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Abstract

The Standard Model of particle physics, although successful, is known

to be deficient both theoretically and experimentally. Many proposed

extensions to the SM predict the existence of Weakly Interacting Slim

Particles (WISPs). In this thesis the construction and results of the

CASCADE microwave cavity light shining through a wall experiment

will be presented. In addition to CASCADE, this thesis will present

a novel realisation of a light shining through a wall experiment using

photonic bandgap structures to probe otherwise unreachable regions

of the WISP parameter space.
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Chapter 11

Introduction2

On July the 4th 2012 the ATLAS and CMS collaborations announced that they3

had found a particle with a rest mass of 126 GeV at CERN’s Large Hadron4

Collider[1, 2]. This announcement marked the point at which the conventional5

Standard Model(SM) of particle physics was complete, with the discovery of the6

Higgs boson. Since then the eyes of the scientific community have moved to7

what is next, with many looking to higher energies to test theories such as super-8

symmetry. Others however, are now turning their attention to low energies in9

search of solutions to specific unexplained phenomena such as dark matter or the10

strong CP problem.11

A model that has gained much attention in recent years is the Peccei Quinn12

axion[3, 4, 5] since it solves the strong CP problem and like the Higgs boson, it13

is a scalar particle arising from symmetry breaking. In addition to the Peccei14

Quinn axion there are generic extensions to the SM that introduce additional15

symmetries associated with vector bosons which are coupled to the SM photon16

and are free to take any coupling and mass not already excluded experimentally;17

1



these are known by several names such as paraphotons, dark photons or as they18

will be called in this thesis Hidden Sector Photons(HSPs). The low mass mani-19

festations of this family of particles are collectively known as Weakly-Interacting-20

Slim-Particles(WISPs) and will be discussed in Chapter 2.21

The lack of any observations of WISPs indicate that they must only have22

faint couplings with the SM particles. This makes them difficult to search for in23

traditional collider based experiments and therefore dedicated experiments are24

required to search for their existence. One experimental method called a light25

shining though a wall(LSW) experiment looks for energy transmission between a26

source and a detector via a WISP. Understanding how these experiments work27

relies on a rigorous understanding of electromagnetic theory which is covered in28

Chapter 3 and a description of how LSW experiments work is covered in Chap-29

ter 4.30

A LSW experiment can be designed to operate at any frequency range where31

suitable sources and detectors can be constructed. Particle accelerators use high32

quality RF cavities and there are commercially available low-noise amplifiers;33

both of which are suitable for use in a LSW experiment. The CAvity Search34

for Coupling of A Dark sEctor(CASCADE) experiment used the equipment and35

expertise at the Cockcroft Institute of Accelerator Science and Technology to36

carry out an experiment of this type. Its development forms a significant part of37

this thesis. The CASCADE experiment and its resulting exclusion of a region in38

the HSP parameter space is described in Chapter 5.39

In recent years the development of computer simulations of dielectric lattices40

has made the field of photonics possible. By exploiting the band structure of41

lattices it is possible to make photonic cavities which are resonant with quality42

2



factors similar to those of superconducting cavities but at frequencies that are43

difficult to produce using metallic cavities. The PHotonic ARrays for Axions Or44

HSPs(PHARAOH) experiment is a proposed experiment which was designed as45

part of this thesis. It uses photonic cavities to facilitate LSW experiments at46

frequencies and couplings of the HSP that are otherwise inaccessible. A compu-47

tational study of the performance of these experiments is presented in Chapter 6.48

49

3



Chapter 250

Weakly Interacting ‘Slim’51

Particles52

Weakly Interacting ‘Slim’ Particles(WISPs)1 are a category of low mass parti-53

cles which only have feeble couplings with Standard Model(SM) particles. This54

chapter starts by summarising the features of the SM and the need for exten-55

sions to the SM to make it consistent with observation. The later sections of this56

chapter discuss specific models of WISPs and how they can satisfy astronomical57

observations.58

2.1 The Standard Model of Particle Physics59

The SM is a theory that tries to explain the interactions of the electromagnetic,60

strong and weak forces in terms of the exchange of gauge bosons between the61

fundamental particles from which all observed matter is formed. The SM began62

1WISP can also be an abbreviation for Weakly Interacting Sub-eV Particles but there is no
requirement that the mass be below an eV so both can be used.
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2.1 The Standard Model of Particle Physics

to take shape when the quark model was developed in 1964[6, 7], although at63

this point it only contained the up, down and strange quarks. When this quark64

model was added to the theories of the electroweak interaction and quantum65

chromodynamics(QCD), the model resembled the modern Standard Model but66

without an explanation of how to give mass to the gauge bosons. The mechanism67

that gives rise to the Higgs boson was first proposed in 1964 by a number of68

scientists[8, 9, 10] to give a gauge-invariant mass acquisition mechanism for bosons69

and fermions. The SM was subsequently expanded with the charm quark in70

1970[11] which was required to explain the suppression of weak interactions that71

change strangeness by 2 units. Finally, with the addition of the bottom and top72

quarks in 1973[12] to explain CP violation in kaon decays the SM took the form73

it has today.74

The SM has proven to be a hugely-successful description of elementary particle75

physics with no experiment have conclusively shown a deviation from its predic-76

tions. For example, the strange quark was found in 1968[13, 14] at the SLAC77

National Accelerator Laboratory confirming the quark model. In 1974 the charm78

quark was discovered by both the SLAC National Accelerator Laboratory[15]79

and Brookhaven National Laboratory[16], completing the second generation of80

quarks. The third generation of quarks, the bottom and the top, were discovered81

at Fermilab in 1977[17] and 1995[18][19] respectively.82

The success of the SM is not limited to the quark sector, it has also predicted83

the existence of number of bosons that have then been discovered experimen-84

tally. The gluon was discovered at DESY in 1979[20] providing strong evidence85

in support of QCD. The W and Z boson were both announced in 1983 with the86

mass ratio that was predicted by the SM [21][22]. Finally, the Higgs boson was87

5



2.1 The Standard Model of Particle Physics

discovered at CERN in 2012[1][2] within the mass range favoured by the SM.88

Figure 2.1: A table of particles within the Standard Model. The quarks are in
purple; leptons in green; gauge bosons in red and the Higgs in yellow. Reproduced
from [23]

The fundamental particles that are contained in the SM are commonly shown89

in a table like the one found in Fig 2.1, in which the particles are grouped by90

their spin values into fermions(spin 1/2), gauge bosons(spin 1) and the Higgs bo-91

son(spin 0). The fermions are further sub categorised into quarks, which interact92

via the strong force, and leptons, which do not. Quarks come in six ‘flavours’93

and are distinguished by their quantum numbers: charge, weak isospin, charm,94

strangeness, topness and bottomness. Leptons come in three different flavours:95

electron, muon and tau lepton, but each has an electrically-charged and neutral96

6



2.2 Beyond the Standard Model

version which form a weak isospin doublet.97

Gauge bosons mediate the strong, weak and electromagnetic forces by being98

exchanged between other particles and thereby carrying the force. The photon99

mediates the electromagnetic force between charged particles. The W and Z100

bosons couple to weak hypercharge and thereby mediate the weak force between101

particles carrying weak isospin. Gluons mediate the strong force between quarks.102

The Higgs boson is a Nambu-Goldstone boson associated with the Higgs field103

which, through symmetry breaking, gives mass to the W and Z bosons, in addition104

to the fermions.105

2.2 Beyond the Standard Model106

Despite the successes of the SM it is possible to find examples of phenomena that107

it is unable to address, indicating that there is physics beyond the current SM108

that needs to be explored. For example there is no explanation of the matter109

dominance over anti-matter in the universe and the SM has no candidate for110

‘dark matter’.111

2.2.1 Dark Matter112

As the universe has been surveyed, it has become increasingly clear that it is dom-113

inated by ‘dark’ components. The most recent results from the Planck satellite114

have provided the best limits to date on the composition of the universe with 4.8%115

7



2.2 Beyond the Standard Model

being matter, 25.8% dark matter(DM)1 and 69.4% dark energy2[25]. Currently116

the SM does not describe these last two phenomena. There are many theories117

that aim to account for the observations and due to the ‘matter-like’ nature of118

DM it has been possible to describe the observations in terms of hypothetical119

particles.120

The earliest evidence for DM came from studies of galactic rotation. These121

studies were conducted by tracking luminous objects as they rotated around122

the galactic centre. Naively it would be expected that the rotational velocity123

would be that of a gravitationally-bound, Keplerian orbit which is proportional to124

1/
√
r, where r is the radius from the galactic centre. However, when the rotation125

of galaxies is observed, it was found that the velocity remains approximately126

constant until the galactic disk becomes too dark to measure.127

To produce this velocity distribution required the addition of a halo of non-128

luminous, dark matter around the galaxy with a density ρ(r) ∝ 1/
√
r and a sharp129

drop off at an unknown radius to maintain the finite mass of a galaxy. When130

looking at the local neighbourhood of our solar system the DM energy density131

would be expected to be 0.39 GeV/cm3[26].132

The SM does provide some candidates for DM with the most obvious being133

the neutrino, however, the majority of DM needs to be non-relativistic to allow134

galaxy formation which excludes all known species of neutrinos[27]. Since there135

are no candidates for in the SM, an addition is needed. This addition usually136

takes the form of either weakly interacting massive particles or weakly interacting137

1Dark matter refers to particles which interact gravitationally but cannot be observed via
electromagnetic observations.

2Dark energy is currently the least understood part of the ‘dark’ sector and will not be
dealt with here but a review of the current literature on the topic can be found in the “Review
of particle physics” by the Particle Data Group[24].
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2.2 Beyond the Standard Model

slim particles which will be discussed in Section 2.3.138

2.2.2 Matter Anti-Matter Asymmetry139

If the early universe went through baryogenesis as theorised then the majority of140

SM processes would produce the same number of matter and antimatter particles141

leading to the annihilation of both species. To produce enough matter for it to142

become dominant there are three conditions that need to be met[28]:143

• The existence of processes that violate conservation of baryon number.144

• The existence of processes that violate conservation of C and CP symme-145

tries.146

• A deviation from thermal equilibrium.147

Baryon number, charge parity and parity symmetry are all broken by at least148

one process within the SM[29, 30, 31, 32] and the expansion of the early universe149

breaks the thermal equilibrium satisfying all the conditions. The processes that150

provide CP violation however, are too small to explain the observed asymmetry151

therefore processes beyond those in the current SM are needed[33].152

One method of increasing the amount of CP violation predicted by the SM153

is to allow strong interactions to violate CP. There is no mechanism within the154

framework of the SM that prevents the strong force from violating CP. However,155

the strongest experimental constraints on strong force CP violation come from156

measurements of the electric dipole moments of neutrons and these indicate that157

the CP-violating electric dipole moment is a factor of 10−10 smaller that would158

be expected??. This constrains any CP-violation in the strong force to negligible159
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levels with no known mechanism suppressing it[34, 35]. One solution to this160

problem is to treat the CP violating term as a field. This solution is known as161

the Peccei-Quinn theory; this will be covered in detail in Section 2.3.1.162

2.3 WIMPs and WISPs163

The favoured solution to DM over the last few decades has been the addition of164

Weakly Interacting Massive Particles(WIMPs) to the SM. A WIMP is the generic165

name for any particle with a mass between 10’s of GeV to a few TeV, that only166

interact through gravity and the weak force.167

There are a number of candidates for WIMPs, for example a heavy neutrino168

would make an ideal candidate, however the relic density1 would be too small if169

its mass is greater than half of the mass of the Z boson and masses below this170

level have been excluded experimentally[36]. The relic density can be increased171

by adding an additional sterile neutrino but the neutrino would still need to be172

stable, making a massive neutrino a disfavoured candidate[24].173

Supersymmetry provides a number of WIMP candidates but the most favoured174

are the light supersymmetric particles, since they need to be neutral to be DM175

this corresponds to the sneutrino or the neutralino. The sneutrino is the spin-176

zero supersymmetric partner of the neutrino; other than spin and mass they177

share the same quantum numbers. The neutralino, is a electrically neutral mass178

eigenstate of the mixing between the Z boson, photon and Higgs superpartners.179

Current WIMP searches have ruled out normal sneutrinos as a major component180

of DM[37] leaving neutralinos as the favoured candidate. There are also many181

1The relic density is the density of particles when the energy of the thermal background of
the universe drops below the rest mass of the particle.
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non-supersymmetric candidates for WIMPs but the specifics of these theories are182

beyond the scope of this thesis.183

Despite their inert nature, there is the possibility of directly detecting WIMPs.184

If the abundance of WIMPs distributed throughout our region of the galaxy185

is sufficient then experiments should be able to detect the fleeting interactions186

between WIMPs and normal matter inside a detector. When WIMPs interact,187

they do so by elastically scattering from an atomic nucleus causing a nuclear recoil188

with energies of around 1 to 100 keV for WIMPs in the expected mass range of189

10 GeV to 10 TeV. Through the appropriate choice of a target material such as190

xenon or germanium, the recoils become detectable through scintillation or if the191

material has a crystalline structure, phonons[38, 39]. The expected interaction192

rate is proportional to the WIMP flux and the interaction cross section. Since193

the WIMP density needs to be 0.39 GeV/cm3 to explain observations[26], and194

the velocity relative to the Earth is taken to be 220km/s[40]1, the flux is fixed.195

The interaction cross section is model dependent, however using the Minimal196

Supersymmetric Standard Model the interaction rate is up to 1 WIMP interaction197

day−1 kg−1 of material[41]. Therefore, to be sensitive, WIMP experiments need198

to use a large target and radio-pure materials to minimise interactions in the199

target volume due to particles other than WIMPs.200

An alternative theory to WIMP DM is WISP DM. This is the generic name201

for any particle which only has feeble interactions with the SM and has a mass202

less than a few eVs. Searches for these particles concentrate mostly on their203

interactions with the SM photon. Since the mass is so small, collider-based ex-204

1The velocity is assumed to be the rotational velocity of Earth around the galactic centre,
effectively making DM static with respect to the galactic centre.
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periments are unsuitable to look for them using a missing mass type search to205

indirectly detect them[42]. This leaves much of the WISP parameter space open206

to be searched by dedicated small-scale experiments. Two of these particles,207

the Hidden Sector Photon(HSP) and the axion, have come under great interest208

recently as they are predicted by well-motivated extensions to the SM.209

2.3.1 The Axion210

The axion is a neutral scalar particle that arises from the Peccei-Quinn mecha-211

nism introduced in 1977 to solve the strong CP problem[3]. To understand the212

strong CP problem, the starting point is to note that the quantum chromody-213

namics(QCD) Lagrangian contains a CP-violating term,214

L =
αs
4π
θtrGµνG̃

µν (2.1)

where G is the gluonic field strength tensor, G̃ denotes the dual field ten-215

sor, ‘tr’ denotes the colour trace of the gluonic fields, αs is the strong coupling216

constant and θ is the CP violating term which currently needs to be determined217

experimentally. The indices µ and ν take the values 0, 1, 2 or 3 and repeated218

indices are summed over. One of the strongest bounds on θ is obtained by mea-219

suring the electric dipole moment of the neutron. The size of the neutron electric220

dipole moment can be calculated to be221

|dn| =
e

mn

(
mq

mn

)
|θ̄| = 10−16|θ̄|e cm, (2.2)

where mn,q are the neutron and light quark masses respectively, e is electric222

charge and223
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θ̄ ≡ θ + arg detM, (2.3)

where M is the quark mass mixing matrix, θ is the contribution from gluon224

coupling as in Eq 2.1 and θ̄ is the effective physical CP-violating parameter in225

the SM[43]. The current upper bound on |dn| is 2.9× 10−26e cm[34] which conse-226

quently puts an upper limit of |θ̄| = 10−10. This upper limit is unnaturally small227

for a dimensionless parameter that is made up from two unrelated parameters.228

The lack of an explanation for this observation is referred to as the ‘strong CP229

problem’.230

The axion is a result of introducing the Peccei Quinn mechanism to solve231

the strong CP problem. The mechanism works by ‘promoting’ θ̄ to be a field232

which is known as the axion field. The symmetry is then spontaneously broken,233

allowing the value of θ to relax to a low value. This provides an explanation for234

the observed value of θ̄, solving the strong CP problem and producing a pseudo235

Nambu Goldstone boson called the axion.236

The dynamics of a system are given by minimising the ‘action’ S =
∫
Ldt237

where L is the Lagrangian density. The axion has a coupling to the SM photon238

which is often exploited in experimental searches for which the Lagrangian density239

is240

L =
GAγγ

4
FµνF̃

µνφA = −GAγγ(E ·B)φA, (2.4)

where φA is the axion field, GAγγ is the axion-photon coupling, F is the elec-241

tromagnetic field-strength tensor and F̃ is its dual tensor. For the Peccei Quinn242

axion there is a model-dependent relationship between the coupling constant and243
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the mass of the axion which is given by244

GAγγ =
α

2π

(
η − 2

3

4 + z

1 + z

)
1 + z

z1/2

ma

mπfπ
, (2.5)

where z = mu/md, fπ is the pion decay constant and η is a model dependent245

parameter which produces the yellow band shown on the axion parameter space246

in Fig 2.2.247

Figure 2.2: The parameter space for the axion. Experimental exclusions from
ALPS is in orange, CAST in blue and ADMX in green. The prefered region
for the Peccei-Quinn axion is shown as a yellow band with the KSVZ[44] and
DFSZ[45] models being highlighted with dashed lines. The remaining white space
is parameter space which is unconstrained. Reproduced from [24].

A coupling to the SM photon is typical of a pseudoscalar particle and this248

mechanism can therefore be generalised to other quantum numbers such as family249

and lepton number to make the familon and Majoron particles[46, 47]. In the250

most general case these particles are referred to as axion-like-particles(ALPs).251
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Since there is no general link between the mass of the ALP and the coupling of252

the ALP to photons, the ALP can be found anywhere in the parameter space. In253

addition since the photon coupling is not guaranteed to be non-zero, a negative254

search result does not exclude the existence of all ALPs with that mass.255

2.3.2 The Hidden Sector Photon256

The symmetry breaking of the axion field leads to the existence of the axion.257

However many additions to the SM predict additional U(1) gauge symmetries258

each with their own associated gauge boson. These bosons are referred to as259

Hidden Sector Photons(HSPs), Paraphotons or Dark Photons[24]. In this thesis260

they will be referred to exclusively as HSPs.261

HSPs are well-motivated particles as the additional U(1) symmetries from262

which they arise are generic features that are produced for example by string263

compactification. If these symmetries remain unbroken down to low energies,264

their dominant interaction is with the photon[48]. This interaction takes the265

form of kinetic mixing in a process analogous to neutrino flavour mixing. The266

Lagrangian for the mixing takes the form267

L = −1

4
F µνFµν −

1

4
BµνBµν −

1

2
χF µνBµν −

1

2
m2
γ′BµB

µ, (2.6)

where χ is the mixing parameter, mγ′ is the HSP mass, F µν is the SM electro-268

magnetic field tensor, Bµν is the HSP field tensor and B is the HSP field. The size269

of χ is required to be small to explain non-observation and some models predict a270

range of values for χ, for example string compactification models predict χ to be271

between 10−12 and 10−3[48]. Current exclusions and regions favoured by models272
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are shown on the HSP parameter space shown in Fig 2.3.273

The HSP may be massless like the SM photon, however it can gain mass274

through the standard Higgs mechanism or through the Stueckelberg mechanism[49].275

Figure 2.3: The parameter space of the HSP showing both astrophysical and
experimental limits. The light orange bands indicate theoretically-interesting areas.
Reproduced from [48]

.

2.3.3 Other WISPs276

The additional symmetries that are responsible for both the axion and HSP are277

not the only possibilities. In fact string compactifications generally also predict278

additional scalar particles. These scalar fields are also often used in cosmology279

to explain dark energy as the accelerated expansion of the universe can be ex-280

plained by the presence of a spatially homogeneous scalar field rolling down a flat281

potential[50].282

The strength and range of interactions between light scalar fields and ordinary283

matter are limited through the non-observation of a fifth force[51]. From this284
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constraint comes the theory of chameleon fields whose effective mass is a function285

of the local energy density of space[52]. This leads to some interesting properties,286

where in environments with a high energy density e.g. on Earth, the chameleon287

field can mediate forces over a range of 1 mm, however when in a low energy288

density e.g. intergalactic space, the range can increase to thousands of parsecs.289

Since these particles have no set mass or coupling strength they are very hard to290

detect.291

Mini-charged particles are hypothetical particles that are electrically charged,292

but with only a fraction of the charge of the electron. Indications of the existence293

of mini-charged particles can be probed using a number of techniques including294

direct searches in a Light Shining through a Wall(LSW) experiment and testing295

for deviations from Coulomb’s law[53, 54].296

2.4 Experimental Searches297

There are currently a number of experiments around the world looking for HSPs298

or axions and they can be roughly broken down into two categories: those that are299

assuming an astrophysical origin of the particles and those that have a laboratory-300

based source of particles. If an experiment with an astrophysical source is looking301

for DM particles they benefit from a high energy density which would be difficult302

to reach with a laboratory-based source. However, a laboratory-based source303

provides control over the signal and so greater understanding of the systematic304

uncertainties is achievable allowing for sensitive probes of the parameter space.305
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2.4.1 Astrophysical Source Experiments306

When looking for an astrophysical source of WISPs there are two obvious choices:307

the DM background of the galaxy and WISP production in the sun. Both have308

their own benefits and drawbacks.309

Experiments that use the galactic DM background are often known as halo-310

scopes. They benefit from a relatively high power density of 450 MeV cm−3[24].311

However, DM rotation rates are poorly understood so the particle flux through312

the experiment has a large uncertainty. In addition, the distribution of DM within313

the galaxy is not known, therefore both homogeneous and clumpy distributions314

are equally possible. This means any assumptions of the local DM environment315

also have large uncertainties[55].316

Some experiments try and get around the challenges posed by a DM source317

by using the intense photon source of the sun as a signal source and are known318

as helioscopes. They work by looking for axions that were produced through319

the electron-axion coupling and generally probe axion masses corresponding to320

x-ray frequencies. Helioscopes benefit from a relatively strong understanding321

of the processes within the sun and the high particle flux that is generated.322

The challenges imposed by a helioscope are more practical in nature, when the323

solar axions are converted to photons they do so at x-ray frequencies meaning324

construction of a resonating cavity is a non-trivial task. In addition, since the325

sun is a directional source, the detector equipment needs to be manoeuvred to326

track the sun for optimum performance which poses an engineering challenge.327

Both helioscopes and haloscopes suffer from having no set mass range for an328

expected signal which means that discriminating between a genuine signal and329
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background noise can be difficult.330

The dominant method of building an experiment is to build a structure which331

is resonant at the frequency corresponding to the mass range to be probed and332

have a method of recording the power deposited within the structure. The moti-333

vation for the use of a resonant structure will be discussed in Chapter 4.334

The ADMX helioscope experiment[56] takes advantage of a highly-resonant335

microwave cavity to listen for DM axions converting to photons. It has dielectric336

rods in the cavity that can be moved in order to shift the resonant frequency,337

allowing for a range 550 to 810 MHz to be scanned[57, 58].338

Another experiment which is being developed at DESY is called FUNK it uses339

a dish antenna as a detector[59]. The advantage of using a shielded dish antenna340

is that it will focus photons of all frequencies to a single spot which will allow341

the experiment to be sensitive to any frequency that the detector is sensitive to,342

whereas resonators only operate in a finite bandwidth.343

The first axion helioscope was the Tokyo Axion Helioscope[60], and it was344

followed by CAST at CERN[61]. The successor to CAST was proposed in 2014345

and is currently known as IAXO[62]. The heiloscopes themselves consist of a346

strong magnetic field, mounted so the field is perpendicular to the propagation347

direction of solar axions, and a sensitive x-ray detector. If the magnetic field is348

disabled, it is possible to use axion helioscopes to measure signals from HSPs.349

2.4.2 Laboratory Based Experiments350

Many of the limitations of using galactic and solar WISP sources can be overcome351

by using a laboratory-based source and detector as they allow greater control over352
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systematic uncertainties and false signals. There are two main forms of laboratory353

WISP searches. The first creates a highly-polarised resonating EM mode. When354

a WISP is produced within the resonating mode it will affect the polarisation of355

the mode. The second method, known as a LSW experiment, has two resonant356

cavities: one powered to act as an emitter and the second shielded to act as a357

detector. Since LSW experiments have a specific target energy for the WISP,358

they allow for an even greater signal discrimination. The method behind LSW359

experiments is described in more detail in Chapter 4.360

ALPs was one of the first LSW experiments to produce significant results; it361

consists of an infra-red laser cavity and an identical but unpowered cavity that362

acts as a detector. By operating the laser at its harmonics the ALPs collaboration363

have been able to make many measurements over a wide mass range. An upgrade364

for ALPs is in development at the time of writing which includes a longer cavity365

to allow more time for conversion and the ability to apply a magnetic field to the366

line to facilitate an axion search[63].367

In addition to LSW experiments operating at near optical frequencies, it is368

possible to construct a LSW at any frequency where suitable containment can369

be achieved. One such frequency range at which suitable containment structures370

are routinely achieved is the microwave range. Particle accelerators use metallic371

cavities to support high fields that are used in the acceleration of particles. These372

cavities can be re-purposed as sources and detectors for HSP and axion searches.373

Since the technology to produce these cavities are commonplace in accelerator374

institutes a number have planned LSW experiments. To date the only microwave375

LSW to publish results is the CROWS experiment at CERN[64], however experi-376

ments are currently planned at The University of Western Australia[65] and Yale377
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University[66]. The CASCADE LSW experiment is in active development at The378

Cockcroft Institute of Accelerator Science and Technology; development and the379

results of the first phase of this experiment are covered in Chapter 5.380
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Chapter 3381

Electromagnetic Theory382

The experiments at the core of this thesis depend on a strong understanding of383

electromagnetism and therefore the first part of this chapter will recap the main384

points of a standard treatment of electromagnetism as can be found in many385

textbooks such as Classical Electrodynamics by JD Jackson[67]. The second part386

of this section will introduce the basics of photonic structures which will be used387

in Chapter 6. The approach will be based on Molding The Flow of Light by388

Joannopoulos, Johnson, Winn and Meade[68].389

3.1 Maxwell’s Equations1
390

Initially electromagnetism was described using Faraday’s law, Ampere’s law,391

Gauss’s law and Gauss’s law. Maxwell’s step of logic was to introduce time392

varying fields which allowed him to combine these separate laws into a single set393

of equations. These equations take the form394

1This section follows Chapter 6 in [67]
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∇ ·B = 0 (3.1a)

∇ ·D = ρ (3.1b)

∇× E +
∂B

∂t
= 0 (3.1c)

∇×H = J +
∂D

∂t
. (3.1d)

where E, H and D are the electric, magnetic fields and the displacement field395

and B is the magnetic flux density.396

For a uniform, isotropic linear medium the fields are related though the con-397

stitutive relations,398

D = ε0εE (3.2a)

B = µ0µH, (3.2b)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, ε and µ are399

the relative permittivity and permeability. ε and µ are complex functions of the400

frequency ω however when these functions are real and positive the medium is401

lossless. By choosing the appropriate values of ε and µ any media can described,402

even those that are not found naturally. Assuming solutions are harmonic with a403

time dependence of e−iωt and have no source, it is possible to build any solution404

from Fourier superposition of these harmonics. The equations for the amplitudes405

E(ω, r) and B(ω, r) where r is the position, become406
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∇ ·B = 0 (3.3a)

∇ ·D = 0 (3.3b)

∇× E = iωB (3.3c)

∇×B = −iεµωE. (3.3d)

The free-space macroscopic Maxwell’s equations were previously stated in407

Eq 3.1 but they can also be used to describe light propagating inside of a material408

such as dielectric materials which will be used in Section 3.3. When describing409

dielectric materials without a source of electric or magnetic field, both ρ and J410

can be set to zero. In addition, since most dielectric materials are non-magnetic411

µ = 1. This simplifies Eq 3.1 to412

∇ ·H = 0 (3.4a)

∇ · (εE) = 0 (3.4b)

∇× E + µ0
∂H

∂t
= 0 (3.4c)

∇×H− ε0ε
∂E

∂t
= 0. (3.4d)

3.2 Maxwell’s Equations In A Cavity 1
413

To form a resonator in the radio frequency regime metallic structures with either414

vacuum or rarefied gases inside a cavity are typically used. For this section all415

1This section follows Chapter 8 in [67]

24



3.2 Maxwell’s Equations In A Cavity

materials will be assumed to be lossless and all metals will be approximated416

as perfect conductors. Cavities are typically cylindrical as sharp features can417

lead to the concentration of electric field on the surface, and this leads to ‘break418

down’ when run at high powers. A long cavity without end caps is essentially419

a waveguide so it is a good place to start with understanding electromagnetic420

waves inside these structures.421

Starting with Maxwell’s equations for a time-varying electric field, Eq 3.3, by422

choosing the appropriate ε and µ any lossless medium in the cavities can be423

described. It can be shown that E and B satisfy424

(
∇2 + µεω2

)
Ψ = 0. (3.5)

where Ψ represents either the E or B field. Because of the cylindrical geometry425

it is helpful to separate out the variation along the major axis which is also the426

direction of wave propagation, z, giving Eq 3.5 the form427

E(r, t) = E(x, y)e±ikz−iωt (3.6a)

B(r, t) = B(x, y)e±ikz−iωt. (3.6b)

The wave number k can be real or complex. With this z dependence the wave428

equation can be reduced to a two dimensional form429

[
∇2
t + (µεω2 − k2)

]
Ψ = 0, (3.7)

where ∇2
t is the transverse part of the Laplacian operator. It is useful at this430
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stage to separate the fields into components parallel to and transverse to the z431

axis, E = Et + Ezẑ. Assuming propagation in the positive z direction and the432

non-vanishing of either Ez or Bz, the transverse fields are given by433

Et =
i

µεω2 − k2
[k∇tEz − ωẑ×∇tBz] (3.8a)

Bt =
i

µεω2 − k2
[k∇tBz − ωẑ×∇tEz] . (3.8b)

This gives rise to two broad categories of waves: transverse magnetic(TM)434

waves whose B component in the direction of propagation equals zero, and trans-435

verse electric(TE) waves whose E component in the direction of propagation is436

zero1. The transverse components of the electric and magnetic fields for both TE437

and TM waves are related to one another by438

Ht =
±1

Z
ẑ× Et, (3.9)

where Z is the wave impedance and is given by439

Z =


k

εω
=

k

k0

√
µ

ε
(TM)

µω

k
=

k

k0

√
µ

ε
(TE)

, (3.10)

where k0 = ω
√
µε. The plus minus sign in 3.9 is determined by the sign of440

the z dependence.441

In general a resonant cavity can be of any shape, however they can be easily442

1There are also TEM waves which only have transverse components but they will not be
discussed here.
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modelled as a section of cylindrical waveguide with two plates sealing its ends.443

The z dependence of the field takes the form of a standing wave because of444

reflections at the end surfaces.445

Ψ = C1 sin
(pπz
d

)
+ C2 cos

(pπz
d

)
, (3.11)

where Ψ can represent either the E or B field, C1,2 are arbitrary amplitudes,446

p is the number of anti-nodes in the z direction and the boundary surfaces are at447

z = 0 and z = d. TM fields require that Ez = 0 at z = 0 and z = d so448

Ez = Ψ(x, y) cos
(pπz
d

)
(p = 0, 1, 2, ...), (3.12)

For TE fields the same is true for Hz, so449

Hz = Ψ(x, y) sin
(pπz
d

)
(p = 1, 2, 3, ...), (3.13)

For the transverse fields to satisfy the boundary conditions, TM fields will be450

of the form451

Et = − pπ

dγ2
sin
(pπz
d

)
∇tΨ (3.14a)

Ht =
iεω

γ2
cos
(pπz
d

)
ẑ×∇tΨ, (3.14b)
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and TE fields,

Et = −iωµ
γ2

sin
(pπz
d

)
ẑ×∇tΨ (3.15a)

Ht =
pπ

dγ2
cos
(pπz
d

)
∇tΨ, (3.15b)

where γ2 is the eigenvalue associated with a specific solution to Eq 3.7 and452

takes the form,453

γ2 = µεω2 −
(pπ
d

)2

. (3.16)

For each value of p the eigenvalue γ2 determines an eigenfrequency454

ω2
p =

1

µε

[
γ2 +

(pπ
d

)2
]
, (3.17)

and the corresponding field of the resonant mode. By choosing the dimensions455

of the cavity carefully the frequency of the resonant modes can be well separated,456

which is required for stable operation.457

Figure 3.1: A cylindrical cavity, the radius and length are chosen for its resonant
properties. If extended in the z direction it becomes a waveguide.

For a cylindrical cavity like the one shown in Fig 3.1 with a inner radius of R458
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and length of d, the transverse wave equation for Ez with the boundary condition459

Ez = 0 at ρ = R has the TM mode solution:460

Ez(ρ, φ) = E0Hm(γmnρ)e±imφ, (3.18)

where461

γmn =
xmn
R

, (3.19)

where xmn is the nth root of the Bessel function.462

This gives resonant frequencies of463

ωmnp =
1
√
µε

√
x2
mn

R2
+
p2π2

d2
. (3.20)

The numbers m,n and p are the mode numbers and can be used to describe464

the general profile of a field. The first 3 modes for m and n are shown in Fig 3.2.465

For TE modes Eq 3.18 is still true but the boundary condition changes to466

Hz[∂Ψ/∂ρ|R = 0]. The effect of this is that γmn becomes,467

γmn =
x′mn
R

, (3.21)

where x′mn is the nth root of the derivative of the Bessel function, J ′m(x) = 0.468

As in Eq 3.20, the resonant frequency corresponding to each mode is given by469

ωmnp =
1
√
µε

√
x′2mn
R2

+
p2π2

d2
. (3.22)
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(a) TM01 (b) TM11 (c) TM21

(d) TM02 (e) TM12 (f) TM22

(g) TM03 (h) TM13 (i) TM23

Figure 3.2: Mode profiles for Ez in a cylindrical cavity. In all modes p = 0 so
variations in the propagation direction are ignored.
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3.2.1 Power in a Cavity470

Up until now the mode frequencies for a cavity have been treated as delta func-471

tions, this means that to excite the resonance the signal would need to be injected472

with exactly the resonant frequency. In reality the analytically derived frequency473

is broadened. An important source of the broadening of the resonant peak is the474

resistive losses in the cavity walls. The broadening effect of the losses within the475

cavity for a resonance is measured as the Q-factor of the cavity. This is defined476

as 2π times the ratio of the time-averaged energy stored in the cavity U to the477

energy lost per cycle ∆U .478

Q = ω0
U

∆U
, (3.23)

where ω0 is the resonant frequency. This means that the energy in the cavity479

as a function of time is480

dU

dt
= −ω0

Q
U, (3.24)

where the solution takes the form of481

U(t) = U0e
−ω0t/Q. (3.25)

The initial energy stored in the cavity, U0, decays exponentially with the482

decay constant inversely proportional to the Q of the cavity. This implies that483

the oscillation of the fields in the cavity are damped in the form1,484

1The E field will be used for this calculation but the arguments can equally be applied to
the B field.

31



3.2 Maxwell’s Equations In A Cavity

E(t) = E0e
−ω0t/(2Q)e−it(ω0+∆ω), (3.26)

where ∆ω allows for an offset from the resonant frequency. This kind of oscil-485

lation doesn’t consist of a single frequency but is a superposition of frequencies486

around the resonance and therefore,487

E(t) =
1√
2π

∫ ∞
−∞

E(ω)e−iωtdω, (3.27)

where488

E(ω) =
1√
2π

∫ ∞
0

E0e
−ω0t/(2Q)e−it(ω0+∆ω)dt. (3.28)

This enables us to calculate the frequency distribution of the energy in the489

cavity which has the form,490

|E(ω)|2 ∝ 1

(ω − ω0 −∆ω)2 + (ω0/2Q)2
. (3.29)

The characteristic shape produced has its full width at half of the maximum491

value equal to ω0/Q. If a constant input voltage with a fixed amplitude is applied492

to a cavity, the stored energy as a function of frequency will follow the resonance493

curve in the region close to a resonance.494

The Q of a cavity can be calculated by time-averaging the energy in the cavity495

and then determining the power loss in the walls. The method of calculating the496

wall losses is similar to the calculation of attenuation in cylindrical waveguides.497

For the mode λ, p, in a cavity, the energy stored is498
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U =
d

4


ε

µ


[

1 +

(
pπ

γλd

)2
]∫

A

|Ψ|2da, (3.30)

where A is the cross-sectional area, TE modes correspond to µ and TM mode499

correspond to ε. For TM modes where p = 0 the result needs to be multiplied by500

a factor of 2.501

It has previously been stated that the Q-factor losses are caused by the resis-502

tance of the cavity walls. These losses can be written in an intuitive manner that503

reflects the physical interpretation1,504

Q =
µ

µc

(
V

Sδ

)
×G, (3.31)

where V is the cavity volume, S is its surface area and G is a geometric factor.505

This can be thought of a the ratio of the volume occupied by the cavity fields and506

the volume that the field penetrates into the cavity walls and generate losses.507

3.3 Photonic Structures508

As will be seen in Chapter 6, photonic structures may be used to perform novel509

HSP searches. In this section the properties of these structures will be explained.510

3.3.1 Formalism of Photonic Structures2
511

Photonic structures are crystal-like structures where the periodicity of the struc-512

ture and properties of the materials are used to control the flow of light. Even513

1For a calculation of these losses see Appendix A.
2This section follows Chapter 1 in [68]
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though much of the terminology of photonic structures is borrowed from solid514

state physics, the structures themselves can be macroscopic in nature with the515

characteristic scale or lattice constant being set by the wavelength of light that516

the structure manipulates. With a suitably large structure the propagation of517

light through the lattice is analogous to the propagation of electrons through a518

crystal and therefore it is possible to use similar analytical techniques. One such519

technique is to represent the propagating light/electron as a Bloch wave or when520

localised, a Bloch state.521

The starting point for understanding photonics is Maxwell’s equations inside522

dielectric materials, Eq 3.4. Since Maxwell’s Equations are linear it is possible523

to separate the temporal and spatial dependences by breaking down the field524

into a set of harmonic modes. These harmonic modes can be summed up with525

appropriate intensities to produce any desired solution. The harmonic modes are526

constructed from a spatial profile multiplied by a complex exponential, H(r, t) =527

H(r)e−iωt and E(r, t) = E(r)e−iωt, where the physical fields correspond to the528

real component. Substituting these into Eq 3.4a and Eq 3.4b yields the divergence529

conditions,530

∇ ·H(r) = 0 (3.32a)

∇ · [ε(r)E(r)] = 0. (3.32b)

By separating the variables in Eq 3.4c and Eq 3.4d in the same way as was531

done for Eq 3.4a and Eq 3.4b, purely spatial curl equations are otained,532
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∇× E(r)− iωµ0H(r) = 0 (3.33a)

∇×H(r)− iωε0ε(r)E(r) = 0. (3.33b)

Dividing Eq 3.33b by ε(r) and then taking the curl allows us to use Eq 3.33a533

to decouple the field equations. The constants ε0 and µ0 can be absorbed into a534

factor of the speed of light, c, yielding the master equation of photonics535

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2

H(r). (3.34)

By using the the master equation with the divergence equations Eq 3.32 it is536

possible to calculate the magnetic field for any given structure. This is done by537

taking a function which describes the permittivity of the structure, ε(r) and then538

solving Eq 3.34 to find the modes of H(r) and their respective frequencies. E(r)539

can then be recovered by using Eq 3.33b.540

It can be helpful to think of some electromagnetic problems in terms of an541

eigenvalue problem. This can be done by taking the master equation, Eq 3.34,542

and treating the left side as an operator Θ̂, acting on H(r):543

Θ̂H(r) =
(ω
c

)2

H(r) (3.35a)

Θ̂H(r) = ∇×
(

1

ε(r)
∇×H(r)

)
. (3.35b)

It is important to note that the operator Θ̂ is linear. This means if H1(r)544

and H2(r) are both solutions of Eq 3.35 with the same frequency ω, then so545
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is aH1(r) + bH2(r) where a and b are constants, allowing a convenient way of546

representing degenerate harmonic modes.547

3.3.2 Electromagnetic Energy in a Dielectric Medium1
548

When looking at an electromagnetic mode in a dielectric structure it is relatively549

straightforward to understand some of their features. Any mode in a structure550

will tend to concentrate its energy into the regions of high dielectric constant551

while remaining orthogonal to modes of a different frequency. This can be for-552

malised as the electromagnetic variational theorem which borrows heavily from553

the variational principal of quantum mechanics. This means that the lowest fre-554

quency state which corresponds with the smallest eigenvalue ω2
0/c

2 has the field555

pattern that minimises the functional:556

Uf (H) =
(H, Θ̂H)

(H,H)
, (3.36)

where (F,G) is the inner product of two vector fields and is defined as557

(F,G) =

∫
d3rF∗(r) ·G(r), (3.37)

and ∗ indicates the complex conjugate. The functional Uf is known as the558

Rayleigh quotient and appears in a similar variational theorem for any Hermitian559

operator.560

To see that the energy is concentrated in high dielectric field regions it is561

useful to write the energy functional, Eq 3.36, in terms of E. Utilising the general562

1This section follows Chapter 1 in [68]
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properties of harmonic modes, the functional can be rewritten as,563

Uf (H) =
(∇× E,∇× E)

(E, ε(r)E)
(3.38a)

=

∫
d3r | ∇ × E(r) |2∫
d3rε(r) | E(r) |2

. (3.38b)

By concentrating the high electric field regions into the regions with high564

dielectric constant ε the value of UF is minimised.565

The energy functional needs to be distinguished from the physical energy in566

the electromagnetic field. The time-averaged physical energy can be separated567

into:568

UE =
ε0

4

∫
d3rε(r) | E(r) |2 (3.39a)

UH =
µ0

4

∫
d3r | H(r) |2 . (3.39b)

For harmonic modes the energy is exchanged between the electric and mag-569

netic fields and vice-versa. The energy functional however is independent of the570

field strength as it has fields in the numerator and denominator, whereas the phys-571

ical energy explicitly depends on the square of the field strength. This means that572

when working with photonic structures the fields are often normalised unless the573

physical energy is specifically of interest.574
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3.3.3 One-Dimensional Photonic Crystal1575

The simplest form a photonic crystal can take is a multilayer film which consists576

of layers of alternating materials with different dielectric constants. Despite its577

simplicity, it can be used to create useful structures such as Bragg mirrors and578

to localise modes inside the structure. It is possible to analyse these kind of579

structures by considering a plane wave propagating through the structure and580

considering the sum of the reflections and refractions that occur at the interfaces581

between layers. Another method of analysing these structures is to construct a582

band diagram for the structure. This approach is generalisable to 2D and 3D583

arrangements and so will be explored here.584

A multilayer film is defined as a structure where the material is periodic in585

the z direction and homogeneous in the xy plane. This means there is continuous586

translational symmetry in the xy plane and discrete translational symmetry in587

the z direction. A discrete symmetry is characterised by it’s characteristic length588

known as the lattice constant a which is the distance between equivalent points589

and a primitive lattice vector which defines the direction of periodicity ẑ. In590

the case of a multilayer film it would be a = aẑ. The symmetry means that591

ε(r) = ε(r± `a) where ` is an integer. The area of the structure contained within592

a period of the symmetry is referred to as the unit cell and is repeated to form593

the bulk material.594

Because of the translational symmetries, Θ̂ must commute with all of the595

translational operators in the xy plane as well as the translational operators for596

the lattice vectors R = `aẑ. This means that the modes of Θ̂ are simultane-597

ous eigenfunctions of both translation operators. These eigenfunctions are plane598

1This section follows Chapter 4 in [68]
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waves,599

T̂dx̂e
ikxx = eikx(x−d) = (e−ikxd)eikxx (3.40a)

T̂dŷe
ikyy = eiky(y−d) = (e−ikyd)eikyy (3.40b)

T̂Re
ikzz = eikz(z−`a) = (e−ikz`a)eikzz, (3.40c)

where T̂ is the translational operator, k is the wave vector and d is the mag-600

nitude of the translation in the direction of the operator.601

This allows modes to be classified by their k values but not all k values give602

unique solutions. Altering kz by an integer multiple of 2π/a leaves the state603

unchanged and so the primitive reciprocal lattice vector is b = 2π/aẑ.604

The eigenvalue for any linear combination of degenerate eigenfunctions is the605

same as the eigenvalue of the any of the functions that make it up. This means606

any combination of the original modes can be put in the form607

Hkx,kz(r) = eikxx
∑
m

ckz ,m(y)ei(kz+2πm/a)z (3.41a)

= eikxx · eikzz ·
∑
m

ckz ,m(y)e2iπmz/a (3.41b)

= eikxx · eikzz · ukz(z, y), (3.41c)

where the c’s are coefficients of expansion that can be calculated from an608

explicit solution and u(z, y) is by definition a periodic function in z.1609

1The choice of x in Eq 3.41 was an arbitrary decision and a similar treatment can be
performed for Hky,kz(r).
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The discrete periodicity in the z direction leads to a z dependence for H that610

is the product of a plane wave and a z-periodic function. A useful way to think611

about it is as a plane wave in free space that is modulated by a periodic function612

because of the periodic lattice:613

H(n, kz,k||) = eik||·ρeikzzun,kz ,k||(z). (3.42)

where n is the band number ordered by frequency such that the lowest fre-614

quency band corresponds to n = 1. At this point it can be convenient to combine615

kx and ky into k|| and denote ρ as the position in the x, y plane. In solid state616

physics this type of function is referred to as a Bloch state but can also be known617

as a Floquet mode. Since a lot of the formalism of photonics is borrowed from618

solid state physics these will be referred to as Bloch states in the rest of this619

thesis.620

The function u takes the form u(z) = u(z+R) where R is a integer multiple of621

the lattice constant a. Because of the symmetries of the system, k|| can take any622

value but kz is restricted to a finite interval known as the Brillouin zone which is623

the primitive cell of the reciprical lattice. Due to the crystal only having discrete624

translational symmetry in the z direction the Brillouin zone is one dimensional625

and can simply be deduced to be −π/a < kz 6 π/a.626

3.3.4 Two-Dimensional Photonic Crystal1627

The previous section was concerned with the simplest form of photonic crystal, a628

one dimensional multilayer film, however these structures only have limited uses629

1This section follows Chapter 5 in [68]
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and so this section will look at expanding this formalism to include more complex630

two-dimensional structures. A two-dimensional crystal is periodic along two axes631

and homogeneous along its third. A realisable structure of this type would be632

a square-based lattice in the xy plane of long cylindrical rods with radius r and633

spacing of the lattice constant a. For simplicity the extent of the rods in the z634

direction is considered infinite. By tuning the lattice parameters a band gap can635

be achieved, preventing the propagation of waves within the periodic plane. The636

specifics of how band gaps form and behave is covered in Section 3.3.5.637

To understand the electromagnetic modes that can exist in a two-dimensional638

crystal the symmetries of the system can be used to simplify the problem. In639

the z direction there is no limit on the value of the wave vector kz and the mode640

must be oscillatory because in this direction the crystal is homogeneous. The641

crystal must also have discrete translational symmetry in the xy plane where642

ε(r) = ε(r+R) where R is any linear combination of the primitive lattice vectors643

ax̂ and aŷ. Bloch’s theorem can be used to analyse the k|| that are within the644

Brillouin zone. To distinguish between modes, they are categorised by kz, k|| and645

n. The Bloch states take the form646

Hn,kz ,k||(r) = eik||·ρeikzzu(n,kz ,k||)(ρ), (3.43)

where ρ is the projection of r on the xy plane and u(ρ) is a periodic function,647

u(ρ) = u(ρ + R) for all lattice vectors R. The result of this is similar to that648

of the multilayer film but the roles of the plane and the z direction are reversed649

with u periodic in the plane and not the z direction.650

If a state only propagates in the xy plane, the symmetry of the lattice allows us651
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to separate the modes into their respective polarisations, transverse-electric(TE)652

with E||, Hz 6= 0 and transverse-magnetic(TM) modes with H||, Ez 6=. These are653

the same polarisations that are used to describe modes inside cavities and wave-654

guides. Inside a crystal the TE and TM modes can have different band structures655

with features such as band gaps in one polarisation but not the other.656

3.3.5 Photonic Band Gaps657

By tuning the properties of the crystal through the type and dimensions of the658

materials used it is possible to create a band gap. A band gap is where there is a659

range of frequencies for which an electromagnetic wave is unable to propagate in660

one or more directions. If all directions are blocked it is known as a complete or661

total band gap and if propagation is allowed in some directions, a partial band662

gap.663

3.3.5.1 One-Dimensional Band Gaps1
664

One-dimensional photonic structures were introduced in Section 3.3.3. These665

structures have periodically-alternating material in one direction z, and a ho-666

mogenous distribution in the transverse xy plane. If the refractive indices of the667

materials were the same then all the states would lie on the light line which is668

given by669

ω(k) =
ck√
ε
. (3.44)

However as the ratio of the materials permittivity increases a gap opens up670

1This section follows Chapter 4 in [68]
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between the first two bands. The gap between these bands is at its minimum at671

the limits of the Brillouin zone which is found at k = π/a and corresponds to a672

wavelength of 2 a. This means that there are two positions that the nodes can673

take whilst maintaining the symmetry of the lattice: at the centre of the low-ε674

layer or the centre of the high-ε layer as can be seen in Fig 3.3.675

(a) Band 1

(b) Band 2

Figure 3.3: A one-dimensional photonic structure where the pale orange indicates
the low permittivity region and the bright orange indicates high permittivity. The
first two bands of the structure are shown in blue.

By applying the variational theorem it is found that the low frequency modes676

concentrate their energy in high-ε regions and as the frequency increases more of677

the energy is stored in the the low-ε region. When systems have large dielectric678

contrasts, both bands can concentrate their energy in the high-ε regions but have679

orthogonal energy distributions.680

The size of a band gap is described by its frequency width ∆ω, however due to681

the scaling properties of Maxwell’s Equations this is not the most practical way682

to talk about a band gap’s size. If the lattice constant is scaled by a factor of s,683
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the band gap size would be scaled by 1/s. It is therefore more convenient to use a684

ratio of the width of the band gap and the central frequency of that gap, ∆ω/ωm,685

this is usually expressed as a percentage and known as the gap-midgap ratio.686

This measurement is also useful as it remains valid even when the frequency and687

wave vector are plotted in dimensionless units. For example the dimensionless688

frequency is equivalent to aω/2πc.689

3.3.5.2 Two-Dimensional Band Gaps1
690

A two-dimensional photonic structure can also be used to create band gaps. Con-691

sider a two-dimensional square lattice which consists of cylindrical rods with a692

lattice constant of a. With a sufficiently high dielectric contrast this type of693

structure will open a complete band gap between its n = 1 and n = 2 TM bands.694

When plotting the band structure of two dimensional structures the k|| along the695

edge of the Brillouin zone is plotted. This is a suitable approximation to covering696

the entire zone as the maxima and minima of a band usually occur at the zone697

edges and corners.698

A square lattice has a triangular irreducible Brillouin zone which can be re-699

lated to the rest of the Brillouin zone through rotation. The three corners of the700

zone are found at k|| = 0, k|| = π/ax̂ and k|| = π/ax̂ + π/aŷ.701

The band diagram in Fig 3.4 is for a two-dimensional square lattice with a702

scatterer radius of r = 0.2 a and a scatterer permittivity of ε = 8.9. In this case703

there is a complete band gap between the first and second TM modes with a704

gap-midgap ratio of 31.4%. The TE bands however, have no complete gap and705

the reason for this can be understood by considering how the polarisations behave706

1This section follows Chapter 5 in [68]
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Figure 3.4: The band diagram of a square based photonic lattice of cylindrical
scatterers of ε = 8.9 and r = 0.2 a. Reproduced from [68]
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at the material interface. When moving from the high-ε material to the low-ε707

material, the energy density ε|E|2 will decrease discontinuously when E is parallel708

to the interface but will increase discontinuously when E is perpendicular to the709

interface. This means that for TM bands where E is parallel to all the dielec-710

tric interfaces it is possible to have a high field concentration in the ε material,711

whereas in the case of TE bands, the electric field must cross a boundary which712

forces the electric field energy out of the high-ε material preventing a high field713

concentration and therefore the first two bands are much closer in frequency.714

3.3.5.3 Evanescent Modes715

Despite the crystal not being able to support extended modes with frequencies716

within the band gap there may be situations where these frequencies are injected717

from an external source. In this situation the wave vector of the mode becomes718

complex rather than purely real and the amplitude of the wave decreases expo-719

nentially as it extends into the crystal. This kind of mode is described as being720

evanescent and has the form721

H(r) = eikzu(z)e−κz, (3.45)

where the complex wave vector is given by k + iκ. Due to the imaginary722

component of the wave vector the decay length is 1/κ. The value of κ can be723

determined by analysing the modes above and below the gap. Expanding the724

upper band ω2(k) in powers of k around the zone limit and this band takes the725

form ∆ω = α(∆k)2 where α is a constant that depends on the second derivative726

of the band.727
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For frequencies slightly higher than the top band, ∆ω > 0 which means ∆k728

is purely real. However when the frequency fully enters the gap ∆ω < 0 and ∆k729

become purely imaginary. As the frequency approaches the centre of the gap the730

size of ∆k increases and since ∆k = iκ, the rate of decay increases too. At the731

mid-gap frequency, κ reaches a maximum. As the frequency approaches the lower732

band, ∆k decreases until it becomes purely real at the lower band.733

Evanescent modes are valid solutions to Eq 3.35a, but they diverge as z goes734

to ±∞. If a crystal was perfect and infinite in size it would be impossible to735

physically excite these evanescent modes however with the inclusion of edges or736

defects it is possible to terminate the exponential growth and sustain an evanes-737

cent mode. A crystal defect can be resonant with one or more evanescent modes738

allowing the localisation of modes within the crystal. This will be elaborated on739

in the next section.740

3.3.6 Localising Modes1
741

By using knowledge of the band structure of a photonic crystal it is possible742

to manipulate a structure to localise a mode to a specific location within the743

lattice. The way this is done is by introducing a defect into the lattice. This is744

usually achieved by altering the dimensions of a scatterer within the lattice or745

by removing a scatterer. To explore the effect of defects it is convenient to first746

consider the one dimensional example of a multilayer film. Suppose the thickness747

of the low-ε layer is altered, breaking the symmetry of the lattice. The defect will748

act like the interface between two films but when many wavelengths away from749

the defect the modes will look similar to those found in a perfect crystal.750

1This section follows Chapter 5 in [68]
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To understand what is happening inside a defect it is only necessary to look751

at the in-plane propagation and limit the frequency to those that are within the752

photonic band gap. Inside the crystal there are no extended states within the753

band gap but there can be evanescent states in the immediate vicinity of the754

defect. The band structure of a lattice is only valid inside a defectless lattice755

however knowledge of it allows us to split the frequency range into regions of756

extended and localised states.757

The defect may permit localised modes to exist that have frequencies within758

the band gap. The film on either side of the defect acts like a frequency specific759

mirror and since the films are parallel to one another any light propagating in the760

z-direction will be reflected back and forth. As with any system of this nature761

such as those discussed in Section 3.2, the modes become quantised into discrete762

resonant frequencies. By increasing the thickness of the defect layer the frequency763

of the resonant modes is reduced and so can be lowered till they are inside the764

band gap range. A similar effect can be achieved by maintaining the size of765

the layer and altering the ε of the material. By tuning the parameters carefully766

the resonant mode can be pushed to the centre of the gap where the degree of767

localisation will be the strongest.768

When looking at two-dimensional structures it is possible to produce a number769

of different defect types: surface, line and point defects. A surface defect is the770

easiest to produce as it is where the lattice terminates and therefore all practical771

designs must contain this kind of defect. A line defect is where a row of scatterers772

in the directions of one of the primitive lattice vectors are altered or removed.773

Finally, a point defect is when an individual scatterer is altered or removed.774

As with a one-dimensional structure, introducing a defect in the lattice inval-775
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idates the band diagram for the lattice’s in-plane wave vector but the symmetry776

remains intact for kz = 0 and therefore looking at the in-plane propagation is777

still valid as the TE and TM modes remain decoupled.778

The removal or alteration of a row or part of the row can be used as a wave-779

guide as the defect will split the lattice into two regions, both of which act as a780

mirror. Having two parallel mirrors allows the structure to support modes that781

are resonant within the defect but are inside the band gap of the lattice. By782

removing or altering a single rod a cavity like structure is produced as all the783

surrounding lattice will act as a mirror that, with carefully tuned parameters,784

can support a resonant mode within the band gap.785

The removal of the scatterer will reduce the permittivity of the bulk material786

in the vicinity of the defect and this enables us to use perturbation theory to787

calculate the effect of the change, ∆ε. By applying a small perturbation to788

∇×∇× E(r) =
(ω
c

)2

ε(r)E(r), (3.46)

it can be shown that789

∆ω = −ω
2

∫
d3r∆ε(r)|E(r)|2∫
d3rε(r)|E(r)|2

+O(∆ε2). (3.47)

The result of Eq 3.47 is that if the permittivity is reduced the frequency of the790

band is reduced. The effect on the band diagram is that it pushes a frequency791

state that usually exists below the band gap up into the gap.792

If the frequency of the mode that is localised to the defect is slightly above793

or below the band gap it is able to leak into the continuum states that form the794

bands of the perfect lattice. This means that the mode is no longer localised to795
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only the defect and it is known as a leaky mode or resonance. The defect can796

now lose energy to the continuum state.797

All the lattices considered so far have been infinite, such an idealised defect is798

capable of perfectly confining a mode, however if a finite and therefore realisable799

structures is considered, it is found that the localised state can leak energy into800

the surrounding medium. Within the lattice the defect modes decay exponentially801

and therefore increasing the number of lattice periods surrounding the defect the802

rate of leakage can be reduced. This means that with a sufficiently large lattice803

the losses to the surroundings become secondary to losses within the dielectric804

itself. A structure using this principal is described in detail in Chapter 6.805
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Light Shining Through a Wall807

Experiments808

There are a number of techniques to search for WISPs, many of the experiments809

that exploit photon-WISP interactions draw from ideas first proposed in the early810

1980’s by Lev Okun[69] and Pierre Sikivie[70]. One of the most popular tech-811

niques has been to create a resonating structure that can make the small electro-812

magnetic field created by galactic or solar WISPs detectable. This technique has813

limitations imposed by the uncertainties in the properties of the source which814

were discussed in Section 2.4. Light shining through a wall(LSW)experiments815

overcome this limitation by having a dedicated source. This chapter will intro-816

duce the theory that underpins LSW experiments that search for HSPs.817
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4.1 Modified Maxwell’s Equations818

The first step to understanding how a LSW experiment works is to understand819

the impact of an additional field which is invariant under a local U(1) transforma-820

tion on the electromagnetic field U(1). This is done by performing a Lagrangian821

variation to find the equations of motion for the field which will produce equa-822

tions which are approximately Maxwell’s equations. The starting point is the823

Lagrangian density that describes the interaction between the SM photon and824

the HSP field, Eq 2.6 which is repeated here for convenience:825

L = −1

4
F µνFµν −

1

4
BµνBµν −

1

2
χF µνBµν −

1

2
m2
γ′BµB

µ. (4.1)

Recall that F is the SM electromagnetic field tensor and B is the HSP field826

tensor where µ and ν are the summation indices, χ is the mixing parameter827

and mγ′ is the mass of the HSP. The Lagrangian density can be transformed by828

applying829

Bµ → B′µ − χAµ, (4.2)

applied to it where ’ denotes the transformed HSP field. For simplicity it830

is easier to apply the transform to each term in the Lagrangian individually as831
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shown:832

−1

4
F µνFµν →Unchanged (4.3a)

−1

4
BµνBµν →−

1

4

(
B′µνB′µν + χ2F µνFµν − 2χFµνB

′µν) (4.3b)

−1

2
χF µνBµν →−

χ

2

(
F µνB′µν − χF µνFµν

)
(4.3c)

−1

2
m2
γ′BµB

µ →1

2
m2
γ′

(
B′µB′µ + χ2AµAµ − 2χAµB′µ

)
. (4.3d)

where Aµ is the EM four vector and Bµ is the four vector representing the833

HSP field. Normalising Eq 4.1 by redefining the electron charge e2 → e2/(1−χ2)834

gives835

L = −1

4
F µνFµν −

1

4
BµνBµν +

1

2
m2
γ′B

′µB′µ +
1

2
m2
γ′χ

2AµAµ −m2
γ′χA

µB′µ. (4.4)

The Lagrangian variation Aµ → Aµ + εδAµ can be applied to obtain the836

equations of motion. Again taking each term individually for ease:837

−1

4
F µνFµν →−

1

4
F µνFµν + εF µν∂νδAµ (4.5a)

−1

4
BµνBµν →Unchanged (4.5b)

1

2
m2
γ′B

′µB′µ →Unchanged (4.5c)

1

2
m2
γ′χ

2AµAµ →
1

2
m2
γ′χ

2(AµAµ + 2εAµδAµ) + O(ε2) (4.5d)

−m2
γ′χA

µB′µ →−m2
γ′χA

µB′µ −m2
γ′εχδA

µB′µ. (4.5e)
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The Lagrangian density with the variation is therefore838

L = −1

4
F µνFµν + εF µν∂νδAµ −

1

4
BµνBµν +

1

2
m2
γ′B

′µB′µ

+
1

2
m2
γ′χ

2(AµAµ + 2εAµδAµ) + O(ε2)−m2
γ′χA

µB′µ −m2
γ′εχδA

µB′µ. (4.6)

To find the equations of motion from the Lagrangian density its action needs839

to be minimised with respect to small variations of the fields resulting from small840

variations in ε, giving841

δS =

∫
dL

dε

∣∣∣∣
ε=0

d4x = 0 (4.7)

where842

dL

dε
= ∂ν(F

µνδAµ) + (−∂νF νµ +m2
γ′χ

2Aµ −m2
γ′χB

′
µ)δAµ + O(ε). (4.8)

By removing the terms that will integrate to become 0, the action becomes843

δS =

∫
−∂νF νµ +m2

γ′χ
2Aµ −m2

γ′χB
′
µδAµ = 0. (4.9)

Therefore the field equations becomes844

∂νF
µν = m2

γ′χ(χAµ −B′µ). (4.10)

The implication of Eq 4.10 is that any electromagnetic field acts as a source for845

HSPs and vice versa. This means that it is possible to search for HSPs by either846
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looking for the EM field that they generate or by looking for the energy ‘lost’847

from an EM field. The loss mechanisms of EM fields can be complicated making848

the detection of small deficits in the power difficult. Thermal noise however, is849

relatively well understood and this makes detecting any excess to the thermal850

noise in an otherwise ‘radio silent’ environment relatively easy. Due to these851

reasons the majority of experimental searches have concentrated on looking for852

the generated EM field from the HSP.853

4.2 Shining Optical Light Through a Wall854

As previously stated, a consequence of Eq 4.10 is that any electromagnetic field855

acts as a source of HSPs and vice versa; it has also been previously stated that856

the HSP does not couple directly to electric charge. Due to these two reasons, it857

is possible for the HSP to transmit an electromagnetic signal to a region which858

a photon is otherwise unable to reach. Experiments using this approach are859

commonly known as light shining though a wall experiments.860

Figure 4.1: A simplified diagram of a light shinging through a wall experiment.
On the left is an incoming photon which generates a HSP. The HSP passes through
shielding relatively unaffected and then generates a photon.
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The simplest way to think about a LSW experiment is to think about how861

energy flows through the experiment. Figure 4.1 shows a simplified schematic of862

a LSW experiment. As a EM wave travels, some of the energy of the EM wave863

transfers into a HSP wave. When both waves reach the shielding, the EM wave864

is terminated and it’s energy is either absorbed or reflected while the HSP wave865

continues through the shield. Once the HSP wave has passed the shield some of866

the energy of the HSP wave transfers to a EM wave. This whole process can be867

simply written as868

Pout = PtransPin, (4.11)

where Pout is the detectable power, Pin is the power put into the experiment869

and Ptrans is the probability that a photon will transition to a HSP and then gen-870

erate a detectable photon. The starting point to calculate Ptrans is the probability871

of a photon in free space transitioning into a HSP,872

Pγ→γ′ = 4χ2 sin2(
∆kl

2
) (4.12)

where l is the distance travelled by the photon and ∆k is the momentum873

difference between the photon and the HSP[53], and the use of natural units can874

be assumed throughout this chapter.875

∆k = ω −
√
ω2 −m2

γ′ (4.13)

For the probability of a HSP transitioning to a photon is the same process in876

reverse which has the same probability. The probability of a photon making the877
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transition to HSP and back again in free space is therefore,878

Ptrans = 16χ4 sin2

(
∆kl1

2

)
sin2

(
∆kl2

2

)
(4.14)

where l1 is the length travelled by the photon before reaching the shielding879

and l2 is the length the HSP has to travel before transitioning to a photon and880

being detected[53].881

Since χ and ∆k are expected to be small, the distance over which the exper-882

iment takes place needs to be as long as possible. When this approach was first883

conceived the use of astronomical objects was suggested to get suitable distances884

and high power photon sources such as super-novae. However to detect a signal885

within the ambient light of these objects would be extremely difficult[69].886

One method of extending the distance travelled by a photon without requiring887

an increase in the length of the experiment is to place the photon beam inside888

a resonant cavity. For optical light, cavities are created by placing mirrors at889

either end of the beam. However, as mirrors are not perfect, the losses cause890

the beam to have a finite life span in the cavity. The increase in the life of a891

photon inside a cavity is given the finesse, F of the cavity. Whilst resonating in892

the cavity, the flux in the direction of the detector contributes to the HSP field893

which it generates and therefore the probability of transition is increased by a894

factor of (F + 1)/2. It is fairly obvious that there will be an improvement in the895

‘source’ side of the experiment but the enhancement seen from the addition of a896

resonator can also be applied to the detector, a further discussion of this can be897

found in Section 4.3.1. The size of this resonant amplification is the same as that898

for the source and therefore the probability of transmission is [71]899
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Ptrans = 16χ4

[
F1 + 1

2

] [
F2 + 1

2

]
×
[
sin

(
∆kl1

2

)
sin

(
∆kl2

2

)]2

. (4.15)

4.3 Shining Microwaves Through a Wall900

A metallic cavity can be used to support a resonating mode in much the same901

way as the Fabry-Pérot resonator used in optical LSW experiments enabling the902

method to be used at microwave frequencies and therefore opening up the possi-903

bility of searches in the µeV to meV mass range. Even though qualitatively there904

is little difference between an optical and microwave LSW a different formal-905

ism is generally used which will be introduced in Section 4.3.1. Early microwave906

LSW experiments[64, 66] followed the optical experiments by only considering907

the transverse polarisation of the HSP. However, the mass of the HSP allow it908

to sustain a longitudinal polarisation which is not available to the photon. Re-909

cent astrophysical exclusions which have considered the longitudinal mode have910

been able to obtain more sensitive limits than those which only considered the911

transverse polarisation[72, 73]. Utilising the longitudinal polarisation in an op-912

tical LSW experiment is non-trivial but for microwave LSW experiments only913

the geometry of the experiment needs to be adapted as will be discussed in Sec-914

tion 3.3.6.915

4.3.1 Transverse Coupling916

The approach taken at optical frequencies can be easily adapted to RF structures.917

The number of passes of a photon through an optical cavity which is given by918
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the cavity’s finesse F, is conceptually the equivalent of the quality(Q) factor of919

an RF cavity:920

F + 1

2
≈ Q. (4.16)

Therefore by taking Eq 4.15 and Eq 4.16 the maximum probability of trans-921

mitting a photon from the source to the emitter via a HSP can be said to be,922

Pmax
trans ∼ χ4Q1Q2. (4.17)

To calculate the actual probability of transmission of EM power from the923

emitter cavity to the detector in detail, the first step is understanding how the924

field in the emitter generates the HSP field. The starting point for this is the925

equations of motion for the system that are derived from Eq 4.10:926

(∂µ∂µ +m2
γ′)B

′ = χm2
γ′A, (4.18a)

(∂µ∂µ + χ2m2
γ′)A = χm2

γ′B
′ (4.18b)

where A is the EM four-vector and B′ is the HSP four-vector. The EM field927

distribution in the cavity can be solved analytically for simple cavity geometries928

as was discussed in Section 3.2, but numerical simulations are often used for929

complicated structures. The mode inside the cavity is separated into its spatial930

and temporal components:931

Ψ(r, t) = ψ(t)Ψ(r), (4.19)
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where Ψ can represent either the E or B field and ψ is the purely temporal932

component of the field. Since the HSP doesn’t interact with normal matter its933

field permeates the space around the source freely. The solution is then found934

from the retarded massive Green’s function [74],935

Ξ(r, t) = χm2
γ′

∫
V

d3y
exp(ik|r− y|)

4π|r− y|
ψ(t)Ψ(y), (4.20)

where Ξ represents either the electric-like or magnetic-like component HSP936

field, V is the volume of the emitter cavity and937

k2 = ω2 −m2
γ′ . (4.21)

If mγ′ > ω, the HSP cannot be radiated but can be virtual within a distance938

of approximately 1/mγ′ of the emitter cavity. In the detector the Ξ field now939

acts as a source to excite the EM field inside. The wave equation inside the940

detector can be solved by separating the spatial and components as in Eq 4.19,941

Ψ′(r, t) = ψ′(t)Ψ′(r),942

(
d2

dt2
+
ω′0
Q′

d

dt
+ ω′20

)
ψ′(t) = ξ(t) (4.22)

where the primed variables indicate they are associated with the detector. The943

driving force ξ(t) is obtained by separating the spatial and temporal components944

of Eq 4.18a, multiplying by the EM solution to the cavity Ψ′(r) and integrating945

over the volume of the cavity V ′,946

ξ(t) = χ2m4
γ′ψ(t)

∫
V ′

∫
V

d3rd3y
exp(ik|r− y|)

4π|r− y|
Ψ(y)Ψ′(r) (4.23)

60



4.3 Shining Microwaves Through a Wall

where r and y are the co-ordinate systems of the detector and emitter respec-947

tively. To gain the full benefits of resonant enhancement the cavities are designed948

so that ω′0 = ω0. This can be simplified to949

ξ(t) = ψ(t)
χ2m4

γ′

ω2
0

G(k/ω0), (4.24)

where G is a dimensionless geometric factor. The G-factor encodes the physi-950

cal set-up of the experiment, the cavity shapes, sizes and relative separation and951

is given by [74]952

G(k/ω0) ≡ ω2
0

∫
V ′

∫
V

d3xd3y
exp(ik|x− y|)

4π|x− y|
Ψ(x)Ψ′(y). (4.25)

Since the cavity has a finite Q-factor, it takes some time to reach its maximum953

amplitude. This is referred to as the filling time. After allowing the experiment954

to run for a minimum of the filling time, the amplitude of the EM field becomes955

constant and is given by956

ψ′0 = iQ′
χ2m4

γ′

ω4
0

Gψ0. (4.26)

where the subscript 0 denotes the constant amplitude. To describe a physical957

set-up, this constant amplitude needs to be related to the power inside the emitter958

and also the power which is extractable from the detector. For a RF cavity the959

stored power in a cavity based on the power put in or taken out is,960

P =
ω0

Qe

U, (4.27)

where U is the stored energy of the cavity, Qe is the external Q-factor of the961
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cavity and P is the power in/out the cavity. From this it is clear that after the962

filling time the probability of a photon passing through the shielding and being963

detected in the second cavity is approximately964

Ptrans =
Pdet

Pem
=
Q|a0

det|2

Q′|a0
em|2

= χ4QQ′
m8
γ′

ω8
0

|G|2.1 (4.28)

965

4.3.2 Exclusions From Transverse Coupling966

Just as with any particle physics experiment the goal of a HSP LSW experiment967

is to discover the existence of the HSP or to set limits on the parameter space for968

the HSP. When a negative result is found the limits that are set are dictated by969

the sensitivity of the experiment. To calculate the sensitivity of the experiment,970

the first stage is to re-arrange the probability of transmission between the cavities,971

Eq 4.28, and make the coupling factor χ the subject,972

χ = 4

√
PTransω

8
0

QQ′m8
γ′ |G|2

, (4.29)

Following from Eq 4.29 the probability PTrans can be thought of as the ratio973

of the number of signal photons in the emitter and the detector,974

PTrans =
NDett

NEmt
, (4.30)

where NDet,Em is the number of photons in the detector and emitter per unit975

1When the differences between the ohmic and external Q-factors are included fully in the
treatment, a factor of 1/4 is introduced for regularly conducting cavities. However, when
superconducting cavities are considered, this equation holds true due to the need to detune the
cavities.
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time respectively, and t is the running time of the experiment. To be detectable976

NDet has to be large enough to be distinguished from fluctuations in the back-977

ground noise. This condition is set by using standard Poisson statistics on the978

noise such that979

NDett = n
√
NBgt, (4.31)

where n is the number of standard deviations of significance desired, t is the980

run time of the experiment and NBg is the number of background photons per981

unit time. The probability of transmission therefore must be982

PTrans =
n
√
NBgt

NEmt
, (4.32)

or higher if a HSP signal is to be detected.983

After the experiment has been running for sufficient time, a steady state is984

reached when the power in the emitter and detector are constant. When this985

point has been reached it is valid to say that the probability of transmission is986

equal to the ratio of the power in the emitter to the power in the detector and987

hence the smallest detectable value of χ is given by988

χ = 4

√
n2NBgω

16
0

Q2Q′2N2
Emtm

16
γ′ |G|4

. (4.33)

The background can be estimated by the number of thermal photons inside989

the detector cavity in a finite bandwidth ∆f to be990

NBg =
kBT∆f

ω
(4.34)
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where it is assumed that ∆f is small enough that variations in the black body991

spectrum are negligible over the range. Since the detector consists of a cavity992

and amplifiers it is possible to combine their noise contributions using the Friis993

equation,994

Teq = T1 +
T2

G1

+
T3

G1G2

+ ... (4.35)

where T1 is the temperature of the cavity, T2,3 are the electrical noise temper-995

atures of the respective amplifiers and G1,2 is the gain of the amplifiers. Therefore996

the smallest detectable χ is997

χ = 4

√
n2kB(T1 + T2/G1 + ...)∆Fω15

0

Q2Q′2N2
s tm

16
γ′ |G|4

. (4.36)

4.3.3 Longitudinal Coupling998

When an electrical current excites a HSP it excites both the longitudinal and999

transverse components. A convenient place to start is to think about the intuitive1000

difference between operating in the transverse and longitudinal modes. As the1001

HSP enters the shielding the EM field it generates will interact with the charges1002

in the wall, moving them in such a way that generates a photon that will oppose1003

the incident HSP. Since the photon cannot generate a longitudinal component,1004

this cancellation only takes place with the transverse mode.1005

To understand the effect of the longitudinal polarisation on the observable1006

result of the experiment the natural starting point, as in the transverse case, is1007

by describing the E and B fields of the chosen cavity mode. Again, as in the1008

transverse case the spatial and time components are separated to give1009
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E(r, t) = E(r)eiωt, (4.37)

B(r, t) = B(r)eiωt, (4.38)

where ω is the operational frequency of the cavity. Since the length of time1010

that the experiment runs is much longer than the length of an RF cycle it can1011

be assumed that a steady state exists and the time variation can be neglected.1012

This mode then generates a HSP field which is given by Eq 4.20. Any effects1013

of the shielding on the HSP is supressed by a factor of χ, this means the HSP1014

field penetrates the shielding and is able to excite the matching mode inside the1015

detector cavity. The excited field is given by1016

Ψ(r) =− Q

ω

∫
rec
d3xE∗cav(x) · Jeff(x)∫
rec
d3x|Ecav(x)|2

Ψcav(r), (4.39a)

Jeff(x) =− iχ

ω

[
m2
γ′ΞE(x)− ~∇(~∇ · ΞE(x))

]
, (4.39b)

where d3x is the volume element of the detector cavity[75]. The effective1017

current ~Jeff represents how the HSP field excites the electric field in the detector.1018

This is where the difference between the longitudinal and transverse mode takes1019

effect. If the HSP field is purely transverse then ~∇ · ξE = 0 but if the field is1020

purely longitudinal then ~∇(~∇ · ΞE) = −k2ΞE. This simplifies ~Jeff to [75]1021

Jeff(x) = −iχ
ω

ΞE(~x)×


m2
γ′ (Purely transverse)

ω2 (Purely longitudinal).

(4.40)
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Comparing the polarisations in Eq 4.40 it is clear to see that the strength1022

of the transverse mode is proportional to the mass of the HSP which is being1023

probed whereas the longitudinal mode is proportional to the frequency of the1024

cavities. Due to this difference in the behaviour of the longitudinal and transverse1025

polarisations, as the mass of the HSP decreases the longitudinal mode will lead to1026

a higher field strength in the detector as it approaches the low mass limit. This1027

leads to a probability of transmission of the form1028

Ptrans = χ4QQ′
m4
γ′

ω4
0

|G|2. (4.41)

In this chapter so far both the purely transverse and purely longitudinal cou-1029

plings have been considered. In reality any experiment will couple through a1030

combination of both transverse and longitudinal modes and therefore a full treat-1031

ment would be required. However, for the exclusions presented in Chapter 5 and1032

Chapter 6 the far-field approximations of the pure polarisations has been consid-1033

ered.1034

Figure 4.2: A schematic diagram of a longitudinally coupled light shining through
a wall experiment. The cavities are stacked around a common axis which would
form a waveguide it the cavities were connected.
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To take advantage of the longitudinal mode, the cavities needs to be orien-1035

tated such that the longitudinal polarisations share a common axis as shown in1036

Fig 4.2. Due to the shielding required to operate a LSW experiment the sepa-1037

ration between the cavities d, is usually greater than the length of the cavity L.1038

When this condition is met, the HSP field can be approximated as a longitudinal1039

plane wave meaning the electric like component of the HSP field becomes1040

ΞE = −1

2
iχ
m2
γ′L

ω2d
α01J1(α01)

2 sin(
kL

2
)

kL

Ψem. (4.42)

where α01 = ωR and J is the Bessel function as described in Section 3.2 [75].1041

By following from this point in the same manner as before, the probability of1042

transmission bewteen two cavities via the longitudinal polarisation of the HSP is1043

found to be1044

Pdet = Qχ2
m2
γ′L

ω2d

2 sin(
kL

2
)

kL


2

, (4.43)

where Pdet is the probability of detecting the incoming HSP for cylindrical1045

cavities operated in the TM010 mode[75].1046

4.3.4 Exclusions From Longitudinal Coupling1047

As in Section 4.3.2, when a longitudinally coupled LSW experiment returns a1048

negative results, the exclusion which that result represents is calculated from the1049

probability of transmission between the cavities via the hidden sector Ptrans.1050
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χ =
4

√√√√√√Ptransω
2d2

Q2m2
γ′L

2

 kL

2 sin
1

2
kL


2

. (4.44)

The condition for detection which was described in Section 4.3.2 can again be1051

applied here so by applying Eq 4.32, Eq 4.44 becomes1052

χ =
4

√√√√√√ n
√
NBgtω

2d2

NEmtQ2m2
γ′L

2

 kL

2 sin
1

2
kL


2

. (4.45)

4.4 Experimental Exclusions1053

In Section 4.3.2 and Section 4.3.4 the performance of an experiment was calculated1054

based on the key figures of the experiment. For an actual experiment however,1055

the exclusions need to be calculated directly from the recorded data. To do1056

this Eq 4.33 and Eq 4.45 are used, with NEm being the recorded power inside1057

the emitter and NBg the recorded power inside the detection cavity. When the1058

recorded frequency window is wide enough to allow the expected signal window1059

to be isolated from the background noise, the standard deviation of the measured1060

background can be used instead of applying Poisson statistics. By using the1061

measured noise, it is possible to produce exclusions which are stronger than would1062

be expected from looking at the key figures alone.1063
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Chapter 51064

The CASCADE Experiment1065

5.1 CASCADE Overview1066

The Cockcroft Institute of Accelerator Science and Technology and Daresbury1067

Laboratory regularly test RF cavities for upcoming accelerators, light sources1068

and industrial projects. Many of these cavities are superconducting and therefore1069

have a high quality factor and need to be tested at high power to be properly1070

characterised. Characterisation takes place in the vertical test facility which is1071

capable of accommodating multi-cell superconducting cavities. The cavities can1072

be cooled to 2 K and the cryogenic system is capable of handling 1 W of thermal1073

load[76]. For example it has been proposed to use this system to test multi-1074

cell 1.3 GHz cavities with the goal of achieving Q-factors of 1010. This means1075

the cavities being tested have properties well-suited to be emitters for a LSW1076

experiment.1077

The CASCADE experiment is planned to take place over multiple phases1078

with the eventual goal being the design of a detector that is suitable to take1079
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data parasitically while cavities are being tested in the vertical test facility. The1080

first phase of CASCADE was a proof of principle experiment which aimed to1081

show that it was possible to make an exclusion measurement using off-the-shelf1082

components operated at room temperature. This has now been completed as part1083

of this thesis work. The low temperature measurement were originally planned1084

but were not able to be completed but the results of preliminary investigations1085

can be found in Appendix C.1086

For the first phase it was desirable to have full control of the emitter and1087

detector cavities and hence, it was decided that two 1.3 GHz cavities would be1088

built. In a later phase both cavities could then be used as detectors for runs1089

with an external source. The use of multiple cavities has the potential to allow a1090

stronger control on the systematic uncertainties in the measurement for example1091

by exploiting differing G-factors. A schematic of a possible geometry is shown in1092

Fig 5.1.1093

5.2 Estimated Performance1094

The probability of a photon passing from a source to a detector via the transverse1095

component of the HSP field is given Eq 4.28 which was calculated from in Sec-1096

tion 4.3.1. By multiplying Ptrans by the input power, the expected signal power1097

can be estimated.1098

Consider the case of a generic pillbox cavity. The Q of a copper cavity at1099

room temperature is typically O ∼ 104 and the G-factor for microwave cavity1100

LSW experiments is typically O ∼ 1. In the most optimistic case, the HSP1101

will have a mass such that mγ/ω = 1 and have the highest unexcluded value of1102
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Figure 5.1: A mock-up of a CASCADE measurement utilising two detector cav-
ities on the right side, and a superconducting cavity being tested in the vertical
test facility on the left.

the coupling factor χ, which in the mγ′ range of 10−6 to 10−4 eV corresponds to1103

O ∼ 10−7. If the emitter was powered with 1 W, the expected signal power would1104

be O ∼ 10−20 W1. Given that at room temperature the thermal noise is expected1105

to be O ∼ 10−21 W, the signal from HSPs should in principal be detectable above1106

the noise.1107

The expected exclusion for a microwave LSW can also be calculated by using1108

Eq 4.28 and the properties assumed in the previous paragraph but keeping χ as the1109

free parameter and considering the smallest detectable power, which is assumed1110

to be limited by the thermal noise. The expected exclusion of an experiment with1111

these characteristics is O ∼ 10−8 and can be seen highlighted in Fig 5.2.1112

1With the signal power being small enough that it may be within the sub-quantum regime
it may be a concern that resonant regeneration will not works with less than one photon in the
resonator however it have been shown that resonant regeneration is still effective[77].
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Figure 5.2: The low-mass region of the parameter space of the HSP. The green
exclusion is based on far infra-red astronomy, yellow is from tests of the Coulomb
force, purple is from the ALPs experiment, grey is from the CAST experiment,
orange is from stellar lifetimes, blue is from the CROWs experiment and red the
is potential exclusion for a microwave LSW based on the assumptions made in
Section 5.2.
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5.3 Cavity Design1113

There are a number of design decisions when it comes to designing a cavity:1114

the operational mode, frequency, material and the cavity shape. The decision1115

over material and shape were made on a financial basis limiting the design to a1116

pillbox and the material to copper without any special treatments. The frequency1117

was chosen to be 1.3 GHz to match upcoming testing of superconducting cavities1118

developed for the International Linear Collider. The TM010 mode was chosen1119

as it maximise the volume of the cavity for HSP generation and detection at the1120

desired frequency. This large volume is reflected in the high G-factor for this1121

mode as can be seen in Fig 5.3 where different modes are shown to have optimal1122

G-factors at different HSP masses. When integrating across the mass range the1123

TM010 mode has the highest G-factor, and a summary of the other modes can1124

be found in Table 5.1.1125

TM mode
∫

G
010 0.737
110 0.567
011 0.508
111 0.301
020 0.447
120 0.359
220 0.276

Table 5.1: Integral of the G-factor for analytic cavity modes.

The cavities were designed using CST Microwave Studio to optimise the1126

TM010 mode at 1.3 GHz. The internal dimensions were simulated using CST1127

as a void in an infinite metal block as the mode will only see the internal surfaces1128

and the external dimensions of the cavity were designed based on engineering1129

needs. Since the operational frequency was known the inner radius of the cavities1130

73



5.3 Cavity Design

Figure 5.3: The G-factor as defined in Eq 4.25 for the TM010(blue),
TM110(red), TM011(green), TM111(orange), TM020(purple), TM120(brown) and
TM220(black) modes. The higher the G-factor the more sensitive the experiment
is to HSPs at the given mass.
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was optimised at 88.3 mm through simulations using CST Microwave Studio. In1131

RF engineering there is an empirical rule that the radius and length of the cavity1132

should be approximately equal otherwise the fundamental mode may not be the1133

TM010(too long) or will suffer from multipactor effects1(too short). Taking this1134

into account, the inner height was set to 80 mm. Using loss parameters which1135

correspond to pure copper a maximum Q of 22905 at room temperature was1136

calculated.1137

When the cavities were manufactured a number of holes for instrumentation1138

ports were included to allow vacuum and couplers to be fitted: their positions1139

can be seen in Fig 5.5. Since the ports would already introduce RF leaks into1140

the cavities, it was deemed unnecessary to include the appropriate fittings for a1141

sacrificial seal or ‘spring fingers’ to seal the cavity lids.1142

A brass screw was fitted in the top plate of the cavity. Turning the screw1143

varied the amount that it penetrated the cavity and therefore the amount that1144

the field is distorted to be altered. The distortion shifts the resonant frequency1145

of the cavity allowing the cavities to be tuned to the same frequency. To achieve1146

the maximum Q factor a firm metal-to-metal contact between the screw and the1147

cavity plate was needed. A brass nut was fitted to the screw so it could be held1148

under tension.1149

The tuning range for the cavities was measured by taking a S1,1 measurement1150

which measures the voltage reflection from the input port. It was found that1151

both cavities had approximately a 15 MHz range and the results are summarised1152

in Table 5.2.1153

1The multipactor effect occurs between two metal surfaces where a resonance between the
electron flight time and the RF field causes an exponential multiplication of electron emission
and can cause damage to the surface of the metal.
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Figure 5.4: A screen capture of a CST Microwave studio simulation of the CAS-
CADE cavities. The direction of the arrows shows the direction of the electric field.
The colour and size of the arrows indicates the field strength.

Minimum Frequency(GHz) Maximum Frequency(GHz) Range(MHz)
Emitter Cavity 1.2842 1.2994 15.2
Detector Cavity 1.2848 1.2998 15

Table 5.2: Tuning range of the cavities used in phase 1 of the CASCADE exper-
iment.

5.3.1 Initial Cavity Layout1154

The positions of the ports in the cavity can be seen in Fig 5.5. In the initial1155

arrangement of the cavity the coupler was fitted to Port 1, the input cable was1156

connected to Port 3 and the cable to the readout chain was connected to Port 4.1157

With the coupler port having been chosen the coupler was designed to maximise1158

the loaded Q factor Ql, of the cavity and various coupler designs were tested1159

with both probe and loop designs. Due to the unusual placement of the coupler,1160

the optimum solution was to use a large loop which coupled to the magnetic1161
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5.3 Cavity Design

Figure 5.5: The copper cavities used in CASCADE phase 1 with the ports la-
belled. Since they are all of the same dimensions their use can be changed. The
tuning pin hole was threaded so that a brass bolt could be used to tune the cavity.

component of the resonant mode. The coupler design was completed in CST1162

Microwave Studio. Due to the coupler placement a large loop coupler gave the1163

optimum solution. A cross-section of the cavity simulation including the coupler1164

can be seen in Fig 5.6. When the Q-factor for the cavities was measured Ql1165

was found to be approximately 4000, this was much less than should have been1166

achievable with the cavities. Further investigation showed that the cavity was1167

over-coupled which leads to a reduced Ql. To achieve the maximum Q-factor,1168

critical coupling was required1 and this necessitated moving the coupler to a1169

location where either the electric or magnetic field is maximal.1170

5.3.2 Final Cavity Layout1171

The final design was based primarily on the coupling needs. The first decision was1172

whether to couple through the electric or magnetic fields. In the TM010 mode the1173

1A further discussion of this can be found in Appendix ??
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Figure 5.6: A CST Microwave Studio simulation of a CASCADE cavity with the
loop coupler on the right. The yellow area is copper with the void inside being
vacuum.

electric field is concentrated in the centre of the cavity and the magnetic field is1174

around the edge; this means either a loop coupler on or near to the wall or a probe1175

coupler in the centre of either the lid or the base could be used. The loop couplers1176

used for magnetic fields tend to be larger and need to penetrate further into the1177

cavity making them less stable than the probe couplers used for the electric field.1178

Port 4 was in a central location which allowed strong coupling to the electric field1179

and so a probe coupler was designed for this port. The central positioning was not1180

an issue as there was a 700 MHz frequency separation between the fundamental1181

mode and the next mode so there was no chance of exciting unwanted modes.1182

Off-the-shelf SMA panel mounts[78] were suitable to be used as probes and1183

could be trimmed to the required length. CST was used to simulate probes of1184

various lengths, however since the exact material properties of the copper used in1185

the cavities and the brass pin were not known the result only gave an approximate1186

guide to the length required. The panel mounts in their original form were over-1187
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Figure 5.7: The critically-coupled coupler in the base of the CASCADE cavity.
It was produced using off-the-shelf SMA panel mounts.

coupled to the cavity. The coupling was reduced by shortening the length that1188

the coupler protruded into the cavity. The mounts were of standard dimensions1189

which permitted multiple tests to find the correct length for the coupler. Fig 5.81190

shows the results of multiple coupler tests. The S1,1 measurement is at a minimum1191

when the cavity is critically coupled because the power enters the cavity and is1192

then lost to heating in the walls.1193

Figure 5.8: A graph of the reflection coefficient measured by the S1,1 mea-
surement from a network analyser for different length couplers in the CASCADE
cavities. The different symbols represent the results from multiple tests but all
show a minimum between 14 mm and 15 mm.
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Finally to minimise RF leakage the number of ports needed was re-assessed:1194

• By moving the coupler to the port through which the power was injected1195

rather than coupling through the surface currents in the walls of the cavity.1196

This left one of the ports unused.1197

• The port for the vacuum system was also reconsidered but there were con-1198

cerns over liquified gasses when the cavity was cooled to 77 K. The volume1199

of the cavity is 1.96 × 10−3 m3. Assuming that the gas inside the cavity is1200

all nitrogen corresponds to 2.82 cm3 of liquid nitrogen. The relative per-1201

mittivity of liquid nitrogen is 1.538 at microwave frequencies[79] making its1202

effect on the resonant modes of the cavity negligible. Pumping down the1203

vacuum box would leach air from the cavities further reducing the amount1204

of liquid gas in the cavity. Due to these reasons it was decided that the1205

vacuum port was no longer needed.1206

• To monitor the resonance of the cavity while the cavity cools and the fre-1207

quency shifts due to contraction without interacting with the amplifiers1208

at cryogenic temperatures a second coupler was needed. This second cou-1209

pler needed to be strongly under-coupled so any power produced from HSP1210

interactions would be be picked up by the readout chain rather than the1211

resonance monitoring port.1212

• Any unused ports were covered with a copper plate.1213

The layout of the cavity and changes made to it are summarised in Table 5.3.1214
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Port Number Initial Use Final Use
1 Loop coupler Under-coupled coupler
2 Vacuum valve Blocked
3 SMA Power In Blocked
4 SMA Power Out Critically-coupled coupler

Table 5.3: The use of CASCADE cavity ports in the initial and final states.
Blocked ports were covered with copper plates.

5.4 Signal Analyser1215

To collect the data from CASCADE an Agilent Technologies EXA Signal An-1216

alyzer, model N9010A[80] with the VSA 89601 software installed[81] was used.1217

The EXA was capable of recording both time and frequency domain signals. The1218

sensitivity of the EXA was quoted as 2.00×10−18 W Hz−1[81], this was confirmed1219

by the noise floor observed when testing the EXA. A sample of the noise is shown1220

in Fig 5.9 which corresponds to a noise power of 6.31× 10−19 W Hz−1.1221

Using the VSA software a time-domain signal can be recorded for up to1222

3000 s which once Fourier-transformed gives a maximum frequency resolution1223

of 0.5 mHz. In Section 5.2 the signal strength was estimated to be 10−20 W and1224

therefore for a frequency resolution of 0.5 mHz, 50 dB of amplification was re-1225

quired to bring the signal strength above the internal noise of the EXA. Since1226

longer data runs would reduce the effect of random fluctuations in the noise,1227

data from multiple runs was combined by taking the root mean squared for each1228

frequency bin.1229

5.5 Amplifier Testing1230

Two Miteq ASF3 amplifiers(Fig 5.10)[82] were used as part of the read out chain.1231

A Mini-Circuits ZHL-1217HLN(Fig 5.11)[83] amplifier was used as a power am-1232
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Figure 5.9: A sample of the internal noise power of the EXA signal analyser used
in the CASCADE experiment.

plifier for the emitter. The amplifiers all needed to be characterised and since1233

the amplifiers all needed to be tested in the same manner a standard set-up was1234

used as shown in Fig 5.12.1235

Two measurements needed to be performed for the amplifiers: amplification1236

flatness against frequency and input power against output power. The frequency1237

response of the amplifiers was only of interest over the operational frequency of1238

the cavity. Since the frequency range of interest is only 15 MHz, differences in the1239

frequency response was found to be undetectable within the noise of the network1240

analyser.1241

The amplification with respect to input power was perhaps the most important1242

feature to characterised as it not only showed that the amplifiers were behaving as1243

expected but also showed that the readout chain is capable of detecting signals as1244

small as 10−20 W. To test this, the input power was started at an easily-observable1245
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Figure 5.10: One of the Miteq ASF3 amplifiers which were used as a amplifiers
in the readout chain for CASCADE.

Figure 5.11: The Mini-Circuits ZHL-1217HLN which was used as a power am-
plifier between the signal generator and the emitter cavity of CASCADE.
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Figure 5.12: A schematic of the order of components used to test the amplifiers
for CASCADE.

power and reduced by 10 dB at a time with the amplification results being shown1246

in Fig 5.13. Both amplifiers showed an increase in the amplification at low powers1247

which could in part be due to leakage between the signal generator and the EXA,1248

therefore the minimum observed amplification was used for calculations. To reach1249

the expected signal strength two amplifiers were needed so both amplifiers in1250

series were tested in the same manner. In Fig 5.14 it can clearly be seen that the1251

amplifiers operated at the target signal power of 10−20 W with 70 dB amplification1252

taking the signal power above the internal noise of the EXA.1253

5.6 Experimental Set-Up1254

Due to the expected signal power being very low, great care needed to be taken to1255

ensure there was no conventional coupling between the emitter and the detector1256

sections of the experiment. To do this the experiment was set up in such a way1257

that the two parts were entirely separate as can be seen in Fig 5.15.1258

On the emitter side is a Rohde & Schwarz SM300 Signal Generator[84] which1259

was connected through the emitter’s aluminium Faraday cage to the Mini-Circuits1260

ZHL-1217HLN[83]. This was then connected using semi-rigid coaxial cables1261

through a copper shielding box to the cavity. The output of the Mini-Circuits1262

amplifier provided 30 dB of amplification but saturated at a maximum power1263
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(a) Amplifier 1.

(b) Amplifier 2.

Figure 5.13: The detector side amplifiers responses to different input powers.
The power is measured in dBm where 1 dBm=1 mW. The error bars show the full
range of results from multiple measurements.
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Figure 5.14: The response of both detector side amplifiers in series to different
input powers.The power is measured in dBm where 1 dBm=1 mW. The error bars
show the full range of results from multiple measurements.
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output of 0.40 W. Due to this, the signal generator was operated at 4 × 10−4 W1264

so that the power outside of the Faraday cage was kept to a minimum while still1265

providing the cavity with the maximum possible power.1266

On the detector side of the experiment the cavity was connected though a1267

copper shielding box to the Miteq ASF3 amplifiers, each of which were held in1268

their own copper shielding boxes. The amplifiers were then connected to a vacuum1269

feed-through and then to the EXA. This whole arrangement was wrapped in1270

aluminium foil to reduce the possibility of the cables picking up any interference.1271

All the seals on the vacuum box were covered with copper tape on the outside of1272

the gasket to minimise RF leakage.1273

Photographs taken during the construction and operation of the CASCADE1274

experiment can be found in Appendix B.1275

Anything which can affect the dimensions of the cavity will have an effect on1276

the resonant frequency of the cavities. When the cavity changes temperature, the1277

internal cavity dimensions will alter. Therefore it was important to control the1278

environment in which the experiment took place. The laboratory had a simple1279

climate control system but it was unable to create a stable temperature so an1280

Arduino mirco-controller[85] was used to monitor the temperature and act as1281

a veto when the temperature change would de-tune the cavities. It was found1282

that maintaining a cool temperature would produce a stable environment since1283

the experiment took place over the winter. Fig 5.16 shows a trial run which was1284

performed from 23/12/14 to 07/01/15 in which a stable temperature of 17± 1oC1285

was reached.1286

87



5.6 Experimental Set-Up

Figure 5.15: A schematic diagram of CASCADE. The emitter section is on the
left and the detector on the right. The orientation of the cavities shown here is the
same as that which was used in the physical experiment.
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Figure 5.16: A sample of the temperature log for the laboratory housing the
CASCADE experiment from 23/12/14 to 07/01/15. The temperature of the cli-
mate control was set to 17oC and it can be seen that after a stabilisation period,
the temperature remained stable within ±1oC.
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5.7 Data Acquisition1287

Anticipating the need to run the experiment multiple times to ensure there were1288

no RF leaks in the shielding, a standard measurement procedure was established.1289

1. Put tuning screw into central position and secure to ensure metal to metal1290

contact.1291

2. Fit the detector cavity into its shielding box utilising a spacer to avoid1292

affecting the tuning screw. Pad edges with foam to minimise movement1293

within the shielding box. Secure the lid in place with copper tape to limit1294

leakage.1295

3. Position the detector cavity in the base of the vacuum box and take a S1,11296

measurement to find the resonant frequency of the cavity.1297

4. Connect up the amplifier chain and attach to the vacuum box feed-through.1298

5. Seal the vacuum box and cover the seals with copper tape.1299

6. Set emitter frequency to that of the detector cavity and seal in its shielding1300

box.1301

7. Position on the Faraday cage mount and take a S1,1 measurement to ensure1302

the resonance hasn’t shifted.1303

8. Connect the power amplifier to the emitter cavity and seal the Faraday cage1304

using copper tape to minimise leakage.1305

9. Set the signal generator to the resonant frequency.1306
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10. Set the vector signal analyser to the resonant frequency and the resolution1307

bandwidth to its minimum value of 0.5 mHz.1308

Before a data-taking run was performed, checks were needed to test that the1309

detector chain was working correctly and that there were no RF leaks. The1310

detector chain was tested by intentionally leaking signal through the vacuum box1311

by opening a flange and recording 3 ks of 0.5 mHz resolution data.1312

In Fig 5.17a it can clearly be seen that there is a spike at the signal frequency.1313

The signal generator was left unchanged but the vacuum box was sealed to test the1314

shielding. Fig 5.17b shows that the signal spike from Fig 5.17a has been reduced1315

to the point that it is indistinguishable from noise.1316

Following successful checks, a data run was completed on 8th of January 20151317

for 10 hours with a temperature variation within an acceptable range as shown in1318

Fig 5.18. with a signal frequency of 1.29353940 GHz and is displayed in Fig 5.19.1319

This data shows no obvious peak, and so can be used to set an exclusion on the1320

HSP parameters as explained in Section 5.8.1321

5.8 Data Analysis1322

To set an exclusion based on the 08/01 run the sensitivity of CASCADE needed1323

to be calculated. The limit on CASCADE’s sensitivity comes from the noise in1324

the signal region. In Section 5.2 the noise in the cavity was estimated by using1325

Eq 4.34; however since the signal region only takes up a small section of the1326

recorded data, the side-bands can be used to estimate the noise inside the signal1327

region.1328

To ensure that no signal was included in the noise calculation a 2 Hz window1329
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(a) Open vacuum box.

(b) Sealed Vacuum box.

Figure 5.17: The results from pre-run tests of the CASCADE experiment. The
sensitivity test was conducted by opening a vacuum flange and therefore removing
a layer of shielding and a signal spike can clearly be seen. The shielding test was
performed by sealing the vacuum box to complete the shielding for which no signal
can be seen.
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Figure 5.18: The temperature of the laboratory at 20 minute intervals taken
during the CASCADE data run.

Figure 5.19: The power recorded in the frequency window of interest during the
CASCADE data run.

93



5.8 Data Analysis

around the signal frequency was removed. This corresponded to the removal1330

of 4000 frequency bins from the data set which is 414187 bins in total. Since1331

the number of bins is very high, if the uncertainty on the noise is set at 3σ1332

standard deviations above the average, 1242 bins would exceed the uncertainty1333

which corresponds to approximately a 2% chance of there being an excess in the1334

signal window. This was deemed to be too high and so only an excess greater than1335

5 standard deviations above the mean was considered as a signal candidate. To1336

calculate this power level the noise first needed to be binned based on the power,1337

Fig 5.21 shows the resulting histogram. By selecting the appropriate quantile of1338

the distribution the 5σ level was found to be 2.5× 10−24 W.1339

Figure 5.20: The recorded noise power in the frequency window of interest from
the CASCADE data run. A 2 Hz window around the expected signal frequency
has been removed and the mean power of 7.8×10−25 W is marked with the dashed
line.
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Figure 5.21: Histogram of the noise power recorded from the CASCADE data
run.

Figure 5.22: The recorded power in the signal window recorded during phase
1 of the CASCADE experiment. The black dashed line is the mean power, the
orange line is the five σ level and the red dashed lines bound the signal window by
2 resolution bandwidths.
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Fig 5.22 shows the signal window and it can clearly be seen that there is no1340

excess of power 5σ greater than the mean indicating a negative outcome for the1341

experiment. This means the result of the experiment is an exclusion in the HSP1342

parameter space.1343

In the transverse mode the expected power can be calculated by multiplying1344

Eq 4.33 by the power of the source. Re-arranging this equation for the coupling1345

factor gives Eq 4.29. By using the calculation of the G-factor for the TM010 as1346

was performed for Fig 5.3 but setting the separation to 0.1 m as it was in the1347

experiment. The exclusion for the transverse mode was calculated and is shown1348

in Fig 5.23.1349

Figure 5.23: The low mass parameter space of the HSP. The green exclusion is
based on far infra-red astronomy, yellow is from tests of the Coulomb force, purple
is from the ALPs experiment, grey is from the CAST experiment, orange is from
stellar lifetimes, blue is from the CROWs experiment and red is the CASCADE
exclusion based on the transverse mode.

To calculate the longitudinal exclusion a similar approach to that of the trans-1350
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verse mode is taken where the ratio of the power in the signal to the power ob-1351

served is used to calculate the minimum coupling that the experiment is sensitive1352

too. For this a modified version of Eq 4.44 that uses a far field approximation of1353

the longitudinal coupling was used. The results from longitudinal coupling are1354

shown in Fig 5.24.1355

Figure 5.24: The low mass parameter space of the HSP. The green exclusion is
based on far infra-red astronomy, yellow is from tests of the Coulomb force, purple
is from the ALPs experiment, grey is from the CAST experiment, orange is from
stellar lifetimes, blue is from the CROWs experiment and red is the CASCADE
exclusion based on the longitudinal mode.
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Chapter 61356

The PHARAOH Experiment1357

6.1 PHARAOH Overview1358

As discussed in section 2.3.2, the hidden sector photon has no preferred mass1359

region meaning that any mass range that can be probed, should be. By using the1360

light shining through a wall technique with existing laser and RF technologies it1361

is possible to probe the HSP-photon coupling within the optical and microwave1362

regimes respectively. Due to limitations in the Q-factor of microwave cavities1363

with frequencies beyond 10 GHz it is difficult to produce a conventional LSW1364

experiment which is capable of probing the 10−5 to 10−4 eV mass range. In1365

section 3.3.6 it was shown that photonic structures possess the ability to form1366

cavity-like structures, making the 10−5 to 10−4 eV mass range accessible to LSW1367

experiments.1368
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6.2 Photonic Structures1369

The first step in designing a photonic structure is to decide the unit cell of the1370

lattice in which the structures will be formed. There are as many different designs1371

of photonic lattices as there are uses, however the cavity for a LSW experiment1372

needs to be bound in 3 dimensions and therefore only 2D or 3D lattices were1373

considered. This requirement led to four basic options: a woodpile, a diamond-1374

like structure, square-based lattice or triangular-based lattice. Due to difficulties1375

in coupling a signal in and out of the photonic cavities the diamond and woodpile1376

lattices were discarded. To choose between a square and triangular lattice the1377

reduced Brillouin zone of the lattice needed to be considered. A square-based1378

lattice has 4-fold symmetry whereas a triangular lattice has 6-fold symmetry1379

leading to it having a smaller irreducible Brillouin zone as shown in Fig 6.1. This1380

means that there are fewer unique directions of propagation in the triangular1381

lattice and therefore it is easier to produce confinement[68].1382

6.3 Maximising The Quality-factor1383

With the basic design of the structure decided the next step was to tune the lattice1384

parameters to create a complete bandgap. Since Maxwell’s equations are scale1385

invariant the lattice constant a, was set to a value that was convenient for meshing1386

of the simulation and to avoid non-physical negative frequencies being observed.1387

To do this the MIT Photonic-Bands, MPB, package was used[86]. MPB works by1388

computing the definite-frequency eigenstates for dielectric structures of infinite1389

periodicity. This is a good approximation of a real finite structure provided the1390
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Figure 6.1: Left : Triangular-based reciprocal lattice with the irreducible Brillouin
zone outlined in dark blue. By exploiting symmetries only the regions highlighted
in light blue need to be calculated.
Right : Square-based reciprocal lattice with the irreducible Brillouin zone outlined
in dark blue. By exploiting symmetries only the regions highlighted in light blue
need to be calculated

size of the lattice is 10 or more lattice constants across.1391

Since the style of lattice had been decided based on the basic lattice properties1392

and the lattice constant was free to scale, there were two variables that could1393

be varied to create a bandgap: the ratio of the scatterers radius to the lattice1394

constant(the fill-factor), and the permittivity of the dielectric ε. To investigate the1395

bandgap of a lattice, a band-diagram was used. The band-diagram for a trangular1396

lattice of cylindrical scatterers with a radius of 0.1 a and relative permittivity, ε, of1397

9 is shown in Fig 6.2. It can be seen that this has already opened up a small total1398

bandgap slightly below 0.6 ca−1 and a large bandgap in the TM bands in blue.1399

Due to the increased size of the bandgap, the TM-like states of the lattice were1400

focused on. Fig 6.6 shows the effect of varying the permittivity and fill-factor.1401

It shows that for small radius scatterers, between 0.1-0.2 a, a bandgap opens1402
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up as the permittivity increases. In reality the choice of material will dictate1403

the permittivity contrast so in the rest of this section a relative permittivity of1404

9 will be used, which corresponds to artificially grown sapphire against an air1405

background.1406

Figure 6.2: The band-diagram for a trangular based lattice of cylindrical scatter-
ers with a radius 0.1 a and a ε of 9, simulated using MPB[86]. The TM bands are
shown in blue and the TE bands in red.

The removal of a scatterer creates a resonator but there is no requirement1407

for the resonant mode to be within the total bandgap of the structure. Since1408

the removal of a scatterer breaks the symmetry of the lattice, eigenmode solvers1409

are not suitable to calculate the resonant mode so a full finite-difference time-1410

domain(FDTD) simulation of the structure was needed. The MIT Electromag-1411

netic Equation Propagation, MEEP[87], package was used as it met our require-1412

ments and is widely used for the simulation of 2-dimensional photonic cavities1.1413

1See papers citing [87].
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6.3 Maximising The Quality-factor

Figure 6.3: The size of the bandgap for a triangular based lattice with respect
to varying the scatterer radius in units of the lattice constant a, and relative per-
mittivity, simulated using MPB[86]. The colour varies with the bandgap size with
blue being 0 and red at 0.6 in frequency units of c/a.

MEEP has an integrated spectral analysis algorithm which records the field1414

at any given location in the simulation over a period of time and decomposes1415

it into a series of frequencies within a user-defined bandwidth. In addition to1416

the amplitude of a given frequency component, the evolution of the amplitude is1417

characterised and given as a quality-factor, Q. For a resonant state in a defect, the1418

Q-factor of the state should be of an order greater than 104. Fig 6.6 showed that1419

there should be a large bandgap in a lattice with a scatterer radius of 0.2 a, this1420

lattice was then probed with a range of frequencies and the maximum Q achieved1421

is shown in Fig 6.4. There were two regions that showed resonant behaviour, the1422

first centred on 0.42 ca−1 and the second at 0.84 ca−1. The first corresponded1423

to the fundamental mode of the defect. An equivalent conventional cylindrical1424

cavity would show a resonance at 0.5 ca−1 which was close to the value observed.1425
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6.3 Maximising The Quality-factor

Figure 6.4: The Q-factor of the highest Q state that is excited when power is
injected into the defect in a narrow frequency band around the probe frequency,
simulated using MEEP[87]. There are clearly two modes visible with the first
centred at 0.42 corresponding to the fundamental mode and the second centred at
0.86 being the first higher order mode.
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In addition when the field profile was imaged as shown in Fig 6.5a it was clearly1426

a localised state. The second is the first higher order state and when the field1427

pattern is imaged in Fig 6.5b it is clear to see that despite being resonant, this1428

state was not localised.1429

(a) Resonance at 0.42 ca−1 (b) Resonance at 0.84 ca−1

Figure 6.5: The field profiles of resonant modes in a photonic defect at high Q
frequencies using MEEP[87]. The resonance at 0.42 ca−1 is clearly a highly spatially
localised state which would be expected from existing in the bandgap of the lattice.
The resonance at 0.84 ca−1 extends across the lattice indicating that it is a state
over the extended lattice making it unsuitable for use in a LSW experiment.

As with the size of the bandgap, the Q-factor of the resonant mode can be1430

tuned by changing the fill-factor of the lattice. Changing the radius of the scat-1431

terers reduces the volume of the defect and therefore increase the frequency of the1432

resonance. In Fig 6.8 the fill-factor was varied and then the probe frequency was1433

varied around the original resonant frequency. The maximum Q value showeds1434

two broad maxima centred around 0.19 and 0.32 with the first corresponding to1435

the fundamental mode of the defect and the second being a higher order mode1436

as can be seen in Fig 6.7.1437

A photonic cavity with finely tuned parameters can produce Q-factors which1438

104



6.3 Maximising The Quality-factor

Figure 6.6: The TM band diagram of a triangular based photonic lattice with
the resonant frequency highlighted at 0.42 ca−1 with a green dashed line, simulated
using MPB[86].

(a) Resonance at a fill-factor of
0.19.

(b) Resonance at a fill-factor of
0.32.

Figure 6.7: The field profiles of resonant modes in a photonic defect at high Q
fill-factors, simulated using MEEP[87]. The resonance at a fill-factor of 0.19 is the
localised fundamental state of the lattice. The resonance at a fill-factor of 0.32
extends across the lattice indicating that it is a state over the extended lattice
making it unsuitable for use in a LSW experiment.
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Figure 6.8: The Q-factor for all components are recorded as blue dots and the
blue region outlines the maximum Q for each fill-factor, simulated using MEEP[87].

match those of cavities with relatively small structures as demonstrated in Fig 6.9.1439

With a lattice of only 5 scatterers in each direction a Q of 105 can be achieved, this1440

is equivalent to copper cavities. By increasing the size of the lattice further Q-1441

factors equivalent to those of superconducting cavities, 1010, can be met. At these1442

high Q-factors, the dielectric losses become an important factor and therefore only1443

materials with extremely low loss tangents of order 10−7 are suitable[88][89].1444

6.4 Experimental Design1445

To successfully conduct a LSW experiment, hig- Q cavities are not all that is1446

needed as a radio-quiet environment for the detector is also required. This is1447

because the signal which would be produced through HSP interactions is small1448

enough to be hidden within the uncertainties of the background noise of the de-1449
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Figure 6.9: The maximum achievable Q-factor for a defect surrounded by an
increasing the number of scatterers along the lattice vectors that makes up the
lattice, simulated using MEEP[87]. The resolution of the underlying simulation
was varied to produce systematic uncertainties for the simulations.
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tector. In this regard photonic cavities have a natural advantage over traditional1450

cavities as the expected signal frequency is within the bandgap of the lattice and1451

therefore simply by extending the lattice further, more shielding is added. This1452

feature allows the defect to be easily shielded from external sources but also from1453

one another as two closely-located defects can create a coupled system allowing1454

energy transmission between the two. To counteract this the two defects can be1455

moved further apart and the intermediate lattice acts as shielding between the1456

defects allowing a LSW experiment to be constructed entirely within a photonic1457

crystal. Fig 6.10 shows how such a set-up would look with defects placed so they1458

couple in Fig 6.10a and decoupled in Fig 6.10b.1459

When considering a realisable structure, propagation outside of the plane must1460

be considered. To analyse this the defect was approximated to be a cylindrical1461

wave-guide with a radius equal to the lattice constant. This means that the state1462

decays evanescently in the ‘z’ direction leading to a smaller high-field volume for1463

a photonic cavity than for that of a conventional cavity. This restriction on the1464

volume of the cavity caused a significant reduction in the geometric-factor for1465

the experiment. While still maintaining sufficient separation to ensure isolation,1466

the defects can be separated by smaller distances than would be expected for1467

conventional cavities which gave a compensatory increase in the geometric-factor.1468

By taking into account the limited size of the defect and the smaller distance1469

required for isolation, the geometric-factor is expected to be of order 10−3 rather1470

than that of order 1 for microwave cavities.1471

A single photonic crystal can contain many defects, opening up the possibil-1472

ity of having multiple sources and detectors. By maintaining sufficient lattice1473

spacings between the defects, they can all be considered as independent defects.1474
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The use of multiple powered defects increases the flux of HSPs without increasing1475

the power within or quality-factors of the defects, overcoming some of the phys-1476

ical limitations of the defects. In the most simple case, exploiting the lattices’1477

symmetries, 6 powered defects can be used to provide signal to a single detector1478

defect however more complicated arrangements are possible. 1
1479

6.5 Potential Reach1480

So far in this chapter a has been left as a free parameter. To set a potential1481

exclusion the lattice constant needed to be set so that the resonance corresponded1482

to the desired physical frequency. Since MEEP uses natural units the frequency1483

is given by1484

F =
Fc

a
, (6.1)

where F is the real world frequency and F is the frequency in natural MEEP1485

units. Once the appropriate lattice constant had been found Eq 4.33 was used to1486

estimate the sensitivity of the experiment. Taking the 10-100 GHz range which1487

conventional microwave cavities struggle with Fig 6.12 shows the expected exclu-1488

sion.1489

The parameters were chosen based on practical considerations. The Q was set1490

to 108 as Fig 6.9 shows this can be achieved with less than 10 confining scatterers1491

and therefore having 30 between the defects allows for some loss due to misplace-1492

ment of, or defects within, the scatterers. The run time was set to a year, the1493

1Having multiple defects opens up the possibility of using interference effects to maximise
the signal to noise ratio in the detector defect but initial investigations drew no clear conclusions.
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(a) Two closely-positioned defects

(b) Two well-separated defects

Figure 6.10: The field profile for two coupled and two decoupled defects in a
triangular-based photonic lattice. In both cases the left defect was powered and
the simulation was allowed to run for 50 oscillations of the field to ensure the field
had time to propagate across the lattice, simulated using MEEP[87]. In the coupled
case it is easy to see that although attenuated, there has been energy transmission
between the defects. In the decoupled case it can be seen that a separation of 10
scatterers is sufficient to prevent any noticeable energy transmission on this energy
scale.
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6.5 Potential Reach

Figure 6.11: The G-factor of a two-defect lattice at 10 GHz with respect to
increasing the number of scatterers between the defects.

significance level of exclusion to 3, the temperatures were set to 77 K, the power1494

in the source defects to 1 kW, the amplification to 20 dB and the bandwidth to1495

1 Hz. The geometric-factor G required more care as this changes as the frequency1496

changes. Fig 6.11 shows the exponential decay of the geometric-factor of a two-1497

defect lattice as the separation between the defects increases. Fitting the data1498

finds the relation1499

G = 0.000434878 +
0.329949

S2
, (6.2)

where S is the integer number of lattice constants between the defects. To1500

ensure isolation of the detector a separation of 30 a was used for the estimation.1501

The total geometric-factor can be increased by using multiple defects as discussed1502

at the end of Section 6.4. It was estimated that this would increase the geometric-1503
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factor by a factor of 6.1504

Figure 6.12: The expected exclusion produced by a photonic lattice based LSW
experiment in the 10-100 GHz frequency range shown in the black dashed line. The
greyed out areas in the background are associated with existing exclusions; FIRAS
is Far Infra-Red Astronomy, Coulomb is from fundamental tests of the coulomb
force, LSW is from optical LSW experiments, CAST is from the Cern Axion Solar
Telescope and Lifetime Bounds is from the effect of HSP’s on the lifetime of stars.
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Chapter 71505

Conclusion1506

The SM has been a great success of modern particle physics but it has been shown1507

that despite the successes it still needs additions to make the theory match with1508

the full range of observations. In Chapter 2 it was shown how the addition of1509

extra fields associated with WISPs can solve problems such as the strong CP1510

problem and provide compelling candidates for dark matter. Both axions and1511

HSPs have couplings with the SM photon, providing an avenue to search for1512

them experimentally.1513

In Chapter 4 it was shown that through the use of RF technology it was possi-1514

ble to construct experiments that had the potential to discover HSPs with masses1515

between 1µeV and 1 meV. By using well-understood copper microwave cavities1516

and off-the-shelf parts it was possible to exclude HSP parameter space between1517

10−5.42 and 10−5.27 eV with a peak exclusion of χ = 10−7.75 utilising the transverse1518

coupling of the CASCADE experiment. In addition to the transverse coupling,1519

CASCADE was the first LSW experiment to make use of the longitudinal mode1520

of the HSP which increased the excluded region to 10−5.60 and 10−5.27 eV with a1521
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peak exclusion of χ = 10−7.8. This was competitive with that which was achieved1522

by the CROWs experiment which had a peak exclusion of 10−9 but benefited1523

from both higher Q-factors and a higher power emitter. In future phases of the1524

CASCADE experiment the use of superconducting cavities for the emitter would1525

improve the sensitivity by several orders of magnitude. In addition running a1526

cryogenic detector cavity and amplifier would improve performance further.1527

The PHARAOH experiment takes advantage of recent advances in the un-1528

derstanding of how dielectric lattices interact with EM fields to create a new1529

way of producing a LSW experiment. This new experimental set-up would allow1530

the probing of mass ranges between 10−4.47 and 10−3.38 eV with exclusions that1531

are competitive with those set experimentally in different mass ranges, effectively1532

bridging the gap between RF and optical frequency experiments. A proof of prin-1533

ciple experiment based on PHARAOH using relatively inexpensive materials such1534

as glass would have the potential to not only show the use of photonic structures1535

in LSW experiments but also to exclude new regions of the HSP parameter space.1536
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Appendix A1537

Resistive Cavity Losses1538

The resistive power loss of an EM field with a magnetic field H, oscillating in a1539

cavity of length l, can be calculated by,1540

Ploss =
1

2σδ

[∮
C

dl

∫ d

0

dz|n×H|2sides + 2

∫
A

da|n×H|2ends

]
, (A.1)

where σ is the conductivity, C is the circumference of the cavity, A is the1541

cross-sectional area of the cavity, n is the unit normal to the surface and δ is the1542

skin depth that is given by1543

δ =

√
2

µcωσ
, (A.2)

where µ and µc are the permittivity of the void and the cavity walls respec-1544

tively. It can then be shown that1545

Ploss =
ε

σδµ

[
1 +

(
pπ

γλd

)2
](

1 + ξλ
Cd

4A

)∫
A

|ψ|2da (A.3)

for TM modes where p 6= 0, ξλ is a dimensionless parameter of order unity that1546

115



encodes the cross-sectional geometry of the cavity. For modes where p = 0, ξ just1547

gets changed to 2ξ. Substituting Eq A.3, Eq 3.30 and Eq A.2 into the definition1548

of Q, Eq 3.23, gives1549

Q =
µ

µc

d

δ

1

2

(
1 + ξλ

Cd

4A

) (A.4)

For p = 0 TM modes, the whole solution needs to be multiplied by 2 and ξ1550

becomes 2ξ.1551
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Appendix B1552

Photographs Of CASCADE1553

Phase 11554
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Figure B.1: Photograph of the signal generator used in the CASCADE experi-
ment.
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Figure B.2: Photograph of the signal analyser used in the CASCADE experiment.
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Figure B.3: Photograph of the cavity shielding boxes used in the CASCADE
experiment.
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Figure B.4: Photograph of the interior of the cavity shielding boxes used in the
CASCADE experiment.
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Figure B.5: Photograph of the Faraday cage housing the emitter of the CAS-
CADE experiment.
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Figure B.6: Photograph of the inside of the emitter Faraday cage used in the
CASCADE experiment.
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Figure B.7: Photograph of the detector side of the CASCADE experiment.
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Figure B.8: Photograph of the vacuum box feed-throughs and instrumentation
from the CASCADE experiment.

Figure B.9: Photograph of the full CASCADE experiment.
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Appendix C1555

CASCADE Cryogenic1556

Measurements1557

The original conception of CASCADE was as a multi-phase experiment. The1558

work which is presented inside this thesis is concerned with the first phase which1559

was envisaged as a proof-of-principle experiment. The primary objective was to1560

show that off-the-shelf components can be used at room and liquid nitrogen tem-1561

peratures to produce a LSW experiment which is sensitive to new HSP parameter1562

space. The room temperature measurement was described in Chapter 5; the low1563

temperature measurement experienced some complications but since it comprised1564

a significant amount of work it will be discussed in this appendix.1565

The cooling of the detector of the experiment will have effects on several of1566

the components. The cavity will have an increased Q-factor as cooling the metal1567

increases its conductivity, allowing the electrons to move more easily to oppose1568

the electric field inside the cavity. The amplifiers are designed to operate at1569

low temperature and benefit from increased amplification and reduced electrical1570
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noise.1571

To test the increase in the Q-factor of the cavity, it was submerged in liquid1572

nitrogen and allowed to cool until the resonant frequency was stable. The cavity1573

was then probed with the S11 measurement from a network analyser and the Q1574

was found to be 13000.1575

The amplifiers were also tested at low temperature and the results are shown1576

in Fig C.1. As expected the amplifiers showed improved performance with an1577

increase from 39 dB to 41 dB each.1578

Figure C.1: Amplification with varying input power for the detector side ampli-
fiers used in the CASCADE experiment at 77 K. The error bars show the full range
of results from multiple measurements.

Since the detector was housed in a vacuum box, the detector was put under1579

a weak vacuum to minimise the risk of liquid gasses affecting the results. The1580

vacuum flange had been custom made but it lacked a groove to correctly seat1581
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a silicon seal. This meant that gas would slowly leach into the chamber over1582

time. To ensure that the vacuum would last long enough for measurements to1583

be performed, the vacuum chamber was pumped down and then monitored for1584

165 hours. The results can be seen in Fig C.2.1585

Figure C.2: Pressure inside the vacuum chamber of the CASCADE experiment.
The lines show the results from two separate pump down and observation cycles.

On 22/04/2015 the detector was cooled down. It was anticipated that this1586

would lead to a decrease in the thermal noise of the system in addition to an1587

increase in the Q value. During the cool-down process an audible ‘bang’ was1588

heard and once the set-up was cooled and the cavities were calibrated for the1589

initial measurement, the EXA showed the signal from the emitter. Since the1590

equipment was cool it wasn’t possible to make any adjustments to the detector1591

to eliminate the signal, so the resolution bandwidth of the signal analyser was1592

increased from 0.5 mHz to 1 mHz so that the peak was indistinguishable from1593
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the noise. Having increased the noise in the measurement, this meant that no1594

meaningful exclusion could be made.1595

After the experiment had been allowed to warm up, the experiment was de-1596

constructed. When the cavity was inspected the cause of both the noise and the1597

signal was found. The cavity shielding box had popped open and the lid had a1598

visible bend to it as can be seen in Fig C.3. The reason for the rupture of the1599

shielding box was thought to be caused by a pressure differential between the1600

vacuum chamber and the shielding box. On closer inspection it was also found1601

that the opening of the lid had also caused the shielding-box feed-through and1602

one of the co-axial cables to break as can be seen in Fig C.4. Due to these reasons,1603

a cryogenic measurement was not possible in phase 1 of the CASCADE experi-1604

ment, however with a stronger shielding box measurements should be possible in1605

future phases.1606

Figure C.3: Left : The shielding box as found after the cryogenic run. The lid
has clearly come away from the body of the box and is therefore ineffective.
Right : A close up of the lid. It can be be seen that the lid has been bent.
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Figure C.4: Left : After the CASCADE cryogenic run the second cavity port was
found to have snapped at the SMA connection.
Right : After the CASCADE cryogenic run the soldering for the shielding box feed-
through for the second port had separated from the copper.
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