (2008). Parallel monte-carlo

tree search. In Proceedings of the 6th International Conference on Computer and Games.

Springer.

Colella, V. S., Klopfer, E., and Resnick, M. (2001). Adventures in Modeling: Exploring

Complex, Dynamic Systems with StarLogo. Teachers College Press.

Colorni, A., Dorigo, M., and Maniezzo, V. (1991). Distributed optimization by ant colonies.

In European Conference on Arti�cial Life, pages 134�142.

Coulom, R. (2006). E�cient selectivity and backup operators in monte-carlo tree search.

In van den Herik, H. J., Ciancarini, P., and Donkers, H. H. L. M., editors, Computers

and Games, volume 4630 of Lecture Notes in Computer Science, pages 72�83. Springer.

Dreo, Pétrowski, A., Siarry, P., and Taillard, E. (2005). Chapter 3 - simulated annealing.

In Metaheuristics for Hard Optimization: Methods and Case Studies. Springer.

Engelbrecht, A. P. (2006a). Chapter 3 - optimization algorithms. In Fundamentals of

Computational Swarm Intelligence. John Wiley & Sons.

Engelbrecht, A. P. (2006b). Fundamentals of Computational Swarm Intelligence. John

Wiley & Sons.

Enzenberger, M., 0003, M. M., Arneson, B., and Segal, R. (2010). Fuego - an open-source

framework for board games and Go engine based on Monte Carlo Tree Search. IEEE

Trans. Comput. Intellig. and AI in Games, 2(4):259�270.

Enzenberger, M. and Müller, M. (2009a). Fuego - an open-source framework for board

games and Go engine based on Monte-Carlo Tree Search. Technical report, University

of Alberta, Dept. of Computing Science, TR09-08.

BIBLIOGRAPHY 61

Enzenberger, M. and Müller, M. (2009b). A lock-free multithreaded monte-carlo tree search

algorithm. In Advances in Computer Games 12.

Farneback, G. (2008). GTP - Go text protocol. http://www.lysator.liu.se/~gunnar/

gtp/.

Friedenbach, Jr., K. J. (1980). Abstraction hierarchies: a model of perception and cognition

in the game of go. PhD thesis, University of California, Santa Cruz.

Gardner, M. (1970). The fantastic combinations of John Conway's new solitaire game

�life�. Scienti�c American, 223:120�123.

Gelly, S., Hoock, J.-B., Rimmel, A., Teytaud, O., and Kalemkarian, Y. (2008). On the

Parallelization of Monte-Carlo planning. In ICINCO, Madeira Portugal.

Gelly, S., Wang, Y., Munos, R., and Teytaud, O. (2006). Modi�cation of UCT with

patterns in Monte-Carlo Go. Technical Report 6062, INRIA, France.

Grasse, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles

chez bellicositermes natalensis et cubitermes sp. La theorie de la stigmergie: essai

d'interpretation du comportement des termites constructeurs. Insectes Sociaux, 6:41�81.

Hart, T. and Edwards, D. (1963). The alpha-beta heuristic. Technical report, Cambridge,

MA, USA.

Johnson, S. (2001). Emergence - The Connected Lives of Ants, Brains, Cities, and Soft-

ware. Scribner, 1st edition edition.

Kato, H. and Takeuchi, I. (2008). Parallel monte-carlo tree search with simulation servers.

In 13th Game Programming Workshop (GPW-08).

Kato, H. and Takeuchi, I. (2009). Running "zen" on computer clusters. In 14th Game

Programming Workshop (GPW-09). (in Japanese).

62 BIBLIOGRAPHY

Kennedy, J. and Eberhart, R. (2002). Particle swarm optimization. In Neural Networks,

1995. Proceedings., IEEE International Conference on, volume 4, pages 1942�1948 vol.4.

Lave, J. and Wenger, E. (1991). Situated Learning - Legitimate Peripheral Participation.

Cambridge: University of Cambridge Press.

Marcolino, L. S. and Chaimowicz, L. (2008). No robot left behind: Coordination to over-

come local minima in swarm navigation. In Proceedings of the 2008 IEEE International

Conference on Robotics and Automation, pages 1904�1909.

Marcolino, L. S. and Chaimowicz, L. (2009a). Tra�c control for a swarm of robots: Avoid-

ing group con�icts. In Proceedings of the 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1949�1954.

Marcolino, L. S. and Chaimowicz, L. (2009b). Tra�c control for a swarm of robots: Avoid-

ing target congestion. In Proceedings of the 2009 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 1955�1961.

Marcolino, L. S. and Matsubara, H. (2011). Multi-agent Monte Carlo Go. In Proceedings

of the 10th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2011), pages 21�28.

Mitchell, T. (1997). Chapter 3 - decision tree learning. In Machine Learning (Mcgraw-Hill

International Edit). McGraw-Hill Education (ISE Editions), 1st edition.

Müller, M. (1995). Computer Go as a Sum of Local Games: An Application of Combina-

torial Game Theory. PhD thesis, Zürich. (in French).

Obata, T., Sugiyama, T., Hoki, K., and Ito, T. (2009). Consultation algorithm in shogi:

Can a set of players create a single strong player? In 14th Game Programming Workshop

(GPW-09). (in Japanese).

Oguri, T. and Kotani, Y. (2009). Move decision method based on sds. In 14th Game

Programming Workshop (GPW-09). (in Japanese).

BIBLIOGRAPHY 63

Page, S. E. (2007). The Di�erence: How the Power of Diversity Creates Better Groups,

Firms, Schools, and Societies. Princeton University Press.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In

Proceedings of the 14th annual conference on Computer graphics (SIGGRAPH 87), pages

25�34. ACM Press.

Russell, S. and Norvig, P. (2003). Arti�cial Intelligence: A Modern Approach. Prentice-

Hall, Englewood Cli�s, NJ, 2nd edition edition.

Soejima, Y., Kishimoto, A., and Watanabe, O. (2009). Root parallelization of Monte Carlo

Tree Search and its e�ectiveness in Computer Go. In 14th Game Programming Workshop

(GPW-09). (in Japanese).

Sugiyama, T., Obata, T., Saito, H., Hoki, K., and Ito, T. (2009). Consultation algorithm

in brain game - a move decision based on the positional evaluation value of each player.

In 14th Game Programming Workshop (GPW-09). (in Japanese).

van der Werf, E., van den Herik, H., and Uiterwijk, J. (2003). Solving Go on small boards.

Journal of the International Computer Games Association, 26(2):92�107.

Von Neumman, J. (1928). Zur theorie der gesellschaftsspiele. Math. Annalen., 100:295�320.

Weiss, G., editor (1999). Multiagent systems: a modern approach to distributed arti�cial

intelligence. MIT Press, Cambridge, MA, USA.

Wilcox, B. (1985). Re�ections on building two Go programs. SIGART Bull., pages 29�43.

Wolf, T. (1994). The program GoTools and its computer-generated tsume go database. In

Proceedings of the Game Programming Workshop in Japan'94, pages 84�96.

Wolf, T. (2000). Forward pruning and other heuristic search techniques in Tsume Go.

Information Sciences, 122:59�76.

64 BIBLIOGRAPHY

Wolfe, D. (2002). Go endgames are PSPACE-hard. More Games of No Chance, pages

125�136.

Wooldridge, M. J. (2001). Introduction to Multiagent Systems. John Wiley & Sons, Inc.,

New York, NY, USA.

Yen, S.-J., Chou, C.-W., Hsu, S.-C., Chen, J.-C., and Yang, T.-N. (2009). Improvement

of MCTS in Computer Go. In 14th Game Programming Workshop (GPW-09).

Zobrist, A. L. (1969). A model of visual organization for the game of Go. In Proceedings

of the May 14-16, 1969, spring joint computer conference, AFIPS '69 (Spring), pages

103�112, New York, NY, USA. ACM.

Appendix A

Modi�cations in Fuego

� `Free software' is a matter of liberty, not price. To understand the concept, you should

think of `free' as in `free speech' not as in `free beer.' � (Richard Stallman)

In this appendix we are going to brie�y introduce the Fuego architecture and the

modi�cations that we made in order to implement our solution. The reader interested

in Fuego architecture should refer to Enzenberger and Müller [2009a], Enzenberger et al.

[2010] for more details.

According to its authors, Fuego is �an open-source software framework for developing

game engines for full-information two-player board games, with a focus on the game of

Go�. Therefore, the objective of Fuego is not simply to be a software to play Go. It was

created as a framework to be used for other games as well, but its greatest use is as a Go

software. The main point of Fuego is not to present something new in terms of algorithms,

but to provide an implementation of the state of the art algorithms that can be freely

studied and modi�ed by anyone. Therefore, it is a powerful tool for research, and we are

very thankful to Fuego's authors for their work.

Fuego's interface is only handled through text messages, using the Go Text Protocol

[Farneback 2008]. Therefore, the user has to install some graphic interface for the program.

The recommended one in Fuego's website is GoGui (http://gogui.sourceforge.net/),

which can be seen in Figure A.1.

65

66

Figure A.1: GoGui screenshot, taken from the o�cial website.

Fuego's architecture was built with care, trying to follow the principles of a good Soft-

ware Architecture. As one of the objectives of Fuego is to provide a software to be freely

studied and modi�ed, it is important to build it in a clear and extendable way.

Fuego is organized into seven modules. The module GtpEngine is the one responsible

for handling to Go Text Protocol, therefore it provides an interface for input/output based

on text messages. SmartGame is responsible for platform-dependent operations (such as

time measurement, process creation, etc). This module also provides general algorithms

for board games programming. Therefore, it provides an implementation of the alpha-beta

search and the UCT search algorithm. The module Go provides functionality speci�c for

playing Go, such as abstractions for the Go board, etc. The module SimplePlayers is

a collection of simple algorithms for playing Go, used for testing. The main Go engine

is in the module GoUct, and FuegoMain provides the main application (while FuegoTest

provides tests, for debugging). A representation of the modules and its dependences can

be seen in Figure A.2.

Therefore, the core of our modi�cation is in the module GoUct, that provides the

UCT Monte Carlo algorithm for Computer Go. More speci�cally, in the �le GoUctPlay-

APPENDIX A. MODIFICATIONS IN FUEGO 67

Figure A.2: Modules of Fuego, taken from [Enzenberger et al. 2010].

68

outPolicy.h, we can �nd in the function GenerateMove the algorithm for generating the

pseudo-random moves during the Playout Phase (the simulations executed in order to eval-

uate a leaf). Therefore, we modi�ed this function, in order to be able to use many agents

during the playout execution, as we explain in Chapter 3.

Fuego allows the user to set many parameters using the Go Text Protocol. We also made

a modi�cation in the �leGoUctCommands.cpp, to create a new parameter: uct_param_policy

number_agents. This allow us to change the number of agents of the system, without the

need to recompile the whole program.

The learning algorithms (hill-climbing and simulated annealing) are handled outside

Fuego. We developed a collection of python scripts responsible for automatically generating

a new version of Fuego, according to the rules of the learning algorithm, and testing it over

a cluster.

All the source code of this project, including the modi�cations of Fuego and the learn-

ing algorithm scripts are going to be freely available on the Internet, on the website

http://www.leandromarcolino.com.br/academic. We hope they can be useful for the

community, and can be used as a basis for the development of even stronger programs.

