
THREE FUNDAMENTAL PILLARS OF

DECISION-CENTERED TEAMWORK

by

Leandro Soriano Marcolino

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

August 2016

Copyright 2016 Leandro Soriano Marcolino



To my father

ii



Acknowledgements

When a chess grandmaster performs a brilliant move, she may think of herself as a genius.

But that move would never have been made without the lessons of her previous mentors

and the pressure of her opponent. When an athlete wins a gold medal, she may think

of herself as superior. But nothing would have been achieved without the training of her

coaches and the support of family and friends. When a scientist has a breakthrough, she

may think of it as her greatest achievement. However, that breakthrough is the result of

her standing “in the shoulder of giants”, as Newton brilliantly realized.

No achievement in life is performed alone. We are a product of our interactions with

our family, our friends, our masters, our colleagues and collaborators. We learn and

grow with everyone around us, no matter if they are intentionally teaching us or not.

We survive thanks to everyone around us, no matter if they are playing as friends or as

antagonists. Life is a product of our struggles, and of the hands that pull us up when

we fall, the hands that point the way forward when we are lost, the hands that push us

ahead when we stop.

It is impossible to cite names without being unfair. It is also impossible to write an

acknowledgment without citing names. The list of everyone that I own my gratitude would

perhaps grow larger than this thesis itself. Hence, excuse my unfairness by first writing

the names of my masters. I thank my advisor, Milind Tambe, for guiding me in those

five years, not only in my research, but also in my formation as a professional researcher.

I must also thank my previous advisors, Hitoshi Matsubara and Luiz Chaimowicz, who

helped in shaping me as a researcher, and in preparing me to start my PhD. I also thank

the members of the committee, Gaurav Sukhatme, William Swartout, Craig Knoblock

and Nicholas Weller, for their time and guidance. In particular, Milind, Gaurav and

William went beyond their usual duties to guide me in securing an academic position.

I also must thank my students, who believed in me to guide their work: Vaishnavh

Nagarajan, Aravind Lakshminarayanan, Samori Price, Boian Kolev, Álvaro Souza, Dou-
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Abstract

This thesis introduces a novel paradigm in artificial intelligence: decision-centered team-

work. Decision-centered teamwork is the analysis of agent teams that iteratively take

joint decisions into solving complex problems. Although teams of agents have been used

to take decisions in many important domains, such as: machine learning, crowdsourcing,

forecasting systems, and even board games; a study of a general framework for decision-

centered teamwork has never been presented in the literature before.

I divide decision-centered teamwork in three fundamental challenges: (i) Agent Se-

lection, which consists of selecting a set of agents from an exponential universe of possible

teams; (ii) Aggregation of Opinions, which consists of designing methods to aggregate

the opinions of different agents into taking joint team decisions; (iii) Team Assessment,

which consists of designing methods to identify whether a team is failing, allowing a “co-

ordinator” to take remedial procedures.

In this thesis, I handle all these challenges. For Agent Selection, I introduce novel

models of diversity for teams of voting agents. My models rigorously show that teams

made of the best agents are not necessarily optimal, and also clarify in which situations

diverse teams should be preferred. In particular, I show that diverse teams get stronger

as the number of actions increases, by analyzing how the agents’ probability distribution

function over actions changes. This has never been presented before in the ensemble

systems literature. I also show that diverse teams have a great applicability for design

problems, where the objective is to maximize the number of optimal solutions for human

selection, combining for the first time social choice with number theory. All of these

theoretical models and predictions are verified in real systems, such as Computer Go

and architectural design. In particular, for architectural design I optimize the design

of buildings with agent teams not only for cost and project requirements, but also for

energy-efficiency, being thus an essential domain for sustainability.

Concerning Aggregation of Opinions, I evaluate classical ranked voting rules from

social choice in Computer Go, only to discover that plurality leads to the best results.

This happens because real agents tend to have very noisy rankings. Hence, I create a

ranking by sampling extraction technique, leading to significantly better results with the

Borda voting rule. A similar study is also performed in the social networks domain, in

xv



the context of influence maximization. Additionally, I study a novel problem in social

networks: I assume only a subgraph of the network is initially known, and we must spread

influence and learn the graph simultaneously. I analyze a linear combination of two greedy

algorithms, outperforming both of them. This domain has a great potential for health, as

I run experiments in four real-life social networks from the homeless population of Los

Angeles, aiming at spreading HIV prevention information.

Finally, with regards to Team Assessment, I develop a domain independent team

assessment methodology for teams of voting agents. My method is within a machine

learning framework, and learns a prediction model over the voting patterns of a team,

instead of learning over the possible states of the problem. The methodology is tested

and verified in Computer Go and Ensemble Learning.
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Chapter 1

Introduction

They may sound your praise and call you great,
They may single you out for fame,

But you must work with your running mate
Or you’ll never win the game;

Oh, never the work of life is done
By the man with a selfish dream,

For the battle is lost or the battle is won
By the spirit of the team.

(Edgar A. Guest)

Teams of agents have been used for taking decisions while solving complex problems

in many important domains. For instance, in machine learning ensemble systems have

been widely studied, where the output of multiple classifiers are aggregated into a final

classification [Polikar, 2012]. Recently, in the artificial intelligence literature, aggregating

the opinions of multiple people has been receiving considerable attention in the study of

crowdsourcing [Mao et al., 2013, Bachrach et al., 2012]. Similarly, multiple agents have

also been used to make predictions, in the study of forecasting systems [Isa et al., 2010].

Such decision-centered teams have been explored even for board games [Obata et al.,

2011, Soejima et al., 2010].

One of the first works to study team-decision making was in 1785, when Condorcet

[Condorcet, 1785] analyzed the guarantees of a jury doing majority voting to make a

correct verdict, assuming a binary problem (guilt or not guilt) and identical jury members.

More recent works in the social sciences literature emphasize the importance of diversity

when forming (human) teams, such as Hong and Page [2004], and LiCalzi and Surucu

[2012], that study models where agents are able to know the utility of the solutions, and

the team can simply pick the best solution found by one of its members.
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In machine learning, however, the main focus has been on how to best divide the

training set across different learners [Polikar, 2012]. In social choice, the complexity

of computing the output of voting rules and of manipulating elections has been widely

studied [Bartholdi III et al., 1989a,b, Davies et al., 2011, Yang, 2015], but that still does

not guide us on how to form the best voting team. Teamwork models are also a major

part of multi-agent systems research, but the focus is on assigning tasks to agents with

different capabilities, in order to maximize the expected utility of the team [Nair and

Tambe, 2005, Guttmann, 2008].

Hence, in this thesis I introduce the concept of decision-centered teamwork to study

domains where a set of fully cooperative agents is used to take decisions into accom-

plishing a common goal. Decision-centered teamwork is the analysis of agent teams that

iteratively take joint decisions to solve complex problems. This thesis is the first general

study of decision-centered teamwork. When forming such teams, we must not only se-

lect agents, but also design aggregation mechanisms and domain-independent methods

to assess the performance of a given team. Hence, I divide decision-centered teamwork

in three fundamental challenges: Agent Selection, Aggregation of Opinions and Team

Assessment.

• Agent Selection is picking a limited number of agents to form a team. Previous

work in social choice considered a single world state [Conitzer and Sandholm, 2005,

List and Goodin, 2001], which would lead us to expect the best team to be the one

composed by the best possible agents. I show [Marcolino et al., 2013] that this is not

true, and it is fundamental to also consider diversity when forming teams. However,

my first diversity model only presents necessary conditions for such phenomenon;

therefore I present a second, more general model of diversity [Marcolino et al.,

2014b], where I can predict that diverse teams perform better than uniform teams

(i.e., copies of the best agent) in problems with a large action space. Additionally, I

perform a study of diverse and uniform teams for design problems [Marcolino et al.,

2016a], where the focus is to maximize the number of optimal solutions for human

selection (according to aesthetics or non-formalized compromises).

• Aggregation of Opinions, in the context of decision centered teamwork, is combin-

ing the opinions of each member of the team into a final team decision. I study

ranking extraction and ranked voting rules [Jiang et al., 2014, Yadav et al., 2015]

using existing agents in Computer Go and influence maximization. Additionally,

I study a linear combination of two greedy algorithms for simultaneously learning

and influencing social networks [Marcolino et al., 2016c].

3



• Team Assessment is verifying the performance of a given team. In particular, it is

fundamental to predict whether a team is going to be successful or fail in problem

solving. Existing methods are tailored for specific domains, such as robot-soccer

[Ramos and Ayanegui, 2008]. Hence, I propose [Nagarajan et al., 2015, Marcolino

et al., 2016b] a novel domain independent technique, which learns a prediction

function for estimating the performance of a team using only its voting patterns.

Based on such prediction, it is possible to take remedial procedures to increase a

team’s performance.

This thesis presents theoretical, methodological and experimental contributions for

these facets of decision-centered teamwork. I run experiments in three domains: Com-

puter Go [Marcolino et al., 2013, 2014b, Jiang et al., 2014, Nagarajan et al., 2015, Mar-

colino et al., 2016b], Architectural Design [Marcolino et al., 2016a] and influence maxi-

mization in social networks [Yadav et al., 2015, Marcolino et al., 2016c] (Figure 1.1). As

I detail later, these domains have a positive societal impact for health and sustainability.

1.1 Summary of Contributions

1.1.1 Agent Selection

A näıve solution for agent selection would be to simply select the set of the individually

best agents to form a team. I show, however, that team diversity is also an important

aspect of decision-centered teamwork. Hence, this thesis presents three models of diversity

in teamwork.

In my first model, I show that a diverse team can outperform a uniform team if at

least one agent has a higher probability of playing the best action than the best agent in

at least one world state [Marcolino et al., 2013]. However, since only necessary conditions

are provided, I develop a second model [Marcolino et al., 2014b], which study the effect

of increasing the number of actions available to choose from. I define spreading tail

(ST ) agents, that have an increasingly larger number of actions assigned with a non-zero

probability as the number of actions in the domain increases. A diverse team is modeled

as a team of ST agents. I show that the probability of a diverse team picking the best

action increases as the action space increases; and also converges to 1 when the team size

grows in large action spaces. The main idea of my model is that diverse agents are less

likely to agree on the same mistakes when the action space is large, and therefore only two

agents voting for the optimal solution is sufficient. I run experiments in the Computer

Go domain, using six existing Computer Go agents, and analyze the predictions and the

assumptions of my models.
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Decision-centered teamwork allowed me to:

Play better Go by voting
among multiple diverse agents.

Optimally design buildings by voting
among agents and using human selection.

Energy-efficient solutionsfor architecture!

Los Angeles Homeless Population

Social Network

Prevent HIV in uncertain social
networks by combining multiple algorithms.

Figure 1.1: Domains where I explored decision-centered teamwork.
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My third diversity model focuses on agent teams for design problems. This thesis

introduces design problems as a novel problem in social choice, where the performance

of a voting system is evaluated by the number of optimal solutions found by an agent

team. For maximum applicability, I study agents that are queried for a single opinion,

and multiple solutions are obtained by multiple voting iterations. I show that diverse

teams composed of agents with different preferences maximize the number of optimal

solutions, while uniform teams composed of multiple copies of the best agent are in

general suboptimal. I run experiments with diverse and uniform teams in a real system

for architectural design optimization. The design of buildings are not only optimized for

cost and conformity with project requirements, but also for energy-efficiency. Hence, this

is an important domain for sustainability.

1.1.2 Aggregation of Opinions

In the context of decision-centered teamwork, team coordination is aggregating the opin-

ions of multiple agents into taking a final decision. I study the performance of four

classical ranked voting rules from social choice in Computer Go. First, I build a ranking

for each agent by directly extracting their estimated utilities of each action from their

search trees. However, after aggregating such rankings, I find that plurality still had the

best winning rates. Such surprising result may seem discouraging at first, but I introduce

a novel method to extract rankings from existing agents, based on the frequency that ac-

tions are played when sampling an agent multiple times. I show that using this method,

the Borda ranked voting rule outperforms plurality. While performing this study, I also

introduce a technique for generating diverse teams by creating random parametrizations

of a base agent [Jiang et al., 2014], in order to analyze larger diverse teams of voting

agents. Similarly, I analyze the performance of ranked voting aggregation in the social

networks domain, in the context of influence maximization [Yadav et al., 2015].

Additionally, I analyze a linear combination of two greedy algorithms in a novel social

networks problem: I assume only a subgraph of the network is initially known, and

we must spread influence and learn the graph simultaneously [Marcolino et al., 2016c].

Although influence maximization has been extensively studied [Kempe et al., 2003, Cohen

et al., 2014, Golovin and Krause, 2010, Maghami and Sukthankar, 2012, Li and Jiang,

2014], the main motivation of previous works is viral marketing, and hence they assume

that the social network graph is fully known beforehand, generally taken from some social

media network (such as Facebook or MySpace). However, the graphs recorded in social

media do not really represent all the people and all the connections of a population. Most

critically, when performing interventions in real life, we deal with large degrees of lack of

knowledge.
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I show that the traditional greedy influence maximization algorithm may have arbi-

trarily low performance. However, we can still effectively influence and learn a network

graph when the independence of objectives hypothesis holds (which will be later defined

in this thesis). When it does not hold, I give an upper bound for the influence loss, which

converges to 0 as the number of interventions in the network grows. I run extensive

experiments over four real-life social networks of the homeless population of Los Angeles.

Influence maximization has a great potential to positively impact society, as we can

modify the behavior of a community. For example, we can increase the overall health of

a population; my main motivation is to spread information about HIV prevention in the

homeless population of Los Angeles.

1.1.3 Team Assessment

Team assessment is essential for decision-centered teamwork. We must be able to assess if

a team is likely to succeed or fail in order to take remedial procedures when appropriate.

For instance, we could switch team members or the aggregation mechanisms according to

the current assessment, in order to increase the team performance in an online manner.

Hence, it is important to develop methods to quickly assess a team’s performance.

I propose a model for team assessment [Nagarajan et al., 2015, Marcolino et al.,

2016b], which allows me to develop a novel domain independent technique to predict

online the final reward of a team. The final reward is defined by a random variable;

which is influenced by a set of variables representing the subset of agents that agreed on

the chosen action at each world state. Based on that, I show that the final reward can be

predicted by linear models, and I derive a domain-independent prediction function using

only the frequencies of agreement of each subset of agents. Additionally, I show that the

quality of the prediction increases as the action space grows larger.

I evaluate the quality of the predictions using a real system of Computer Go playing

agents, over a varying of board sizes. I study the predictions at every turn of the games,

and compare with an analysis performed by using an in-depth search. I achieve an

accuracy of 71% for a diverse team in 9 × 9 Go, and of 81% when I increase the action

space size to 21 × 21 Go. For a uniform team, I obtain 62% accuracy in 9 × 9, and

75% accuracy in 21× 21 Go. I also predict the final performance of an ensemble system

that votes to classify hand-written digits, demonstrating the domain independence of my

method.
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1.2 Guide to thesis

This thesis is organized as follows: Chapter 2 introduces the related work and the nec-

essary background for the research presented in this thesis. Part II introduces the work

on agent selection: Chapter 3 presents my first diversity model; Chapter 4 shows my

second model, where diverse teams in large action spaces are analyzed; and Chapter 5

presents my model about agent teams for design problems. Part III introduces my work

on aggregation of opinions: Chapter 6 presents an experimental study on ranked voting

rules in Computer Go and Social Networks, and Chapter 7 studies a linear combination

of two algorithms for simultaneously influencing and mapping social networks. Part IV

focuses on team assessment, where Chapter 8 introduces a domain independent technique

to predict success or failure in teams of voting agents. Finally, Chapter 9 presents my

conclusions and discussions for future work.
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Chapter 2

Background and Related Work

If I have seen further it is by standing on the shoulders of Giants.
(Isaac Newton)

In this chapter I discuss relevant background and related work for this thesis. The

study of decision-centered teamwork relates to different areas of study in Computer Sci-

ence, and even in other fields, such as Social Science. Hence, in this section I will discuss

the literature in Multi-agent Systems, focusing on the study of Social Choice (Section 2.1)

and Teamwork (Section 2.2); Machine Learning, especially Ensemble Systems (Section

2.4); and Social Science (Section 2.3), where many models have been proposed to study

diversity in human teams. Since the thesis also introduces the problem of simultaneously

influencing and mapping social networks (in Chapter 7), I will also discuss the relevant

literature for this problem in Section 2.7.

2.1 Social Choice

Social choice studies theoretical frameworks for analyzing the combination of individual

preferences or opinions into a collective decision. One of the most common methods to

aggregate the opinions of different agents into taking a decision is voting. Hence, voting

is extensively studied in the social choice literature. Normally, voting is seen under one

of two possible views: (i) as a way to decide on a fair outcome, given the preferences of

different individuals; (ii) as a way to use the opinions of different agents to estimate a

correct outcome, or a “truth”.

The classical work in the second view is the Condorcet’s Jury Theorem [Condorcet,

1785], published in the 18th century. Condorcet developed the theorem to justify the use

of voting in the jury system. According to his theorem, when facing a binary decision, as

long as the average of the probability of each individual being correct is higher than 1
2 , a
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“Correct Outcome”

Agent 1’s vote Agent 2’s vote ... Agent n’s vote

Figure 2.1: “Classical” voting model. Each agent has a noisy perception of the truth, or
correct outcome. Hence, its vote is influenced by the correct outcome.

group of independent individuals doing majority voting will have a higher probability of

being correct than the individuals alone. In fact, as the number of voters go to infinite,

the probability of taking a correct decision converges to 1. This theorem is extended

to the k options case in List and Goodin [2001], where it is shown that if each of the

individuals have a probability of choosing the best answer higher than choosing any other

answer, the group performing majority voting will still be stronger than the individuals

alone.

Recently, social choice has been considered extensively in the artificial intelligence

literature. Each agent is modeled as having a noisy perception of the truth (or correct

decision) [Conitzer and Sandholm, 2005]. Hence, the correct outcome influences how each

agent is going to vote, as shown in the model in Figure 2.1.

Therefore, given a voting profile and a noise model (the probability of voting for

each action, given the correct outcome) of each agent, we can estimate the likelihood of

each action being the best by a simple (albeit computationally expensive) probabilistic

inference. Any voting rule is going to be optimal if it corresponds to always picking the

action that has the maximum likelihood of being correct (i.e., the action with maximum

likelihood of being the best action), according to the assumed noise model of the agents.

That is, the output of an optimal voting rule always corresponds to the output of actually

computing, by the probabilistic inference method mentioned above, which action has the

highest likelihood of being the best one.

Classically, however, this view of voting considers only teams of identical agents [List

and Goodin, 2001, Conitzer and Sandholm, 2005], and thus they do not consider the

importance of diversity when selecting agents. More recent works are also considering

agents with different probability distribution functions. Caragiannis et al. [2013] study

which voting rules converge to a true ranking as the number of agents (not necessarily

identical) goes to infinity. In Soufiani et al. [2012] the problem of inferring the true

ranking is studied, assuming agents with different pdfs, but drawn from the same family.

Therefore, team formation is not the focus of their work.

Since the classical works of Bartholdi III et al. [1989a,b], many works in social choice

also study the computational complexity of computing the winner in elections [Aziz et al.,

2015, Amanatidis et al., 2015], and/or of manipulating the outcome of an election, in
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general by disguising an agent’s true preference [Conitzer and Sandholm, 2003, Davies

et al., 2011, Yang, 2015]. The main motivation of such works is in finding voting rules

which are easy to compute (i.e., the winner can be computed in polynomial time), but

are hard to manipulate (i.e., an agent would have to run an NP-Complete algorithm in

order to calculate a voting profile different than its true preference in order to change the

final outcome of the voting procedure).

There are also works studying the aggregation of partial [Xia and Conitzer, 2011a,b] or

non-linear rankings (such as pair-wise comparisons among alternatives) [Elkind and Shah,

2014], since it could be costly/impossible to request agents for a full linear ranking over all

possible actions. Some very recent works in social choice also analyze probabilistic voting

rules, where the agents’ votes affect a probability distribution over outcomes [Brandl

et al., 2015, Chatterji et al., 2014].

2.1.1 Large Solutions Pool

In this thesis I also consider agent teams for design problems, where the objective is to

maximize the number of optimal solutions. In Chapter 5 I discuss in detail why for design

problems it is important to obtain a large number of solutions. In this chapter I present

the current state of the art in social choice with regards to obtaining a large solution

pool.

Most of the social choice literature is about finding a correct ranking in domains

where there is a linear order over the alternatives, and hence a unique optimal decision

[Conitzer and Sandholm, 2005, Caragiannis et al., 2013, List and Goodin, 2001, Soufiani

et al., 2012, Baharad et al., 2011]. Recent works, however, are considering more complex

domains. Farfel and Conitzer [2011] analyze the case where instead of having a single

preferred action, voters have a preference over an interval of real numbers. Xia and

Conitzer [2011a] study the problem of finding k optimal solutions, where k is known

beforehand, by aggregating rankings from each agent. However, not only do they need

strong assumptions about the quality of the rankings of such agents, but they also show

that calculating the maximum likelihood estimation (MLE) from the rankings is an NP-

hard problem.

Procaccia et al. [2012] study a similar perspective, where the objective is to find the top

k options given rankings from each agent, where, again, k is known in advance. However,

in their case, they assume there still exists one unique truly optimal choice, hidden among

these top k alternatives. Elkind and Shah [2014], motivated by the crowdsourcing domain,

study the case where instead of rankings, the voters output pairwise comparisons among

all actions, which may not follow transitivity. However, their final objective is still to

pick a single winner, not to maximize the set of optimal solutions found by a voting
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system. Oren and Lucier [2014] study the problem of finding the top k options in an

on-line setting, where we must take a decision concerning adding a candidate to a k-sized

pool at each time we see the (ranked) vote of an agent; hence the problem of maximizing

the number of optimal solutions is not considered.

Finally, outputting a full comparison among all actions can be a burden for an agent

[Boutilier, 2002, Kalech et al., 2011]. In this thesis I show that actual agents can have

very noisy rankings, and therefore do not follow the assumptions of previous works in

social choice. Hence, as any agent is able to output at least one action (i.e., a single

vote), I study here systems where agents vote across multiple iterations, which brings the

model closer to real applications for design.

2.2 Teamwork

Teamwork is an important topic of research in the multi-agent systems literature. Many

theoretical frameworks of teamwork have been developed. For example, Cohen and

Levesque [1991] introduced the Joint Intentions theory. In that framework, a team has

a joint mental state. All agents work to achieve a certain objective in the joint mental

state. If one of the agents discovers that the objective has been achieved, or became

irrelevant/impossible, then it must communicate with its teammates in order to pass this

belief to the joint mental state. In the SharedPlans [Grosz and Kraus, 1996] framework,

there is a set of possible recipes for achieving one action, which are composed by subac-

tions, forming a hierarchy; and agents may have individual plans to perform some of the

subactions. These ideas are combined in an actual implemented framework in STEAM

[Tambe, 1997], where agents build a hierarchy of joint intentions when performing tasks

in three different domains. STEAM is further extended in Tambe et al. [2002], where

a markov decision process (MDP) model is proposed, enabling agents to autonomously

decide when to transfer control (i.e., decision-making) to humans or other agents.

A common approach to coordination is to consider a centralized controller, that plans

beforehand the best action each agent should take at each world state (i.e., plans offline);

and the agents merely execute the actions ascribed to them in the plan. These are nor-

mally studied in the Dec-POMDP framework (decentralized partially observable Markov

decision process) [Bernstein et al., 2002], and policy iteration is one of the main methods

to compute the global plan (i.e., a policy) [Bernstein et al., 2009].

Task allocation is also an important approach to coordinate a team. A problem or

goal is distributed in a set of tasks, and each agent must execute a subset of those. The

contract net protocol [Smith, 1980] is a very common technique for task allocation, where

agents can be manager and contractors. A manager receives bids and allocate a task to
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the most appropriate agent. Upon being allocated a task, the agent (contractor) must

execute it, but it can divide those in subtasks and also act as a manager to allocate

those. A similar approach is the auction based task allocation mechanism [Bertsekas,

1992], where agents submit bids to compete for tasks, like in actual auctions.

For large teams, especially swarms, a common approach is to specify individual be-

haviors for each agent, in order for a desired global behavior to emerge in a distributed

fashion [Marcolino and Chaimowicz, 2008, 2009a,b]. Designing the individual behaviors

in an automatic way, however, is still an open challenge.

Decision-centered teamwork is a fundamentally different form of teamwork from the

ones previously described. Instead of each agent executing one action, or solving a certain

subtask of a common goal, the team must decide on a single team action at each world

state towards problem solving. However, it is still a form of teamwork, as all agents are

fully cooperative, and they share a common goal. Aggregating their opinions at each step

of problem-solving is their method of achieving that common goal.

2.2.1 Team Formation

Team formation is also an active topic of research in multi-agent teamwork. However, the

main focus has been in modeling tasks as requiring a set of skills; and the team formation

problem is considered as selecting a set of agents with all the necessary skills but the

minimum cost [He and Ioerger, 2003, Guttmann, 2008]. More recent work go beyond a

simple sum of skills and also models the synergy of a group [Liemhetcharat and Veloso,

2012], or how to automatically configure a network of agents [Gaston and desJardins,

2005]. In Matthews et al. [2012], a team formation procedure is presented for a class of

online football prediction games, and the system is able to play successfully against a

large number of human players.

Recently, ad-hoc teamwork is also surging as an important area of study in the multi-

agent literature [Stone et al., 2013], where agents must coordinate without being pre-

programmed to work together. Researchers have considered, for example, how to lead a

group to the optimal joint action with a new ad-hoc agent [Agmon and Stone, 2012], or

how to influence a flock of agents [Genter and Stone, 2014]. Barret and Stone [2015] have

demonstrated ad-hoc teamwork in practice in the simulated robot soccer domain. These

works, however, do not analyze the importance of diversity when forming agent teams.

2.3 Social Science

Forming teams to take decisions has also been studied in the social sciences. For example,

Hong and Page [2004] is an impactful work showing the importance of diversity when
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forming (human) teams. Even though recently some of the mathematical arguments

were put into question [Thompson, 2014], it remains as a mile-stone on the study of the

importance of diversity, as many researchers were influenced by their work [Luan et al.,

2012, Lakhani et al., 2007, Krause et al., 2011], showing the importance of diversity in

different settings. In their model, each agent has a set of local minima that they reach

while trying to maximize an objective function. The agents can improve the solution from

the local minima of their team members, therefore the search of a team stops only in the

intersection of the local minima of all agents. By using a large number of diverse agents

the system is able to converge to the optimal solution. Their model, however, does

not cover situations where agents are unable to improve the solution from their team

members’ local minima. This can happen, for example, when we use existing software,

that were not architectured to collaborate in this way or when there are time constraints.

Therefore, there are many situations where the agents have to collaborate in other ways,

such as voting. If a team of agents votes, the system will not necessarily converge to an

option in the intersection of their local minima. However, as I will show, it is still possible

for a diverse team to play better than a uniform strong team.

A more recent model to analyze diversity was proposed in LiCalzi and Surucu [2012].

It is an equivalent model to Page’s and still do not overcome the limitations previously

described. In Braouezec [2010], the authors show the benefits of diverse agents voting

to estimate the optimum of a single peaked function. In this thesis I am dealing with

a harder problem, as the function to be optimized changes at every iteration. Another

work that uses voting to study diversity is West and Dellana [2009], but they assumed

that Page’s model would work in a voting context, and do not propose a new model.

Lamberson and Page [2012] study diversity in the context of forecasts. They assume that

solutions are represented by real numbers, and a team converges to the average of the

opinion of its members. Hence, they do not capture domains with discrete solutions, and

the model also does not cover teams of voting agents.

Prediction markets are also studied in the social sciences. They are markets where the

users bet on possible outcomes of real world events. For example, if a user u believes that

an event x will take place with probability pu (for instance, a certain candidate winning an

election), then she can offer to buy a share on x with a price pu. Similarly, a user can also

offer to buy a share that an event x will not take place, and the price pu will correspond

to the probability of the event not taking place. The final market price of the event x

can be interpreted as the probability of x actually taking place in the world. Erikson and

Wlezien [2008], for example, compare the accuracy of prediction markets in determining

the final outcome of elections with pools. Manski [2006] presents the first theoretical

study concerning to what extent the market prices can be actually understood as the
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probabilities of events occurring. A historical analysis of political prediction markets in

the USA is presented at Rhode and Strumpf [2004]. In this thesis, however, I will focus

on voting as a way to aggregate opinions, rather than markets.

2.4 Machine Learning

Combining multiple classifiers through voting is a very common technique in machine

learning [Polikar, 2012]. Such systems are called Ensemble Systems. Traditionally, each

classifier runs the same algorithm, but trained with different subsets of items, or different

features. The way that each subset of items is selected for each classifier defines different

ensemble system approaches, for example: bagging, boosting, or ada-boost; while mixture

of experts trains each classifier in a different subspace of the feature space.

Combining multiple classifiers has been a very active research area. For example,

Sylvester and Chawla [2005] uses a Genetic Algorithm to learn an optimal set of weights

when combining multiple classifiers, Chiu and Webb [1998] uses voting to predict the

future actions of an agent, and AL-Malaise et al. [2014] use ensembles to predict the

performance of a student.

Diversity is known to be important when forming an ensemble, and some systems try

to minimize the correlation between the classifiers while training [Chen and Yao, 2009].

Still, an important problem is how to form the ensemble system, i.e., how to pick the

classifiers that lead to the best predictions [Fu et al., 2012].

My models allow us to make many predictions about teams as the action space and/or

number of agents changes, and also compare the rate of change of the performance of

different teams, or analyze agent teams in the context of design problems. To the best of

my knowledge, there are no models similar to mine in the machine learning literature.

Additionally, team assessment is also important for ensembles, as we need techniques

to evaluate whether the current ensemble is performing well in order to change it if

necessary. In Chapter 8 I will perform experiments in predicting the final performance of

an ensemble system.

2.5 Team Assessment

As in Chapter 8 I discuss a technique for assessing the performance of a team of voting

agents, in this section I discuss relevant literature in team assessment.

Traditional team assessment methods rely heavily on tailoring for specific domains.

Raines et al. [2000] present a method to build automated assistants for post-hoc, offline

team analysis; but domain knowledge is necessary for such assistants. Other methods
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for team analysis are heavily tailored for robot-soccer, such as Ramos and Ayanegui

[2008], that present a method to identify the tactical formation of soccer teams (num-

ber of defenders, midfielders, and forwards). Mirchevska et al. [2014] present a domain

independent approach, but they are still focused on identifying opponent tactics, not in

assessing the current performance of a team.

In the multi-agent systems community, we can see many recent works that study

how to identify agents that present faulty behavior [Khalastchi et al., 2014, Lindner

and Agmon, 2014, Tarapore et al., 2013]. Other works focus on verifying correct agent

implementation [Doan et al., 2014] or monitoring the violation of norms in an agent

system [Bulling et al., 2013]. Some works go beyond the agent-level and verify if the

system as a whole conforms to a certain specification [Kouvaros and Lomuscio, 2013],

or verify properties of an agent system [Hunter et al., 2013]. However, a team can still

have a poor performance and fail in solving a problem, even when the individual agents

are correctly implemented, no agent presents faulty behavior, and the system as a whole

conforms to all specifications.

Sometimes even correct agents might fail to solve a task, especially embodied agents

(robots) that could suffer sensing or actuating problems. Kaminka and Tambe [1998]

present a method to detect clear failures in an agent team by social comparison (i.e., each

agent compares its state with its peers). Such an approach is fundamentally different

than this work, as we are detecting a tendency towards failure for a team of voting agents

(caused, for example, by simple lack of ability, or processing power, to solve the problem),

not a clearly problematic situation that could be caused by imprecision/failure of the

sensors or actuators of an agent/robot. Later, Kaminka [2006], Kalech and Kaminka

[2007], Kalech et al. [2011] study the detection of failures by identifying disagreement

among the agents. In my case, however, disagreements are inherent in the voting process.

They are easy to detect but they do not necessarily mean that a team is immediately

failing, or that an agent presents faulty behavior/perception of the current state.

There is also a body of work that focuses on analyzing (and predicting the perfor-

mance of) human teams playing sports games. For example, Quenzel and Shea [2014]

learn a prediction model for tied NFL American football games, where they use logistic

regression to predict the final winner. They study the coefficients of the regression model

to determine which factors affect the final outcome with statistical significance. Heiny

and Blevins [2011] use discriminant analysis to predict which strategy an American foot-

ball team will adopt during the game. In soccer, Bialkowski et al. [2014] analyze data

from games to automatically identify the roles of each player, and Lucey et al. [2015]

also use logistic regression to predict the likelihood of a shot scoring a goal. We can

also find examples in basketball. Maheswaran et al. [2012] use a logistic regression model
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to predict which team will be able to capture the ball in a rebound, while Lucey et al.

[2014] study which factors are important when predicting whether a team will be able to

perform an open 3-points shot or not.

2.6 Other Multiple Algorithms Techniques

There is a vast literature on using multiple algorithms to solve complex problems. For

example, in algorithm portfolios [Gomes and Selman, 2001], multiple programs run in

parallel to solve a single problem instance, as one of them may be the fastest for the

particular instance. In multi-start local search algorithms [Gyorgy and Kocsis, 2011],

many searches run in parallel, and we must dynamically decide to allocate computational

resources to a search process or to initialize a new search. There are also works about mul-

tiple experts systems, where predictions are performed by choosing one among multiple

experts’ advice [Cesa-Bianchi and Lugosi, 2006]. In the robotics literature, multi-heuristic

A* search has recently been proposed [Aine et al., 2014], where multiple heuristics are

used simultaneously to find a bounded suboptimal solution.

Concerning distributed optimization, Chapter 5 is related to the study of distributed

genetic algorithms [Knysh and Kureichik, 2010]. The experimental section on agent

team for designs (Section 5.5) relates to the “island model”, where populations evolve

concurrently. This model has been improved recently, by Osaba et al. [2015], with a

technique where some of the populations stop evolving temporarily in order to focus the

search on promising ones. Normally, however, the populations interact by transferring

offsprings, not by voting, and a theoretical study of voting teams which must maximize

the number of optimal solutions was never performed. Other recent works study how to

run genetic algorithms on GPUs in order to solve classical NP-hard problems or navigate

UAVs [Cekmez et al., 2013, 2014].

2.7 Social Networks

As in Chapter 7 I will focus on the problem of influencing social networks that are not

fully known in advance, I discuss here related works in influence maximization.

The influence maximization problem has recently been a very popular topic of re-

search. Normally, the main motivation is viral marketing in social media (like Facebook

or MySpace). Hence, previous works assume full knowledge of the social network graph.

The classical result is Kempe et al. [2003], where they study the approximation guarantee

of a greedy algorithm for the “independent cascade model”, which will be described in

Chapter 7. Golovin and Krause [2010] extended that result to the case where we are able
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to observe which nodes are already influenced or not before picking each one. However,

they still assume full knowledge of the graph. Similarly, Dhamal et al. [2015] study the

specific situation where we select two subsets of nodes at two different phases, and we

can observe the network between the phases. Cohen et al. [2014] focus on how to quickly

estimate the potential spread of one node, since running simulations (as needed by the

greedy algorithm) in large graphs is computationally expensive. A different view was

studied by Yadav et al. [2015], where they analyze a model where nodes try to influence

their neighbors multiple times, and each edge has an existence probability. Here, how-

ever, I will deal with a different kind of uncertainty, as in my model whole portions of

the graph are completely unknown.

Some works in the AAMAS (multi-agent systems) community study variations of

the original influence model. For example, Pasumarthi et al. [2015] study the problem

where the objective is to maximize influence not in the whole social network graph,

but only in a subset of nodes which represent targeted consumers of a certain product.

Anagnostopoulos et al. [2015] study the case where multiple entities compete to spread

influence in order to convince consumers to buy their respective products. Maghami and

Sukthankar [2012] consider influence maximization under more realistic assumptions than

traditional models: they assume agents pertain to social groups, and the ones of the same

group are more likely to influence each other. Moreover, they assume multiple products,

and that each agent has a certain probability of buying a particular one. Li and Jiang

[2014] study a different way to increase the realism: they consider graphs with multiple

edge types, modeling different connection types between people (for example, Facebook

or real life interaction). Tsang and Larson [2014], instead of focusing on the problem

of selecting subset of nodes, run several experiments to study the evolution of social

networks, assuming that each node has a degree of adoption (instead of a binary value

representing influenced or not influenced), and nodes are more likely to be influenced by

others with a similar adoption degree. However, even though all these works are more

realistic than the traditional models, they still assume full knowledge of the social network

graph.

Chapter 7 is also related to the problem of submodular optimization (as influence

is a submodular function) by selecting elements without knowledge of the whole set.

Badanidiyuru et al. [2014] present an algorithm for selecting the best subset, giving

elements arriving from a “stream”. Hence, in their case, given enough time the whole

set would be seen, and which elements are discovered does not depend on which ones are

selected.

My problem is also related to the classical max-k-cover problem [Khuller et al., 1999],

where we must pick k subsets that maximize our coverage of a set. In that case, however,
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the elements of each subset is known. There is also an online version of the max-k-cover

problem [Alon et al., 2009], where we pick one subset at a time, but an adversary fixes

which element must be covered next. However, the set and the available subsets are still

known in advance. Similarly, Grandoni et al. [2008] study the case of covering a set whose

elements are randomly chosen from a universe of possible elements. Another important

related problem is the submodular secretary problem [Bateni et al., 2013], where we again

pick a subset to optimize a submodular function. However, in that case, we receive one

element at a time, and we must make an irrevocable decision of either keeping it or not.

The problem of learning a graph online was studied in the context of security games

by Barth et al. [2010], where there is a possible attack graph with unknown edges. They

learn edges when they are used by an attacker for the first time, and repeatedly update

the probability of protecting each edge using an online learning algorithm [Freund and

Schapire, 1999]. In my case, however, we cannot update weights iteratively, as we pick a

node at most one time.

Finally, Chapter 7 also relates to sequential decision making with multiple objec-

tives [Roijers et al., 2013]. Here I do not aim at computing an optimal policy (which is

computationally expensive), but at studying a greedy method, similar to other works in

influence maximization. My algorithm is a scalarization over two objectives, but such

method was never studied before to influence and map social networks.
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Part II

Agent Selection
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Chapter 3

Diversity Beats Strength?

I exclude no one I am strengthened by all

My name is Diversity and yes I stand tall.

Recognize me and keep me in the mix

Together there’s no problem that we can’t fix.

I am your best hope towards true innovation

And to many, I reflect hope and inspiration.

(Charles Bennafield)

3.1 Introduction

Team formation is essential when dealing with a multi-agent system. Given limited

resources, we must select a strong team to deal with a complex problem. Many works

model team formation as selecting a team that accomplishes a certain task with the

maximum expected value, given a model of the capabilities of each agent [Nair and Tambe,

2005, Guttmann, 2008]. Other works go beyond a simple sum of skills, for example by

considering synergetic effects in a team of agents [Liemhetcharat and Veloso, 2012] or

studying how to automatically configure a network of agents [Gaston and desJardins,

2005].

After forming a team, their members must work together. There are many different

ways for a team to coordinate. One common and simple way is to use voting. By voting,

a team of agents can get closer to finding the best possible decision in a given situation

[List and Goodin, 2001]. Only one voting iteration might not be enough, sometimes

the agents must vote continuously in many different scenarios. Consider, for example,

agents that are cooperating in a board game [Obata et al., 2011, Soejima et al., 2010],

deciding together stock purchases across different economic scenarios, or even picking
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items to recommend to a large number of users [Burke, 2002]. This situation imposes

a conflict for team formation: should we focus on the diversity of the team or on the

strength of each individual member? Previous works do not address this issue. Diversity

is proposed as an important concept for team formation in the field of Economics and

Social Science [Hong and Page, 2004, LiCalzi and Surucu, 2012]. However, Hong and

Page [2004], LiCalzi and Surucu [2012] assume a model where each agent brings more

information, and the system converges to one of the best options known by the group.

When a team votes to decide its final opinion, their model and theorems do not hold

anymore. In the current literature on voting it is assumed a model where agents have a

fixed probability to take the best action [Condorcet, 1785, List and Goodin, 2001, Young,

1995, Conitzer and Sandholm, 2005, Xia, 2011], and under that model it is not possible to

show any advantage in having a diverse team of agents. My experiments show, however,

that a diverse team can outperform a uniform team of stronger agents. It is necessary to

develop, therefore, a new model to analyze a team of voting agents.

In this chapter, I present a new model of diversity and strength for a team of voting

agents. The fundamental novelty of my model is to consider a setting with multiple world

states, and each agent having different performance levels (characterized by different

probability distributions) across world states. Under this model, I can show that a team

of diverse agents can perform better than a uniform team composed by strong agents. I

present the necessary conditions for a diverse team to play better than a uniform team,

and study optimal voting rules for a diverse team. I show synthetic experiments with a

large number of teams that demonstrate that both diversity and strength are important to

the performance of a team. I also show results in one of the main challenges for Artificial

Intelligence: Computer Go. Go is an iterative game, and the possible board states can

represent a great variety of different situations, in such a way that the relative strength of

different Go playing software changes according to the board state. Therefore, we can use

my model to study a team of agents voting to play Computer Go. By using a diverse team

I am able to increase the winning rate against Fuego (one of the strongest Go software)

by 18.7%, and the diverse team could play 11% better than a team of copies of Fuego.

Moreover, the diverse team plays 15.8% better than one of the versions of parallelized

Fuego. I also improve the performance of the diverse team by 12.7% using one of my

proposed voting rules. Therefore, I effectively show that a team of diverse agents can have

competitive strength, and even play better, than a uniform team composed by stronger

agents. My new model provides a theoretical explanation for my results.
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3.2 Methodology

Let Φ be a set of agents φi voting to decide an action a in the set of possible actions A

and Ω be a set of world states ωj . I assume that we can rank the actions from best to

worst and Uj is the vector of expected utilities of the actions in world state ωj , ordered

by rank. The agents do not know the ranking of the actions, and will vote according to

some decision procedure, characterized by a probability distribution function (pdf) over

action ranks. Hence, each agent φi has a pdf Vi,j for deciding which action to vote for in

state ωj . Agents that have the same Vi,j in all world states will be referred as copies of

the same agent.

Let αj be the likelihood of world state ωj . If we expect the world states to be

equally frequent, we can use αj = 1/|Ω|. I define strength as the weighted average of

the expected utility of an agent or a team. It is given by the following dot product:

s =
∑

ωj∈Ω αjVj ·Uj, where Vj is the pdf of the agent/team in world state ωj . Vj can

be calculated given a team of agents and a voting rule. A voting rule is a function that

given the (single) votes of a team of agents, outputs an action.

I define the team formation problem as selecting from the space of all possible agents

Ψ a set of n agents Φ that has the maximum strength in the set of world states Ω.

An application does not necessarily know Vi,j for all agents and for all world states. In

this chapter, I focus on showing that the näıve solution of forming a team by selecting

the strongest agents (or copies of the best agent) is not necessarily the optimal solution.

Therefore, I am introducing a new problem to the study of team formation.

I define diversity as how different are the probability distributions of agents in Φ

in the set of world states Ω: d = 1
|Φ|2

∑
ωj∈Ω

∑
φi∈Φ

∑
φk∈Φ αjH(Vi,j,Vk,j), where H

is a distance measure between two pdfs. In this chapter, I use the Hellinger Distance

[Hellinger, 1909], given by: H(Vi,j,Vk,j) = 1√
2

√∑
a∈A(

√
Vi,j(a)−

√
Vk,j(a))2.

At each iteration, each agent will examine the current world state and submit its

(single) opinion about which one should be the next action. The opinions are then

combined using plurality voting, that picks as a winner the option that received the most

votes. I consider in this chapter three different voting rules: simple - break ties randomly,

static - break ties in favor of the strongest agent overall, optimal - break ties in favor of

the strongest agent of each world state. I consider the static voting rule because in some

applications we might have a clear idea of which is the strongest agent overall, but the

information of which is the strongest agent for a given world state might not be available.

I will encounter this situation in the Computer Go domain, as will be clear in Section

3.3.2. This voting procedure will repeat at every iteration, until the end, when the system

can obtain a reward.
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Agent State 1 State 2 State 3 State 4 Strength

Agent 1 1 0 1 1 0.75

Agent 2 0 1 1 0 0.5

Agent 3 1 1 0 0 0.5

Agent 4 1 1 0 1 0.75

Agent 5 0 0 1 1 0.5

Table 3.1: A team of deterministic agents that can reach perfect play under simple voting.
“1” indicates agent plays perfect action.

3.2.1 Diversity Beats Strength

I first present examples to demonstrate that a diverse team can play better than a uniform

team. First, let’s consider the simplest case, when all agents are deterministic. The team

made of copies of the strongest agent will play as well as the strongest agent, no matter

how many members we add in the team. However, a team of diverse agents can overcome

the strongest agent, and even reach perfect play, as we increase the number of agents.

Consider, for example, the team in Table 3.1. This diverse team of 5 agents will reach

perfect play under simple voting, while copies of the best agent (Agent 1 or Agent 4) will

be able to play well only in 3 out of 4 world states, no matter how many agents we use

in the team.

We can easily change the example to non-deterministic agents, by decreasing slightly

the probability of them playing their deterministic action. An example is shown in Table

3.2, where I show the pdf of the agents for each world state. I considered the utility

vector < 1, 0, 0 > for all world states. The resulting strength of the teams is very similar

to the deterministic case. Assuming all world states are equally likely, the strength of the

diverse team is 0.9907, while copies of the best agent have strength 0.7499. Therefore,

it is possible for a team of weak diverse agents to overcome a uniform team of stronger

agents, when in certain states the individual agents are stronger than the overall strongest

agent.

Even if we make the number of agents go to infinity, copies of the best agent will still

be unable to perform the best action in one world state, and will play worse than the

diverse team with only five agents. This situation is not considered in the Condorcet’s

Jury Theorem, neither in the classical nor in the extended version, because they assume

independent agents with a fixed pdf. Therefore, in the previous models, we would not be

able to show the importance of diversity.
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Agent State 1 State 2 State 3 State 4

Agent 1 < 0.99, 0.01, 0 > < 0, 0.99, 0.01 > < 0.99, 0, 0.01 > < 0.99, 0.01, 0 >

Agent 2 < 0, 0.99, 0.01 > < 0.99, 0.01, 0 > < 0.99, 0, 0.01 > < 0, 0.01, 0.99 >

Agent 3 < 0.99, 0.005, 0.005 > < 0.99, 0.005, 0.005 > < 0, 0.5, 0.5 > < 0, 0.5, 0.5 >

Agent 4 < 0.99, 0.01, 0 > < 0.99, 0.004, 0.006 > < 0, 0.4, 0.6 > < 0.99, 0.003, 0.007 >

Agent 5 < 0, 0.3, 0.7 > < 0, 0.7, 0.3 > < 0.99, 0.005, 0.005 > < 0.99, 0.002, 0.008 >

(a) Agents’ pdfs

Agent Strength

Agent 1 0.7425

Agent 2 0.4950

Agent 3 0.4950

Agent 4 0.7425

Agent 5 0.4950

(b) Agents’ strength

Table 3.2: A team of non-deterministic agents that can overcome copies of the best agent.

3.2.1.1 Necessary Conditions

I present a formal proof of the conditions necessary for a diverse team to play better than

copies of the best agent, under the simple voting rule. If the conditions of the theorem

are not met, we can simply use copies of the best agent as the optimal team. To simplify

the presentation of the proof, we will consider a utility function with a value of 1 for the

optimal action and 0 for the other actions. That is, we will consider the optimal team in

a fixed world state as the team that has the highest probability of performing the optimal

action. Let ψbest be the strongest agent in Ψ, and abest be the best action in a given world

state.

Theorem 3.2.1 For a diverse team to be the optimal team under the simple voting rule

it is necessary that at least one agent in Ψ has a higher probability of taking the best

action than ψbest in at least one world state, or a lower probability of taking a suboptimal

action than ψbest in at least one world state.

Proof: I develop the proof by showing that copies of the best agent of a given world state

will be the optimal team in that world state. Therefore, it is necessary that the agents

in the diverse team play better than the best agent overall in at least one world state.

Let ψbest,j be the strongest agent in world state ωj . Let’s define the pdf of this agent as

< p1, ..., pk >, where p1 is the probability of taking the best action. I will show that a team

of n copies of ψbest,j doing simple voting will have a higher probability of taking the best

action than a team of n agents composed of x copies of ψbest,j andm agents ψi doing simple

voting, where the probabilities of each ψi are given by < p1 − εi, p2 + γi,2, ..., pk + γi,k >,

γi,l ≥ 0 ∀l ∈ (2, k) and
∑k

l=2 γi,l = εi.
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Given a team of agents, let them all vote. We will start with a team of x copies of

agent ψbest,j . We will perform m iterations, and at each one we will add either another

agent ψbest,j or agent ψi, where i is the current iteration. Let vi−1 be the current vote

result. The result of vi−1 is either: (i) victory for abest, (ii) tie between abest and other

options, (iii) defeat for abest.

(i) If vi−1 is a victory for abest, the new agent can change the result only when it votes

in another option. Suppose al is an option that upon receiving one more vote will change

a victory for abest into a tie between abest and al. Agent ψbest,j will vote in option al with

probability pl, while agent ψi will vote in option al with probability pl + γi,l. Therefore,

if vi−1 is such that one vote can change a victory for abest into a tie between abest and

other options, agent ψi will have a higher probability of changing a victory for abest into

a tie between abest and other options.

(ii) If vi−1 is a tie between abest and other options, agent ψbest,j will break the tie in

favor of abest with probability p1 while agent ψi with probability p1− εi. Therefore, agent

ψbest,j will have a higher probability of breaking the tie in favor of abest. Moreover, if al is

an option that is currently tied with abest, agent ψbest,j will vote for al with probability pl,

while agent ψi with probability pl+γi,l. Therefore, agent ψi will have a higher probability

of changing a tie between abest and other options into a defeat for abest.

(iii) If vi−1 is a defeat for abest, agent ψbest,j will vote for abest with probability p1

while agent ψi will vote for abest with probability p1 − εi. Therefore, if vi−1 is such that

one vote can change a defeat for abest into a tie between abest and other options, agent

ψbest,j will have a higher probability of changing a defeat for abest into a tie between abest

and other options.

In all three cases, agent ψbest,j leads to a higher increase in the probability of picking

abest than agent ψi. Therefore, up to any iteration i, copies of ψbest,j will have a higher

probability of playing the best action than a diverse team. Hence, if ψbest,j = ψbest∀j,
then copies of the best agent ψbest will be the best team in all world states, and therefore

it will be the optimal team. Therefore, for a diverse team to perform better, at least one

agent must have either a higher probability of taking the best action or a lower probability

of taking a suboptimal action than ψbest in at least one world state.

This theorem, however, only gives the necessary conditions for a diverse team to be

stronger than a non-diverse team. The sufficient conditions will depend on which specific

game the agents are playing. Basically, given the pdf of the agents for a set of world

states, we can calculate the pdf of both the diverse team, and the team made of copies of

the best agent. If the diverse team has a higher probability of taking the best action in

a subset of the world states that is enough for it to play better, considering that it will

26



have a lower probability of taking the best action in the complementary subset, then the

diverse team will play better than copies of the best agent.

3.2.1.2 Optimal Voting Rules

In my next theorem, I show that given some conditions, the optimal voting rule for a

diverse team is to consider plurality voting, but break ties in favor of the strongest agent

that participates in the tie. Basically, we have to assume that all agents are strong enough

to contribute to the team, so no agent should be ignored. If there are harmful agents in

the team, we can try to remove them until the conditions of the theorem are satisfied.

Again, we consider a utility function with a value of 1 for the optimal action and 0 for

the other actions. Given a team Φ with size n, our conditions are:

Assumption 1 Weak agents do not harm

For any subset of Φ with an even number of agents n′, and for a fixed world state ωj ,

let φ′best,j be the best agent of the subset. We divide the agents in 2 sets: Weak containing

the n′/2 − 1 agents that have the lowest probability of taking the best action and the

highest probability of taking a suboptimal action, and Strong containing the n′/2 agents

that have the highest probability of playing the best action and the lowest probability of

taking a suboptimal action (except for the best agent φ′best,j , that is in neither one of the

sets). We assume that when all agents in Weak and φ′best,j vote together in an option ax,

and all agents in Strong vote together in another option ay, the probability of ax being

the best action is higher than the probability of ay being the best action.

Assumption 2 Strong agents are not overly strong

Given a fixed world state ωj , I assume that if m1 agents voted in an action ax and m2

agents voted in an action ay, the probability of ax being the best action is higher than

ay being the best action, if m1 > m2. If there is a situation where the opinion of a set of

agents always dominates the opinion of another set, we can try to remove the dominated

agents until the assumption holds true.

Theorem 3.2.2 The optimal voting rule for a team is to consider the vote of all agents,

but break ties in favor of the strongest agent if the above assumptions are satisfied.

Proof: By Assumption 2 we know that we are looking for a tie-breaking rule, as the

action chosen by most of the votes should always be taken. Let’s consider the sets and

the voting result described in the Assumption 1. Let < p1, ..., pk > be the pdf of agent

φ′best,j , and the pdf of the other agents of the subset be < p1− εi, p2 + γi,2, ..., pk + γi,k >,

γi,l ≥ 0 ∀l ∈ (2, k) and
∑k

l=2 γi,l = εi. Let b be a rank in (2, k). The probability of ax

being the best action is given by:
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P1 = ζ ∗ (p1)
∏
i∈Weak(p1 − εi)

∏
t∈Strong(pb + γt,b),

where ζ is a constant (according to the Bayes theorem).

While the probability that ay is the best action is given by:

P2 = ζ ∗ (pb)
∏
i∈Weak(pb + γi,b)

∏
t∈Strong(p1 − εt)

By Assumption 1, we have that P1 > P2. We can generate another voting pattern by

making one agent φweak in Weak vote for ay and one agent φstrong in Strong vote for ax.

The probability of ax being the best action will change to:

P ′1 = P1 ∗
(p1−εstrong)(pb+γweak,b)
(p1−εweak)(pb+γstrong,b)

While the probability of ay being the best action will change to:

P ′2 = P2 ∗
(p1−εweak)(pb+γstrong,b)
(p1−εstrong)(pb+γweak,b)

As (p1− εstrong) > (p1− εweak) and (pb +γweak,b) > (pb +γstrong,b) by the Assumption

1, we have that P ′1 > P1. Similarly, as (p1 − εweak) < (p1 − εstrong) and (pb + γstrong,b) <

(pb + γweak,b) by the Assumption 1, we have that P ′2 < P2.

Therefore, assuming that P1 > P2, we have that P ′1 > P ′2. Hence, for all modifications

that can be generated by switching one of the agents, it is better to break ties in favor of

the strongest agent. We can use all these voting patterns as a base and apply the same

process recursively, to generate all possible voting patterns with a tie. Therefore, it will

always be better to break ties in favor of the strongest agent.

Now I consider voting patterns with a tie between more than two options. Let’s

suppose that in this case breaking ties in favor of the strongest agent (φ′best,j) is not the

optimal voting rule. Therefore, we should break the tie in favor of some option ay. This

implies that ay has a higher probability of being the best action than ax, the option

chosen by the best agent. Now let’s remove the agents that voted in all other options

except ax and ay. This affects the probability of ax and ay being the best action in the

same way. Therefore, we should still break ties in favor of option ay. However, we already

showed that when there are two options we should break ties in favor of the strongest

agent. Hence, we should break the tie in favor of option ax. So, by contradiction, we see

that if there is a tie between more than two options we should still break ties in favor of

the strongest agent.

If the strongest agent of the team is not one of the agents involved in the tie, we can

ignore the opinion of the strongest agent according to Assumption 2, and break the tie

in favor of the strongest agent from the ones involved in the tie, because Assumption 1

applies to any subset of the agents.
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An application may not have the knowledge of the pdf of the agents in individual

world states. Therefore, I also study an approximation of the optimal voting rule, that

break ties in favor of the strongest agent overall, instead of breaking ties in favor of the

strongest agent in a given world state. In the next section we will see that both the

optimal voting rule and our approximation improves the performance of a diverse team.

3.3 Results

3.3.1 Synthetic

I perform synthetic experiments using the quantal response (QR) model for the agents

[McKelvey and Palfrey, 1995]. The quantal response model is a pdf from behavioral game

theory to approximate how human beings (or non-rational players) behave while playing

a game. It states that the probability of playing the best action is the highest, and it

decays exponentially as the utility of the action gets worse. I use the QR model in my

experiment, because it is a convenient way to represent non-rational agents with different

strengths playing a game with a great number of options.

The pdf depends on a parameter, λ, that defines how rational (i.e., strong) is the

agent. As λ gets higher, the agent provides a closer approximation to a perfect player. I

define a λij for each agent i and world state j.

I generated 1200 random teams of 4 agents, playing in 10 world states, and with 82

possible actions. I define each λij as a random number in the interval (0, 7), according

to a uniform distribution. For each team, we can calculate the diversity and the average

strength of the agents, according to the equations defined earlier. In Figure 3.1, we

can see the performance of each team, as a function of diversity and the strength of its

members. The strength of a team can be calculated after we generate the pdf of the team,

by calculating the probability of all possible situations where the system would pick a

particular ranking position. I assume that all world states are equally likely, hence the

strength of a team is the average over all world states. I used a utility vector that gives

a value close to 1 to the best action, and a low value to the other actions.

I performed a multiple linear regression for each voting rule. The following models

were found: simple: z = −0.09 + 1.48s + 0.45d; static: z = −0.03 + 1.36s + 0.55d;

optimal: z = 0.09 + 0.92s + 1.29d. The variable s is the average strength of the team

members, d is the diversity of the team, and z is the strength of the team. The coefficient

of multiple determination (R2) of the models are 0.96, 0.81, 0.88, respectively.

As can be seen, both diversity and strength had a positive weight. This shows that

groups with more diversity are stronger, given a fixed strength for their members. It

is interesting to note that the impact of diversity increases as we change the voting
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(a) Simple Voting (b) Static Rule

(c) Optimal Rule

Figure 3.1: 1200 random teams of 4 agents.

rule from simple to static, and from static to optimal. The mean strength of all teams

are 0.56(±0.08), 0.61(±0.08), 0.74(±0.06), respectively. We can note that, as expected,

simple had the lowest strength, followed by static, and optimal had the highest strength.

The optimal voting rule is 30% stronger than simple voting in average.

3.3.2 Experiments in Computer Go

I also perform experiments with four Go software: Fuego 1.1, GnuGo 3.8, Pachi 9.01,

MoGo 3, and two (weaker) variants of Fuego (Fuego∆ and FuegoΘ), in a total of 6

different agents. These are all publicly available Go software. Fuego is known to be

the strongest Go software among all of them. Fuego, Pachi and MoGo follow a UCT

Monte Carlo Go algorithm [Gelly et al., 2006]. Fuego uses heuristics to simulate games

during the Monte Carlo simulations. There are mainly 5 possible heuristics in Fuego’s
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code. These heuristics have a hierarchical order, and the original Fuego agent follows

the order <Atari Capture, Atari Defend, Lowlib, Pattern> (The heuristic called Nakade

is not enabled by default). Fuego∆ follows the order <Atari Defend, Atari Capture,

Pattern, Nakade, Lowlib>. FuegoΘ follows the order <Atari Defend, Nakade, Pattern,

Atari Capture, Lowlib>. The memory available for Fuego∆ and FuegoΘ is half of the

memory available for Fuego.

All results presented are obtained by playing 1000 9x9 Go games, in a HP dl165 with

dual dodeca core, 2.33GHz processors and 48GB of RAM. I first present results when my

system plays as white, against the original Fuego playing as black with opening database.

Then, I present results of my system playing as black, against the original Fuego playing

as white with opening database. I will compare the winning rate of different agents and

teams when playing against the same opponent. When I say that a result is significantly

better than another, I use a t-test with 1% significance level (α = 0.01).

I call a team composed by different Go software as “Diverse” or by the name of the

voting rule that they use (“Simple” or “Static”). The team of copies of the strongest agent

(Fuego) will be called “Uniform”. The copies are initialized with different random seeds,

therefore due to the nature of the search algorithms, they will not always choose the same

movement. When I want to be explicit about the number of agents in a team I will add a

number after the name of the team. “Diverse” is composed by Fuego, GnuGo, Pachi and

MoGo when executed with 4 agents, and is composed by all agents when executed with

6 agents. I also work with a parallelized version of Fuego (“Parallel”), and I will add a

number after its name to indicate the number of threads.

Before introducing my results, I first analyze the agents under the classical voting

theory and under my proposed theory. To simplify the analysis, I consider here the

probability of playing the best move (Pbest); therefore, I consider a utility vector with a

value of 1 for the best move, and 0 for the other moves. I start by the classical voting

theories. In order to estimate Pbest, I use 1000 board states from my experiments. In

1000 games, I randomly choose a board state between the first and the last movement.

I then ask Fuego to perform a movement in that state, but I give Fuego a time limit

50x higher than the default one. Therefore, Fuego is approximating how a perfect (or at

least much stronger) player would play. To avoid confusion with the names I will call this

agent Perfect. I then obtain Perfect’s evaluation for all the positions of the board, and

organize them into a ranking.

I ran all agents in the selected 1000 board states and for each state I verify in which

position of the ranking each agent would play. If, instead of playing, the agent resigns,

I randomly pick a different board state and regenerate the data for all agents, including
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Player Pbest
Fuego 52.3%

GnuGo 26.4%

Pachi 40.6%

MoGo 40.8%

Fuego∆ 48.8%

FuegoΘ 47.7%

(a) Players

Team Pbest
Simple 4 57.5%

Static 4 61.8%

Uniform 4 79.6%

Simple 6 71.1%

Static 6 72.4%

Uniform 6 86.6%

(b) Teams

Table 3.3: Probability to select the best move of each player and the teams.

Perfect’s evaluation. Based on that, I can generate a histogram for all agents, shown in

Figure 3.2.

Assuming that the agents are independent, and that each one will choose a move

according to the probability distribution corresponding to its histogram, we can calculate

Pbest of any group and voting rule that we want. Basically we have to calculate the

probability of all the possible situations where the system would pick the best move. For

a team of k agents we have to calculate O(nk−1) probabilities, where n is the number of

possible options. While for a team of 4 agents I am able to calculate the precise value,

for a team of 6 agents I am going to show approximations.

In Table 3.3 we can see Pbest of each individual player and of all teams. The Pbest

of the teams is higher than the Pbest of each one of the agents, and is higher for a team

of 6 agents than for a team of 4 agents. This result is expected when we consider the

extended version of the Condorcet’s Jury Theorem [List and Goodin, 2001], at least for a

uniform team. According to the theorem Pbest approaches 1 when the number of agents

goes to infinity. However, we would also expect Uniform to perform better than Diverse.

Would it be possible, then, for a diverse team to perform better than a uniform team?

Intuitively, we would expect that a uniform team would agree on certain moves much

more often than a diverse team. And indeed, when we look at the graph of the frequency

of the size of the set of agents that voted for the winning move (Figure 3.3), we can see

that they are very different. In the x-axis I show the number of agents that agreed on the

selected movement, and in the y-axis the frequency of each number considering all moves

in the 1000 games. The expected size of the set for Diverse is 3.50, while for Uniform

is 4.43. Therefore, if Fuego plays badly in a certain board state, all copies of Fuego

would also tend to vote for the same bad moves. In a diverse team, however, some agents

could be able to play better in that particular situation. The extended Condorcet’s Jury

Theorem assumes that agents are independent, but in fact their relative performances

might change according to the state of the board.
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(a) Fuego’s Histogram
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(b) GnuGo’s Histogram
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(e) Fuego∆’s Histogram
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(f) FuegoΘ’s Histogram

Figure 3.2: Histogram of the agents, using real data.
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Figure 3.3: Expected size of the set of agents that vote for the winning move, with 6
agents and no opening database.

Player # Higher Pbest
GnuGo 17% (12%)

Pachi 21% (11%)

MoGo 20% (7%)

Fuego∆ 25% (6%)

FuegoΘ 26% (6%)

Table 3.4: Weak agents can play better in some board states. In parentheses, I show
when the difference in Pbest is 99% significant.

Now I analyze the agents according to my proposed theory. I will use Theorem 3.2.1

to justify that it is worth it to explore a diverse team. If Fuego, the strongest agent, is

always stronger in all board positions, then we can just use copies of Fuego as the optimal

team. Therefore, I will test if all agents are able to play better than Fuego in some board

positions. I selected 100 board states, and I played all agents 50 times for each board

state. Based on my estimate of the best move (obtained from Perfect), I can calculate

Pbest for each agent and for each board state. In Table 3.4, we can see in how many

board states the agents have a higher Pbest than Fuego (in its default time limit). As

can be observed, all agents are able to play better than Fuego in some board positions,

therefore it is possible for a diverse team to play better than copies of the best agent. As

the number of board states where an agent plays better is not small, we can expect that

a diverse team should be able to overcome the uniform team.

According to Theorem 3.2.2, if we assume that the weak agents (like GnuGo) are not

weak enough to harm the system, and the strong agents (like Fuego and its variants) are

not strong enough to dominate a subset of the agents, then the optimal voting rule is to

break ties in favor of the strongest agent. However, during a game the system does not

have access to the pdf of the agents, and has no way to identify which is the strongest

agent. Therefore, I present results using the static voting rule, that break ties in favor
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of the strongest agent overall. Based on my synthetic results, we can predict that static

should perform better than simple. I also tried a weighted voting rule, which allowed me

to empirically learn the best weights by a hill climbing algorithm. The resulting rule was

equivalent to the static voting rule.

We can see my results for white in Figure 3.4(a,b). Diverse plays significantly better

than Fuego, with 6 agents or with the static voting rule. When I keep the opening

database, Diverse plays significantly better than Uniform and Parallel with 6 agents.

Without the opening database, Diverse still plays significantly better than Parallel with

6 agents, but the difference between Diverse and Uniform is not significant. Static is

either significantly better than Simple, or the difference between them is not significant.

In Figure 3.4(c,d) we can see the results for black. Again, Diverse plays significantly

better than Fuego when using the static voting rule. This time, however, Diverse (with

6 agents or using the static voting rule) is able to play significantly better than Uniform

without the opening database, but with the opening database the difference between them

is not significant. Again, Static is either significantly better than Simple, or the difference

between them is not significant. Static is always significantly better than Parallel.

To verify the generality of improving the results by the static voting rule and by

adding more agents, I also played our system as white against Pachi as black, without

opening database. Simple 4 won 56.2% of the games, Static 4 won 65.5% and Simple 6

won 66.8%. Therefore, these techniques can improve the results in other situations.

By the classical view of voting, my experimental result is not expected. If we view

each agent as having a fixed pdf, we would predict that copies of the best agent would

perform much better than a diverse team with weaker agents. However, in my results I

showed that the diverse team has a competitive strength, and is able to play even better

than copies of the best agent in some situations. My new model provides a theoretical

explanation for my experimental results.

3.4 Detailed Study: Why a Team of Diverse Agents Perform

Better?

I study in detail three games from my experiments, in order to better understand why a

team of weak players can perform as well, or better than a team made of copies of the

best player. I study games with 6 agents, using the simple voting rule. According to my

theoretical work, at least one agent must play better than the strongest agent in at least

one world state for a diverse team to overcome a uniform team. These are only necessary

conditions, for a diverse team to effectively play better this must happen in many world

states, specially in critical situations that can decide the game. Here I show that this
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Figure 3.4: Results in the Computer Go domain. The error bars show the confidence
interval, with 99% of significance.
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really happens in Computer Go, based on an analysis by an expert human player. As

Go is a complex game, note that some expert readers might not agree completely with

all points of this analysis. Although I present results in the Computer Go domain, this

phenomenon should also occur in other complex domains, where the relative strength of

the agents change according to the world state.

These games are analyzed by Chao Zhang, a 4-dan amateur Go player. In order

to show that the weak agents are not playing better simply by chance, I estimate the

probability of all agents playing all analyzed moves by repeatedly playing them 100 times

in the board state under consideration. Based on these probabilities, I calculate the

probabilities of the diverse team and the uniform team, to show that the diverse team

would perform better in these board states. An important point to note is that it is not

the case that a certain subset of the agents always vote for a better move; the set of

agents that can find a better move than Fuego changes according to each board state.

This analysis requires some Go knowledge to be fully understood. Go is a turn-based

game between two players: black and white. At each turn, the players must place a stone

in an empty intersection of the board. If a group of stones is surrounded by the opponent’s

stones they are removed from the board (i.e. they are “killed”). The stones that surround

an area form a territory, whose value is counted by the number of empty intersections

inside. In the end of the game, the score is defined by the amount of territory minus

the number of captured stones, and the player with the highest score wins. A detailed

description of the rules can be found in Pandanet [2016].

I first analyze the Go game in Figure 3.5. In some positions, the weak agents vote for

better moves than Fuego, the strongest agent. Move 11 is a very interesting situation.

Here, Fuego, Pachi and MoGo vote for move D4, while GnuGo votes for E8 (X). Even

though GnuGo is the weakest agent, in this situation it is able to find a better move than

all other agents. E8 is better because it allows white to get the territory in the upper left

corner. Besides, white can aim at G7 to kill the black group in the upper right. If white

plays D4, black can play E8 to kill white aiming at the upper left corner. Unfortunately,

GnuGo loses the vote in this situation. In all other positions, I show situations where the

weak agents vote together for a better move than Fuego. For example, in move 23, Fuego

votes for B4 (∆) while Pachi, MoGo, Fuego∆ and FuegoΘ vote for B7. If white chooses

B7, white can kill C7&D7 or B5&C5&D5&E5. If black saves C7&D7, white can use B4

to kill the other group; If black saves B5&C5&D5&E5, white can use C8 to kill C7&D7.

If white chooses B4, black will use B7 to kill the white group in the upper left. Fuego’s

mistake is critical in this situation, and would lead to losing the game. In move 45, Fuego

would make another mistake. Fuego votes for B9 (∆), while GnuGo and Pachi vote for

H3. B9 wastes a move: it cannot affect the final result and wastes a chance for further
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Figure 3.5: First example, the diverse team plays as white without the opening database
against Fuego. White wins by resignation.

developments. H3, on the other hand, is aiming at killing black in the right bottom. In

this case Fuego∆ also votes for B9, so the static voting rule would choose a worse move.

In move 63, Fuego would play E3, while GnuGo, Pachi, Fuego∆ and FuegoΘ vote for

G2. If white plays G2, the black group in the right bottom dies, while if white plays E3,

white cannot kill them. This is another critical mistake, that would make white lose the

game. Finally, in move 75, Fuego votes for A7, while Pachi and FuegoΘ vote for G2. G2

is better than A7, as it allows white to have a larger territory. As can be seen, there are

many situations where the weaker agents vote together for a better move than Fuego.

The probabilities of each agent playing the analyzed moves can be seen in Table 3.5. It

is clear that Fuego did not choose the worse move by accident: in many cases it has a

lower probability than the other agents of playing the best move between the two options.

Consequently, the uniform team is still not able to perform well in these situations, it

still has a low probability of playing the best move, and it is always outperformed by the

diverse team. In some situations, the probability of playing the worst move even increases

by using multiple copies of Fuego.
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Agent
Move 11 Move 23 Move 45 Move 63 Move 75

E8* D4 B7* B4 H3* B9 G2* E3 G2* A7

Fuego 2% 51% 83% 14% 1% 76% 53% 29% 22% 16%

GnuGo 100% 0% 0% 0% 100% 0% 100% 0% 0% 0%

Pachi 6% 75% 30% 70% 46% 0% 78% 1% 35% 1%

MoGo 2% 61% 100% 0% 0% 0% 0% 84% 53% 0%

Fuego∆ 24% 19% 100% 0% 16% 19% 76% 13% 24% 7%

FuegoΘ 35% 9% 99% 0% 12% 30% 78% 10% 31% 11%

Diverse 15% 57% 99% 0% 20% 28% 88% 7% 45% 5%

Uniform 0% 73% 95% 4% 0% 98% 63% 26% 23% 21%

Table 3.5: Probability of playing the moves in the first example. * indicates the better
move.

I now analyze the game in Figure 3.6. In move number 4, Fuego∆ and Pachi vote for

C7, while Fuego votes for move G3 (∆). G3 is a bad opening for white, because the two

white groups would be split by black. Another example is in move 7, when GnuGo, Pachi

and Fuego∆ vote for B6, while Fuego votes for G7 (∆). Black and white are fighting in

the upper left corner. If white plays G7, it waives the fight and plays in a place that is not

immediately important. White should choose B6 to continue the fight in order to win.

Even GnuGo, the weakest agent, knows that B6 is a better move. In move 25, GnuGo

and Mogo choose A8, while Fuego chooses F2 (∆). If white does not play A8, black will

play A5 to kill the white group in the left side. White has to kill with A8. This time

Fuego’s mistake is critical, and could lead to losing the whole game. In this situation

GnuGo helps avoid a critical mistake, because FuegoΘ also votes for F2. Moreover, it

is an example of a case where the static voting rule fails, as it would break the tie in

favor of Fuego. I expect that significant improvements in game play would be possible

if we learn which is the strongest agent in a given situation, and better approximate the

optimal voting rule. Another interesting move is 37. Fuego and Fuego∆ vote for D2,

while MoGo and FuegoΘ vote for E3. Both moves are equally good, as they get the same

territory. However, GnuGo might have a better move: F6. If white plays F6, it can aim

at both G6 and F4 for the next moves, which will cause great harm to black’s territory.

This is another example of a situation where the weakest agent has a better move than

all other agents. The probabilities of each agent playing the analyzed moves can be seen

in Table 3.6. Again, we can see that the diverse team would have a higher probability of

finding the better moves than the uniform team.

In the games with the opening database, an interesting one is in Figure 3.7. In move

29, GnuGo, Pachi and MoGo choose D2, while Fuego votes for B8 (∆). D2 can protect

the lower left, while B8 cannot kill the black group in the upper left, and ends up making
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Figure 3.6: Second example, the diverse team plays as white without the opening database
against Fuego. White wins by resignation.

Agent
Move 3 Move 7 Move 25 Move 37

C7* G3 B6* G7 A8* F2 F6* D2 E3

Fuego 20% 2% 7% 41% 11% 30% 1% 53% 19%

GnuGo 0% 0% 100% 0% 100% 0% 100% 0% 0%

Pachi 27% 14% 99% 1% 28% 19% 26% 27% 0%

MoGo 0% 8% 1% 0% 89% 0% 0% 41% 45%

Fuego∆ 20% 0% 34% 20% 28% 10% 0% 83% 7%

FuegoΘ 25% 4% 50% 7% 37% 11% 0% 80% 12%

Diverse –% –% 77% 0% 70% 1% 1% 90% 5%

Uniform 19% 0% 2% 30% 7% 27% 0% 84% 8%

Table 3.6: Probability of playing the moves in the second example. Some results are
unavailable due to lack of memory. * indicates the better move.
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Figure 3.7: Third example, the diverse team plays as white with the opening database
against Fuego. White wins by resignation.

it more solid. In move 31, Pachi and MoGo vote for B3, and Fuego votes for B1 (∆). Even

if both moves might be able to kill the black stone in B2, B3 can kill it for sure. If white

plays B1, black can play B3 and would lead to complications. This mistake could make

white lose the game. If black survives, it can kill the white group in the lower left. In

move 45, Pachi, MoGo and Fuego∆ vote for F4, while Fuego votes for A4 (∆). F4 splits

black into two groups and can make use of this division in the future. A4 just wastes a

move and gives black more territory. In move 51, Pachi and MoGo choose E9, and Fuego

chooses H6 (∆). E9 makes the white group on the left survive, while H6 wastes a move

and will lead to the death of the white group. This is a critical mistake, that would make

white lose the game. In move 67, GnuGo and MoGo vote for B4, while Fuego votes for G2

(∆). B4 is better, as it can get more territory. G2 just wastes a move. The probabilities

of each agent playing the analyzed moves can be seen in Table 3.7. Again, in all these

situations the diverse team has a higher probability of playing the better move than the

uniform team. In some cases, the probability of playing the worse move even increases

with multiple copies of Fuego.
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Agent
Move 29 Move 31 Move 45 Move 51 Move 67

D2* B8 B3* B1 F4* A4 E9* H6 B4* G2

Fuego 3% 16% 44% 26% 17% 40% 0% 35% 0% 12%

GnuGo 100% 0% 0% 0% 0% 0% 0% 0% 100% 0%

Pachi 77% 18% 64% 0% 78% 17% 90% 0% 3% 0%

MoGo 91% 0% 98% 0% 92% 0% 51% 0% 46% 4%

Fuego∆ 6% 4% 11% 1% 51% 12% 0% 1% 0% 9%

FuegoΘ 5% 7% 13% 0% 50% 21% 0% 2% 0% 5%

Diverse 82% 3% 75% 0% 54% 12% 37% 0% 9% 1%

Uniform 0% 12% 56% 32% 5% 53% 0% 44% 0% 4%

Table 3.7: Probability of playing the moves in the third example. * indicates the better
move.

3.5 Conclusion and Discussions

I showed that diverse teams can outperform teams composed by copies of the best player.

However, it is still a challenge to find the best possible teams. In an open multi-agent

system the pdfs of the agents are generally not available. Moreover, in many complex

scenarios we cannot even easily enumerate all the possible states of the world. Hence,

given a world state, how can we quickly and automatically know the relative strength of

the different agents? This is still an important open problem.

I gave an initial step by studying in detail different scenarios where diverse agents are

able to outperform the best agent. One possible direction for future work is to identify

common characteristics of world states where a certain agent is able to play better than

the best agent. Hence, given a new world state we would be able to estimate the strongest

agent for that specific world state and better approximate the optimal voting rule. In

addition, we could also dynamically change the team in order to have the best (or close

to the best) possible one for each different scenario.

In real-life scenarios, like robot teams, the problem is even more challenging. We

can always estimate the pdf of an agent by running it multiple times in a given world

state, if we have at least an estimation of the ground truth. However, for an embodied

agent, the number of times we can sample might be very limited. A similar challenge

is faced in Evolutionary Robotics [Nolfi and Floreano, 2001], where a great range of

robots/controllers must be constantly evaluated. One common approach is to perform

the evaluation in simulation, and implement in real life the best performing solution.

Likewise, we could sample the pdf of different robots in simulation, in order to estimate

their pdfs in the real world. Of course, the accuracy of the pdf estimation would depend

on the accuracy of the simulation environment.

42



In general, however, even without knowledge of the pdfs of the agents, this chapter

shows that a team composed by strong but very similar agents is not necessarily optimal.

Hence, if an operator is not able to estimate the pdfs, she should at least evaluate the

performance of diverse teams before picking only the strongest agents as the chosen team

for a certain multi-agent application.

In the next chapter I will present a second model of diversity, which will allow an

operator to better identify in which situations diverse teams should be preferred.
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Chapter 4

Give a Hard Problem to a Diverse Team

Together, we form a necessary paradox; not a senseless contradiction.

(Criss Jami)

Team formation is crucial when deploying a multi-agent system [Nair and Tambe,

2005, Guttmann, 2008, Liemhetcharat and Veloso, 2012, Matthews et al., 2012]. Many

researchers emphasize the importance of diversity when forming teams [LiCalzi and Su-

rucu, 2012, Lamberson and Page, 2012, Hong and Page, 2004]. However, there are many

important questions about diversity that were not asked before, and are not explored in

such models.

LiCalzi and Surucu [2012] and Hong and Page [2004] propose models where the agents

know the utility of the solutions, and the team converges to the best solution found by

one of its members. Clearly in complex problems the utility of solutions would not be

available, and agents would have to resort to other methods, such as voting, to take a

common decision. Lamberson and Page [2012] study diversity in the context of forecasts,

where the solutions are represented by real numbers and the team takes the average of

the opinion of its members. Domains where the possible solutions are discrete, however,

are not captured by such a model.

In the previous chapter, I studied teams of agents that vote in discrete solution spaces.

I showed that a diverse team of weaker agents can overcome a uniform team made of copies

of the best agent. However, this does not always occur, and the previous model do not

present ways to know when we should use diverse teams. Moreover, it lacks a formal

study of how the performance of diverse teams change as the number of agents and/or

actions increases.

In this chapter I shed new light on this problem, by presenting a new, more general

model of diversity for teams of voting agents. My model captures better than the previous

ones the notion of a diverse team as a team of agents that tend to not agree on the same
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actions, and allows us to make new predictions. My main insight is based on the notion

of spreading tail (ST ) and non-spreading tail (NST ) agents. As I will show, a team of ST

agents has a diverse behavior, i.e., they tend to not agree on the same actions. Hence,

I can model a diverse team as a team of ST agents, and show that the performance

improves as the size of the action space gets larger. I also prove upper and lower bounds

on how fast different teams converge. The improvement can be large enough to overcome

a uniform team of NST agents, even if individually the ST agents are weaker. As it is

generally hard to find good solutions for problems with a large number of actions, it is

important to know which teams to use in order to tackle such problems. Moreover, I

show that the performance of a diverse team converges to the optimal one exponentially

fast as the team grows. My synthetic experiments provide even further insights about my

model: even though the diverse team overcomes the uniform team in a large action space,

the uniform team eventually will again play better than the diverse team as the action

space keeps increasing if the best agent does not behave exactly like an NST agent.

Finally, I test my predictions by studying a system of voting agents, in the Computer

Go domain. I show that a uniform team made of copies of the best agent plays better in

smaller board sizes, but is overcome by a diverse team as the board gets larger. Moreover,

I analyze the agents and verify that weak agents have a behavior closer to ST agents,

while the best agent is closer to an NST agent. Therefore, I show that my predictions are

verified in a real system, and can effectively be used while forming a multi-agent team.

4.1 Model for Analysis of Diversity in Teams

Consider a problem defined by choosing an action a from a set of possible actions A.

Each a has an utility U(a), and our goal is to maximize the utility. I always list the

actions in order from best to worst, therefore U(aj) > U(aj+1) ∀j (a0 is the best action).

In some tasks (like in Section 4.2), a series of actions are chosen across different states,

but here I focus on the decision process in a given state.

Consider a set of agents, voting to decide over actions. The agents do not know the

utility of the actions, and vote for the action they believe to be the best according to their

own decision procedure, characterized by a probability distribution (pdf). I write as pi,j

the probability of agent i voting for action aj . I denote by pi,j(m), when I explicitly talk

about pi,j for an action space of size m. If the pdf of one agent is identical to the pdf of

another agent, they will be referred to as copies of the same agent. The action that wins by

plurality voting is taken by the team. Ties are broken randomly, except when I explicitly

talk about a tie breaking rule. Let Dm be the set of suboptimal actions (aj , j 6= 0)

assigned with a nonzero probability in the pdf of an agent i, and dm = |Dm|. I assume that
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there is a bound in the ratio of the suboptimal action with highest probability and the one

with lowest nonzero probability, i.e., let pi,min = minj∈Dmpi,j and pi,max = maxj∈Dmpi,j ;

there is a constant α such that pi,max ≤ αpi,min ∀ agents i.

I define strength as the expected utility of an agent and/or a team. The probability

of a team playing the best action will be called pbest. I first consider a setting where

U(a0) � U(aj)∀j 6= 0, hence I can use pbest as my measure of performance. I will later

consider more general settings, where the first r actions have a high utility.

I define team formation as selecting from the space of all agents a limited number of

agents that has the maximum strength by voting together to decide on actions. I study

the effect of increasing the size m of the set of possible actions on the team formation

problem. Intuitively, the change in team performance as m increases will be affected by

how the pdf of the individual agents i change when m gets higher. As we increase m, dm

can increase or not change. Hence, I classify the agents as spreading tail (ST ) agents or

non-spreading tail agents (NST ).

I define ST agents as agents whose dm is non-decreasing on m and dm → ∞ as

m → ∞. I consider that there is a constant ε > 0, such that for all ST agents i, ∀m,

pi,0 ≥ ε. I assume that pi,0 does not change with m, although later I discuss what happens

when pi,0 changes.

I define NST agents as agents whose pdf does not change as the number of actions m

increases. Hence, let mi0 be the minimum number of actions necessary to define the pdf

of an NST agent i. We have that ∀m,m′ ≥ mi0, ∀j ≤ mi0 pi,j(m) = pi,j(m
′), ∀j > mi0

pi,j(m) = 0.

I first give an intuitive description of the concept of diversity, then define formally

diverse teams. By diversity, I mean agents that tend to disagree. In the previous chapter,

a diverse team is defined as a set of agents with different pdfs. Hence, they disagree

because of having different probabilities of playing certain actions. In this chapter, I

generalize the previous definition to capture cases where agents disagree on actions, re-

gardless of whether their pdfs are the same or not. Formally, I define a diverse team to

be one consisting of a set of ST agents (either different ST agents or copies of the same

ST agent). In my theoretical development I will show that this definition captures the

notion of diversity: a team of ST agents will tend to not agree on the same suboptimal

actions. I call uniform team as the team composed by copies of an NST agent. This is

an idealization to perform my initial analysis. I will later discuss more complex domains,

where the agents of the uniform team also behave like ST agents.
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Agents Action 1 Action 2

Agent 1 0.6 0.4

Agent 2 0.55 0.45

Agent 3 0.55 0.45

Uniform pbest: 0.648

Diverse pbest: 0.599

(a) With 2 actions, uniform team plays better
than diverse team.

Agents Action 1 Action 2 Action 3

Agent 1 0.6 0.4 0

Agent 2 0.55 0.25 0.2

Agent 3 0.55 0.15 0.3

Uniform pbest: 0.648

Diverse pbest: 0.657

(b) When we add one more action, diverse team plays better
than uniform team.

Table 4.1: Performance of diverse team increases when the number of actions increases.

4.1.1 A Hard Problem to a Diverse Team

I start with an example, to give an intuition about my model. Consider the agents in

Table 4.1(a), where I show the pdf of the agents, and pbest of the uniform team (three

copies of agent 1) and the diverse team (one copy of each agent). I assume agent 1 is an

NST agent, while agent 2 and 3 are ST agents. In this situation the uniform team plays

better than the diverse team. Now let’s add one more action to the problem. Because

agent 2 and 3 are ST agents, the probability mass on action 2 scatters to the newly added

action (Table 4.1(b)). Hence, while before the ST agents would always agree on the same

suboptimal action if they both did not vote for the optimal action, now they might vote

for different suboptimal actions, creating a tie between each suboptimal action and the

optimal one. Because ties are broken randomly, when this happens there will be a 1/3

chance that the tie will be broken in favor of the optimal action. Hence, pbest increases

when the probability of the ST agents agreeing on the same suboptimal actions decreases,

and the diverse team now plays better than the uniform team, even though individually

agents 2 and 3 are weaker than agent 1.

I now present my theoretical work. First I show that the performance of a diverse

team converges when m → ∞, to a value that is higher than the performance for any

other m.

Theorem 4.1.1 pbest(m) of a diverse team of n agents converges to a certain value p̃best

as m→∞. Furthermore, p̃best ≥ pbest(m), ∀m.
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Proof: Let pi,min = minj∈Dm pi,j , pi,max = maxj∈Dm pi,j and T be the set of agents in the

team. By my assumptions, there is a constant α such that pi,max ≤ αpi,min for all agents

i. Then, we have that 1 ≥ 1− pi,0 =
∑

j∈Dm
pi,j ≥ dmpi,min. Therefore, pi,min ≤ 1

dm
→ 0

as dm tends to ∞ with m. Similarly, αpi,min → 0 as dm → ∞. As pi,j ≤ αpi,min we

have that ∀j pi,j → 0 as dm → ∞. I show that this implies that when m → ∞, weak

agents never agree on the same suboptimal action. Let i1 and i2 be two arbitrary agents.

Without loss of generality, assume i2’s dm (d
(i2)
m ) is greater than or equal i1’s dm (d

(i1)
m ).

The probability (σi1,i2) of i1 and i2 agreeing on the same suboptimal action is upper

bounded by σi1,i2 =
∑

aj∈A\a0 pi1,jpi2,j ≤ d
(i2)
m pi1,maxpi2,max ≤ d

(i2)
m αpi2,minpi1,max ≤

αpi1,max (as d
(i2)
m pi2,min ≤ 1). We have that αpi1,max → 0 as pi1,max → 0, because α is

a constant. Hence the probability of any two agents agreeing on a suboptimal action is∑
i1∈T

∑
i2∈T,i2 6=i1

σi1,i2
2 ≤ n(n−1)

2 maxi1,i2 σi1,i2 → 0, as n is a constant.

Hence, when m→∞, the diverse team only chooses a suboptimal action if all agents

vote for a different suboptimal action or in a tie between the optimal action and subop-

timal actions (because ties are broken randomly). Therefore, pbest converges to:

p̃best = 1−
n∏
i=1

(1− pi,0)−
n∑
i=1

(pi,0

n∏
j=1,j 6=i

(1− pj,0))
n− 1

n
, (4.1)

that is, the total probability minus the cases where the best action is not chosen: the

second term covers the case where all agents vote for a suboptimal action and the third

term covers the case where one agent votes for the optimal action and all other agents

vote for suboptimal actions.

When m is finite, the agents might choose a suboptimal action by agreeing over that

suboptimal action. Therefore, we have that pbest(m) ≤ p̃best ∀m.

Let puniformbest (m) be pbest of the uniform team, with m actions. A uniform team is not

affected by increasing m, as the pdf of an NST agent will not change. Hence, puniformbest (m)

is the same, ∀m. If p̃best is high enough so that p̃best ≥ puniformbest (m), the diverse team will

overcome the uniform team, when m → ∞. Therefore, the diverse team will be better

than the uniform team when m is large enough.

In practice, a uniform team made of copies of the best agent might not behave exactly

like a team of NST agents, as the best agent could also increase its dm as m gets larger.

I discuss this situation in Section 4.2. In order to perform that study, I derive in the

following corollary how fast pbest converges to p̃best, as a function of dm.

Corollary 4.1.2 pbest(m) of a diverse team increases to p̃best in the order of O( 1
dminm

)

and Ω( 1
dmaxm

), where dmaxm is the highest and dminm the lowest dm of the team.
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Proof: I assume here the notation that was used in the previous proof. First I show a

lowerbound on pbest(m). We have that pbest(m) = 1 − ψ1, where ψ1 is the probability

of the team picking a suboptimal action. ψ1 = ψ2 + ψ3, where ψ2 is the probability of

no agent agreeing and the team picks a suboptimal action and ψ3 is the probability of

at least two agents agreeing and the team picks a suboptimal action. Hence, pbest(m) =

1− ψ2 − ψ3 = p̃best − ψ3 ≥ p̃best − ψ4, where ψ4 is the probability of at least two agents

agreeing. Let σmax = maxi1,i2 σi1,i2 , and i∗1 and i∗2 are the agents whose σi∗1,i∗2 = σmax.

We have that pbest(m) ≥ p̃best − n(n−1)
2 σmax ≥ p̃best − n(n−1)

2 d
(i∗2)
m pi∗1,maxpi∗2,max ≥ p̃best −

n(n−1)
2 d

(i∗2)
m αpi∗1,minαpi∗2,min ≥ p̃best − n(n−1)

2 α2 1

d
(i∗1)
m

(as pi,min ≤ 1
dm

). Hence, pbest(m) ≥

p̃best − n(n−1)
2 α2 1

dminm
 p̃best − pbest(m) ≤ O( 1

dminm
).

Now I show an upper bound: pbest(m) = p̃best − ψ3 ≤ p̃best − ψ5, where ψ5 is the

probability of at least two agents agreeing and no agents vote for the optimal action.

Let σmin = mini1,i2 σi1,i2 ; i∗1 and i∗2 are the agents whose σi∗1,i∗2 = σmin; and pmax,0 =

maxi∈T pi,0. Without loss of generality, I assume that d
(i∗2)
m ≥ d

(i∗1)
m . Hence, pbest(m) ≤

p̃best − n(n−1)
2 σmin(1 − pmax,0)

n−2 ≤ p̃best − n(n−1)
2 d

(i∗1)
m pi∗1,minpi∗2,min(1 − pmax,0)

n−2 ≤
p̃best − n(n−1)

2 d
(i∗1)
m

pi∗1,max
pi∗2,max

α2 (1 − pmax,0)n−2 ≤ p̃best − n(n−1)
2 α−2 1

d
i∗2
m

(1 − pmax,0)n−2 ≤

p̃best − n(n−1)
2 α−2 1

dmaxm
(1− pmax,0)n−2  p̃best − pbest(m) ≥ Ω( 1

dmaxm
).

Hence, agents that change their dm faster will converge faster to p̃best. This is an

important result when I consider later more complex scenarios where the dm of the agents

of the uniform team also change.

Note that p̃best depends on the number of agents n (Equation 4.1). Now I show that

the diverse team tends to always play the optimal action, as n→∞.

Theorem 4.1.3 p̃best converges to 1, as n→∞. Furthermore, 1− p̃best converges expo-

nentially to 0, that is, ∃ constant c, such that 1 − p̃best ≤ c(1 − ε
2)n, ∀n ≥ 2

ε . However,

the performance of the uniform team improves as n→∞ only if ps,0 = maxj ps,j, where

s is the best agent.

Proof: By the previous proof, we know that when m → ∞ the diverse team plays the

optimal action with probability given by p̃best. I show that 1 − p̃best → 0 exponentially

as n → ∞ (this naturally induces p̃best → 1). I first compute an upper bound for∑n
i=1(pi,0

∏n
j=1,j 6=i(1 − pj,0)):

∑n
i=1 pi,0

∏n
j=1,j 6=i(1 − pj,0) ≤

∑n
i=1 pi,0(1 − pmin,0)n−1 ≤

npmax,0(1− pmin,0)n−1 ≤ n(1− ε)n−1 for pmax,0 = maxi pi,0, pmin,0 = minj pj,0.

Since
∏n
i=1(1−pi,0) ≤ (1−ε)n, thus we have that 1−p̃best ≤ (1−ε)n+n(1−ε)n−1. So we

only need to prove that there exists a constant c such that (1−ε)n+n(1−ε)n−1 ≤ c(1− ε
2)n,

as follows: (1−ε)n+1+(n+1)(1−ε)n
(1−ε)n+n(1−ε)n−1 = (1− ε)1−ε+n+1

1−ε+n = 1− ε+ 1−ε
1−ε+n ≤ 1− 1

2ε, if n ≥ 2
ε (by
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setting 1−ε
1−ε+n ≤

ε
2). Hence, ∃c, such that (1− ε)n + n(1− ε)n−1 ≤ c(1− ε

2)n when n ≥ 2
ε .

Therefore, the performance converges exponentially.

For the uniform team, the probability of playing the action that has the highest

probability in the pdf of the best agent converges to 1 as n→∞ [List and Goodin, 2001].

Therefore, the performance only increases as n→∞ if the optimal action is the one that

has the highest probability.

Now I show that we can achieve further improvement in a diverse team by breaking

ties in favor of the strongest agent.

Theorem 4.1.4 When m → ∞, breaking ties in favor of the strongest agent is the

optimal tie-breaking rule for a diverse team.

Proof: Let s be one of the agents. If we break ties in favor of s, the probability of voting

for the optimal choice will be given by:

p̃best = 1−
n∏
i=1

(1− pi,0)− (1− ps,0)(
n∑

i=1,i 6=s
pi,0

n∏
j=1,j 6=i,j 6=s

(1− pj,0)) (4.2)

It is clear that Equation 4.2 is maximized by choosing agent s with the highest ps,0.

However, I still have to show that it is better to break ties in favor of the strongest agent

than breaking ties randomly. That is, I have to show that Equation 4.2 is always higher

than Equation 4.1.

Equation 4.2 differs from Equation 4.1 only on the last term. Therefore, I have to

show that the last term of Equation 4.2 is smaller than the last term of Equation 4.1.

Let’s begin by rewriting the last term of Equation 4.1 as:

n−1
n

∑n
i=1 pi,0

∏n
j=1,j 6=i(1− pj,0) =

n−1
n (1− ps,0)

∑n
i=1,i 6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0) + n−1

n ps,0
∏n
j=1,j 6=s(1− pj,0)

This implies that:

n−1
n

∑n
i=1 pi,0

∏n
j=1,j 6=i(1− pj,0) ≥

n−1
n (1− ps,0)

∑n
i=1,i 6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0).

We know that:

(1−ps,0)
∑n

i=1,i 6=s pi,0
∏n
j=1,j 6=i,j 6=s(1−pj,0) = n−1

n (1−ps,0)
∑n

i=1,i 6=s pi,0
∏n
j=1,j 6=i,j 6=s(1−

pj,0) + 1
n(1− ps,0)

∑n
i=1,i 6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0)

Therefore, for the last term of Equation 4.2 to be smaller than the last term of

Equation 4.1 I have to show that:

n−1
n ps,0

∏n
j=1,j 6=s(1− pj,0) ≥

1
n(1− ps,0)

∑n
i=1,i 6=s pi,0

∏n
j=1,j 6=s,j 6=i(1− pj,0)

It follows that this equation will be true if:
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ps,0 ≥ (1−ps,0)
∑n
i=1,i6=s pi,0

∏n
j=1,j 6=i,j 6=s(1−pj,0)

(n−1)
∏n
j=1,j 6=s(1−pj,0)

 ps,0 ≥ (1−ps,0) 1
n−1

∑n
i=1,i 6=s

pi,0
(1−pi,0)  

ps,0
(1−ps,0) ≥

∑n
i=1,i 6=s

pi,0
(1−pi,0)

n−1

As s is the strongest agent the previous inequality is always true. This is because

ps,0
1−ps,0 =

∑n
i=1,i 6=s

ps,0
(1−ps,0)

n−1 and
ps,0

1−ps,0 ≥
pi,0

(1−pi,0)∀i 6= s. Therefore, it is always better to

break ties in favor of the strongest agent than breaking ties randomly.

Next I show that with one additional assumption, not only the diverse team converges

to p̃best, but also pbest monotonically increases with m. My additional assumption is that

higher utility actions have higher probabilities, i.e., if U(aj) ≥ U(aj′), then pi,j ≥ pi,j′ .

Theorem 4.1.5 The performance of a diverse team monotonically increases with m, if

U(aj) ≥ U(aj′) implies that pi,j ≥ pi,j′.

Proof: Let an event be the resulted choice set of actions of these n agents. I denote

by P (V ) the probability of occurrence of any event in V (hence, P (V ) =
∑

v∈V p(v)). I

call it a winning event if in the event the action chosen by plurality is the best action a0

(including ties). I assume that for all agents i, if U(aj) ≥ U(aj′), then pi,j ≥ pi,j′ .
I show by mathematical induction that we can divide the probability of multiple

suboptimal actions into a new action and pbest(m+ 1) ≥ pbest(m). Let λ be the number

of actions whose probability is being divided. The base case holds trivially when λ = 0.

That is, there is a new action, but all agents have a 0 probability of voting for that new

action. In this case we have that pbest does not change, therefore pbest(m+ 1) ≥ pbest(m).

Now assume that we divided the probability of λ actions and it is true that pbest(m+

1) ≥ pbest(m). I show that it is also true for λ + 1. Hence, let’s pick one more action to

divide the probability. Without loss of generality, assume it is action adm , for agent c,

and its probability is being divided into action adm+1. Therefore, p′c,dm = pc,dm − β and

p′c,dm+1 = pc,dm+1 + β, for 0 ≤ β ≤ pc,dm . Let pafterbest (m + 1) be the probability of voting

for the best action after this new division, and pbeforebest (m+ 1) the probability before this

new division. I show that pafterbest (m+ 1) ≥ pbeforebest (m+ 1).

Let Γ be the set of all events where all agents voted, except for agent c (the order

does not matter, so we can consider agent c is the last one to post its vote). If γ ∈ Γ

will be a winning event no matter if agent c votes for adm or adm+1, then changing agent

c’s pdf will not affect the probability of these winning events. Hence, let Γ′ ⊂ Γ be the

set of all events that will become a winning event depending if agent c does not vote for

adm or adm+1. Given that γ ∈ Γ′ already happened, the probability of winning or losing

is equal to the probability of agent c not voting for adm or adm+1.

Now let’s divide Γ′ in two exclusive subsets: Γdm+1 ⊂ Γ′, where for each γ ∈ Γdm+1

action adm+1 is in tie with action a0, so if agent c does not vote for adm+1, γ will be a
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winning event; Γdm ⊂ Γ′, where for each γ ∈ Γdm action adm is in tie with action a0, so if

agent c does not votes for adm , γ will be a winning event. I do not consider events where

both adm+1 and adm are in tie with a0, as in that case the probability of a winning event

does not change (it is given by 1− p′c,dm − p
′
c,dm+1 = 1− pc,dm − pc,dm+1).

Note that for each γ ∈ Γdm+1, the probability of a winning event equals 1− p′c,dm+1.

Therefore, after changing the pdf of agent c, for each γ ∈ Γdm+1, the probability of a

wining event decreases by β. Similarly, for each γ ∈ Γdm , the probability of a winning

event equals 1 − p′c,dm . Therefore, after changing the pdf of agent c, for each γ ∈ Γdm ,

the probability of a winning event increases by β.

Therefore, pafterbest (m+1) ≥ pbeforebest (m+1) if and only if P (Γdm) ≥ P (Γdm+1). Note that

∀γ ∈ Γdm+1 there are more agents that voted for adm+1 than for adm . Also, ∀γ ∈ Γdm there

are more agents that voted for adm than for adm+1. If, for all agents i, pi,dm ≥ pi,dm+1,

we have that P (Γdm) ≥ P (Γdm+1). Therefore, pafterbest (m+ 1) ≥ pbeforebest (m+ 1), so we still

have that pbest(m + 1) ≥ pbest(m). Also note that for the next step of the induction be

valid, so that we can still divide the probability of one more action, it is necessary that

p′c,dm ≥ p
′
c,dm+1.

4.1.2 Generalizations

In the previous theorems I focused on the probability of playing the best action, assuming

that U(a0) � U(aj) ∀j 6= 0. I show now that the theorems still hold in more general

domains where r actions (Ar ⊂ A) have a significant high utility, i.e., U(aj1) � U(aj2)

∀j1 < r, j2 ≥ r. Hence, I now focus on the probability of playing any action in Ar. I

assume that my assumptions are also generalized, i.e., pi,j > ε ∀j < r, and the number

dm of suboptimal actions (aj , j ≥ r) in the Dm set increases with m for ST agents.

Theorem 4.1.6 The previous theorems generalize to settings where U(aj1) � U(aj2)

∀j1 < r, j2 ≥ r.

Proof Sketch: I give here a proof sketch. We just have to generate new pdfs p′i,j ,

such that p′i,0 =
∑r−1

j=0 pi,j , and p′i,b = pi,b+r−1,∀b 6= 0. We can then reapply the proofs

of the previous theorems, but replacing pi,j by p′i,j . Note that this does not guarantee

that all agents will tend to agree on the same action in Ar; but the team will still tend

to pick any action in Ar, since the agents are more likely to agree on actions in Ar than

on actions in A \Ar.

Now I discuss a different generalization: what happens when pi,0 decreases as m

increases (∀ agents i). If pi,0 → p̃i,0 as m→∞, the performance in the limit for a diverse

team will be p̃best evaluated at p̃i,0. Moreover, even if pi,0 → 0, my conclusions about
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Figure 4.1: Comparing diverse and uniform when uniform also increases dm.

relative team performance are not affected as long as we are comparing two ST teams

that have similar pi,0: the same argument as in Corollary 1 implies that the team with

faster growing dm will perform better.

4.2 Experimental Analysis

4.2.1 Synthetic Experiments

I present synthetic experiments, in order to better understand what happens in real

systems. I generate agents by randomly creating pdfs and calculate the probability of

playing the best action (pbest) of the generated teams. I use a uniform distribution

to generate all random numbers. When creating a pdf, I rescale the values assigned

randomly, so that the overall sum of the pdf is equal to 1.

As I said earlier, uniform teams composed by NST agents is an idealization. In more

complex domains, the best agent will not behave exactly like an NST agent; the number

of suboptimal actions with a non-zero probability (dm) will also increase as the action

space gets larger. I perform synthetic experiments to study this situation. I consider that

the best agent is still closer to an NST agent, therefore it increases its dm at a slower

rate than the agents of the diverse team.

In my first experiment, I use teams of 4 agents. For each agent of the diverse team,

pi,0 is chosen randomly between 0.6 and 0.7. The remaining is distributed randomly from

10% to 20% of the next best actions (the number of actions that will receive a positive

probability is also decided randomly). For the uniform team, I make copies of the best

agent (with highest pi,0) of the diverse team, but distribute the remaining probability

randomly from 1% to 3% of the next best actions.
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Figure 4.2: pbest of a diverse team as the number of agents increases.

We can see the average result for 200 random teams in Figure 4.1, where in Figure

4.1(a) I show the difference between the performance in the limit (p̃best) and the actual

pbest(m) for the diverse and the uniform teams; in Figure 4.1(b) I show the average

pbest(m) of the teams. As can be seen, when the best agents increase their dm at a slower

rate than the agents of the diverse team, the uniform teams converge slower to p̃best. Even

though they play better than the diverse teams for a small m, they are surpassed by the

diverse teams as m increases. However, because p̃best of the uniform teams is actually

higher than the one of the diverse teams, eventually the performance of the uniform teams

get closer to the performance of the diverse teams, and will be better than the one of the

diverse teams again for a large enough m.

This situation is expected according to Theorem 4.1.1. If the dm of the best agent

also increases as m gets larger, the uniform team will actually behave like a diverse team

and also converge to p̃best. p̃
uniform
best ≥ p̃diversebest , as the best agent has a higher probability

of playing the optimal action. Hence, in the limit the uniform team will play better than

the diverse team. However, as we saw in Corollary 4.1.2, the speed of convergence is in

the order of 1/dm. Therefore, the diverse team will converge faster, and can overcome

the uniform team for moderately large m.

As Theorem 4.1.3 only holds when m→∞, I also explore the effect of increasing the

number of agents for a large m. The p̃best of a team of agents is shown as the dashed

line in Figure 4.2. I am plotting for agents that have a probability of playing the best

action of only 10%, but as we can see the probability quickly grows as the number of

agents increases. I also calculate pbest for random teams from 2 to 6 agents (shown as

the continuous line), when there are 300 available actions. Each agent has a probability

of playing the best action of 10%, and the remaining probability is randomly distributed
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over the 10% next best actions. As can be seen, the teams have a close performance to

the expected. I only show up to 6 agents because it is too computationally expensive to

calculate the pdfs of larger teams.

4.2.2 Computer Go

I present now results in a real system. I use in my experiments 4 different Go software:

Fuego 1.1, GnuGo 3.8, Pachi 9.01, MoGo 4, and two (weaker) variants of Fuego (Fuego∆

and FuegoΘ), in a total of 6 different, publicly available, agents. Fuego is considered

the strongest agent among all of them. Fuego is an implementation of the UCT Monte

Carlo Go algorithm, therefore it uses heuristics to simulate games in order to evaluate

board configurations. Fuego uses mainly 5 heuristics during these simulations, and they

are executed in a hierarchical order. The original Fuego agent follows the order <Atari

Capture, Atari Defend, Lowlib, Pattern> (The heuristic called Nakade is not enabled

by default). My variation called Fuego∆ follows the order <Atari Defend, Atari Cap-

ture, Pattern, Nakade, Lowlib>, while FuegoΘ follows the order <Atari Defend, Nakade,

Pattern, Atari Capture, Lowlib>. Also, Fuego∆ and FuegoΘ have half of the memory

available when compared with the original Fuego.

All my results are obtained by playing either 1000 games (to evaluate individual

agents) or 2000 games (to evaluate teams), in a HP dl165 with dual dodeca core, 2.33GHz

processors and 48GB of RAM. I compare results obtained by playing against a fixed

opponent. Therefore, I evaluate systems playing as white, against the original Fuego

playing as black. I removed all databases and specific board size knowledge of the agents,

including the opponent. I call Diverse as the team composed of all 6 agents, and Uniform

as the team composed of 6 copies of Fuego. Each agent is initialized with a different

random seed, therefore they will not vote for the same action all the time in a given world

state, due to the characteristics of the search algorithms. In all the graphs I present in this

section, the error bars show the confidence interval, with 99% of confidence (p = 0.01).

I evaluate the performance of the teams over 7 different board sizes. I changed the

time settings of individual agents as I increased the board size, in order to keep their

strength as constant as possible. The average winning rates of the team members is

shown in Table 4.2, while Table 4.3 show the winning rates of the individual agents1.

We can see my results in Figure 4.3 (a). Diverse improves from 58.1% on 9x9 to 72.1%

on 21x21, an increase in winning rate that is statistically significant with p < 2.2×10−16.

This result is expected according to Theorem 4.1.1. Uniform changes from 61.0% to

1In my first experiment, Diverse improved from 56.1% on 9x9 to 85.9% on 19x19. I noted, however, that
some of the diverse agents were getting stronger in relation to the opponent as the board size increased.
Hence, by changing the time setting to keep the strength constant, I am actually making my claims harder
to show, not easier.
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Team 9x9 11x11 13x13 15x15 17x17 19x19 21x21

Diverse 32.2% 30.8% 29.6% 29.4% 31.5% 31.9% 30.3%

Uniform 48.1% 48.6% 46.1% 48.0% 49.3% 46.9% 46.6%

Table 4.2: Average winning rates of the team members across different board sizes. Note
that these are not the winning rates of the teams.

Agent 9x9 11x11 13x13 15x15 17x17 19x19 21x21

Fuego 48.1% 48.6% 46.1% 48.0% 49.3% 46.9% 46.6%

GnuGo 1.1% 1.1% 1.9% 1.9% 4.5% 6.8% 6.1%

Pachi 25.7% 22.9% 25.8% 26.9% 23.5% 20.8% 11.0%

MoGo 27.6% 26.4% 22.7% 22.0% 27.1% 30.1% 27.1%

Fuego∆ 45.7% 45.8% 42.2% 40.4% 43.0% 44.5% 47.4%

FuegoΘ 45.5% 40.2% 39.2% 37.6% 41.8% 42.3% 43.6%

Table 4.3: Winning rates of each one of the agents across different board sizes.

65.8%, a statistically significant improvement with p = 0.0018. As we saw before, an

increase in the performance of Uniform can also be expected, as the best agent might

not be a perfect NST agent. A linear regression of the results of both teams gives a

slope of 0.010 for the diverse team (adjusted R2: 0.808, p = 0.0036) and 0.005 for the

uniform team (adjusted R2: 0.5695, p = 0.0305). Therefore, the diverse team improves

its winning rate faster than the uniform team. To check if this is a significant difference,

I evaluate the interaction term in a linear regression with multiple variables. We find

that the influence of board size is higher on Diverse than on Uniform with p = 0.0797

(estimated coefficient of “size of the board × group type”: −10.321, adjusted R2: 0.7437).

Moreover, on the 9x9 board Diverse is worse than Uniform (p = 0.0663), while on the

21x21 board Diverse is better with high statistical significance (p = 1.941 × 10−5). I

also analyze the performance of the teams subtracted by the average strength of their

members (Figure 4.3 (b)), in order to calculate the increase in winning rate achieved by

“teamwork” and compensate fluctuations on the winning rate of the agents as we change

the board size. Again, the diverse team improves faster than the uniform team. A linear

regression results in a slope of 0.0104 for Diverse (adjusted R2: 0.5549, p = 0.0546) and

0.0043 for Uniform (adjusted R2: 0.1283, p = 0.258).

I also evaluate the performance of teams of 4 agents (Diverse 4 and Uniform 4). For

Diverse 4, I removed Fuego∆ and FuegoΘ from the Diverse team. As can be seen in

Figure 4.4, the impact of adding more agents is higher for the diverse team in a larger

board size (21x21). In the 9x9 board, the difference between Diverse 4 and Diverse 6 is

only 4.4%; while in 21x21 it is 14%. Moreover, we can see a higher impact of adding
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Figure 4.3: Winning rate in the real Computer Go system.
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Figure 4.4: Winning rates for 4 and 6 agents teams.
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agents for the diverse team, than for the uniform team. These results would be expected

according to Theorem 4.1.3.

As can be seen, the predictions of my theory holds: the diverse team improves signifi-

cantly as I increase the action space. The improvement is enough to make it change from

playing worse than the uniform team on 9x9 to playing better than the uniform team

with statistical significance on the 21x21 board. Furthermore, I show a higher impact of

adding more agents when the size of the board is larger.

4.2.3 Analysis

To test the assumptions of my model, I estimate a pdf for each one of the agents. For

each board size, and for each one of 1000 games from my experiments, I randomly choose

a board state between the first and the last movement. I make Fuego evaluate the chosen

board, but I give it a time limit 50x higher than the default one. Therefore, I use this

much stronger version of Fuego to approximate the true ranking of all actions. For each

board size, I run all agents in each board sample and check in which position of the

approximated true ranking they play. This allows me to build a histogram for each agent

and board size combination. Some examples can be seen in Figure 4.5. We can see that

a strong agent, like Fuego, has most of its probability mass on the higher ranked actions,

while weaker agents, like GnuGo, has the mass of its pdf distributed over a larger set of

actions, creating a larger tail. Moreover, the probability mass of GnuGo is spread over a

larger number of actions when I increase the size of the board.

I study how the pdfs of the agents change as we increase the action space. My

hypothesis is that weaker agents will have a behavior closer to ST agents, while stronger

agents to NST agents. In Figure 4.6 (a) I show how many actions receive a probability

higher than 0. As can be seen, Fuego does not behave exactly like an NST agent.

However, it does have a slower growth rate than the other agents. A linear regression

gives the following slopes: 13.08, 19.82, 19.05, 15.82, 15.69, 16.03 for Fuego, Gnugo,

Pachi, Mogo, Fuego∆ and FuegoΘ, respectively (R2: 0.95, 0.98, 0.94, 0.98, 0.98, 0.98,

respectively). It is clear, therefore, that the probability mass of weak agents is distributed

into bigger sets of actions as we increase the action space, and even though the strongest

agent does not behave in the idealized way it does have a slower growth rate.

I also verify how the probability of playing the best action changes for each one of the

agents as the number of actions increase. Figure 4.6 (b) shows that even though all agents

experience a decrease in pi,0, it does not decrease much. From 9x9, all the way to 21x21, I

measure the following decrease: 20%, 23%, 39%, 26%, 28%, 22%, for Fuego, Gnugo, Pachi,

Mogo, Fuego∆ and FuegoΘ, respectively. Hence, on average, they decreased about 25%

from 9x9 to 21x21. Even though my assumption about pi,0 does not hold perfectly, the
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Figure 4.5: Histograms of agents for different board sizes.
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Figure 4.6: Verifying the assumptions in the real system.

predictions of my model are still verified. Therefore, the amount of decrease experienced

is not enough to avoid that the diverse team increases in performance as the action space

grows.

4.3 Conclusion and Discussions

Diversity is an important point to consider when forming teams. In this chapter I present

a new model that captures better than previous ones the intuitive notion of diverse agents

as agents that tend to disagree. This model allows me to make new predictions. I show

that the performance of diverse teams increases as the size of the action space gets larger.

Uniform teams may also increase in performance, but at a slower pace than diverse teams.

Therefore, even though a diverse team may start playing worse than a uniform team, it

can eventually outperform the uniform team as the action space increases. Besides, I show

that in large action spaces the performance of a diverse team converges exponentially fast

to the optimal one as the number of agents increases.

I start my model with the notion of spreading tail (ST ) and non-spreading tail (NST )

agents. ST agents are agents that have a non-zero probability over a larger set of actions

as the action space increases, while NST agents always have a constant number of actions

with non-zero probability. I define a diverse team as a team of ST agents, and a uniform

team as a team of NST agents. Therefore, my focus change from modeling diverse teams

as teams with different agents (as in Chapter 3), to focusing on diverse teams as teams

where the agents tend to disagree. This change allows me to make new predictions that

were not possible before.
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Note that my model does not say that an NST agent will never vote for a new action.

I define the pdfs of the agents by the rankings of the actions. Hence, when the number of

actions increases from a certain number x0 to a new number x1, a new action a∗ may be

the action with highest utility. Therefore, an agent will assign to a∗ the same probability

that it assigned before to the previously best action when the number of actions was only

x0. A uniform team made of copies of the best agent also does not mean that the agents

always vote for the same actions. The vote of each agent is a sample from a pdf, so copies

of a single agent may or may not vote for the same action. In fact, we observe an increase

in performance by voting among multiple copies of a single agent, both theoretically and

experimentally.

The division of agents into two types (ST and NST ) is, however, only an idealization,

that allows me to isolate and study in detail the effect of diversity. A very strong agent

will normally assign most of its probability mass to the actions with the highest utility,

so in the extreme its pdf would never change by adding new actions. In reality, however,

it may also consider a larger set of actions as the action space grows. Therefore, I relax

my model, and introduce the hypothesis that the best agent spreads the tail of its pdf

at a slower pace than weaker agents. I show that because of this effect, a diverse team

increases in performance faster than uniform teams, and I illustrate this phenomenon with

synthetic experiments. Hence, even in a relaxed model where both diverse and uniform

teams are composed of ST agents, a diverse team still outperforms a uniform team as the

action space grows. The effect, however, is transient, as a uniform team may still have a

higher convergence point than a diverse team, so in extreme large action spaces it would

again outperform the diverse team. If the agents have the same probability of playing

the best action, however, then it is clear that in the limit the diverse team will always be

better than the uniform team.

My model needs one strong assumption: that the probability of the individual agents

voting for the best action does not change as the action space increases. This assumption

allows my analysis to be cleaner, although it may not hold perfectly in a real system.

In fact, in my Computer Go experiments we did observe a decrease in the probability

of the agents voting for the best action. However, even though the assumption did not

hold perfectly, the predictions of my theory holds: a diverse team significantly increased

in performance as the action space got larger. Clearly, a decrease in the probability of

the individual agents voting for the best action will decrease the performance of a team,

while the effects studied in this paper will increase the performance. Therefore, as long

as the decrease is not large enough to counter-balance the effect under study, we are still

going to observe an increase in performance as the action space gets larger. Moreover,

as I discuss in my generalizations, the argument that teams that spread the tail faster
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converge faster is still valid when the assumption does not hold; hence if the agents are

equally strong (i.e., the individual agents have the same probability of voting for the best

action) the team with faster growing tail will always perform better.

As mentioned, I verified my theory in a real system of Computer Go playing agents.

Not only a real diverse team of agents effectively increased in performance as the board

size increased, but I also verified that the strongest agent indeed spreads the tail of its pdf

at a slower rate than other weaker agents. I also verified that both diverse and uniform

teams increase in performance, but the diverse team increased two times faster. This is

explained by the relaxed version of my model, when I predict diverse teams to converge

faster than uniform teams, as illustrated by my synthetic experiments.

In the next chapter, I will study diverse and uniform teams in the context of design

problems, where the number of optimal solutions must be maximized, allowing a human

to choose according to aesthetics or compromises that cannot be formalized.
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Chapter 5

So Many Options, but We Need Them All

Creativity is allowing yourself to make mistakes.

Art is knowing which ones to keep.

(Scott Adams)

5.1 Introduction

Teams of voting agents are a powerful tool for finding the optimal solution in many

applications [Mao et al., 2013, Bachrach et al., 2012, Soejima et al., 2010, Polikar, 2012,

Isa et al., 2010]. Voting is a popular approach since it is easily parallelizable, it allows

the re-use of existing agents, and there are theoretical guarantees for finding one optimal

choice [Conitzer and Sandholm, 2005, List and Goodin, 2001].

For design problems, however, finding one optimal solution is not enough. For ex-

ample, it could be mathematically optimal under measurable metrics but lack aesthetic

qualities or social acceptance by the target public. Besides, the solution could have a poor

performance in some key objective of a multi-objective optimization problem. Essentially,

designers need to explore a large set of optimal alternatives, to pick one solution not only

according to her aesthetic taste (and/or the one of the target public), but also according

to preferences that may be unknown or not formalized, especially when there are multi-

ple optimization objectives leading to intricate trade-offs and compromises [Gerber, 2007,

Woodbury and Burrow, 2006, Radford and Gero, 1980, van Langen and Brazier, 2006,

Gero and Sosa, 2008].

Hence, we actually need systems that find as many optimal solutions as possible,

allowing a human to explore such optimal alternatives to make a choice. Even if a user

does not want to consider too many solutions, they can be filtered and clustered [Erhan

et al., 2014], and be presented in manageable ways [Smith et al., 2010], allowing her to
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easily make an informed choice. Therefore, a system of voting agents that produces a

unique optimal solution is insufficient, and I propose the novel social choice problem of

maximizing the number of optimal alternatives found by a voting system. As ranked

voting may suffer from noisy rankings when using existing agents (Chapter 6), I study

multiple plurality voting iterations, allowing great applicability and re-use of existing

agents.

Traditionally, social choice studies the optimality of voting rules, assuming a certain

noise models for the agents, and rankings composed of a linear order over alternatives

[Conitzer and Sandholm, 2005, Caragiannis et al., 2013, List and Goodin, 2001]. Hence,

there is a single optimal choice, and a system is successful if it can return that optimal

choice with high probability. More recently, several works have been considering cases

where there is a partial order over alternatives [Xia and Conitzer, 2011a, Procaccia et al.,

2012], or where the agents output pairwise comparisons instead of rankings [Elkind and

Shah, 2014]. However, these works still focus on finding an optimal alternative, or a

fixed-sized set of optimal alternatives (where the size is known beforehand). Therefore,

they still provide no help in finding the maximum set of optimal solutions. Moreover,

they assume agents that are able to output comparisons among all actions with fairly

good precision, and the use of multiple voting iterations has never been studied. When

considering agents with different preferences, the field is focused on verifying if voting

rules satisfy a set of axioms that are considered to be important to achieve fairness

[Nurmi, 1987].

Meanwhile, the computational design literature has not yet found the potential of

teams of voting agents. They mainly study traditional optimization techniques to find

optimal solutions, such as genetic algorithms [Miles et al., 2001, Yi and Malkawi, 2009,

Gerber and Lin, 2013], particle swarm optimization [Luh et al., 2011, Felkner et al., 2013],

ant colony optimization [Luh and Lin, 2009], immune systems [Zhao et al., 2014], etc.

Many researchers also explore the potential of swarms of agents that interact on the

geometric space to emerge aesthetically complex shapes (but lacking any optimization

attempt) [Snooks, 2011, Vehlken, 2014, Aranda and Lasch, 2006, Baharlou and Menges,

2013, Ireland, 2009, Carranza and Coates, 2000, Hanna, 2005]. Therefore, the literature

still lacks a deep study of other multi-agent techniques and ideas.

Hence, in this chapter I bring together the social choice and computational design

fields, offering new perspectives to both literatures. I present a theoretical study of which

kinds of teams are desirable for design problems, and how their size may effect optimality.

In doing so, I show many novel results for the study of multi-agent systems. For example,

instead of studying agents with different preferences in order to verify fairness axioms, as

in traditional social choice, I show here that agents with different preferences are actually

64



fundamental when voting to find a “truth” (i.e., optimal decisions). On the other hand,

agents with the same set of preferences significantly harm the performance, and in general

the number of optimal solutions decreases as the size of the team grows. Such results

were never seen before in the social choice literature, as voting to estimate optimality

is normally studied separated from voting as a way to aggregate agents with different

preferences.

My theoretical development draws a novel connection between social choice and num-

ber theory, instead of the traditional connections with bayesian probability theory. This

novel connection allows me to show, for instance, that the optimal diverse team size is

constant with high probability, and a prime number of optimal actions may impose prob-

lems. I also show that we can maximize the number of optimal solutions with agents with

different preferences as the team size grows, as long as the team size grows carefully.

Moreover, I simulate design agents in synthetic experiments to further study my

model, confirming the predictions of my theory and providing realistic insights into what

happens when systems run with bounded computational time. Finally, I present exper-

iments in a highly relevant domain: architectural design, where I show teams of real

design agents that vote to choose the best qualifying and energy-efficient design solutions

for buildings. Such domain is fundamental in the current scenario where we must find

energy-efficient solutions for our modern life-style, since it is known that the early design

of a building has a major impact in its performance through-out its whole life-span [Lin

and Gerber, 2014, Bogenstätter, 2000, Echenagucia et al., 2015]. I study actual teams of

voting agents, and show that by aggregating their opinions, we are able to find a large

percentage of optimal solutions, significantly overcoming single agents. I also discuss how

my model can explain and make predictions about the real system, and how it can guide

researchers in computational design when developing novel agents for design.

5.2 Design Domains

I consider in this chapter domains where the objective is to find the highest number of

optimal solutions. I show that design is one of such domains. With the rapid development

of computation, algorithmic techniques have been emerging as an important approach in

design [Terzidis, 2006]. For example, Gero [2000] argues that computational approaches

can be used to increase the space of design exploration and the creativity in designs.

One of the most common computational design approaches is to use parametric designs

[Vierlinger and Bollinger, 2014, Globa et al., 2014, Erhan et al., 2014], where a human

designer creates an initial design of a product using computer-aided design tools. However,

instead of manually deciding all aspects of the product, she leaves free parameters, whose
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Figure 5.1: A parametric design of a building, showing two parameters: X1 and Y 1.

values can be modified to change the design of the product. It is up to the designer to

decide which parameters are going to be available, their valid types and their valid range.

This approach is used because design is an inherently complex problem [Simon, 1973].

Although a human is able to test and evaluate a few solutions looking for optimality, the

number of different possibilities that she can manually create is highly limited, especially

under the (common) hard time-constraints. In Figure 5.1, I show a simple example in

the context of architectural design, where the parameters X1 and Y 1 are being used to

specify the position of the lower left corner of the building relative to the site boundary.

The design of a product normally occurs over multiple phases, where increasing levels

of details are decided and optimized. My work is focused on the initial design phase,

when multiple possible design alternatives are analyzed in order to choose one for further

study and optimization. This initial design phase is, however, very important to the final

performance of a product [Smith et al., 2010, Holzer et al., 2007]. For example, in the

context of architectural design (as how I explore later in my experiments), it has been

acknowledged that it has a high impact on the overall building performance [Bogenstätter,

2000, Lin and Gerber, 2014, Echenagucia et al., 2015, Yi and Malkawi, 2009].

Design problems are in general multi-objective [Lin and Gerber, 2012, Keough and

Benjamin, 2010], since a product normally must be optimized across different objectives.

For example, a product should have a low cost, but at the same time high quality, two

highly-contradictory objectives. Hence, there are a large number of optimal solutions, all

tied in a Pareto frontier. For the computational system, these optimal solutions are all

equivalent. However, a human may have unknown preferences, may dynamically decide to

value some objective over another when handling intricate trade-offs, and/or may choose

the option that most pleases her own aesthetic taste or the one of the target public/client.

Note that choosing a design according to aesthetics is an undefined problem, since

there are no formal definitions to compare among different options. Hence, the best that a
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system can do is to provide a human with a large number of optimal solutions (according

to other measurable factors), allowing her to freely decide among equally optimal solutions

— but most probably with different aesthetic qualities.

Therefore, it is natural that in design problems we are going to have many possible

solutions, and we want to find as many optimal ones as possible. In fact, the exploration of

a large space of possible alternatives is essential in design, as recently shown by Woodbury

and Burrow [2006], van Langen and Brazier [2006], and Gero and Sosa [2008]. There are

many benefits in discovering a large number of optimal solutions, and I list some of them

below:

Knowledge “Does not Hurt”: I argue that having more optimal solutions to

choose from is not worse than having less. Although some works in psychology show

that humans may get frustrated in the face of too many options, especially under time

pressure [Haynes, 2009, Iyengar and Lepper, 2000], I argue that if a designer has enough

time or motivation to analyze only x solutions, she can do so with a system that provides

more than x optimal solutions by sampling the exact amount that she desires. However,

she will never be able to do so with a system that provides less than x optimal solutions.

Note also that the works in psychology [Haynes, 2009, Iyengar and Lepper, 2000]

were taken in the context of consumers deciding among products to purchase, not in

the context of design exploration. As mentioned before, in design the necessity of large

exploration spaces is recognized [Gerber, 2007, Woodbury and Burrow, 2006, van Langen

and Brazier, 2006, Gero and Sosa, 2008].

Moreover, as I discuss in detail later, voting systems could be combined with another

system that identify and eliminate solutions that are similar by applying clustering and

analysis techniques, and that presents the optimal alternatives to a human in a manage-

able way [Erhan et al., 2014, Smith et al., 2010], so that every solution that the human

looks at is meaningful.

Knowledge Increases Confidence in Optimality: In general design problems,

the true Pareto frontier is unknown. Genetic algorithms are widely used in order to es-

timate it. The only knowledge available for the system to evaluate the optimality is in

comparison with the other solutions that are also being evaluated during the optimization

process [Lin and Gerber, 2014]. Many apparently “optimal” solutions are actually dis-

covered to be sub-optimal as we find more solutions. Hence, finding a higher number of

optimal solutions decreases the risk of a designer picking a wrong choice that was initially

outputted as “optimal” by a system (for example, the single agents, as I will show later).

Knowledge Increases Aesthetic Qualities: If a human has a larger set of optimal

solutions to choose from, there is a greater likelihood that at least one of these solutions
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is going to be of high aesthetic quality according to her preferences, or the ones of the

target public [Gero and Sosa, 2008].

Knowledge Increases Diversity of Options: In general, when a system x has

more optimal solutions available than a system y, it does not necessarily imply that the

solutions in the system x are more similar, while the optimal solutions in y are more

different/diverse. In fact, all things equal (i.e., the algorithms are equally able to find

unique solutions), the greater the amount of optimal solutions, the higher the likelihood

that we have more diverse solutions available.

Of course we could have some algorithm x that produces many optimal solutions

by creating small variations of one unique solution, but here I do not consider these

potentially misleading systems. Again, I assume that such solutions could be identified

and filtered by another system [Erhan et al., 2014, Smith et al., 2010].

5.3 Agent Teams for Design Problems

I present my theory of agent teams for design problems. I consider teams that vote

together at each possible decision point of the design of a product (for example, they

may vote for the value of each parameter, in a parametric design). Before showing my

theoretical development, I first show an example to give an intuitive idea about my results.

Then, in Section 5.3.2 and 5.3.3 I show my formal results.

5.3.1 Example

Let’s consider a parametric design problem with two different parameters: ω1 and ω2.

Let’s say that for ω1 there are two possible optimal values: a0 or a1. For ω2, let’s assume

three possible optimal values: a1, a2, a3. I consider that any solution with an optimal

value for each parameter is optimal, and hence there are 6 (and only 6) possible optimal

vectors: < a0, a1 >, < a0, a2 >, < a0, a3 >, < a1, a1 >, < a1, a2 >, < a1, a3 >.

Of course the information of which actions are optimal is not known before-hand,

otherwise we would not need a design system at all. I list here the optimal values only

for the purpose of my example.

I will study teams where each agent outputs a value for each parameter, and these

opinions are aggregated by voting. Voting across each parameter, however, will only

produce a single solution. Therefore, I consider multiple voting iterations (where one

iteration goes across all parameters). At each iteration, we may find a new optimal

solution, we may repeat a solution that was already found, or we may fail to find an

optimal solution altogether.
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Action a0 a1
Probability 0.3 0.7

(a) First parameter

Action a0 a1 a2 a3
Probability 0 0.2 0.6 0.2

(b) Second parameter

(I) Uniform agent

Action a0 a1
Agent 1 0.3 0.7

Agent 2 0.3 0.7

Agent 3 0.3 0.7

Agent 4 0.7 0.3

Agent 5 0.7 0.3

Agent 6 0.7 0.3

(a) First parameter

Action a0 a1 a2 a3
Agent 1 0.1 0.1 0.4 0.4

Agent 2 0.1 0.4 0.4 0.1

Agent 3 0.1 0.4 0.4 0.1

Agent 4 0.1 0.1 0.4 0.4

Agent 5 0.1 0.4 0.1 0.4

Agent 6 0.1 0.4 0.1 0.4

(b) Second parameter

(II) Diverse agents

Table 5.1: Probability distribution function of the agents in my example.

I will study in this chapter the performance of different kinds of teams. Consider

now that we have a strong agent, that always votes for optimal values, but according to

the probabilities shown in Table 5.1 (I). We can see, therefore, that each time we run

such agent, it has a greater tendency of voting for ω1 := a1 and ω2 := a2 than the other

possible optimal values.

Now, let’s first consider a uniform team composed of multiple copies of the previously

mentioned strong agent. The vote of each agent is a different sample from the same

probability distribution function (pdf) in Table 5.1 (I). I consider that the team aggregates

the opinions of its members by plurality voting for each parameter. That is, for each

parameter the team takes the decision voted by the largest number of agents. As each

individual agent has a greater tendency of voting for ω1 := a1 and ω2 := a2, we expect to

see the optimal solution < a1, a2 > more often than the other possible optimal solutions.

In fact, in Table 5.2 (a) I calculate the probability of finding each possible optimal solution

for uniform teams of 6 and 12 agents. As we can see, even though the probability of

outputting any optimal solution remains constant as 1, the higher the number of agents

the higher the likelihood that the team will output the solution < a1, a2 >.

Of course, we have limited time to find optimal design alternatives. Consider, for

example, that we can run the whole system only 10 times. Ideally, we want to find all

the 6 possible optimal solutions within these 10 iterations. In expectancy, however, with

6 agents we would repeat the solution < a1, a2 > 6.7 times, and with 12 agents 8.4 times.

Hence, we would end up being able to find only around 3 optimal solutions.

Consider now a diverse team composed of agents with different preferences, as shown

in Table 5.1 (II). We can see the pdfs when aggregating the opinions of such agents with
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Solution < a0, a1 > < a0, a2 > < a0, a3 > < a1, a1 > < a1, a2 > < a1, a3 >

6 Agents 0.0160 0.1310 0.0160 0.0822 0.6724 0.0822

12 Agents 0.0033 0.0715 0.0033 0.0393 0.8430 0.0393

(a) Uniform Team

Solution < a0, a1 > < a0, a2 > < a0, a3 > < a1, a1 > < a1, a2 > < a1, a3 >

6 Agents 0.1590 0.1590 0.1590 0.1590 0.1590 0.1590

12 Agents 0.1638 0.1638 0.1638 0.1638 0.1638 0.1638

(b) Diverse Team

Table 5.2: Probability of outputting each possible optimal solution, for the diverse and
uniform teams.

plurality voting in Table 5.2 (b). For a 6 agents team I consider one copy of each agent,

and for a 12 agents team I consider two copies of each agent. As we can notice, even

though now the probabilities of voting for optimal solutions sum up to 0.954 ≤ 1 with 6

agents, they are evenly distributed over all optimal solutions. Hence, if we run 10 voting

iterations, each option is expected to be seen 1.5 times. Moreover, when we increase the

number of agents to 12, the team improves, as the probabilities of voting for each optimal

solution increases (summing up now to 0.982), but they remain evenly distributed. Hence,

each option is expected to be seen now 1.6 times.

As we can see, teams of agents with different preferences have a great potential in

increasing the number of optimal solutions that we can find, as there is a greater prob-

ability of finding a new solution each time we run the system, even though the agents

themselves may have a lower probability of finding optimal solutions than the ones in the

uniform team.

However, the performance of the team also depends on the team size, and it will not

necessarily increase as the team grows (even for the diverse team). For example, in Table

5.3 we can see the pdfs of the diverse team for other team sizes. As we can see, even

though the team size increases, for several optimal solutions the probability of voting for

them decreases. For example, the solution < a0, a3 > goes from 0.1590 with 6 agents all

the way down to 0.0787 with 9 agents. Hence, we will see a lower number of optimal

solutions after 10 voting iterations. However, when the number of agents reaches 12, we

again have the situation where the total probability is equally divided across all possible

optimal solutions.

Hence, the diverse team will, in general, improve as the team size grows, but not

for all team sizes. Therefore, we have to increase the team size carefully to guarantee

optimality. In the next section I formalize my theory.
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Solution < a0, a1 > < a0, a2 > < a0, a3 > < a1, a1 > < a1, a2 > < a1, a3 >

6 Agents 0.1590 0.1590 0.1590 0.1590 0.1590 0.1590

7 Agents 0.1107 0.1515 0.1515 0.1466 0.2007 0.2007

8 Agents 0.1118 0.1468 0.1118 0.1806 0.2371 0.1806

9 Agents 0.1046 0.1333 0.0787 0.2171 0.2766 0.1632

10 Agents 0.1065 0.1713 0.1065 0.1641 0.2638 0.1641

11 Agents 0.1339 0.1687 0.1339 0.1666 0.2099 0.1666

12 Agents 0.1638 0.1638 0.1638 0.1638 0.1638 0.1638

Table 5.3: Probability of outputting each possible optimal solution, for different sizes of
the diverse team.

5.3.2 Theory

I consider here a team of agents that vote together at each decision point of the design

of a product. For the sake of clarity and precision, I present in this section an idealized

model. In Section 5.3.3 I generalize my model to more complex situations, and in Section

5.4 I generalize further by performing synthetic experiments.

Let Φ be a set of agents φ, and Ω a set of world states ω. Each ω has an associated

set of possible actions Aω. For example, each world state may represent a parameter of

a parametric design problem, and each action may represent a possible value for such

parameter. At each world state, each agent φ outputs an action a, an optimal action

according to the agent’s imperfect evaluation – which may or may not be a truly optimal

action. Hence, there is a probability pj that the agent outputs a certain action aj . The

teams take the action decided by plurality voting (i.e, as mentioned in the previous section,

the team takes the decision voted by the largest number of agents – I consider ties are

broken uniformly at random).

I assume first that the world states are independent, and by taking an optimal action

at all world states we find an optimal solution for the entire problem. That is, I assume

first that by taking locally optimal decisions at each design decision point, a globally

optimal solution is obtained. I generalize this assumption later, in Proposition 5.3.10 (in

Section 5.3.3), where I consider design problems with correlated parameters. I will also

further discuss this assumption in Section 5.6.

In this chapter my objective goes beyond finding one optimal solution, I want to

maximize the number of optimal solutions that we can find. For greater applicability, I

consider here agents that output a single action. Hence, we generate multiple solutions

by re-applying the voting procedure across all world states multiple times (which are

called voting iterations – one iteration goes across all world states, forming one solution).

Formally, let S be the set of (unique) optimal solutions that we find by re-applying the
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voting procedure through z iterations. Our objective is to maximize |S|. I will show

that, under some conditions, we can achieve that when z →∞ (I study bounded time in

Section 5.4).

I consider that at each world state ω there is a subset Goodω ⊂ Aω of optimal

actions in ω. An optimal solution is going to be composed by assigning any a ∈ Goodω
in world state ω – for all world states. Conversely, I consider the complementary subset

Badω ⊂ Aω, such that Goodω∪Badω = Aω,Goodω∩Badω = ∅. I drop the subscripts

ω when it is clear that I am referring to a certain world state.

One fundamental problem is selecting which agents should form a team. By the

classical voting theories, one would expect the best teams to be uniform teams composed

of multiple copies of the best agent [Conitzer and Sandholm, 2005, List and Goodin,

2001]. Here I show, however, that for design problems uniform teams need very strong

assumptions to be optimal, and in most cases they actually converge to always outputting

a single solution – an undesirable outcome. However, diverse teams are optimal as long

as the team size grows carefully, as I explain later in Theorem 5.3.6.

I call a team optimal when: (i) |S| →
∏
ω |Goodω| as z → ∞, and (ii) all optimal

solutions are chosen by the team with the same probability 1/
∏
ω |Goodω|. Otherwise,

even though the team still produces all optimal solutions, it would tend to repeat already

generated solutions whose probability is higher. Since in practice there are time bounds,

such condition is fundamental to have as many optimal solutions as possible in limited

time. Also note that condition (ii) subsumes condition (i), but I keep both for clarity.

I first consider agents whose pdfs are independent and identically distributed. Let

pGoodj be the probability of voting for aj ∈ Good, and pBadk be the probability of voting

for ak ∈ Bad. Let n := |Φ| be the size of the team, and Nl be the number of agents that

vote for al in a certain voting iteration. If ∀aj ∈ Good, ak ∈ Bad, pGoodj > pBadk , the

team is going to find one optimal solution with probability 1 as n→∞, as I show in the

following observation:

Observation 5.3.1 The probability of a team outputting one optimal solution goes to 1

as n→∞, if pGoodj > pBadk , ∀aj ∈ Good, ak ∈ Bad.

Note that as the agents are independent and identically distributed, we can model the

process of pooling the opinions of n agents as a multinomial distribution with n trials

(and the probability of any class k of the multinomial corresponds to the probability pk

of voting for an action ak).

Hence, for each action al, the expected number of votes is given by E[Nl] = n × pl.
Therefore, by the law of large numbers, if pGoodj > pBadk ∀aj ∈ Good, ak ∈ Bad, we have
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that Nj > Nk. Hence, the team will pick an action aj ∈ Good, in all world states, if n

is large enough (i.e., n→∞).

However, with a team made of copies of the same agent, the system is likely to lose

the ability to generate new solutions as n increases. If, for each ω, we have an action

aωm such that pGoodm > pGoodj ∀aωm 6= aωj , the team converges to picking only action aωm.

Hence, |S| = 1, which is a very negative result for design problems. Therefore, contrary

to traditional social choice, here it is not the case that increasing the team size always

improves performance.

I formalize this notion in Proposition 5.3.2 below, where I also show the conditions for

a uniform team to be optimal. Let pGood :=
∑

j p
Good
j be the probability of picking any

action in Good. I re-write the probability of an action aGoodj as: pGoodj := pGood
|Good| + λj ,

where
∑

j λj := 0. Hence, some λj are positive, and some are negative (unless they are

all equal to 0). Let λ+ be the set of λj > 0. Let λHigh be the maximum possible value

for λj ∈ λ+, such that the relation pGoodj > pBadk , ∀aj ∈ Good, ak ∈ Bad is preserved. I

show that when z → ∞, |S| is the highest as maxλ+ → 0, and the lowest (i.e., one) as

minλ+ → λHigh. Note that maxλ+ → 0 represents the situation where the probability

is equally divided among all optimal actions, and minλ+ → λHigh represents the case

where one optimal action receives a high probability in comparison with the other optimal

actions.

Proposition 5.3.2 The maximum value for |S| is
∏
ω |Goodω|. When z, n → ∞, as

maxλ+ → 0, |S| →
∏
ω |Goodω|. Conversely, as minλ+ → λHigh, |S| → 1.

Proof: As maxλ+ → 0, λj → 0, ∀aj . Hence, E[Nj ]→ n× pGood
|Good| , ∀aj ∈ Good. Because

ties are broken randomly, at each world state ω, each aj ∈ Goodω is selected by the

team with equal probability 1
|Goodω | . As E[Nj ] = E[Nk] ∀aj , ak ∈ Good, we have that at

each ω it is possible to choose |Goodω| different actions. Hence, there are
∏
ω |Goodω|

possible combinations of solutions. At each voting iteration, ties are broken at each ω

randomly, and one possible combination is generated. As z →∞, eventually we cover all

possible combinations, and |S| →
∏
ω |Goodω|.

Conversely, as minλ+ → λHigh, E[Nj ]→ n×pGoodj for one fixed aj such that pGoodj >

pGoodk , ∀aj 6= ak ∈ Good. Consequently, E[Nj ] > E[Nk], at each ω. Hence, there is no tie

in any world state, and the team picks a fixed aωj at each world state. Therefore, even if

z →∞, |S| → 1. Note that I do not say here that the same action is picked across world

states (as aωj may differ for each ω), but that the same optimal solution is picked for all

voting iterations.

Therefore, uniform teams need a very strong assumption to satisfy condition (i): the

probability of voting for optimal actions must be uniformly distributed over all optimal
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Figure 5.2: Illustrative example of the probability distribution functions of two diverse
agents.

actions (i.e., maxλ+ → 0). If maxλ+ → 0, condition (ii) is also satisfied as n grows,

because of Observation 5.3.1 (i.e., the probability of outputting a suboptimal solution

goes to 0) and because of the fact that all actions are equally likely to be chosen; hence

each solution is chosen with equal probability 1/
∏
ω |Goodω|.

I show that, alternatively, we can use agents with different “preferences” (i.e., “di-

verse” agents), to maximize |S|. I consider here agents that have about the same ability

in problem-solving, but they prefer different optimal actions. As the agents have simi-

lar ability, I consider here the probabilities to be the same across agents, except for the

actions in Good, as each agent φi has a subset Goodi ⊂ Good consisting of its pre-

ferred actions (which are more likely to be chosen than other actions). I denote by pij

the probability of agent φi voting for action aj . Hence, I define the pdf of the diverse

agents as: ∀aj ∈ Goodi, let pGoodi :=
∑

j pij , pij :=
pGoodi
|Goodi| ; ∀aj ∈ Good \ Good

i,

pij :=
pGood−pGoodi
|Good\Goodi| ; and ∀ak /∈ Goodi, aj ∈ Goodi, pij > pik. Good

i ∩Goodl (of agents

φi and φl) is not necessarily ∅. The pdfs are strictly defined in this section for the sake of

clarity and precision, but in the next section and in my synthetic experiments I generalize

further. In Figure 5.2 I show an illustrative example of the pdf of two agents.

Let’s consider we can draw diverse agents from a distribution F . Each agent φi has

r < |Good| actions in its Goodi, and I assume that all actions in Good are equally likely

to be selected to form Goodi (since they are all equally optimal). Note that r is the same

for all agents (as, again, I assume they have the same pdfs, but different preferences),
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Figure 5.3: Illustrative example of Equation 5.1. Here I show 6 agents (n := 6) with
2 preferred actions each (r := 2). Each action is in the list of preferences of 4 agents
(k := 4). As an example, I mark with a dashed circle one of the actions, a2.

and that I also cover the case where each agent prefers a single action (which would be

r := 1).

I will show that by drawing n agents from F , the team is optimal for large n with

probability 1, as long as n is a multiple of a divisor (> 1) of each |Goodω|. I will also

show that the minimum necessary optimal team size is constant with high probability as

the number of world states grow. I start with the following proposition:

Proposition 5.3.3 If a team of size n is optimal at a world state, then gcd(n, |Good|) >
1. That is, n and |Good| are not co-prime.

Proof: (By contradiction). By the optimality requirement (ii), each action must be in

the Goodi set of the same number of agents. Otherwise, if an action ai is preferred by

a larger number of agents than another action aj , the team would pick ai with a larger

probability than aj . Hence, we must have that:

n× r = k × |Good|, (5.1)

where k is a constant ∈ N>0. k represents the number of agents that have a given action

aj in its Goodi. Note that it must be the same for all optimal actions, and therefore we

have a single constant.

If n and |Good| are co-prime, then it must be the case that r is divisible by |Good|.
However, this yields r ≥ |Good|, which contradicts our assumption. Therefore, n and

|Good| are not co-prime.

I illustrate Equation 5.1 with an example in Figure 5.3. In the figure I show 6 agents

(n := 6), with 2 preferred actions each (r := 2), equivalent to the example that I showed

before in Table 5.1 (II-b). Note that each action is preferred by 4 agents, and hence I

show a case where k := 4. As an example, I mark with a dashed circle one of the actions,

a2. In such case, the team will have an equal probability of picking all optimal actions,
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and optimality condition (ii) would be satisfied if the probability of picking suboptimal

actions is 0.

If, for example, we now change agent 5 to prefer actions a2 and a3 (replacing action

a1 by a2), then the team would be more likely to pick action a2 by plurality voting than

any other action, and it would be less likely to pick action a1 than any other action.

As the number of voting iterations is limited in actual applications, this situation is not

desirable.

Note that we could also have a case where one agent prefers a larger number of

actions than others. For example, we could change agent 5 to prefer actions a1, a2

and a3. However, as the agent has a limited amount of probability distributed over the

actions in the Goodi set (i.e., pGoodi), we have that necessarily the probability of the

agent voting for a1 and a3 would drop; hence, the team would pick a2 more often than

the other actions, and a1 and a3 less often than the other actions.

This does not mean, however, that there is a single optimal configuration for each

number of optimal actions |Good|. There are multiple possible solutions for Equation

5.1, but in any possible solution we will find that the size of the team n and |Good| are

not co-prime.

Proposition 5.3.3 is a necessary but not sufficient condition for optimality. That is, if

Equation 5.1 is satisfied, all optimal actions will be selected with the same probability,

but it is still necessary for the probability of picking suboptimal actions to go to 0 in

order to fully satisfy condition (ii). That will be the case if pGoodi = 1, or if n→∞, since

pGoodj > pBadk , ∀aj ∈ Good, ak ∈ Bad.

Note that Proposition 5.3.3 implies hard restrictions for world states where |Good|
is prime, or for teams with prime size n: if n is prime, |Good| must be a multiple of n;

and if |Good| is prime, n must be a multiple of |Good|.
Now let’s analyze across a set of world states Ω. For a team of fixed size n, Proposition

5.3.3 applies across all world states. Hence, the team size must be a multiple of a divisor

(> 1) of each |Goodω|. Note that the pdfs of the agents (and also r) may change according

to ω. Let D be a set containing one divisor of each world state (if two or more world

states have a common divisor x, it will be representable by only one x ∈D). Hence, ∀ω,

∃d ∈D, such that d
∣∣ |Goodω|; and ∀d ∈D, ∃Goodω, such that d

∣∣ |Goodω|. There are

multiple possible D sets, from the superset of all possibilities D .

Therefore, we can now study the minimum size necessary for an optimal team. Ap-

plying Proposition 5.3.3 at each world state ω, we have that the minimum size necessary

for an optimal team is n = minD∈D
∏
d∈D d. Hence, our worst case is when each |Goodω|

is a unique prime, as the team will have to be a product of all (unique) optimal action

space sizes. This means that:
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Proposition 5.3.4 In the worst case, the minimum team size is exponential in the size

of the world states |Ω|. In the best case, the minimum necessary team size is a constant

with |Ω|.

Proof: In the worst case, each added world state ω has a unique prime optimal action

space size. Hence, the minimum team size is at least the product of the first |Ω| primes,

which, by the prime number theorem, has growth rate exp((1 + o(1))|Ω| log |Ω|). In the

best case, each addedGoodω has a common divisor with previous ones, and the minimum

necessary team size does not change.

However, I show that the worst case happens with low probability, and the best case

with high probability. Let G be the maximum possible |Good|, and M := |Ω|. Assume

that each world state ωj will have a uniformly randomly drawn number of optimal actions,

denoted as mj , for all j = 1, . . . ,M (i.e., ∀ω ∈ Ω). I assume that G is large enough, so

that the probability that a given mj has factor p is 1/p.

Proposition 5.3.5 The probability that the minimum necessary team size grows expo-

nentially tends to 0, and the probability that it is constant tends to 1, as M →∞.

Proof: It is sufficient to show that the probability that m1, . . . ,mM−1 are all co-prime

with mM tends to 0 as M →∞. That is, I show that when adding a new world state

ωM , its |Goodω| will have a common factor with the size of the Good set of some of the

other world states with high probability.

Given any prime p, the probability that at least one of any independently randomly

generated M − 1 numbers m1, ...,mM−1 has factor p is 1− (1− 1
p)
M−1, while the proba-

bility that one independently randomly generated number mM has factor p is 1
p (for large

enough G). Therefore, the probability mM shares common factor p with at least one of

m1, . . . ,mM−1 is
1−(1− 1

p
)M−1

p .

The probability that mM is co-prime with all m1, . . . ,mM−1 is:

∏
all primes p

[1−
1− (1− 1

p)M−1

p
],

which, as M →∞, tends to:

∏
all primes p

(1− 1

p
) =

1

ζ(1)
= 0,

where ζ(s) is the Riemann zeta function. The last equality holds true since:

ζ(1) =
∏

all primes p

1

1− p−1
=
∞∑
i=1

1

i
→∞
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(as shown by Euler). Hence, with high probability, when adding a new world state ω,

|Goodω| will share a common factor with a world state already in Ω.

Finally, in the next theorem I show that a diverse team of agents is always optimal as

the team grows, as long as it grows carefully. That is, I show that for large diverse teams

we will be able to satisfy the optimality conditions (i) and (ii), as long as the team size

is a multiple of a divisor of |Goodω|, ∀ω ∈ Ω. Again, I assume that G is large enough,

so that the probability that a given mj has factor p is 1/p.

Theorem 5.3.6 Let D ∈ D be a set containing one factor from each Goodω. For

arbitrary n, the probability that we generate (by drawing from a distribution F) an optimal

team of size n converges to 0 as |Ω| → ∞. However, if n = c
∏
d∈D d, then the probability

that the team is optimal tends to 1 as c→∞.

Proof: For an arbitrary team size n, let P be the set of its prime factors. Given one

p ∈ P , the probability that p is not a factor of |Goodω| is 1− 1/p. The probability that

all p ∈ P are not factors is:
∏
p(1− 1/p). As 0 <

∏
p(1− 1/p) < 1, the probability that

at least one p ∈ P is a factor of |Goodω| is 1 −
∏
p(1 − 1/p) < 1. For |Ω| tests, the

probability that at least one p is a factor in all of them is:

(
1−

∏
p

(1− 1/p)

)|Ω|
,

which tends to 0, as |Ω| → ∞. Hence, the probability that gcd(n, |Goodω|) = 1 for at

least one ω tends to 1, and the probability that the team can be optimal tends to 0.

However, if:

n = c
∏
d∈D

d,

then gcd(n, |Goodω|) 6= 1 ∀ω ∈ Ω, satisfying the necessary condition in Proposition 5.3.3

at all world states.

Let nj be the number of agents φi that have aj in its Goodi, and P (nj = nk) be the

probability that nj = nk (that is, the probability that the same number of agents have

aj and ak in their Goodi). As each aj has equal probability of being in a Goodi, for a

large number of drawings from F (i.e., c→∞), we have that P (nj = nk)→ 1, ∀aj , ak ∈
Goodω,∀ω, by the law of large numbers. Hence, each optimal solution will be selected

with the same probability.

Moreover, as pGoodj > pBadk , ∀aj ∈ Good, ak ∈ Bad, the probability of picking a

suboptimal solution converges to 0 (as n→∞ with c→∞), and hence the probability of
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picking each of the optimal solutions converges to 1/
∏
ω |Goodω| (satisfying optimality

condition (ii)).

If it is expensive to test values for n such that Theorem 5.3.6 is satisfied, we can choose

n = c
∏
ω |Goodω|, as it immediately implies the conditions of the theorem. Moreover, if

we know the size of all |Goodω|, we can check if n and |Goodω| are co-prime in O(h) time

(where h is the number of digits in the smaller number), using the Euclidean algorithm.

Hence, we can test all world states in O(|Ω|h) time.

I presented in this section an idealized version of my theory. In practice, the agents’

pdfs may differ further than what was considered, and the world states (i.e., parameters

of a design problem) may not be completely independent. Hence, in the next section I

generalize the theory to more complex situations.

5.3.3 Generalizations

In this section I present several generalizations from my initial idealized model, in order

to cover more realistic situations. I start by generalizing my theory to cases where the

agents do not have only a probability of pij :=
pGoodi
|Goodi| or pij :=

pGood−pGoodi
|Good\Goodi| to vote for

actions in Good (depending if the action is in Goodi or not), but now can have different

probabilities distributed over the actions in Good. Hence, I now model each agent as

having a set of Goodi sets, each with its own probability distributed over the actions in

the set. For this generalization, I still consider that the agents have the same pdf, but

different preferences. That is, the agents may have different actions at each Goodi set,

but their size and the number of sets is the same across agents.

Hence, I denote each Goodi set j as jGood
i. Each also has its own p

jGoodi total

probability, that will be equally distributed among all actions in jGood
i, in a similar

fashion as before. As mentioned, the content of each jGood
i set may differ across agents,

but I consider the p
jGoodi to be the same across agents. Note that the case where each

action has a different probability is defined as the situation where each |jGoodi| := 1.

Similarly as before, I consider that each agent φi has jr < |Good| actions at each

jGood
i, and all actions in Good are equally likely to be selected to form each jGood

i.

In Figure 5.4 I show an illustrative example of the pdf of two agents with multiple jGood
i

sets.

Proposition 5.3.7 Theorem 5.3.6 still applies under the more general model stated above.

That is, if n = c
∏
d∈D d, then the probability that the team is optimal tends to 1 as c→∞.

Proof: Similarly as before, for each jGood
i we must have that:
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Figure 5.4: Illustrative example of the probability distribution functions of two agents
with multiple jGood

i sets.

n× jr = jk × |Good|, (5.2)

so that for each jGood
i we have that jk agents have a given action a in its jGood

i.

As the total probability p
jGoodi of each set is the same across agents, we have that each

optimal action will be selected by the team with the same probability when Equation 5.2

is satisfied for all jGood
i. Hence, across world states, each optimal solution will also have

the same probability of being selected. Similarly as in Proposition 5.3.3, for Equation 5.2

to be satisfied, we must have that n and |Good| are not co-prime, and that will be true

when n = c
∏
d∈D d.

Let jnl be the number of agents φi that have al in its jGood
i, and P (jnl = jnm)

be the probability that jnl = jnm. Like before, as each al has equal probability of

being in a jGood
i, for a large number of drawings from F (i.e., c → ∞), we have that

P (jnl = jnm)→ 1, ∀al, am ∈ Goodω,∀ω, by the law of large numbers.

Notice that this happens for all jGood
i sets. Hence, all optimal actions will be

selected with the same probability by the team. Like before, as pGoodl > pBadm , ∀al ∈
Good, am ∈ Bad, the probability of picking a suboptimal action converges to 0 (as

n→∞ with c→∞), and hence the probability of picking each of the optimal solutions

converges to 1/
∏
ω |Goodω| (satisfying optimality condition (ii)).

Now I present my second generalization. I show that Theorem 5.3.6 still applies for

agents φi with different probabilities over optimal actions pGoodi . I consider here a more
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general definition of optimal team: the difference between the probabilities of picking

each optimal solution and 1/
∏
ω |Goodω| must be as small as possible.

Hence, let pΦ
j be the probability of team Φ picking optimal action aj , the optimal

team is such that ϑ :=
∑

aj
|pΦ
j − 1/|Goodω||, ∀aj ∈ Goodω is minimized (∀ω ∈ Ω).

I focus here in a single world state ω, as by minimizing ϑ in each world state we are

also making the difference between the probability of picking each optimal solution and

1/
∏
ω |Goodω| as small as possible. Hence, the original definition in the previous section

is the case where ϑ := 0.

Proposition 5.3.8 Theorem 5.3.6 still applies when |pGoodi − pGoodj | ≤ ε, ∀φi, φj, for

small enough ε > 0.

Proof: Let Φ be an optimal team, where pGoodi is the same for all agents φi. Hence,

the probability of all actions in Good being selected by the team is the same. I.e.,

pΦ
k = pΦ

l , ∀ak, al ∈ Good, and ϑ := 0. Let ∆ :=
∑

ak∈Good
∑

al∈Good |p
Φ
k − pΦ

l | be the

difference between the probabilities of the team taking each optimal action. In the rest of

the proof we will disturb the probabilities pGoodi of sets of agents, which will change ∆.

I focus in studying the variation in ∆, as minimizing the variation in ∆ also minimizes

the variation in ϑ.

I prove by mathematical induction. Assume we change the pGoodi of x agents φi, and

∆ is as small as possible. Now we will change x+ 1 agents. Let’s pick one agent φi and

increase its pGoodi by δ ≤ ε. It follows that pΦ
k > pΦ

l , ∀ak ∈ Goodi, al /∈ Goodi, and the

new ∆′ :=
∑

ak∈Good
∑

al∈Good |p
Φ
k − pΦ

l | > ∆.

If we add one more agent φj , such that Goodj ∩ Goodi = ∅, the probability of

voting for actions am ∈ Goodj increases. For small enough ε, pGoodj will be too large to

precisely equalize the probabilities, and it follows that pΦ
m > pΦ

k > pΦ
l , ∀am ∈ Goodj , ak ∈

Goodi, al /∈ Goodi ∪Goodj , and ∆′′ :=
∑

ak∈Good
∑

al∈Good |p
Φ
k − pΦ

l | > ∆′. The same

applies for each newly added agent, until we have a new team such that n = c
∏
d∈D d

(again, satisfying the conditions of the theorem).

The base case follows trivially. If we did not change the probability of any agent (i.e.,

x := 0), and we now increase pGoodi of a single agent φi, p
Φ
k > pΦ

l , ∀ak ∈ Goodi, al /∈
Goodi, and ∆′ > ∆. By the same argument as before, adding more agents will only

increase ∆′, until n = c
∏
d∈D d.

Thirdly, I also generalize to the case where the number of preferred actions r changes

for each agent. I consider that the number of actions in the Goodi of each agent φi (ri)

is decided according to a uniform distribution on the interval [1, r′].

Proposition 5.3.9 If n = r′× c
∏
d∈D d, the probability that the team is optimal → 1 as

c→∞.
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Proof: For large n, the number of agents with ri = 1, . . . , r′ is the same. Therefore, if for

each subset Φi ⊂ Φ, such that rφ = i,∀φ ∈ Φi, we have that pΦi

k = pΦi

l , ∀ak, al ∈ Good,

we will have that pΦ
k = pΦ

l ,∀ak, al ∈ Good. Given an optimal team of size n, we have r′

subsets Φi of size n/r′ each. It follows by Theorem 5.3.6 that n/r′ = c
∏
d∈D d, and:

n = r′ × n/r′ = r′ × c
∏
d∈D

d,

hence n also follows the necessary conditions in Proposition 5.3.3. Similarly as in Theorem

5.3.6, as n→∞ with c→∞, the probability of picking a suboptimal solution converges to

0, and the probability of picking each of the optimal solutions converges to 1/
∏
ω |Goodω|

(satisfying optimality condition (ii)).

Lastly, I discuss the assumption that world states are independent. In design problems

they could actually be correlated. Hence, I present below a constructive proof showing

that we can still use our model to study design problems with correlated parameters.

Proposition 5.3.10 The previous results still apply for design problems with correlated

parameters.

Proof: Let’s consider a design problem with a set Υ of parameters υ. We can divide Υ in

Υk sets, where all υ ∈ Υk are correlated, but υi and υj are independent, ∀υi ∈ Υi, υj ∈
Υj , i 6= j. That is, all parameters υ in a Υk set are correlated, but the parameters

between two different Υk sets are independent. This can always be performed, as in the

worst case where all parameters are correlated, we can have a single Υk := Υ.

Now, instead of modeling each design parameter υ as a world state ω (as in my original

model), we can model each set Υk as a world state ω. Hence, instead of an action a being

one value assigned to a parameter υ, an action a now represents one full combination of

values to each υk in a set Υk.

Hence, instead of voting at each parameter υ, each agent φi now votes for one combi-

nation of value assignments (of correlated parameters) at each set Υk. As all sets Υk are

independent, we still have agents voting for independent world states ω and the previous

results still apply. In the worst case, where all parameters of the problem are correlated,

we would have agents voting for entire solutions, and the model would be considered as

having a single world state ω.

In the next section I perform synthetic experiments with agents whose pdfs differ,

to further generalize over my theory, and I show that diverse teams still significantly

outperform uniform teams.
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Figure 5.5: Percentage of optimal solutions found by uniform teams as max λ+ grows.
Note how maxλ+ := 0 gives the best result.

5.4 Synthetic Experiments

I run synthetic experiments, where I simulate design agents and evaluate diverse and

uniform teams (henceforth diverse and uniform). I randomly create pdfs for the agents,

and simulate voting iterations across a series of world states. I repeat all my experiments

100 times, and in the graphs I plot the average and the confidence interval of my results

(according to a t-test with p := 0.01). I run 1000 voting iterations (z), and measure how

many optimal solutions the team is able to find. I study a scenario where the number of

actions (|A|) := 100, and the number of optimal actions per world state (|Goodω|) is,

respectively: < 2, 3, 5, 5, 5 >, in a total of 750 optimal solutions.

At each repetition of my experiment, I randomly create a pdf for the agents. I start

by studying the impact of maxλ+ in uniform. When creating the uniform team, the

total probability of playing any of the optimal actions (i.e., pGood) is randomly assigned

(uniform distribution) between 0.6 and 0.8. I fix the size of the team (25) and evaluate

different maxλ+ in Figure 5.5. As expected from Proposition 5.3.2, for maxλ+ := 0 the

system finds the highest number of optimal solutions; and as maxλ+ increases, it quickly

drops.

I then study the impact of increasing the number of agents, for uniform and diverse.

To generate a diverse team, I draw randomly a rω in an interval U for each world state,

that will be the size of |Goodi|. I study three variants: diverse*, where U := (0, |Goodω|];
diverse, where U := (0, |Goodω|), and diverse∆, where I allow agents to have different

riω, also drawn from (0, |Goodω|). I independently create pdfs randomly for each agent

φi. For each agent I draw a number between 0.6 and 0.8 to distribute over the set of

optimal actions, and randomly decide rω actions to compose its Goodi set. I distribute

equally 80% of the probability of voting over optimal actions on the actions of that set.
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Figure 5.6: Percentage of optimal solutions as the number of agents grows. The uniform
teams decrease in performance, while multiple variations of diverse teams improve, but
with diminishing returns.

As we can see, in Figure 5.6, the number of solutions decreases for uniform as the

number of agents grows. Normally, in social choice, we expect the performance to improve

as teams get larger, so this is a novel result. It is, however, expected from our Proposition

5.3.2. Diverse, on the other hand, improves in performance for all 3 versions, as predicted

by my theory. However, the system seems to converge for a fixed z, as the performance

does not increase much after around 20 agents.

Hence, in Figure 5.7 I study larger diverse (continuous line) and diverse∆ teams

(dashed line), going all the way up to 1800 agents. I also study four different number of

voting iterations (z, shown in the figure by different lines): 1000, 2000, 3000, 4000. As we

can see, although adding more agents was not really improving the performance in the

experimental scenario under study, there is clearly a statistically significant improvement

(p < 0.01) by increasing the number of voting iterations, with the system improving from

finding around 53% of the optimal solutions, all the way up to finding more than 80%

of them. However, there is a diminishing returns effect, as the impact of adding more

iterations decreases as the actual number of iterations grow larger. We also note that

diverse∆ is better than diverse, and the difference increases as z grows.

As we can see, although theoretically possible, it is still a challenge to have a system

that can find all the possible optimal solutions. Moreover, it would be expensive to pool

the votes of agents through a large number of voting iterations. However, as I show

next, we can actually approximate this process in a real system, by pooling only a small

number of solutions from each agent, and executing many voting iterations by aggregating
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Figure 5.7: Percentage of optimal solutions found by large teams of diverse agents.

different combinations of these solutions. In the next section I show executions in a real

design system.

5.5 Experiments in Architectural Design

5.5.1 Architectural Design Domain

I study a real system for architectural building design. This is a fundamental domain,

since the design of a building impacts its energy usage during its whole life-span [Bo-

genstätter, 2000, Lin and Gerber, 2014, Echenagucia et al., 2015]. I use Beagle [Gerber

and Lin, 2013], a multi-objective design optimization software that assists users in the

early stage design of buildings. Hence, the experiments presented here were run in an

actual system that performs expensive energy evaluations over complex architectural de-

signs, and represent months of experimental work.

First, the designer creates a parametric design, containing (as discussed in Section 5.2)

a set of parameters that can be modified within a specified range, allowing the creation

of many variations. The ranges are defined according to the legislation (i.e., setback,

maximum height, etc), or the intention of the designer (for example, the general shape

of the building).

I use designs from Gerber and Lin [2013]: base, a simple building type with uniform

program (i.e., tenant type); office park, a multi-tenant grouping of towers; and contem-

porary, a double “twisted” tower that includes multiple occupancy types, relevant to

contemporary architectural practices. I show the designs in Figure 5.8.
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(a) Base (b) Office Park (c) Contemporary

Figure 5.8: Parametric designs with increasing complexity used in our experiments.

Beagle uses a genetic algorithm (GA) to optimize the building design based on three

objectives: energy efficiency, financial performance and area requirements. In detail, the

objective functions are: Sobj : maxSPCS; Eobj : minEUI; Fobj : maxNPV . SPCS is

the Spatial Programming Compliance Score, EUI is the Energy Use Intensity and NPV

is the Net Present Value, defined as follows.

SPCS defines how well a building conforms to the project requirements (by mea-

suring how close the area dedicated to different activities is to a given specification).

Let L be a list of activities (in our designs, L=<Office, Hotel, Retail, Parking>),

area(l) be the total area in a building dedicated to activity l and requirement(l) be

the area for activity l given in a project specification. SPCS is defined as: SPCS :=

100×
(

1−
∑
l∈L |area(l)−requirement(l)|

|L|

)
EUI regulates the overall energy performance of the building. This is an estimated

overall building energy consumption in relation to the overall building floor area. The

process to obtain the energy analysis result is automated in Beagle through Autodesk

Green Building Studio (GBS) web service.

Finally, NPV is a commonly used financial evaluation. It measures the financial per-

formance for the whole building life cycle, given by: NPV :=
(∑T

t=1
ct

(1+r)t

)
− c0, where

T is the Cash Flow Time Span, r is the Annual Rate of Return, c0 is the construction

cost, and ct := Revenue−Operation Cost.

Many options affect the execution of the GA, including: initial population size, size

of the population, selection size, crossover ratio, mutation ratio, maximum iteration.

Further details about Beagle are at Gerber and Lin [2013].

In the end of the optimization process, the GA outputs a set of solutions. These

are considered “optimal”, according to the internal evaluation of the GA, but are not

necessarily so. As in my theory, for each parameter the assigned value is going to be one
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Agent PZ SZ CR MR

Agent 1 12 10 0.8 0.1

Agent 2 18 8 0.6 0.2

Agent 3 24 16 0.55 0.15

Agent 4 30 20 0.4 0.25

Table 5.4: GA parameters for the diverse team. Initial Population and Maximum Itera-
tion were kept as constants: 10 and 5, respectively. PZ = Population Size, SZ = Selection
Size, CR = Crossover Ratio, MR = Mutation Ratio.

of the optimal ones with a certain probability. In fact, most of the solutions outputted

by the GAs are later identified as sub-optimal and eliminated in comparison with better

ones found by the teams.

I model each run of the GA as an agent φ. Each parameter of the parametric design is

a world state ω, where the agents decide among different actions A (i.e., possible values

for the current parameter). My model assumes independent multiple voting iterations

across all world states. However, in general it could be expensive to pool agents for

votes in a large number of iterations. Therefore, in order to test the applicability of

the predictions of my model in more realistic scenarios, in my experiments I actually

pool only 3 solutions per agent, but run multiple voting iterations by aggregating over

all possible combinations of them. That is, at each combination I pick one solution per

agent, and vote across all the design parameters, in a total of 81 voting iterations with

4 agents. Nevertheless, as I show next, the predictions of my model are verified in my

empirical experiments, presented next.

5.5.2 Empirical Results

I run experiments across the different parametric designs shown in Figure 5.8. These are

designs with increasing complexity. More details about the designs and the meanings of

each parameter are available in Gerber and Lin [2013]. I create 4 different agents, using

different options for the GA, as shown in Table 5.4.

Contrary to the previous synthetic experiments, we are dealing here with real (and

consequently complex) design problems. Hence, the true set of optimal solutions is un-

known. I approach the problem in a comparative fashion: when evaluating different

systems, I consider the union of the set of solutions of all of them. That is, let Hx be the

set of solutions of system x; I consider the set H :=
⋃
xHx. I compare all solutions in

H, and consider as optimal the best solutions in H, forming the set of optimal solutions

O. I use the concept of Pareto dominance: the best solutions in H are the ones that

dominate all other solutions (i.e., they are better in all 3 objectives). As I know which
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system generated each solution o ∈ O, I estimate the set of optimal solutions Sx of each

system.

Although my theory focuses on plurality voting as the aggregation methodology, in

order to have a more thorough experimental study, I also present results using the mean

and the median of the opinions of the agents. That is, given one combination (a set of

one solution from each agent), I also generate a new solution by calculating the mean or

the median of the values from each agent across all parameters (i.e., world states). Also,

when performing the voting aggregation (vote), I consider values that are the same up to

3 decimal places as equal.

Concerning uniform, I evaluate a team composed of copies of the “best” agent. By

“best”, I mean the agent that finds the highest number of optimal solutions. According

to Proposition 5.3.2, such an agent should be the one with the lowest maxλ+, and we

can predict that voting among copies of that agent generates a large number of optimal

solutions. Hence, for each design, I first compare all solutions of all agents (i.e., construct

H as the union of the solutions of all agents), to estimate which one has the largest set

of optimal solutions S. I, then, run that agent multiple times, creating uniform. For

diverse, I consider one copy of each agent in Table 5.4.

I aggregate the solutions of diverse and uniform. I run 81 aggregation iterations

(across all parameters/world states), by selecting 3 solutions from each agent φi, in its

set of solutionsHi, and aggregating all possible combinations of these solutions. I evaluate

together the solutions of all agents and all teams (i.e., I construct H with the solutions

of all systems), in order to estimate the size of Sx of each system.

Since the true optimal solutions set is unknown, I first plot the percentage of unique

solutions found by each system in relation to the total number of unique optimal solutions

in H. Hence, in Figure 5.9 (a), I show the percentage of optimal solutions for all systems,

in relation to |O|. For clarity, I represent the result of the individual agents by the one

that had the highest percentage. As we can see, in all parametric designs the teams find

a significantly larger percentage of optimal solutions than the individual agents. The

agents find less than 1% of the solutions, while the teams are in general always close

to or above 15%. In total (considering all aggregation methods and all agents), for all

three parametric designs the agents find only about 1% of the optimal solutions, while

uniform finds around 51% and diverse 47%. Looking at vote, in base diverse finds a larger

percentage of optimal solutions than uniform (around 9.4% for uniform, while 11.6% for

diverse). In office park and contemporary, however, uniform finds more solutions than

diverse. Based on Proposition 5.3.2, we expect that this is caused by the best agent

having a lower maxλ+ in office park and contemporary than in base.
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Figure 5.9: Percentage of optimal solutions of each system. The teams find a much larger
percentage than the individual agents.
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Figure 5.9 (b) shows the percentage of optimal solutions found, in relation to the size

of the set of evaluated solutions of each system. That is, let Ox be the set of optimal

solutions of system x, in O. I show |Ox|
|Hx| . Concerning vote, the teams are able to find a

new optimal solution around 20% of the time for base, around 73% of the time for office

park and around 36% of the time for contemporary. Meanwhile, for the individual agents

it is close to 0%. We can see that teams have great potential for generating new optimal

solutions, as expected from my theory. However, as studied in my synthetic experiments,

we can expect some diminishing returns when increasing the number of voting iterations.

I show examples of solutions created by the teams in Figure 5.10.

It is interesting to note that the performance of the teams is much higher for office

park than for the other two parametric designs. In base and contemporary, the building

mass is parametrized into a single volume, while in office park the building mass has

multiple volumes. Hence, a possible explanation is that the division in multiple volumes

facilitated the generation of multiple optimal solutions, since these can be combined in

many different ways.

I also plot in Figure 5.11 (a) the percentage of solutions that were reported to be

optimal by each agent, but were later discovered to be suboptimal by evaluating H. A

large amount of solutions are eliminated, close to 100%, helping the designer to avoid

making a poor decision, and increasing her confidence that the set of optimal solutions

found represent well the “true” Pareto frontier. Moreover, I test for duplicated solutions

across different aggregation methods, different teams and different agents. The number is

small: only 4 in contemporary, and none in base and office park. Hence, we are providing a

high coverage of the Pareto frontier for the designer. I show the total number of optimal

solutions in Figure 5.11 (b). We reconfirm here that in the office park design, where

the building mass is divided in multiple volumes, we could generate a larger number of

optimal solutions.

Finally, to better study the solutions proposed by the agents and teams, I plot all the

optimal solutions in the objectives space in Figure 5.12, where I show that the solutions

give a good coverage of the Pareto frontier.

5.6 Discussion

I present in this chapter a new model of teams of voting agents for design problems. I

propose as the main objective of such system to present for human evaluation as many

optimal solutions as possible. Hence, in this chapter I present a view of the role of

artificial intelligence (AI) in the creative process as generating a large number of optimal
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(a) Base. Shaded area shows variance of building’s footprint in relation to site. Dashed line indicates
height variance.

(b) Office Park. Dashed line shows variance in volume.

(c) Contemporary. Line shows variance in orientation.

Figure 5.10: Some building designs generated by the teams.
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Figure 5.11: Additional analysis. I show here that many falsely reported optimal solutions
are eliminated by the team of agents, and also that the teams provide a large number of
optimal solutions to the designer.

solutions, so that a human can later take an aesthetic choice (also based on a quantitative

evaluation of different objectives, solving complex trade-offs).

A human designer also needs to input an initial parametric design (such as the ones

in Figure 5.8) for the agents to vote for different combinations of values for such design.

Hence, this chapter views the role of AI in the creative process as enabling a collaborative

work between a human and algorithms. I study here the potential of voting systems to be

creative by generating a large number of optimal solutions, but the entire creative process

is actually a collaboration between the voting system and the designer, and the aesthetic

evaluation of quality/beauty is assigned by a human. Hence, the AI system is still in the

role of optimizing quantifiable metrics (cost, energy efficiency, etc), that would be too

burdensome for a human to optimize, while the human designer assumes the aesthetic

evaluation work (which I argue that cannot be properly taken by the machine), besides

solving trade-offs between objectives that may not be well formalized, and hence cannot

be handled by the computer.

The role of AI in the creative process is an important topic of current discussion. For

example, d’Inverno and McCormack [2015], in a very recent position paper, divide the AI

research in two different types: what they ironically call “Heroic AI”, when researchers

try to build systems that are in the role of the whole creative process; and “Collaborative

AI”, when a computational system works in collaboration with a human in the creative

process. This chapter, therefore, is aligned with the second classification of d’Inverno and

McCormack.

Another important topic of discussion is how to evaluate AI systems that handle

creative processes. There is not yet a widely accepted evaluation metric in the literature.

Some researchers use tests inspired by the “Turing test”, and evaluate if humans can

distinguish if a creative output (such as music), was produced by a human or by a
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Figure 5.12: All the optimal solutions in the objectives space.
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computer [Burnett et al., 2012]. Other works evaluate in qualitative terms, by reporting

the impressions of a human when using the system to create [Berman and James, 2015].

Others, such as Machado et al. [2015], uses evolutionary algorithms to generate creative

objects (in their case, ambiguous images), and uses the fitness function of the evolutionary

algorithm as a quantitative evaluation metric. However, in the end they still need to

manually look over the “optimal” solutions found by the algorithm and make a qualitative

evaluation if the system was really able to create what it was supposed to. Hence, the

quantitative evaluation still fails to really represent a measurable quality of the system.

In this chapter I propose the number of optimal alternatives as a quantitative eval-

uation metric for a “Collaborative AI” system. Of course that may not be the best

quantitative metric for all creative processes where AI is involved, but it is one possible

evaluation metric that could be used for systems where the aesthetic choice is left for the

human.

It could still be an issue that we may not want to overload a human with too many

solutions. Although mathematically all the solutions are of equal “optimal” quality,

the human may prefer one objective over another (if in a multi-objective optimization

problem), or may want to only evaluate highly different solutions in the aesthetic sense.

This situation is, however, much better than if the human had to pick one solution in the

space of all possible solutions (optimal and suboptimal). The proposed system already

helps to reduce the space to only the solutions that matter, by presenting only optimal

solutions for human evaluation.

I propose, hence, that such voting systems that maximize the number of optimal solu-

tions could be used as a building block of a bigger “Collaborative AI” system. Its output

could be the input of another system that cluster and organize the proposed solutions,

in order to present them to a human designer in a manageable way. As mentioned previ-

ously, systems that organize a large number of solutions for human evaluation is currently

an active research topic in computational design [Erhan et al., 2014, Smith et al., 2010].

Additionally, my model assumes independent world states, which are initially modeled

as the parameters of a parametric design problem. Some design problems, however, may

have correlated parameters. I discuss an extension of my model in Proposition 5.3.10,

where the parameters are grouped into independent groups. In the worst case of such

extension, if all parameters are correlated, the agents would vote for entire solutions,

rather than each parameter.

Besides, a theoretical model allows us to make predictions about a real system, but

most often is only an approximation of reality (as actual systems are normally overly

complex to be modeled and analyzed in detail). Hence, even though the parameters of

a problem may not be completely independent, they (or some subsets of them, as in
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my extension) may still have some degree of independence, so that my model will still

approximate the real execution.

In light of Proposition 5.3.10, one may also question the need for world states in my

model, instead of simply always voting for entire solutions, which would work for any

design problem. I argue, however, that we should use multiple world states whenever

possible/reasonable, as it has the greatest potential in creating new solutions. With a

single world state, we will always pick one solution proposed by one of the agents, while

with multiple states we can generate solutions that were not individually proposed by

none of the agents (since at each world state we may select actions proposed by different

subsets of agents).

There are, of course, even more complex problems whose solutions cannot even be

properly evaluated by any metric, such as the “wicked problems” coined by Rittel and

Webber [1973]. Such problems seem to be beyond the scope of my theory, as we need

to be able to evaluate a set of solutions with some well defined metric, so that a set

of “optimal” solutions can be found. At the very least, we would need an approximate

measurable quality for each solution, which could be obtained, for example, with computer

simulations.

Finally, this chapter discusses the importance of having diverse agents, but not how

such set of agents with different preferences can be effectively obtained. In Section 5.5

I create different agents by using different settings in a GA software (Beagle), but that

may not yet be the best way to obtain such diverse teams.

Creating and evaluating different diversification strategies is still avenue for future

work. Perhaps the evaluation function of each GA could be tweaked to bias its search to

different portions of the search space. Some of my preliminary results [Marcolino et al.,

2014a], however, show that this should be done with care, as giving one unique objective

for each agent to optimize was not as effective as using different parametrizations for each

GA in the way that I present in this chapter.

Essentially, the best diversification strategy may depend on each specific design prob-

lem. For some problems it could be the case that a bias towards specific kinds of solutions

could be programmed for each agent, or different algorithmic strategies may converge to

different solutions. A deeper study on how diverse agents can be effectively generated

for different design problems is, however, beyond the scope of this thesis. Nevertheless,

this chapter sets formal and theoretical guidelines for the community to better develop,

in future work, strong diverse voting teams for design.
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5.7 Conclusion

Design imposes a novel problem to social choice: maximize the number of optimal solu-

tions. This problem is of fundamental importance, since designers need a large space of

alternatives in order to take a choice. Ideally every solution a designer examines should

be optimal according to measurable metrics, so that she can then solve complex trade-offs

that may not be formalized and/or decide according to aesthetics.

Hence, I present a new model for agent teams, that shows the potential of a system

of voting agents to be creative, by generating a large number of optimal solutions to

the designer. My analysis, which builds a new connection with number theory, presents

several novel results: (i) uniform teams are in general suboptimal, and converge to a

unique solution; (ii) diverse teams are optimal as long as the team size is increased

carefully ; (iii) the minimum optimal team size is constant with high probability; (iv) the

worst case for teams is a prime number of optimal actions.

I also extend my theory to more general situations, covering cases where agents have

greater variability on their probabilities of voting for each optimal action, considering

not only a variability across different actions but also across different agents. Most

importantly, I also show one way to generalize my theory to cover design problems with

correlated parameters, by considering independent parameter sets.

I further study my model with synthetic experiments, which evaluate teams of agents

with bounded time and relaxed assumptions, as I allow the probability distribution func-

tions of the agents to vary. The experiments explore three variations of diverse teams

and show that they all perform well, increasing in performance as the number of agents

and/or the number of voting iterations grow, although with diminishing returns. Uniform

teams, on the other hand, decreased in performance as the number of agents increased,

as expected by the theory.

I present results in conceptual architectural design, where I study a real team of

genetic algorithm agents, which propose different alternatives to the design of buildings,

optimizing for energy-efficiency, cost and project requirements. I show that teams find

a large number of solutions for designing energy-efficient buildings across three different

parametric designs of increasing complexity. Moreover, I find that when voting a diverse

team is able to find a larger set of solutions than a uniform team in the real system for

one of the design problems, a result that could be explained by my theory. I also noticed

that we could find a larger number of optimal solutions in the parametric design where

the building mass was divided in multiple volumes, which could indicate that these kind

of designs are preferable when using voting systems.
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Finally, I present an extensive discussion about how this work fits in the context of

the study of creativity within AI, and I argue that my model can be considered as “Col-

laborative AI”, where humans and algorithms work together in the process of creation. I

also propose that voting systems which maximize the number of optimal solutions could

be combined with another system that cluster and filter the solutions, and presents them

in a manageable way to a designer. Such systems are a current topic of research in the

computational design literature.

This chapter, hence, lays a first theoretical foundation for the study of multi-agent

voting teams for design problems. Further extensions of this model, and a deeper study

on how to methodologically create diverse agents for design are exciting venues for the

multi-agents and/or computational design community perform future work.
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Part III

Aggregation of Opinions
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Chapter 6

Ranked Voting

A difference of opinions just means you and I

On different subjects do not see eye to eye

And who is wrong or right is not for me to say

Since we do look at life in a different way.

(Francis Duggan)

6.1 Introduction

Ranked voting is an active topic of research in the social choice literature [Caragiannis

et al., 2013, Xia and Conitzer, 2011a,b, Soufiani et al., 2012, Baharad et al., 2011, Mao

et al., 2013]. However, there are not many systems actually using ranked voting ap-

proaches, and plurality is still the most common aggregation methodology. Additionally,

it is not yet clear how to extract rankings from existing agents, and how to methodolog-

ically generate diverse teams of agents in order to aggregate their opinions.

In this chapter, I study the performance of ranked voting approaches in two real

systems: Computer Go and Influence Maximization in social networks using PSINET

agents. I analyze experimentally the performance of classical ranked voting rules, and

discuss different ways to extract rankings from existing agents. Additionally, I will study

the performance of large diverse teams of agents, by generating random parametrizations

of one base agent.

This chapter encompasses two of my publications: Jiang et al. [2014] and Yadav et al.

[2015]. Additional experimental and theoretical results can be found in those publications,

but in this thesis I will focus on my main contributions, and hence only some of the results

of these publications is presented and discussed here. Moreover, contrary to the rest of

the thesis, this chapter does not introduce new models, but rather presents techniques for
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team generation and ranking extraction, and experimental results in real systems. The

main focus of the experiments will be in the Computer Go domain, but I will also present

results in social networks, when handling the influence maximization problem.

This chapter is organized in the following way: I briefly introduce the social networks

domain that I consider in this chapter below (Section 6.1.1). Then, Section 6.2 and

Section 6.3 will introduce the team generation and ranking extraction methodologies, in

the context of Computer Go. Section 6.4 will discuss the social network domain in more

detail, including the generation of voting agents and the aggregation methodologies in

that context. Section 6.5 presents my experimental results: First, I will show results in

the Computer Go domain in Sections 6.5.1 and 6.5.2; in Section 6.5.3 I present the results

in the social networks domain.

6.1.1 Social Networks

Homelessness affects ∼2 million youths in USA annually, 11% of whom are HIV positive,

which is 10 times the rate of infection in the general population [Aidala and Sumartojo,

2007]. Peer-led HIV prevention programs such as POL [Kelly et al., 1997] try to spread

HIV prevention information through network ties and recommend selecting intervention

participants based on Degree Centrality (i.e., highest degree nodes first). Such peer-led

programs are highly desirable to agencies working with homeless youth as these youth

are often disengaged from traditional health care settings and are distrustful of adults

[Rice and Rhoades, 2013, Rice, 2010].

Agencies working with homeless youth prefer a series of small size interventions de-

ployed sequentially as they have limited manpower to direct towards these programs. This

fact, along with emotional and behavioral problems of youth makes managing groups of

more than 5-6 youth at a time very difficult [Rice et al., 2012]. Strategically choosing

intervention participants is important so that information percolates through their social

network in the most efficient way.

In this chapter, I will use PSINET to study ranked voting aggregation. PSINET

(POMDP based Social Interventions in Networks for Enhanced HIV Treatment), is a

Partially Observable Markov Decision Process (POMDP) based system which chooses

the participants of successive interventions in a social network [Yadav et al., 2015]. The

main motivation of PSINET is to choose participants for a sequence of interventions,

where they would be educated about HIV-prevention, in order to spread that knowledge

across the social network. As I will explain in detail in Section 6.4, PSINET considers

the uncertainty over the edges (i.e., friendship connections) of the social network. Such

uncertainty is very common when handling real life social networks, such as homeless

populations.
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6.2 Team Generation

I use a novel methodology for generating large teams. It is fundamentally different from

that of Chapters 3 and 4, where I created a diverse team by combining four different, inde-

pendently developed Go programs. Here I automatically create arbitrarily many diverse

agents by parametrizing one Go program. Specifically, I use different parametrizations

of Fuego 1.1 [Enzenberger et al., 2010]. Fuego is a state-of-the-art, open source, publicly

available Go program; it won first place in 19× 19 Go in the Fourth Computer Go UEC

Cup, 2010, and also won first place in 9× 9 Go in the 14th Computer Olympiad, 2009.

I sample random values for a set of parameters for each generated agent, in order

to change its behavior. In Table 6.1 I present the parameters that were sampled to

generate parametrized versions of Fuego. For each random draw, I used a uniform random

distribution, defined in the interval shown in the column “Range”. Also, depending on

the domain of each parameter, I sample integers or floating point numbers. A detailed

description of these parameters is available in the Fuego documentation, at http://

fuego.sourceforge.net/fuego-doc-1.1/.

Using this approach, I generate larger diverse teams than what I showed in previous

chapters of this thesis. I will evaluate such teams in Section 6.5.1.

6.3 Ranked Voting

6.3.1 Ranking Extraction

Fuego (and, in general, all programs using Monte Carlo tree search algorithms) is not

originally designed to output a ranking over all possible moves (alternatives), but rather

to output a single move — the best one according to its search tree (there is no guarantee

that the selected move is in fact the best one). Hence, we need to study ways to obtain

a ranking from the agents. I study two different methodologies.

First, I modified Fuego to make it directly output a ranking over moves. When asked

to find the best move, Fuego builds a search tree. Each node of the tree corresponds

to a move in the current board state (given by the current level in the tree). In order

to estimate the value of each node, Fuego runs simulations. Hence, each node has two

values associated with it: p and n, where p is the probability of that move being the

best one and n is the number of simulations used to estimate this probability. Due to

the nature of Monte Carlo tree search algorithms, different nodes have wildly different

n values. Hence, the comparison of moves according to the p values is unstable, and by

default Fuego outputs the move with the highest n value. As a natural generalization,
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Parameter Domain Range

uct param globalsearch mercy rule Integer [0,1]

uct param globalsearch territory statistics Integer [0,1]

uct param globalsearch length modification Float [0, 0.5]

uct param globalsearch score modification Float [0,0.5]

uct param player forced opening moves Integer [0,1]

uct param player reuse subtree Integer [0,1]

uct param player use root filter Integer [0,1]

uct param policy nakade heuristic Integer [0,1]

uct param policy fillboard tries Integer [0, 5]

uct param rootfilter check ladders Integer [0,1]

uct param search check float precision Integer [0,1]

uct param search prune full tree Integer [0,1]

uct param search rave Integer [0,1]

uct param search virtual loss Integer [0,1]

uct param search weight rave updates Integer [0,1]

uct param search bias term constant Float [0, 1.0]

uct param search expand threshold Integer [1,4]

uct param search first play urgency Integer [1,10000]

uct param search knowledge threshold Integer [0,10000]

uct param search number playouts Integer [1,3]

uct param search prune min count Integer [1,128]

uct param search randomize rave frequency Integer [0,200]

uct param search rave weight final Integer [1000,10000]

uct param search rave weight initial Integer [0,999]

Table 6.1: Parameters sampled to generate different versions of Fuego.
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I inspect the first level of the final search tree, and rank the moves according to their n

values.

I also introduce a novel ranking methodology, which I call “ranking by sampling”. For

each board state, I sample moves from each agent, and rank the moves according to how

frequently they were played by each agent. I generate the samples by repeatedly asking

the agents where they would play, but without actually changing the current board state

(I do not let the agents reuse parts of previous search trees, for the samples to be as

independent as possible). In Section 6.5.2, I compare these two ranking procedures.

6.3.2 Ranked Voting Rules

In this chapter I will study the performance of 5 different ranked voting rules: Plurality,

Borda, Harmonic, Maximin, and Copeland. For completeness, I briefly introduce those

below:

• Plurality: Plurality is the simplest voting rule: given one vote per agent, the

action with the highest number of votes is taken by the team. If the agents submit

rankings, the plurality voting rule will consider only the top position of the rankings.

• Borda: The Borda voting rule assigns a score for each position in the ranking of

the agents. Given a set of rankings (one per agent), the total score obtained by

each action is calculated (by summing up the scores assigned for the action at each

ranking – according to the position of the action at each ranking). The action with

the highest total score is taken by the team. Traditionally, the scoring vector is

(m,m− 1, . . . , 1), where m is the size of the ranking. That is, at each ranking, the

top action receives score m, the second top action score m − 1, and so on, until

reaching the final action, which receives a score of 1. In this chapter I limit Borda

to the top 6 positions in the rankings.

• Harmonic: The harmonic rule is similar to Borda: each position in the rank-

ing is assigned a score, and rankings are aggregated by summing up the scores

of each action. However, the scoring vector of the harmonic rule is defined as:

(1, 1/2, . . . , 1/m) [Boutilier et al., 2012].

• Maximin: Maximin follows a different approach than the previous rules. Instead

of giving scores to each ranking position, it considers a pairwise comparison among

all actions. Let n(ai, aj) be the number of agents that rank action ai higher than

aj . The maximin score of each action is its worst score: mini 6=j n(ai, aj). The final

result ranks the actions by their maximin score (i.e., the top action has the highest

maximin score).
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• Copeland: The Copeland rule follows a similar approach as the maximin rule:

it considers a pairwise comparison among all actions. Again, let n(ai, aj) be the

number of agents that rank action ai higher than aj . An action ai beats an action

aj if more agents rank ai higher than aj . That is, if n(ai, aj) > n(aj , ai). The

Copeland score of an action ai is defined as the number of actions that ai beats.

Again, the final result ranks the actions by their Copeland score (i.e., the top action

has the highest Copeland score).

6.4 PSINET

I also study ranked voting for influence maximization, using PSINET [Yadav et al., 2015].

In this section I briefly describe the system. Additional details are available at Yadav

et al. [2015].

PSINET was developed to solve the influence maximization problem under uncer-

tainty. Formally, let G := (V,E) be a graph with a set of nodes V and edges E. We

perform η interventions, where at each intervention we pick x nodes. A node may be

either influenced or uninfluenced. An uninfluenced node may change to influenced, but

an influenced node will never change back to uninfluenced. Each time we pick a node for

an intervention, it will change to influenced. When a node changes from uninfluenced to

influenced, it will “spread” the influence to its neighbors with some probability. That is,

at each edge e there is a probability pe. If a node v1 is influenced, and there is an edge

e = (v1, v2), the node v2 will also change to influenced with probability pe. Similarly, if

v2 changes to influenced, it will spread the influence to its neighbors by the same process.

Our objective is to maximize the number of influenced nodes after η interventions.

Contrary to the traditional independent cascade model [Kempe et al., 2003], Yadav

et al. [2015] consider that each edge also has an existence probability qe. Hence, if an

edge e actually exists (with probability qe), the influence will spread in the edge with

probability pe. If the edge does not exist (with probability 1 − qe), influence will not

spread. Additionally, unlike the traditional model [Kempe et al., 2003], Yadav et al.

[2015] consider that an influenced node vi may spread influence to its neighbors after

each time step, instead of only at the moment when it changed to influenced. Moreover,

each time a node vi is selected for an intervention, we are able to observe its edges. That

is, we will be able to know which edges connected to vi actually exist, and which edges

do not exist.
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6.4.1 Aggregation Methodologies

PSINET works by generating multiple agents before each intervention. Each agent votes

for one action (or a raking over actions), where in this context an action represents which

subset of nodes the agent thinks should be called for an intervention. The system takes an

action by aggregating the opinions of all agents. I will study three different aggregation

methodologies, which will be described later in this section.

Each agent is created by sampling one possible graph instantiation. That is, for each

edge e, we decide whether it will exist or not with probability qe. After going through

all edges, we will have one possible network, which will be given to an agent. The agent,

then, will run simulations in its sampled network, in order to decide which action to

recommend.

I study three different aggregation methodologies:

• PSINET-S: Uses the usual plurality voting, where the vote of each agent has equal

weight.

• PSINET-W: Uses weighted plurality voting. Let m be the number of uncertain

edges. The agent which removes x uncertain edges has a vote weight of:

W (x) :=

{
x ∀x ≤ m/2
m− x ∀x > m/2

This weighting scheme approximates the probabilities of occurrences of real world

events by giving low weights to instances which removes either too few or too many

uncertain edges, since those events are less likely to occur. Instances which remove

m/2 uncertain edges get the highest weight, since that event is most likely.

• PSINET-C: Uses the Copeland voting rule, described in the previous section.

In order to use this aggregation methodology, it is necessary to have a ranking

for each agent. I use the same method as in the previous section: each agent is

queried multiple times, and the actions are ranked according to how frequent they

are chosen by the agent (the most frequent action is assigned to the top position

of the ranking). The rankings of the team are then aggregated using the Copeland

voting rule.

In Section 6.5.3 I perform an experimental evaluation of these aggregation method-

ologies.
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6.5 Results

6.5.1 Team Generation

I will start by presenting the results in the Computer Go domain. All results were obtained

by simulating 1000 9 × 9 Go games, in an HP dl165 with dual dodeca core, 2.33GHz

processors and 48GB of RAM. I compare the winning rates of games played against a

fixed opponent. In all games the system under evaluation plays as white, against the

original Fuego playing as black. I evaluate two types of teams: Diverse is composed of

different agents, and Uniform is composed of copies of a specific agent (with different

random seeds). In order to study the performance of the uniform team, for each sample

(which is an entire Go game) I construct a team consisting of copies of a randomly chosen

agent from the diverse team. Hence, the results presented for Uniform are approximately

the mean behavior of all possible uniform teams, given the set of agents in the diverse

team. In all graphs, the error bars show 99% confidence intervals.

Figure 6.1 shows the winning rates of Diverse and Uniform for a varying number

of agents using the plurality voting rule. The winning rates of both teams increase as

the number of agents increases. Diverse and Uniform start with similar winning rates,

around 35% with 2 agents and 40% with 5 agents, but with 25 agents Diverse reaches

57%, while Uniform only reaches 45.9%. The improvement of Diverse over Uniform is not

statistically significant with 5 agents (p = 0.5836), but is highly statistically significant

with 25 agents (p = 8.592×10−7). I perform linear regression on the winning rates of the

two teams to compare their rates of improvement in performance as the number of agents

increases. Linear regression (shown as the dotted lines in Figure 6.1) gives the function

y = 0.0094x + 0.3656 for Diverse (R2 = 0.9206, p = 0.0024) and y = 0.0050x + 0.3542

for Uniform (R2 = 0.8712, p = 0.0065). In particular, the linear approximation for the

winning rate of Diverse increases roughly twice as fast as the one for Uniform as the

number of agents increases.

I now analyze the parametrized agents, in order to better understand the performance

of the diverse team. First, I show that the original Fuego is stronger than the parametrized

agents. I ran 1000 9 × 9 Go games, with the system under evaluation playing as white,

against the original Fuego playing as black. In Figure 6.2 we can see the winning rate of

Fuego and of each one of the parametrized agents. The original Fuego is the strongest

agent (with p < 0.01 for all but 3 agents), having a winning rate close to 50%. The

parametrized agents, on average, have a winning rate of 32.3% (std: 10.4%).

I also evaluate the diversity of a team of parametrized agents, by analyzing a sample

of 10 parametrized agents. I use the metric proposed in Chapter 3, where diversity

is defined as the average Hellinger Distance [Hellinger, 1909] between the probability
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Figure 6.1: Winning rates for Diverse (continuous line) and Uniform (dashed line), for a
variety of team sizes, using the plurality voting rule.
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Figure 6.2: Winning rate of Fuego and of the parametrized agents.
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distribution functions (pdfs) of all possible combinations of pairs of agents across different

world states. I show three different results: Control compares each agent with a second

sample of itself, in order to measure the noise in my evaluation; Parametrized Agents

compares all possible pairs of parametrized agents, in order to estimate the diversity of our

team; and Independent Agents compares each parametrized agent with Pachi [Baudǐs and

Gailly, 2011], an independently developed Computer Go program. In order to perform

the analysis, I estimate the pdfs of Pachi and 10 agents from the diverse team, using

100 different board states. For each board state I sample 100 moves for each agent. The

results are shown in Figure 6.3(a). These results indicate that the level of diversity is

especially high when the parametrized agents are compared with Pachi, suggesting that

the current parametrization methodology falls short of creating an idealized diverse team.

That said, the methodology does lead to some diversity, as indicated by the statistically

significant difference between the Control bar and Parametrized Agents bar.

I also evaluate the level of diversity by testing whether there is a set of board states

where all parametrized agents have a low probability of playing the best action. Again,

I evaluate a sample of 10 agents from the diverse team. I first estimate the best move

for each of 100 board states. To this end, I use Fuego to evaluate the given board state,

but with a time limit 50x higher than the default one. Then, based on the previous

estimated pdfs of the parametrized agents, we can obtain the probability of each agent

playing the optimal action. Finally, I calculate the proportion of board states in which

all parametrized agents play the best action with probability below a certain threshold.

The results are shown in Figure 6.3(b). It turns out that all parametrized agents play the

optimal action with probability smaller than 1/2 in 40% of the board states. Moreover, in

10% of the board states, the probability of playing the optimal action is lower than 10%.

Hence, there is still a large set of board states in which all agents play badly, regardless

of the parametrization.

6.5.2 Ranked Voting

I first study the performance of the ranked voting rules, when extracting rankings directly

from the search tree of the agents. Figure 6.4 compares the results across different voting

rules. As mentioned, to generate ranked votes, I used the internal data in the search tree

of an agent’s run (in particular, I rank using the number of simulations per alternative).

We can see that increasing the number of agents has a positive impact for all voting

rules under consideration. Moving from 5 to 15 agents for Diverse, plurality has a 14%

increase in the winning rate, whereas other voting rules have a mean increase of only 6.85%

(std = 2.25%), close to half the improvement of plurality. For Uniform, the impact of

increasing the number of agents is much smaller: Moving from 5 to 15 agents, the increase
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Figure 6.4: Winning rates for Diverse (continuous line) and Uniform (dashed line), for a
variety of team sizes and voting rules.

for plurality is 5.3%, while the mean increase for other voting rules is 5.70%(std = 1.45%).

Plurality surprisingly seems to be the best voting rule in these experiments, even though

it uses less information from the submitted rankings. This suggests that the ranking

method used does not typically place good alternatives in high positions other than the

very top.

Hence, I study now the performance of my novel ranking extraction methodology. As

mentioned, to generate a ranked vote from an agent on a given board state, I run the

agent on the board state 10 times (each run is independent of other runs), and rank the

moves by the number of times they are played by the agent. I use these votes to compare

plurality with the four other voting rules, for Diverse with 5 agents. Figure 6.5 shows

the results. All voting rules outperform plurality; Borda and maximin are statistically

significantly better (p < 0.007 and p = 0.06, respectively). All ranked voting rules are also

statistically significantly better than the non-sampled (single run) version of plurality.

6.5.3 PSINET

I also evaluate aggregation methodologies for PSINET, in the context of influence max-

imization. I provide two sets of results. First, I show results on artificial networks to

understand the algorithms’ properties on abstract settings, and to gain insights on a
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Figure 6.5: All voting rules, for Diverse with 5 agents, using the new ranking methodology.
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Figure 6.6: Comparison on BTER graphs

range of networks. Next, I show results on two real world homeless youth networks.

In all experiments, I select 2 nodes per round and average over 20 runs. PSINET-S and

PSINET-W use 20 agents (possible network instances) and PSINET-C uses 5 agents (each

agent is sampled 5 times, in order to build a ranking). The propagation and existence

probability values were set to 0.5 in all experiments (based on findings by Kelly et al.

[1997]). In this section, a 〈X,Y, Z〉 network refers to a network with X nodes, Y certain

and Z uncertain edges. I use a metric of “indirect influence spread” (IIS) throughout this

section, which is the number of nodes “indirectly” influenced by the intervention partici-

pants. For example, on a 30 node network, by selecting 2 nodes each for 10 interventions

(horizon), 20 nodes (a lower bound for any strategy) are influenced with certainty. How-

ever, the total number of influenced nodes might be 26 (say) and thus, the IIS is 6. All

comparison results are statistically significant under bootstrap-t (α = 0.05).
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6.5.3.1 Artificial networks

First, I compare all algorithms on Block Two-Level Erdos-Renyi (BTER) networks (hav-

ing degree distribution Xd ∝ d−1.2, where Xd is number of nodes of degree d) of several

sizes, as they accurately capture observable properties of real-world social networks [Se-

shadhri et al., 2012].

In Figure 6.6, I compare solution qualities of Degree Centrality (DC), POMCP [Silver

and Veness, 2010] (since this problem can be modeled as a POMDP, see Yadav et al.

[2015]), PSINET-S, PSINET-W and PSINET-C on BTER networks of varying sizes. In

DC, nodes are selected in subsequent rounds in decreasing order of out-degrees, where

every uncertain edge adds its existence probability to the node degrees. I choose DC as

my baseline as it is the current modus operandi of agencies working with homeless youth.

This figure shows that all algorithms beat DC by ∼60%. Further, it shows that PSINET-

W beats PSINET-S and PSINET-C. Also, POMCP runs out of memory on 30 node

graphs. Hence, as we can see, for PSINET plurality outperforms the Copeland ranked

voting rule. However, weighted plurality obtains better results than simple plurality

voting.

6.5.3.2 Real world networks

Figure 6.7 shows one of the two real-world friendship based social networks of homeless

youth (created by my collaborators through surveys and interviews of homeless youth

attending My Friend’s Place), where each numbered node represents a homeless youth.

Figure 6.8 compares PSINET variants and DC on these two real-world social networks

(each of size ∼ 〈155, 120, 190〉). This figure clearly shows that all PSINET variants beat

DC on both real world networks by ∼60%, which shows that PSINET works equally well

on real-world networks. Also, PSINET-W (weighted plurality) beats PSINET-S (simple

plurality), in accordance with previous results.

6.6 Conclusion

In this chapter I explored the automatic generation of agent teams, and ranked voting

rules. I present results in two different domains: Computer Go and Social Networks. In

Computer Go I show that we can improve performance with large agent teams, but the

gain in performance decreases as the team grows. How to better generate diverse teams,

in order to obtain even higher performance with large teams is still an open area for

further study.
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Figure 6.7: One of the friendship based social network of homeless people visiting My
Friend’s Place
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Figure 6.8: Solution Quality for Real World Networks
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I also show that when directly extracting rankings from the search trees of the agents,

the result of classical ranked voting rules is actually quite poor, and they are easily outper-

formed by simply playing plurality voting. However, it is possible to obtain better results

by using a different ranking extraction technique, where rankings are built according to

how frequently each action is played when an agent is sampled multiple times. When

using this approach, I show that Borda outperforms plurality with statistical significance.

In the Social Networks domain, I study agents that vote to select subsets of nodes for

influence maximization. I experimentally study the performance of plurality, weighted

plurality and the Copeland ranked voting rule. In this domain plurality outperforms the

Copeland voting rule; but I can obtain a better performance by using weighted plurality

instead of using simple plurality voting.
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Chapter 7

Simultaneous Influencing and Mapping

’Another may be sadly deceived

By the words you say.

And another, believing and trusting you,

May be led astray by the things you do.’

’For much that never you’ll see or know

Will mark your days as you come and go.

And in countless lives that you’ll never learn

The best and the worst of you will return.’

(Edgar Albert Guest)

7.1 Introduction

Influencing a social network is an important technique, with great potential to posi-

tively impact society, as we can modify the behavior of a community. For example, we

can increase the overall health of a population; Yadav et al. [2015], for instance, spread

information about HIV prevention in homeless populations. However, although influ-

ence maximization has been extensively studied [Kempe et al., 2003, Cohen et al., 2014,

Golovin and Krause, 2010], their main motivation is viral marketing, and hence they

assume that the social network graph is fully known, generally taken from some social

media network (such as Facebook).

However, the graphs recorded in social media do not really represent all the people and

all the connections of a population. Most critically, when performing interventions in real

life, we deal with large degrees of lack of knowledge. Normally the social agencies have

to perform several interviews in order to learn the social network graph [Marsden, 2005].
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These highly unknown networks, however, are exactly the ones we need to influence in

order to have a positive impact in the real world, beyond product advertisement.

Additionally, learning a social network graph is very valuable per se. Agencies also

need data about a population, in order to perform future actions to enhance their well-

being, and better actuate in their practices [Marsden, 2005]. As mentioned, however, the

works in influence maximization are currently ignoring this problem.

Each person in a social network actually knows other people, including the ones she

cannot directly influence. Hence, each time we select someone for an intervention (to

spread influence), we also have an opportunity to obtain knowledge from that person.

Therefore, in this chapter I present for the first time the problem of simultaneously

influencing and mapping a social network. I study the performance of the classical greedy

influence maximization algorithm in this context, and show that it can be arbitrarily low.

Hence, I study a class of algorithms for this problem, and show that we can effectively

influence and map a network when independence of objectives holds. For the interventions

where it does not hold, I give an upper bound in our loss, which converges to 0. I study an

approximation of my main algorithm, that works as well but requiring fewer assumptions.

I perform a large scale experimentation using four real life social networks of homeless

populations, where I show that my algorithm is competitive with previous approaches in

terms of influence (even outperforming them in hard cases), and is significantly better in

terms of mapping.

This chapter is the only one of the thesis that does not consider voting. Here the

aggregation will be performed by a linear combination of two greedy algorithms, in order

to simultaneously influence and map a social network.

7.2 Influencing and Mapping

I consider the problem of maximizing the influence in a social network. However, we

start by knowing only a subgraph of the social network. Each time we pick a node to

influence, it may teach us about subgraphs of the network. Our objective is to spread

influence, at the same time learning the network graph (i.e., mapping). I call this problem

as “Simultaneous Influencing and Mapping” (SIAM). In this chapter, I consider a version

of SIAM where we only need to map the nodes that compose the network. I assume that

we always know all the edges between the nodes of the known subgraph. For clarity, I will

define formally here only the version of SIAM that I handle in this chapter. Therefore,

unless otherwise noted, henceforth by SIAM I mean the version of the problem that is

formally defined below.
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Let G := (V,E) be a graph with a set of nodes V and edges E. We perform η

interventions, where at each one we pick one node. The selected node is used to spread

influence and map the network. I assume we do not know the graph G, we only know

a subgraph Gk = (Vk, Ek) ⊂ G, where k is the current intervention number. Gk starts

as Gk := G0 ⊂ G. For each node vi, there is a subset of nodes V i ⊂ V , which will

be called “teaching list”. Each time we pick a node vi, the known subgraph changes to

Gk := (Vk−1 ∪V i, Ek), where Ek contains all edges between the set of nodes Vk−1 ∪V i in

G. Our objective is to maximize |Vk|, given η interventions.

For each node vi, I assume we can observe a number γi, which indicates the size of

its teaching list. I study two versions: in one γi is the number of nodes in V i that are

not yet in Gk (hence, the number of new nodes that will be learned when picking vi). I

refer to this version as “perfect knowledge”. In the other, γi := |V i|, and thus we cannot

know how many nodes in V i are going to be new or intersect with already known nodes

in Vk. I refer to this version as “partial knowledge”. The partial knowledge version is

more realistic, as by previous experience we may have estimations of how many people

a person with a certain profile usually knows. I study both versions in order to analyze

how much we may lose with partial knowledge. Note that we may also have nodes with

empty teaching lists (γi = 0). The teaching list of a node vi is the set of nodes that vi

will teach us about once picked, and is not necessarily as complete as the true set of all

nodes known by vi. Some nodes could simply refuse to provide any information.

Additionally, note that I am assuming the teaching list and the neighbor list to be

independent. That is, a node may teach us about nodes that it is not able to directly

influence. For instance, it is common to know people that we do not have direct contact

with, or we are not “close” enough to be able to influence. Similarly, a person may not

tell us about all her close friends, due to limitations of an interview process, or even

“shame” to describe some connections. However, some readers could argue that people

would be more likely to teach us about their direct connections. Hence, I will handle the

case where the independence does not hold in my empirical experiments in Section 7.3.2.

Simultaneously to the problem of mapping, we also want to maximize the spread of in-

fluence over the network. I consider here the traditional independent cascade model, with

observation, as in Golovin and Krause [2010]. That is, a node may be either influenced

or uninfluenced. An uninfluenced node may change to influenced, but an influenced node

will never change back to uninfluenced. Each time we pick a node for an intervention,

it will change to influenced. When a node changes from uninfluenced to influenced, it

will “spread” the influence to its neighbors with some probability. That is, at each edge

e there is a probability pe. When a node v1 changes to influenced, if there is an edge

e = (v1, v2), the node v2 will also change to influenced with probability pe. Similarly, if
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v2 changes to influenced, it will spread the influence to its neighbors by the same process.

Influence only spreads in the moment a node changes from uninfluenced to influenced.

That is, a node may only “try” one time to spread influence to its neighbors. As in

Golovin and Krause [2010], I consider that we have knowledge about whether a node is

influenced or not (but in my case, we can only know about nodes in the current known

subgraph Gk). Let Ik be the number of influenced nodes after k interventions. Our ob-

jective is to maximize Ik given η interventions. Influence may spread beyond Gk. Hence,

I consider Ik as the number of influenced nodes in the full graph G. I denote as σi the

expected number of nodes that will be influenced when picking vi (usually calculated by

simulations).

As mentioned, we want to attend both objectives simultaneously. Hence, we must

maximize both |Vk| and Ik. It is easy to show that SIAM is an NP-Complete problem:

Proposition 7.2.1 SIAM is NP-Complete.

Proof: Let κ be an instance of the influence maximization problem, with graph G.

Consider now a SIAM problem where no node carries information and G0 := G. If we

can solve this SIAM problem we can also solve the influence maximization problem κ.

Therefore, SIAM is NP-Complete.

As SIAM is NP-Complete, similarly to previous influence maximization works [Kempe

et al., 2003, Golovin and Krause, 2010], I study greedy solutions. Like the exploration

vs exploitation dilemmas in online learning [Valizadegan et al., 2011], the fundamental

problem of SIAM is whether to focus on influencing or mapping the network. Hence, I

propose as a general framework to select the node vi such that:

vi = argmax(c1 × σi + c2 × γi) (7.1)

Constants c1 and c2 control the balance between influencing or mapping. c1 = 1, c2 =

0 is the classical influence maximization algorithm (“influence-greedy”); c1 = 0, c2 = 1,

on the other hand, only maximizes the knowledge-gain at each intervention (“knowledge-

greedy”). c1 = c2 = 1 is an algorithm where both objectives are equally balanced (“bal-

anced”). Different weights may also be used.

Remember that I defined two versions for the γ values: perfect knowledge, where we

know how many new nodes a node will teach us about; and partial knowledge, where we

do not know how many nodes will be new. In order to better handle the partial knowledge

case, I also propose the “balanced-decreasing” algorithm, where c2 constantly decreases

until reaching 0. Hence, I define c2 as:
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Figure 7.1: A graph where the traditional greedy algorithm has arbitrarily low perfor-
mance.

c2 :=

{
c′2 − 1

d × c
′
2 × k if k ≤ d

0 otherwise
, (7.2)

where c′2 is the desired value for c2 at the very first iteration, and d controls how fast c2

decays to 0.

7.2.1 Analysis

I begin by studying influence-greedy. It was shown that when picking the node v which

argmax(σv) at each intervention, we achieve a solution that is a (1−1/e−ε) approximation

of the optimal solution, as long as our estimation of σv (by running simulations) is “good

enough” [Kempe et al., 2003]. However, even though the actual influence spread may go

beyond the known graph Gk, we can only run simulations to estimate σv in the current

Gk. Hence, the previous results are no longer valid. In fact, in the next observation I

show that we can obtain arbitrarily low-performing solutions by using influence-greedy.

Observation 7.2.2 The performance of influence-greedy can be arbitrarily low in a

SIAM problem.

I show with an example. Consider the graph in Figure 7.1, and assume we will run

2 interventions (i.e., pick 2 nodes). There is a probability 1 to spread influence in any

edge. Our initial knowledge is V0 = {A,A′, B,B′, C}. A and B can influence A’ and

B’, respectively. However, C cannot influence any node. A, B, A’ and B’ have empty

teaching lists. C, on the other hand, can teach us about a connected graph of z nodes.

Influence-greedy, by running simulations on the known graph, picks nodes A and B, since

each can influence one more node. The optimal solution, however, is to pick node C,

which will teach us about the connected graph of z nodes. Then, we can pick one node

in that graph, and influence z + 1 nodes in total. Hence, the influence-greedy solution

is only 4
z+1 of the optimal. As z grows, influence-greedy will be arbitrarily far from the

optimal solution.
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If we make some assumptions about the distribution of the teaching lists across the

nodes, however, influence-greedy eventually maps the full graph given enough interven-

tions. Let n = |V |, and nk = |Vk|. I show the expected number of interventions to learn

all n nodes (subtracted by a small ε, for numerical stability). I study the partial knowl-

edge version. Assume the size of the teaching list of each node is drawn from a uniform

distribution on the interval [0, u], and any node is equally likely to be in a teaching list.

I consider that there is a probability ϕ that a node will have a non-empty teaching list.

Proposition 7.2.3 The expected number (kfull) of interventions for influence-greedy to

learn n− ε nodes is
log(− ε

n0−n
)

log(1−ϕ×u
2×n )

.

Proof: Since influence-greedy is not considering γ, it picks nodes arbitrarily in terms

of knowledge-gain. Hence, on average it selects the expected value of the uniform dis-

tribution, u/2. For each node v in a teaching list, the probability that it is not yet

known is n−nk
n . Therefore, the expected number of nodes known at one iteration k

is: E[nk] = ϕ × u
2 ×

n−E[nk−1]
n + E[nk−1]. Solving the recurrence gives: E[nk] =

n0 × (1 − ϕ×u
2×n )k − n × (1 − ϕ×u

2×n )k + n. Solving for E[nk] = n − ε gives that the ex-

pected number of interventions is: kfull =
log(− ε

n0−n
)

log(1−ϕ×u
2×n )

.

kfull quickly increases as ϕ (or u) decreases. In Section 7.3, I study experimentally

the impact of ϕ on the performance of influence-greedy.

Now, let’s look at balanced. Clearly, it will learn the full graph with a lower number of

expected interventions than influence-greedy. However, although intuitively balanced may

seem reasonable, its performance may also quickly degrade if we assume partial knowledge

(i.e., γi = |V i|).

Proposition 7.2.4 The performance of the balanced algorithm degrades as nk → n, if

γi = |V i|.

Proof: Each node in the teaching list of a node vi has probability n−nk
n of being a yet

unknown node. Hence, the expected number of unknown nodes that will be learned by

picking a node with teaching list size γi is: E[new] = γi× n−nk
n . As nk → n, E[new]→ 0.

Hence, when nk → n, balanced picks a node v that maximizes σv + γv, thus missing to

select nodes vo (if available) with σo > σv, σo + γo < σv + γv, with no actual gains in

mapping.

This problem does not happen in the perfect knowledge version. Since the γ values

only include new nodes, γ → 0 as nk → n, for all γ. Hence, in the perfect knowledge

version, balanced converges to the same behavior as influence-greedy as k increases. In
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order to approximate this behavior for the partial knowledge case, I propose the balanced-

decreasing algorithm, where the constantly decreasing c2 “simulates” the decreasing γ

values.

I now show that balanced can match the performance of influence-greedy in terms of

influence, but at the same time mapping better the network. As I just discussed that

perfect knowledge can be approximated by using balanced-decreasing, I focus here on the

perfect knowledge case. I show that when the independence of objectives hypothesis holds

(defined below), balanced plays the same as influence-greedy or better, while influence-

greedy may still fail in terms of mapping. If the hypothesis does not hold, our influence

loss at one intervention will be bounded by u/2→ 0.

Let V σ
k be a subset of Vk where each v ∈ V σ

k maximizes σ in the current intervention k.

Similarly, let V γ
k ⊂ Vk, where each v ∈ V γ

k maximizes γ in the current intervention k. As

before, I consider that the teaching list size of a node is given by a uniform distribution,

but since γ tends to decrease at each intervention, I denote the interval as [0, uk].

Clearly, any node in the set V Good
k := V σ

k ∩ V
γ
k should be selected, as they maximize

both objectives. Hence, when V Good
k 6= ∅ it is possible to simultaneously maximize both

objectives, and thus we say that the independence of objectives hypothesis holds. Since

we are studying greedy-algorithms, both balanced and influence-greedy lack optimality

guarantees. Hence, I focus here on a “local” analysis, and show that given a set of k

possible interventions (with the same graph state across both algorithms at each inter-

vention), balanced is able to pick nodes that spread as much influence as influence-greedy.

Moreover, when balanced picks a different node, our loss is bounded by uk/2. As uk → 0

with k →∞, our loss also converges to 0.

Proposition 7.2.5 Balanced selects nodes that spread as much influence as influence-

greedy, if |V σ
k | > nk/2 and |V γ

k | > nk/2, or as k → ∞. Influence-greedy, on the other

hand, selects worse nodes than balanced in terms of mapping with probability 1− |V
σ
k ∩V

γ
k |

|V σk |
.

Moreover, when balanced selects a node with worse σ than influence-greedy, the expected

influence loss is bounded by uk/2, which → 0 as k →∞.

Proof: As balanced plays argmax(σ + γ), if there is a node v ∈ V Good
k , balanced picks

v. Influence-greedy, however, selects an arbitrary node in V σ
k . Hence, it picks a node

v ∈ V Good
k with probability

|V σk ∩V
γ
k |

|V σk |
. Therefore, for all interventions where V Good

k 6= ∅,
balanced selects a node in V Good

k , while influence-greedy makes a mistake in terms of

mapping with probability 1− |V
σ
k ∩V

γ
k |

|V σk |
.

We consider now the probability of V Good
k 6= ∅ across k interventions. Clearly, if

|V σ
k | > nk/2, and |V γ

k | > nk/2, we have V Good
k 6= ∅. If not, note that as k →∞, nk → n.
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Therefore, V γ
k → Vk (since all γ → 0, all nodes will have the same teaching list size), thus

V Good
k → V σ

k 6= ∅. Hence, the probability of V Good
k 6= ∅ goes to 1 as k →∞.

Let’s study now the case when V Good
k = ∅. Let v1 be the node in V σ

k picked by

influence-greedy, and v2 be the node in Vk \ V σ
k with the largest γ2. Since V Good

k = ∅, we

must have that σ1 > σ2, and γ2 > γ1. However, as long as γ2 − γ1 < σ1 − σ2, balanced

still selects v1 (or an even better node). In the worst case, the expected value for γ2 is the

expected maximum of the uniform distribution: E[γ2] = uk − uk/(nk + 1) ≤ uk. γ1, on

the other hand, has the expected value of the uniform distribution E[γ1] = uk/2. Hence,

as long as σ1−σ2 > uk/2, in expectation balanced still picks v1 (or an even better node).

Moreover, when balanced does not pick v1, our loss in terms of influence at intervention

k is at most uk/2. Since γ → 0 as nk → n, uk/2→ 0 as k →∞.

Proposition 7.2.5 shows that we may experience loss in one intervention, when com-

paring influence-greedy with balanced. However, the loss is bounded by uk/2, which goes

to 0 as the number of interventions grows. Moreover, when we do not update the γ values,

we can use the balanced-decreasing algorithm to simulate the same effect. Additionally,

in Proposition 7.2.5 I considered the same graph states at each intervention across both

algorithms. In practice, however, since balanced is able to map the network faster, any

loss experienced in the beginning when k is low can be compensated by playing better

later with full knowledge of the graph, while influence-greedy may still select nodes with

lower σ due to lack of knowledge. As noted in Observation 7.2.2, lack of knowledge of the

full graph can make influence-greedy play with arbitrarily low performance. In Section

7.3.2 I perform an empirical analysis assuming a power law model for the teaching lists,

and I note here that my main results still hold.

7.3 Results

I run experiments using four real life social networks of the homeless population of Los

Angeles, provided by Eric Rice, from the School of Social Work of the University of South-

ern California. All the networks are friendship-based social networks of homeless youth

who visit a social agency. The first two networks (A, B) were created through surveys

and interviews. The third and fourth networks (Facebook, MySpace) are online social

networks of these youth created from their Facebook and MySpace profiles, respectively.

I run 100 executions per network. At the beginning of each execution, 4 nodes are

randomly chosen to compose our initial subgraph (G0). As mentioned, I consider that

we always know the edges between the nodes of our current knowledge graph (Gk). I

noticed similar tendencies in the results across all four social networks. For clarity, I plot

here the results considering all networks simultaneously (that is, I average over all the
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400 executions). In the Appendix A I show the individual results for each network. In

all graphs, the error bars show the confidence interval, with ρ = 0.01. When I say that a

result is significantly better than another, I mean with statistical significance according

to a t-test with ρ ≤ 0.01, unless noted otherwise. The size of each network is: 142, 188,

33, 105; for A, B, Facebook and MySpace, respectively. I evaluate up to 40 interventions.

I measure the percentage of influence in the network (“Influence”) and percent-

age of known nodes (“Knowledge”) for influence-greedy, knowledge-greedy, balanced and

balanced-decreasing (with c′2 = 1.0, and d = 5). In order to estimate the expected influ-

ence spread (σv) of each node, I run 1000 simulations before each intervention. Estimating

the expected influence through simulations is a common method in the literature. In our

case, the simulations are run in the current known subgraph Gk, although the actual in-

fluence may go beyond Gk. Influenced nodes in G\Gk will be considered when I measure

Influence, but will not be considered in my estimation of σv. Concerning the teaching

list size (γv), I consider it to hold the number of new nodes that would be learned if

v is selected, for balanced and knowledge-greedy (i.e., perfect knowledge). For balanced-

decreasing, I consider γv to hold the full teaching list size, including nodes that are

already known (i.e., partial knowledge). Therefore, we can evaluate if balanced-decreasing

approximates well balanced, when perfect knowledge is not available.

I simulate the teaching lists, since there are no real world data available yet (I only have

data about the connections in the four real life social networks). I study two models: (i)

uniform, which follows the assumptions of my theoretical analysis; (ii) power law, which

considers that nodes are more likely to teach us about others which are close to them in

the social network graph. I present the second model to show that my conclusions hold

irrespective of the uniform assumption. For each node, we decide whether it will have a

non-empty teaching list according to a probability ϕ. I run experiments using different

combinations of ϕ, probability of influence p, and c1 and c2 values.

7.3.1 Uniform Model

Under the uniform model, if a node has a teaching list, I fix its size according to a uniform

distribution from 0 to 0.5 × |V |. Each node in the graph is also equally likely to be in

the teaching list of a node vi. I consider here the teaching list and the neighbor list to be

independent, as people may know others that they cannot influence, and they may also

not tell us all their connections, as described before. The case where the teaching list and

the neighbor list are not independent is considered in Section 7.3.2.

I run several parametrizations. Figure 7.2 shows the result at each intervention for ϕ =

0.5 and p = 0.5. As we see in Figure 7.2 (a), the Influence obtained by influence-greedy,

balanced, and balanced-decreasing are very similar. In fact, out of all 40 interventions,
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Figure 7.2: Results of 4 real world networks across many interventions, for p = 0.5 and
ϕ = 0.5 (uniform distribution).

their result is not significantly different in any of them (and they are significantly better

than knowledge-greedy in around 75% of the interventions). This shows that balanced is

able to successfully spread influence in the network, while at the same time mapping the

graph. We can also notice that a perfect knowledge about the number of new nodes in the

teaching lists is not necessary, as balanced-decreasing obtained close results to balanced.

Figure 7.2 (b) shows the results in terms of Knowledge. All algorithms clearly out-

perform influence-greedy with statistical significance. Moreover, the result for knowledge-

greedy, balanced and balanced-decreasing are not significantly different in any of the in-

terventions. This shows that we are able to successfully map the network (as well as

knowledge-greedy), but at the same time spreading influence successfully over the network

(as well as influence-greedy), even in the partial knowledge case. Hence, the independence

of objectives hypothesis seems to hold at most interventions in the networks, since we
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could maximize both objectives simultaneously, as predicted in Proposition 7.2.5. Given

enough interventions, however, influence-greedy is also able to map the network, as I

discussed in Proposition 7.2.3.

It is also interesting to note that even though influence-greedy has much less infor-

mation about the network (with significantly lower mapping performance in around 16

interventions), it is still able to perform as well as the other algorithms in terms of Influ-

ence. Observation 7.2.2, however, showed that its Influence performance can be arbitrarily

low. As I discuss later, for some parametrizations we actually found that influence-greedy

has significantly lower results than the other algorithms in terms of Influence as well.

In order to compare the results across different parametrizations, we calculate the

area under the curve (AUC) of the graphs. The closer the curves are to 1.0 the better,

hence an AUC of 39 (that is, always at 1.0 across all 40 interventions) would be an

“ideal” result. In Figure 7.3 (a) I show the results for a fixed influence probability value

(p = 0.5), but different teaching probability (ϕ) values. First I discuss the results in

terms of Influence (left-hand side of the graph). As we can see, except for knowledge-

greedy, all algorithms obtain very similar results. However, for ϕ = 0.1, the Influence for

balanced and balanced-decreasing is slightly better than influence-greedy, in the borderline

of statistical significance (ρ = 0.101 and 0.115, respectively). Moreover, we can see that

ϕ does impact the influence that we obtain over the network, although the impact is

not big. For influence-greedy, from ϕ = 0.5 to ϕ = 1.0, the difference is only statistically

significant with ρ = 0.092. However, from ϕ = 0.1 to ϕ = 0.5 the difference is statistically

significant with ρ = 3.26× 10−27. Similarly, for all other algorithms there is a significant

difference from ϕ = 0.1 to ϕ = 0.5, while from ϕ = 0.5 to ϕ = 1.0 the difference is

only significant with ρ < 0.1 (except for knowledge-greedy, its difference is not significant

between ϕ = 0.5 and ϕ = 1.0).

Let’s look at the results in terms of Knowledge, on the right-hand side of Figure 7.3

(a). We can see that ϕ has a much bigger impact in our mapping, as expected. Knowledge-

greedy, balanced and balanced-decreasing are all significantly better than influence-greedy.

However, we can notice that the difference between influence-greedy and the other algo-

rithms decreases as ϕ increases. Similarly, when comparing knowledge-greedy, balanced

and balanced-decreasing, we can notice that the difference between the algorithms also

decreases as ϕ increases. For both ϕ = 0.1 and ϕ = 0.5, however, the algorithms are

not significantly different. Interestingly, when ϕ = 1, because of the lower variance,

knowledge-greedy and balanced become significantly better than balanced-decreasing, even

though the differences between the algorithms decreases.

In Figure 7.3 (b), I keep ϕ = 0.5, and change p. In the left-hand side we see the

results for Influence. As expected, there is clearly a significant difference when p changes
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Figure 7.3: Results of Influence and Knowledge for different teaching and influence prob-
abilities (uniform distribution).

from 0.1 to 0.5. However, we can notice that the difference between the algorithms does

not change significantly when p changes. In both cases, the differences between influence-

greedy, balanced and balanced-decreasing are not significant. Additionally, in both cases

all algorithms are significantly better than knowledge-greedy. In terms of Knowledge

(right-hand side of the figure) we see that the influence probability has no impact in any

algorithm, as it would be expected. For all algorithms, the difference between p = 0.1

and p = 0.5 is not statistically significant.

I also compare the regret obtained by the different algorithms at different influence

probabilities and teaching probability values. First, I run the influence-greedy algorithm,

but considering that we know the full graph (that is, Gk := G). Although that solution is

not optimal, it is the best known approximation of the optimal, hence I call it “perfect”.

I calculate the AUC for perfect, and define the regret of an algorithm x as: AUCPerfect−
AUCx. I analyze the regret in terms of Influence in Figure 7.4. Note that, in the figure,

the lower the result the better. On the left-hand side I show the regret for p = 0.1

and different ϕ values, while on the right-hand side I show for p = 0.5. All algorithms
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Lower results are better.

(except knowledge-greedy) have a similar regret, as it would be expected based on the

previous results. However, we can notice here that the regret for balanced and balanced-

decreasing when ϕ = 0.1 and p = 0.5 is actually lower than influence-greedy. The

difference is statistically significant, with ρ = 0.069 and ρ = 0.092, respectively. Hence,

we can actually have a significantly better influence on the social network graph than

the traditional greedy algorithm, when the teaching probability is low. However, when

ϕ = 0.1 and p = 0.1, even though the regret for balanced and balanced-decreasing is

still lower than influence-greedy, it is not significant anymore (as there is larger variance

when p = 0.1). Additionally, we note that the difference in regret for balanced and

balanced-decreasing is always not significant. It is also interesting to note that for some

parametrizations, the regret of influence-greedy is actually close to 0, which means that

in some cases lack of knowledge of the full graph does not significantly harm the influence

performance. When p = 0.1, and ϕ = 0.5 or ϕ = 1.0, the regret is not significant

(ρ = 0.410, and ρ = 0.78, respectively). For p = 0.5 and ϕ = 1.0, the regret is in the

borderline of not being significant (ρ = 0.102). In all other cases, the regret is significant.

I discussed 4 algorithms, but my framework can actually generate a variety of behav-

iors by using different c1 and c2 values. I tested 6 more combinations: {(0.5, 2), (1, 0.5),

(1, 1.5), (1, 2), (2, 0.5), (2, 1)}, but I did not observe significant differences in compari-

son with the previous algorithms in the four social networks graphs. Hence, finding a

good parametrization of c1 and c2 does not seem to be a crucial problem for the balanced

algorithm.

7.3.2 Power Law Model

In order to show that my conclusions still hold under different models, I also run experi-

ments considering a power law distribution for the teaching lists. The power law is a very
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suitable model for a range of real world phenomena. In fact, Andriani and McKelvey

[2007], in a very comprehensive literature survey, lists 80 different kinds of phenomena

which are modeled in the literature by power law distributions, and half of them are social

phenomena. For example, it has been shown to be a good model for social networks, co-

authorships networks, the structure of the world wide web and actor movie participation

networks. A power law model also seems suitable in our case, as we can expect that a

person will be very likely to teach us about the people who she has a direct connection

with, and less and less likely to report people that are further away in the graph. Hence,

when generating the teaching list of a node vi in my experiments, each node vo (vo 6= vi)

will be in its teaching list according to the following probability: po := (a − 1.0) × h−ao ,

where 1.0 < a ≤ 2.0, and ho is the shortest path distance between node vi and vo. a−1.0

represents the probability of a neighbor node vo (i.e., ho = 1) being selected. If node vi

and vo are completely disconnected, I set ho := |V |. Under this model the probability of

a person teaching us about another is always strictly greater than 0, even though it may

be very small if the respective nodes are very distant in the graph.

I fix a = 1.8 (80% probability of each of a nodes’ neighbors being in its teaching list).

I show results for a = 1.2 in Appendix A, for the interested reader (and my conclusions

still hold in the alternative parametrization). Similarly as before, Figure 7.5 shows the

result at each intervention for ϕ = 0.5 and p = 0.5. As we can see, my main conclusions

still hold in the power law model. The Influence obtained by influence-greedy, balanced,

and balanced-decreasing are very similar. Out of 40 interventions, their results are not

significantly different in 39 (ρ ≤ 0.05), and they are significantly better than knowledge-

greedy in around 60% of the interventions (ρ ≤ 0.05).

This time, however, balanced-decreasing obtained worse results than balanced in terms

of Knowledge. Although up to iteration 4, knowledge-greedy, balanced and balanced-

decreasing are not significantly different; both knowledge-greedy and balanced are sig-

nificantly better than balanced-decreasing after that iteration. It is harder to obtain

Knowledge under the power law model than under the uniform model (all algorithms

converge slower to 1.0 than before). Hence, balanced-decreasing would require a slower

decay speed (i.e., higher d) in this case, in order to perform better.

We can also notice that all algorithms are significantly better than influence-greedy

in all iterations, in terms of Knowledge. Note that under the uniform model, influence-

greedy was not significantly worse than the other algorithms after iteration 20 (ρ ≤ 0.1).

Hence, as expected, influence-greedy becomes relatively worse than the other algorithms

when we assume a model where mapping is harder.

I calculate the AUC, in order to compare different parametrizations. Figure 7.6 (a)

shows the result for a fixed influence probability value (p = 0.5), and different teaching
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Figure 7.5: Results of 4 real world networks across many interventions, for p = 0.5 and
ϕ = 0.5 (power law distribution).
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probability (ϕ) values. As before, except for knowledge-greedy, all algorithms in general

obtain similar results in terms of Influence. We notice, however, that for ϕ = 0.1, the

result for balanced and balanced-decreasing is actually significantly better than influence-

greedy (ρ = 0.064 and 0.038, respectively). Again, we also notice that ϕ significantly

impacts the influence that we obtain over the network, although the impact is small. For

all algorithms, the impact is significant from ϕ = 0.1 to ϕ = 0.5. For influence-greedy,

the difference is statistically significant with ρ = 1.39 × 10−31, while for knowledge-

greedy, balanced and balanced decreasing, there is statistically significant difference with

ρ = 4.529×10−6, 3.258×10−14 and 8.429×10−20, respectively. However, the impact of ϕ

increasing from 0.5 to 1 is not that significant for knowledge-greedy, balanced and balanced-

decreasing (ρ = 0.41, 0.02, 0.03, respectively), while for influence-greedy the change has

significant impact (ρ = 10−6). In terms of Knowledge, we can see that all algorithms are

significantly better than influence-greedy for all ϕ values (with ρ ≤ 3.464015 × 10−19).

However, this time we notice that knowledge-greedy and balanced are significantly better

than balanced-decreasing for all ϕ. As mentioned, a different decay speed d is necessary

in this case.

In Figure 7.6 (b), I show different values of p for ϕ = 0.5. As before, in terms

of Influence the difference between influence-greedy, balanced and balanced-decreasing is

not significant, and all algorithms are significantly better than knowledge-greedy. In

terms of Knowledge, the influence probability does not affect knowledge-greedy, balanced

nor balanced-decreasing significantly, as expected. This time, however, influence-greedy

obtains a significantly better result for p = 0.1 than for p = 0.5. This may happen

because for p = 0.1 influence-greedy has a higher tendency of selecting nodes with a high

number of neighbors, which also tends to be the ones with large teaching lists. Note that

this does not happen when the teaching and neighbor lists are independent.

Figure 7.7 shows the regret (lower results are better). We can notice similar results

as before: all algorithms have similar regret (except for knowledge-greedy), and the regret

for balanced and balanced-decreasing when ϕ = 0.1 and p = 0.5 is again significantly lower

than influence-greedy (ρ = 0.019 and 0.009, respectively). This time, however, we can

notice that for some parametrizations balanced-decreasing is actually the algorithm with

the lowest regret. For p = 0.5 and ϕ = 0.5, balanced-decreasing is better than balanced

with ρ = 4.7× 10−4. Hence, even though balanced-decreasing performed relatively worse

than under the uniform model in terms of Knowledge, it is actually the best algorithm

in terms of Influence for some parametrizations.
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Figure 7.6: Influence and Knowledge for different teaching and influence probabilities
(power law distribution).
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7.4 Discussion

I present, for the first time, the problem of simultaneously influencing and mapping a

social network. This is a fundamental step for a greater applicability of influencing social

networks, for example to increase the adoption of healthy-conscious behavior.

My model, however, currently has two main shortcomings. First, I focus in this chap-

ter on the problem of learning the network nodes, and I assume to always know the edges

of the current known subgraph. This assumption was necessary to keep the clarity and

precision of my theoretical analysis. A simple extension would be to consider the teaching

lists to contain both nodes and edges. That is, at each time we pick a node vi, we would

learn a set of nodes V i and a set of edges Ei. We must enforce, however, that va, vb ∈ V i,

for all (va, vb) ∈ Ei. Otherwise, we could run into the situation of learning an edge e

without knowing the edge end-points, which would be inconsistent. My theoretical results

would still apply, but this constraint makes the theoretical analysis unnecessarily more

intricate. Another alternative would be to always consider fully connected graphs, but

with a very low influence probability. We could, then, increase the influence probability

of the edges which we are certain of their existence.

Second, there is not yet a grounded model available to simulate how much someone

may be able to teach us about the social network upon being called for interview, nor

real world datasets that we could use. I do have datasets of real social network graphs,

but as I mentioned, the teaching list of a node is not the same as its neighbor list. People

often know others who they do not have direct contact with, or are not “close” enough

to have a chance of influencing behavior. Besides, a person may not teach us about all

her connections during an interview, due, for example, of shame or privacy issues. An

exciting venue for future work would be to perform experiments with human subjects

to understand how the teaching lists are actually formed. Such an experiment, however,

would present many challenges. To start with, we would need access to the full knowledge

of a person, in order to know which persons she fails to report to us. Also, we can expect

high variance in the difference between the full knowledge and the teaching lists, as it

depends on the personality of each individual.

In my theoretical analysis, I assume a uniform distribution model. The uniform distri-

bution has as its main advantage the lack of any biases, which suits this situation where

the precise real-world model is yet unknown. However, intuitively many readers would

expect that a person would be more likely to report people who she is directly connected

to, and less likely to report people that are more distant in the graph. Hence, I comple-

ment my empirical evaluation with experiments where I assume a power law distribution
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when generating the teaching lists of each node. My main conclusions still hold under

this alternative model, showing that my results generalize to different distributions.

I noticed, however, that although balanced-decreasing had a similar performance as

balanced in terms of Knowledge under the uniform distribution model, it did have a lower

performance under the power law model. I used the same decay speed in both cases,

but under the power law it is harder to map the network. Hence, in that situation it

would be necessary to use a lower decay speed in order to better match the performance

of balanced. Balanced-decreasing, however, is not worse in terms of Influence. In fact, for

some parametrizations it was actually the best algorithm, outperforming influence-greedy.

Therefore, it can perform reasonably well, even without an accurate parametrization of

the speed of decay.

Additionally, another interesting point of my experimental analysis is that under both

models we found that influence-greedy tends to perform as well as balanced in terms of

Influence. This shows that the traditional greedy influence maximization algorithm is able

to perform well even without full knowledge of the social network graph. In fact, for some

parametrizations it is even not statistically different than running with full knowledge of

the network. There are cases, however, where it will perform badly: for a low teaching

probability the regret is lower for the other algorithms, and my Observation 7.2.2 shows

that it can have an arbitrarily low performance.

Moreover, influence-greedy clearly performs worse in terms of Knowledge. Besides

helping to influence a network, mapping the graph is also an important action per se.

Social agencies usually need knowledge about a community in order to decide their policies

and programs, enhancing their ability to increase the general well-being of a population.

For instance, during an interview we will not necessarily only learn about the existence of

a node vx. When we learn about vx we may also query for additional information about

the person represented by vx, such as gender, age group or profession. Agencies, then,

will be able to use this data when deciding their educational programs.

7.5 Conclusion

I introduced the novel problem of simultaneously influencing and learning the graph of a

social network. I show theoretically and experimentally that an algorithm which locally

maximizes both influence and knowledge performs as well as an influence-only greedy

algorithm in terms of influence, and as well as a knowledge-only greedy approach in terms

of knowledge. I present an approximation of my algorithm that gradually decreases the

weight given to knowledge-gain, which requires fewer assumptions.
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I run experiments using four real-life social networks, where I study two different ways

of modeling the knowledge gained by interviewing each node: one where a uniform dis-

tribution is assumed, avoiding biases and matching my theoretical analysis; and another

where a power law distribution is assumed, and thus nodes are more likely to report oth-

ers which are closer to them in the social network graph. By testing two different models

I validate my conclusions irrespective of the uniform distribution assumption.

My empirical results show not only that the proposed algorithms are competitive

with the traditional greedy one in terms of influence, but that they can also significantly

influence more nodes than the traditional algorithm when nodes have a low teaching

probability. Additionally, the proposed algorithms are significantly better in terms of

mapping the graph. Besides helping in influencing, learning about the social network

is also important for institutions to effectively decide their policies and educational pro-

grams.
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Part IV

Team Assessment
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Chapter 8

Every Team Deserves a Second Chance

In the middle of the road there was a stone

there was a stone in the middle of the road

there was a stone

in the middle of the road there was a stone.

Never should I forget this event

in the life of my fatigued retinas.

Never should I forget that in the middle of the road

there was a stone

there was a stone in the middle of the road

in the middle of the road there was a stone.

(Carlos Drummond de Andrade)

8.1 Introduction

It is well known that aggregating the opinions of different agents can lead to a significant

performance improvement when solving complex problems. In particular, voting has been

extensively used to improve the performance in machine learning [Polikar, 2012], crowd-

sourcing [Mao et al., 2013, Bachrach et al., 2012], and even board games [Obata et al.,

2011, Soejima et al., 2010]. Additionally, it is an aggregation technique that does not de-

pend on any domain, being very suited for wide applicability. However, a team of voting

agents will not always be successful in problem-solving. It is fundamental, therefore, to

be able to quickly assess the performance of teams, so that a system operator can take

actions to recover the situation in time. Moreover, complex problems are generally char-

acterized by a large action space, and hence methods that work well in such situations

are of particular interest.
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Current works in the multi-agent systems literature focus on identifying faulty or

erroneous behavior [Khalastchi et al., 2014, Lindner and Agmon, 2014, Tarapore et al.,

2013, Bulling et al., 2013], or verifying correctness of systems [Doan et al., 2014]. Such

approaches are able to identify if a system is not operating correctly, but provide no

help if a correct system of agents is failing to solve a complex problem. Other works

focus on team analysis. Raines et al. [2000] present a method to automatically analyze

the performance of a team. The method, however, only works offline and needs domain

knowledge. Other methods for team analysis are heavily tailored for robot-soccer [Ramos

and Ayanegui, 2008] and focus on identifying opponent tactics [Mirchevska et al., 2014].

In fact, many works in robotics propose monitoring a team by detecting differences

in the internal state of the agents (or disagreements), mostly caused by malfunction of

the sensors/actuators [Kaminka and Tambe, 1998, Kaminka, 2006, Kalech and Kaminka,

2007, Kalech et al., 2011]. In a system of voting agents, however, disagreements are inher-

ent in the coordination process and do not necessarily mean that an erroneous situation

has occurred due to such malfunction. Additionally, research in social choice is mostly

focused on studying the guarantees of finding the optimal choice given a noise model for

the agents and a voting rule [Caragiannis et al., 2013, List and Goodin, 2001, Conitzer

and Sandholm, 2005], but provide no help in assessing the performance of a team of

voting agents.

There are also many recent works presenting methods to analyze and/or make predic-

tions about human teams playing sports games. Such works use an enormous amount of

data to make predictions about many popular sports, such as American football [Quenzel

and Shea, 2014, Heiny and Blevins, 2011], soccer [Bialkowski et al., 2014, Lucey et al.,

2015] and basketball [Maheswaran et al., 2012, Lucey et al., 2014]. Clearly, however,

these works are not applicable to analyzing the performance of a team of voting agents.

Hence, in this chapter, I show a novel method to predict the final performance (success

or failure) of a team of voting agents, without using any domain knowledge. Therefore,

my method can be easily applied in a great variety of scenarios. Moreover, my approach

can be quickly applied online at any step of the problem-solving process, allowing a system

operator to identify when the team is failing. This can be useful in many applications.

For example, consider a complex problem being solved on a cluster of computers. It

is undesirable to allocate more resources than necessary, but if we notice that a team

is failing in problem solving, we might wish to increase the allocation of resources. Or

consider a team playing together a game against an opponent (such as board games, or

poker). Different teams might play better against different opponents. Hence, if we notice

that a team is predicted to perform poorly, we could dynamically change it. Under time

constraints, however, such prediction must be done quickly.
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Although related, note that the contribution of this chapter is not in using a team

of experts to solve a problem or make predictions [Cesa-Bianchi and Lugosi, 2006] or

aggregating multiple classifiers through voting as in ensemble systems [Polikar, 2012].

My objective is, given a team of voting agents, to make a prediction about such a team,

in order to estimate whether they will be able to solve a certain problem or not.

My approach is based on a prediction model derived from a graphical representation

of the problem-solving process, where the final outcome is modeled as a random variable

that is influenced by the subsets of agents that agreed together over the actions taken at

each step towards solving the problem. Hence, my representation depends uniquely on

the coordination method, and has no dependency on the domain. I explain theoretically

why we can make accurate predictions, and I also show the conditions under which we

can use a reduced (and scalable) representation. Moreover, my theoretical development

allows us to anticipate situations that would not be foreseen by a simple application

of classical voting theories. For example, my model indicates that the accuracy can be

better for diverse teams composed of different agents than for uniform teams, and that

we can make equally accurate predictions for teams that have significant differences in

playing strength (which is later confirmed in our experiments). I also study the impact of

increasing the action space in the quality of my predictions, and show that we can make

better predictions in problems with large action spaces.

I present experimental results in two different domains: Computer Go and Ensemble

Learning. In the Computer Go domain, I predict the performance of three different

teams of voting agents: a diverse, a uniform, and an intermediate team (with respect

to diversity); in four different board sizes. I study the predictions at every turn of the

games, and compare with an analysis performed by using an in-depth search. I am able

to achieve an accuracy of 71% for a diverse team in 9× 9 Go, and of 81% when I increase

the action space size to 21× 21 Go. For a uniform team, I obtain 62% accuracy in 9× 9,

and 75% accuracy in 21× 21 Go.

I evaluate different classification thresholds using Receiver Operating Characteristic

(ROC) curves, and compare the performance for different teams and board sizes according

to the area under the curves (AUC). I experimentally show in such analysis that: (i)

we can effectively make high-quality predictions for all teams and board sizes; (ii) the

quality of my predictions is better for the diverse and intermediate teams than uniform

(irrespective of their strength), across all thresholds; (iii) the quality of the predictions

increases as the board size grows. Moreover, the impact of increasing the action space

on the prediction quality occurs earlier in the game for the diverse team than for the

uniform team. Finally, I study the learned prediction functions, and how they change
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across different teams and different board sizes. My analysis shows that the functions are

not only highly non-trivial, but in fact even open new questions for further study.

In the Ensemble Learning domain, I predict the performance of classifiers that vote to

assign labels to set of items. I use the scikit-learn’s digits dataset [Pedregosa et al., 2011],

and teams vote to correctly identify hand-written digits. I am also able to obtain high-

quality predictions online about the final performance of two different teams of classifiers,

showing the applicability of my approach to different domains.

8.2 Prediction Method

I start by presenting my prediction method, and in Section 8.3 I will explain why the

method works. I consider scenarios where agents vote at every step (i.e., world state) of

a complex problem, in order to take common decisions at every step towards problem-

solving. Formally, let T be a set of agents ti, A be a set of actions aj and S be a set of

world states sk. The agents must vote for an action at each world state, and the team

takes the action decided by the plurality voting rule, that picks the action that received

the highest number of votes (I assume ties are broken randomly). The team obtains a

final reward r upon completing all world states. In this chapter, I assume two possible

final rewards: “success” (1) or “failure” (0).

I define the prediction problem as follows: without using any knowledge of the do-

main, identify the final reward that will be received by a team. This prediction must be

executable at any world state, allowing a system operator to take remedial procedures in

time.

I now explain my algorithm. The main idea is to learn a prediction function, given

the frequencies of agreements of all possible agent subsets over the chosen actions. In

order to learn such function, we need to define a feature vector to represent each problem

solving instance (for example, a game). My feature vector records the frequency that

each subset of agents was the one that determined the action taken by the team (i.e., the

subset whose action was selected as the action of the team by the plurality voting rule).

When learning the prediction function I calculate the feature vector considering the whole

history of the problem solving process (for example, from the first to the last turn of a

game). When using the learned prediction function to actually perform a prediction, we

can simply compute the feature vector considering all history from the first world state to

the current one (for example, from the first turn of a game up to the current turn), and

use it as input to our learned function. Note that my feature vector does not hold any

domain information, and uses solely the voting patterns to represent the problem solving

instances.
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Formally, let P(T) = {T1,T2, . . .} be the power set of the set of agents, ai be the

action chosen in world state sj and Hj ⊆ T be the subset of agents that agreed on ai in

that world state. Consider the feature vector ~x = (x1, x2, . . .) computed at world state

sj , where each dimension (feature) has a one-to-one mapping with P(T). I define xi as

the proportion of times that the chosen action was agreed upon by the subset of agents

Ti. That is,

xi =

|Sj|∑
k=1

I(Hk = Ti)

|Sj|
,

where I is the indicator function and Sj ⊆ S is the set of world states from s1 to the

current world state sj .

Hence, given a set X̃ such that for each feature vector ~xt ∈ X̃ we have the associated

reward rt, we can estimate a function, f̂ , that returns an estimated reward between 0 and

1 given an input ~x. I classify estimated rewards above a certain threshold ϑ (for example,

0.5) as “success”, and below it as “failure”.

In order to learn the classification model, the features are computed at the final world

state. That is, the feature vector will record the frequency that each possible subset

of agents won the vote, calculated from the first world state to the last one. For each

feature vector, we have (for learning) the associated reward: “success” (1) or “failure”

(0), accordingly with the final outcome of the problem solving process. In order to execute

the prediction, the features are computed at the current world state (i.e., all history of

the current problem solving process from the first world state to the current one).

I use classification by logistic regression, which models f̂ as

f̂(~x) =
1

1 + e−(α+~βT ~x)
,

where α and ~β are parameters that will be learned given X̃ and the associated rewards.

While training, I eliminate two of the features. The feature corresponding to the subset

∅ is dropped because an action is chosen only if at least one of the agents voted for it.

Also, since the rest of the features sum up to 1, and are hence linearly dependent, I also

drop the feature corresponding to all agents agreeing on the chosen action.

I also study a variant of this prediction method, where we use only information about

the number of agents that agreed upon the chosen action, but not which agents exactly

were involved in the agreement. For that variant, I consider a reduced feature vector
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Agent 1 Agent 2 Agent 3

Iteration 1 a1 a1 a2
Iteration 2 a2 a2 a1
Iteration 3 a1 a2 a2

Table 8.1: A simple example of voting profiles after three iterations of problem-solving.

~y = (y1, y2, . . .), where I define yi to be the proportion of times that the chosen action

was agreed upon by any subset of i agents:

yi =

|Sj|∑
k=1

I(|Hk| = i)

|Sj|
,

where I is the indicator function and Sj ⊆ S is the set of world states from s1 to the

current world state sj . I compare the two approaches in Section 8.4.

8.2.1 Example of Features

I give a simple example to illustrate my proposed feature vectors. Consider a team of

three agents: t1, t2, t3. Let’s assume three possible actions: a1, a2, a3. Consider that, in

three iterations of the problem solving process, the voting profiles were as shown in Table

8.1, where I show which action each agent voted for at each iteration. Based on plurality

voting rule, the action chosen for the respective iterations would be a1, a2, and a2.

We can see an example of how the full feature vector will be defined at each iteration

in Table 8.2, where each column represents a possible subset of the set of agents, and I

mark the frequency that each subset agreed on the chosen action. Note that the frequency

of the subsets {t1}, {t2} and {t3} remains 0 in this example. This happens because we

only count the subset where all agents involved in the agreement are present. If there was

a situation where, for example, agent t1 votes for a1, agent t2 votes for a2 and agent t3

votes for a3, then we would select one of these agents by random tie braking. After that,

we would increase the frequency of the corresponding subset containing only the agent

that was chosen (i.e, either {t1}, {t2} or {t3}).
If the problem has only three iterations in total, we would use the feature vector

at the last iteration and the corresponding result (“success” — 1, or “failure” — 0),

while learning the function f̂ (that is, the feature vectors at Iteration 1 and 2 would be

ignored). If, however, we already learned a function f̂ , then we could use the feature

vector at Iteration 1, 2 or 3 as input to f̂ to execute a prediction. Note that at Iteration 1

and 2 the output (i.e., the prediction) of f̂ will be exactly the same, as the feature vector

did not change. At Iteration 3, however, we may have a different output/prediction.

141



{t1} {t2} {t3} {t1, t2} {t1, t3} {t2, t3}
Iteration 1 0 0 0 1 0 0

Iteration 2 0 0 0 1 0 0

Iteration 3 0 0 0 2/3 0 1/3

Table 8.2: Example of the full feature vector after three iterations of problem solving.

1 2

Iteration 1 0 1

Iteration 2 0 1

Iteration 3 0 1

Table 8.3: Example of the reduced feature vector after three iterations of problem solving.

In Table 8.3, I show an example of the reduced feature vector, where the column

headings define the number of agents involved in an agreement over the chosen action. I

consider here the same voting profiles as before, shown in Table 8.1. Note that the reduced

representation is much more compact, but we have no way to represent the change in

which specific agents were involved in the agreement, from Iteration 2 to Iteration 3. In

this case, therefore, we would always have the same prediction after Iteration 1, Iteration

2 and also Iteration 3.

8.3 Theory

I consider here the view of social choice as a way to estimate a “truth”, or the correct

(i.e., best) action to perform in a given world state. Hence, we can model each agent as

a probability distribution function (pdf): that is, given the correct outcome, each agent

will have a certain probability of voting for the best action, and a certain probability of

voting for some incorrect action. These pdfs are not necessarily the same across different

world states (Chapter 3). Hence, given the voting profile in a certain world state, there

will be a probability p of picking the correct choice (for example, by the plurality voting

rule).

I will start by developing, in Section 8.3.1, a simple explanation of why we can use the

voting patterns to predict success or failure of a team of voting agents, based on classical

voting theories. Such explanation will give an intuitive idea of why we can use the voting

patterns to predict success or failure of a team of voting agents, and it can be immediately

derived from the classical voting models. However, it fails to explain some of the results in

Section 8.4, and it needs the assumption that plurality is an optimal voting rule. Hence,

it is not enough for a deeper understanding of my prediction methodology. Therefore,

I will later present, in Section 8.3.2, my main theoretical model, that provides a better
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understanding of my results. In particular, based on classical models we would expect

to make better predictions for teams that have a greater performance (i.e., likelihood of

being correct). My theory and experiments will show, however, that we can actually make

better predictions for teams that are more diverse, even if they have a worse performance.

Moreover, I will also be able to build on my previous ST agent model, in Section 8.3.3,

to study the effect of increasing the action space on the prediction quality.

8.3.1 Classical Voting Model

I start with a simple example to show that we can use the outcome of plurality voting to

predict success. Consider a scenario with two agents and two possible actions, a correct

and an incorrect one. I assume, for this example, that agents have a probability of 0.6 of

voting for the correct action and 0.4 of making a mistake.

If both agents vote for the same action, they are either both correct or both wrong.

Hence, the probability of the team being correct is given by 0.62/(0.62 + 0.42) = 0.69.

Therefore, if the agents agree, the team is more likely correct than wrong. If they vote

for different actions, however, one will be correct and the other one wrong. Given that

profile, and assuming that we break ties randomly, the team will have a 0.5 probability

of being correct. Hence, the team has a higher probability of taking a correct choice

when the agents agree than when they disagree (0.69 > 0.5). Therefore, if across multiple

iterations these agents agree often, the team has a higher probability of being correct

across these iterations, and we can predict that the team is going to be successful. If they

disagree often, then the probability of being correct across the iterations is lower, and we

can predict that the team will not be successful.

More generally than the previous example, we can consider all cases where plurality

is the optimal voting rule. In social choice, optimal voting rules are often studied as

maximum likelihood estimators (MLE) of the correct choice [Conitzer and Sandholm,

2005]. That is, each agent is modeled as having a noisy perception of the truth (or

correct outcome). Hence, the correct outcome influences how each agent is going to vote,

as shown in the model in Figure 8.1. For example, consider a certain agent t that has a

probability 0.6 of voting for the best action, and let’s say we are in a certain situation

where action a∗ is the best action. In this situation agent t will have a probability of 0.6

of voting for a∗.

Therefore, given a voting profile and a noise model (the probability of voting for

each action, given the correct outcome) of each agent, we can estimate the likelihood of

each action being the best by a simple (albeit computationally expensive) probabilistic

inference. Any voting rule is going to be optimal if it corresponds to always picking the

action that has the maximum likelihood of being correct (i.e., the action with maximum
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“Correct Outcome”

Agent 1’s vote Agent 2’s vote ... Agent n’s vote

Figure 8.1: “Classical” voting model. Each agent has a noisy perception of the truth, or
correct outcome. Hence, its vote is influenced by the correct outcome.

likelihood of being the best action), according to the assumed noise model of the agents.

That is, the output of an optimal voting rule always corresponds to the output of actually

computing, by the probabilistic inference method mentioned above, which action has the

highest likelihood of being the best one.

If plurality is assumed to be an optimal voting rule, then the action voted by the

largest number of agents has the highest probability of being the optimal action. We

can expect, therefore, that the higher the number of agents that votes for an action,

the higher the probability that the action is the optimal one. Hence, given two different

voting profiles with a different number of agreeing agents, we expect that the team has

a higher probability of being correct (and, therefore, be successful) in the voting profile

where a larger number of agents agrees on the chosen action.

I formalize this idea in the following proposition, under the classical assumptions of

voting models. Hence, I consider that the agents have a higher probability of voting for

the best action than any other action (which makes plurality a MLE voting rule [List

and Goodin, 2001]), uniform priors over all actions, and that all agents are identical and

independent.

Proposition 8.3.1 The probability that a team is correct increases with the number of

agreeing agents m in a voting profile, if plurality is MLE.

Proof: Let a∗ be the best action (whose identity we do not know) and V = v1, v2 . . . vn

be the votes of n agents. The probability of any action a being the best action, given the

votes of the agents (i.e., P (a = a∗|v1, v2 . . . vn)), is governed by the following relation:

P (a = a∗|v1, v2 . . . vn) ∝ P (v1, v2 . . . vn|a = a∗)P (a = a∗) (8.1)

Let’s consider two voting profiles V1,V2, where in one a higher number of agents

agree in the chosen action than in the other (i.e., mV1 > mV2). Let w1 be the action

with the highest number of votes in V1, and w2 the one in V2.

Without loss of generality (since the order does not matter), let’s reorder the voting

profiles V1 and V2, such that all votes for w1 are in the beginning of V1 and all votes
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for w2 are in the beginning of V2. Now, let Vx
1 and Vx

2 be the voting profiles considering

only the first x agents (after reordering).

We have that P (V
mV2
1 |w1 = a∗) = P (V

mV2
2 |w2 = a∗), since up to the first mV2

agents for both voting profiles we are considering the case where all agents voted for a∗.

Now, let’s consider the agents from mV2 + 1 to mV1 . In V1, the voted action of all

agents (still w1) is wired to a∗ (by the conditional probability). However, in V2, the voted

action a 6= w2 is not wired to a∗ in the conditional probability anymore. As each agent is

more likely to vote for a∗ than any other action, from mV2 + 1 to mV1 , the events in V1

(an agent voting for a∗) has higher probability than the events in V2 (an agent voting

for an action a 6= a∗). Hence, P (V
mV1
1 |w1 = a∗) > P (V

mV1
2 |w2 = a∗).

Now let’s consider the votes after mV1 . In V1 there are no more votes for w1, and in

V2 there are no more votes for w2. Hence, all the subsequent votes are not wired to any

ranking (as we only wire w1 = a∗ and w2 = a∗ in the conditional probabilities). Therefore,

each vote can be assigned to any ranking position that is not the first. Since the agents

are independent, any sequence of votes will thus be as likely. Hence, P (V1|w1 = a∗) >

P (V2|w2 = a∗).

Since I assume uniform priors, it follows that:

P (w1 = a∗|V1) > P (w2 = a∗|V2)

Therefore, the team is more likely correct in profiles where a higher number of agents

agree.

Hence, if across multiple voting iterations, a higher number of agents agree often, we

can predict that the team is going to be successful. If they disagree a lot, we can expect

that they are wrong in most of the voting iterations, and we can predict that the team is

going to fail.

In the next observation I show that we can increase the prediction accuracy by knowing

not only how many agents agreed, but also which specific agents were involved in the

agreement. Basically, I show that the probability of a team being correct depends on the

agents involved in the agreement. Therefore, if we know that the best agents are involved

in an agreement, we can be more certain of a team’s success. This observation motivates

the use of the full feature vector, instead of the reduced one.

Observation 8.3.2 Given two profiles V1,V2 with the same number of agreeing agents

m, the probability that a team is correct is not necessarily equal for the two profiles.

We can easily show by an example (that is, we only need one example where the

probability is not equal to show that it will not always be equal). Consider a problem
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with two actions. Consider a team of three agents, where t1 and t2 have a probability of

0.8 of being correct, while t3 has a probability of 0.6 of being correct. As the probability

of picking the correct action is the highest for all agents, the action chosen by the majority

of the agents has the highest probability of being correct (that is, we are still covering a

case where plurality is MLE).

However, when only t1 and t2 agree, the probability that the team is correct is given

by: 0.82× 0.4/(0.82× 0.4 + 0.22× 0.6) = 0.91. When only t2 and t3 agree, the probability

that the team is correct is given by: 0.8×0.6×0.2/(0.8×0.6×0.2+0.2×0.4×0.8) = 0.59.

Hence, the probability that the team is correct is higher when t1 and t2 agree than when

t2 and t3 agree.

However, based solely on the classical voting models, one would expect that given

two different teams, the predictions would be more accurate for the one that has greater

performance (i.e., likelihood of being correct), as I formalize in the following proposition.

Therefore, this model fails to explain my experimental results (as I will show later). I

will use the term strength to refer to a team’s performance.

Proposition 8.3.3 Under the classical voting models, given two different teams, one can

expect to make better predictions for the strongest one.

Proof Sketch: Under the classical voting models, assuming the agents have a noise

model such that plurality is a MLE, we have that the best team will have a greater

probability of being correct given a voting profile where m agents agree than a worse

team with the same amount of m agreeing agents.

Hence, the probability of the best team being correct will be closer to 1 in comparison

with the probability of the worse team being correct. The closer the probability of success

is to 1, the easier it is to make predictions. Consider a Bernoulli trial with probability

of success p ≈ 1. In the learning phase, we will see many successes accordingly. In the

testing phase, we will predict the majority of the two for every trial, and we will go wrong

only with probability |1− p| ≈ 0.

Of course, we could also have an extremely weak team, that is wrong most of the

time. For such team, it would also be easy to predict that the probability of success is

close to 0. Notice, however, that I am assuming here the classical voting models, where

plurality is a MLE. In such models, the agents must play “reasonably well”: classically

they are assumed to have either a probability of being correct greater than 0.5 or the

probability of voting for the best action is the highest one in their pdf [List and Goodin,

2001]. Otherwise, plurality is not going to be a MLE.

Consider, however, that the strongest team is composed of copies of the best agent

(which would often be the case, under the classical assumptions). We actually have

146



W

H1

H2

H3H4

...

HS

Figure 8.2: My main model. I assume that the subset of agents that decided the action
of the team at each world state Hi determines whether the team will be successful or not
(W ).

that, in fact, such agents will not necessarily have noise models (pdfs) where the best

action has the highest probability in all world states. In some world states, a suboptimal

action could have the highest probability, making the agents agree on the same mistakes

(Chapter 3). Therefore, when plurality is not actually a MLE in all world states, we have

that Proposition 8.3.1 will not hold in the world states where this happens. Hence, we

will predict that the team made a correct choice, when actually the team was wrong,

causing problems in our accuracy. I give more details in the next section.

8.3.2 Main Theoretical Model

I now present my main theory, that holds irrespective of plurality being an optimal voting

rule (MLE) or not. Again, I consider agents voting across multiple world states. I assume

that all iterations equally influence the final outcome, and that they are all independent.

Let the final reward of the team be defined by a random variable W , and let the

number of world states be S. I model the problem solving process by the graphical model

in Figure 8.2, where Hj represents the subset of agents that agreed on the chosen action

at world state sj . That is, I assume that the subset of agents that decided the action

taken by the team at each world state of the problem solving process will determine

whether the team will be successful or not in the end. A specific problem (for example,

Go games where the next state will depend on the action taken in the current one) would

call for more complex models to be completely represented. My model is a simplification

of the problem solving process, abstracting away the details of specific problems.

For any subset H, let P (H) be the probability that the chosen action was correct

given the subset of agreeing agents. If the correct action is a∗, P (H) is equivalent to:

P (∀t ∈ H, t chooses a∗, ∀t /∈ H, t chooses a 6= a∗)

P (∃a′ ∀t ∈ H, t chooses a′, ∀t /∈ H, t chooses a 6= a′)
,

where H is the subset of agents which voted for the action taken by the team.
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Note that P (H) depends on both the team and the world state. However, I marginalize

the probabilities to produce a value that is an average over all world states. I consider

that, for a team to be successful, there is a threshold δ such that:
S∏
j=1

P (Hj)


1/S

> δ (8.2)

I use the exponent 1/S in order to maintain a uniform scale across all problems.

Each problem might have a different number of world states; and for one with many

world states, it is likely that the incurred product of probabilities is sufficiently low to fail

the above test, independent of the actual subsets of agents that agreed upon the chosen

actions. However, the final reward is not dependent on the number of world states.

I can show, then, that we can use a linear classification model (such as logistic regres-

sion) that is equivalent to Equation 8.2, to predict the final reward of a team.

Theorem 8.3.4 Given the model in Equation 8.2, the final outcome of a team can be

predicted by a linear model over agreement frequencies.

Proof: Getting the log in both sides of Equation 8.2, we have:

S∑
j=1

1

S
log(P (Hj)) > log(δ)

The sum over the steps (world states) of the problem-solving process can be trans-

formed to a sum over all possible subset of agents that can be encountered, P:

∑
H∈P

nH

S
log(P (H)) > log(δ), (8.3)

where nH is the number of times the subset of agreeing agents H was encountered during

problem solving. Hence, nH
S is the frequency of seeing the subset H, which I will denote

by fH.

Recall that T is the set of all agents. Hence, fT (which is the frequency of all agents

agreeing on the same action), is equal to 1−
∑

H∈P\{T} fH. Also, note that n∅ = 0, since

at least one agent must pick the chosen action. Equation 8.3 can, hence, be rewritten as:

fT log(P (T)) +
∑

H∈P\T

fH log(P (H)) > log(δ)

1−
∑

H∈P\{T}

fH

 log(P (T)) +
∑

H∈P\T

fH log(P (H)) > log(δ)
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log(P (T)) +
∑

H∈P\T

fH log

(
P (H)

P (T)

)
> log(δ)

Hence, my final model will be:

∑
H∈P\T

log

(
P (H)

P (T)

)
fH > log

(
δ

P (T)

)
(8.4)

Note that log( δ
P (T)) and the “coefficients” log(P (H)

P (T) ) are all constants with respect

to a given team, as I have discussed earlier. Considering the set of all fH (for each

possible subset of agreeing agents H) to be the characteristic features of a single problem,

the coefficients can now be learned from training data that contains many problems

represented using these features. Further, the outcome of a team can be estimated through

a linear model.

The number of constants is exponential, however, as the size of the team grows.

Therefore, in the following corollary, I show that (under some conditions) we can approx-

imate well the prediction with a reduced feature vector that grows linearly. In order to

differentiate different possible subsets, I will denote by Hi a certain subset ∈ P, and by

|Hi| the size of that subset (i.e., the number of agents that agree on the chosen action).

Corollary 8.3.5 If P (Hi) ≈ P (Hj) ∀Hi,Hj such that |Hi| = |Hj |, we can approxi-

mate the prediction with a reduced feature vector, that grows linearly with the number of

agents. Furthermore, in a uniform team the reduced representation is equal to the full

representation.

Proof: By the assumption of the corollary, there is a PH′n , defined as PH′n ≈ P (Hj),

∀Hj such that |Hj | = n. Let fn =
∑
fHj , over all |Hj | = n. Also, let N′ be the set of

all integers 0 < x < N , where N is the number of agents. We thus have that:

∑
H∈P\T

fH log

(
P (H)

P (T)

)
≈
∑
x∈N′

fx log

(
PH′n

P (T)

)
(8.5)

As PH′n depends only on the number of agents, we have that such representation

grows linearly with the size of the team.

Moreover, note that for a team made of copies of the same agent, we have that

PH′n = P (Hj), ∀Hj such that |Hj | = n. Hence, the left hand side of Equation 8.5 is

going to be equal to the right hand side.

Also, notice that my model does not need any assumptions about plurality being an

optimal voting rule (MLE). In fact, there are no assumptions about the voting rule at
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all. Hence, Proposition 8.3.1, Observation 8.3.2 and Proposition 8.3.3 do not apply, and

we can still make accurate predictions irrespective of the performance of a team.

We can also note that the accuracy of the predictions is not going to be the same across

different teams. Given two teams where plurality is the optimal voting rule in general

(i.e., P (Hi) > P (Hj), ∀Hi,Hj where |Hi| > |Hj |): one uniform, made of copies of the

best agent, and a diverse, made of different agents, we have that we can actually make

better predictions for diverse than uniform, irrespective of the actual playing performance

of these two teams.

Corollary 8.3.6 Given a diverse and a uniform team, the accuracy of the prediction for

the diverse team can be higher, even if the diverse team has a lower probability of victory.

Proof Sketch: Note that the learned constants ĉH ≈ log(P (H)
P (T) ) represent the

marginal probabilities across all world states. However, I showed (Chapter 3) that the

agent with the highest marginal probability of voting for the correct choice will not nec-

essarily have the highest probability of being correct at all world states.

Hence, let Bad be the set of world states where the best agent does not have the

highest probability of voting for the correct action in its pdf. In such world states, the

agents tend to agree over the incorrect action that has the highest probability. This

follows from modeling the voting of all agents as a multinomial distribution. Hence, the

expected number of agents that vote for an action aj , in a team with n agents, is given by:

E[|H|] = n× pj , where pj is the probability of the agent voting for action aj . Therefore,

the action with the highest probability will tend to receive the highest number of votes.

However, in my prediction model, the estimation that the team is correct will get

higher as more agents agree together upon the final choice. Hence, we will tend to make

wrong predictions for the world states in the set Bad, and our accuracy will be lower as

|Bad| gets higher.

Since a diverse team is composed of agents with different pdfs, it is less likely that in

a given world state they will all have the highest probability in the same incorrect action

(Chapter 3). Hence, it is less likely that the situation described above happens, and we

can have better predictions for a diverse team.

Although I only give here a proof sketch, in Section 8.4 I experimentally show a

statistically significant higher accuracy for the predictions for a diverse team than for

a uniform team, even though they have similar strength (i.e., performance in terms of

winning rates). I am able to achieve a better prediction for diverse teams both in the

end of the problem-solving process and also while doing online predictions at any world

state.

150



8.3.3 Action Space Size

I present now my study concerning the quality of the predictions over large action space

sizes. In order to perform this analysis, I assume the spreading tail (ST ) agent model,

presented in Chapter 4. The ST agent model was developed to study how teams of

voting agents change in performance as the size of the action space increases. The basic

assumption is that the pdf of each member of the team has a non-zero probability over

an increasingly larger number of suboptimal actions as the action space grows, while the

probability of voting for the optimal action remains unchanged. Chapter 4 perform an

experimental validation of this model in the Computer Go domain.

As a reminder, I briefly summarize here the formal definition of the ST agent model,

and I refer the reader to Chapter 4 for a more detailed description. Let Dm be the set

of suboptimal actions (aj , j 6= 0) assigned with a nonzero probability in the pdf of an

agent i, and dm = |Dm|. The ST model assumes that there is a bound in the ratio of the

suboptimal action with highest probability and the one with lowest nonzero probability,

i.e., let pi,min = minj∈Dmpi,j and pi,max = maxj∈Dmpi,j ; there is a constant ζ such that

pi,max ≤ ζpi,min ∀ agents i. ST agents are agents whose dm is non-decreasing on m and

dm →∞ as m→∞. I consider that there is a constant ε > 0, such that for all ST agents

i, ∀m, pi,0 ≥ ε. I also assume that pi,0 does not change with m.

Let the size of the action space |A| = %, and pi,j be the probability that agent i votes

for action with rank j. In Chapter 4, I show that when % → ∞, the probability that a

team of n ST agents will play the optimal action converges to:

p̃best = 1−
n∏
i=1

(1− pi,0)−
n∑
i=1

(pi,0

n∏
j=1,j 6=i

(1− pj,0))
n− 1

n
, (8.6)

that is, the probability of two or more agents agreeing over suboptimal actions converges

to zero, and the agents can only agree over the optimal choice (note that a suboptimal

action can still be taken as we may have situations where no agent agrees). Hence,

Equation 4.1 calculates the total probability minus the cases where the best action is not

chosen: the second term covers the case where all agents vote for a suboptimal action

and the third term covers the case where one agent votes for the optimal action and all

other agents vote for suboptimal actions.

Before proceeding to my study, I am going to make a few definitions and then two

weak assumptions. I consider now here any action space size. Let α be the probability

of a team taking the optimal action when all agents disagree. Since we can only take

the optimal action if one agent votes for that action, α is a function of the probability of

each agent voting for the optimal action. That is, we may have voting profiles where all

agents disagree and no agent voted for the optimal action, or we may have voting profiles
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where all agents disagree, but there is one agent that voted for the optimal action (and,

hence, we may still take the optimal action due to random tie braking).

Let β be the probability of a team taking the optimal action when there is some

agreement on the voting profile. β may be different according to each voting profile, but

we assume that we always have that β < 1 if % <∞, and β = 1 if %→∞, according to the

ST agent model. That is, if two or more agents agree, there is always some probability

q > 0 that they are agreeing over a suboptimal action, and q → 0 as %→∞.

I will make the following weak assumptions: (i) If there is no agreement, the team is

more likely to take a suboptimal action than an optimal action. I.e., α < 1 − α; (ii) If

there is agreement, there is at least one voting profile where the team is more likely to

take an optimal action than a suboptimal action. That is, there is at least one β such

that β > 1− β.

Assumption (i) is weak, since α < 1/n (as we break ties randomly and there may be

cases where no agent votes for the optimal action). Clearly 1/n < 1 − 1/n for n > 2.

Assumption (ii) is also weak, because if we are given a team that is always more likely

to take suboptimal actions than an optimal action for any voting profile, then a trivial

predictor that always outputs “failure” would be optimal (and, hence, we would not need

a prediction at all). Therefore, assumption (i) and (ii) are satisfied for all situations of

interest. I present now my result:

Theorem 8.3.7 Let T be a set of ST agents. The quality of our prediction about the

performance of T is the highest as %→∞.

Proof: Let’s fix the problem to predicting performance at one world state. Hence, as we

consider a single decision, there is a single Hi such that fHi = 1, and fHj = 0 ∀j 6= i. In

order to simplify the notation, I denote by H the subset Hi corresponding to fHi = 1. I

also consider the performance of the team as “success” on that fixed world state if they

take the optimal action, and as “failure” otherwise.

Let a voting event be the process of querying the agents for the vote, obtaining the

voting profile and the corresponding final decision. Hence, it has a unique correct label

(“success” or “failure”). A voting event ξ will be mapped to a point χ in the feature

space, according to the subset of agents that agreed on the chosen action. Multiple

voting events, however, will be mapped to the same point χ (as exactly the same subset

can agree in different situations, sometimes they may be agreeing over the optimal action,

and sometimes they may be agreeing over suboptimal actions). Hence, given a point χ,

there is a certain probability that the team was successful, and a certain probability that

the team failed. Therefore, by assigning a label to that point, our predictor will also

be correct with a certain probability. With enough data, the predictor will output the
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more likely of the two events. That is, if given a profile, the team has a probability p

of taking the optimal action, and p > 1 − p, the predictor will output “success”, and

it will be correct with probability p. Correspondingly, if 1 − p > p, the predictor will

output “failure”, and it will be correct with probability 1− p. Hence, the probability of

the prediction being correct will be max(p, 1− p).
I first study the probability of making a correct prediction across the whole feature

space, for different action space sizes, and after that I will focus on what happens with

the specific voting events as the action space changes.

Let us start by considering the case when % → ∞. By Equation 4.1, we know that

every time two or more agents agree on the same action, that action will be the optimal

one. Note that this is a very clear division of the feature space, as for every single point

where |H| ≥ 2 the team will be successful with probability 1. Therefore, on this subspace

we can make perfect predictions.

The only points in the feature space where a team may still take a suboptimal action

are the ones where a single agent agrees on the chosen action, i.e., |H| = 1. Hence, for

such points we will make a correct prediction with probability max(α, 1− α).

Let’s now consider cases with a smaller action space size (i.e., % < ∞). Let’s first

consider the subspace |H| ≥ 2. Before, our predictor was correct with probability 1. Now,

given a voting event where there is an agreement, there will be a probability β < 1 of

the team taking the optimal action. Hence, the predictor will be correct with probability

max(β,1− β), but max(β, 1− β) < 1.

Let’s consider now the subspace |H| = 1. Here the quality of the prediction depends

on α, which is a function of the probability of each agent playing the best action. On

the ST agent model, however, the probability of one agent voting for the best action is

independent of % (Chapter 4). Hence, α does not depend on the action space size, and

for these cases the quality of our prediction will be the same as before. Therefore, for all

points in the feature space, the probability of making a correct prediction is either the

same or worse when % <∞ than when %→∞.

However, that does not complete the proof yet, because a voting event ξ may map to

a different point χ when the action space changes. For instance, the number of agents

that agree over a suboptimal action may overpass the number of agents that agree on

the optimal action as the action spaces changes from % → ∞ to % < ∞. Therefore, we

need to show that our prediction will be strictly better when %→∞ irrespective of such

mapping.

Hence, let us now study the voting events. As the number of actions decrease, a

certain voting event ξ when %→∞, will map to a voting event ξ′ when % <∞ (where ξ

may or may not be equal to ξ′). Let χ and χ′ be the corresponding points in the feature
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space for ξ and ξ′. Also, let H and H′ be the respective subset of agreeing agents. Let’s

consider now the four possible cases:

(i) |H| = |H′| = 1. For such events, the performance of the predictor will remain

the same, that is, for both cases we will make a correct prediction with probability

max(α, 1 − α). Note that this case will not happen for all events, as pi,0 6→ 0 when

%→∞, hence there will be at least one event where |H| ≥ 2.

(ii) |H| ≥ 2, |H′| ≥ 2. For such events the performance of the predictor will be higher

when %→∞, as we can make a correct prediction for a point χ with probability 1, while

for a point χ′ with probability max(β, 1− β) < 1.

(iii) |H| ≥ 2, |H′| = 1. This case will not happen under the ST agent model. If there

was a certain subset H of agreeing agents when % → ∞, when we decrease the number

of actions the new subset of agreeing agents H′ will either have the same size or will be

larger. This follows from the fact that we may have a larger subset agreeing over some

suboptimal action when the action space decreases, but the original subset that voted for

the optimal action will not change.

(iv) |H| = 1, |H′| ≥ 2. We know that in this case ξ′ is an event where the team fails

(otherwise the same subset would also have agreed when %→∞). Hence, for 1− α > α

(weak assumption (i)), we make a correct prediction for such case when % → ∞. When

% < ∞, we make a correct prediction if 1 − β > β. β, however, depends on the voting

profile of the event ξ′. By weak assumption (ii), there will be at least one event where the

team is more likely to be correct than wrong (that is, β > 1 − β). Hence, there will be

at least one event where our predictor changes from making a correct prediction (when

%→∞) to making an incorrect prediction (when % <∞).

Hence, for all voting events, the probability of making a correct prediction will either

be the same or worse when % <∞ than when %→∞, and there will be at least one voting

event where it will be worse, completing the proof. Hence, %→∞ is strictly the best case

for our prediction. As we assume that all world states are independent, if % → ∞ is the

best case for a single world state, it will also be the best case for a set of world states.

8.4 Results

8.4.1 Computer Go

I first test my prediction method in the Computer Go domain. I use four different Go

software: Fuego 1.1 [Enzenberger et al., 2010], GnuGo 3.8 [FSF, 2009], Pachi 9.01 [Baudǐs

and Gailly, 2011], MoGo 4 [Gelly et al., 2006], and two (weaker) variants of Fuego (Fuego∆

and FuegoΘ), in a total of six different, publicly available, agents. Fuego is the strongest
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Figure 8.3: Winning rates of the three teams, under four different board sizes.

agent among all of them (Chapter 3). The description of Fuego∆ and FuegoΘ is available

in Chapter 3.

I study three different teams: Diverse, composed of one copy of each agent1; Uniform,

composed of six copies of the original Fuego (initialized with different random seeds, as

in Soejima et al. [2010]); Intermediate, composed of six random parametrized versions

of Fuego (from Chapter 6). In all teams, the agents vote together, playing as white, in

a series of Go games against the original Fuego playing as black. I study four different

board sizes for diverse and uniform: 9x9, 13x13, 17x17 and 21x21. For intermediate, I

study only 9x9, since the random parametrizations of Fuego do not work on larger boards.

In Go a player is allowed to place a move at any empty intersection of the board, so the

largest number of possible actions at each board size is, respectively: 81, 169, 289, 441.

In order to evaluate my predictions, I use a dataset of 1000 games for each team and

board size combination (in a total of 9000 games, all played from the beginning). For all

results, I used repeated random sub-sampling validation. I randomly assign 20% of the

games for the testing set (and the rest for the training set), keeping approximately the

same ratio as the original distribution. The whole process is repeated 100 times. Hence,

in all graphs I show the average results, and the error bars show the 99% confidence

interval (p = 0.01), according to a t-test. If the error bars cannot be seen in a certain

point in a graph, it is because they are smaller than the symbol used to mark that point in

the graph. Moreover, when I say that a certain result is significantly better than another,

I mean statistically significantly better, according to a t-test where p < 0.01, unless I

explicitly give a p value.

First, I show the winning rates of the teams in Figure 8.3. This result is not yet

evaluating the quality of my prediction, it is merely background information that I will

1Except for GnuGo, all other agents use Monte Carlo Tree Search. However, each software was
developed by different groups, and use different heuristics and implementation strategies. In comparison
with the other teams studied, this is the team with the greater diversity.
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use when analyzing my prediction results later. On 9x9 Go, uniform is better than diverse

with statistical significance (p = 0.014), and both teams are clearly significantly better

than intermediate (p < 2.2 × 10−16). On 13x13 and 17x17 Go, the difference between

diverse and uniform is not statistically significant (p = 0.9619 and 0.5377, respectively).

On 21x21 Go, the diverse team is significantly better than uniform (p = 0.03897).

In order to verify my online predictions, I used the evaluation of the original Fuego,

but I give it a time limit 50× longer. I will refer to this version as “Baseline”. I, then,

use the Baseline’s evaluation of a given board state to estimate its probability of victory,

allowing a comparison with my approach. Considering that an evaluation above 0.5 is

“success” and below is “failure”, I compare my predictions with the ones given by the

Baseline’s evaluation, at each turn of the games.

I use this method because the likelihood of victory changes dynamically during a

game. That is, a team could be in a winning position at a certain stage, after making

several good moves, but suddenly change to a losing position after committing a mistake.

Similarly, a team could be in a losing position after several good moves from the opponent,

but suddenly change to a winning position after the opponent makes a mistake. Therefore,

simply comparing with the final outcome of the game would not be a good evaluation.

However, for the interested reader, I show in Appendix B how the evaluation would be

comparing with the final outcome of the game — and I note here that our prediction

quality is still high in such alternative.

Since the games have different lengths, I divide all games in 20 stages, and show the

average evaluation of each stage, in order to be able to compare the evaluation across

all games uniformly. Therefore, a stage is defined as a small set of turns (on average,

1.35 ± 0.32 turns in 9 × 9; 2.76 ± 0.53 in 13 × 13; 4.70 ± 0.79 in 17 × 17; 7.85 ± 0.87 in

21× 21). For all games, I also skip the first 4 moves, since my baseline returns corrupted

information in the beginning of the games.

I will present my results in four different sections. First, I will show the analysis for a

fixed threshold (that is, the value ϑ above which the output of my prediction function f̂

will be considered “success”). Secondly, I am going to analyze across different thresholds

using receiver operating characteristic (ROC) curves, and the area under such curves

(AUC). Thirdly, I will present the results for different board sizes. Then, finally, I will

study the performance of the reduced feature vector.

8.4.1.1 Single Threshold Analysis

I start by showing my results for a fixed threshold, since it gives a more intuitive under-

standing of the quality of my prediction technique. Hence, in these results I will consider

that when my prediction function f̂ returns a value above 0.5 for a certain game, it will
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be classified as “success”, and when the value is below 0.5, it will be classified as “failure”.

In this section I also restrict myself to the 9x9 Go case.

I will evaluate my prediction results according to five different metrics: Accuracy,

Failure Precision, Success Precision, Failure Recall, Success Recall. Accuracy is defined

as the sum of the true positives and true negatives, divided by the total number of tests

(i.e., true positives, true negatives, false positives, false negatives). Hence, it gives an

overall view of the quality of the classification. Precision gives the percentage of data

points classified with a certain label (“success” or “failure”) that are correctly labeled.

Recall denotes the percentage of data points that truly pertain to a certain label, that

are correctly classified.

I show the results in Figure 8.4. As we can see, we were able to obtain a high-

accuracy very quickly, already crossing the 0.5 line in the 2nd stage for all teams. In fact,

the accuracy is significantly higher than the 0.5 mark for all teams after the 2nd stage

(and for diverse and intermediate since the 1st stage).

From around the middle of the games (stage 10), the accuracy for diverse and uniform

already gets close to 60% (with intermediate only close behind). Although we can see

some small drops – that could be explained by the sudden changes in the game –, overall

the accuracy increases with the game stage number, as expected. Moreover, for most of

the stages, the accuracy is higher for diverse than for uniform. The prediction for diverse

is significantly better than for uniform in 90% of the stages. It is also interesting to note

that the prediction for intermediate is significantly better than for uniform in 60% of the

stages, even though intermediate is a significantly weaker team. In fact, we can see that

in the last stage, the accuracy, the failure precision and the failure recall is significantly

better for intermediate than for the other teams.

8.4.1.2 Multiple Threshold Analysis

I now measure my results under a variety of thresholds (that is, the value ϑ above which

the output of our prediction function f̂ will be considered “success”). In order to perform

this study, I use receiver operating characteristic (ROC) curves. An ROC curve shows

the true positive and the false positive rates of a binary classifier at different thresholds.

The true positive rate is the number of true positives divided by the sum of true positives

and false negatives (i.e., the total number of items of a given label). That is, the true

positive rate shows the percentage of “success” cases that are correctly labeled as such.

The false positive rate, on the other hand, is the number of false positives divided by the

sum of false positives and true negatives (i.e., the total number of items that are not of a

given label). That is, the false positive rate shows the percentage of “failure” cases that

are wrongly classified as “success”.
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Figure 8.4: Performance metrics over all turns of 9x9 Go games.
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Hence, ROC curves allow us to better understand the trade-off between the true

positives and the false positives of a given classifier. By varying the threshold, we can

increase the number of items that receive a given label, increasing henceforth the number

of items of such label that are correctly classified, but at the cost of also increasing the

number of items that incorrectly receive the same label.

The ideal classifier is the one on the upper left corner of the ROC graph. Such point

(true positive rate = 1, false positive rate = 0) indicates that every item classified with a

certain label truly pertains to such label, and every item that truly pertains to such label

receives the correct classification.

In this chapter, I do not aim only on studying the performance of a single classifier,

but rather on comparing the performance of our prediction technique on a variety of

situations, changing the team and the action space size (i.e., the board size). Hence,

I also study the area under the ROC curve (AUC), as a way to synthesize the quality

information from the curve into a single number. The higher the AUC, the better the

prediction quality of my technique in a given situation. That is, a completely random

classifier would have an AUC of 0.5, and as the ROC curve moves towards the top-left

corner of the graph, the AUC gets closer and closer to 1.0.

In fact, the AUC metric has been shown to be equal to the probability of, given

two pair of items with different labels (one “success” case and one “failure” case, in our

situation), correctly considering the item that was truly a “success” as more likely to

be a “success” case than the other item. It has also been shown to be related to other

important statistical metrics, such as the Wilcoxon test of ranks, the Mann-Whitney U

and the Gini coefficient [Hanley and McNeil, 1982, Mason and Graham, 2002, Hand and

Till, 2001].

I start by studying multiple thresholds in a fixed board size (9x9), and in the next

section I study the effect of increasing the action space. Hence, in Figure 8.5 I show

the ROC curves for all teams in the 9x9 Go games, for 4 different stages of the game.

Although in the beginning of the game (stage 5) it is hard to distinguish the results for

the different teams, we can note that from the middle of the games to the end (stage

15 and 20), there is a clear distinction between the prediction quality for diverse and

intermediate, when compared with the one for uniform, across many different thresholds.

As mentioned, to formally compare these results across all stages I use the AUC metric.

Hence, in Figure 8.6, I show the AUC for the three different teams in 9x9 Go. As we can

see, the three teams have similar AUCs up to stage 10, but from that stage on we can

get better AUCs for both diverse and intermediate, significantly outperforming the AUC

for uniform in all stages. We also find that, considering all stages, we have a significantly

better AUC for diverse (than for uniform) in 85% of the cases, and for intermediate
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Figure 8.5: ROC curves, analyzing different thresholds in 9x9 Go.
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Figure 8.6: AUC for diverse, uniform and intermediate teams, in 9x9 Go.

in 55% of the cases. Curiously, we can also note that even though intermediate is the

weakest team, we can obtain for it the (significantly) best AUC in the last stage of the

games, surpassing the AUC found for the other teams. Overall, these results show that

my hypothesis that we can make better predictions for teams that have higher diversity

holds irrespective of the threshold used for classification. On the next section, I study

the effect of increasing the action space size.

8.4.1.3 Action Space Size

Let us start by showing, in Figure 8.7, ROC curves for diverse and uniform under different

board sizes. It is harder to distinguish the curves on stages 5 and 10, but we can notice

that the curve for 21x21 tends to dominate the others on stages 15 and 20. Again, to

better study these results, we look at how the AUC changes for different teams and board

sizes.

In Figure 8.8 we can see the AUC results. For the diverse team (Figure 8.8 (a)), we

start observing the effect of increasing the action space after stage 5, when the curves for

17 × 17 and 21 × 21 tends to dominate the other curves. In fact, the AUC for 17 × 17

is significantly better than smaller boards in 60% of the stages, and in 80% of the stages

after stage 5. Moreover, after stage 5 no smaller board is significantly better than 17×17.

Concerning 21×21, we can see that from stage 14, its curve completely dominates all the

other curves. In all stages from 14 to 20 the result for 21× 21 is significantly better than

for all other smaller boards. Hence, we can note that the effect of increasing the action

space seems to depend on the stage of the game, and it gets more evident as the stage

number increases.
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Figure 8.7: ROC curves for diverse and uniform, for different board sizes.
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Figure 8.8: AUC for different teams and board sizes, organized by teams.

Concerning the uniform team (Figure 8.8 (b)), up to 17 × 17 we cannot observe a

positive impact of the action space size on the prediction quality; but for 21× 21 there is

clearly an improvement from the middle game when compared with smaller boards. On

all 8 stages from stage 13 to stage 20, the result for 21 × 21 is significantly better than

for other board sizes.

In terms of percentage of stages where the result for 21 × 21 is significantly better

than for 9×9, we find that it is 40% for the uniform team, while it is 85% for the diverse

team. Hence, the impact of increasing the action space occurs for diverse earlier in the

game, and over a larger number of stages.

Now, in order to compare the performance for diverse and uniform under different

board sizes, I show the AUCs in Figure 8.9 organized by the size of the board (Figure

8.6 is repeated here in Figure 8.9 (a) to make it easier to observe the difference between

board sizes). It is interesting to observe that the quality of the predictions for diverse is

better than for uniform, irrespective of the size of the action space. Moreover, while for

9 × 9 and 13 × 13 the prediction for diverse is only always significantly better than for

uniform after around stage 10, we can notice that for 17× 17 and 21× 21, the prediction

for diverse is always significantly better than for uniform, irrespective of the stage (except

for stage 1 in 17× 17). In fact, I can also show that the difference between the teams is

greater on larger boards. In Figure 8.10 we can see the difference between diverse and

uniform, in terms of area under the AUC graph, and also in terms of percentage of stages

where diverse is significantly better than uniform, for 9× 9 and 21× 21. The difference

between the areas in 9× 9 and 21× 21 is statistically significant, with p = 0.0003337.

I study again the accuracy, precision and recall in 21 × 21, as the results in these

metrics may be more intuitive to understand for most readers (although limited to a fixed
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Figure 8.9: AUC for different teams and board sizes, organized by board sizes.
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Figure 8.10: Differences in prediction quality for the diverse and uniform teams.

164



threshold, in this case 0.5). I show these results in Figure 8.11, where for comparison I

also plot the results for 9×9. For the diverse team, the accuracy in 21×21 is consistently

significantly better than in 9× 9, in all stages from stage 12. We also have a significantly

better accuracy in the first 5 stages. Concerning uniform, the accuracy for 21 × 21 is

only consistently better from stage 15 (and also in stage 1). Hence, again, we can notice

a better prediction quality on larger boards, and also a higher impact of increasing the

action space size on diverse than on uniform (in terms of number of stages, and also how

early the performance improves).

8.4.1.4 Reduced Feature Vector

Finally, I study the reduced feature vector. The results are very similar to the ones

using the full feature vector, so I do not repeat them here. I note, however, that we can

obtain similar results with a much more scalable representation2. In fact, in Figure 8.12

I study the area under the AUC graphs of the full and reduced representations, for all

combinations of teams and board sizes. Surprisingly, the reduced representation turns out

to be significantly better for all teams on the 9× 9 and 13× 13 boards. This may happen

since it is easier to learn a model with less features. For the diverse team, however, the

importance of the full representation increases as the action space grows. On 17×17, the

difference between the representations is not statistically significant (p = 0.9156), while

on 21 × 21 the full representation is actually significantly better than the reduced one

(p = 0.001794).

8.4.2 Ensemble Learning

In this section, I demonstrate that my approach also applies to other domains, by using

my technique in order to predict the performance of an ensemble system. Note that I am

not using here an ensemble system to predict the performance of a team. I am still using

a single predictor function, but now the team of agents whose final performance we want

to predict is a set of classifiers voting in order to assign labels to sets of items. Hence,

an agent here corresponds to one classifier, an action corresponds to a label assignment,

and a world state corresponds to an item.

I use the scikit-learn’s digits dataset [Pedregosa et al., 2011], which is composed of

1797 8× 8 images. Each image is a hand-written digit, and the objective of the ensemble

is to correctly identify the digit. Hence, for each item (i.e., image), there are 10 possible

labels, corresponding to each possible digit, and only one of these labels will be a correct

2All my main conclusions still hold, except that this time the AUC for 21 × 21 is significantly better
than for 9 × 9 around stage 15 for both teams.
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Figure 8.11: Performance metrics over all turns of 9x9 and 21x21 Go games.
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Figure 8.12: Comparison of prediction quality with the full and reduced representation.

classification. I randomly select 1000 items for training the agents. Among the chosen

1000 samples, 400 randomly selected items are used in training each individual agent. I

use the remaining 797 items for the testing phase, where the agents will vote to assign

labels to sets of 50 items randomly sampled from the remaining 797. To avoid confusion,

note that I am referring here to the training process of the individual agents, not of my

team prediction methodology (which I will discuss later in this section).

I use 6 classification algorithms: SVM, Logistic Regression, Decision Tree, Nearest

Neighbour, Bernoulli Naive Bayes, Gaussian Naive Bayes. Each classification algorithm

corresponds to one agent. I study two different teams. Diverse 1, composed by copies

of the SVM agent with different parametrizations; and Diverse 2, composed by one copy

of each agent. Unlike in the Go domain, where multiple copies of the same agent (like

Fuego), would still vote for different actions due to the randomness involved in the rollouts

of the UCT Monte Carlo algorithm, a classifier is deterministic given its algorithm and

parametrization. Therefore, I do not present results for Uniform in this domain, and

instead I present two possible variations for a diverse team.

I define one instance of the problem solving process as a set of 50 items to be classified.

Similar to the previous domain, where we have a large set of games (each with a set of

turns), we will have here multiple sets of 50 items to be classified (each corresponding to

one world state). Each set of items is constructed from random sampling 50 items from

our testing set (i.e., the 797 items that were not used to train the agents).

The agents will vote to assign labels for each item, and the problem solving process

will be completed when the team assigns a label to each one of the 50 items. If the

team classifies correctly more than a threshold percentage of the items, I consider it a
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“Success”. Otherwise, the performance of the team is classified as “Failure”. I explain

below how the threshold is calculated.

I randomly generate 2500 sets in this fashion. I will now discuss the training of my

team prediction methodology. I randomly select 2000 sets for training, where the agents

voted to classify each item, as discussed (note that the training set previously discussed

in this section was used to train the individual agents). I use the mean performance over

these 2000 sets as our threshold. Hence, if the team is able to classify a higher number

of items than its average performance, I consider it a “success”. Otherwise, the problem

solving process will be classified as “failure”.

The remaining sets are used to test my team prediction methodology. I again evaluate

accuracy, precision and recall. One run consists of the ensemble evaluating one set of

items, and the performance metric at each stage will be calculated as the average over

500 runs (similarly as in the Computer Go case, where I evaluated across multiple games).

As before, I use random sub-sampling evaluation. Hence, the whole training and

testing procedure is repeated 50 times; and at each time the training and the testing set

(of my team prediction methodology) are randomly sampled from the full database of

runs. Again, in all graphs I show the average results, and the error bars show the 99%

confidence interval (p = 0.01), according to a t-test. When I say that a certain result is

significantly better than another, I mean statistically significantly better, according to a

t-test where p < 0.01, unless I explicitly give a p value.

I show the results in Figure 8.13, where each stage corresponds to an item to be

classified. As we can see, we are able to obtain high quality predictions for both teams

quickly. The accuracy for both teams is always significantly higher than 50% after Stage

3. Around the middle of the runs (i.e., Stage 25), the accuracy of Diverse 1 is already

around 60%, with Diverse 2 only close behind. Towards the end of the runs we obtain

around 70% accuracy for Diverse 1 and 60% accuracy for Diverse 2. Note that we also

obtain results significantly better than 50% for most of the stages in the other performance

metrics.

In Figure 8.14, we can see the results using the reduced feature vector. As we can

see, we can still obtain high-quality predictions in a more compact representation. This

holds especially for Diverse 1, as we obtain an accuracy higher than 70% towards the end

of the runs.

8.5 Analysis of Coefficients

I analyze the coefficients that are learned in my experiments, in order to better under-

stand the prediction functions. I focus here in analyzing the reduced feature vector in
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Figure 8.13: Performance metrics over a set of items in ensemble system classification
(full feature vector).
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Figure 8.14: Performance metrics over a set of items in ensemble system classification
(reduced feature vector).
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the Computer Go domain, as its lower number of coefficients makes the analysis more

practicable (and its results are similar to the ones with the full feature vector). Hence,

I study the different coefficients learned for each subset size (i.e., the size of the subset

of agents that agrees on the chosen action), under different teams and board sizes. As

a way to make a comparison among the coefficients under different situations, I plot the

normalized coefficients, by dividing each by their overall sum. This allows us to study

how the relative importance of each coefficient in determining whether a team will be

successful changes under different situations. Similarly to the previous section, I also plot

error bars showing the 99% confidence interval (i.e., p = 0.01) by performing a t − test
over the results of my random subsampling validation.

I start by plotting, in Figure 8.15, the coefficients organized according to the board

sizes, to better compare how they change for each team. Note that the closer to 0 a

coefficient is (i.e., the lower the bar size in the graphs), the higher the importance of the

corresponding subset size in determining that a game will be a victory for the team. Also,

the numbers on the x axis indicate the respective subset size.

We can make several observations from these graphs. First, note that in general

the learned coefficients are quite stable, as the low error bars indicate a low variance

across different samples. Second, for almost all the coefficients we have a statistically

significant difference across the different teams. This indicates that the learned functions

are not trivial, as the appropriate values for each coefficient strongly depends on the team

members.

Furthermore, we normally would expect the coefficients to increase (i.e., get closer

to 0) as the respective subset size increases, capturing the notion that the higher the

agreement, the higher the likelihood of success. However, that is not always the case,

and we can, in fact, observe many surprising coefficients, especially in larger board sizes.

On 21 × 21 Go, the “strict increase” hypothesis does not happen for both the diverse

and the uniform teams. The coefficient for subsets of size 1 for the uniform team is the

most surprising result, as it seems to indicate some tendency of winning the games when

the agents fully disagree. For intermediate, we can notice such non-strict increase even

on 9 × 9 Go (as the coefficient for subsets of size 4 is significantly higher than the one

for subsets of size 5), which may be caused by this being the weakest team (and, hence,

more agents agreeing on the same action may not really indicate a higher likelihood of

the action being optimal).

In order to better analyze how the coefficients change as the board size increases,

I plot in Figure 8.16 the coefficients organized by teams. It is interesting to note that

the coefficients evolve in different ways for the different teams. For diverse, we notice

an increase in the importance of subsets of size 3 in 21 × 21 Go, curiously significantly
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Figure 8.15: Normalized coefficients of all teams and board sizes, organized by board
sizes.
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surpassing subsets of size 4. One possible explanation could be that in such board size the

team is more likely correct when the three strongest agents are in (exclusive) agreement.

For the uniform team the results are even more surprising. We can notice a consistent

increase in the importance of subsets of size 1. This seems to indicate that the team is

more likely to be winning when the team is in full disagreement as the board size grows,

which does not correspond well with the ST agent model. The ST agent model, however,

was originally created to model diverse teams (Chapter 4), hence a deviation on uniform

teams could be expected. Perhaps this result may happen because the games where the

agents fully disagree tend to be more complex, and the uniform team may be in a higher

advantage on dealing with such complex positions than its opponent.

It is worthy of notice that even though the prediction functions for these teams are so

different, and evolve in such different ways as the number of actions increases, we could

still learn them adequately for all these different situations, always obtaining high-quality

prediction results. This shows that my learning methodology is robust, as it is able to

learn good prediction functions for a variety of situations.

8.6 Discussion

I show, both theoretically and experimentally, that we can make high-quality predictions

about the performance of a team of voting agents, using only information about the

frequency of agreements among them. I present two kinds of feature vectors, one that

includes information about which specific agents were involved in an agreement and one

that only uses information about how many agents agreed. Although the number of fea-

tures in the former increases exponentially with the number of agents, causing scalability

concerns, the latter representation scales much better, as it increases linearly. Theoret-

ically, the full feature vector should have better results in general, but as I discuss in

Corollary 8.3.5, the reduced representation approximates well the full one under some

conditions. In fact, however, in my experiments we find that, although the results are

similar, the reduced representation is statistically significantly better in most cases. This

may happen since it is easier to learn a model with less features. Hence, for large teams

we can safely use the reduced feature vector, avoiding scalability problems.

Moreover, in real applications we usually do not have extremely large teams of vot-

ing agents. Unless we have an “idealized” diverse team, the performance is expected to

converge after a certain number of agents (Chapter 6). In Chapters 3 and 4, significant

improvements are already obtained with only 6 agents, while Chapter 6 shows little im-

provement as teams grow larger than 15 agents. Therefore, even in cases where Corollary
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Figure 8.16: Normalized coefficients of all teams and board sizes, organized by teams.
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8.3.5 does not apply, and the reduced vector is not a good approximation, the scalability

of the full feature vector might not be a real concern.

Based on classical voting theory, and in my Proposition 8.3.1, Observation 8.3.2 and

Proposition 8.3.3, we would expect the predictions to work better for the uniform team,

if it is composed of copies of the best agent. However, I present a more general model

in Theorem 8.3.4, that does not really depend on plurality being a maximum likelihood

estimator (MLE). In fact, I show in my experiments that the prediction works significantly

better for the diverse team, and I explain this phenomenon in Corollary 8.3.6. Moreover,

the prediction for intermediate works as well as for the other teams, and also significantly

better than for the other teams towards the last stages of the games, even though it is

a significantly weaker team. We would not expect this result, based on classical voting

theory and Proposition 8.3.1, Observation 8.3.2 and Proposition 8.3.3. We can, however,

expect such result based on my more general model in Theorem 8.3.4, as I show that the

prediction does not really depend at all on plurality being a MLE. Hence, it can still work

well in cases where the team is weaker, and the MLE assumption does not hold well.

We also observed that the quality of my prediction increases significantly as the board

size increases, for both the diverse and the uniform team, but the impact for diverse

occurs earlier in the game, and over a larger number of stages. I explain such phenomenon

in Theorem 8.3.7. As normally complex problems are characterized by having a large

action space, this shows that we can make better predictions for harder problems, when

it is actually more useful to be able to make predictions about the team performance.

As I study the Receiver Operating Characteristic (ROC) curves, and the respective

Areas Under the Curves (AUC), I can also show that my experimental conclusions hold

irrespective of how we interpret the output of the prediction function. Hence, we find

that across many different thresholds we can still make better predictions for the diverse

team, and the prediction quality still improves in larger boards. We also notice that

the difference on the prediction quality for diverse and uniform teams increases in larger

boards.

I analyze the coefficients of the reduced feature vector, and note that they are highly

non-trivial. The way the coefficient for subsets of size 1 evolves for the uniform team is

the most surprising result, and seems to suggest that the performance improves for such

team for a different reason than the one presented in Theorem 8.3.7. As the theorem

assumes ST agents, however, we can expect it to cover better the situation of the diverse

team. A better understanding of why the coefficients turned out to be how they are

is an interesting direction for future work. Nevertheless, it is a positive result that my

learning technique could work well and learn adequate prediction functions across all

these different situations.
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I also applied my technique to the Ensemble Learning domain, where I was able to

predict the final performance of a team of classifiers in a dataset of hand-written digits

recognition. This shows that my model is really domain independent, as it worked well

in two completely different domains.

However, although I showed a great performance in prediction, I did not present

in this chapter what an operator should actually do as the prediction of failure goes

high. Possible remedial procedures (and the relative qualities of each one of them) vary

according to each domain, but here I discuss some possible situations.

For example, consider a complex problem being solved in a cluster of computers. We

do not want to overly allocate resources, as that would be a waste of computational power

that could be allocated to other tasks (or a waste of electrical energy, at the very least).

However, we could increase the allocation of resources for solving the current problem

when it becomes necessary, according to our prediction.

While playing a game, it is well known that the best strategy changes according to

each specific opponent we are facing [Ganzfried and Sandholm, 2011, Southey et al., 2005,

Lockett et al., 2007, Schadd et al., 2007, Bakkes et al., 2009]. However, it is in general

hard to know which player is our current antagonist. Therefore, we could start playing

the game with the team that works the best against general opponents, and dynamically

change the team as our prediction of failure goes high, trying to adapt to the current

situation.

Moreover, it is known that the best voting rule depends on the noise model of the

agents [Conitzer and Sandholm, 2005]. However, in general, such model is not known for

existing agents (Chapter 3). Therefore, we could start by playing a game with a very

general rule, such as plurality voting, and dynamically try different voting rules according

to our current prediction. Note that although Proposition 8.3.1, Observation 8.3.2 and

Proposition 8.3.3 refer to plurality voting, my general model presented in Theorem 8.3.4

does not really depend on the voting rule.

Finally, in this chapter I always trained and tested my classifier under similar condi-

tions, as in traditional machine learning approaches. Training and testing under different

conditions leads to a transfer learning problem, which is a current topic of research in

the machine learning literature [Banerjee and Stone, 2007, Konidaris et al., 2012, Taylor

and Stone, 2009]. Hence, exploring transfer learning in the context of my technique is an

interesting direction for future work.
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8.7 Conclusion

Voting is a widely applied domain independent technique, that has been used in a variety

of domains, such as: machine learning, crowdsourcing, board games, forecasting systems,

etc. In this chapter, I present a novel method to predict the performance of a team

of agents that vote together at every step of a complex problem. My method does not

use any domain knowledge and is based only on the frequencies of agreement among the

agents.

I explain theoretically why my prediction works. First, I present an explanation based

on classical voting theories, but such explanation fails to fully explain my experimental

results. Hence, I also present a more general model, that is independent of the voting

rule, and also independent of any optimality assumptions about the voting rule (i.e., the

voting rule does not need to be a maximum likelihood estimator across all world states).

Such model allows a deeper understanding of the prediction methodology, and a more

complete comprehension of my experimental results.

I perform experiments in the Computer Go domain with three different teams, each

having different levels of diversity and strength (i.e., performance), and four different

board sizes. I showed that the prediction works online at each step of the problem solving

process, and matches often with an in-depth analysis (that takes orders of magnitude

longer time). Hence, I could achieve a high prediction quality for all teams, despite their

differences. In particular, I show that, contrary to what would be expected based on

classical voting models, my prediction is not better for stronger teams, and can actually

work equally well (even significantly better in some cases) for a very weak team. Moreover,

I showed that I could achieve a higher prediction quality for a diverse team than for a

uniform team. Furthermore, I verified experimentally that the prediction quality increase

as the action space (board size) grows (and the impact occurs earlier in the game for the

diverse team). All that could be expected based on my more general model.

I also study the Receiver Operating Characteristic curves of my results, and their re-

spective Areas Under the Curves (AUC). Hence, I verified that my conclusions hold across

many different thresholds (i.e., different ways to interpret the output of my prediction

function).

Moreover, I tested my approach when predicting the final performance of a team of

classifiers, a domain that is very different than Computer Go. I was still able to obtain

high-quality predictions, showing that my approach really works across different domains.

Finally, I studied in detail the prediction functions learned. My analysis showed that

these functions are highly non-trivial, and vary significantly according to each team and

board size. In fact, better understanding how and why these coefficients evolved in the
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way they did as the board size grows for different teams is an open direction for further

study. Overall, however, my prediction technique is very robust, as it could learn adequate

functions across all these situations.

Therefore, a system operator can use my technique to take remedial procedures if the

team is not performing well, or incorporated within an automatic procedure to dynam-

ically change the team and/or the voting rule. I discussed in detail how that could be

executed in different domains.

Hence, this chapter is a significant step towards not only a deeper understanding of

voting systems, but also towards a greater applicability of voting in a variety of domains,

by combining the potential of voting in finding correct answers with the ability to access

the performance of teams and the predictability of the final outcome.
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Part V

Discussions and Conclusions
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Chapter 9

Conclusions

This thesis presented theoretical and experimental results in decision-centered teamwork,

a novel paradigm in artificial intelligence. Decision-centered teamwork is the analysis of

agent teams that iteratively take joint decisions into solving complex problems. I divide

it in three fundamental challenges: Agent Selection, Aggregation of Opinions and Team

Assessment.

In Agent Selection, my main focus was on the importance of diversity when forming

teams. I presented three models: the first shows that a diverse team can outperform a

uniform team, and gives the necessary conditions for that to happen. The second shows

that diverse teams get stronger in large action spaces, allowing one to better identify when

diverse teams should be used. It introduces the novel model of spreading tail agents, which

assign a non-zero probability to a larger set of actions as the action space increases. The

third model studies agent teams for design problems, where the focus is on providing a

large set of optimal actions, for a human to select according to aesthetics or other factors.

I show that diverse teams improve as the number of agents grows, while uniform teams

actually decrease in performance.

In Aggregation of Opinions, I studied ranking extraction techniques, and showed in

the Computer Go domain that the Borda voting rule outperforms plurality when using

the ranking by sampling technique, which ranks actions according to how frequently they

are played when sampling an agent multiple times. However, in the context of influencing

social networks, weighted plurality was still the best voting rule.

I also studied the simultaneous influencing and mapping problem, where we must

iteratively discover a network and spread influence at the same time. That was the only

part of the thesis that does not concern voting, but rather a linear combination over two

greedy algorithms. I showed that under some conditions, we can spread influence as well

as the classical greedy influence maximization algorithm, but mapping the network much

better.
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Concerning Team Assessment, I presented a novel technique to predict whether a

team of voting agents will be successful or will fail while solving a complex problem.

My prediction can be performed online, and it is completely domain independent. I

demonstrate its effectiveness in the Computer Go domain, and in the Ensemble Learning

domain, and I also showed that the quality of the prediction increases in large action

spaces.

Although this thesis presents several contributions, in order to effectively use multi-

agent teams to jointly take decisions into solving complex problems much more must be

developed. Some topics I will investigate in my future work include:

Dynamic Teams: For effective teamwork, we must dynamically change teams. Hence,

we need to further develop assessment mechanisms, and also methods to decide how to

switch members and coordination methods according to the assessment results and the

problem state.

Agent Adaptation for Teamwork: Although some agents may already exist for a

certain problem, most often they were not originally designed to coordinate with others,

or were not designed to coordinate using our desired mechanism. Therefore, enabling

an easy re-use of agents for teamwork will open the doors for a large number of agents

available to choose from.

Team Generation: For many problems we may not even have a few agents available to

choose from; in fact, there could be only one agent. My research shows, however, that

diversity is an important factor in teamwork. Therefore, given a “basic” agent, automatic

methods to create diverse variations of it are very desirable, as a way to easily form diverse

teams. As I showed in the thesis, generating random parametrizations of an agent is not

yet a good solution; as the resulting team may still have limited diversity, besides the

risk of the individual members being too weak in comparison with the “basic” agent.

Mixed Teams: In order to effectively use human input, AI systems must present complex

and large-scale information in a manageable way, while simultaneously gaining user trust.

Additionally, we must not assume that an “optimal” AI system is always “correct”, since

any model has limitations. Hence, the system must also respect and trust the user opinion,

delegating when necessary and even changing its own behavior accordingly. Besides, I

believe that an interaction between a human and the computer is essential when handling

projects related to arts and creativity.

Simultaneous Influencing and Mapping: In Chapter 7, I studied the problem of

learning a social network graph, while spreading influence. However, in order to effectively

solve this problem, a deeper study is necessary. In particular, it is important to better

understand how we can estimate beforehand the amount of information that we will
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obtain when interviewing one node (according, for example, to its profile). We must also

understand better how the information provided by a node correlates with the list of

neighbors in the social network graph. That is, we must understand how likely will be

someone to teach us about each one of his/her friends, and how likely would he/she teach

us about nodes that are further away in the social network graph; allowing us to better

model the knowledge gain at each intervention, and hence improve our performance.
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Appendix A

Simultaneous Influencing and Mapping: Additional

Results

A.1 Results for each network

Since in Section 7.3 I presented my results across 4 different social network graphs, in this

section I present those individually for each network, for the interested reader. Assuming

a uniform model for the teaching lists, we can see the results for network A in Figures A.1,

A.2, A.3; for network B in Figures A.4, A.5, A.6; for the Facebook network in Figures A.7,

A.8, A.9; and finally for the MySpace network in Figures A.10, A.11, A.12. Assuming a

power law model, we can see the results for network A in Figures A.13, A.14, A.15; for

network B in Figures A.16, A.17, A.18; for the Facebook network in Figures A.19, A.20,

A.21; and finally for the MySpace network in Figures A.22, A.23, A.24. As we can see,

the results for each network show similar tendencies as the results across all networks

presented in the thesis.

A.2 Additional results for power law distribution

In Section 7.3.2 I presented results for the power law distribution for a = 1.8. In this

section, I present results for a = 1.2 (that is, each neighbor has a 20% probability of

being in a teaching list). I show in Figure A.25 the result at each intervention for ϕ = 0.5

and p = 0.5. In Figure A.26, I show the AUC results for different parametrizations of p

and ϕ. Finally, I present the regret for this case in Figure A.27. As we can see, my main

conclusions still hold for a different parametrization of a.
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Figure A.1: Results for network A across many interventions, for influence probability
p = 0.5, teaching probability ϕ = 0.5, assuming uniform distribution.
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Figure A.2: Results of Influence and Knowledge in network A for different teaching and
influence probabilities, assuming uniform distribution.
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Figure A.3: Regret in network A for different teaching and influence probabilities, as-
suming uniform distribution.
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Figure A.4: Results for network B across many interventions, for influence probability
p = 0.5, teaching probability ϕ = 0.5, assuming uniform distribution.
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Figure A.5: Results of Influence and Knowledge in network B for different teaching and
influence probabilities, assuming uniform distribution.
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Figure A.6: Regret in network B for different teaching and influence probabilities, assum-
ing uniform distribution.

204



0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
flu

en
ce

●

●

●
●

● ● ● ● ● ● ● ● ● ●

Intervention Number

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

(a) Influence

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

K
no

w
le

dg
e

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Intervention Number
(b) Knowledge

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

In
flu

en
ce

 +
 K

no
w

le
dg

e

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Intervention Number
(c) Influence + Knowledge

Figure A.7: Results for Facebook network across many interventions, for influence prob-
ability p = 0.5, teaching probability ϕ = 0.5, assuming uniform distribution.
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Figure A.8: Results of Influence and Knowledge in Facebook network for different teaching
and influence probabilities, assuming uniform distribution.
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Figure A.9: Regret in Facebook network for different teaching and influence probabilities,
assuming uniform distribution.

206



0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
flu

en
ce ●

●
●

●
● ● ● ● ● ● ● ● ● ●

Intervention Number

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

(a) Influence

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

K
no

w
le

dg
e

●

●

●

●

●
●

● ● ● ● ● ● ● ●

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Intervention Number
(b) Knowledge

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

In
flu

en
ce

 +
 K

no
w

le
dg

e

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Intervention Number
(c) Influence + Knowledge

Figure A.10: Results for MySpace network across many interventions, for influence prob-
ability p = 0.5, teaching probability ϕ = 0.5, assuming uniform distribution.
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Figure A.11: Results of Influence and Knowledge in MySpace network for different teach-
ing and influence probabilities, assuming uniform distribution.
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Figure A.12: Regret in MySpace network for different teaching and influence probabilities,
assuming uniform distribution.

208



0 10 20 30 40
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

In
flu

en
ce

●

●
●

●
● ● ● ● ● ● ● ● ● ●

Intervention Number

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

(a) Influence

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

K
no

w
le

dg
e

●

●

●

●

●
●

●
●

●
● ● ● ● ●

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Intervention Number
(b) Knowledge

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

In
flu

en
ce

 +
 K

no
w

le
dg

e

●

●

●
●

●
●

●
●

● ● ● ● ● ●

● Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Intervention Number
(c) Influence + Knowledge

Figure A.13: Results for network A across many interventions, for influence probability
p = 0.5, teaching probability ϕ = 0.5, assuming power law distribution.
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Figure A.14: Results of Influence and Knowledge in network A for different teaching and
influence probabilities, assuming power law distribution.
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Figure A.15: Regret in network A for different teaching and influence probabilities, as-
suming power law distribution.
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Figure A.16: Results for network B across many interventions, for influence probability
p = 0.5, teaching probability ϕ = 0.5, assuming power law distribution.

211



ϕ = 0.1 ϕ = 0.5 ϕ = 1 ϕ = 0.1 ϕ = 0.5 ϕ = 1

A
re

a 
U

nd
er

 C
ur

ve

0

10

20

30

40

Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Influence Knowledge
(a) Changing teaching probability

p=0.1 p=0.5 p=0.1 p=0.5

A
re

a 
U

nd
er

 C
ur

ve

0

10

20

30

40

Influence−greedy
Knowledge−greedy
Balanced
Balanced−decreasing

Influence Knowledge
(b) Changing influence probability

Figure A.17: Results of Influence and Knowledge in network B for different teaching and
influence probabilities, assuming power law distribution.
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Figure A.18: Regret in network B for different teaching and influence probabilities, as-
suming power law distribution.
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Figure A.19: Results for Facebook network across many interventions, for influence prob-
ability p = 0.5, teaching probability ϕ = 0.5, assuming power law distribution.
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Figure A.20: Results of Influence and Knowledge in Facebook network for different teach-
ing and influence probabilities, assuming power law distribution.
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Figure A.21: Regret in Facebook network for different teaching and influence probabili-
ties, assuming power law distribution.
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Figure A.22: Results for MySpace network across many interventions, for influence prob-
ability p = 0.5, teaching probability ϕ = 0.5, assuming power law distribution.
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Figure A.23: Results of Influence and Knowledge in MySpace network for different teach-
ing and influence probabilities, assuming power law distribution.
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Figure A.24: Regret in MySpace network for different teaching and influence probabilities,
assuming power law distribution.
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Figure A.25: Results of 4 real world networks across many interventions, for p = 0.5 and
ϕ = 0.5, assuming power law distribution with a = 1.2.
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Figure A.26: Results of Influence and Knowledge for different teaching and influence
probabilities, assuming power law distribution with a = 1.2.
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Figure A.27: Regret for different teaching and influence probabilities, assuming power
law distribution with a = 1.2. Lower results are better.
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Appendix B

Every Team Deserves a Second Chance: Additional

Results

In this chapter I present the results of my team assessment methodology (Chapter 8)

when comparing with the actual final outcome of the games, instead of using Fuego’s

evaluation. I show these results because some readers could be interested in seeing this

alternative evaluation methodology.

In Figure B.1 I show the accuracy, precision and recall for 9x9 Go games, while in

Figure B.2 I show the ROC curves for such games. In Figure B.3 we can see the ROC

results for all the 4 different board sizes, while I plot the AUC results with one graph per

team in Figure B.4. I also show the AUC results with one graph per board size in Figure

B.5. In Figure B.6 I plot the difference between the areas under the AUC graphs for

diverse and uniform, and also the percentage of stages where the prediction for diverse

is significantly better. Finally, in Figure B.7 I show the accuracy, precision and recall for

21× 21 Go (and also 9× 9 Go, for comparison). As we can see, the results are similar to

the previous ones, and my main conclusions still hold: we still can make better predictions

for the diverse team than for the uniform team, and we can observe a better quality when

predicting for 21 × 21 Go than smaller board sizes. We notice, however, that this time

the difference between diverse and uniform (both in terms of area under the AUC curves

and percentage of stages where the AUC for diverse is significantly better) is higher on

9× 9 Go than on 21× 21 Go.

I compare the full and the reduced representation under this alternative baseline as

well. In Figure B.8 I show the area under the AUC curves for all teams and board sizes

under consideration. Again, the results of both representations are similar1, but the

reduced one is significantly better in almost all cases.

1My main results still hold, except that the AUC for 21×21 is significantly better than for 9×9 earlier
for uniform than diverse under the reduced representation. For uniform, since stage 12, while for diverse,
since stage 15.
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Figure B.1: Performance metrics over all turns of 9x9 Go games. (Alternative baseline)
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Figure B.2: ROC curves, analyzing different thresholds in 9x9 Go. (Alternative baseline)
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Figure B.3: ROC curves for diverse and uniform, for different board sizes. (Alternative
baseline) 222
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Figure B.4: AUC for different teams and board sizes, organized by teams. (Alternative
baseline)
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Figure B.5: AUC for different teams and board sizes, organized by board sizes. (Alter-
native baseline)
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Figure B.6: Differences in prediction quality for the diverse and uniform teams. (Alter-
native baseline)
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Figure B.7: Performance metrics over all turns of 9x9 and 21x21 Go games. (Alternative
baseline)
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