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Abstract 

The Excavata super-group contains a massively diverse range of protists that inhabit a 

plethora of different trophic niches. Many excavates are free-living and little-studied, but 

there are also many examples of parasitism evolving multiple times within the group. 

Trypanosoma brucei is a euglenozoan parasite that is responsible for causing Human African 

trypanosomiasis (HAT) and Nagana in livestock. It has a complex heteroxenous life cycle that 

involves a variety of complex morphological and biochemical changes to the cell as it 

switches from a mammalian to an insect host. Within the mid-gut of its tsetse fly vector, T. 

brucei replicates as a procyclic trypomastigote; these cells are readily cultured and can be 

subjected to genetic manipulation in the laboratory. Despite the complete genome sequence 

being available, there are still many novel proteins within T. brucei that have yet to be 

assigned a function within a cell. T. brucei appears to have an extensive array of histidine 

phosphatases, many of which are uncharacterised (Brown, 2011). The histidine phosphatases 

are an ancient, ubiquitous enzyme superfamily that catalyse the dephosphorylation of a 

substrate, and function is critically dependent upon an active site histidine. Given that 

adaptation to parasitism is classically associated with metabolic stream-lining, it is intriguing 

that T. brucei has retained so many histidine phosphatases.  

Two of these histidine phosphatases appear to have arisen by gene duplication, although 

one appears to have degenerated and subsequently has lost the essential catalytically-active 

histidine. Through phylogenetic analyses and contemporary molecular characterisation 

techniques, I report the progress made on attempts to assign function to this paralogous 

gene pair, both of which localise to the mitochondria in procyclic T. brucei. My efforts to 

unsuccessfully delete genes encoding these histidine phosphatases from the genome of 

procyclic T. brucei suggests they are essential.  

Another excavate for which genome data is freely available is the free-living heterolobosean 

Naelgeria gruberi. The sequencing and annotation of the N. gruberi genome (Fritz-Laylin et 

al., 2010) revealed a surprising variety of anaerobic metabolic pathways potentially available 

to the cell, when encountering anoxic conditions. Using T. brucei as a host for heterologous 

expression, I tested the mitochondrial candidature of several of these N. gruberi novel 

proteins associated with anaerobic metabolism. Since the Heterolobosea are sister to the 

Euglenozoa, evidence for the expression and localisation of N. gruberi proteins in T. brucei is 

a good indication of where these proteins may localise within N. gruberi cells. These analyses 

showing mitochondrial localisation of enzymes associated with anaerobic metabolism point 

to a currently highly unusual repertoire of metabolic flexibility within the mitochondria of a 

eukaryotic heterotroph.   
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Chapter 1 

General Introduction 

The research presented in my thesis focuses upon experiments to study novel aspects of 

mitochondrial biology in excavate protists. To provide context for the results presented in 

chapters 3-6, my introductory chapter covers a variety of topics: 

 An overview of eukaryotic evolution  

 An introduction to the Excavata 

 A discussion of mitochondrial diversity 

 Lifecycles and relevant essential biology of Naegleria gruberi and Trypanosoma 

brucei 

 

1.1 The diversity and origin of eukaryotic life 

Life has been present on Earth for at least the past 3.5 billion years (Schopf, 2006). 

Microfossil, molecular biomarker and isotopic evidence dictate that the earliest life-forms on 

the planet belong to the prokaryotic lineages; reviewed by Schopf (2006) (see Figure 1.1). 

The evolution of eukaryotes is believed to have occurred later in Earth’s long history.  

Microfossils also provide evidence for the existence of early eukaryotic life, and to some 

extent, provide a record for the evolution of eukaryotic cells. Some of the earliest eukaryotes 

are thought to be ~1.8 billion years old (Lamb et al., 2009), which dates back to the mid-

Paleoproterozoic era (See Figure 1.1). Microfossil examples of these early eukaryotes have 

been found across the planet, including northern China (Lamb et al., 2009), West Africa (El 

Albani et al., 2014), northern Australia (Javaux et al., 2003), Siberia (Nagovitsin, 2009) and 

Canada (Cohen et al., 2011). These microfossils are necessary for inferring the lives and 

complexity of some of the earliest eukaryotes. All eukaryotic life found on the planet today 

evolved from the elusive Last Eukaryotic Common Ancestor (LECA) (i.e. the root of the 

eukaryotic tree of life). All descendants from LECA are referred to as crown-group eukaryotes 

(Butterfield, 2015; Eme et al., 2014). All extinct eukaryotic lineages that existed before LECA 

(after a eukaryotic ancestor emerged from within the Archaea) are referred to as stem-group 

eukaryotes (Eme et al., 2014). 
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Within the fossil record, both prokaryotic and eukaryotic cells can yield microfossils; 

however the likely soft bodies and small sizes of organisms yielding these microfossils make 

this fossil record difficult to study. Some microfossils can be identified as cyanobacteria, 

whereas others can be assigned eukaryotic taxonomic classifications based on modern 

protistan lineages. However, the majority of microfossils that are characterised end up 

classified as ‘acritarchs’ (Butterfield, 2005). Using the original language of Evitt (1963), 

acritarchs were defined as:   

"small microfossils of unknown and probably varied biological affinities consisting of a central 

cavity enclosed by a wall of single or multiple layers and of chiefly organic composition; 

symmetry, shape, structure and ornamentation varied; central cavity closed or 

communicating with the exterior by varied means" (Evitt, 1963). 

Eukaryotic microfossils are initially identified by morphologies that are classically only 

associated with eukaryotic cells. Size is usually the first indication of whether an organism is 

prokaryotic or eukaryotic, since eukaryotic cells are usually substantially larger (Butterfield, 

2015). However, size alone cannot determine biological classification. Modern cyanobacteria 

can measure up to 60 µm in diameter, and certain filamentous cyanobacteria, such as 

Microcystis, can secrete extracellular sheaths (Kessel and Eloff, 1975). This can result in 

microfossils that are deceptively large enough to be interpreted as being potentially 

eukaryotic (Butterfield, 2015). On the contrary, extant pico-eukaryotes can measure <1-3 µm 

in diameter (Baldauf, 2003), and so could easily be mistaken for prokaryotic cells, based on 

their size alone (van Ooijen et al., 2012). 

Further characterisation of eukaryotic microfossils relies upon the identification of 

mineralised cell ultrastructures from early protists that were resistant to decay and 

accumulated in sedimentary rock layers (Knoll, 2014). Evidence of complex cell wall 

morphologies, excystment and vesicle structures are indicative of the organism possessing a 

cytoskeleton, which is a cytological feature not present in prokaryotes. For instance, 

microfossils found in the Yukon and dated at ~800 million years old (mid-Neoproterozoic 

era), exhibit a scale structure on the fossil surface (Cohen et al., 2011) (Figure 1.2 A). This 

was taken as evidence of the organism containing Golgi-like structures that would have been 

involved in the synthesis of scales, as is the case in some modern-day protists, such as 

Haptophyta algae (e.g. Pleurochrystis) (Melkonian et al., 1991). The suggested presence of 

Golgi apparatus indicates a morphological complexity not seen in prokaryotes, and a 

complex cytoskeleton and vesicular trafficking system would also be required in order to aid 
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in the translocation of scales from Golgi to the cell surface. Chuar rocks from the Grand 

Canyon (USA) yielded vase-shaped microfossils that were ~742 million years old (see Figure 

1.1). These microfossils were so well preserved and morphologically diverse that they could 

be taxonomically defined as testate amoebae (Amoebozoa or Rhizaria) (Porter et al., 2003) 

(see Figure 1.2 B). Eukaryotes, but not the vast majority of prokaryotes, produce C27-29 sterols 

that degrade to give stable steranes and sterenes which, unlike proteins and nucleic acids, 

preserve well in sedimentary rocks (Brocks and Summons, 2003; Knoll, 2014). These can be 

useful biomarker molecules and through structural and isotopic analysis, can be very 

informative with regard to understanding ancient cellular diversity, the trophic associations 

of ancient organisms, and the environmental conditions in which these organisms lived 

(Brocks and Summons, 2003). For instance, the temperature of the surrounding environment 

can be predicted based on the preserved biomarkers. Organisms adapted to warm 

temperatures produce different, distinctive biomarkers compared to organisms adapted to 

cooler temperatures, since water temperatures have an effect on the levels of dissolved CO2, 

and therefore an impact on the carbon assimilation by photosynthetic organisms (such as 

green algae) (Brocks and Summons, 2003). 

Some of the earliest eukaryotic microfossils known currently were found in the 

Changzhougou Formation, North China and are estimated to be ~1.8 billion years old (Lamb 

et al., 2009). Thirteen distinct eukaryotic morphologies were identified in this study, and 

provided a glimpse into the possible diversification of eukaryotes by the Paleoproterzoic era 

(Lamb et al., 2009) (see Figure 1.1). Other microfossils from the the Biacaoping and Beidajian 

Formations, North China, and the Deonar Formation in India, are thought to be ~1.6 billion 

years old, and thus from the late Paleoproterozoic era. Some of the microfossils isolated 

from both regions were identified as eukaryotic ‘acanthomorphic acritarchs’ (Butterfield, 

2015), including specimens from the genus Tappania. Other Tappania microfossils have been 

identified in northern Australia (Javaux et al., 2003), north-western USA (Butterfield, 2015) 

and central Siberia (Nagovitsin, 2009). These fossils are thought to be from the early-middle 

Mesoproterozoic era (~1.5-1.2 billion years ago). This indicates that members of the 

Tappania genus were widespread and persistent in the environment for at least 200-300 

million years (Butterfield, 2015). Tappania is considered to have been a large (30-60 µm) 

multicellular eukaryote with a sophisticated cytoskeleton and a complex, highly variable 

morphology (Butterfield, 2005). It was ocean-dwelling with various filamentous, branched 

tubular extensions emanating from the cell surface (Butterfield, 2005, 2015). Although no 

direct modern counterparts to Tappania survives, there have been tenuous suggestions of 
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assigning it to the fungal kingdom (Butterfield, 2005), although there is still not enough 

convincing evidence to draw firmer conclusions on this taxonomic placement (Butterfield, 

2015). Another ancient ‘acanthomorphic acritarch’ isolated from samples from the 

Biacaoping and Beidajian Formations, named Shuiyousphaeridium, was at 100-300 µm, much 

larger in size than Tappania (Butterfield, 2015). It was covered with fine protrusions that 

emanated from a cell wall, had an inner vesicle wall made up of a mosaic of scale-like plates, 

and another vesicle referred to as a ‘reproductive cyst’- the proposed reproductive cyst is 

still seen in extant dinoflagellates (Butterfield, 2015). Again, there is no evidence for any 

remaining Shuiyousphaeridium sub-clades existing today. However, the variation in the 

structures observed between Tappania and Shuiyousphaeridium suggests eukaryotic life had 

diversified considerably with respect to both morphological and developmental complexity 

by the beginning of the Mesoproterozoic era. Both organisms would have contained a 

nucleus, a complex cytoskeleton and signalling network, functional mitochondria (or perhaps 

mitochondrial-related organelles) capable of energy generation and a cell wall that would 

likely have been similar to structures found in today’s plants and fungi. Other notable 

fossilised eukaryotes that can be confidently assigned to extant eukaryotic groups include 

the Mesoproterozoic red alga, Bangiomorpha, from northern Canada (Butterfield, 2000), and 

the Neoproterozoic green algae Palaeastrum and Proterocladus, both found in Svalbard 

(Butterfield and Knoll, 1984). 

Fossils can provide approximate dates on when these ancient eukaryotes lived and 

subsequently became extinct. Yet, fossil evidence alone provides minimal or no data on the 

divergences which took place as crown eukaryotic lineages evolved. However, quantitative 

estimates of species divergence can be made using molecular clocks. The original molecular 

clock hypothesis was based on the study of differences in haemoglobin sequences in humans 

(Zuckerkandl and Pauling, 1965). The concept was devised that the evolutionary rate of 

sequence divergence between orthologous proteins from different species occurs at a 

relatively constant rate (Zuckerkandl and Pauling, 1965). This would therefore result in 

molecular clock-derived estimates providing a powerful molecular phylogenetics tool for 

investigating at which points in history lineages diverged (Hug and Roger, 2007; Roger and 

Hug, 2006). However, due to variation in mutation rates within lineages, it has proved 

difficult to generate a molecular clock model that produces viable time estimates for 

speciation events generally. Moreover, results from molecular clock estimates often 

contradict the palaeontological evidence provided by fossils, reviewed by Eme et al., (2014); 

Hug and Roger, (2007); Roger and Hug, (2006). To account for the variations in evolutionary 
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rate, a variety of ‘relaxed molecular clock’ (RMC) methods were subsequently developed. 

RMCs combine molecular phylogeny estimates with fossil records and molecular biomarkers, 

to provide calibration points for the clock estimates (Eme et al., 2014). Only fossils that have 

been assigned definitive crown-group lineage classifications should be used as molecular 

clock time constraints. Often, it has proved more difficult to associate the sparse, patchy 

Proterozoic fossil specimens with extant crown-group eukaryotes than the much more 

extensive Phanerozoic specimens (~0.6 billion years old, appearing after the radiation of the 

crown-group lineages - see Figure 1.1) (Eme et al., 2014).  

Despite the refinements made to RMC approaches and the original molecular clock 

hypothesis, RMC estimates are still riddled with errors and uncertainties (reviewed by Eme 

et al., (2014); Hug and Roger, (2007); Roger and Hug, (2006)). Such errors may be caused by 

the differences in methods used in generating RMC estimates; in the selection of fossils and 

their assignments at the nodes of trees generated; consensus views on eukaryotic phylogeny 

at the time of any study also influences the accuracy of RMC estimates; the paucity in parts 

of the eukaryotic fossil record; and the difficulties surrounding fossilisation events in the first 

place (for example, many of the earliest unicellular post-LECA eukaryotes likely lacked hard 

structures suitable for fossilisation) (Eme et al., 2014). The dates assigned to the fossils 

themselves are also often open to question. There can be palaeontological uncertainties in 

the dates assigned to the rocks containing the fossils, and there can also be a time gap 

between the actual divergence date of individual eukaryotes and when those organisms 

were fossilised. Finally, genetic divergences invariably occur before detectable morphological 

changes in an organism. Thus, date estimates of a fossil based on palaeontological studies 

alone are often underestimated.  

Post-LECA eukaryotes of the Paleoproterozoic period had evolved complex cytoskeletons 

and signalling networks that would have given them distinct selective advantages over 

prokaryotes (Fritz-Laylin et al., 2010b). For example, presence of elaborate internal 

cytoskeletons allows eukaryotic cells to grow much larger than prokaryotes. However, 

despite selective advantages, it apparently took eukaryotic organisms nearly half a billion 

years to fully exploit the significant attributes that they had over the prokaryotes, which 

continued to very much dominate the biosphere up until the late Mesoproterozoic period 

(Butterfield, 2007) (see Figure 1.1). The radiation of eukaryotic life into the crown lineages 

recognised today (see Figure 1.4) may have been delayed by environmental constraints such 

as reduced oxygen abundance (initially atmospheric oxygen, subsequently oceanic oxygen 



6 
 

abundance (Canfield, 1998)) and/or insufficient nitrogen fixation (Butterfield, 2015). 

Biogeochemical studies suggest that there was a major oxidation event on the planet’s 

surface in the mid-Paleoproterozoic era (~2 billion years ago), although anoxic waters still 

persisted in the deep oceans until the Neoproterozoic era (Canfield, 1998). Since early 

eukaryotic life was known to exist in the early-Mesoproterozoic oceans (Knoll et al., 2006), 

this could provide some explanation as to why there was a delay before the rapid 

diversification of eukaryotes. Another difficulty post-LECA eukaryotes may have encountered 

was breaking through into biological niches where the predominant inhabitants were well-

established prokaryotic colonies. Most RMC estimates have agreed that radiation of the 

major eukaryotic crown-groups began during the late Mesoproterozoic/early Neoproterozoic 

period, after the post-LECA lag period (Eme et al., 2014; Knoll, 2014). Most RMC estimates 

also agree that the diversification of the eukaryotes happened rapidly over a relatively short 

period of time (Eme et al., 2014).  
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  Figure 1.1  

Figure 1.1. A geological timeline highlighting important biological events in Earth’s history.  
The first eukaryotic life on Earth was thought to have appeared during the mid-Paleoproterozoic 
period, ~1.8 billion years ago. Towards the end of the Mesopaleoproterozoic era, a major 
radiation event of eukaryotes was thought to have occurred.  Radiation of extant animal lineages 
is thought to have occurred ~0.6 billion years ago. Modified from Brocks and Summons, (2003). 
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Figure 1.2 

Figure 1.2. A selection of eukaryotic microfossils from the late Paleoproterozoic era and the mid-
Neoproterozoic era. 
A-B. Characodictyon skolopium and Trigonocyrillium horodyskii respectively; microfossils that 
show the diversity and complexity of the cytoskeletons in likely eukaryotes from the mid 
Neoproterozoic era. Reproduced from Butterfield, (2015).  
C-D. Tappania plana and Shuiyousphaeridium macroreticulatum respectively, some of the oldest 
acanthomorphic acritarch microfossils discovered to date, originating from the late 
Paleoproterozoic era. Reproduced from Porter (2003) and Knoll (2006).  

A. B. 

C. D. 
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1.2 The radiation of eukaryotic lineages 

Original molecular phylogenetic predictions of the three domains of life (Eukaryota, Bacteria 

and Archaea) were based on small subunit RNA (SSU RNA) sequence analyses (Sogin and 

Gunderson, 1987; Woese et al., 1990). This was due to SSU RNAs being one of the most 

evolutionary conserved molecules across all forms of life on Earth, and thought not to 

undergo lateral gene transfer (Sogin and Gunderson, 1987). SSU RNAs are also easy to 

amplify by PCR and contain both highly conserved and hypervariable regions (Burki, 2014). 

SSU RNA-based phylogenies recovered several apparent ancient ‘deeply diverging’ protist 

branches (the diplomonads, microsporidians, parabasalids – eukaryotic lineages that were 

originally termed ‘amitochondriate’ and were thought to have diverged before the 

eukaryotic mitochondrial acquisition event) reviewed by Burki, (2014). From the SSU RNA 

phylogenies, most remaining eukaryotic lineages then emerged, clustering around a highly 

branched, poorly resolved ‘crown structure’ (including animals, plants, fungi, alveolates and 

stramenopiles). This ‘crown structure’ was thought to be due to these lineages having 

diverged almost simultaneously from one another. However, the structures of SSU RNA 

phylogenetic trees are now known to be prone to a significant error, known as long branch 

attraction (LBA) (Eme et al., 2014; Philippe and Germot, 2000; Roger et al., 1999). Whilst 

sequence similarity of genes can infer the distance of relationships between organisms, 

there are only a select number of sites within a gene that can undergo mutation without 

deleterious effects on the organism, and therefore only a limited number of outcomes (i.e. 

changes in nucleotides and/or protein coding sequence) (Baldauf, 2003). Changes in 

sequence code accumulate but in distantly-related species where that evolution occurs at a 

faster rate, similar extensive mutation can occur independently, leading to inappropriate 

clustering (attraction) of long branches (Baldauf, 2003). Protists originally deemed to be 

‘amitochondriate’ were also shown to contain degenerate forms of mitochondria or 

‘mitochondrial-related organelles’ (MROs) such as hydrogenosomes or mitosomes (see 

Section 1.4), and any attraction to the base of the eukaryotic tree was not due to these 

lineages diverging before the rest of eukaryotes acquired mitochondria, but because of 

artificial long branched attractions to distant outgroups (reviewed by Burki, (2014); Embley 

and Martin, (2006)). 

As phylogenetic methods developed due to the availability of multigene datasets and from 

sampling of increasingly diverse ranges of eukaryotes and as the appreciation of LBA 

improved, phylogenomic analyses led to suggestion of eukaryotic ‘super-groups’. These 

super-groups define the bulk of known eukaryotic biodiversity and further resolve the 
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phylogeny of the eukaryotes, particularly the vast diversity of protist lineages (Baldauf, 2003; 

Baldauf et al., 2000; Hampl et al., 2009; Simpson and Roger, 2004) (see Figure 1.3). The 

unrooted tree (a tree that makes no inference on the ancestral root, i.e. the origin of LECA) 

shown in Figure 1.3 highlights six super-groups: Opisthokonta, Amoebozoa, Plantae, 

Chromalveolata, Rhizaria and Excavata (Simpson and Roger, 2004). However, several groups 

of free-living heterotrophs (the examples shown in Figure 1.3 are the Apusomonads, 

Collodictyonids and Centrohelid Heliozoa) lay outside of the defined super-groups, and 

therefore may be representatives of novel additional groups (Simpson and Roger, 2004). The 

Opisthokonta + Amoebozoa were sometimes referred to as ‘unikonts’ and everything else 

was referred to as the ‘bikonts’ (Baldauf, 2003; Cavalier-Smith, 2002; Hampl et al., 2009; 

Minge et al., 2009). The order with which eukaryotic groups diverged, including the identity 

of the earliest branching eukaryotic lineage, is still debated. 

Further progression in methods since the turn of the 21st century led to the development of 

phylogenomics. Phylogenetics tended to be based on the comparison of one or several genes 

from various taxa, in order to infer their evolutionary relationships; whereas phylogenomics 

uses much larger multigene datasets for sequence alignments, in order to analyse complete 

or large segments of genomes. The acquisition of such large datasets has in part become 

possible due to next-generation sequencing, which is substantially faster and cheaper than 

Sanger sequencing methods used to sequence the eukaryotes and prokaryotes chosen first 

for complex genomic analyses. This has also resulted in a far wider diversity of taxa being 

sampled, rather than just organisms with medical or financial relevance to humans. A 

representative species from each major lineage was fully sequenced by 2012 (Burki, 2014). 

Phylogenomic studies generally continue to support the existence of super-groups, although 

there have been some re-categorising of the tree presented by Simpson and Roger, (2004) 

(Figure 1.3). The current view, based on multigene analyses, consists of five clades: 

Opisthokonta, Amoebozoa, SAR (Stramenopiles/Alveolata/Rhizaria), Excavata and 

Archaeplastida (often referred to as Plantae) (Adl et al., 2012) (Figure 1.4). Many of these 

can be further categorised into mega-groups – Diaphoretickes or SARP 

(Stramenopiles/Alveolata/Rhizaria/Plantae), Amorphea (Opisthokonta/Amoebozoa – 

formally the unikonts) and Excavata (Adl et al., 2012) (Table 1.1). The Amorphea and 

Diaphoretickes together form the so-called ‘Neozoa’ (Cavalier-Smith, 2010), which proposed 

to be sister group to the Excavata (Cavalier-Smith, 2010; He et al., 2014). 

Most multigene phylogeny studies can assign most of the known eukaryotes to one of these 

three mega-groups (He et al., 2014). However, phylogenomic analyses do not come without 
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their own errors and limitations. For example, in 2009 Hampl et al. published an often cited 

study that analysed the possible monophyly of the Excavata and its relationships to other 

eukaryotic super-groups. These authors produced phylogenetic trees using two different 

methods, based on multigene datasets containing 143 genes from 48 taxa, with 

representatives from all of the six major super-groups. No outlier prokaryotic groups were 

incorporated into the dataset, due to fears of LBA. Their first analyses recovered three clades 

of excavates; Discoba, Malawimonads and Metamonada (Adl et al., 2012), but did not 

support the monophyly of the Excavata. The Malawimonas taxa branched separately to the 

rest of the Excavata and grouped with the unikonts with moderate statistical support (Figure 

1.5 A) (Hampl et al., 2009). It was noted that many of the metamonad taxa had very long 

branches, for example Spironucleus, Giardia and Trichomonas, whereas the Malawimonas 

branches were very short in comparison. Hampl et al. hypothesised that these long branches 

could be responsible for the non-monophyly of the tree because of LBA. To test this theory, 

various approaches were used to manipulate the outcome of the tree. First, long-branching 

taxa were removed. To produce the tree seen in Figure 1.5 B, a total of 27 taxa were 

removed, including Giardia, Leishmania, Trypanosoma, Tetrahymena, Blastocystis, Euglena 

and Reclinomonas (Hampl et al., 2009). The reasoning for this approach was that the 

robustness of a group can still be tested, even with just one representative from that group 

present in the analysis. Upon the removal of Spironucleus and Giardia, the Excavata became 

monophyletic, and with the removal of Trichomonas, the statistical support for the 

monophyly greatly increased. Removal of the 27 taxa also supported the unikont/bikont 

divide. Another approach used to infer monophyly was to remove long-branches. By doing 

this, fast-evolving sequences that had accumulated the largest numbers of changes were 

deleted from alignments, rather than eliminating specific taxa. The tree seen in Figure 1.5 C 

was produced after 1750 of the longest-branched gene sequences were removed and this 

provided limited support for monophyly of the Excavata (Hampl et al., 2009). Analysis of the 

complete dataset available for the study did not yield monophyly of the Excavata. To infer 

monophyly, various sequences or indeed whole taxa had to be removed from the dataset. 

Whilst the approaches employed by Hampl et al., (2009) eventually resulted in a statistically 

supported monophyly of Excavata, it did not support the monophyly of many of the other 

super-groups such as the Chromalveolata and Rhizaria (now referred to as SAR, see Figure 

1.4) and Archaeplastida. The positions of the representative taxa from these three groups 

moved around dramatically depending upon the version of the dataset analysed (Figure 1.5 

A-C).  
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More recently, another dataset presented by He et al., (2014) was also used to analyse deep 

rooted phylogenies of the super-groups defined fully by Adl et al., (2012), and to also explore 

a probable position of the eukaryotic root. The dataset designed by He et al., (2014) 

consisted of 76 taxa containing 37 nuclear-encoded proteins of close bacterial origin 

(euBacs) that were present in LECA and had not undergone early gene duplications or 

lineage-specific losses. Prokaryotic outgroups of the closest bacterial relatives to the 

eukaryotes, which contained all 37 euBacs, were also included. Phylogenetic analysis 

produced a highly resolved tree which supported the monophyly of all the eukaryotic and 

prokaryotic clades represented, with high statistical significance (Figure 1.6 A) (He et al., 

2014). The organisation of the three mega-groups, Amorphea, SA[R]P (Rhizaria was not 

represented), and Discoba (the parental taxon being the Excavata), were also supported in 

this tree. The Excavata were identified as the sister lineage to the Amorphea and SARP, 

meaning that the root of the tree lay between the Excavata and the neozoans (Figure 1.6 B). 

To eliminate the potential for any artefacts within this rooted tree (Figure 1.6 A), such as 

LBA, the euBac dataset was tested by removing any fast-evolving, long branching sequences 

and distant out-group sequences. The removal of the fast-evolving sequences produced an 

identical phylogenetic tree and neither control affected the positioning of the root. Despite 

the range of eukaryotes represented in this dataset, there were still a number of potentially 

important taxa that were absent due to inadequate sequence availability or poor taxon 

sampling. The diplomonads, microsporidians, parabasalids (i.e. excavate protists that possess 

degenerate forms of mitochondria) are also not represented; since these protists lack 

aerobic mitochondria, they therefore lack many, if not all of the 37 euBacs required for the 

dataset. The study from He et al., (2014) was important for highlighting the early divergence 

of the Excavata before the radiation of the lineages that resulted in the plants, animals and 

fungi, and also that the Excavata are crucial in the understanding of early eukaryotic 

evolution (He et al., 2014). Two of the most well-studied discobids are the Trypanosoma and 

Leishmania parasites, however, the only free-living discobid with a fully sequenced genome 

available remains Naegleria gruberi (Fritz-Laylin et al., 2010b).  

The sampling of free-living organisms is vital for the study of the last common ancestor of all 

eukaryotes (Fritz-Laylin et al., 2010b; He et al., 2014). Medically-important parasites and 

multicellular plants and animals are often the first choices for gene sequencing. However, it 

is thought that parasite genomes are often stream-lined as a consequence of adaptation to 

parasitic niches (Berriman et al., 2005; Morrison et al., 2007), and are therefore subject to 

gene losses and high sequence divergence. This may or may not be an accurate 
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generalisation (Jackson et al., 2015; Pombert et al., 2014). However, parasite genomes are 

therefore not necessarily the most informative genomes to infer ancestral eukaryotic 

characteristics since many features may not be retained (Fritz-Laylin et al., 2010b). Genome 

analysis of free-living Naegleria gruberi suggested that LECA contained at least four thousand 

genes which are conserved and present in extant eukaryotes (Fritz-Laylin et al., 2011; Fritz-

Laylin et al., 2010b). This analysis further highlights that LECA was far from ‘primitive’. It is 

thought to have contained many features commonly associated with an extant ‘classical’ 

eukaryotic cell. LECA contained a complex signalling network, cytoskeleton and flagellum, a 

nucleus, Golgi apparatus, endoplasmic reticulum, mitochondria, underwent mitosis and 

meiosis and was heterotrophic (Butterfield, 2007; Fritz-Laylin et al., 2010b; Simpson and 

Roger, 2004). 

In summary for Sections 1.1 and 1.2, when attempting to gain insight into the evolution of 

the eukaryotes, microfossil evidence is a good, if not patchy, first resource to turn to. Whilst 

fossil analyses come with their own plethora of limitations and difficulties, such as dating 

and taxonomic categorisation, they provide a direct account of early eukaryotic life that 

existed on the planet from more than a billion years ago. Fossils are also useful for providing 

age constraints and calibration points in molecular clock analyses, which are used for 

estimating the age of divergence events of eukaryotic lineages. However, the differences in 

methods used in constraining fossil calibrations for relaxed clock estimates can result in 

wildly different age estimates on divergence points (in terms of hundreds of millions of 

years) (Eme et al., 2014; Hug and Roger, 2007). To reduce the bias on age estimates, multiple 

fossil calibrations can be used in clock analyses from carefully chosen fossil sources that are 

accepted by the paleontological community to be well taxonomically defined and dated 

(Eme et al., 2014; Hug and Roger, 2007). By improving the fossil record, the accuracy of the 

clock estimates will also be improved. However, increasing the number of taxa in the dataset 

used to generate clock estimates does not necessarily have a significant impact on the 

confidence in the age estimates (Hug and Roger, 2007). 

Conversely, to improve the resolution of modern phylogenies, wider taxonomic sampling is 

required (Fritz-Laylin et al., 2010b; He et al., 2014; Hug and Roger, 2007). However, as shown 

by Hampl et al., (2009), a multigene dataset that includes a wide diversity of taxa can result 

in a wide variety of phylogenetic trees being produced, dependent upon how the gene-set is 

handled.  
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Figure 1.3. A diagram showing the assumed phylogenies of the eukaryotic tree, circa 2004. 
Reproduced from Simpson and Roger, (2004).  
This view describes six major super-groups within the eukaryotes, along with the uncertain 
placement of the Apousomonads, Collodictyonoids and Centrohelid Helicozoa (shown in black). 
All eukaryotes are shown to stem from within the Eubacteria and Archaebacteria. The position of 
the root of the tree is uncertain (LECA), but the red arrow and question mark indicates a possible 
location at the base of the branch leading to Opisthokonta and Amoebozoa.  

Figure 1.3  
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Figure 1.4  

Figure 1.4. An updated view of the eukaryotic tree of life, circa 2012. 
Compared to Figure 1.3, the number of super-groups has been condensed down to five, and there 
is still uncertain placement of a variety of protists (lineages shown in grey). The root of the 
eukaryotic tree is still thought to stem from the Archaebacteria and the Eubacteria. No inference 
to the origin of LECA is made in this diagram. Reproduced from Adl et al., (2012). 
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Table 1.1 

Table 1.1. A table showing an alternative representation of the classification of eukaryotes.  
The super-groups shown in Figure 1.4 are here organised into the two mega-groups: Amorphea 
and Diaphoretickes. Reproduced from Adl et al., (2012). 
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Figure 1.5  

Figure 1.5. Phylogenetic tree analyses by Hampl et al., (2009) for the support of the monophyly of 
the Excavata super-group.  
A. The phylogenetic tree produced using the main dataset. Prokaryotic sequences were not 
included over fears of LBA. This did not support the monophyly of the Excavata, which here 
consists of three separate branching clades. 
B. The phylogenetic tree produced after the removal of long branch taxa. This tree supports the 
monophyly of the Excavata after the removal of 14 taxa.  
C. The phylogenetic tree produced after the removal of the longest branching sequences in the 
dataset. This tree again supports the monophyly of the Excavata, after 1750 sequences were 
removed.  
Reproduced from Hampl et al., (2009). 

B. C. 

A. 
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Figure 1.6. Phylogenetic support for the super-groups described by Adl et al., (2012), and insight 
into LECA.  
A. A rooted phylogenetic tree generated using the euBac dataset by He et al., (2014). This shows 
strong monophyletic support for the described super-groups and a root falling between the 
neozoa and the excavates. Statistical support for the nodes denoted ‘a’ and ‘b’ from maximum-
liklihood bootstrapping and Bayasian inference posterior probabilities is shown in the grey box. A 
redasterisk indicates the root position Reproduced from He et al., (2014) 
B. A cartoon schematic showing the divergence of the crown-group eukaryotes from LECA. LECA, 
last eukaryotic common ancestor; LCA, last common ancestor; LACA, last animal common 
ancestor; E, Embyrophyta; F, Fungi; M, Metazoa. Reproduced from Butterfield, (2015). 

Table 1.1. A table showing an alternative representation of the classification of eukaryotes. 
Reproduced from Adl et al., (2012). 
The super-groups shown in Figure 1.4 are here organised into the two mega-groups: Amorphea 
and Diaphoretickes. 

* 

Figure 1.6  

B. 

A. 
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1.3 Diversity of the Excavata  

The protists on which my research focuses, Naegleria gruberi and Trypanosoma brucei, 

belong to the super-group Excavata. This group was proposed based a combination of 

characteristic morphological features and phylogenetic analyses (Adl et al., 2012; Cavalier-

Smith, 2002; Hampl et al., 2009; He et al., 2014; Simpson, 2003), and encompasses a wide, 

ecologically diverse collection of free-living, symbiotic and parasitic protists.  

In its classic form, the Excavata are comprised of three lineages: i) Metamonada, ii) Discoba 

and iii) Malawimonas (Figure 1.4) (Adl et al., 2012; Hampl et al., 2009). The excavates were 

originally defined according to their morphology, as unicellular flagellates with an anterior 

feeding groove (Patterson, 1999). ‘Typical’ excavates (in terms of morphology), which 

includes the Jakobids, Retortamonads, Carpidiemonas, Malawimonas and Trimastix (see 

Table 1.2) all exhibit this characteristic feeding groove and highly similar cytoskeletons. Up to 

seven distinct cytoskeletal features are shared between various excavates, but none of these 

features have been observed to date in other eukaryotes (Simpson, 2003) (and listed in Table 

1.3). For instance, diplonomads and heteroloboseans have feeding grooves, but only some of 

the other cytoskeletal features exclusive to the excavate group: I fibres, a split R1, and in 

diplonomads possibly singlet roots, too (Simpson, 2003). In contrast, oxymonads lack a 

feeding groove, but do contain I, B and C fibres, as well as singlet roots. Curiously, the 

cytoskeletons of the euglenozoans exhibit none of the cytoskeletal features attributed to the 

excavates and do not have feeding grooves (Simpson, 2003). However, phylogenetic analyses 

place the group as sister to the heteroloboseans and thus within the Excavata. 

To look at each excavate lineage in turn, Metamonada consists of the Preaxostyla, Fornicata 

and Parabasilia, known members of which are all anaerobic or microaerophilic and have 

degenerate forms of mitochondria (Adl et al., 2012). Preaxostyla is made up of the 

oxymonads, which are symbionts found in the hindguts of termites and cockroaches that 

lack ‘classical’ mitochondria and Trimastix, a free-living anaerobe/microaerophile that have 

hydrogenosomes rather than classical aerobic mitochondria (Adl et al., 2012; Dacks et al., 

2001; Hampl et al., 2008). The Fornicata consists of the diplonomads, retortamonads and 

Carpediemonas. All members of these clades possess degenerate forms of mitochondria and 

inhabit microaerophilic/anaerobic environments (Kolisko et al., 2010; Tovar et al., 2003). 

Important human and animal parasites are found within the Fornicata, including Giardia and 

Spironucleus. Possibly the most well-known parabasalid is Trichomonas vaginalis, which 

causes a sexually transmitted disease in humans. All parabasalids are anaerobic, containing 
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hydrogenosomes rather than classical mitochondria and like the oxymonads, many are 

cockroach and termite commensals (Adl et al., 2012; Carpenter and Keeling, 2007). Thus, the 

last common ancestor of the metamonads was possibly aerobic, and the mitochondrial-

related organelles found in many of these anaerobic eukaryotes are due to the degeneration 

of functional aerobic mitochondria (Cavalier-Smith, 2013; Embley, 2006; Embley and Martin, 

2006; Jerlstrom-Hultqvist et al., 2013).  

The Discoba consists of: i) Jakobida and ii) Discicristata. The Jakobida is made up of three 

further clades, Jakoba, Andalucia and the Histionidae, all of which are small, free-living 

bacteriovores that have two flagella. Jakoba and Andalucia are free-swimming, whereas 

Reclinomonas and Histiona (Histionidae) are sessile and exist within a lorica. The lorica is a 

protective structure produced by the organism, made up of a network of fibrils (Flavin and 

Nerad, 1993). The Histionidae have tubular mitochondrial cristae, whereas in Jakoba they 

are flattened and Andalucia lack cristae entirely (Lara et al., 2006; Simpson and Patterson, 

2001).  

The Discicristata is a much larger group that is comprised of the Heterolobosea and 

Euglenozoa, most members of which have flattened, often discoidal mitochondrial cristae 

(Adl et al., 2012). The Heterolobosea is made up primarily of free-living amoebae that move 

using eruptive short pseudopodia (Adl et al., 2012). Some, like Psalteriomonas, Tetramitus, 

Naegleria and the closely related Willaertia, have a non-feeding, temporary flagellate phase 

that is not essential for completion of the life cycle. The transition to a flagellate form 

appears useful for rapid relocation of the cell, before reverting back into the predatory 

amoebal form (Panek et al., 2012; Robinson et al., 1989). Several heteroloboseans exist only 

as flagellates, such as Percolomonas (Fenchel and Patterson, 1986), whereas others, 

including Sawyeria and Vahlkampfia, have no known flagellate stage (O'Kelly et al., 2003). 

Also found within the Heterolobosea are a number of sorocarpic amoebae, such as Acrasis, 

that aggregate to form multicellular fruiting bodies as part of their complex lifecycle. Using a 

combination of ultrastructural and phylogenetic analyses, these amoebae have  been shown 

to be bona fide members of the Excavata, separate from other sorocarpic amoebae such as 

Dictyostelium, which belongs to the Amoebozoa (Brown et al., 2012). Heteroloboseans are 

known to inhabit a diverse range of environments, for example, extreme hypersaline, acidic 

and hot conditions (Baumgartner et al., 2009; De Jonckheere, 2004; Park and Simpson, 2015; 

Park et al., 2009). Some heteroloboseans live in anaerobic or microoxic conditions, and these 

heteroloboseans also lack classical mitochondria, and instead contain hydrogenosomes. Of 

these organisms, Sawyeria can be cultured in the presence of trace amount of oxygen, 
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whereas Psalteriomonas and Monopylocystis are strictly anaerobic (Barbera et al., 2010; 

O'Kelly et al., 2003). Surprisingly, the published genome of Naegleria gruberi (Fritz-Laylin et 

al., 2010b), which had always been considered to be an obligate aerobe, provided the first 

evidence that Naegleria could adapt to survive in low-oxygen conditions encountered in soils 

and muddy sediments (Fritz-Laylin et al., 2010b). Naegleria appears to contain genes that 

encode for an Fe-Fe hydrogenase and all of the associated maturases for anaerobic hydrogen 

production, and various other enzymes classically associated with anaerobic metabolism (for 

further detail, see Section 1.4) (Fritz-Laylin et al., 2010b; Ginger et al., 2010). Since the 

metabolic flexibility in Naegleria is so diverse, other heteroloboseans that are typically 

thought of as being aerobic may also be capable of switching anaerobic metabolic pathways 

when encountering hypoxic conditions (Panek et al., 2012).  

The second clade that makes up the Discicristata, the Euglenozoa, is comprised of the 

Euglenida, Diplonemea, Symbiontida and Kinetoplastea. Kinetoplastids are the best-studied 

group within the Euglenozoa (Marande et al., 2005). One of the defining morphological 

characteristics is the kinetoplast, a network of concatenated mitochondrial DNA structures 

made up of maxicircles and minicircles (for further detail, see Section 1.4) (reviewed by 

Lukes et al., (2005); Lukeš et al., (2002)). Kinetoplastids also possess at least one flagellum, 

with a flagellar pocket at the base that is connected to the kinetoplast via a basal body (Field 

and Carrington, 2009). The kinetoplastids are subdivided into the Prokinetoplastina and 

Metakinetoplastina (Adl et al., 2012). The Prokinetoplastina consists of two genera: 

Ichthyobodo, which is an ectoparasite of wild and commercially farmed fish (Callahan et al., 

2002) and Perkinsiella-like organisms, that are amoebal endosymbionts (Moreira et al., 

2004). The Metakinetoplastina is further divided into the Neobodonida, Parabodonia, 

Eubodonida and the exclusively parasitic Trypanosomatida (Adl et al., 2012; Moreira et al., 

2004; Simpson et al., 2006a). The clades that make up the kinetoplastids are extremely 

ecologically diverse, ranging from ubiquitous, free-living heterotrophs to obligate parasites 

of vertebrates, invertebrates and plants (Simpson et al., 2006b). The most well-known and 

studied kinetoplastids belong to the Trypanosomatid family, which contains medically 

important species including Trypanosoma brucei, the causative agent of African sleeping 

sickness in humans and the wasting disease nagana in mammals such as cows, horses and 

camels; Trypanosoma cruzi, which is prevalent in South America and is responsible for 

Chagas disease; and Leishmania sp. which causes leishmaniasis, an umbrella term describing 

a range of cutaneous, muco-cutaneous and visceral pathologies in humans. The closest 

recognised free-living relative to the trypanosomatids is, so far, the only characterised 
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member of the Eubodonida sub-group – Bodo saltans. It is a heterotrophic bacteriovore that 

is widely distributed across freshwater and marine environments (Jackson et al., 2008).  The 

recent sequencing and annotation of the Bodo saltans genome (Jackson et al., 2015) 

revealed how the trypanosomatids evolved to become obligate parasites. The parasitic 

trypanosomatids have stream-lined genomes, with substantial gene losses relating to 

macromolecular digestion and ion transport; however, in contrast several gene families 

relating to nutrient scavenging and host invasion have expanded within the parasites, 

illustrating how unexpected innovations as well as stream-lining can contribute to genome 

composition during adaptation to parasitism (Jackson et al., 2015).  

The Euglenozoa is made up of free-living, aquatic flagellates that are morphologically defined 

by a complex pellicle, which consists of proteinaceous strips located under the plasma 

membrane that run from the anterior to the posterior of the cell surface, resembling a 

superficial cytoskeleton (Leander, 2004; Leander et al., 2007). Euglenids occupy a diverse 

range of trophic niches because of the wide range of modes of nutrition available to them. 

Over 1000 species have been described so far, and many of them are phagotrophs that 

inhabit marine and freshwater sediments. Some, such as Petalomonas and Ploeotia, 

consume small prey such as bacteria; others such as Peranema and Dinema prey upon larger 

eukaryotic cells including diatoms and green algae. Other euglenids are photoautotrophic or 

osmotrophic. Photoautotrophic euglenids, such as Euglena gracilis, are chimeric cells that 

obtained their chloroplasts by a secondary endosymbiosis event with green algal cells, which 

may have once been a common prey item (Leander, 2004).  

Finally, the Diplonemea and Symbiontida represent two, possibly much smaller groups 

within the Discicristata, although the idea that diplonemids are wide-spread in their 

distribution and very diverse in number has been discussed recently (Lukes et al., 2015). 

Until recently, only two known genera, Rhynchopus and Diplonema, made up the 

Diplonemea. Many are free-living phagotrophs although some parasitic species have been 

isolated from the blood and gills of marine life (von der Heyden et al., 2004). A recent 

phylogenetic analysis suggested that Hemistasia phaeocyticola may belong within the 

Diplonemea, despite having a kinetoplast (Yabuki and Tame, 2015). The Symbiontida is the 

most recently recognised clade within the Discicristata (Yubuki et al., 2009), although may be 

derived from phagotrophic euglenids even though they lack pellicle structures (Adl et al., 

2012). Members, such as Calkinsia and Postgaardi, live in low-oxygen conditions and are 

covered in epibiotic bacteria (Yubuki et al., 2009; Yubuki et al., 2013). Calkinsia possesses 

modified mitochondria that structurally resemble hydrogenosomes (Yubuki et al., 2009). 
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Table 1.2.  A description of the further categorisation of the Excavata super-group. Based on Adl 
et al., (2012). 
A. Shown are the super-phyla, phyla and clade that members of the Excavata are divided into, and 
an example species for each clade.  
B. Light micoscopy image of Giardia duodenalis. Reproduced from Hahn et al., (2013) 
C. Light microscopy image of Jakoba incarcerata. Reproduced from Simpson and Patterson (2001) 
D. Light microscopy image of Sawyeria marylandensis. Reproduced from Panek et al., (2011) 
E. Light microscopy image of Bodo saltans. Reproduced from Lee et al., (2005) 

Table 1.2 

10 μm 5 μm 5 μm 5 μm 

C. B. E. D. 

A. 
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Table 1.3 

Table 1.3. ‘Typical’ common cytoskeletal features shared amongst many excavate protists. 
All excavates share at least one or more of these features, apart from the Euglenozoa, which 
completely lack any of the characteristics described above. However, phylogenetic analyses place 
the Euglenozoa firmly within the Excavata.  
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1.4 Mitochondrial diversity 

Classic textbook metabolism in aerobic chemotrophic eukaryotic cells is based upon 

respiration in mitochondria, utilising carbohydrates, fatty acids and amino acids as carbon 

sources for the generation of ATP by oxidative phosphorylation, and using oxygen as the 

terminal electron acceptor for respiration. A classic mitochondrion is comprised of four 

essential structures – the outer membrane, inner membrane, intermembrane space and the 

matrix. Within the matrix, the inner membrane is folded into invaginations known as cristae, 

which greatly increases the surface area of the inner membrane. Within mitochondria 

essential enzymes of energy metabolism are pyruvate dehydrogenase, the components of 

the Krebs cycle, electron transport chain and ATP synthase. A variety of other essential 

pathways and processes also occur in textbook mitochondria (Mootha et al., 2003).  

Mitochondria are semi-autonomous organelles and contain their own genome or 

mitochondrial DNA (mtDNA), which is also located within the matrix. Mitochondrial genomes 

vary greatly in size, complexity and structure.  In general, Metazoan mtDNA maps as circular 

molecules, similar in structure to bacterial circular genomes,  and typically encode 22 tRNA 

molecules, 2 rRNA molecules and 13 polypeptides (Taanman, 1999).  All 13 polypeptides are 

involved in the formation of proteins that are required for the electron transport chain, and 

so are critical for mitochondrial function. Metazoan mtDNA generally contains very little 

non-coding sequence and also generally contains no introns (Burger et al., 2003). An 

exception are Cnidaria (Beagley et al., 1998), which are aquatic animals such as sea 

anemones and corals. For instance, the sea anemone Metridium senile has only two tRNA 

molecules that are coded for by mtDNA, yet it was the first metazoan organism to be found 

that contains self-splicing group I introns (ribosomes that catalyse their own splicing from 

precursor mRNA) (Beagley et al., 1998). 

Most of the diversity in the shape, size and complexity of mitochondrial genomes can be 

found amongst the plants and protists. This is unsurprising in that protists account for the 

majority of eukaryotic biodiversity and even though the exact root of the eukaryotic 

evolutionary tree still remains elusive, the last common ancestor of all eukaryotic life was 

almost certainly a primitive unicellular protist with a protomitochondrion, acquired through 

a crucial symbiotic event involving a α-proteobacterium (Embley and Martin, 2006; Gray, 

2012). Because animal, plant and fungal lineages do not extend as far back in evolutionary 

history as many protists, it is necessary to collect a wide spread of both parasitic but more 

importantly free-living protist mitochondrial genomes, in order to compare animal mtDNA 
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with ancestral protist mtDNA. By doing these comparisons, it is possible to look at (complex) 

patterns of gene loss and gene transfer to the nucleus during eukaryotic evolution (Gray et 

al., 1998; Martin, 2003; Timmis et al., 2004). It should even be possible to infer with high 

confidence the architecture and composition of mtDNA in LECA.  

Often mtDNA is circular in structure, like the metazoan mtDNA described above, but a 

variety of unicellular protists including the ciliates Tetrahymena pyriformis (Suyama and 

Miura, 1968) and Paramecium aurelia (Goddard and Cummings, 1975), the chlorophycean 

green algae Chlamydomonas reinhardtii (Vahrenholz et al., 1993), and apicomplexans such as 

Theilera sp. (Kairo et al., 1994) and Babesia sp. (Brayton et al., 2007; Hikosaka et al., 2010)  

possess linear double-stranded mtDNA. Linear mtDNA is not exclusive to protist lineages and  

has also been found in the metazoan phylum Cnidaria (Beagley et al., 1998), yeasts 

(Fukuhara et al., 1993) and some fungi (Martin, 1995). However, one of the most unusual 

mitochondrial genome structures can be found in the kinetoplastids. Within the 

mitochondrial matrix of the kinetoplastids two different types of interlocked (or catenated) 

circular structures known as maxicircles and minicircles are found, which forms the 

kinetoplastid DNA (kDNA) (Lukeš et al., 2002; Morris et al., 2001). Maxicircles range in size 

from ~20 kb to ~40 kb depending upon species, and code for rRNA subunits and electron 

transport components and some proteins of still unknown function (Lukeš et al., 2002). A 

few dozen copies of the maxicircle are present per cell. In contrast, minicircles are usually 

~0.5 kb to ~2.5kb in size with several thousand minicircles per cell. Minicircles encode guide 

RNAs that are needed for editing cryptic pre-mRNAs into translatable mRNAs (Lukeš et al., 

2002).  

Size and gene content of mitochondrial genomes can vary greatly between eukaryotes. The 

parasitic alveolate Plasmodium falciparum has a small mitochondrial genome that is only 

5,967 bp (Gardner et al., 2002) in size, coding for only 3 proteins (Feagin, 1992; Feagin et al., 

1991); whereas the mitochondrial genome of the free-living jakobid Reclinomonas 

americana is 69,034 bp, and codes for 97 proteins which is one of the largest gene sets 

identified so far in mtDNA (Lang et al., 1997). More recently, other jakobids have been 

identified to have even larger mitochondrial genomes, encoding for even more proteins 

(Burger et al., 2013). The mitochondrial genome of Andalucia godoyi codes for exactly 100 

proteins (Burger et al., 2013). The mitochondrial genomes of the jakobid protists have many 

bacterial-like features. Many genes are retained within the jakobid mitochondrial genome 

that in other organisms have been transferred to the nucleus, for instance the mtDNA of 
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Reclinomonas americana still codes for many of the electron transport components and 

contains Shine-Delgarno motifs, which are classically associated with prokaryotes as the 

binding site for prokaryotic mRNA (Burger et al., 2013; Lang et al., 1997). Because of these 

unusual features, the mitochondrial genome of Reclinomonas americana and other jakobids 

have been the most informative in terms of revealing what the protomitochondrial genome 

of the last common ancestor may have contained (Burger et al., 2013; Gray et al., 1998; Lang 

et al., 1997). In comparison with the jakobids, the mitochondrial genome of the free-living 

heterolobosean Naegleria gruberi is smaller at 49,843 bp, and encodes for only 43 proteins 

(Rudinger et al., 2011). This indicates that the jakobids diverged earlier in evolutionary 

history than the heteroloboseans, and their bacterial-like mitochondria have been retained. 

Putting size in the context of nucleotides per haploid genome, the flowering land plant 

Arabidopsis thaliana has a mitochondrial genome that is 366,924 bp in size, but it only codes 

for 57 proteins (Unseld et al., 1997). Approximately 80% of the Arabidopsis mtDNA is non-

coding sequence. 

Whilst many eukaryotes are obligate aerobes, with ATP production revolving around the 

classic central metabolic processes that are compartmentalised in the mitochondria, there 

are also eukaryotes that were thought to lack mitochondria and were thus originally termed 

‘amitochondriate’. These eukaryotes grow within anoxic and/or microoxic environments, but 

careful molecular, ultrastructural and fluorescence-based microscopy approaches have 

shown that these eukaryotes contain degenerate forms of mitochondria. Perhaps the most 

well-known of these degenerate mitochondria are the hydrogenosomes. Hydrogenosomes 

were discovered in the 1970s (Lindmark and Müller, 1973), but their energy-generating 

capacity was initially poorly understood, and consequently their relationship to mitochondria 

took time to be established. The most reduced form of mitochondria are the mitosomes; 

discovered at the very end of the 20th century (Tovar et al., 1999) mitosomes are both highly 

reduced in terms of metabolic complexity and very small in size. Thus, a broad spectrum of 

mitochondrial diversity is apparent and collectively degenerate mitochondria are known as 

‘mitochondrion-related organelles’ or MROs. Currently, there is no example known of a 

eukaryote that lacks mitochondria entirely.  

Due to the huge variability in mitochondrial form and function it is difficult to categorise 

them even though these organelles share a single origin. Muller et al., (2012) suggested a 

new system for categorising mitochondria and related organelles into one of five classes: 

Class I - the classical aerobic mitochondria that generate ATP, have an electron transport 

chain and use oxygen as their terminal electron acceptor (described above). Class II - 
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anaerobic mitochondria that generate ATP, have an electron transport chain and can utilise 

an environmental electron acceptor such as nitrite or an endogenous electron acceptor such 

as fumarate as the terminal electron acceptor. Class III - hydrogen-producing mitochondria 

which generate ATP, can use protons as the terminal electron acceptor and still have an 

electron transport chain, albeit simplified in comparison with aerobic mitochondria. Class IV 

– hydrogenosomes which generate ATP and use protons as the terminal electron acceptor to 

generate hydrogen without the presence of an electron transport chain. Class V – mitosomes 

which do not generate ATP, lack electron transport chains and terminal electron acceptors. 

Anaerobic mitochondria are very much like classical mitochondria as in they have a proton-

pumping electron transport chain, but oxygen is not the terminal electron acceptor and an 

alternative electron acceptor is required. For instance, certain types of fungi, such as 

Fusarium oxysporum, rely on nitrate respiration under low-oxygen conditions, and they 

utilise environmentally-derived NO3
- or NO2

- to act as the terminal electron acceptor. These 

denitrifying mitochondria contain enzymes not found in aerobic mitochondria (Morozkina 

and Kurakov, 2007) such as nitrite reductase (NirK) for the reduction of NO2
- to NO 

(Kobayashi et al., 1996; Kobayashi and Shoun, 1995) or nitrate reductase (NaR) for the 

reduction of NO3
- to NO2

- (Kobayashi et al., 1996; Uchimura et al., 2002). NO can be further 

reduced to N2O by the nitric reductase enzyme (NoR) (Nakahara and Shoun, 1996). 

Endogenous terminal electron acceptors such as fumarate can also provide an alternative 

electron sink to oxygen. Here, glucose is converted to oxaloacetate then reduced further to 

form malate which is then either oxidised to form acetate or reduced further to form 

succinate and ultimately propionate, this dismutation occurs to retain a redox balance 

(Muller et al., 2012). Electron transport chains generally require a quinone to function as 

part of the electron transport shuttle. Under aerobic conditions, this function is performed 

by ubiquinone, but the redox potential of ubiquinone is too high to allow efficient electron 

transfer to fumarate (Van Hellemond et al., 1995). Alternative quinones with lower redox 

potentials that are capable of donating electrons to fumarate have been found in 

eukaryotes, such as rhodoquinone in parasitic helminths (Van Hellemond et al., 1995) and 

the excavate Euglena gracilis (Tielens et al., 2002). 

Perhaps the best characterised organism to contain class III hydrogen-producing 

mitochondria is Nyctotherus ovalis, a ciliate that colonises the hindgut of cockroaches. These 

mitochondria still retain a mitochondrial genome which encodes for an electron transport 

chain and some aerobic respiratory enzymes such as pyruvate dehydrogenase are still coded 

for in the nuclear genome; however they have a functioning hydrogenase, the archetypal 
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enzyme found in hydrogenosomes, which produces hydrogen. The characterisation of 

hydrogen production and mitochondrial genome architecture in N. ovalis provided a 

previously missing link that confirmed the mitochondrial ancestry of hydrogenosomes 

(Boxma et al., 2005b).  

The anaerobic excavate Tritrichomonas foetus is an obligate bovine parasite that lacks 

classical mitochondria and like its better known relation Trichomonas vaginalis, favours 

alternative anaerobic metabolic pathways for energy generation (Carlton et al., 2007). 

Tritrichomonas foetus was the first eukaryote described as producing molecular hydrogen via 

a highly active hydrogenase enzyme localised in ‘microbody-like’ organelles. These 

organelles were regarded to be the site of anaerobic catabolism where protons functioned 

as the terminal electron acceptors and thus named the ‘hydrogenosome’ (Lindmark and 

Müller, 1973). Since this seminal discovery, other unicellular eukaryotes, both parasitic and 

free living, from a wide variety of eukaryotic groups including fungi, excavates and 

alveolates, have been shown to possess hydrogenosomes (Barbera et al., 2010; Boxma et al., 

2007; Carlton et al., 2007; Embley et al., 2003; Makiuchi and Nozaki, 2014; Muller et al., 

2012; Yubuki et al., 2009).  

Hydrogenosomes are oxygen-sensitive organelles that generate H2 following the catabolism 

of typically glucose or malate. Pyruvate is derived from glucose by glycolysis or by the 

decarboxylation of malate and then oxidised using the enzyme pyruvate:ferredoxin 

oxidoreductase, rather than pyruvate dehydrogenase, to form acetyl CoA. Subsequently, 

rather being metabolised through the Krebs cycle, as in classic aerobic mitochondrial 

metabolism, the acetyl CoA formed is converted to acetate, H2 and CO2, thereby generating 

ATP exclusively by substrate-level phosphorylation. Protons are used as the terminal 

acceptor for electrons removed during substrate oxidation, in order to produce molecular 

hydrogen. This is a radically different biochemistry to that seen in classic mitochondria which 

typically use oxygen as the terminal electron acceptor and drives the generation of ATP by 

oxidative phosphorylation linked to the electron transport chain. By using protons as the 

terminal electron acceptor in the hydrogenosome instead of oxygen, an overall requirement 

for oxidative phosphorylation using either oxygen or other terminal acceptors such as NO3
-, 

NO2
- or fumerate, is eliminated (Muller, 1993).  

[FeFe]-hydrogenase is a metalloenzyme that is oxygen-liable and catalyses the reversible 

reaction 2H+ + 2e- ⇆ H2. It is the key characteristic enzyme that defines a class IV 

hydrogenosome. [FeFe]-hydrogenases are the fastest known catalysts for the formation of 
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molecular hydrogen, operating at turnover frequencies greater than 100 s-1   (Vincent et al., 

2007). Electron carriers such as NADH are also recycled during hydrogen generation, 

therefore serving an important role in the energy generation process during anaerobic 

fermentation (enzyme 4 in Figure 1.7 A).  

In hydrogenosomes, pyruvate:ferredoxin oxidoreductase (PFO), is another organelle-

characteristic, oxygen-sensitive enzyme that like pyruvate dehydrogenase (PDH) catalyses 

the oxidation of pyruvate to acetyl CoA (enzyme 1 in Figure 1.7 A). Whilst PFO is conserved 

amongst most anaerobic ciliates (Hackstein et al., 1999; Muller, 1993), no genes encoding 

PFO were found in Nyctotherus ovalis which instead contains a PDH (Boxma et al., 2005b); 

this provides further evidence that hydrogenosomes have mitochondrial ancestry. Both PFO 

and PDH are absent from the hydrogenosome-containing chytrid fungi Neocallimastix sp. 

and Pyromyces sp., and these organisms instead cleave pyruvate using pyruvate-formate 

lyase enzyme (Akhmanova et al., 1999). 

There are three known types of metal hydrogenase enzymes found in nature with their 

characterisation based upon their metal dependency: [NiFe]-hydrogenases, [FeFe]-

hydrogenases and [Fe]-hydrogenases. Unlike the [FeFe]-hydrogenases and [NiFe]-

hydrogenases that both catalyse the 2H+ + 2e- ⇆ H2 reaction, [Fe]-hydrogenases function as 

the so called H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) to 

catalyse an intermediary stop during the formation of methane from CO2. [Fe]-hydrogenases 

differ from the other two types of hydrogenases due to a lack of any Fe-S clusters and metal 

atoms in the active site (Vignais and Billoud, 2007). 

Many of the eukaryotic hydrogenases are [FeFe]-hydrogenases, which typically localise 

within hydrogenosomes. However genomic and biochemical analyses of some eukaryotes 

such as the amoebozoan parasite Entamoeba histolytica and the excavate Giardia have 

revealed active [FeFe]-hydrogenases, despite the presence in these organisms of mitosomes 

rather than hydrogenosomes (Horner et al., 2000; Nixon et al., 2003). In E. histolytica and 

Giardia, [FeFe]-hydrogenase is a cytosolic enzyme.  It was thought that the excavate fish 

parasite Spironucleus also lacked hydrogenosomes but still had functioning [FeFe]-

hydrogenase enzymes (Horner et al., 2000; Nixon et al., 2003). However recently, organelles  

with all the characteristics of hydrogenosomes were characterised in Spironucleus 

salmonicida (Jerlstrom-Hultqvist et al., 2013). 

Thus far, the active sites of all characterised [FeFe]-hydrogenases are found within a highly 

conserved metal binding domain known as the H-cluster which consists of a [4Fe-4S] cluster 
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connected to the [2Fe-2S] core via a single cysteinate residue, also attached to the [2Fe-2S] 

coordination centre are carbon monoxide, cyanide and dithiolate ligands (see Figure 1.7 B) 

(Camara and Rauchfuss, 2012; Mulder et al., 2011). 

All eukaryotes expressing an organellar [FeFe]-hydrogenase also require three maturation 

proteins, HydE, HydF and HydG, in order for the active holo-hydrogenase to bind its H-cluster 

and thus exhibit catalytic activity. It is thought HydE and HydG are directly involved in the 

biochemical synthesis of the H-cluster, allowing the synthesis of the associated ligands, 

whereas HydF is thought to serve a structural purpose and act as a specialised scaffold 

protein during the assembly of the mature hydrogenase holoenzyme (Mulder et al., 2011). 

Up until relatively recently, it was thought to be impossible for multicellular organisms to 

survive and reproduce in extreme anoxic conditions such as those found in hypersaline 

ocean basins. Due to the complete absence of oxygen and light, such basins were thought to 

be exclusively inhabited by chemotrophic prokaryotes and some unicellular eukaryotes. Yet 

Danovaro et al., (2010) reported the first metabolically active metazoan that completed its 

entire life cycle in the hypersaline sulphidic environment found in a deep Mediterranean 

ocean basin. These metazoans belong to the phyla Loricifera and thrive despite the complete 

lack of oxygen caused by the near-salt saturated brine that is denser than the oxic water 

above, and the toxic conditions caused by the sulphide produced by sulphate-reducing 

prokaryotes that also inhabit this environment (van der Wielen et al., 2005). The Loricifera 

are the first animals to be found that cope without the ‘absolute requirement’ for oxygen at 

any point in their life cycle because of a high abundance of hydrogenosomes in the cells, this 

illustrates how, at least in part, these animals have evolved and adapted to life in an extreme 

environment (Danovaro et al., 2010). 

Mitosomes remain highly reduced forms of mitochondria of ill-defined function. These 

organelles are drastically reduced in both size and biochemical complexity from the original 

proto-mitochondrion. They were first discovered in E. histolytica less than 20 years ago 

(Tovar et al., 1999). Mitosomes are not a site of ATP generation (Katinka et al., 2001) but the 

repertoire of enzymes and pathways found in mitosomes is still poorly understood. 

Mitosomes are bound by a double membrane but they do not contain a genome. Thus 

proteins active within mitosomes must be synthesised in and imported from the cytosol 

(Embley and Martin, 2006).  

With respect to protein import into mitosomes, some mitosomal proteins in microsporidian 

parasites and Giardia contain recognisable N-terminal or protein-internal motifs that direct 
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protein import into mitosomes. This mode of protein targeting also occurs in mitochondrial 

protein import, but both the complexity of the mitosomal protein import apparatus and the 

length of N-terminal targeting motifs are reduced in comparison with the mitochondrial 

protein import apparatus and mitochondrial protein-sorting motifs (Burri et al., 2006; 

Dolezal et al., 2005; Jedelsky et al., 2011; Regoes et al., 2005). Thus, the cryptic nature of the 

targeting or sorting motifs present in perhaps many mitosomal proteins adds to the difficulty 

in understanding precisely the role(s) that mitosomes play in different eukaryotes.  

The only biochemical pathway confirmed in mitosomes thus far is used for Fe-S cluster 

biosynthesis (Jedelsky et al., 2011; Martincova et al., 2015; Tovar et al., 2003). It appears that 

mitochondria, hydrogenosomes and mitosomes all possess Fe-S assembly pathways, and Fe-

S clusters are critical co-factors for a variety of essential proteins found inside and outside of 

mitochondria and MROs (Lill, 2009). Like the protein targeting and translocation system, the 

Fe-S cluster pathway also appears to be reduced in mitosomes compared to that found in 

the mitochondria. For instance, frataxin, a protein associated with Fe-S cluster assembly, is 

absent in the Giardia mitosome, although it has been found in the mitosome of the 

Microsporidian Encephalitozoon cuniculi (Goldberg et al., 2008). Because energy metabolism 

in Entamoeba and Giardia parasites is restricted to the cytosol, it is not clear how, or indeed 

if at all, the mitosomes of these parasites contribute to other cellular processes beyond Fe-S 

cluster assembly.  
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Figure 1.7  

Figure 1.7. Pyruvate metabolism in hydrogenosomes 

A. Metabolic pathways seen in hydrogenosomes. End products are shown in white on a black 

background. 1, Pyruvate:ferredoxin oxidoreductase; 2, malate dehydrogenase;  3, NAD:ferredoxin 

oxidoreductase; 4. FeFe-hydrogenase (highlighted in a red circle); 5, acetate:succinate CoA-

transferase; 6, succinate thiokinase. Modified image from Muller, (1993).  

B. Structural model of the active site common to all [FeFe]-hydrogenases. The H-cluster is linked 

to the FeS-cluster domains with their associated CO, CN
- 

and dithiolate ligands. The H-cluster 

contains the active site whilst the Fe-S clusters are involved in electron transfer to/from the active 

site. Modified from Camara and Rauchfuss, (2012). 

B. 

A. 
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1.5 Life cycle biology and metabolism of Trypanosoma brucei  

Trypanosomatids from the genus Trypanosoma that are capable of causing human pathology 

include members of the African trypanosome family and the South American parasite 

Trypanosoma cruzi (Simpson et al., 2006b). African trypanosomes can be the cause of both 

human and veterinary disease. The infection of susceptible cattle by a variety of African 

trypanosome species places a very significant economic burden on many sub-Saharan 

communities and countries (Reid et al., 2012; Sutherland et al., 2015). With respect to 

human African sleeping sickness, or human African trypanosomiasis, the two Trypanosoma 

brucei sub-species, T. b. gambiense and T. b. rhodesiense, cause disease. Human African 

trypanosomiasis (HAT) is endemic in over 25 sub-Saharan African countries putting an 

estimated 70 million people at different levels of risk for contraction of disease (Simarro et 

al., 2015; Simarro et al., 2012). 98% of declared sleeping sickness cases are caused by T. b. 

gambiense (Franco et al., 2014) which is endemic in many west and central African countries, 

particularly the Democratic Republic of Congo (Figure 1.8). The remaining cases of HAT are 

caused by T. b. rhodesiense, which is found in east and southern Africa, but is less adapted to 

human infection and is primarily a zoonotic disease. Typically, the two species are separated 

by the Rift Valley, with T.b. gambiense being prevalent to the west of the valley, and T. b. 

rhodesiense to the east (Figure 1.8)  (Franco et al., 2014). Left untreated, HAT is invariably 

fatal once clinical symptoms develop. A final T. brucei sub-species, T. b. brucei, is one of the 

trypanosome species responsible for African animal trypanosomiasis. It is also the sub-

species most amenable to laboratory culture and genetic manipulation and is the sub-

species used for the research described in this thesis. The three sub-species of T. brucei are 

morphologically indistinguishable, undergo the same developmental cycles in mammals and 

the tsetse fly vector, and exhibit the same stage-specific differences in metabolism.  

 Trypanosomatids have evolved a complex heteroxenous life cycle that requires replication 

and differentiation in both an insect vector and the vertebrate host. When the tsetse fly 

takes a blood meal from an infected vertebrate host, trypomastigotes are ingested. In the 

lumen of the midgut, any long slender forms either transform to short stumpy forms in the 

anterior of the midgut or die. At the posterior of the midgut, in the endoperitrophic space, 

short stumpy forms in turn differentiate into procyclics, which are well-adapted for survival 

in the insect vector (Vickerman, 1985) (Figure 1.9). The length of the cells increases in the 

procyclic form, the parasites can replicate and the mitochondrion expands throughout the 

cell, forming an elaborately branched network, which reflects the marked changes in 

metabolic pathways utilised by the cells (Rotureau et al., 2012; Vickerman, 1985). The 
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procyclic forms then penetrate the peritrophic membrane to enter the ectoperitrophic 

space, where they continue to divide and replicate. From here, the parasites migrate to the 

salivary glands of the tsetse fly, where they progress through a series of stages. The first 

stage is an adherent epimastigote stage, in which the trypanosome attaches to the epithelial 

cells of the gland lumen via the flagellum. Epimastigotes are highly proliferative and quickly 

establish a colony in the salivary glands. Epimastigotes then differentiate into ‘premetacyclic’ 

trypomastigotes which are still attached to epithelial cells, can still divide and still have the 

branched mitochondrion. This stage is characterised by the presence of two flagella. Upon 

division, one of the cells can give rise to a ‘nascent pre-metacyclic’ form, which has a variable 

surface antigen (VSG) coat and can rapidly assume the metacyclic form ready for infection of 

the mammalian host (Rotureau et al., 2012; Vickerman, 1985). The metacyclic form is the 

vertebrate-infective, free-swimming stage that cannot proliferate, has a repressed, tubular 

mitochondrion and possesses a VSG coat.  

Tsetse flies infected with trypanosomes display altered behavioural patterns. Flies are forced 

into taking longer and more frequent blood meals, which increases the likelihood of the 

parasites infecting the mammalian host (Van Den Abbeele et al., 2010). Once a host is bitten 

by the tsetse fly, most of the infective metacyclics are ejected from the salivary glands and 

injected into the host dermis and bloodstream. They are extracellular parasites that must 

rapidly differentiate into long slender (LS) forms in order survive and proliferate by binary 

fission in the bloodstream and lymphatic system of the host. In later stages, LS forms can 

cross into choroid plexus from where they have access to the cerebrospinal fluid and the rest 

of the brain (Vickerman, 1985). Once a critical cell density has been reached, LS forms begin 

to differentiate into short stumpy (SS) forms (Matthews, 1999) which are incapable of 

proliferation but are viable for differentiation into the procyclic form if ingested by the tsetse 

fly again. Parasitemia levels fluctuate throughout the course of infection in the mammalian 

host, dependent upon the host immune system responses and the parasite evasion by 

expression of various VSG coats (MacGregor et al., 2012).  

Bloodstream trypanosomes have had to devise ingenious methods in order to evade the host 

immune system and the most well-known evasion mechanism is antigentic variation. The 

surface of T. brucei is densely covered by a coat of a single variant surface glycoprotein 

(Vickerman, 1969) that can be replaced by expressing a different VSG gene, once the 

immune system raises antibodies against the first (McCulloch, 2004). 
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A widely held belief is that parasites stream-line their biology as a consequence of 

adaptation to obligate parasitism. This is most often commented upon with respect to 

metabolism. T. brucei can be characterised by its unusual metabolic compartmentalisation 

and life cycle remodelling of glycolysis and mitochondrial metabolism. In T. brucei and other 

kinetoplastids, the majority of glycolytic enzymes are exclusively found within peroxisomes 

(Haanstra et al., 2015; Opperdoes and Borst, 1977). As a consequence of glycolytic enzymes 

being the most abundant enzymes and the most obvious pathway present in kinetoplastid 

peroxisomes, these peroxisomes are better known as glycosomes (Haanstra et al., 2015). 

As T. brucei progresses through its complex life cycle, in addition to dramatic changes in 

morphological form, there are also significant changes in metabolism that reflect adaptation 

to different niches in host and vector. In the mammalian bloodstream (a glucose-rich 

environment) T. brucei is pleomorphic in form, with long slender, intermediate, and short 

stumpy trypomastigote forms present at different points during chronic parasitemia 

(Matthews et al., 2015). Long slender bloodstream forms utilise glucose as the sole source of 

carbon for ATP production and rely exclusively on glycolysis for this ATP production (Figure 

1.10). The first seven enzymes of glycolysis, which catalyse the catabolism of glucose to 3-

phosphoglycerate, occur exclusively in the glycosomes (Opperdoes, 1987; Opperdoes and 

Borst, 1977; van Hellemond et al., 2005; Vickerman, 1985). The remaining reactions of 

glycolysis occur in the cytosol, pyruvate is excreted as the waste end product, and net ATP 

production for the cell is catalysed by pyruvate kinase (PYK). The NADH generated during 

glycolysis is oxidised via a redox shuttle involving mitochondrial glycerol-3-phosphate 

dehydrogenase and the alternative oxidase, which uses O2 as a terminal electron acceptor to 

produce H2O (Michels et al., 2000).  

Glycolysis in trypanosomes differs from other organisms not only in respect of glycosomal 

compartmentalisation, but also because there are no negative feedback mechanisms to 

regulate either hexokinase or phosphofructokinase activities. Glycosomal 

compartmentalisation either influenced or is influenced by the absence of these regulatory 

controls (Gualdron-Lopez et al., 2012; Michels et al., 2000; Tielens and van Hellemond, 

2009). The glycosome is essential in trypanosomes as it protects against the accumulation of 

hexose phosphate intermediates that are produced during the initial steps of glycolysis 

(glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate) (Haanstra et al., 

2014).  
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The relative simplicity of energy metabolism in long slender bloodstream forms required to 

provide the energy requirements of the long slender form is also reflected in the structure of 

the mitochondrion, which is not directly utilized in energy generation. The long slender 

mitochondrion is greatly repressed and reduced in size and metabolic complexity compared 

to that in the procyclic form. Thus, in bloodstream T. brucei, the mitochondrion is an 

unbranched linear structure that runs from the anterior to the posterior of the cell and 

virtually lacks cristae (see Figure 1.9), there is also an absence of cytochromes and a 

functional Krebs cycle (Michels et al., 2000; Morgan et al., 2004; Opperdoes, 1987; 

Vickerman, 1985). As T. brucei differentiates from the long slender form into the short 

stumpy form via an intermediate stage, the mitochondrion begins to elongate and swell, 

forming tubular cristae as it primes its metabolism ready for uptake by a tsetse fly; an 

environment that is very different from the mammalian bloodstream and requires a more 

extensive metabolism that requires the processing of amino acids (Vickerman, 1985). 

Once in the tsetse midgut, the short stumpy forms differentiate into the procyclic form, 

which see a dramatic change in the mitochondrion and biochemistry of T. brucei since it is an 

environment that is not abundant in glucose. The mitochondrion becomes more activated 

with respect to ATP production, resulting in expansion and elongation throughout the cell as 

it increases in length, forming an extensively branched network with discoid cristae 

(Vickerman, 1985) (see Figure 1.9). This change in mitochondrial form marks a switch to 

amino acid metabolism, which now becomes the principal energy source, rather than 

glucose which is limited in its availability within the insect vector. 

As differentiation from the short stumpy form to the procyclic form begins, remodelling of 

the pathways in the glycosome also occurs. Another isoform of phosphoglycerate kinase 

(PGK) is expressed, which is found in the cytosol, and expression of glycosomal PGK declines. 

Expression of pyruvate phosphate dikinase (PPDK) is now seen in glycosomes. This enzyme 

converts phosphoenolpyruvate (PEP) into pyruvate, synthesising ATP from AMP and PPi and 

thus competes at some level with pyruvate kinase for the PEP substrate. Most of the 

pyruvate generated from PEP is decarboxylated  in the mitochondria to form acetyl-CoA by 

the enzyme pyruvate dehydrogenase (Bringaud et al., 2006). Alternately, PEP can be 

converted to oxaloacetate by the enzyme phosphoenolpyruvate carboxykinase. 

Oxaloacetate can be converted into malate for use in succinate production within the 

glycosome or the mitochondria. Other enzymes including malate dehydrogenase, fumarase 

and fumarate reductase are also found in the glycosome, and contribute to the formation of 
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succinate as a metabolic end product; this succinate production has the potential to 

contribute to glycosomal redox balance (see Figure 1.11). 

In procyclic forms, acetyl CoA produced from decarboxylation of pyruvate or amino acid 

metabolism is not oxidised through the Krebs cycle, which in T. brucei is incomplete due to 

the absence of NAD-dependent isocitrate dehydrogenase. Instead, acetyl CoA is 

predominantly converted into acetate by the activity of acetate:succinate CoA-transferase 

(ASCT). ATP is generated when the succinyl-CoA co-product of the ASCT-catalysed reaction is 

converted back to succinate by succinyl-CoA synthase. Electrons transferred to mitochondrial 

NADH through a variety of enzyme-catalysed reactions, including reactions catalysed by PDH 

and the Krebs cycle enzymes which are present, enter the mitochondrial electron transport 

chain, for cytochrome dependent respiration and oxidative phosphorylation (Bringaud et al., 

2006). 
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Figure 1.8  
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Figure 1.9  

Figure 1.9. The biochemical changes T. brucei undergoes as it proceeds through its complex life 

cycle, including stages in both the mammalian and insect hosts. The cartoons are reproduced 

from Vickerman, (1985).  
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Figure 1.10 

Figure 1.10. Metabolic pathways in the bloodstream form of T. brucei showing the conversion of 

glucose into pyruvate via the glycolytic pathway. Image adapted from the original Michels et al., 

(2000). 
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  Figure 1.11  

Figure 1.11. A schematic map detailing the metabolic pathways found in the procyclic form of T. 

brucei. End products are shown in white on a black background. Abbreviations are shown in 

Appendix I. Modified from Bringaud et al., (2006).  



43 
 

 

1.6 Ecology of Naegleria 

The only free-living excavate protist for which a nuclear genome sequence is freely available 

is Naegleria gruberi (Fritz-Laylin et al., 2010b). The heterolobosean group to which Naegleria 

belongs is sister to the Euglenozoa (the group to which the trypanosomatids belong) in many 

phylogenetic analyses. Naegleria species have been isolated from freshwater and soil 

environments worldwide, including in Polar regions (De Jonckheere, 2004, 2006). Naegleria 

can be found as any of three morphological forms. These protists grow, feed and replicate as 

amoebae, predating on bacteria within the environment (although they can be cultured in 

the laboratory using axenic media (Fulton et al., 1984)). In response to various 

environmental cues, for instance oxygen levels, pH and prey density, the amoebae rapidly 

differentiate into a biflagellate form (Dingle and Fulton, 1966; Fritz-Laylin et al., 2010a; 

Fulton, 1977; Fulton and Walsh, 1980). In order for this differentiation process to take place, 

the actin-based cytoskeleton is replaced by a microtubule-based cytoskeleton which requires 

de novo assembly of the two basal bodies from which flagellum growth is templated (Fritz-

Laylin et al., 2010a; Fritz-Laylin and Cande, 2010). Naegleria cannot replicate or feed in its 

flagellate form, but the two flagella are able to locomote the cell to potentially more 

hospitable environments more quickly than the amoebal form can crawl. Finally, encystment 

can be stimulated by a wide variety of biotic or abiotic factors such as overcrowding in a 

population niche, complete absence of food or a significant increase in salt concentration. 

Naegleria cysts are refractory to damage from desiccation, rapid changes in temperature and 

nutrient withdrawal (De Jonckheere and van de Voorde, 1976; Marciano-Cabral, 1988). Pores 

are present in the walls of the cysts, and these are sealed by a mucoid plug (Schuster, 1975). 

The pores allow for rapid escape of the excysting Naegleria, once environmental conditions 

become more favourable for growth and division. Triggers for excystment include the 

introduction of water or increased concentrations of carbon dioxide, which serves as in 

indicator for elevated numbers of bacterial prey (Averner and Fulton, 1966). Once excysted, 

the amoebae leave behind their cyst walls.   

Whilst N. gruberi is non-pathogenic to humans, N. fowleri is a deadly opportunistic pathogen. 

N. fowleri is a moderate thermophile which can replicate in temperatures of up to 45°C 

(Visvesvara et al., 2007). Within the environment, N. fowleri is easily found in warm fresh 

water including lakes, streams and rivers in at least North America, central Europe, Asia and 

Australia. It can also be isolated from the runoff emanating from nuclear power stations 
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(Huizinga and McLaughlin, 1990; Jamerson et al., 2009). Human infection can arise following 

exposure to fresh, warm water environments where the amoebal load is high.  

The amoebal trophozoites enter the body through the nasal passages and are thought to be 

phagocytosed by the structural cells that line the olfactory epithelium (Visvesvara et al., 

2007). The trophozoites then migrate along the olfactory nerves, pass through the small 

holes in the cribriform plate and penetrate the delicate arachnoid mater to enter the 

subarachnoid space. From there, the trophozoites can penetrate the pia mater and enter the 

brain parenchyma (Visvesvara et al., 2007). Once N. fowleri reaches the brain it begins to 

multiply and cause necrosis of the surround tissue, which initiates a strong inflammatory 

immune response and haemorrhaging. This infection is referred to as primary amoebic 

meningoencephalitis (PAM) (Cervantes-Sandoval et al., 2008; Marciano-Cabral and Cabral, 

2007; Visvesvara et al., 2007). 

Fortunately, infection of people by N. fowleri is rare, but sadly the fatality rate from infection 

is greater than 95%; many of the victims of PAM are children (De Jonckheere, 2011). The 

earliest recorded fatalities from N. fowleri infections date back to 1961 (Fowler and Carter, 

1965) and as well as infections stemming from bathing in open warm water, N. fowleri 

infections have also occurred as a consequence of bathing in swimming pools when 

chlorination has not been optimum and poor maintenance of the pool structure allows the 

amoebae to persist in concrete crevices (Kadlec et al., 1978). Unfortunately, there are no 

effective treatments for N. fowleri-dependent PAM and with death ensuing rapidly following 

the onset of symptoms (as quickly as within a week of infection), rapid diagnosis of N. fowleri 

as the cause of infection would also be required for any new anti-Naegleria medicine to be 

effective.  

Sequencing and annotation of the nuclear genome of Naegleria gruberi NEG-M has 

highlighted the extent of Naegleria’s potential metabolic flexibility (Fritz-Laylin et al., 2011; 

Fritz-Laylin et al., 2010b; Ginger et al., 2010). On the one hand, the Naegleria genome 

contains genes encoding enzymes and proteins required for a mitochondrial respiratory 

chain for aerobic respiration similar to that seen in T. brucei and a complete Krebs cycle 

(Fritz-Laylin et al., 2010b; Opperdoes et al., 2011). The first step of glycolysis in many 

organisms is catalysed by hexakinase; Naegleria, however, lacks this enzyme and instead has 

glucokinase which has specificity only for glucose but not other carbohydrates. N. gruberi 

also lacks the second glycolytic enzyme, ATP-dependent phosphofructokinase (PFK), and has 

pyrophosphate- (PPi-) dependent PFK in its place – PPi-dependent PFK is commonly 
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associated with anaerobes and prior to genome sequencing, was the only clue for a potential 

for anaerobic metabolism in this ubiquitous amoeba.  

On the other hand, in addition to the potential for classic aerobic respiration, N. gruberi also 

appears to possess genes for a complex anaerobic metabolism too (Fritz-Laylin et al., 2010b). 

In the absence of O2, it is possible that in Naegleria NO3
- or NO2

- respiration may take its 

place as the terminal electron acceptor, as indicated by the identification of homologues to 

fungal nitrite reductase (NirK) enzymes (Ginger et al., 2010). Denitrification consists of four 

reduction steps as shown in the equation: NO3
− → NO2

− → NO → N2O → N2 to produce 

gaseous nitrogen from nitrate and/or nitrite ions and such systems are closely associated 

with a wide range of bacteria and certain denitrifying fungi such as Fusarium oxysporum and 

Aspergillus oryzae (see Section 1.4). Curiously, the NirK enzyme in Naegleria is encoded for in 

the nuclear genome, along with four putative adenylate cyclases that have been identified to 

contain nitrate-nitrite-sensing (NIT) domains (Fritz-Laylin et al., 2010b; Ginger et al., 2010).  

NIT domains are found in certain bacteria and recognise NO3
− and NO2

− ions for the 

regulation of cellular processes such as gene expression, enzyme activity and metabolism, 

dependent upon nitrate and nitrite concentrations (Shu et al., 2003). This perhaps points to a 

small metabolic network centred upon NO2
− detection and metabolism in Naegleria. 

Another method of anaerobic respiration may be available to Naegleria by using substrate-

level phosphorylation of ADP to generate ATP using the enzyme acetyl CoA synthetase (ADP 

forming) (Fritz-Laylin et al., 2010b; Ginger et al., 2010). Under anaerobic conditions, i.e. in 

the absence of a functional Krebs cycle, the acetyl CoA derived from pyruvate could 

potentially be converted to acetate in order to generate ATP as shown in the following 

equation: acetyl CoA + ADP + Pi ⇌ acetate + CoA + ATP, as seen in the anaerobic 

amoebozoan parasite Entamoeba histolytica (Jones and Ingram-Smith, 2014).  

When oxygen and nitrate are both absent, the genome sequence of N. gruberi suggests a 

capacity to produce molecular hydrogen by hydrogen fermentation. Thus the nuclear 

genome revealed the presence of a FeFe-hydrogenase enzyme, along with its three 

associated post-translational maturases (HydE, HydF and HydG) that contain N-terminal 

mitochondrial transit peptides (Fritz-Laylin et al., 2010b; Ginger et al., 2010). In a 

fermentation role, i.e. presumably in Naegleria anaerobic metabolism, FeFe-hydrogenase 

catalyses the formation of molecular hydrogen, using protons from reduced electron carriers 

(such as NADH) that acted as electron acceptors during fermentation (Vignais and Billoud, 

2007). Due to the presence of the Naegleria maturation system, it suggests that Fe-
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hydrogenase activity would be organellar rather than cytosolic (Fritz-Laylin et al., 2010b). 

Whilst I was carrying out some of the experiments described in this thesis, it was suggested 

that laboratory-adapted N. gruberi is indeed capable of a low rate of H2 production (Tsaousis 

et al., 2014), although this work also gave FeFe-hydrogenase localisation that is contradictory 

to the data I show in Chapter 6.  

 

1.7 Overview of thesis results 

In the results chapters that follow, I first present data from experiments to determine the 

function of a paralogous pair of novel mitochondrial histidine phosphatases in T. brucei. 

Intriguingly, orthologues of these proteins are present in only a few eukaryotes including 

other excavates with aerobic mitochondria. Finally, in Chapter 6, I will report results of 

experiments designed to determine the localisation of enzymes from Naegleria’s predicted 

repertoire of anaerobic metabolism.  
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Chapter 2 

Materials and Methods 

 

2.1 Buffers & solutions (listed in alphabetical order) 

Agarose Gel Electrophoresis 6x Sample Loading Buffer –0.15% orange G, 30% glycerol in H2O 

Blocking Buffer A – 1x PBS, 0.05% Tween-20, 5% Dried Skimmed Milk 

Blocking Buffer B – 1x PBS, 0.01% BSA 

BPP Buffer B – 100 mM NaH2PO4, 10 mM Tris·Cl, 8 M Urea, pH 8.0 

BPP Buffer C – 100 mM NaH2PO4, 10 mM Tris·Cl, 8 M Urea, pH 6.3 

BPP Buffer D – 100 mM NaH2PO4, 10 mM Tris·Cl, 8 M Urea, pH 5.9 

BPP Buffer E – 100 mM NaH2PO4, 10 mM Tris·Cl, 8 M Urea, pH 4.5 

Column Wash Buffer* – 2 M NaCl, 50 mM Tris∙Cl (pH 7.5) 

Coomassie Brilliant Blue Stain – 45% Methanol, 10% Glacial Acetic Acid, 45% H2O, 0.05% 
Coomassie Brilliant Blue R-250 

Coupling Buffer – 0.1 M Na3C6H5O7, 0.05 M Na2CO3 (pH 7.2) 

Destain Solution – 45% Methanol, 10% Glacial Acetic Acid, 45% H2O 

Elution Buffer* (EB) – 10 mM Tris-HCl, pH 8.0 

Equilibration Buffer* - 150 mM NaCl, 50 mM Tris∙Cl (pH 7.4) 

Genomic DNA (gDNA) extraction buffer – 50 mM Tris, 100 mM NaCl, 1 mM EDTA 

Hemin Stock* (for SDM-79) – 4% Hemin in 0.1 M NaOH 

IMAC Binding Buffer* - 8 M Urea, 29 mM Tris∙Cl (pH8.0), 500 mM NaCl, 0.02% Triton-X, 25 
mM Imidazole, 10% Glycerol 

IMAC Denaturing Buffer* - 6 M Guanidine, 20 mM Tris∙Cl (pH 8.0), 500 mM NaCl, 0.02% 
Triton-X, 25 mM Imidazole, 10% Glycerol 

IMAC Elution Buffer* - 8 M Urea, 29 mM Tris∙Cl (pH8.0), 500 mM NaCl, 0.02% Triton-X, 500 
mM Imidazole, 10% Glycerol 

IMAC Nickel Sulphate* – 100 mM NiSO4 

Inhibitor Cocktail – Halt Protease Inhibitor single-use Cocktail (ThermoFischer), 200 mM 
TLCK, 200 mM PMSF, 1 M Benzamidine 



48 
 

Laemmli Buffer – 100 mM Tris∙Cl (pH 6.8), 200 mM Dithiothreitol (DTT), 4% SDS, 0.2% 
Bromophenol Blue, 20% Glycerol 

LB Agar - 10 g/l Tryptone, 5 g/l NaCl, 5 g/l Yeast Extract, 1.5% (w/v) Agar 

LB Broth (Low Salt) – 10 g/l Tryptone, 5 g/l NaCl, 5 g/l Yeast Extract  

Lysis Solution (Fermentas) – GeneJET™ Plasmid Miniprep Kit; GeneJET Plasmid Maxiprep Kit 

MS-ABC Solution – 50 mM Ammonium Bicarbonate 

MS-Elute Solution – 0.1% Trifluoroacetic acid, 70% Acetonitrile 

MS-IAA Solution – 8 M Urea, 1% SDS, 50 mM Iodoacetamide 

MS-IG-Extraction Buffer – 1:2 (v/v) 5% Formic Acid : 100% Acetonitrile 

MS-IG-IAA Solution – 55 mM Iodoacetamide, 100 mM Ammonium Bicarbonate 

MS-Solubilisation Buffer – 8 M Urea, 1% SDS 

MS-TFA Solution – 0.1% Trifluoroacetic acid 

M7 Axenic Media* - 308 mM L-methionine (1.5 g/l), 29 mM D-glucose (270 g/l), 0.02% Buffer 
Solution ([133 mM KH2PO4 [18.1 g/l]], [176 mM Na2HPO4 [25 g/l]]), Yeast Extract (25 g/l), 10% 
heat-inactivated foetal calf serum. Stored at 4°C 

Neutralization Solution (Fermentas) – GeneJET™ Plasmid Miniprep Kit; GeneJET Plasmid 
Maxiprep Kit 

PBS-Tween – 1x PBS, 0.05% Tween-20 

Protein Transfer Buffer – 39 mM Glycine, 48 mM Tris, 0.037% SDS, 20% Methanol 

Quenching Buffer – 1 M Tris.Cl (pH 7.4) 

ReddyMix® PCR Master Mix (Thermo Prime) – 1.25 U ThermoPrime Plus DNA Polymerase, 75 
mM Tris∙Cl (pH 8.8), 20 mM (NH4)2SO4, 1.5 mM MgCl2, 0.01% (v/v) Tween-20, 0.2 mM dATP, 
0.2 mM dCTP, 0.02 mM dGTP, 0.02 mM dTTP, Precipitant and Red Dye for Electrophoresis 

Resuspension Solution (with RNaseA added) (Fermentas) - GenJET™ Plasmid Miniprep Kit; 
GeneJET™ Plasmid Maxiprep Kit 

SB-1 Buffer – 0.25 M HCl 

SB-Denaturation Buffer – 0.5 M NaOH, 1.5 M NaCl  

SB-Neutralisation Buffer – 1 M Tris HCl (pH 8.0), 1.5 M NaCl 

SB-SSC (Standard Saline Citrate) 20x – 3 M NaCl, 300 mM Trisodium Citrate 

SB-Hybridization Buffer – 12% Urea, 0.5 M NaCl, 4% Blocking Reagent (from Amersham 
AlkPhos Direct Labelling and Detection System Kit [RPN3690]) 

SB-Primary Wash Buffer – 2 M Urea, 0.1% SDS, 0.5 M NaH2PO4·H2O, 150 mM NaCl, 1 mM 
MgCl2, 0.2% Blocking Reagent (from Amersham AlkPhos Direct Labelling and Detection 
System Kit [RPN3690]) 
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SB-Secondary Wash Buffer 20x* – 1 M Tris, 2 M NaCl, pH 10.0 

SDM-79* - SDM-79 powder (Gibco) (Brun and Schonenberger, 1979) hydrated in 5 L of H2O 
with 2 g/l sodium bicarbonate and filtered into 500 ml aliquots (pH 7.3). Each aliquot 
supplemented with 7.5 mg/l haemin (10 mg/ml stock in 0.1 M NaOH) and 50 ml heat 
inactivated foetal calf serum before use. Everything stored at 4°C 

SDS-PAGE 8% Tris-glycine Resolving Gel – 8% Acrylamide mix, 1.5 M Tris∙Cl (pH 8.8), 8% SDS, 
0.04% Ammonium persulphate, 0.1% N, N, N’, N’,-tetramethylethylenediamine (TEMED) 

SDS-PAGE 5% Stacking Gel – 5% Acrylamide, 1 M Tris (pH 6.8), 10% SDS, 10% Ammonium 
Persulphate, 0.02% TEMED 

SDS-PAGE Running Buffer (5x Stock) – 125 mM Tris, 1.25 M Glycine, 0.5% SDS 

SDS-PAGE Transfer Buffer – 48 mM Tris, 39 mM Glycine, 0.037% SDS, 20% Methanol 

Slide Fixative – 3.7% (w/v) PFA in 1x PBS 

S.O.C medium – 2% Tryptone, 0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 
10 mM MgSO4, 20 mM Glucose 

SS-Fixation Buffer – 50% Ethanol, 10% Glacial Acetic acid 

SS-Rehydration Buffer – 3% Ethanol, 0.83 M Sodium Acetate, 0.00125% Gluteraldehyde, 
0.5mM Sodium Thiosulphate (Na2S2O3·5H2O) 

SS-Silver Solution – 5.89 mM Silver Nitrate, 2.66 mM Formaldehyde 

SS-Developer Solution – 236 mM Sodium Carbonate, 1.33 mM Formaldehyde 

SS-Stop Solution – 0.04 M EDTA, Disodium Salt, Dihidrate (C10H14N2NA2O8·2H2O) 

TAE Buffer (1x) – 40 mM Tris Acetate, 1 mM EDTA (pH 8.5) 

TBE Buffer (0.5x) – 45 mM Tris-borate, 1 mM EDTA 

Wash Buffer – 1x PBS, 0.05% Tween-20, 5% Dried Skimmed Milk, 0.5% BSA  

Wash Solution (concentrated) (with EtOH added) (Fermentas) – GeneJET™ Plasmid Miniprep 
Kit; GeneJET Plasmid Maxiprep Kit 

ZMG Buffer – 132 mM NaCl, 8 mM KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4, 0.5 mM Magnesium 
acetate, 0.09 mM Calcium acetate, 1% Glucose, pH 7.0 

 
* Required Filtration before Use 
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2.2 Antibiotic and drug stock solutions 

Table 2.1. The antibiotics and drugs used and the filtered stock solutions they were made up 
at. 

Antibiotic: Working Concentration: Use: 

Ampicillin (Sigma) 100 µg/ml Selectable marker for E. coli 

Blasticidin (Sigma) 10 µg/ml Selectable marker for trypanosomes 

Chloramphenicol (Sigma) 25 mg/ml (in 100% ethanol) Selectable marker for E. coli 

Doxycycline (Sigma) 1 µg/ml Inducible expression in trypanosomes 

Hygromycin (Sigma) 20 µg/ml Selectable marker for trypanosomes 

Kanamycin 10 mg/ml Selectable marker for E. coli 

Phleomycin (Sigma) 7.5 µg/ml Selectable marker for trypanosomes 

Puromycin (Sigma) 1 µg/ml Selectable marker for trypanosomes 
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2.3 Antibodies  

Table 2.2. The antibodies used in Western blotting and fluorescence microscopy. 

Antibody: Animal Raised in: Dilution: Source: 

anti-HA Mouse 1/100 Abcam 

anti-myc Mouse 1/1000 Abcam 

anti-GFP Mouse 1/100 Roche 

anti-mouse IgG conjugated to Rhodamine Goat 1/200 Chemicon 

anti-mouse IgG conjugated to FITC Goat 1/200 Chemicon 

Streptavidin conjugated to TRITC N/A 1/200 Abcam 

anti- 6x His Mouse 1/5000 Clontech 

NgFeHyd Rabbit 1/250 Covalab 

FeHydΔ274-752 Chicken 1/1000 Covalab 

anti-mouse IgG HRP conjugate Goat 1/80000 Sigma 

anti-rabbit IgG HRP conjugate Goat 1/30000 Dako 

Streptavidin conjugated to HRP N/A 1/10000 Abcam 
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2.4 Oligonucleotide primers 

All custom oligonucleotides were ordered from Eurofins MWG Operon and resuspended in 

filtered EB buffer (Fermentas) to 100 µM prior to long-term storage at -20°C. 

Oligonucleotides were then diluted to 10 µM prior to use in PCR. 

Table 2.3. Custom primer sequences used in PCR reactions. F, forward primer; R, reverse 
primer; * denotes primers used in gene knockout experiments in T. brucei.  

Primer Name Primer Sequence (5’ to 3’) 

40ORF F* cgcgatatcatgtcacgatgtgggcgcaagctggatatg 

40ORF R* atactcgagccggtccgttccctcgcctgcggaaaagg 

TbHP30HA F cgcgatatcatggcagttgtacgcaggtg 

TbHP30HA R atactcgagcatgaaaggcgctccagtactc 

UpIG0445 F* ctatgagtctaaactgagcg 

UpIG0445 R* ccgtcatgatgcaaggatc 

30ORF F* tatggatcctcaaccaactacccagacagtg 

30ORF R* tatctcgagtcaactgtcaggttaaacc 

4030KOA F* aagctggatatgtcgagtggttactggctctgggtcccattgtttgcctc 

4030KOB R* ttgagttgtgatatgtcacgatgtgggcgcaagctggatatgtcgagtgg 

4030KOC F* tcccagtacctgcttgttgcgatatttgtatattttatggcagcaacg 

4030KOD R* tcacatgaaaggcgctccagtactcatggatcccagtacctgcttgttgc 

4030KO5 F* catatgcacatgtacacacg 

4030KO6 R* atctccctgtacacttctgg 

NgHydE F ccgaagcttatgatgaagggattgaaaaaatcagc 

NgHydE R atgctcgagttccttgttcggtactttc 

NgHydF F gcgaagcttatgaaatcacatcaacaacacttgatcc 

NgHydF R ttgctcgagttgagatggagttgaagg 

NgHydG F gggaagcttatgaagagtttagctagattgg 

NgHydG R ccactcgagatagtaaatatctctgacaccttcagc 

 

Synthetic genes were also ordered as appropriate from Eurofins MWG Operon and 

resuspended in filtered EB buffer prior to long term storage at -20°C.  
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2.5 Polymerase chain reaction 

Standard (i.e. for some cloning, for amplification of probes for Southern blot analysis and for 

mapping stable integrations in T. brucei) PCR reactions were set up using Reddymix® PCR 

Master Mix (ThermoPrime), 1 µl of 10 µM forward primer, 1 µl of 10 µM reverse primer, 3 µl 

of gDNA template (~100 pg) and 7.5 µl of H2O. The standard PCR program used is described 

in Table 2.3. 

For high fidelity PCR reactions, the Expand™ System (Roche) was used and the following set 

up: 5 µl of buffer with 15 mM MgCl2 (10x), 1 µl of dNTPs (10 mM), 1 µl of 10 µM forward 

primer, 1 µl of 10 µM reverse primer, 3 µl of gDNA template (~100 pg), 1 µl Expand™ Taq 

DNA Polymerase (2.5 U) and 38 µl H2O. The standard PCR program used is described in Table 

2.3.  

PCR products were purified using the GeneJET™ PCR Purification Kit (Fermentas) following 

the purification protocol as described in Thermo Scientific GeneJET PCR Purification Kit 

#K0701, #K0702. 

Table 2.4. Standard PCR program used.  

Number of Cycles Stages Temperature (°C) Time 

1 Initial Denaturation 94 5 min 

 

25 

Denaturation 94 30 s 

Annealing 50 50 s 

Elongation 72 1 min 50 s 

1 Final Extension 72 5 min 

- Hold 4 - 

 

2.6 Agarose gel electrophoresis 

Gel electrophoresis was used to analyse PCR products and sub-cloning of DNA between 

plasmids. 0.8% agarose gels were cast using 1x TAE. Samples were loaded with 1x DNA 

loading buffer and 4 µl GeneRuler™ 1 kB DNA ladder (Fermentas) was used as standard 

molecular weight marker. Gels were run at 70 V for approximately 45 min and post-stained 

using Gel Red (at a concentration of 1 µl per 20 ml of 1x TAE). Gels were imaged using the 

Gel Doc EZ System (Bio-Rad). 
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2.7 DNA ligation  

Ligation reactions for the insertion of purified PCR amplicons into pGEM®-T Easy (Promega) 

(Appendix II Figure B.1 ) were prepared using an insert:vector ratio of 3:1, along with T4 DNA 

ligase and 2x Rapid Ligase Buffer at room temperature overnight. The protocol described in 

the Promega Technical Manual - pGEM®-T and pGEM®-T Easy Vector Systems followed 

precisely. 

For protein expression, DNA inserts were cloned into pET-28a (Novagen) (Appendix II Figure 

B.2). Inserts were prepared for cloning by release from T Easy vectors using stated restriction 

enzymes and ligated with pET-28a vector that had previously been digested with the same 

enzymes, and then purified by gel extraction. Ligations were again prepared using an 

insert:vector ratio of 3:1, along with T4 DNA ligase and 2x Rapid Ligase Buffer at room 

temperature overnight.  

 

2.8 Transformations of E. coli 

XL-1 Blue Subcloning-Grade competent cells (Stratagene) were used for most routine 

cloning, with Rosetta™ 2(DE3)pLysS competent cells (Novagen) used for induction of 

recombinant protein expression.  

Cells were thawed on ice and 100 µl incubated with the appropriate recombinant plasmid on 

ice for 30 mins. The cells were heat-shocked at 42°C for 1 min and recovered on ice for 5 

min. For transformations into Rosetta cells only - recovery from the heat-shock was 

necessary before streaking onto LB agar plates and this was done by incubation in SOC media 

at 37°C for 1 h. Cells were streaked out onto an LB agar plate supplemented with ampicillin 

(XL-1 Blue) or kanamycin/chloramphenicol (Rosetta) and incubated at 37°C overnight. 

Transformants were selected and were used to inoculate 5 ml LB broth supplemented with 

ampicillin or kanamycin/chloramphenicol. Cultures were incubated overnight in a shaking 

incubator at 250-300 rpm at 37°C. 
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2.9 Extraction and purification of plasmid DNA 

For minipreps, plasmid DNA was isolated from the E.coli cells using the GeneJET™ Plasmid 

Miniprep Kit (Fermentas) following the protocol laid out in Thermo Scientific GeneJET™ 

Plasmid Miniprep Kit #K0502. Purified DNA was eluted in EB buffer and stored at -20°C.  

For maxipreps, one colony lifted from the plate of a fresh transformation was firstly used to 

inoculate 5 ml of LB broth (supplemented with ampicillin) and grown overnight in a shaking 

incubator at 250-300 rpm at 37°C. This 5 ml culture was then used to inoculate 100 ml of LB 

broth (supplemented with ampicillin) and grown overnight in a shaking incubator at 250-300 

rpm at 37°C. Plasmid DNA extracted using the GeneJET™ Plasmid Maxiprep Kit (Fermentas) 

following the protocol described in Thermo Scientific GeneJET™ Plasmid Maxiprep Kit 

#K04921, #K0492. The purified DNA was eluted in EB buffer and stored at -20°C. 

 

2.10 Ethanol precipitation of plasmid DNA 

Ethanol precipitation of DNA was carried out as follows: 3 M sodium acetate (pH 5.2) at 0.1x 

volume of the original DNA volume and 100% ethanol at 2.5x volumes the original eluted 

DNA volume were added sequentially to the DNA, which was then incubated minimally for 

20 min at -20°C. Eppendorfs containing precipitated DNA were centrifuged at 6700 x g for 15 

min at 4°C and the supernatant discarded. 1 ml of ice cold 75% ethanol was added and 

centrifuged again at 6700 x g for 5 min at 4°C. The supernatant was removed and the pellet 

resuspended in 50 µl of sterile EB buffer. 

 

2.11 Restriction digests of DNA 

Plasmids and genomic DNA (gDNA) were digested using restriction enzymes for purposes 

such as screening for successful cloning, linearisation of a plasmid for trypanosome 

transfection, isolation of DNA for purification and further sub-cloning into other vectors and 

Southern mapping. For plasmids, 10 U of the desired enzyme(s) (Roche or Fermentas) was 

used to digest ~1 µg DNA. For gDNA, ~1/6th of the gDNA extracted from 1x108 cells was 

digested overnight with 40 U of enzyme in a final volume of 60 µl. 20 U of enzyme in an 

additional 20 µl was added to the overnight digest the following morning, and incubated for 

a further 2 h.  
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Agarose gel electrophoresis was used to analyse completed restriction digests (Section 2.6) 

 

2.12 Gel extraction 

The DNA bands of interest were cut out of the agarose gel using a scalpel under a UVP Dual-

Intensity Transilluminator. DNA was extracted from the agarose gel using the GeneJET™ Gel 

Extraction Kit (Fermentas) following the QuickProtocol™ GeneJET™ Gel Extraction Kit, 

#K0691, #K0692. The purified DNA was eluted in 50 µl EB buffer and stored at -20°C. 

 

2.13 Induction of recombinant protein expression 

Small scale induction was always initially carried out to assess the dynamics and extent of 

recombinant protein expression in Rosetta clones, and to determine protein solubility. 

Colonies were selected from Rosetta LB agar plates and grown overnight in liquid culture (in 

the presence of chloramphenicol). 100 µl of the stationary phase culture was then used to 

inoculate each of the two 10 ml aliquots of LB broth containing no antibiotics. Cultures were 

incubated in a shaking incubator at 250-300 rpm at 37°C until they reached a cell density of 

OD600 0.4-0.6. Once the cultures reached a sufficient density, a 1 ml sample was taken and 

centrifuged at 2500 x g for 5 min, the supernatant discarded and the pellet stored at -20°C. 

Recombinant protein expression was induced using 1 mM IPTG. Cultures were incubated at 

37°C in the shaking incubator for 3 h, with 1 ml samples taken at hourly intervals.  SDS-PAGE 

and Coomassie Brilliant Blue staining (Section 2.20) was used to analyse recombinant protein 

expression over the three hour induction period.  

Large scale induction was employed to purify sufficient recombinant protein for antibody 

production. Here 10 ml of overnight culture inoculated from a single fresh colony was used 

to inoculate 800 ml of LB broth (no antibiotics) and the culture incubated at 37°C in the 

shaking incubator until a cell density of OD600 0.4 - 0.6 was reached. Protein expression was 

once again induced with IPTG and the culture incubated for 3 h at 37°C in the shaking 

incubator. The entire culture (except for 10 ml which was harvested separately for a test of 

solubility) was centrifuged at 2500 x g for 25 min and the supernatant removed. Cell pellets 

were stored at -20oC before protein purification was carried out.  
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2.14 Determining protein solubility 

Establishing the solubility of the recombinant protein was essential as it dictated what 

conditions were required in further downstream purification steps. The 10 ml samples taken 

at the 3 h time-point post induction (Section 2.13) were resuspended in 1 ml of Protein 

Solubility Buffer A. The suspension was sonicated on ice; using 10 sec bursts at amplitude 6, 

with 10 sec intervals in between, until no clumps of cells remained. The samples were 

centrifuged at 6700 x g for 25 min at 4°C then 50 µl of the supernatant added to 50 µl of 

Laemmli buffer (with 10% final volume of DTT). The supernatant was decanted off into a 

separate 50 ml falcon tube and saved for possible use later on depending on the protein 

solubility result, and the remaining pellet resuspended in 1 ml Buffer A. 50 µl of the 

resuspended pellet was added to Laemmli buffer (with 10% final volume of DTT).  

Both the supernatant and pellet samples were analysed using SDS-PAGE and Coomassie 

Brilliant Blue (Section 2.20). 

 

2.15 Protein sample preparation for IMAC purification under denaturing conditions 

For purification under denaturing conditions of insoluble protein, the cell pellet from a large 

scale induction was resuspended at 4°C in the IMAC denaturing buffer at a volume of 20 

ml/1000 ml of culture. 100 mM PMSF protease inhibitor was added (10 µl per 1 ml of 

sample) and the sample sonicated on ice using 60 sec bursts at amplitude 18, with 60 sec 

intervals. The sample was centrifuged at 30000 x g for 2 h and the supernatant decanted off 

immediately. The supernatant was filtered using a syringe and a 0.20 µm syringe filter.  

 

2.16 IMAC protein purification under denaturing conditions 

The filtered sample containing the plasmid for antibody production was isolated using 

immobilised metal-ion affinity chromatography (IMAC). A 5 ml HisTrap HP column (GE 

Healthcare) was charged with IMAC nickel sulphate then equilibrated with 4 x column 

volumes of IMAC denaturing buffer. The filtered protein sample (Section 2.15) was then 

injected onto the column and any proteins not bound by the hexahistidine tag were washed 

off using 4 x column volumes of IMAC binding buffer. Proteins were then eluted in a series of 

fractions (10 x column volumes) using an imidazole concentration gradient (25 mM-500 mM) 

using the IMAC elution buffer, followed by a further 4 x column volume washes with IMAC 
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elution buffer. The fractions were collected in 15 ml falcon tubes, numbered according to the 

order in which they were eluted and stored at -80°C. Fractions of interest were analysed 

using SDS-PAGE and the protein isolated as Coomassie-blue gel slices on large SDS-PAGE gels 

(Section 2.20). 

 

2.17  Protein sample preparation for benchtop purification 

The cell pellet from the large scale induction was resuspended at room temperature in BPP 

Buffer B at 5 ml per gram wet weight and gently vortexed until completely lysed. The lysate 

was centrifuged at 10000 x g for 30 min and the supernatant transferred into a fresh tube. 

50 µl of sample was taken and added to 50 µl of boiling hot Laemmli buffer and stored at  

-20°C for future analysis by SDS-PAGE.  

 

2.18 Benchtop protein purification under denaturing conditions 

The recombinant protein from the induced E. coli cleared lysate (Section 2.14) was again 

isolated using its hexahistidine tag, but this time eluted using an acid shift rather than an 

imidazole concentration gradient. 0.5 ml of 50% Ni-NTA slurry (Qiagen) was added to 4 ml of 

cleared lysate and this was mixed gently on a rotating wheel for 60 min at room 

temperature. The lysate-resin mixture was then transferred into a Gravity Flow Column (Bio-

Rad) and the flow-through saved for future analysis. The column was washed twice with BPP 

buffer C. The recombinant protein was eluted by 4 x column washes with BPP buffer D, 

followed by 4 x column washes with BPP buffer E. All washes and elutions were collected in 

Eppendorfs and 50 µl samples taken for each and added to 50 µl of boiling hot Laemmli 

buffer. These protein samples were stored at -20°C for future analysis by SDS-PAGE. 

 

2.19 Polyclonal antibody production 

Purified proteins (Sections 2.13-2.18) were sent to Covalab for polyclonal antibody 

production using chicken hosts. 

Raw sera from both chickens were tested for reactivity against recombinant FeHydΔ274-752 

protein samples using Western blotting (Section 2.23). 
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2.20 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

8% resolving gels with an additional 5% stacking gel were cast in Bio-Rad plates and protein 

samples separated by electrophoresis using a Mini-PROTEAN® 3 cell (Bio-Rad). Protein 

samples had previously been resuspended in Laemmli buffer and stored at -80°C. The 

protein samples were heated at 100°C for 5 min prior to analysis and loaded alongside 6 µl of 

PageRuler™ Plus Prestained Protein Ladder (Fermentas). Electrophoresis was carried out in 

1x SDS-PAGE running buffer at a constant 200V for approximately 1 h.  

Large 8% resolving gels with an additional 5% stacking gel were cast using Bio-Rad plates and 

samples separated by electrophoresis using a PROTEAN II xi cell (Bio-Rad) and 

electrophoresis was carried out 1x SDS-PAGE running buffer at a constant 200 V for 

approximately 4 h. 

SDS-PAGE gels intended for further analysis by mass spectrometry were stained using Instant 

Blue (Expedeon) for 30 min in a petri dish, then destained with H2O for 2 h in preparation for 

protein band excision. 

SDS-PAGE gels not intended for further analysis by Western blotting or mass spectrometry 

were stained with Coomassie Brilliant Blue solution for 4 h, and then washed with Destain 

solution overnight in preparation for imaging using the BioRad ChemiDoc™ XRS+ Imaging 

System. 

 

2.21 Silver staining 

The SDS-PAGE gel was fixed in SS-Fixation solution for 30 min in a clean glass dish. The gel 

was then transferred into SS-Rehydration solution for 30 min and then washed for 3 x 5 min 

with H2O. The H2O was drained off and SS-Silver solution was added and incubated for 20 

min. The SS-Silver solution was removed and the SS-Developer solution added for 2-10 min, 

until the staining of the bands was dark enough. Once sufficient staining had been obtained, 

the gel was transferred immediately into the SS-Stop solution for 10 min then washed for 3 x 

5 min with H2O. Silver stained gels were transferred into 10% glycerol for 30 min before 

being imaged using the BioRad ChemiDoc™ XRS+ Imaging System. 
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2.22 Southern blotting 

Genomic DNA was harvested from T. brucei cell lines and digested with EcoRI. Agarose gel 

electrophoresis was carried out in the same manner as described in Section 2.6, except 0.7% 

agarose gels were cast using 0.5x TBE and were subject to electrophoresis using 0.5x TBE 

Running Buffer at 100 V for approximately 100 min. The gel was then prepared for wet 

transfer first by immersion into SB-1 buffer for 15 min with gentle rocking (to ‘nick’ the DNA 

in preparation for a more efficient transfer). The gel was then immersed in SB-Denaturation 

buffer for 2 x 15 mins with gentle rocking (which separated the negatively-charged DNA into 

separate strands in preparation for downstream hybridization). The gel was then rinsed in 

H2O and neutralised using the SB-Neutralisation buffer for 2 x 15 mins with gentle rocking. 

The gDNA in the gel was then transferred by capillary action to a nylon membrane 

(Amersham Hybond N+) overnight at room temperature in 20x SB-SSC, following the 

Amersham Hybond N+ procotol.  

Probing and detection hybridization was performed using the Amersham Gene Images 

AlkPhos Direct Labelling and Detection System (RPN3690). The protocol provided in the 

product booklet was always followed exactly. 

PCR (Section 2.5) was used to generate the DNA needed for the hybridization probe using 

primers listed in Table 2.3. The DNA hybridization probe was carried out using the Amersham 

Gene Images AlkPhos Direct Labelling and Detection System (RPN3690) protocol.  

A 30 ml aliquot of hybridization buffer was pre-heated to 55°C in the hybrigene oven in a 

rotating hybridization tube. The gDNA on the Hybond N+ membrane was cross-linked using a 

UVC 500 UV cross-linker (set at 70000 µJ/cm2) (Amersham) and then the membrane placed 

in the hybridization tube with the pre-heated buffer and pre-hybridized for 15 min at 55°C. 

The labelled DNA hybridization probe was then added to the tube and hybridization was 

carried out overnight at 55°C with constant rotation. The following day, 1x SB-Primary Wash 

buffer was made and 50 ml pre-heated to 60°C. The 20x stock of SB-Secondary Wash buffer 

was diluted to 1x and supplemented with MgCl2 (to a final concentration of 2mM). The post-

hybridization stringency washes were all carried out using the rotating hybridization tube in 

the hybrigene oven. The Hybond N+ membrane was washed with pre-heated 1x SB-Primary 

Wash buffer at 60°C for 2 x 15 min, and then washed for 10 min with 1x SB-Secondary wash 

buffer at room temperature. The 1x SB-Secondary wash was repeated twice more but for 5 

min each time. The excess liquid was drained from the membrane and then incubated at 

room temperature for 3 min with 1 ml of CDP-Star detection reagent. The substrate was 
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drained and the membrane wrapped in saran wrap before being exposed to autoradiography 

film for 1 h. 

The films were developed in the dark room under the red safety light. The film was first 

incubated in developer solution (Kodak) with gentle agitation for 1 to 5 min, until desired 

exposure of the bands was obtained. The film was then transferred immediately into fixation 

solution (Kodak) and gently agitated until it turned completely clear. It was then rinsed in 

H2O and left to dry before being imaged using the Bio-Rad Chemidoc XRS+ Imaging System. 

 

2.23 Western blotting 

Proteins separated by SDS-PAGE were transferred onto Amersham Hybond™-P nitrocellulose 

membranes using a Mini Trans-blot® transfer cell (Bio-Rad) for 60 min at 100 V. The 

membranes had previously been prepared by dipping in 100% methanol for 10 sec to 

permeabilise, then followed by a wash in H2O for 5 min, and finally equilibrated in transfer 

buffer for 10 min. Once Western transfers were complete, membranes were left to dry on 

the bench and were stored at 4°C between two sheets of blotting paper wrapped in saran 

wrap before probing.  

For probing with primary antibody (refer to Table 2.3), Western membranes were re-

permeabilised in 100% methanol for 10 sec, washed in H2O for 5 min then rinsed in 1x PBS 

for 5 min; then incubated with blocking buffer A for 1 h at room temperature. Membranes 

were then incubated with the primary antibody, diluted in milk blocking buffer for 1 h at 

room temperature. Excess primary antibody was removed by 3 x 10 min washes in PBS-

Tween and then the membranes were incubated with the appropriate secondary antibody 

(refer to Table 2.3), diluted in milk blocking buffer, for 1 h at room temperature. The blots 

were again washed for 3 x 10 min in wash buffer then allowed to drain. 2 ml of Immun-star™ 

WesternC™ (Bio-Rad) chemiluminescent substrate was added to the blots to detect any 

protein bound to the membranes, and incubated for 5 min at room temperature. The blots 

were drained, wrapped in saran wrap and the chemiluminescent signal was detected and 

imaged using the Bio-Rad Chemidoc XRS+ Imaging System. 
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2.24 Naegleria gruberi (NEG-M) cell culture 

Naegleria gruberi (NEG-M) trophozoites were cultured in M7 axenic media supplemented 

with 10% heat-inactivated foetal calf serum and incubated at 20°C.  

 

2.25 Naegleria gruberi (NEG-M) protein samples 

For N. gruberi, a 50 ml culture (with a density between 106 – 107 cells ml-1) was centrifuged 

at 1000 x g for 10 min at 4°C, the supernatant removed and the pellet resuspended in 10 ml 

of 1x PBS, centrifuged at 1000 x g for 10 min at 4°C, the PBS wash discarded and the PBS 

wash repeated. The pellet was then resuspended in 200 µl of boiling hot Laemmli buffer and 

heated at 100°C for 5 min. Protein samples were stored at -80°C. 

 

2.26 Trypanosoma brucei cell culture 

Procyclic form trypanosome strains were cultured in SDM-79 medium (Brun and 

Schonenberger, 1979) supplemented with 10% heat-inactivated foetal calf serum (FCS) and 8 

µM hemin and incubated at 28°C. The non-genetically modified 427 procyclics were grown in 

the presence of no selectable markers; cell lines transfected with plasmid constructs 

containing genes encoding TbHP40::myc3, TbHP30::myc3, TbHP30::GAFSINPAM, FeHydΔ61-

752:HA:GFP, HydE::myc3, HydF::myc3, HydG::myc3, NirK:HA or ACSΔ101-1100:HA:GFP. In all of 

these plasmid constructs the gene encoding the epitope-tagged protein replaced the 

luciferase gene in plasmid pDex377 (Appendix II Figure B.3 A) were grown in the presence of 

hygromycin; the TbHP40::myc::BirA* construct, in which the BirA* fusion gene replaced the 

luciferase gene in plasmid pLew100v5b1d-HYG (Appendix II Figure B.4), was also grown in 

the presence of hygromycin. Cell lines transfected with TbHP40::myc3 with a pDex477 vector 

backbone (Appendix II Figure B.3 B) were grown in the presence of phleomycin; gene 

knockout cell lines using the blasticidin drug selectable marker were cultured in the presence 

of blasticidin and cell lines using the puromycin drug selectable marker were cultured in the 

presence of puromycin.  The SmOx-P9 strain (Poon et al., 2012) was cultured in the presence 

of puromycin to maintain the tetracycline repressor protein and T7 RNA polymerase. The 29-

13 strain (Wirtz et al., 1999) was cultured in the presence of hygromycin to maintain the 

tetracycline repressor protein and T7 RNA polymerase. 
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Stabilates were made by thoroughly mixing healthy late-log phase cells with glycerol (added 

to a final concentration of 10% v/v) and freezing slowly to -80°C for 24 h before transfer to 

liquid N2 for long-term storage.  

 

2.27 Transfection of DNA into trypanosomes 

Plasmids with a pDex377 or pDex477 vector backbone were linearised with NotI for 4 h at 

37°C. The DNA was purified by ethanol precipitation (Section 2.10) and resuspended in filter-

sterilised EB buffer.  

The procyclic form cells were counted using a Neubaur heamocytometer and the volume 

required calculated giving 3.0x107 cells per transfection (i.e. per 0.5 ml of ZMG buffer). The 

cells were centrifuged at 1000 x g for 10 min at 4°C. The supernatant  was removed by 

pipetting and the pellet resuspended in 0.5 ml of ZMG buffer before being transferred into 

an electroporation cuvette (Bio-Rad 0.4 mm size), along with 5-10 µg of linearised, purified 

plasmid DNA. The cells were electroporated using a BTX Electro Square Porator ECM830 with 

3 x 100 µs pulses at 1700 V with 200 ms intervals and then were left to recover in 10 ml of 

complete SDM-79 overnight. After 24 h, the cultures were selected for transformants by the 

addition of the appropriate drug(s).  

Stabilates of all transformed cell lines were made by adding glycerol to a final concentration 

of 10% to a logarithmic culture (0.5-1 x 107 cells ml-1). 1 ml aliquots were frozen first to -80°C, 

and then stored in liquid N2.  

 

2.28 Trypanosome protein samples 

Dense, but always healthy cultures of at least 7.0x106 cells ml-1 were centrifuged at 1000 x g 

for 10 min at 4°C, the supernatant removed and the pellet resuspended in 10 ml of 1x PBS, 

centrifuged at 1000 x g for 10 min at 4°C, the PBS wash discarded and the PBS wash 

repeated. The pellet was then resuspended in an appropriate volume of boiling hot Laemmli 

buffer to get 4x105 cell equivalents ml-1 and heated at 100°C for 5 min. Protein samples were 

stored at -80°C. 
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2.29 Isolation of T. brucei genomic DNA 

10 ml cultures of early stationary phase (1-2x107 cells ml-1) procyclic T. brucei were 

centrifuged at 1000 x g for 10 min at 4°C and the supernatant removed. Cell pellets were 

resuspended in 500 µl of genomic DNA (gDNA) extraction buffer along with 50 µl of 10% SDS 

and 10 µl Proteinase K and incubated overnight at 37°C. The following day, 500 µl of the 

sample was added to 500 µl of phenol:chloroform (2:1) and inverted gently for 

approximately 2 min to fully mix the aqueous and organic layers. The sample was then 

centrifuged at 6700 x g in a bench-top microfuge for 2 min and the aqueous layer gently 

pipetted into a fresh Eppendorf tube. The sample was placed on ice and 1 ml of 100% 

ethanol was added to precipitate the gDNA. The gDNA was spooled using a glass Pasteur 

pipette and dipped in 70% ethanol 6 times to wash, and then resuspended in 50 µl EB Buffer. 

5 µl of resuspension solution (with RNase added) (Fermentas) was added to degrade co-

purifying rRNA and the samples incubated at 37°C for 1 h. Genomic DNA samples were then  

was stored at 4°C. 

 

2.30 Preparation of slides for fluorescence microscopy 

1 ml of T. brucei culture (typically 5x106 cells ml-1) was centrifuged at 6000 x g in a bench-top 

microfuge for 3 min and the supernatant removed. The pellet was washed in 1x PBS and 

centrifuged again at 6000 x g for 3 min; the pellet was then resuspended in 100 µl-500 µl of 

1x PBS, depending upon the size of the pellet. The sample was pipetted onto a slide coverslip 

and left to settle for 5-10 min. The PBS was removed from the coverslip and para-

formaldehyde added (to a final concentration of 2.7%) for 20 min in order to fix the cells. The 

coverslips were washed in ice cold methanol for 20 min, and could be stored at -20°C for 

future use. 

Coverslips were removed from methanol and washed in 1x PBS for 10 min in order to 

rehydrate the cells, then incubated for 1 h in 1% BSA blocking buffer in a hydration chamber 

at room temperature. Any excess blocking buffer was removed and the coverslips incubated 

with the primary antibody for 1 h in the hydration chamber at room temperature. The 

coverslips were washed 3 x 5 min with 1x PBS-Tween and then incubated with the secondary 

antibody in the hydration chamber for 40 min. The coverslips were again washed with 1x 

PBS-Tween for 3 x 5 min, drained and then 1 drop of Vectashield Mounting Medium with 



65 
 

DAPI added (Vector Labs) before mounting the coverslip onto a slide, which was then sealed 

with nail varnish. Slides were stored at 4°C.   

All of the immunofluorescence imaging was done using the Applied Precision DeltaVision RT 

deconvolution microscope and processed using the software SoftWoRx Explorer. 

 

2.31 MitoTracker® probing 

MitoTracker® labelling of mitochondria was used to confirm mitochondrial localisation of 

tagged proteins in procyclic T. brucei. A stock solution of MitoTracker® Red CMXRos 

(Invitrogen) was prepared by dissolving lyophilised MitoTracker® in DMSO to a final 

concentration of 1 mM ready for further use or storage in the dark at -20°C. The 1 mM stock 

solution of MitoTracker® was diluted with SDM-79 to a working concentration of 500 nM. 9 

ml cultures of T. brucei expressing the protein of interest were set up at a 2x106 cells ml-1, 

and 1 ml of the working concentration of MitoTracker® added to these cultures, to give a 

final working MitoTracker® concentration of 50 nM in a 10 ml culture. The cultures were 

then incubated at 27°C for 4 h to allow the MitoTracker® probe to passively diffuse across 

the plasma membrane and accumulate in the active mitochondrion of T. brucei. After 

incubation, 1 ml samples were taken and slides were made following the method laid out in 

Section 2.30. 

 

2.32 Gene knockout in trypanosomes 

T. brucei is diploid, so in order to generate a null mutant for any single-copy protein-coding 

gene, two alleles needed to be disrupted. Attempts to silence the gene expression of 

Tb927.11.2920 and Tb927.11.2910 were done by trying to replace both endogenous alleles 

using puromycin, phleomycin and blasticidin drug selectable markers with additional 

complementary homology flanks. The primers used are outlined in Table 2.6 and marked 

with an asterisk.  

The phleomycin and blasticidin S HCl drug selectable cassettes were flanked by a tubulin 

processing signal at the 5’ end, and an actin processing signal at the 3’ end, permitting 

maturation of the mRNA once expressed the trypanosomes, by the addition of a spliced 

leader cap at the 5’ end, and polyadenylation at the 3’ end. The puromycin N-

acetyltransferase drug resistance marker was a synthetic gene ordered from Eurofins MWG 
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Operon. The blasticidin and phleomycin drug resistance markers were amplified using PCR 

with the primer pair 30-40KOa and 30-40KOc, to give the blasticidin or phleomycin marker 

with short 30 bp homology flanks at the 3’ and 5’ ends. The PCR products were run on an 

agarose gel, purified and the products checked again on an agarose gel.  

The PCR products from the first round of amplification were then used as templates for the 

second round of PCR amplification, using primer pair 30-40KOb and 30-40KOd. These 

primers added an extra 30 bp to the existing homology flanks onto the blasticidin or 

phleomycin drug selectable marker, resulting in a total of 60 bp complementary homology 

flanks at both the 5’ and 3’ end. The PCR products were run on an agarose gel, purified, 

confirmed on another agarose gel, ethanol precipitated and resuspended in sterile EB buffer.  

The blasticidin and phleomycin drug selectable markers with the 60 bp complementary 

homology flanks were transfected into separate populations of procyclic 427 T. brucei (~3 µg 

of DNA) to produce two heterozygous (+/-) populations. The cell line with the blasticidin drug 

selectable marker was selected for successful transformants using blasticidin (10 µg ml-1) 

(1x106 cells total), and transformants from the phleomycin drug resistance marker cell line 

were selected for using phleomycin (3 µg ml-1) (1x106 cells total). Once the populations had 

been selected for using the appropriate drug and had recovered, stabilates were made and 

genomic DNA extracted (Section 2.29). The gDNA was digested with EcoRI and analysed by 

Southern blotting (Section 2.22) using the upstream intergenic region (UIR) hybridisation 

probe. The upstream intergenic probe was made using the primers UpIG0445 F (forward 

primer) and UpIG0445 R (reverse primer) (detailed in Table 2.3), following the protocol laid 

out in Amersham Gene Images AlkPhos Direct Labelling and Detection System (RPN3690). 

The puromycin resistance cassette was transfected into procyclic 427 T. brucei to produce a 

heterozygous (+/-) population and the heterozygous (+/-) population resistant to blasticidin 

in an attempt to produce a null (-/-) mutant. The heterozygous cell line with the puromycin 

drug resistance selectable marker was selected for using puromycin (2 µg ml-1) (1x106 cells 

total). The candidate null (-/-) cells with the blasticidin and puromycin drug resistance 

selectable markers were selected for using both puromycin and blasticidin, and just 

puromycin (2x106 cells total). Once the populations had been selected for using the 

appropriate drug and had recovered, stabilates were made and genomic DNA extracted. The 

gDNA was digested with EcoRI and analysed by Southern blotting using the upstream 

intergenic region (UIR) hybridisation probe. 
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2.33 Co-immunoprecipitation 

All co-immunoprecipitation experiments were carried out using the Pierce® Co-

Immunoprecipitation (Co-IP) Kit (Thermo Scientific, catalogue number 26149). T. brucei cells 

co-expressing both TbHP30::GAFSINPAM and TbHP40::myc were cultured in SDM-79 until a 

total cell density of 1x108 cells was obtained. The cells were harvested and lysed in 180 µl of 

IP-Lysis/Wash buffer buffer in the presence of an inhibitor cocktail (20 µl of the Halt Protease 

Inhibitor single-use cocktail (ThermoFisher, catalogue number 78430), 2 µl of TLCK, 2 µl of 

benzamidine and 2 µl of PMSF), following the ‘Lysis of Cell Suspension Cultures’ protocol 

provided with the Pierce® Co-Immunoprecipitation (Co-IP) Kit (Thermo Scientific, 26149).  

Prior to cell lysis, a column was prepared containing 10 µg of anti-myc antibody that had 

been coupled to the AminoLink® Coupling Resin (Thermo Scientific, catalogue number 

20381) following the ‘Antibody Immobilisation’ protocol in Pierce® Co-Immunoprecipitation 

(Co-IP) Kit (Thermo Scientific, 26149). The cell lysate was pre-cleared, following the ‘Pre-clear 

lysate using the Control Agarose Resin’ protocol in Pierce® Co-Immunoprecipitation (Co-IP) 

Kit (Thermo Scientific, 26149). The co-immunoprecipitation steps followed the protocol in 

Pierce® Co-Immunoprecipitation (Co-IP) Kit (Thermo Scientific, 26149), with protein samples 

prepared using the 5x Lane Marker Sample Buffer (Thermo Scientific) rather than the 

standard Laemmli buffer. Protein samples collected from the co-immunoprecipitation 

experiments were analysed by SDS-PAGE (Section 2.20), Silver Staining (Section 2.21) and 

Western blotting (Section 2.23). 

  

2.34  Culturing of T. brucei in SILAC media 

SDM-79-SILAC media was made in accordance to the original custom SDM-79 formulation, 

Cassion Labs, USA (see Table 2.5) and lacked the essential amino acids L-arginine and L-

lysine. Isotopically labelled L-arginine and L-lysine were made up according to Table 2.6 in 

H2O and filter sterilised before use.  

T. brucei cell lines to be SILAC labelled (and which had previously been cultured in normal 

SDM-79) were diluted to a starting density of 1x106 cells ml-1 in SDM-79-SILAC to a final 

volume of 10 ml and the appropriate labels (light-, medium- or heavy-) added to each flask. 

Parental cell lines (T. brucei 427 wild-type; SmOx-P9) were always cultured using light-labels. 
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The cells expressing TbHP40::myc::BirA* or co-expressing both TbHP30::GAFSINPAM and 

TbHP40::myc were cultured separately with both medium- and heavy- labels to provide a 

built-in independent biological repeat for each experiment. After 48 h incubation at 27°C, 

the cultures were counted using a haemocytometer (Neubaur) and if the cells had 

undergone at least seven divisions (the minimum number of divisions required to ensure all 

proteins synthesised within a cell had incorporated the isotopically-labelled amino acids), the 

cultures were scaled up to a final volume of 40 ml in SDM-79-SILAC (plus appropriate labels) 

at a starting density of 1.5x106 cells ml-1. At this point, TbHP40::myc::BirA* (in a SmOx-P9 

background) expressing cells were also incubated with doxycycline (this was not required for 

TbHP30::GAFSINPAM and TbHP40::myc co-expressing-cells, since expression of these 

constructs is constitutive in a 427 background). After 24 h incubation at 27°C, excess biotin 

(to a final concentration of 50 µM) was added to all cultures. After a further 24 h incubation 

at 27°C, cells were harvested. The 40 ml cultures were counted then centrifuged at 1000 x g 

for 10 min at 4°C and the supernatant removed. The cell pellets were washed three times in 

filtered 1x PBS then lysed at 1x109 cells ml-1 in ice cold filtered H2O in the presence of an 

inhibitor cocktail (20 µl of the Halt Protease Inhibitor single-use cocktail [ThermoFisher], 2 µl 

of TLCK, 2 µl of benzamidine and 2 µl of PMSF) and incubated at room temperature for 10 

min. Lysed cells were divided into 0.5x109 cells ml-1 (equivalent to ~5 mg/ml total protein 

content) aliquots and stored at -80°C. Cell pellets (containing light-, medium- and heavy- 

labelled cells) for BioID experiments (see Section 2.35.1) were combined prior to lysis, 

whereas cell pellets for co-immunoprecipitation experiments (see Section 2.35.2) were kept 

strictly separate from one another at the point of lysis.  
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Table 2.5. Details on how to make L-lysine and L-arginine deficient SDM-79-SILAC media. 
Note that the solution requires filtering before the addition of FCS and antibiotics.  

Ingredient Product 

Hemin stock Sigma H9039 

Sodium bicarbonate Sigma S5761 

D-glucose 100x, 9.3 g/50ml 

D-glucosamine 100x, 0.5 g/50ml 

L-hydroxyproline 100x, 10 mg/50ml 

L-proline 100x, 3.08 g/50ml 

i-inositol 100x, 6.5 mg/50ml 

L-methionine 100x, 0.45 g/50ml 

L-serine 100x, 0.36 g/50ml 

Adjust to pH7.3 with NaOH, sterile filter 

Heat inactivated foetal calf serum Sigma F4135 

Glutamax 1, 100x Gibco 35050-038 

Penicillin-Streptomycin, 100x Gibco 15140-122 

 

Table 2.6. Details on the light-, medium- and heavy-labelled amino acids that can be added 
to the SDM-79-SILAC media for T. brucei SILAC labelling experiments. Arg – Arginine; Lys – 
Lysine.  

Label  

(100 mg/mL) 

Molecular Weight (Da) 30% Concentration  

(in SDM-79-SILAC) 

L-Arg.HCl (R0) Light 210.6 0.30 mM 

L-Arg.HCl (R6-13C6) Medium 216.6 0.30 mM 

L-Arg.HCl (R10-13C, 15N4) Heavy 220.6 0.30 mM 

L-Lys.HCl (K0) Light 182.6 0.11 mM 

L-Lys.HCl (K4-2H4) Medium 223.1 0.11 mM 

L-Lys.HCl (K8-13C, 15N4) Heavy 227.1 0.12 mM 

 

2.35 Sample preparation for mass spectrometry 

2.35.1 BioID Sample Preparation 

T. brucei SmOx-P9 cells or cells expressing TbHP40::myc::BirA* in a SmOx-P9 background that 

had been cultured in SDM-79-SILAC (using light-, medium- or heavy- labels) were lysed using 

the protocol described in Section 2.33. The lysed cells were defrosted on ice, diluted with 
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MS-Solubilisation buffer at a 1:1 ratio and the samples vortexed until they went clear. The 

samples were centrifuged at 6700 x g for 10 mins at 4°C, and the supernatant transferred to 

a LoBind Eppendorf (Sigma-Aldrich). Streptavidin-coated magnetic beads (Pierce™) (100 µl 

per column) were washed 3 times with filtered 1x PBS in LoBind Eppendorfs on a magnetic 

rack. The washed magnetic beads were then transferred into the sample supernatant and 

incubated on a rotating wheel at 4°C for 4 h. This allowed biotinylated molecules to adhere 

to the streptavidin immobilised on the magnetic beads. After incubation, the LoBind 

Eppendorfs were placed on the magnetic rack and the supernatant discarded. The beads 

were resuspended in 1 ml of MS-IAA solution, which contained iodoacetamide for the 

reductive alkylation of any free cysteine residues. The LoBind Eppendorfs were wrapped in 

tin foil (since iodoacetamide is light-sensitive) and then incubated on a rotating wheel at 

room temperature for 20 min. The LoBind Eppendorfs were again placed on the magnetic 

rack and the supernatant removed. The beads were washed with 3 x 1ml MS-Solubilisation 

buffer followed by 5 x 1ml washes with filtered 1x PBS. The beads were then resuspended in 

MS-ABC solution in preparation for the tryptic digestion in order to remove the biotinylated 

peptides from the streptavidin coated beads.  

Digestion was carried out following the protocol provided with the Trypsin Singles, 

Proteomics Grade, Enzyme (Sigma Aldrich, T7200). The tryptic digest samples were sealed in 

LoBind Eppendorfs with parafilm and incubated at 37°C for 18 h. 

After digestion, the LoBind Eppendorfs were placed in the magnetic rack and the 

supernatant containing the digested peptides was transferred into a fresh LoBind Eppendorf. 

The magnetic beads were washed with 100 µl MS-ABC solution and the supernatant 

transferred to the LoBind Eppendorf containing the digested peptides. The magnetic beads 

were then washed with 100 µl of 500 mM NaCl and the supernatant again transferred into 

the LoBind Eppendorf containing the digested peptides. A C18 microspin column (Harvard 

Apparatus) was washed with 100 µl of methanol and centrifuged at 200 x g for 1 min and the 

flow-through discarded. The microspin column was then washed 3 x 100 µl with MS-Elute 

solution and centrifuged each time at 200 x g for 1 min and the flow-through discarded. The 

column was then washed 3 x 100 µl with MS-TFA solution and centrifuged each time at 200 x 

g for 1 min and the flow-through discarded. Trifluoroacetic acid (TFA) was added to the 

LoBind Eppendorf containing the digested peptides to get a 0.1% TFA final concentration. 

The peptides were then transferred to the microspin column for desalting. The microspin 

column was centrifuged at 200 x g for 1 min and the flow-through discarded. The microspin 

column was washed 3 x 100 µl with MS-TFA and centrifuged each time at 200 x g for 1 min 
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and the flow-through discarded. The peptides were eluted from the column into a fresh 

LoBind Eppendorf tube with 3 x 100 µl MS-Elute solution, which was centrifuged each time 

at 200 x g for 1 min. The eluted peptides were diluted with 500 µl of autoclaved H2O and 

stored overnight at -80°C. The frozen samples were then lyophilised in preparation for 

analysis by mass spectrometry.  

 

2.35.2 Co-Immunoprecipitation Sample Preparation 

T. brucei 427 or cells co-expressing both TbHP30::GAFSINPAM and TbHP40::myc in a 427 

background that had been cultured in SDM-79-SILAC (using light-, medium- or heavy- labels) 

were lysed using the protocol described in Section 2.33. The three separate lysed cell 

aliquots (labelled with light-, medium- or heavy- lysine and arginine isotopes) were thawed 

on ice and pre-cleared at 4°C, following the ‘Pre-clear lysate using the Control Agarose Resin’ 

protocol in Pierce® Co-Immunoprecipitation (Co-IP) Kit (Thermo Scientific, catalogue number 

26149). 

Prior to lysis, three separate columns were prepared, each containing 20 µg of anti-myc 

antibody that had been coupled to AminoLink® Coupling Resin (Thermo Scientific) following 

the ‘Antibody Immobilisation’ protocol in Pierce®Co-Immunoprecipitation (Co-IP) Kit 

(Thermo Scientific, 26149). The cell lysates were added to the myc-immobilized column 

(light-labelled in one, medium-labelled in another and heavy-labelled in the last) following 

the ‘Co-IP’ protocol in Pierce®Co-Immunoprecipitation (Co-IP) Kit (Thermo Scientific, 26149) 

and incubated for 2 h on a rotating wheel at 4°C. The flow-throughs were removed and 

stored at -80°C and the columns washed three times using the IP-Lysis/Wash buffer (Thermo 

Scientific). The beads from each of the three columns were resuspended in IP-Lysis/Wash 

buffer, transferred to separate LoBind Eppendorfs, centrifuged at 200 x g and the 

supernatant discarded. The beads were then boiled in 30 µl of Laemmli buffer at 95°C for 5 

min. The samples were centrifuged at 200 x g, the supernatant transferred to a fresh LoBind 

Eppendorf and the boiling process repeated. The protein samples were run on a pre-cast 

12% SDS-PAGE gel (BioRad) for 10 min at 200 V. The SDS-PAGE gel was stained with Instant 

Blue (Expedeon) and destained using H2O.  

The protein bands in the destained SDS-PAGE gel were excised by cutting into 1x1 mm 

squares using a scalpel. At this point the light-, medium- and heavy- labelled protein bands 

were mixed with one another. The gel pieces were transferred to a LoBind Eppendorf and 
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the gel completely destained using ammonium bicarbonate (100 mM) and 100% acetonitrile 

at a 1:1 (v/v) ratio for 30 min at room temperature with occasional vortexing, until the gel 

pieces were completely clear. The supernatant was discarded, 750 µl of 100% acetonitrile 

added and the sample incubated at room temperature with occasional vortexing for 

approximately 10 min until the gel pieces shrunk and turned white in colour. The 

supernatant was discarded and enough ammonium bicarbonate (100 mM, with 10 mM DTT 

added) was added to completely cover the gel pieces. The sample was incubated for 30 min 

at 56°C then the supernatant discarded. The sample was allowed to cool to room 

temperature then 500 µl of 100% acetonitrile was added, incubated for 10 min at room 

temperature and the supernatant discarded. Enough MS-IG-IAA solution was added to 

completely cover the gel pieces and the sample incubated in the dark at room temperature 

for 20 min. The supernatant was then discarded and 500 ml of 100% acetonitrile added, 

incubated for 10 min at room temperature then the supernatant discarded. 

The proteins within the gel pieces were then digested with trypsin. Tryptic digestion was 

carried out using Trypsin Singles, Proteomics Grade, Enzyme (Sigma Aldrich, T7200). Enough 

trypsin buffer was added to completely cover the gel pieces, the volume added was recorded 

and the samples incubated at 4°C for 30 min. After the incubation, more trypsin buffer was 

added if necessary (if the gel pieces absorbed any of the trypsin buffer, more was added to 

ensure that the gel pieces were completely submerged in trypsin buffer) and the volume 

recorded, and the samples incubated for a further 90 min at 4°C. After the incubation, 

ammonium bicarbonate (10 mM, containing 10% [v/v] acetonitrile) was added to the digest 

and the final volume recorded. The tryptic digest samples were sealed with parafilm and 

incubated at 37°C for 18 h. 

After the tryptic digestion, the digested peptides were extracted from the gel pieces using 

the MS-IG-Extraction buffer. Enough MS-IG-Extraction buffer was added so that there was 

approximately a 1:2 ratio between the digest volume and the MS-IG-Extraction buffer. The 

samples were then incubated on an orbital shaker at 37°C for 15 min and the supernatant 

transferred to a fresh LoBind Eppendorf. The peptides were then desalted using a C18 

microspin column (as described in Section 2.35.1) and the eluted peptides diluted with 500 

µl of autoclaved H2O and stored overnight at -80°C. Frozen samples were then lyophilised in 

preparation for analysis by mass spectrometry. 
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2.36  Liquid chromatography-mass spectrometry 

All lyophilised samples were sent to the FingerPrints Proteomics Facility at the College of Life 

Sciences, University of Dundee, for analysis by liquid chromatography tandem mass 

spectrometry (LC-MS/MS). 

 

2.37 Analysis of mass spectrometry data 

The data obtained from the LC-MS/MS was analysed based on the methods and parameters 

described by Urbaniak et al., (2012). The data was processed using MaxQuant (Cox and 

Mann, 2008) version 1.5.2.8 which uses the Andromeda search engine (Cox et al., 2011). 

Proteins identified by LC-MS/MS were matched against the T. brucei brucei 927 annotated 

protein sequence database (Release 26, downloaded from TriTrypDB (Aslett et al., (2010); 

http://www.tritryp.org) and a list of known frequently observed contaminants (e.g. trypsin, 

human keratins). Search parameters specified a MS tolerance of 5 ppm, a MS/MS tolerance 

at 0.5 Da and full trypsin specificity, allowing for up to three missed cleavages. 

Carbamidomethylation of cysteine was set as a fixed modification and oxidation of 

methionines, N-terminal protein acetylation and Npryoglutamate were allowed as variable 

modifications. Peptides were required to be at least 6 amino acids in length, and false 

discovery rates of 0.01 were calculated at the levels of peptides, proteins and modification 

sites based on the number of hits against the reversed sequence database. SILAC ratios were 

calculated using only peptides that could be uniquely mapped to a given protein.  

 

2.38 Analysis of protist FeFe-hydrogenases 

The full length sequences of the FeFe-hydrogenases were analysed using InterPro: Protein 

Sequence Analysis & Classification (Mitchell et al., 2015) (www.ebi.ac.uk/interpro/), which 

predicted protein domains and functional sites, and provided information on the protein 

superfamily, family and sub-family levels. The query sequence was entered in FASTA format 

and submitted using the default settings. The protein architecture predictions made by 

InterPro were cross-referenced against SMART (Simple Modular Architecture Research Tool, 

http://smart.embl-heidlberg.de/smart/set_mode.cgi) (Letunic et al., 2015; Schultz et al., 

1998) which predicted protein architecture and Pfam domains, signal peptides, internal 

repeats, intrinsic protein disorder, outlier homologues and homologues with known 
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structure. The query sequence was entered in FASTA format and all of the aforementioned 

search fields selected before submission. Cartoon structures of the FeFe-hydrogenases, 

illustrating the domain architecture of each, were then created using Microsoft PowerPoint 

2010. 

 

2.39 Analysis of microarray data 

A microarray dataset complete with three biological replicates (Fritz-Laylin and Cande, 2010) 

showing RNA levels during Naegleria gruberi differentiation was downloaded from the NCBI 

Gene Expression Omnibus (Edgar et al., 2002), GEO Series accession number GSE21527. Raw 

data was imported into Microsoft Excel 2010 according to the time point (0 to 80 min in 20 

min increments) and the repeat number (total of three repeats present in the dataset), 

arranged into columns and labelled (see Figure 2.1 A). 

Genes of interest could then be identified within the MS Excel spreadsheet according to their 

JGI accession number (found in the JGI Genome Portal in the published Naegleria gruberi 

genome (Fritz-Laylin et al., 2010b) e.g. for NirK it is JGItrs50708_1). Utilising the find option 

under ‘look in’ of MS Excel, ‘values’ must be selected from the dropdown menu in order to 

find the gene of interest via its accession number. The data for both blocks 1 and 2 for 

specific genes were selected from columns A to R, copied, and pasted in a new spreadsheet 

(Figure 2.1 A).  

Subsequently, an average of both blocks had to be calculated for each time point and each 

repeat. For example NirK (see Figure 2.1 B) using Time0_Rep1 (in column E), the formula in 

cell E6 “=SUM(E2,E3)/2”. This formula was reproduced along row 6 to calculate the average 

for both blocks across all time points and repeats. Next, an overall average for each time 

point had to be calculated from the 3 biological replicates. For example NirK (see Figure 2.1 

B) the 3 replicates for ‘Time0_Rep1’ are found in columns E, F and G, with their block 

averages calculated in row 6 (described above); the formula to calculate the overall average 

in cell E10  being “=SUM(E6,F6,G6)/3”. This formula was used to calculate the overall 

average for each time point, 0, 20, 40, 60 and 80. Error bars showing the variability across 

the repeats next had to be calculated. The maximum value in the data for e.g. NirK ‘Time0’ in 

cell E12 uses the formula “=MAXA(E2,F2,G2,E3,F3,G3)”. The maximum error bar is then 

calculated by subtracting the average from the maximum value e.g. NirK ‘Time0’ in cell E13 

using the formula “=SUM(E12-E10)”. These formulas were then used for each time point, 0, 
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20, 40, 60 and 80. The minimum value in the data for e.g. NirK ‘Time0’ in cell E14 uses the 

formula “=MINA(E2,F2,G2,E3,F3,G3)” and the minimum error bar in cell E15 using the 

formula “=SUM(E10-E14)”. Finally a bar graph was produced using the clustered column 

chart type and the overall average data selected from the spreadsheet e.g. for NirK, cells E10 

to I10. Vertical error bars were added using the ‘Custom’ option and specifying the values 

e.g. for NirK, cells E13 to I13 for the maximum bars and cells E15 to I15 for minimum bars.  

 

2.40 Assembling an Access database for analysis of TbHP40 and TbHP30 evolution 

The full length sequences of Tb927.11.2920 (TbHP40) and Tb927.11.2910 (TbHP30) were 

subjected to protein BLAST (basic local alignment search tool) searches using the non-

redundant protein sequences database and the blastp (protein-protein BLAST) algorithm in 

order to identify candidate homologues of both proteins. A wide variety of protists and fungi 

were searched for the presence of likely homologues and orthologues. Specific organism 

searches were recorded in a Microsft Access 2010 database (see Supplementary Data 

provided on CD1). Information of any candidate orthologues/homologues identified by the 

BLAST searches was also stored in this database. This information included details on 

whether it was a homologue to TbHP40 or TbHP30, the organism it was found in, the 

kingdom, phylum, class and Tax ID of the organism, the e-value, the length of the protein in 

amino acids, its accession number and the amino acid sequence.  Proteins identified as 

candidate orthologues/homologues were then subjected to reciprocal protein BLAST 

searches to ensure the top hit of the search was either TbHP40 or TbHP30. Queries against 

the database could then be generated to sort through the data collected as required. These 

queries could be exported into Microsoft Excel 2010 and Notepad as needed.  

Sequences were aligned using MUSCLE (Multiple Sequence Comparison by Log- Expectation, 

www.ebi.ac.uk/Tools/msa/muscle) (Edgar, 2004a, b). The query sequences were entered in 

FASTA format and the default settings used, with the output format being ClustalW. The 

output alignment was copied and pasted into Microsoft Word 2010.  

Multiple sequence alignments were shaded using Boxshade (version 3.21, 

http://www.ch.embnet.org/software/BOX_form.html). The output alignments from MUSCLE 

were copied and pasted into Boxshade and the following options selected for all alignments: 

‘output format – postscript landscape’; ‘font size – 8’; ‘consensus line – no consensus line’; 

‘fraction of sequences (that must agree for shading) – 1.0’; ‘input sequence format – ALN’. 
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‘Run BOXSHADE’ was then clicked and the output saved as Adobe PDF files. Any further 

formatting was done using Adobe Photoshop CS3.   

  

2.41 Protein targeting predictions 

Protein localisations were predicted using a variety of online proteomics tools: 

Mitoprot – This program only predicted N-terminal mitochondrial targeting sequences and 

potential cleavage sites (Claros and Vincens, 1996). Query sequences were entered in FASTA 

format then submitted.  

Predotar 1.03 – This program predicted N-terminal targeting sequences to the mitochondria 

and plastids (Small et al., 2004). Query sequences were entered in FASTA format either ‘plant 

sequences (possibility of plastid targeting)’ or ‘animal or fungal sequences (no possibility of 

plastid targeting)’ were selected and the query submitted.  

TargetP 1.1 – This program predicted the subcellular localisation of eukaryotic proteins 

(Emanuelsson et al., 2000). Query sequences were entered in FASTA format and ‘plant or 

non-plant’ selected under the ‘organism group’ option, depending upon the origin of the 

sequence. The default ‘no cutoffs: winner-takes-all’ option was used and the sequence 

submitted.  

WoLF PSORT – This program predicted subcellular localisation for animal, plant and fungal 

sequences (Horton et al., 2007). Query sequences were entered in FASTA format, either 

‘animal, plant or fungi’ selected and then submitted. 

 

2.42 Homology modelling 

The homology modelling for Tb927.11.2920 (TbHP40) was carried out following a protocol 

detailed in Szpara et al., (2014), using MOE software.  

The following solved structures from the histidine phosphatase protein families PDB were 

identified as the closest structural matches to TbHP40 and selected for use in the homology 

modelling of TbHP40: Chain A of TIGAR from Danio rerio (PDB code 3E9D.A) (Li and Jogl, 

2009); PGAM5 from Homo sapiens (PDB code 3MXO) (Unpublished) and PhoE from Bacillus 

stearothermaphilus (PDB code 1H2E) (Rigden et al., 2002). Homology models for 
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Tb927.11.2920 (TbHP40) were constructed against each of the selected solved structures 

using MOE 2014.09 (Chemical Computing Group, Montreal), as follows. First, an initial 

proposed partial geometry was copied from the template chains in the solved structures, 

using all co-ordinates where residue identity was conserved. Otherwise, only backbone 

coordinates were used. Based on this initial partial geometry, Boltzmann-weighted 

randomized modelling (Levitt, 1992) was employed with segment searching for regions that 

could not be mapped onto the initial partial geometry (Fechteler et al., 1995). 1000 models 

were constructed. On completion of segment addition, each model was energetically 

minimized in the AMBER99 force field (Wang et al., 2000b). The highest scoring intermediate 

model was then determined by the Generalized Born/Volume Integral (GB/VI) methodology 

(Labute, 2008). Molecular surfaces were created using the method of Connolly (Connolly, 

1983), as applied within MOE. Attempts were made to model Tb927.11.2910 (TbHP30), but 

no homologous solved structures could be identified, therefore modelling using this method 

was not possible. Attempts were also made to model TbHP40 homologues from Leishmania 

major (XP_001685971), Bodo saltans (BS92235), Naegleria gruberi (XP_002676814), 

Acanthamoeba castellanii (ELR24091) and Arabidopsis thaliana (NP_172369), but no viable 

models were produced.   
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Chapter 3 

Bioinformatics analysis of novel, paralogous histidine phosphatases 

A theme of mitochondrial metabolism is recurrent throughout this thesis. In this chapter, I 

begin my characterisation of a paralogous pair of histidine phosphatases identified by a 

previous student (Brown, 2011), each of which contains a putative mitochondrial leader 

sequence. These histidine phosphatases were not subject to extensive analysis by this or any 

previous students in the group. Traditionally, adaptation to parasitism is linked to metabolic 

stream-lining (Ginger, 2006). Thus, it could be speculated that these putative histidine 

phosphatases retained by trypanosomatid parasites serve important functions at some point 

during the life cycle. To begin my investigation, I started with a bioinformatic analysis of 

Tb927.11.2920 (henceforth referred to as TbHP40) and Tb927.11.2910 (henceforth referred 

to as TbHP30) and also looked at where they localised within procyclic T. brucei. 

As I will show below (Section 3.1-3.2), the distribution of these histidine phosphatases is 

patchy across eukaryotes for which genome sequences are available. But one paralogue, 

TbHP30, has lost its active site in all of the trypanosomatid orthologues. TbHP40 and TbHP30 

are neighbouring genes, located on chromosome 11 of T. brucei, and may have arisen due to 

a tandem duplication event. Both contain a PGAM domain (clade 1 - IPR013078), which 

denotes them as members of the histidine phosphatase superfamily. Clade 1 histidine 

phosphatases function due to a conserved essential histidine residue that forms part of a 

‘RHG’ (arginine-histidine-glycine) catalytic triad. TbHP40 retains this ‘RHG’ triad, whereas the 

essential histidine residue in TbHP30 has degenerated into an asparagine - ‘RNG’. This 

suggests that TbHP30 has lost the ability to function catalytically.  

 

3.1 An overview of the histidine phosphatase superfamily  

The eighth enzyme of the glycolysis reaction pathway is cofactor-dependent 

phosphoglycerate mutase (dPGM), which catalyses the interconversion of 2-

phosphoglycerate and 3-phosphoglycerate (Rigden, 2008), and is the archetypal member of 

the histidine phosphatase superfamily. Most members of this superfamily display 

phosphatase activity rather than the mutase activity seen in dPGM, making dPGM an 

anomaly within the family. But due to dPGM being one of the best studied members it often 

leads to mis-annotation of other histidine phosphatases as mutases (Rigden, 2008). Another 
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atypical histidine phosphase is Sts-1 (suppressor of T-cell receptor signalling 1), which 

despite having all the characteristics of a bona fide histidine phosphatase (both structurally 

and biochemically, in terms of the presence of a PGAM domain and within it a functional 

histidine residue), can exhibit tyrosine phosphatase activity as a negative regulator of T-cell 

antigen receptor signalling pathways (Sadatomi et al., 2013).  

Histidine phosphatases can be divided into two branches. The functions of the enzymes 

found in branch 1 are extremely diverse, and include dPGM, TIGAR, Sts-1 and PhoE. Branch 2 

consists of acid phosphatases such as phytase (Jedrzejas, 2000; Rigden, 2008). When 

comparing the amino acid sequences between branch 1 and 2 enzymes, there is very little 

conservation across the two branches. Histidine phosphatases from both branches have a 

wide variety of functions, for example some are involved in intermediary metabolism or 

metabolic regulation, signalling cascades and regulatory roles, whereas others function in 

extracellular metabolism, notably the scavenging of phosphate molecules (Rigden, 2008). 

TIGAR (tumour protein 53-induced glycolysis and apoptosis regulator) is thought to have a 

role in controlling the levels of fructose-2,6-bisphosphate within a cell, in turn contributing 

to the regulation of the rates of glycolysis and gluconeogenesis and the generation of 

apoptosis-inducing reactive oxygen species (Bensaad et al., 2006; Li and Jogl, 2009). 

Although a recent study showed that human TIGAR would also take 2,3-

bisphosphoglycerate, 2-phosphoglycerate and phosphoenolpyruvate as potential substrates 

(Gerin et al., 2014).  

Despite the striking differences in sequence homology, function and substrate specificity, all 

members of the superfamily contain an arginine-histidine-glycine (RHG) motif at the N-

terminus, the histidine residue of which is phosphorylated and dephosphorylated during 

catalysis (Rigden, 2008). During the reaction mechanism, the phospho- group from the 

substrate is transferred to the essential histidine residue with the assistance of surrounding 

residues. These include well conserved flanking arginine, glycine and histidine residues which 

stabilise the transfer by hydrogen bonding (Wang et al., 2006) and form the ‘phosphate 

pocket’ (Figure 3.1) (Rigden, 2008). The N- and C- terminal regions tend to differ between 

various histidine phosphatases with different roles in different species, but the catalytic core 

structures are usually quite similar across both branch 1 and 2 histidine phosphatases, for 

which known solved structures are available (Figure 3.2). 

The rare family members that display mutase activity, for example dPGM, differ from the 

reaction mechanism shown in Figure 3.1 because their essential histidine is already ‘primed’ 
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with a phospho- group ready for transfer to either the 2- or 3- position of 2-

phosphoglycerate or 3-phosphoglycerate. The intermediate 2,3-phosphoglycerate form re-

orientates within the catalytic site before one of the phospho- groups is removed, the 

substrate released and the ‘primed’ mutase enzyme is regenerated (Rigden, 2008). 

Enzyme specificity can differ massively depending upon the enzyme in question. Some 

histidine phosphatases take very small substrates, for example phosphoglycerate, and others 

are specific for large phosphorylated proteins such as the histidine-containing phospho-

transfer domain of ArcB (an Escherichia coli sensory kinase) (Ogino et al., 1998; Rigden, 

2008). Modelling of the catalytic site of a histidine phosphatase enzyme can provide clues as 

to its preferred substrate and therefore predictions can be made as to its potential 

physiological function within a cell.  

The trypanosomatid parasites have an unusually large array of novel or uncharacterised 

histidine phosphatases, compared to those found in other unicellular organisms such as 

Giardia lamblia (no readily recognisable homologues), Naegleria gruberi (one homologue), 

Plasmodium falciparum (one homologue) and Entamoeba histolytica (two homologues) 

(Brown, 2011) . All four putative T. brucei histidine phosphatase homologues are annotated 

as being putative phosphoglycerate mutases in GeneDB. One shares homology with a broad 

specificity phosphatase found in Bacillus stearothermophilus named PhoE (Brown, 2011); 

another shares homology with the biochemically characterised phosphoglycerate 5 (PGAM5) 

found in humans (Brown, 2011), although in humans it shows no phosphoglycerate mutase 

activity and has been shown to have mitochondrial function (Takeda et al., 2009). It has also 

been shown that PGAM5 is another atypical branch 1 histidine phosphatase, which can 

display serine/threonine protein phosphatase activity, and is involved in the activation of 

apoptosis signal-regulating kinase 1 (Sadatomi et al., 2013; Takeda et al., 2009). The final two 

putative histidine phosphatases in T. brucei are annotated as being ‘glycerolphosphate 

mutases’ and none of the homologues identified in other organisms, which were found using 

NCBI BLAST, have been biochemically characterised. 
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3.2 TbHP40 and TbHP30 are mitochondrial proteins 

A Clustal sequence alignment of TbHP40 and TbHP30 using MUSCLE shows that these 

proteins only share 35% identity. TbHP30 is 91 amino acids longer than TbHP40 (383 amino 

acids vs. 291 amino acids respectively), principally because of a long N-terminal extension 

(Figure 3.3 C). 

TbHP40 and TbHP30 have been detected previously in mitochondrial proteomes (Acestor et 

al., 2009; Fisk et al., 2013; Niemann et al., 2013; Panigrahi et al., 2009; Urbaniak et al., 2013) 

(Figure 3.3 A-B), but contamination of organellar proteomes with proteins from other 

cellular sites is not unusual. Thus, before subjecting TbHP40 and TbHP30 to more extensive 

bioinformatic analysis, I first confirmed the candidature of mitochondrial localisation using C-

terminal epitope tags.  

Previously, the coding sequences of TbHP40 and TbHP30 were fused in-frame at the C-

terminus with three tandemly-repeated myc epitopes (henceforth known as TbHP40::myc3 

and TbHP30::myc3). The genes encoding these myc-tagged proteins were cloned into the 

pDex377 expression vector (Kelly et al., 2007) in place of the luciferase reporter gene. These 

plasmid constructs were made with a previous undergraduate student (Steven Barlow). The 

plasmids were linearised with NotI and transfected into procyclic 427 T. brucei for 

homologous recombination into a minichromosomal locus and constitutive expression. Once 

stable transformants had been selected, protein samples were harvested for Western blot 

analysis and slides made for immunofluorescence imaging.  

The protein samples for both TbHP40::myc3 and TbHP30::myc3 were separated using SDS-

PAGE, blotted onto an Amersham Hybond-P membrane and the membrane was probed with 

anti-myc antibody. Protein was detected in both transformed populations (Figure 3.4) with a 

distinct band at ~34 kDa in lane 1 that corresponds with the predicted size of TbHP40, and 

another distinct band was detected at ~43 kDa in lane 2 that corresponds with the predicted 

size of TbHP30. The smaller bands detected in the TbHP30 sample are likely to be the result 

of proteolytic degration; a significant amount of protein was expressed within cells. Cells 

were incubated with MitoTracker Red, settled onto coverslips, fixed with para-formaldehyde 

and decorated with anti-myc antibody. This showed mitochondrial localisations for both 

TbHP40::myc3 and TbHP30::myc3 (Figure 3.4).  

Having provided conformation of mitochondrial localisation of both TbHP40 and TbHP30, 

which is also supported by presence of peptides in mitochondrial proteomes for both 
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bloodstream and procyclic life stages of T. brucei, and indicates constitutive expression of 

these proteins (Fisk et al., 2013; Niemann et al., 2013; Panigrahi et al., 2009; Urbaniak et al., 

2012; Urbaniak et al., 2013), I attempted to address the following points using bioinformatic 

approaches: 

A. To explore the phylogenomics of these novel histidine phosphatases in concordance 

with current views on eukaryotic phylogeny. 

B. To understand how the paralogy and degeneration of the active site of TbHP30 

might have evolved. 

C. Modelling experiments to get an understanding of what sort of substrate these 

proteins might act upon; whether they be other proteins or small metabolites. 

All these analyses were designed to gain insight into what the physiological and cellular 

function of TbHP40 and TbHP30 may be. Results from additional experimental studies are 

described in Chapters 4 and 5.  

 

3.3 Phylogenomic distribution of TbHP40 and TbHP30 orthologues  

TbHP40 is highly conserved across the trypanosomatids and orthologues were found in all of 

the trypanosomatids whose genome sequence is accessible at TritrypDB. Very little 

difference was observed between TbHP40 orthologues identified in Trypanosoma species 

when the sequences were aligned using MUSCLE (Figure 3.5). The T. brucei and T. evansi 

genes are identical in sequence, and in the other Trypanosoma species, there was slight 

variation at the N- and C- terminus, and a small region in the middle of the protein sequence 

that differed from one-another.  

Orthologues to TbHP40 were also found in all of the Leishmania sequences analysed. Many 

of the Leishmania orthologues were almost identical to each other (L. major and L. infantum 

share 99.6% sequence identity) and there is less divergence around the N- and C- terminus, 

compared to the orthologues found in the Typanosoma species such as T. cruzi (Figure 3.5). 

However, when the Leishmania sequences were aligned with TbHP40 and other 

Trypanosoma orthologues, it was obvious that Leishmania sequences were longer, with an 

extended C-terminus and a large insertion in the PGAM domain (Figure 3.5). Looking within 

the Leishmania species, more amino acid differences were present between species within 

the insertion and the Leishmania-specific C-terminal extension than within the PGAM 

domain itself. This suggested these regions of Leishmania HP40 proteins were under less 
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selective pressure than the PGAM domain. Thus, HP40 proteins in Leishmania species 

conform to the general consensus that Leishmania proteins tend to be ~30% longer than 

orthologues found T. brucei or T. cruzi (El-Sayed et al., 2005). 

Many other kinetoplastids were also found to contain orthologues to TbHP40, including the 

plant pathogen Phytomonas sp., the insect pathogens Crithidia fasciculata, and Leptomonas 

seymouri, and Endotrypanum monterogeii, which is a close relative of Leishmania and a 

parasite of sloths. When these sequences were aligned with Leishmania and TbHP40, again 

the two distinct blocks of conservation were apparent (Figure 3.5). All of the orthologues to 

TbHP40 were longer than the Trypanosoma sequences, and all resembled the L. major 

sequence, with a long divergent C-terminus and internal insertion between the two regions 

of conservation. The free-living kinetoplastid, Bodo saltans, is the closest relative to the 

trypanosomatid family for which a nuclear genome sequence is available (Jackson et al., 

2015). It also contained an orthologue of TbHP40 and its architecture more closely 

resembled the Trypanosoma HP40 proteins than it did Leishmania HP40 proteins – i.e. the B. 

saltans HP40 lacked a Leishmania-style insert within the PGAM domain and had only a short 

C-terminal sequence extending beyond the PGAM domain (Figure 3.5).  

Like TbHP40, TbHP30 is also highly conserved within the trypanosomatid family; TbHP30 

orthologues can be found in all trypanosomatids, for which genome sequence is available. In 

sequence alignments e.g. Figure 3.6,  trypanosomatid HP30 proteins principally differ only 

with respect to the amino acid sequence N-terminal to the PGAM domain and Leishmania, 

Crithidia and Phytomonas orthologues contain an insertion within the PGAM domain, which 

is not present in Bodo or Trypanosoma proteins. The degeneracy of the catalytic site is 

evident in all TbHP30 orthologues, but the remainder of the PGAM domain is otherwise well 

conserved.  

To look at the phylogenomic distribution of TbHP40 and TbHP30, the amino acid sequences 

of both proteins were used as query sequences to search draft or complete genome 

sequences for a range of eukaryotes spanning all known eukaryotic super-groups, as shown 

in Figure 3.7. Homologous or ‘candidate orthologous’ proteins were found in only a few 

eukaryotes. In reciprocal BLAST analyses, TbHP40 was always recovered as the top BLAST hit, 

with TbHP30 orthologues only within kinetoplastid organisms. Even in Euglena gracilis, which 

together with the kinetoplastids form the Euglenozoa, only a candidate orthologue to 

TbHP40 was found. From the heterolobosean group that is sister to the Euglenozoa; two 

proteins that identify TbHP40 as the top reciprocating hit were found. All of the candidate 
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TbHP40 orthologues or homologues shown in Figure 3.7 contain the canonical catalytic ‘RHG’ 

triad, characteristic of all histidine phosphatases. An alignment of candidate HP40 proteins 

found in T. brucei, B. saltans, E. gracilis and N. gruberi are shown in Figure 3.8. 

Unfortunately, the Naegleria protein that more closely resembles TbHP40 lacks a predicted 

start codon. However, many Naegleria protein-coding genes contain introns and gene model 

predictions for this organism are not always robust (Fritz-Laylin et al., 2010b).  

Across the rest of the eukaryotic tree, the distribution of homologues to TbHP40 is patchy 

(Figure 3.7). Amongst the Amorpha (formerly known as the Unikonts (Adl et al., 2012; He et 

al., 2014)) the distribution of homologues to TbHP40 is particularly sparse. Only one 

homologue was found in the Holozoa, which belonged to Capsaspora owczarzaki. The 

distribution of homologues in fungi is also sparse, with only Fusarium oxysporum and 

Trichophyton rubrum (both of which belong to the phylum Ascomycota) containing 

homologous HP40 sequences. No homologues containing the ‘RHG’ catalytic triad were 

found in other Ascomycota fungi such as Candida albicans and Aspergillus niger and only two 

sequences, both with minimal homology to TbHP40, were found in Saccharomyces 

cerevisiae. No homologues to TbHP40 were identified in any members of the Basidiomycota 

phylum analysed (52 species sampled, see Supplementary CD 1, represented by Serpula 

lacrymans, Ustilago maydis and Puccini sp. in Figure 3.7) nor any of members of the 

Microsporidia phylum analysed (22 species sampled, see Supplementary CD 1, represented 

by Encephalitozoon cuniculi in Figure 3.7). No homologues to TbHP40 were found in in the 

representative member of the Apusozoa, Thecamonas trahens, which is viewed as one of the 

closest neighbours to the Opisthokonts and evolutionarily speaking a divergent, enigmatic 

protist (Cavalier-Smith and Chao, 2010; Kim et al., 2006). Several sequences with limited 

homology to TbHP40 that contained the ‘RHG’ catalytic triad were identified in the 

Amoebozoa, although the quality of the amino acid sequence for the HP40 homologue in 

Polysphondylium pallidum was questionable. The Acanthamoeba castellanii homologue had 

a 38 residue N-terminal extension but aligned well with TbHP40 around the active site region 

and then sporadically along the rest of the length of sequence (data not shown).  

Compared to the Amorpha, it appeared that homologues to TbHP40 occurred more 

frequently amongst the land plants, green algae and red algae, but the distribution of these 

homologues was still patchy. Multiple homologues to TbHP40 are found across a variety of 

land plants. The model organism Arabidopsis thaliana, which has a relatively small genome 

for a flowering plant (Swarbreck et al., 2008), contained two homologues (or potential 

paralogues), Solanum lycopersicum, commonly known as the tomato, contained five 
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homologues (or potential paralogues) and Populus euphratica, commonly known as the 

desert poplar tree, contained one sequence with strong homology to TbHP40 and another 

with moderate homology to TbHP40. Homologous sequences to TbHP40, containing the 

‘RHG’ catalytic triad, were identified in several of the green algae. Epitope-tagged TbHP40 

and TbHP30 each localise to the mitochondrion in procyclic T. brucei. The analysis of the 

protein sequences using mitochondrial targeting prediction programs predict with varying 

degrees of confidence mitochondrial localisation of these trypanosome proteins (Table 3.1). 

It is recognised that mitochondrial targeting prediction programs are often not robust in 

correctly predicting mitochondrial targeting (Calvo and Mootha, 2010). However, 

mitochondrial targeting predictions have been trained against cohorts of bona fide plant 

mitochondrial proteins (Claros and Vincens, 1996; Emanuelsson et al., 2000; Horton et al., 

2007; Small et al., 2004) and the type of N-terminal transit or sorting motifs that direct many 

proteins into plants chloroplasts are also relatively well defined. Thus, to perhaps gain insight 

into whether candidate TbHP40 orthologues are mitochondrial or plastid targeted in other 

eukaryotes, candidate HP40 orthologues from plants were subject to analysis by organellar 

targeting prediction programs (Table 3.2). In only a few instances was a confident prediction 

of mitochondrial or chloroplast localisation apparent. Searches through mitochondrial and 

chloroplast proteomes also failed to reveal the presence of candidate HP40 orthologues 

from Arabidopsis. Thus, insight into function of these candidate plant HP40 proteins needs 

experimental analysis.  

 

3.4 Homology modelling   

To create a model for TbHP40 using MOE, the full length amino acid sequence for TbHP40 

was used as the query sequence to search the protein database (PDB) within MOE for 

homologous sequences with solved structures that are publically available. These results 

were then cross-referenced for the most up-to-date results by searching PDB directly with 

the TbHP40 amino acid query sequence 

(http://www.rcsb.org/pdb/secondary.do?p=v2/secondary/search.jsp#search_sequences). 

The highest hit from both searches in the PDB database was the solved structure for the 

histidine phosphatase TIGAR (TP53-induced glycolysis and apoptosis regulator) from the 

freshwater zebrafish (Danio rerio, Protein Data Bank code 3E9D.A)  (Li and Jogl, 2009). 

Although, despite TIGAR being the top hit, the TbHP40 and TIGAR sequences only share 20% 

sequence identity with one another (and an E value of 6.7e-006). The solved stucture for 

http://www.rcsb.org/pdb/secondary.do?p=v2/secondary/search.jsp#search_sequences
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TIGAR consists of two chains, which interact to form a homodimer. Once this structure was 

imported into MOE, one of the two chains was deleted, and the homology model for TbHP40 

based on chain A only. The TbHP40 and TIGAR amino acid sequences were then aligned using 

MOE, in preparation for the modelling of the tertiary structure of TbHP40. TbHP40 contained 

a 14 amino acid long N-terminal extension that was not present in TIGAR, therefore the ‘N- 

C- terminus outgap modelling’ option was selected. In this mode, MOE does ab initio 

modelling based on the secondary structure of the N- terminus region, which does not align 

with the template TIGAR sequence, to produce a model of the full length of TbHP40. 1000 

different models for TbHP40 were constructed during modelling, consisting of 100 main-

chain models with 10 side chains. The final structure was then energy minimized using 

AMBER99 force-field algorithms (Wang et al., 2000a) and the final output rendered in MOE 

using the ribbon backbone option (Figure 3.9).  

At first glance, the homology model for TbHP40 contains the six-stranded β-sheet core with 

the active RHG triad located towards the top of β1, as do the structures of TIGAR and the 

closely related histidine phosphatase PhoE, from the bacterium Bacillus stearothermophilus 

(Rigden et al., 2002). However, when closely scrutinised, β4 of TbHP40 is not part of the 

α/β/α sandwich that contains the active site. β4 is in fact homologous to the β5 strand of the 

TIGAR structure upon which the model was based on (Figure 3.11). The 5 core β-sheets in 

TbHP40 are flanked by α-helical regions, α12 and α9 on one side, α3 and α5 on the other 

side, forming an α/β/α structure, which resembles the α/β/α structure also present in the 

TIGAR and PhoE structures, albeit one β-strand short (Figure 3.11).  

The Ramachandran plot for the TbHP40 homology model shows the bond angles for all of 

the amino acids present in the sequence. The majority of amino acids are in a favourable 

conformation (represented by green circles in Figure 3.10). At least 70 amino acids are in a 

generally acceptable conformation (yellow circles in Figure 3.10), but 7 amino acids are 

outliers (red crosses in Figure 3.10). Attempts to manually adjust the conformations of these 

residues proved unsuccessful in altering them to a more favourible conformation. However, 

none of these outlier residues are located anywhere near the catalytic α/β/α structural 

region of the molecule.  

In attempts to gain insight about the nature of the substrate the TbHP40 protein may 

dephosphorylate, surface models were created based upon the homology model backbone 

of TbHP40. Firstly the surface of the whole molecule was rendered (the grey region in Figure 

3.12 C), followed by the specific modelling of the active ‘RHG’ triad. This showed that the 
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‘RHG’ catalytic triad is found in a fairly spherical recessed pocket at the opposite end of the 

protein to the N-terminus (the orange region in Figure 3.12 C). For comparison purposes 

with histidine phosphatases with known substrates, the solved structures of TIGAR and PhoE 

were also surface modelled using MOE (Figure 3.12 A and B respectively). The TbHP40 active 

site more closely resembles the TIGAR active site, which is slightly more exposed than 

TbHP40 but still located within a recessed pocket. The active site of PhoE is located within a 

deep groove even narrower than that of TbHP40. PhoE is known to be a broad specificity 

phosphatase, which acts upon relatively small molecules including 3-phosphoglycerate, α-

naphtylphosphate and p-nitrophenylphosphate (Rigden et al., 2001; Rigden et al., 2002). 

Therefore the structure of the TbHP40 active site suggests that potential substrates of 

TbHP40 are more likely to be smaller molecules rather than large proteins, which would 

encounter greater stearic hindrance when trying to access an active site located within a 

narrow deep groove. 

Homology modelling was also attempted using TbHP30 as the query sequence, but no model 

could be constructed since no homologous sequences could be identified in PDB. This 

indicates that the TbHP30 amino acid sequence has diverged significantly from all other 

histidine phosphatases for which solved structures are available and perhaps supports the 

interpretation that it is a catalytically dead protein – i.e. that it has no intrinsic catalytic 

activity. 

Attempts were also made to model a variety of other sequences that were identified as 

orthologues or homologues to TbHP40 (Section 3.3). The HP40 orthologue from 

Trypanosoma cruzi identified TIGAR (PDB: 3E9D.A) as the highest hit (with an E value of 

4.2e+000), but the resultant homology model only had 4 β-strands in the catalytic α/β/α 

region. No realistic model was obtained for the Leishmania major HP40 orthologue despite 

SixA (PDB: 1UJB) being identified as the top hit (E value of  4.2e+000) due to the sequence 

alignment being poor. The HP40 orthologue identified in Bodo saltans also identified TIGAR 

(PDB: 3E9D.A) as the sequence with the highest identity (E value of 1.6e-007), but the 

resultant model was unfeasible since the active site was buried deep within the molecule 

and there were only 2 β-strands in the catalytic α/β/α region. Again, no model could be 

constructed for the HP40 orthologue found in Naegleria gruberi due to no homologous 

sequences being identified in PDB. The model for the HP40 homologue from Acanthamoeba 

castellani was based on the human PGAM5 solved structure (PDB: Q96HS1) with an E value 

of 2.7e+000 and the model for the HP40 homologue with the highest sequence identity to 

TbHP40 (40%) from Arabidopsis thaliana was based on the phosphoglycerate mutase 
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structure from Borrelia burgdorferi (PDB: 4EMB). Both of the resultant models were 

unfeasible due to the ‘RHG’ catalytic triad being buried deep within the models structure 

with no obvious access to the surface of the molecule, and an α/β/α region with less than 4 

β-strands.  

Although the model presented here for TbHP40 appears to lack the one of the six β-strands 

required for the α/β/α catalytic core, this might not necessarily mean that it is not a 

functional histidine phosphatase. In PhoE β-strands A, F, C D, G and H form the six-stranded 

mixed core, flanked by α-helicies 2 and 3 on one side and 6 and 7 on the other; in TIGAR β-

strands 1, 4, 2, 3, 6 and 7 form the mixed core, flanked by α-helicies 8 and 7 on one side and 

2 and 3 on the other. These two solved structures can be superimposed upon one another 

showing strong conservation of the phosphatase core fold despite PhoE functioning as a 

monomer and TIGAR as a dimer. When comparing TbHP40 to PhoE and TIGAR, the core fold 

looks very similar, β-strands 1, 3, 2, 6 and 5 are flanked by α-helicies 12 and 9 one one side, 

and 3 and 5 on the other. The region where the additional β-strand should be present has an 

α-helix (α6 in Figure 3.11 C) and a turn in place instead. When reviewing the Ramachandran 

plot, of the 8 residues in this region (residues 96-103), 4 are classified as accepted but lie 

outside the core regions. Some of these residues that lie outside of the core areas on the 

plot may be responsible for the alternative tertiary structures seen in this region. In a model 

with less steric hindrance or in the actual TbHP40 structure in vivo, there is the possibility 

that some of these ‘accepted’ residues would form the additional core β-strand structure. 

It is also interesting to note that MOE 2014.09 does not display small regions of both TIGAR 

and PhoE structure correctly, in accordance to the published solved structures. In PhoE, two 

short anti-parallel β-strands are reported in the crystal structure, (labelled β2 and β5 in  

Figure 3.11 B) yet MOE represents this as a turn for what should be β2 and a turn with a 

small α-helical segment for what should be β5. With TIGAR, β-strand 5 is not shown when a 

TIGAR monomer is visualised using MOE (labelled β5 in Figure 3.11 A). Since the 

aforementioned TbHP40 equivalent of the missing β-strand in the catalytic core is 

represented in MOE as a turn with a small α-helical region (see Figure 3.11 C), it could be 

that this is actually a very small β-strand region since this is the same misrepresented pattern 

seen in PhoE, which MOE appears to have difficulties in rendering.  

Additionally, there is the suggestion that TbHP40 may function as a heterodimer in 

conjunction with TbHP30 (see data shown in Chapter 5), and so in vivo, significant structural 

changes could occur in TbHP40 when bound in the active conformation with TbHP30. 
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Experimental data (see subsequent chapters) suggests that TbHP40 does not necessarily 

function as a monomer in vivo, therefore a monomer model of TbHP40 alone may not be 

accurate. Since there is no solved structure that is homologous to TbHP30, the software is 

currently incapable of building a heterodimeric model. Also, β-strand 5 in TIGAR, which is the 

equivalent of β-strand 4 in TbHP40, is essential for the dimer formation in TIGAR and is 

critical for the co-ordination of the metal ions that stabalise the dimer interface (Li and Jogl, 

2009). Having this β-strand present in the predicted structure of TbHP40 could suggest that 

this area of the molecule may be involved in dimer formation.   
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Figure 3.2. Cartoon representations of a selection of solved histidine phosphatase structures.  
The core structures are conserved across all histidine phosphatases, the main differences between 
one another occur at the N- and C- terminal regions. Core structures shown in grey; orange shows 
N-terminal region; red shows C-terminal region; blue highlights insertions in the β1-α1 region; 
turquoise shows dPGM-specific insertion. Green shows the essential conserved histidine in the 
active site A. E. coli SixA (PDB code 1UJC); B. G. stearothermophilus PhoE (PDB code 1H2E); C. 
Human liver F26BPase (PDB code 1K6M); D. E. coli dPGM (PDB code 1E58); E. E. coli glucose-1-
phosphate (PDB code 1NT4); F. E. coli phytase (PDB code 1DKQ); G. A. fumigatus phytase (PDB code 
1QWO). Reproduced from Rigden (2008). 

A. 

B. 

C. 

D. 

E. 

F. 

G. 

Figure 3.2 
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Figure 3.3  

Figure 3.3. Domain architecture and conserved regions of TbHP40 and TbHP30 
A-B. Cartoon schematics showing the domain architecture of TbHP40 and TbHP30, and evidence for 
expression based on peptide fragments detected by mass spectrometry during proteomics screens. 
Orange is from fractionated mitochondrial membrane and ER proteomes (Niemann et al., 2013); Blue 
is from a procyclic form mitochondrial proteome (Panigrahi et al., 2009); Red is from a mitochondrial 
methylarginine proteome (Fisk et al., 2013); Yellow is from a comparative phosphoproteomes of 
bloodstream and procyclic forms (Urbaniak et al., 2012); green is from a bloodstream form enriched 
kinome (Urbaniak et al., 2013).  
C. A ClustalW sequence alignment of the full length sequences for TbHP40 and TbHP30. Sequences 
were aligned using MUSCLE and coloured using BoxShade. Conserved residues are shown in black, 
similar residues are shown in grey. The active ‘RHG’ site in TbHP40 is highlighted with a red box, the 
degenerative ‘RNG’ inactive site of TbHP30 is highlighted with a green box. The blue lines indicate the 
positions of the PGAM domains. 
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Figure 3.4. Expression and localisation of TbHP40::myc3 and TbHP30::myc3 in procyclic 427 T. brucei. 

A-D. Localisation of TbHP40::myc3 to the mitochondrion of T. brucei. Indirect Immunofluorescence 

was used to image the myc-tagged TbHP40. A: DIC; B: TbHP40::myc3 decorated with the anti-myc 

antibody at a dilution of 1/1000 in blocking buffer B, merged with DAPI; C: MitoTracker merged with 
DAPI; D: Merged. 
E-H. Localisation of TbHP30::myc3 to the mitochondrion of T. brucei. Fluorescence microscopy was 

used to image the myc-tagged TbHP30. E: DIC; F: TbHP30::myc3 decorated with the anti-myc antibody 

at a dilution of 1/1000 in blocking buffer B, merged with DAPI; G: MitoTracker merged with DAPI; H: 
Merged. 
I. Western blot analysis of whole cell lysates from cells expressing either TbHP40::myc3 (lane 1) or 

TbHP30::myc3 (lane 2) and decorated with anti-myc antibody at a dilution of 1/1000 in blocking buffer 

A. 
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Figure 3.5  

Figure 3.5. Comparison of TbHP40 sequences from different trypanosomatids.  
A ClustalW sequence alignment of the full length amino acid sequences of TbHP40 in T. brucei, and 
orthologues identified in Trypanosoma cruzi, Leishmania major, Crithidia fasciculata, Phytomonas 
sp. Hart1 (Note, TbHP40 orthologue also found in Phytomonas sp. EM1) and Bodo saltans. The 
alignment was performed using MUSCLE and coloured using BoxShade. Conserved residues are 
shown in black, similar residues are shown in grey. The highly conserved active ‘RHG’ sites are 
highlighted with a red box. The blue lines indicate the positions of the TbHP40 PGAM domain. 
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Figure 3.6. Comparison of TbHP30 sequences different trypanosomatids.  
A ClustalW sequence alignment of the full length amino sequences of TbHP30 in T. brucei, and 
orthologues to TbHP40 identified in Trypanosoma cruzi, Leishmania major, Crithidia fasciculata, 
Phytomonas sp. Hart1 (Note, TbHP30 orthologue not found in Phytomonas sp. EM1) and Bodo 
saltans. The alignment was performed using MUSCLE and coloured using BoxShade. Conserved 
residues are shown in black, similar residues are shown in grey. The degenerated ‘RXG’ sites are 
highlighted with a green box, showing the loss of the active histidine residue in all orthologues. The 
blue lines indicate the positions of the TbHP40 PGAM domain. 

Figure 3.6  
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Figure 3.7 Distribution of TbHP40 and TbHP30 orthologues/homologues across a range of eukaryotes. 
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Figure 3.8 

Figure 3.8.  Sequence alignment of candidate TbHP40 orthologues from several discicristate 
excavates. 
A ClustalW amino acid sequence alignment of full length TbHP40 with candidate orthologues found 
in Bodo saltans, Euglena gracilis and Naegleria gruberi. In N. gruberi, A and B, recover TbHP40 as top 
reciprocating BLAST hits. The alignment built in MUSCLE using the ClustalW algorithm and coloured 
using BoxShade. Conserved residues are shown in black, similar residues are shown in grey. The 
highly conserved active ‘RHG’ sites are highlighted with a red box. 
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Figure 3.9 

Figure 3.9. Homology model of the structure of TbHP40, based on sequence alignments with the 
solved structures of D. rerio TIGAR (PDB code 3E9D.A) and B. stearothermophilus PhoE (PDB code 
1H2E) (Rigden, 2002).  
Black shows the backbone; regions in red are α-helices, numbered 1-15; regions in yellow are β-
sheets, numbered 1-6; blue areas are turns; N- N-terminus; C- C-terminus. The active ‘RHG’ residues 
are represented by green stick structures.  
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Figure 3.10 

Figure 3.10. A Ramachandran plot showing the bond angles of the residues in the homology 
model for TbHP40 (Figure 3.9).  
Green circles show favoured conformations; yellow circles show accepted conformations; red 
crosses represent outliers, these residues are additionally labelled in blue. SER_38 – serine, 
position 38; ASP_42 – aspartic acid, position 42; ASN_68 – asparagine, position 68; GLU_108 – 
glutamic acid, position 108; ARG_132 – arginine, position 132; ASN_179 – asparagine, position 
179; HIS_194 – histidine, position 194 (none of these outlier residues are associated with the 
active site region).  
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Figure 3.11 

Figure 3.11. The solved structures of TIGAR and PhoE compared against the homology model of 
TbHP40 from T. brucei.  
A. The structure of D. rerio TIGAR (PDB code 3E9D.A) 
B. The structure of B. stearothermophilus PhoE (PDB code 1H2E) (Rigden, 2008) 
C. The homology model of TbHP40 from T. brucei 
Black shows the backbone; Regions in red are α-helices; regions in yellow are β-sheets; blue 
areas are turns; N – N-terminus; C- C-terminus. The active ‘RHG’ residues are represented by 
green stick structures. All rendered using MOE.  
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Figure 3.12 

Figure 3.12. Surface modelling the solved structures of TIGAR and PhoE and the homology model 
of TbHP40 from T. brucei.  
A. The structure of D. rerio TIGAR (PDB code 3E9D.A) 
B. The structure of B. stearothermophilus PhoE (PDB code 1H2E) (Rigden, 2008) 
C. The homology model of TbHP40 from T. brucei 
The active ‘RHG’ residues for each structure are shown in orange. Each active site sits within a 
deep pocket towards one end of the protein.  

  

A. B. 

C. 
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Chapter 4 

Evidence for the essentiality of TbHP40 and TbHP30 

From the investigations reported in Chapter 3, I learnt that Tb927.11.2920 (TbHP40) has a 

patchy evolutionary distribution and I got the impression that it is catalytically active. In 

contrast, Tb927.11.2910 (TbHP30) encodes a kinetoplastid-specific protein and is likely to be 

catalytically inactive. Both TbHP40 and TbHP30 were predicted to have N-terminal 

mitochondrial targeting sequences and both were shown to localise to the mitochondrion of 

procyclic T. brucei. TbHP40 and TbHP30 had also been identified in an array of mitochondrial 

proteome studies (Acestor et al., 2009; Fisk et al., 2013; Niemann et al., 2013; Panigrahi et 

al., 2009; Urbaniak et al., 2013), and thus both are constitutively expressed in T. brucei, 

despite the striking stage-specific differences in the extent of mitochondrial metabolism in 

African trypanosomes (Bringaud et al., 2006). However, beyond this, an understanding of the 

specific cellular function of TbHP40 and TbHP30 remained lacking. Thus, I set out to 

determine whether TbHP40 and/or TbHP30 were essential in procyclic T. brucei. The results 

of that investigation are presented in this chapter.  

 

4.1 The generation of a TbHP40/TbHP30+/- heterozygous cell line 

TbHP40 and TbHP30 are neighbouring genes on chromosome 11. Thus, as a first step to 

testing potential essentiality of TbHP40 and/or TbHP30, one allele of the paralogous gene 

pair was targeted for deletion from diploid procyclic T. brucei.  

Initially, plasmids encoding genes conferring resistance to either phleomycin or blasticidin S 

HCl and flanked at the 5’ and 3’ coding sequences by tubulin or actin intergenic sequences, 

respectively, (to allow appropriate mRNA processing and expression of the phleomycin Sh 

ble gene product or blasticidin deaminase) were used as PCR templates. Forward and reverse 

oligonucleotide primers that annealed to the tubulin or actin intergenic sequences and which 

contained at their 5’-ends 30 bp of homology to the start of the TbHP40 open reading frame 

(forward primer) or 30 bp of homology to the end of the TbHP30 coding sequence (reverse 

primer) were used in PCR as shown in Figure 4.1 A. PCR products from this reaction were 

then used as templates for a second PCR where new forward and reverse primers annealed 

to the first and last 20 nucleotides of the first PCR amplicon, which was now used as the DNA 

template. Each primer in the second PCR possessed at the 5’ end either an additional 30 bp 
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matching sequence at the 5’end of TbHP40 (forward primer) or the end of TbHP30 (reverse 

primer). Thus a final PCR product was produced in which the phleomycin resistance-

conferring Sh ble gene or blasticidin deaminase gene were flanked by appropriate mRNA 

processing signals and 60 bp homology flanks to allow integration of the drug resistance 

cassette into the T. brucei genome via homologous recombination.  

PCR products (~3 µg of DNA) were electroporated into procyclic T. brucei and stable 

transformants were selected by the addition of blasticidin S HCl (10 µg ml-1) or phleomycin (3 

µg ml-1). From drug resistant populations genomic DNA (gDNA) was isolated, digested with 

EcoRI and separated according to size by agarose gel electrophoresis. The digested DNA was 

then transferred onto an Amersham Hybond-N membrane and the membrane hybridised 

against an alkaline phosphatase labelled DNA sequence gene probe that corresponded to an 

upstream intergenic region (UIR) (i.e. a probe that lies in the intergenic region between 

TbHP40 [Tb11.02.2920] and the next upstream gene located on chromosome 11 

[Tb11.02.2930]). The membrane was then washed and incubated with a chemiluminescent 

substrate before visualisation on x-ray film. The parental 427 gDNA, when digested with 

EcoRI and hybridised with the UIR probe, was expected to result in one band ~10 kB in size 

on the Southern blot (Figure 4.1 B). The gDNA from the populations resistant to either 

blasticidin S HCl or phleomycin, when digested with EcoRI and hybridised with the UIR probe, 

would yield two bands - one ~10 kB in size which would correspond to a wild-type allele 

(Figure 4.1 A), and another ~8 kB in size, which would correspond to the correct integration 

of the the blasticidin S HCl or phleomycin resistance marker (Figure 4.1 C).  

Southern blot analysis showed that the EcoRI digested wild-type 427 gDNA was as expected. 

The presence of two hybridising bands in the gDNA extracted from cells transfected with the 

gene encoding blasticidin deaminase indicated disruption, as expected, of one allele of 

TbHP40/TbHP30 (Figure 4.1 E). However, there was no evidence for the correct integration 

of the phleomycin resistance cassette, since only one band of ~10 kB was detected in that 

lane and this corresponded to the expected size of a wild-type allele (Figure 4.1 E, middle 

lane). Thus, the results from the Southern blot were consistent with generating a procyclic T. 

brucei population that was resistant to blasticidin S HCl and also haploid for TbHP40/TbHP30 

(henceforth referred to as 4030KO+/-blast). Further confirmation was sought by PCR; here, 

primers corresponding to the intergenic sequence upstream of TbHP40 (forward primer) and 

the intergenic sequence downstream of TbHP30 (reverse primer) were used to amplify two 

bands in the 4030KO+/-blast gDNA (this primer combination allowed the amplification of both a 
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wild-type allele and a disrupted allele). One band was ~1.8 kB in size, and the other was ~3.8 

kB. This 2 kB reduction in size was indicative of the successful integration of the blasticidin 

resistance cassette. As expected, in the wild-type 427 control gDNA, only one band ~3.8 kB in 

size was amplified. Thus, the PCR analysis provided further evidence that 4030KO+/-blast was 

heterozygous for TbHP40/TbHP30.  

 

4.2 Generation of a TbHP40/TbHP30-/- cell line – attempt 1 

No further attempts to produce a TbHP40/TbHP30+/- population resistant to phleomycin 

were made. Instead, my efforts initially focused on attempts to use 4030KO+/-blast cells to 

generate a mutant null for both TbHP40 and TbHP30.  

Initially, a synthetic DNA construct was purchased in which a puromycin N-acetyltransferase 

gene was flanked at the 5’ end of its coding sequence with 192 bp of intergenic sequence 

immediately upstream of TbHP40, and 192 bp of intergenic sequence immediately 

downstream of TbHP30 at its 3’ coding end. This puromycin resistance cassette was 

transformed into procyclic 427 T. brucei as a control to show appropriate integration could 

occur, thereby generating heterozygous 4030KO+/-puro. Integration of the puromycin 

resistance conferring cassette resulted in a size reduction of ~1.8 kB (compared to wild-type 

427 gDNA) when EcoRI digested gDNA was hybridised against the UIR probe used for the 

analysis shown in Figure 4.1 (Figure 4.2 A). Two independent transfections of the puromycin 

resistance cassette into 4030KO+/-blast cells were carried out. Following the overnight recovery 

of transfected cells, one transfection was selected in quadruplet at the population level by 

the addition of puromycin (2 µg ml-1) or puromycin (2 µg ml-1) and blasticidin S HCl (10 µg ml-

1) to 1x106 cells in 10 ml of fresh SDM-79 medium. Stable transformants were then allowed 

to grow through independently. This resulted in four candidate null (-/-) populations for 

which gDNA was made, digested with EcoRI and screened by Southern blot using the UIR 

probe. All of these candidate TbHP40/TbHP30 null mutant populations still contained a wild-

type allele. The second independent transfection was selected both at a population level in 

the presence of blasticidin and puromycin, and at a clonal level using two 96-well plates in 

which 200 μl of culture (at 2x106 cells ml-1) was plated per well. One plate was selected in the 

presence of only puromycin, the other with puromycin and blasticidin. Stable transformants 

were obtained from the population selection. Seven wells from the 96-well plate grown with 

puromycin yielded viable populations of cells. Clonal transformants were transferred to 
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separate flasks containing 1 ml of fresh SDM-79 medium, and incubated with both 

puromycin and blasticidin. Once this 1 ml culture reached stationary phase, a further 9 ml of 

fresh SDM-79 medium was added. Only six of these wells continued to grow in the presence 

of both drugs. Only two wells from the plate incubated with puromycin and blasticidin gave 

populations of viable cells following 11 days of selection. These populations were treated in 

the same way as candidate clonal lines from the 96-well plate incubated with puromycin. 

Both of the new candidate clonal lines remained resistant to both puromycin and blasticidin 

drugs. All nine candidate nulls (-/-) were screened by Southern blot using the UIR probe, but 

a wild-type allele was still detected in all transformants selected at both clonal and 

population levels.   

Thus, from two independent transformations followed by population and/or clonal level 

selection, no cell lines completely null for TbHP40/TbHP30 were isolated. This provided 

preliminary evidence to suggest that TbHP40 and/or TbHP30 are essential in procyclic T. 

brucei.  

 

4.3 Generation of a TbHP40/TbHP30-/- cell line – attempt 2 

Following the preliminary indication that TbHP40 and/or TbHP30 were essential I undertook 

additional experiments. Here, the aim was to take the 4030KO+/-blast population to ectopically 

express either TbHP40::myc3 or TbHP30::myc3 on the +/- genetic background and to then 

attempt the deletion of the remaining TbHP40 and TbHP30 allele. 

Constructs permitting expression of TbHP40::myc3 or TbHP30::myc3 (as described in Chapter 

3) were linearised, and transfected separately into 4030KO+/-blast cells. Stable transformants 

expressing TbHP40::myc3 or TbHP30::myc3 were selected by the addition of hygromycin (50 

µg ml-1). Whole cell lysates from populations expressing either TbHP40::myc3 or 

TbHP30::myc3 were analysed by Western blotting, and cover slips containing cells fixed with 

para-formaldehyde were permeabilised and processed for indirect immunofluorescence 

microscopy. The primary antibody used in these analyses was anti-myc. From the Western 

analysis of both transformed populations, one population expressed a myc-tagged protein 

~34 kDa in size, which corresponded to the predicted size of TbHP40::myc3. The other 

population expressed myc-tagged protein where the dominant protein band was ~43 kDa in 

size, which corresponded to the predicted size of TbHP30::myc3 (Figure 4.3 A). In the latter, 

smaller fainter bands detected on the Western blot were most likely caused by proteolytic 
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degradation of TbHP30::myc3. Expression of myc-tagged TbHP40 and TbHP30 was further 

confirmed using immunofluorescence, which showed ~100% of cells constitutively expressed 

either TbHP40::myc3 or TbHP30::myc3, which, as expected, localised to the mitochondrion of 

T. brucei in both populations (Figure 4.3 B-C).  

 Independent transfections of the puromycin resistant cassette into 4030KO+/-blast expressing 

either TbHP40::myc3 or TbHP30::myc3 were then carried out. The continued expression of 

either TbHP40::myc3 or TbHP30::myc3 was confirmed visually by indirect 

immunofluorescence before each transfection. In the first of two independent sets of 

transfections, stable transformants were clonally selected using puromycin and two 96-well 

plates (one plate for transformants expressing TbHP40::myc3 and one plate for 

transformants expressing TbHP30::myc3). Only two wells from the plate in which 4030KO+/-

blast/ TbHP40::myc3 cells were subject to puromycin selection grew out. These clonal lines 

were transferred to separate 1 ml flasks of fresh SDM-79 and grown in the presence of 

puromycin. Again, upon reaching stationary phase, the culture volume was expanded to 10 

ml. When the culture volume was increased, the cultures were also split into one fraction 

cultured in the presence of puromycin, the other cultured in the presence of puromycin and 

blasticidin. Both clonal lines survived exposure to blasticidin and puromycin. Genomic DNA 

was made from all four cultures and analysed by Southern blot using the hybridisation UIR 

probe (Figure 4.2 B). All four transformants still retained a copy of the wild-type allele. To 

verify the result of a rough-looking blot, the EcoRI digests of the gDNA was repeated and a 

new Southern blot membrane hybridised with a probe that corresponded to the open 

reading frame of TbHP40 (40ORF). If the deletion of the second allele had been successful in 

any of the candidate null (-/-) cell lines, a wild-type allele ~10 kB in size would not be 

detected. The Southern blot hybridised against the 40ORF probe did show the presence of a 

wild-type allele in all of the candidate null (-/-) cell lines. A second hybridisation signal 

corresponding to TbHP40::myc3 (~4 kB in size) was detected in all cell lines apart from the 

wild-type 427 and 4030KO+/-blast cells.  

In a second set of transfections, stable transformants were clonally selected using puromycin 

or puromycin and blasticidin, resulting in four 96-well plates. Any wells that survived 

selection were transferred to 1 ml cultures of SDM-79 containing puromycin, blasticidin and 

hygromycin on a 24-well plate (hygromycin being the drug selection marker for the 

expression of TbHP40::myc3 or TbHP30::myc3). Transformants grew through in three waves. 

The initial wave resulted in fourteen clonal lines from 4030KO+/-blast/TbHP30::myc3 (thirteen 
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originating from the ‘puromycin’ plate, one from the ‘puromycin and blasticidin’ plate), only 

ten of these clones survived selection in the presence of all three drugs (nine originating 

from the ‘puromycin’ plate, one from the ‘puromycin and blasticidin’ plate). Twelve clonal 

lines were obtained from the 4030KO+/-blast/TbHP40::myc3 selection (ten originating from the 

‘puromycin’ plate, two from the ‘puromycin and blasticidin’ plate) and only seven of these 

survived selection in the presence of all three drugs (five originating from the ‘puromycin’ 

plate, two from the ‘puromycin and blasticidin’ plate). The next wave of transformants saw 

no clonal lines from the 4030KO+/-blast/TbHP30::myc3 selection plates, and nine from the 

4030KO+/-blast/TbHP40::myc3 selection (all nine originating from the ‘puromycin’ plate); eight 

clones survived selection with all three drugs. The final wave of transformants to emerge 

again saw no growth from the 4030KO+/-blast/TbHP30::myc3 selection plates, and four clones 

from the 4030KO+/-blast/TbHP40::myc3 selection (all four again originating from the 

‘puromycin’ plate); all four survived selection with all three drugs.  

Since this experiment yielded such a high number of cell lines, initial screening was done 

using PCR with the intention of further analysing of any candidate mutants null for both 

TbHP30 and TbHP40 by Southern blotting. Genomic DNA was harvested from all cell lines 

and then used as DNA template in separate PCR reactions, using the primers detailed in 

Table 2.3. Two PCR reactions were carried out on each DNA template with primer pairs 

designed to amplify either the TbHP40 open reading frame or the TbHP30 open reading 

frame. Since the cell lines expressed either TbHP40 or TbHP30, one of the two PCR reactions 

always acted as a control to make sure that the gDNA harvested provided a template 

amenable to PCR, so a band of ~1 kB was always expected in one of the two reactions 

(dependent on whether TbHP40::myc3 or TbHP30::myc3 were expressed and which primer 

pair was used). If no bands were detected from the other PCR, then this would be indicative 

of a candidate mutant null for the endogenous loci containing TbHP30 and TbHP40, 

assuming the remaining wild-type TbHP40/TbHP30 allele would have been replaced with the 

puromycin resistance cassette. 

All cell lines obtained from these analyses still retained a wild-type allele, which was 

amplified by PCR as described above. A representative agarose gel showing six PCR reactions, 

one using a template from 4030KO+/-blast/TbHP30::myc3 background and two using templates 

from a 4030KO+/-blast/TbHP40::myc3 background are shown in Figure 4.4 B. If the deletion had 

been successful in the 4030KO+/-blast/TbHP30::myc3 cell line, a band ~1 kB in size would have 

been detected only in lane 2 (which used the TbHP30 ORF primer pair, and would amplify 
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the gene encoding TbHP30::myc3) and not in lane 1, since this reaction used the TbHP40 ORF 

primer pair. Since a band ~1 kB in size was detected in lane 1, this showed that a wild-type 

allele of TbHP40/TbHP30 was still present in the genome. 

Again, from two independent transformations followed by clonal level selection, no double-

knockout cell lines were confirmed, irrespective of whether cells expressed either 

TbHP40::myc3 or TbHP30::myc3. This analysis provided further evidence to suggest that both 

TbHP40 and TbHP30 are essential in procyclic T. brucei.  

 

4.4 Generation of a TbHP40/TbHP30-/- cell line – attempt 3 

Another strategy was devised to test the essentiality of TbHP40 and TbHP30, whereby the 

4030KO+/-blast population was manipulated further to express both TbHP40::myc3 and 

TbHP30::myc3. This cell line was then subjected to a final round of genetic manipulation to 

delete the remaining locus encoding TbHP30 and TbHP40.  If both TbHP40 and TbHP30 are 

essential in procyclic T. brucei (perhaps because the gene products interact with one another 

in order to function properly), then this may explain why the deletion of the second allele 

had proved so difficult to achieve when only either TbHP40::myc3 or TbHP30::myc3 were 

ectopically expressed in a TbHP40/TbHP30 heterozygous (+/-) background.  

To carry out this approach DNA containing the coding sequence of TbHP40::myc3 was 

isolated from the pDex377 vector by restriction digest using BamHI and NsiI and then cloned 

into the pDex477-Y2 expression vector, which had been digested with BamHI and NsiI prior 

to ligation. Following selection of transformants with phleomycin this would permit 

expression of myc-tagged TbHP40. Ligated plasmids were transformed into XL-1 blue 

competent E. coli and plasmid DNA prepared in the usual way using the GeneJET™ Plasmid 

Miniprep kit (ThermoFisher Scientific). Plasmid DNA was screened for the presence of insert 

using BamHI and NsiI restriction digests and a plasmid containing the correct insert was 

confirmed by DNA sequencing. This new TbHP40::myc3 construct was linearised using the 

restriction enzyme NotI and then transfected into the existing ‘4030KO+/-blast expressing 

TbHP30::myc3’ cell line and also wild-type procyclic 427 cells. Since immunofluorescence 

would not be able to distinguish between the two different mitochondrial myc-tagged 

proteins expressed in the same cell, evidence of successful transformation and expression of 

both TbHP40::myc3 and TbHP30::myc3 was sought only by Western blot for the transformed 

4030KO+/-blast/TbHP30::myc3 cell line. Western blots probed with anti-myc antibody (Figure 
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4.5 A) detected a single protein band, which corresponded to the expected size of 

TbHP40::myc3 (~34 kDa), in the transfected 427 background (lane 1; Figure 4.5 A). For 

proteins blotted from the whole cell lysate prepared from 4030KO+/-blast cells, co-expressing 

both TbHP40::myc3 and TbHP30::myc3 two protein-containing bands were detected, one that 

corresponded to the expected size of TbHP40::myc3 (~34 kDa) and the other that 

corresponded to the expected size of TbHP30::myc3 (~43 kDa) (lane 2; Figure 4.5 A). 

Following the confirmation by Western blot, two independent transfections of the 

puromycin resistance-conferring KO cassette into 4030KO+/-blast cells expressing both 

TbHP40::myc3 and TbHP30::myc3 were carried out. For the first transfection, stable 

transformants were selected on a population level, by the addition of puromycin (2 µg ml-1) 

and blasticidin (10 µg ml-1) to electroporated cells. Genomic DNA was isolated from the drug 

resistant population and screened by Southern blot using a hybridisation probe that 

corresponded to the open reading from of TbHP30 (30ORF). If the second wild-type allele for 

TbHP40 and TbHP30 had been successfully replaced by the puromycin resistance cassette, 

then there would be no detection of a wild-type band ~10 kB in size and only a band of ~3.8 

kB, which would correspond to the ectopic expression of TbHP30::myc3. Unfortunately, the 

presence of a wild-type band was still detected in the candidate null (-/-) population. 

For the second transfection, first the continued expression of TbHP40::myc3 and 

TbHP30::myc3 was confirmed by Western blot before the puromycin resistance cassette was 

transfected into 4030KO+/-blast cells expressing both TbHP40::myc3 and TbHP30::myc3. Stable 

transformants were selected clonally using various drug combinations: puromycin (‘puro’) (2 

µg ml-1); blasticidin (‘blast’) (10 µg ml-1); hygromycin (‘hyg’) (50 µg ml-1); and phleomycin 

(‘phleo’) (3 µg ml-1). Four 96-well plates were therefore set up for the selection. Any wells 

that survived the initial drug selections were transferred into 1 ml cultures of SDM-79 

containing ‘puro/blast/hyg/phleo’ on a 24-well plate and viable cell populations expanded to 

10 ml cultures for the isolation of gDNA. Again, transformants grew through in three waves. 

Wave one resulted in eighteen clonal cell lines (five from the ‘puro’ plate, six from the 

‘puro/blast’ plate, five from the ‘puro/blast/hyg’ plate and two from the 

‘puro/blast/hyg/phleo’ plate). Only two of these candidate clonal lines did not survive in the 

presence of all four drugs (one originating from the ‘puro’ plate and the other from the 

‘puro/blast’ plate). The second wave of emerging transformants resulted in two clonal cell 

lines (one from the ‘puro/blast’ plate and the other from the ‘puro/blast/hyg’ plate); both 

survived quadruple drug selection. The third ‘wave’ resulted in only one more clonal cell line 
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(from the ‘puro/blast/hyg’ plate), which also grew in the presence of all four drugs. Genomic 

DNA was made from all nineteen cell lines, digested with EcoRI, and all candidate nulls were 

screened by Southern blot, using the 30ORF probe. A representative Southern blot of these 

screens can be seen in Figure 4. 5 B, where fourteen of the mutant candidate nulls for 

TbHP30 and TbHP40 were screened. All cell lines appeared to still retain a wild-type allele 

when probed with the 30ORF probe. However, the clarity of this exposure was not perfect 

but the hybridisation signals in some lanes gave a hint of mutants potentially null for both 

endogenous alleles of TbHP40/TbHP30. Thus, gDNA from these clones (corresponding to 

lanes 5, 6 and 7 in blot shown in Figure 4.5 B) were re-analysed by Southern blot (Figure 4.5 

D). This Southern blot was again probed with the 30ORF probe, and a ~10 kB band that 

corresponded to the expected size of a wild-type allele was readily detected in all lanes. The 

small ~3.8 kB band was only detected in the three candidate null mutants expressing 

TbHP30::myc3.  

Despite being able to survive and grow in the presence of all four drugs, all nineteen 

candidate null (TbHP30/TbHP40-/-) cell lines still retained a copy of the wild-type allele. Thus, 

there was never any convincing evidence that a null mutant for TbHP40 and TbHP30 was 

ever obtained. This again pointed to essentiality of both TbHP40 and TbHP30 in procyclic T. 

brucei.  

 

4.5 Progress with the generation a conditional TbHP40 -/- cell line 

A final approach was taken to assess the possible essentiality of TbHP40 and TbHP30. Here, I 

attempted to make a conditional gene knock out, where only the disruption of TbHP40 

occurred. The experiments here used the 29-13 strain of procyclic T. brucei, in which cells 

express both T7 RNA polymerase (not relevant here) and a tetracycline repressor protein to 

facilitate inducible expression of genes targeted for conditional knock out. For the 

conditional knock out, a first allele of TbHP40/TbHP30 was targeted for deletion using the 

puromycin resistance cassette. Subsequently, TbHP40::myc3 encoded within pDex477-Y2 was 

expressed in these cells, thereby facilitating ectopic expression of TbHP40::myc3, and then 

deletion of the remaining gene copy of TbHP40 was attempted.  

The puromycin resistance cassette was transfected into 29-13 cells and stable transformants 

were selected both at the population level and clonally with puromycin. Three candidate 

clonal lines and the population survived selection with puromycin and gDNA was made from 
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each cell line, digested with EcoRI and screened by Southern blot using the UIR probe. The 

Southern blot detected two bands in clonal lines C and D, a wild-type ~10 kB band and a 

smaller band ~8.2 kB which corresponded to the expected size reduction that would be 

observed following the successful integration of the puromycin resistance cassette (Figure 

4.6 B). 

The attempt to delete one TbHP30/TbHP40 allele in a 29-13 background using the puromycin 

resistance cassette had thus been successful, and one clonal line was taken forward for 

further genetic manipulation (henceforth referred to as 4030KO+/-puroC). DNA encoding 

TbHP40::myc3 was then transfected into 4030KO+/-puroC cells and stable transformants were 

selected using phleomycin (TbHP40::myc3 in the pDex377 vector could not be used, since the 

selection marker for this vector is hygromycin and the 29-13 cell line used for conditional 

gene KO was already resistant to hygromycin). Phleomycin-resistant cells were next 

incubated in the presence or absence of doxycycline for 24 hours, to induce the expression 

of TbHP40::myc3. Cover slips were made, fixed with para-formaldehyde, permeablised and 

processed for indirect immunofluorescence. When incubated with doxycycline, only ~10% of 

the population exhibited high-level inducible expression of TbHP40::myc3 and the remainder 

of the cells showed very minimal or no expression (cf constitutive expression of 

TbHP40::myc3, in a 427 background where 100% stably express myc-tagged TbHP40 at 

relatively homogenous levels). 

In order to generate a conditional gene knock out of TbHP40, the final round of selection for 

stable transformants had to be done in the presence of doxycycline, to maintain expression 

of TbHP40::myc3 during the selection process. Since only ~10% of cells expressed 

TbHP40::myc3, the likelihood of obtaining a null mutant in which both wild-type alleles of 

TbHP40/TbHP30 have been disrupted was likely to be low. Despite this, 4030KO+/-

puroC/TbHP40::myc3 cells were transfected with a synthetic construct that would confer 

blasticidin resistance and which targeted the remaining copy of TbHP40 for KO – i.e. I 

attempted to produce a conditional TbHP40 KO in which an endogenous copy of TbHP30 

remained. Transformants were selected clonally in the presence of doxycycline, puromycin 

and blasticidin. Unfortunately, no transformants from the final round of transfection were 

obtained, and given the low number of cells that could be induced to express TbHP40::myc3 

no further transfections were carried out. 

Although it is perhaps somewhat unsatisfactory in that I never got a cell line or population in 

which both alleles encoding the paralogous TbHP40 and TbHP30 gene pair were lost, the fact 
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that nine independent transfections were carried out in which there was potential, albeit not 

realised potential, for the second allele encoding TbHP30 and TbHP40 to be disrupted, 

nonetheless provides likely indication that at least TbHP40, if not TbHP40 and TbHP30 are 

essential in procyclic T. brucei.  
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Figure 4.1. Southern analysis of candidate TbHP40/TbHP30
+/-

 populations.  
A. A cartoon schematic of the blasticidin or phleomycin resistance cassettes. The gene for either 
blasticidin deaminase or the phleomycin Sh ble gene product is flanked at the 5’ end with 
tubulin βα intergenic sequence and at the 3’ end with actin intergenic sequence. The primer 
pairs used at the 5’ end (detailed in Table 2.3) were 4030KOA (shown in dark green) and 
4030KOC (highlighted in light blue). At the 3’ end the primer pair used was 4030KOB (shown in 
dark orange) and 4030KOD (shown in dark blue). Not drawn to scale.  
B. A restriction map showing the locations of the EcoRI digest sites upstream and downstream 
of TbHP40 and TbHP30 in a wild-type allele. Sequence corresponding to upstream intergenic 
region (purple) provided the DNA probe used for Southern analysis.  
C. A restriction map showing the locations of the EcoRI digest sites upstream and downstream 
of the TbHP40 and TbHP30 gene locus after the successful integration of the blasticidin 
deaminase or phleomycin sh ble resistance cassette. The blasticidin or phleomycin resistance 
cassette (described in more detail in Figure 4.1 A) is represented by the light and dark grey 
boxes. The remaining (following integration of the resistance cassette) short 5’ end of TbHP40 
and the remaining short 3’ end of TbHP30 are represented by light and dark blue boxes 
respectively.  
D. A post-stained 0.7% TBE agarose gel showing the EcoRI digested gDNA from wild-type 427 

(+/+), and candidate blasticidin S HCl-resistant (+/-
blast

) or phleomycin-resistant (+/-
phleo

) T. brucei 
populations.  
E. The Southern blot of the gel shown in Figure 4.1 D, hybridised with the upstream intergenic 
region probe. In the wild-type 427 (+/+) lane only one band ~10 kB in size is detected when 

probed. In the blasticidin S HCl-resistant population (+/-
blast

) two hybridisation signals ~10 kB 
and ~8 kB in size were detected. This indicated that one of the two alleles had been deleted and 
replaced with the blasticidin resistance cassette.  
F. A post-stained 0.8% TAE agarose gel showing the PCR amplicons resulting from PCR using the 
primer combination UpIG0445 (forward primer) and 3040KO6 (reverse primer) (see Table 2.3, 
also shown as astrisks in Figure 4.1 B and C) and genomic DNA isolated from either 427 (lane 1) 

or 4030KO
+/-blast

 (lane 2) cells. 
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Figure 4.2. Southern analysis for the disruption of the TbHP40 and TbHP30 gene locus through 
homologous recombination using a puromycin N-acetyltransferase gene.  

(4030KO
+/-blast

 cells expressing TbHP40::myc3 or TbHP30::myc3) 

A. A restriction map showing the locations of the EcoRI digest sites upstream and downstream of 
the TbHP40 and TbHP30 gene locus after the successful integration of the puromycin N-
acetyltransferase resistance cassette. The puromycin N-acetyltransferase is represented by the 
grey box and labelled ‘puro’.   
B. The post-stained 0.7% TBE agarose gel showing the EcoRI digested gDNA from wild-type 427 

(+/+), the blasticidin S HCl-resistant (+/-
blast

) and four candidate null (-/-) T. brucei populations. (-/-
)A was initially grown in the presence of puromycin, then split and one half grown in the presence 
of puromycin and blasticidin [(-/-)B]. (-/-)C was also initially grown in the presence of puromycin 
then split and one half grown in the presence of puromycin and blasticidin [(-/-)D].  
C. The Southern blot of the gel shown in B, hybridised with the UIR probe. The wild-type 427 (+/+) 
lane detected only one band ~10 kB in size, which was also detected in all of the candidate null (-
/-) populations which indicated the puromycin resistance cassette had not successfully replaced 

the remaining TbHP40 and TbHP30 gene locus. The ~8 kB band detected in the (+/-
blast

), showing 
the successful integration of the blasticidin resistance construct, was also detected in all of the 
candidate null (-/-) populations. Smaller, fainter bands of unknown origin were detected in most 
of the lanes, so the Southern blot was repeated to clarify the results observed here (see below).  
D. The post-stained 0.7% TBE agarose gel showing the EcoRI digested gDNA, the lanes are the 
same as described in B.  
E. The Southern blot of the gel shown in D, hybridised with the TbHP40 open reading frame 
(40ORF) probe. A wild-type allele ~10 kB was detected in all of the candidate null populations. The 
smaller ~4 kB band detected only in the candidate null (-/-) populations corresponded to the 
ectopic locus for expression of TbHP40::myc3. 
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Figure 4.3 
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Figure 4.3. Expression of TbHP40::myc3 or TbHP30::myc3 in 4030KO
+/-blast

 cells.  

A. Western blot detection of TbHP40::myc3 or TbHP30::myc3 in a 4030KO
+/-blast

 background. 

Whole cell lysates were run on a 10% SDS-PAGE gel and transferred onto an Amersham Hybond-
P membrane. The Western blot was decorated with the anti-myc antibody at a dilution of 
1/1000 in blocking buffer. 

B. Representative indirect immunofluorescence image panel of 4030KO
+/-blast

 cells expressing 
TbHP40::myc3, illustrating ~100% of cells constitutively expressed the TbHP40::myc3. The 

merged image shows both TbHP40::myc3 expression and DAPI-stained DNA in para-

formaldehyde fixed cells decorated with the anti-myc antibody at a dilution of 1/1000 in 
blocking buffer B (Section 2.30). 

C. As in B, except 4030KO
+/-blast

 cells expressing TbHP30::myc3 were imaged. 
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3
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Figure 4.4 Screening candidate TbHP40/TbHP30 null (-/-) mutants by PCR. 
A. A cartoon schematic of the TbHP40 and TbHP30 gene loci on chromosome 11 of T. brucei. The 
positions of the primer pairs used in screening the gDNA from candidate null (-/-) cell lines are 
highlighted with arrows above TbHP40 (forward primer shown in green, named 40ORF F and 
detailed in Table 2.3. The reverse primer shown in black, named 40ORF R and detailed in Table 
2.3) and TbHP30 (forward primer shown in yellow, named 30ORF F and detailed in Table 2.3. 
The reverse primer shown in red, named 30ORF R and detailed in Table 2.3).  
B. A representative agarose gel showing the PCRs using gDNA template from three of the 
candidate null (-/-) cell lines expressing either TbHP40::myc3 or TbHP30::myc3 using two 

different sets of primer pairs (40ORF F&R and 30ORF F&R). The PCR reactions in lanes 1-2 use 
gDNA from a candidate null expressing TbHP30::myc3 and the 30ORF F&R primer pair. If the 

disruption of the second gene locus using the puromycin resistance cassette had been 
successful, a PCR product would not be observed in lane 2. The PCR reactions in lanes 3-6 use 
gDNA from two different candidate null expressing TbHP40::myc3 and the 40ORF F&R primer 

pair. If the disruption of the second gene locus using the puromycin resistance cassette had 
been successful, a PCR product would not be observed in lanes 3 and 6. 

* * * 
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Figure 4.5 
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Figure 4.5. Southern analysis of candidate TbHP40/TbHP30 null (-/-) mutants expressing 
TbHP40::myc3 and TbHP30::myc3 

A. The Western blot of whole cell lysates from procyclic 427 T. brucei expressing TbHP40::myc3 

and 4030KO
+/-blast

 cells expressing both TbHP40::myc3 and TbHP30::myc3.  

B. The post-stained 0.7% TBE agarose gel showing the EcoRI digested gDNA from fourteen of the 
nineteen candidate TbHP40/TbHP30 null (-/-) clonal lines, all of which expressed both 
TbHP40::myc3 and TbHP30::myc3. 

C. The Southern blot of the gel shown in Figure 4.5 B, hybridised with sequence that 
corresponded to the open reading frame of TbHP30 (30ORF). A hybridisation signal which 
corresponded to the expected size of a wild-type gene locus, (~10 kB), was detected in all of the 
candidate null clonal lines. The ~3.8 kB band corresponded to the ectopic expression of 
TbHP30::myc3.  

D. The post-stained 0.7% TBE agarose gel showing the EcoRI digested gDNA from wild-type 427 

(+/+), the blasticidin S HCl-resistant (+/-
blast

) population and the three clonal candidate 
TbHP40/TbHP30 null (-/-) cell lines that are highlighted with an asterisk in Figure 4.5 C.  
E. The Southern blot of the gel shown in Figure 4.5 D, hybridised with the 30ORF probe. The 
presence of a wild-type gene locus was observed in all of the candidate null (-/-) cell lines.   
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Figure 4.6 
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Figure 4.6. Southern analysis of candidate TbHP40/TbHP30
+/-puro 

cells and expression of 
TbHP40::myc3 in a 29-13 background of procyclic T. brucei.  

A. A post-stained 0.7% TBE agarose gel showing the EcoRI digested gDNA from wild-type 427 

(+/+), and candidate puromycin-resistant (+/-
puro

) cells.  
B. The Southern blot of the gel shown in Figure 4.6 A, hybridised with the UIR probe. A 
hybridisation signal which corresponded to the expected size of a wild-type gene locus, (~10 kB), 

was detected in all lanes. However in two of the puromycin-resistant clonal cells (+/-
puro

C-D), an 
additional signal with a size decrease of ~1.8 kB was detected. This indicated that one of the two 
gene loci had been successfully replaced with the puromycin resistance cassette.  

C. Representative indirect immunofluorescence image panel of 4030KO
+/-puro

C cells expressing 
TbHP40::myc3, after 24 h incubation with doxycycline. This illustrated that only ~10% of cells 

constitutively expressed the TbHP40::myc3. The image shows a merge of TbHP40::myc3 induced-

expression and DAPI-stained DNA in para-formaldehyde fixed cells decorated with the anti-myc 
antibody at a dilution of 1/1000 in blocking buffer B. 

TbHP40::myc
3
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Chapter 5 

Identifying interacting partners for the novel histidine phosphatases 

TbHP40 and TbHP30 

Identification of the potential interacting partners for a protein of unknown function can be 

very informative in regard of determining the cellular role(s) of that protein. Several recent 

examples include the purification of three different super-complexes associated with 

BRCA1/BARD1 that form in response to acute DNA damage sites in human HeLa cells 

(Greenberg et al., 2006); the identification of novel deubiquitinating enzymes in the parasitic 

nematode Trichinella spiralis (White et al., 2011); the identification of highly divergent Origin 

Recognition Complex orthologues in Trypanosoma brucei (Tiengwe et al., 2012); the 

characterisation of novel immunogenic antigens isolated from Trypanosoma congolense-

infected cattle (Pillay et al., 2013) and the identification and  characterisation of a novel class 

of lysosomal targeting receptors, known as the cysteine protease binding protein family, in 

Entamoeba histolytica (Marumo et al., 2014). However, identifying partners for novel 

proteins can be challenging when proteins have enzymatic function(s), as opposed to 

structural or some regulatory roles, since interactions between enzymes and their partner 

proteins may tend to be transient or easily disrupted during experimental processing 

procedures (Chien and Gierasch, 2014; Mohammed and Carroll, 2013; Rees et al., 2015; Roux 

et al., 2012)  

The two putative histidine phosphatases TbHP40 and TbHP30 are of unknown function. 

Localisation experiments for TbHP40 and TbHP30 indicated both are mitochondrial in 

procyclic T. brucei (see Chapter 3.2). A mitochondrial localisation for TbHP40 and TbHP30 

was also suggested from organellar proteome inventories generated for procyclic T. brucei 

(Fisk et al., 2013; Niemann et al., 2013; Panigrahi et al., 2009; Urbaniak et al., 2013). 

However, the function of neither TbHP40 nor TbHP30 was known prior to the start of my 

experiments. Compartmentalisation of TbHP40 and TbHP30 within the mitochondrion 

potentially limits the range of metabolic pathways that these proteins may function in, 

assuming that the PFAM domain (IPR013078) defining both proteins accurately points to an 

enzymatic function. In an attempt to further characterise TbHP40 and TbHP30, two 

techniques to identify potential interacting partners were utilised, and the results from the 

application of these techniques are discussed in this chapter. 
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A first approach revolved around the use of ‘proximity-dependent biotinylation 

identification’ (known as BioID) which permits the identification of candidate interacting 

partners or proteins in close proximity to the protein of interest in vivo - in my case TbHP40. 

This technique was first reported in conjunction with its application in mammalian cells 

where it was used to identify multiple proteins that are associated with/in close proximity to 

an intermediate filament protein that is a component of the inner nuclear membrane (Roux 

et al., 2012). Subsequently BioID was adapted for use in T. brucei and used to reveal novel 

protein components of the essential golgi-associated ‘bi-lobe’ (Morriswood et al., 2013). 

More recently the approach has been applied further in protists, resulting in the discoveries 

of novel mitosomal proteins in Giardia lamblia and further novel cytoskeletal proteins in T. 

brucei and Toxoplasma gondii (Chen et al., 2015; Martincova et al., 2015; McAllaster et al., 

2015). BioID exploits the unusually strong affinity between biotin and streptavidin, which has 

a dissociation constant (Kd) of ~10-14M, and is the strongest non-covalent interaction known 

in nature. Thus, a protein of interest (in my experiments, TbHP40) is fused in-frame with a 

mutant version of biotin ligase from Escherichia coli that is 35 kDa in size and is known more 

widely as BirA*. BirA* behaves in the same manner as the unmodified BirA enzyme in that it 

forms a reactive intermediate, biotinoyl-5’-AMP, from ATP and biotin. However BirA* has an 

extremely low affinity for this intermediate and rather than retaining the intermediate 

within its active site until a lysine residue on a protein substrate is encountered, the 

intermediate is released thereby leading to indiscriminate biotinylation of any protein in the 

immediate vicinity (Roux et al., 2012). The hypothetical labelling radius that BirA* is capable 

of in vivo is thought to be ~10 nm (Kim et al., 2014). Proteins biotinylated via the BioID 

approach may be readily affinity purified from cell lysates using streptavidin coated beads 

and subsequently analysed by mass spectrometry.  

The second approach described in this chapter used a more traditional co-

immunoprecipitation approach to study potential protein-protein interactions in vivo, albeit 

that the approach was adapted to make use of stable isotope labelling by amino acids in cell 

culture (SILAC). The urea-based lysis conditions used in the BioID approach are not readily 

compatible with co-immunoprecipitation experiments because with the latter, stability of 

the physiological interaction(s) between proteins must be maintained.  
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5.1 A proximity-dependent biotinylation approach to identifying candidates interacting 

partners for Tb927.11.2920 

A synthetic gene corresponding to full length TbHP40 minus its stop codon was purchased, 

thereby negating the internal HindIII site present in the coding sequence of native TbHP40. 

Within the synthetic gene a silent mutation at base-pair 750 removed the internal HindIII 

site. HindIII and NdeI sites were added upstream and a HindIII site downstream of the 

TbHP40 coding sequence in order to facilitate easy in-frame sub-cloning into plasmid 

pLew100v5b1d-HYG. This plasmid vector contains the mutant BirA* plus a single myc-

epitope coded in-frame and upstream of BirA* (Morriswood et al., 2013). Henceforth the 

fusion of TbHP40 and BirA* known as TbHP40::BirA* (although more formally it might have 

been written TbHP40::myc::BirA*). 

The commercially synthesised TbHP40 was excised from the standard cloning vector pEX-A in 

which it was supplied by digestion with HindIII. It was then cloned into the pLew100v5b1d-

HYG-myc-BirA* vector that had also been digested with HindIII, and then treated with 

Shrimp Alkaline Phosphatase to dephosphorylate the linearised DNA and minimise the 

potential for vector re-ligation. Ligation mixtures were transformed into XL-1 blue 

competent E. coli and plasmid DNA extracted from colonies grown overnight in LB broth 

using a miniprep kit. Plasmid DNA was screened for the presence of the TbHP40::BirA* insert 

in the appropriate in-frame orientation using an XbaI restriction digest as shown in Figure 

5.1. A digest in which insert was correctly orientated resulted in visualisation of three DNA 

bands following treatment with XbaI: a 7666 bp molecule corresponding to vector backbone; 

a 1908 bp insert corresponding to much of the TbHP40::BirA* gene fusion; and a 578 bp 

corresponding to a DNA molecule spanning an XbaI site upstream of the HindIII site in 

pLew100v5b1d-HYG used for cloning and an XbaI site occurring just before the 5’ end of the 

TbHP40 coding sequence (Figure 5.1 B). A digest with insert in the wrong orientation also 

resulted in the detection of three DNA molecules, but this time with sizes of 7666 bp 

(vector), 1032 bp (which predominantly contained myc-tagged BirA* coding sequence) and a 

1454 bp fragment consisting of TbHP40 coding sequence plus vector sequence (spanning up 

to the XbaI restriction site at position 2333 bp in the pLew100v5b1d-HYG). Plasmid DNA 

containing the TbHP40 insert that restriction mapped correctly was then sent for sequencing 

prior to transfection into procyclic Trypanosoma brucei.  

Following the confirmation of plasmid sequence, the TbHP40::BirA* construct was linearised 

using NotI then transfected into SmOx-P9 (Poon et al., 2012) and 29-13 (Wirtz et al., 1999) 
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cell lines (in these cells lines ectopic protein expression is induced by the addition of 

doxycycline) and into wild-type 427 T. brucei (where expression would be constitutive). 

Despite several independent attempts, stable transformants could only be obtained in the 

SmOx-P9 cell line. Evidence for expression of the construct was sought by Western blotting 

and immunofluorescence. The Western blot for the TbHP40::BirA* SmOx-P9 population 

when probed with the anti-myc antibody shows detection of a protein ~70 kDa in size in the 

lane corresponding to whole cell lysate prepared from cells incubated for 24 hours with 

doxycycline to induce protein expression. The size of the protein detected matches closely 

the predicted size of the TbHP40::BirA* fusion (~71 kDa) and importantly this band was also 

absent from the lane where the whole cell lysate was from cells not incubated with 

doxycycline (and therefore not induced for TbHP40::BirA*) (Figure 5.2 A). 

The TbHP40::BirA* and the SmOx-P9 parental cell lines were subsequently grown in SDM-79-

SILAC media (Ong et al., 2002; Urbaniak et al., 2012; Urbaniak et al., 2013). The purpose of 

this was to do an initial trial experiment in which cells were grown in medium and processed 

as though for mass spectrometry. The SILAC technique provides an in vivo approach for 

labelling all proteins synthesised within a cell that can be readily identified using mass 

spectrometry. Stable isotopes of particular essential amino acids are added to a media which 

is deficient of the natural form of those specific amino acids. Therefore the isotopic amino 

acids are incorporated into all proteins as the cultures grow and divide (Ong et al., 2002). The 

isotopic labels can be detected by mass spectrometry. Thus, combining SILAC with the BioID 

approach potentially provided a powerful tool for identifying candidate protein-protein or 

near-neighbour interactions since the use of the SILAC approach reduces the amount of 

noise detected by the mass spectrometer, and makes identification of significant results (i.e. 

likely true interacting protein(s)) more obvious when analysing the data. 

The SmOx-P9 parental cell line was grown in SDM-79-SILAC containing the light labels 

arginine (R0) and lysine (K0). The TbHP40::BirA* cell line was grown separately in SDM-79-

SILAC containing the  medium labels arginine (R6) and lysine (K4) and containing heavy labels 

arginine (R10) and lysine (K8). The SDM-79-SILAC appeared to have no detrimental effect on T. 

brucei growth (data not shown). All three cell lines were grown in the presence of 

doxycycline for 24 hours, then biotin and additional doxycycline were added, and the 

cultures incubated for a further 24 hours. In this way, all cell lines had undergone a minimum 

of 7 divisions in labelling conditions prior to harvest to ensure that all native forms of the 

amino acids are replaced with a labelled isotope. The cultures were harvested and soluble 
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and insoluble protein samples were prepared using PEME 1% NP-40 extraction buffer for 

analysis by Western blotting (Figure 5.2). Cells were also settled onto coverslips and fixed 

using para-formaldehyde, permeabilised and processed for immunofluorescence 

microscopy. Western blot membranes probed with streptavidin showed a complexity of 

biotinylated proteins in the soluble fraction, and in particular two intense signals were 

detected at ~70 kDa and ~34 kDa (Figure 5.2 lane A). In contrast, when identical membranes 

were probed with the anti-myc antibody only a single band at ~34 kDa was detected within 

the soluble proteins (Figure 5.2 lane B). These results suggested that TbHP40 was a protein 

found exclusively in the soluble fraction, but proteolytic cleavage of the construct may have 

occurred as ~34 kDa corresponded with the predicted size of the myc::BirA* fragment alone. 

The difference in potential proteolytic sensitivity of TbHP40::BirA* between the analysis 

shown in Figure 5.2 A and Figure 5.2 B is that in my first analysis the cell pellet was 

transferred to boiling hot Laemlii buffer, whereas in the experiments for Figure 5.2 B samples 

were subject to a longer and different processing protocol.  

Thus, the detergent-extraction of SILAC-labelled cells induced for TbHP40::BirA* expression 

in the presence of excess exogenous biotin was repeated, but now with the presence of a 

cocktail of protease inhibitors (Halt Protease Inhibitor single-use cocktail [ThermoFisher], 

TLCK, benzamidine and PMSF) in the extraction buffer. Extracts of soluble proteins were 

again subjected to Western blotting. When the membrane was probed with streptavidin 

(Figure 5.2 lane D) a dramatic reduction in the complexity of the biotinylated protein profile 

was observed, although a significant signal was still detected at ~70 kDa. There was no 

obvious detection of signal at ~34 kDa. A Western blot membrane probed with anti-myc 

antibody (Figure 5.2 lane E) now detected a band of the correct expected size for 

TbHP40::BirA* (~70 kDa). The analysis therefore demonstrated the importance of the 

presence of an anti-protease inhibitor cocktail in the extraction buffer, and this cocktail was 

used in all subsequent experiments. When coverslips containing fixed, permeabilised cells 

(induced for TbHP40::BirA* expression) were decorated for indirect immunofluorescence 

using the anti-myc antibody and imaged using the DeltaVision microscope, a mitochondrial 

signal for TbHP40::BirA* was observed (Figure 5.3): only ~20% of the population exhibited 

high-level, inducible TbHP40::BirA* expression. Another ~20-30% of cells exhibited a low 

accumulation of inducibly expressed TbHP40::BirA*, and the remainder of the cells showed 

minimal or no expression. When coverslips were decorated with streptavidin conjugated to 

TRITC, mitochondrial localisation of biotinylated proteins was again evident (Figure 5.4). 



131 
 

Since the TbHP40Bir* construct could be detected by Western blot and fluorescence 

microscopy it was decided to proceed to MS analyses despite variable expression of 

TbHP40::BirA* within my cell line. Even though the variable expression was a source of 

problems (~109 cells were considered necessary for processing for analysis by MS), because 

the cells that expressed TbHP40::BirA* appeared to express the protein at relatively high 

abundance, it was tentatively anticipated that sufficient protein would be present in the 

samples sent for MS analysis. Moreover, another member of the group who was also 

applying the BioID technique was working with proteins that at endogenous levels were 

expressed in relatively low abundance within a cell, even though 80-100% of her cells 

expressed BirA* fusion proteins when gene expression was induced by the addition of 

doxycycline. So even though only a low percentage of my cells expressed TbHP40::BirA* at 

varying levels when induced with doxycycline, a relatively high overall abundance of 

TbHP40::BirA* potentially compensated for not having a homogenous level of protein 

expression across a majority of cells in a population.  

Thus, theTbHP40Bir* and SmOx-P9 cell lines were grown again in SDM-79-SILAC media, 

harvested, and three pellets (SmOx-P9-Light, TbHP40::BirA*-Medium and TbHP40::BirA*-

Heavy) mixed, before lysing the combined cell pellets with the PEME 1% NP-40 extraction 

buffer in the presence of the cocktail of inhibitors. The cell lysate was then solubilised in 8M 

urea 1% SDS solubilisation buffer and incubated with streptavidin-immobilised magnetic 

beads (Pierce™). The beads were next incubated in the dark with solubilisation buffer 

containing 50mM iodoacetamide, washed with solubilisation buffer, and then digested with 

trypsin overnight. Due to the presence of SDS and a high urea concentration in the trypsin-

digested peptides, the peptides required purification before analysis by mass spectrometry. 

Purification was done by filter-aided sample preparation using a C18 microspin column 

(Wisniewski et al., 2011; Wisniewski et al., 2009). Peptide samples were finally lyophilised 

and sent for analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) 

(FingerPrints Proteomic facility, Dundee University). Data obtained was processed using 

MaxQuant (Cox and Mann, 2008) and peptides identified from the T. brucei brucei 927 

protein database (Version 25, available from TriTrypDB) and common known contaminants. 

The output from MaxQuant was analysed using the Perseus framework as shown in Figures 

5.5-5.8.  

For a classical mass spectrometry analysis, any proteins of likely interest would be identified 

according the relative intensity (the y-axis in Figures 5.5-5.6, points above the 7.5 mark of 
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the intensity (Log10 scale).  However, the incorporation of the SILAC into the experiment 

reduced the amount of noise in the results because the mass spectrometer can provide 

quantitative results in terms of protein abundance and can distinguish between the light-

labelled parental line (SmOx-P9) and the the transgenic medium- and heavy-labelled 

TbHP40::BirA* cell line even when the cells are mixed. This is because of the mass difference 

introduced by the labelled amino acids. Applying SILAC to the experiments provided an 

unbiased method to identify interacting partners of the bait protein (TbHP40::BirA*), since 

non-specific proteins binding to the bait protein (grown in the presence of ‘medium’- and 

‘heavy’- labelled amino acids) will do so equally as well with the protein in the parental 

control cells (grown in the presence of ‘light’-labelled amino acids), resulting in 1:1 ratios. 

However, if specific reactions occurred between true interacting partners of the bait protein, 

this would result in different ratios which is then detected by the mass spectrometer (Ong 

and Mann, 2005). In this way, molecules of potential interest as neighbouring or interacting 

proteins lie to the right of the zero line on the x-axis and are enriched more than 2-fold. 

When comparing the medium-labelled TbHP40::BirA* cell line versus the light-labelled 

SmOx-P9 cell line, two proteins are enriched above the cut off threshold (Figure 5.5), the 

darker blue circle corresponds to two peptides that map to TbHP40 (Figure 5.8 A-B), showing 

the TbHP40::BirA* biotinylated itself, and another identification coloured in lighter blue 

corresponded to a single peptide, which mapped to three identical proteins: two proteins 

encoded by genes annotated as ‘KMP-11’ and another an ‘unspecified product’ (Figure 5.8C-

D). This pattern was not reflected in the heavy-labelled TbHP40::BirA* versus light-labelled 

SmOx-P9 (Figure 5.6) which acted as a built-in biological repeat within the system. Here 

TbHP40 was the only enriched protein located above the cut off threshold, and KMP-11 was 

located back in the region categorised as noise. When comparing ‘heavy-labelled versus 

light-labelled’ against ‘medium-labelled versus light-labelled’ (Figure 5.7), it was clear that 

the only greatly enriched protein from both experiments is TbHP40, and KMP-11 was located 

near the zero line from the y-axis, so was most likely an anomalous result. Unfortunately, no 

other proteins were identified as potential interacting partners with TbHP40 – only TbHP40 

itself was biotinylated, enriched and identified by LC-MS/MS. This was perhaps somewhat 

disappointing as the BioID approach applied elsewhere in the group was successful in 

identifying a small list of candidate-interacting proteins for the T. brucei cytoskeletal protein 

RP2. 
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5.2 Identifying potential interacting partners of TbHP40 using a co-

immunoprecipitation approach 

An alternative strategy to the BioID/SILAC approach was devised using small C-terminal 

epitope tags added to TbHP40 and TbHP30. Initially, the aim was to determine whether 

TbHP40 and TbHP30 were likely to interact with one another in a multimeric protein complex 

(e.g. did they form hetero-dimers or hetero-tetramers), but the aim was subsequently 

broadened by the application of SILAC to see whether additional proteins might be immuno-

precipitated from procyclic T. brucei engineered to express TbHP40 with a C-terminal triple-

myc tag (TbHP40::myc3). 

In order to express TbHP40 and TbHP30 with different C-terminal epitope tags some cloning 

was first required. Thus, the full length coding sequence for TbHP40 with a C-terminal triple-

myc tag (TbHP40::myc3)
 
previously used in the localisation experiments described in Section 

3.2 was excised from its pDex377-based vector by digestion using the restriction enzymes 

BamHI and NsiI, and sub-cloned into pDex477-Y2 that had also been digested with BamHI 

and NsiI. pDex477-Y2 (Appendix II Figure B.3 B) contains a gene conferring resistance to 

phleomycin, and transfer of TbHP40::myc3 to this plasmid allowed expression of epitope-

tagged TbHP30 (with a non-myc tag; see below) from a pDex377-based construct in which 

stable transformants are selected by their resistance to hygromycin. Ligation mixtures 

containing BamHI-NsiI-digested pDex477-Y2 and TbHP40::myc3 insert were transformed into 

XL-1 blue competent E. coli and plasmid DNA prepared as mini-preps from clonal overnight 

cultures in the usual way; BamHI and NsiI restriction digests were used to screen for the 

presence of putative TbHP40::myc3-containing insert and a plasmid predicted to contain 

correct insert was sent for DNA sequencing. Once verification of the pDex477-Y2-TbHP40myc
 

was confirmed by sequencing, plasmid DNA was linearised by digestion with NotI, and then 

transfected into procyclic 427 T. brucei. Expression of TbHP40::myc3 in phleomycin-resistant 

stable transformants was confirmed by indirect immunofluorescence and Western blotting 

(data not shown). 

For expression of TbHP30 with an alternative epitope tag, an epitope described by the amino 

acid sequence G-A-F-S-I-N-P-A-M was used. The GAFSINPAM epitope occurs in the human 

protein TDP-43 and is recognised by a commercially available monoclonal antibody ‘anti-

TDP-43 clone DB9’ (anti-DB9) (Merck, Millipore). Both the definition of the epitope and its 

suitability for use epitope-tagging of trypanosome proteins – i.e. anti-DB9 does not recognise 

any T. brucei protein by immunofluorescence or Western blot – was shown by Dr Fiona 
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Benson and an undergraduate dissertation student. In the course of that work the 

GAFSINPAM epitope was sub-cloned into pDex377 such that excision of TbHP30 coding 

sequence from pDex377-TbHP30myc with BglII and XhoI and ligation with BglII-XhoI digested 

pDex377GAFSINPAM would facilitate expression of TbHP30 with a C-terminal GAFSINPAM 

epitope, following stable transformation of T. brucei. Plasmid DNA for pDex377-

TbHP30GAFSINPAM was thus isolated, screened for the presence of TbHP30-containing insert by 

restriction mapping with BglII and XhoI, and a plasmid with appropriate insert confirmed by 

DNA sequencing. Subsequent transfection of procyclic 427 T. brucei expressing TbHP40::myc3 

with NotI-digested pDex377-TbHP30GAFSINPAM followed by selection with hygromycin allowed 

the generation of procyclic cells constitutively expressing both TbHP40::myc3 and 

TbHP30::GAFSINPAM. 

Evidence for co-expression of TbHP40::myc3 and TbHP30::GAFSINPAM was sought by indirect 

immunofluorescence and Western blotting. Coverslips containing para-formaldehyde-fixed, 

permeabilised cells were decorated with anti-myc; ~99% of cells imaged expressed 

TbHP40::myc3 construct, although expression levels were variable between cells (Figure 5.9 

A-C). Western blots of the whole cell lysate probed with anti-myc antibody detected a single 

protein of the predicted molecular size for TbHP40::myc3 (39 kDa) (Figure 5.9 D, lane 1). 

Similarly, when coverslips containing para-formaldehyde-fixed, permeabilised cells were 

decorated with anti-DB9, ~99% of cells were seen to express TbHP30::GAFSINPAM although 

as with TbHP40::myc3 expression, some cells contained less epitope-tagged protein than 

others (Figure 5.9 F-G). The same whole cell lysate as used in Figure 5.9 D were used in an 

independent Western blot that was decorated with anti-DB9, and a single protein of the size 

expected for TbHP30::GAFSINPAM (44 kDa) was detected (Figure 5.9 H). Henceforth, the cell 

line co-expressing TbHP30::GAFSINPAM and TbHP40::myc3 is referred as 40MYC/30GSP and was 

used in all subsequent co-immunoprecipitation experiments. 

All co-immunoprecipitation experiments were performed using the Pierce® Co-

immunoprecipitation (Co-IP) Kit (Thermo Scientific). Since anti-myc antibody was most 

readily available to me and, to date, has been used more widely in a variety of applications, 

the myc antibody was chosen for immobilization to the AminoLink Plus Coupling Resin. Thus, 

myc-tagged TbHP40 was immunoprecipitated, together with any associated protein 

complexes. Initially, the 40MYC/30GSP cell line was grown in SDM-79, harvested and cells lysed 

on ice in IP lysis/Wash buffer with a cocktail of inhibitors present (see Section 2.33). 

Following sample processing and protein elution from resin coupled to anti-myc antibody, 
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immunoprecipitated proteins were analysed by silver staining of SDS-PAGE gels and 

subjected to Western blotting using both anti-myc antibody and anti-DB9. 

As anticipated, the Western blot probed with the anti-myc antibody detected protein of the 

expected size (~39 kDa) for TbHP40::myc3 in lanes containing ‘eluted protein’ and ‘flow-

through’ (lanes 1 and 6-8 in Figure 5.10 A). The faint detection of TbHP40::myc3 in lane 1 

likely corresponds to a small amount of TbHP40::myc3 which did not bind to the myc-tagged 

resin and remained in the flow-through. There was no detection of protein in lanes 2-5, 

suggesting no TbHP40::myc3 was eluted during the wash stages, but easy detection of 

TbHP40::myc3 in lanes 6-8, which are the elution steps, indicated TbHP40::myc3 was 

successfully eluted from the resin. In contrast, Western blots probed with the anti-DB9 were 

completely blank, with no protein even being detected in the flow-through or the washes 

(Figure 5.10 B). This was unexpected, but the same result was seen from three independent 

attempts at the immunoprecipitation. 

To look more holistically for evidence of immunoprecipitation of multi-protein complexes 

containing TbHP40::myc3, processed immunoprecipitates were analysed by silver staining of 

SDS-PAGE gels. Silver staining with silver nitrate was used rather than Coomassie blue 

staining because of the high sensitivity of the former and its ability to detect protein levels as 

little as <1 ng (Weiss et al., 2009). Silver stained SDS-PAGE gels showed a variety of different 

proteins were detectable at each step of co-immunoprecipitation experiments. For example 

from the gel shown in Figure 5.10 D Lane 1, which corresponds to lysate from 40MYC/30GSP  

cells mixed with IP Lysis/Wash buffer, looks almost identical to lane 2, which is the same 

sample but after 1 hour incubation with the myc-immobilised resin.  Lane 3 shows the ‘flow-

through’ from 40MYC/30GSP lysate after 4 hours incubation with the myc-immobilised resin. 

Lanes 4-5 show proteins from the 1st and 3rd washes of the resin, these lanes showed very 

different complexities to one another and when compared with the proteins detected in lane 

3. Since the sample in lane 5 contained little in the way of protein (compared to lane 4) it 

indicated the wash steps were efficient. Lanes 6-8 show sample from three sequential 

elutions of protein from the resin-immobilized anti-myc antibody. Again, a different 

complexity to the proteins detected was noted when compared to the 1st and 3rd ‘washes’ 

(lanes 4-5). In lanes 6-7, two relatively intense bands were detected above the 35 kDa 

marker; these could correspond to proteins of the expected size of TbHP40::myc3 and 

TbHP30::GAFSINPAM. Finally, since very little protein is detected in lane 8, it appeared that 

the elution steps were efficient at removing proteins bound to the resin. A further 
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independent immunoprecipitate gave similar results when subjected to the same silver stain 

analysis outlined above (data not shown). 

To look further at why there was no evidence for immunoprecipitation of 

TbHP30::GAFSINPAM, a troubleshooting experiment was carried out to analyse the stability 

of the GAFSINPAM epitope in the IP Lysis/Wash buffer solution. The Western blot in Figure 

5.9 H showed that the GAFSINPAM epitope was detectable in the IP Lysis/Wash buffer 

immediately after lysis of the 40MYC/30GSP cell line. Here, cells were incubated on ice for no 

longer than 15 minutes before the protein samples were boiled at 100°C in non-reducing 

‘Lane Marker Sample Buffer’ (Thermo Scientific) prior to analysis by SDS-PAGE and Western 

blotting. However, in the co-immunoprecipitation experiments, protein containing the 

GAFSINPAM epitope was incubated in the IP Lysis/Wash buffer for a much longer time. Thus, 

the 40MYC/30GSP cell line was grown in SDM-79, harvested and cells lysed on ice in the IP 

Lysis/Wash buffer containing the cocktail of inhibitors described in Section 2.33. This 

bait:prey protein mixture in the IP Lysis/Wash buffer was then incubated with the myc-

immobilised resin on a column overnight at 4°C on a rotating wheel, with protein samples 

being taken immediately (zero hours), then at 1 hour intervals for 5 hours, and a final sample 

taken after 16 hours incubation. All samples collected were boiled immediately in non-

reducing Lane Marker Sample Buffer and frozen at -80°C before analysis by Western blot. 

The Western blot probed with the anti-DB9 antibody showed very faint detection of a 

protein corresponding to the predicted size of TbHP30::GAFSINPAM in lanes 1 to 6, which 

corresponded with the 0-5 hour time points (Figure 5.10 C, the bands in question are 

indicated with a red arrow). Sometime between 5 and 16 hours this signal was lost although 

the detection of the GAFSINPAM is poor even at the zero hour time point. A positive control 

in lane 9 (recombinant TDP-43) confirmed the continued activity of anti-DB9 (Figure 5.10 C, 

black arrow). 40MYC/30GSP cells were also fixed and processed for immunofluorescence 

confirming the continued expression of both TbHP40::myc3 and TbHP30::GAFSINPAM (data 

not shown).  

Since there appeared to be issues with the stability and detection of the GAFSINPAM 

epitope, I now took a slightly different approach to the co-immunoprecipitation experiment. 

This approach incorporated the SILAC and mass spectrometry procedures used in the BioID 

experiment. Thus, 40MYC/30GSP and the 427 parental cell lines were grown in SDM-79-SILAC 

media. The 427 parental cell line was grown in SDM-79-SILAC containing the light labels 

arginine (R0) and lysine (K0). 40MYC/30GSP cells were grown independently in both SDM-79-

SILAC containing the medium labels arginine (R6) and lysine (K4) and SDM-79-SILAC 
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containing heavy labels arginine (R10) and lysine (K8). All cultures were allowed to undergo at 

least 7 divisions in the SILAC media containing light, medium or heavy labels prior to 

harvesting. The three cultures were harvested separately and lysed using only filtered ice-

cold water in the presence of the cocktail of inhibitors (Section 2.34). This lysis approach was 

used rather than the IP Lysis/Wash buffer because the latter contains EDTA and NP-40, 

which can interfere with downstream processes when preparing samples for mass 

spectrometry. Complete lysis of the cells was checked visually using a light microscope 

before freezing the intact lysate at -80°C.  

Again, anti-myc antibody was immobilised to the ‘AminoLink Plus Coupling Resin’ although 

this time in triplicate, since the light-, medium- and heavy-labelled cell lines needed to be 

kept separate from each other during the co-immunoprecipitation steps. The three lysed 

samples were defrosted on ice and then the-still-separate lysates incubated with the ‘Control 

Agarose Resin’ at 4°C for one hour. This pre-clearance step removed any non-specific 

proteins binding to the resin. Lysates were then incubated with the myc-immobilised resin in 

separate columns at 4°C for 2 hours. The flow-through from the three columns was 

removed, and each column washed 3 times with IP Lysis/Wash buffer and the resin from 

each column transferred to separate LoBind Eppendorfs. The resin was then boiled for 5 

minutes at 95°C in Laemlii buffer in order to break any covalent bonds with the immobilised 

myc antibody. The protein samples in Laemlii buffer were then subject to SDS-PAGE 

electrophoresis, stained with Instant Blue and washed with MilliQ water. Lanes from the gel 

were then chopped up, mixing the light-, medium- and heavy-labelled samples and preparing 

the combined sample for digestion with trypsin as described in Section 2.35.2. The digested 

peptide samples were lyophilised and sent for analysis by liquid chromatography tandem 

mass spectrometry. The data obtained was processed using MaxQuant (Cox and Mann, 

2008) and peptides identified witihn the T. brucei brucei 927 protein database (Version 25, 

available from TriTrypDB) and ‘common known contaminants’. The output from MaxQuant 

was analysed using the Perseus framework and the data summarised in Figures 5.11-5.13.  

From the mass spectrometry results, both the ‘medium-labelled’ 40MYC/30GSP cell line versus 

the ‘light-labelled’ 427 parental cell line and the ‘heavy-labelled’ 40MYC/30GSP cell line versus 

the ‘light labelled’ 427 parental cell line returned almost identical results. Two proteins of 

high intensity with respect to peptide number detected in the mass spectrometer and 

enriched more than 4-fold were identified: TbHP40 and TbHP30. No other ‘medium’- or 

‘heavy’-labelled proteins were enriched greater than 1.5-fold. Thus, all other proteins 

identified in the sample were categorised as background noise (Figures 5.11 and 5.12). This 
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result is even clearer in Figure 5.13 where the ‘medium-labelled’ 40MYC/30GSP against ‘heavy-

labelled’ 40MYC/30GSP lysates are compared since these are intrinsic repeats built into the 

same analysis. Both TbHP40 and TbHP30 lie to the far top right corner of the graph, and are 

the only two proteins that are greatly enriched. Confidence in the identification of TbHP40 

and TbHP30 is supported by the data shown in Table 5.1 (TbHP40) and Table 5.2 (TbHP30) 

which indicate the peptides identified by LC-MS/MS. For TbHP40 42 peptides, 22 of which 

were unique, were matched to the amino acid sequence for TbHP40 and covered 69% of the 

predicted amino acid sequence (Table 5.1 B, identified peptides shown in red). For TbHP30 

14 peptides, 11 of which were unique, were matched to the amino acid sequence for 

TbHP30, covering 35% of the predicted amino acid sequence (Table 5.2 B).  

 

5.3 Summary of attempts to identify interacting partners of TbHP40 and TbHP30 

Using the co-immunoprecipitation approach combined with SILAC and mass spectrometry 

provided the first evidence to indicate that TbHP40 and TbHP30 interact with each other in 

vivo. It is interesting that TbHP30 (my original prey protein when attempting to identify only 

TbHP30::GAFSINPAM by immunoprecipitation) was the only protein apart from TbHP40 (the 

bait protein) that was greatly enriched by SILAC and ‘pulled down’ using the co-

immunoprecipitation steps. It suggests that TbHP40 and TbHP30 are not likely to interact as 

part of a larger complex with other proteins within a cell, and probably form a small complex 

with one-another.  

It can be reasoned that the problems encountered with the ‘classical’ co-

immunoprecipitation approach are likely due to proteolytic cleavage, despite the presence of 

a cocktail of inhibitors. Both myc and GAFSINPAM are small epitope tags, but the myc 

epitope is repeated three times, whereas GAFSINPAM is just a single epitope. Thus, the loss 

of the GAFSINPAM epitope signal on Western blots probed with anti-DB9 was realistically 

due to proteolysis within the GAFSINPAM epitope: work from the ‘Benson Lab’ suggests that 

only one amino acid needs to be lost from the GAFSINPAM epitope before the antibody has 

difficulties recognising its target (FE Benson, personal communication). Thus, the mass 

spectrometry analysis provided a useful alternative approach to detecting an interaction 

between TbHP40 and TbHP30. Identification of TbHP40 and TbHP30 using LC-MS/MS is of 

high confidence due to the number of peptides identified for each one. This was a much 

better and reliable result than that seen in the LC-MS/MS BioID experiments where only 2 

peptides relating to TbHP40 were identified. The peptide coverage of TbHP40 identified by 
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the mass spectrometer was also quite extensive, and showed that the N-terminal 

mitochondrial leader sequence of TbHP40 must be very short (6 amino acids in length). This 

is not unprecedented in trypanosomes, and some nuclear encoded mitochondrial proteins 

are known to have cleavable N-terminal signal peptides of only 7 to 9 amino acids long, this 

is very short compared to cleavable N-terminal signal peptides found in yeast, which are ~20 

amino acids or more in length (Tasker et al., 2001). Other proteins, such as cytochrome 

oxidase VI, again have very short N-terminal signal peptides but these are not cleaved after 

import into the T. brucei mitochondrion (Tasker et al., 2001). No conclusions can be made 

regarding the N-terminal targeting sequence for TbHP30, because there was no peptide 

coverage for the first half of the sequence. As discussed previously (Section 3.2), TbHP30 had 

been identified in various mitochondrial proteomic studies (Acestor et al., 2009; Fisk et al., 

2013; Niemann et al., 2013; Panigrahi et al., 2009; Urbaniak et al., 2013), and again none of 

the peptides identified in those studies mapped to the first half of the sequence. That might 

suggest that the start methionine had been incorrectly called, but when C-terminally myc-

tagged protein was expressed in procyclic T. brucei, protein of the expected size (~43 kDa) 

from the start methionine predicted in EUPathDB was always detected in Western blot 

analyses. 

The BioID approach may not have been suitable simply because the ~34 kDa C-terminal BirA* 

tag was too big and caused disruption of the natural function of TbHP40. Such a large tag 

could be causing stearic hindrance and preventing i.e. TbHP30 and other potential proteins 

from interacting, therefore they are not biotinylated and not detected in downstream 

procedures. The mass spectrometry data obtained did suggest that the BirA* system was 

functioning correctly in T. brucei, since TbHP40 biotinylated itself and was identified as the 

only protein to be greatly enriched and abundant in two duplicate experiments. Further 

evidence supporting the theory that the BirA* tagged-TbHP40 was detrimental to T. brucei 

may come from the fact that stable transformants were never obtained in the procyclic T. 

brucei cell lines 29-13 and 427. Although when the TbHP40::BirA* SmOx-P9 cell line was 

induced using doxycycline, no obvious phenotype was observed and there was no effect on 

the rate of growth of the cultures. Numerous attempts were made to obtain a bloodstream 

T. brucei cell line expressing TbHP40::BirA*, but none of these were successful. 
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Figure 5.1. Generation of a TbHP40BirA*::myc gene fusion with the pLew100v5b1d-HYG 
plasmid. 
A. A cartoon vector map showing the cloning sites present in the pLew100v5b1d-HYG vector 
which contains the mutant BirA* and an upstream single myc-epitope (highlighed with the 
orange dashed line). The commercially synthesised TbHP40 (highlighed with the green dashed 
line) was digested using HindIII and then sub-cloned into the HindIII-digested vector (positions 
of the HindIII sites shown in blue). The positions of the XbaI sites are also shown (purple), which 
were used for subsequent restriction mapping. 
B. 1% agarose gel electrophoresis showing the restriction mapping of the TbHP40BirA*::myc 
plasmid. Lanes 1-4: Undigested miniprep DNA. Lanes 5-6: XbaI digested TbHP40BirA*::myc 
plasmids where the TbHP40 construct was integrated into the myc::BirA* pLew100v5b1d-HYG 
vector in the correct orientation. Lane 7: Miniprepped DNA containing multiple colonies, which 
show the two possible digest outcomes. Lane 8: XbaI digested TbHP40BirA*::myc plasmid that 
showed the incorrect orientation.  
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Figure 5.2. Expression of TbHP40BirA*::myc in procyclic SmOx-P9 T. brucei.  
A. Western blot detection of TbHP40BirA*::myc expressed  in T. brucei. Whole cell lysates were 
prepared in boiling hot Laemlii buffer. Lane 1 corresponds to the lysate from an uninduced 
population and shows no expression of myc-tagged TbHP40BirA*. Lane 2 corresponds to the 
lysate from an induced population, incubated with doxycycline in order to induce the expression 
of TbHP40BirA*::myc. A band which corresponds to the expected size of TbHP40BirA*::myc (71 
kDa) is detected in this lane. The Western blot was decorated with the anti-myc antibody at a 
dilution of 1/1000 in blocking buffer A.  
B-E. Western blot detection of the expression from TbHP40BirA*::myc in the presence of excess 
external biotin (at a final concentration of 50 µM).  
B: Western blot detection of the soluble fraction from TbHP40BirA*::myc lysed cells (extracted 
using PEME 1% NP-40) which had been induced with doxycycline for 48 hours and incubated 
with excess biotin for 24 hours prior to cell lysis. The Western blot was decorated with 
streptavidin at a dilution of 1/10000 in blocking buffer B.  
C: Western blot detection of the soluble fraction from TbHP40BirA*::myc lysed cells (as 
described in 5.2 B). The detection of a single band at 35 kDa suggests that TbHP40BirA*::myc  
was a target for proteolysis. The Western blot was decorated with the anti-myc antibody at a 
dilution of 1/1000 in blocking buffer A.  
D: Western blot detection of the soluble fraction from TbHP40BirA*::myc lysed cells (extracted 
using PEME 1% NP-40) which had been induced with doxycycline for 48 hours and incubated 
with excess biotin for 24 hours prior to cell lysis. Here, lysis was carried out in the presence of an 
inhibitor cocktail. The lysate was then subjected to Western blot analysis and the Western blot 
was decorated with streptavidin at a dilution of 1/10000 in blocking buffer B.  
E: Western blot detection of the soluble fraction from TbHP40BirA*::myc lysed cells (as 
described in 5.2 D), that were lysed in the presence of an inhibitor cocktail. This shows the 
inhibitor cocktail provided protection against proteolytic cleavage of TbHP40BirA*::myc. The 
Western blot was decorated with streptavidin at a dilution of 1/10000 in blocking buffer B. 
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Figure 5.4. Localisation of biotinylated proteins in procyclic SmOx-P9 T. brucei, following 
expression of TbHP40BirA*::myc using doxycycline. 
A-F.  TbHP40BirA*::myc cells (post-48 hour incubation with doxycycline and post-24 hour 
incubation with excess biotin [at a final concentration of 50 µM]) were settled onto coverslips, 
fixed, permeabilised  and decorated using streptavidin conjugated to TRITC. A-D: Induced 
TbHP40BirA*::myc  cells decorated with streptavidin conjugated to TRITC (at a concentration of 
1/200 in blocking buffer B), merged with DAPI. E-F: DIC. N, nucleus; K, kinetoplast; scale bars, 10 
µm.  
G-H. T. brucei SmOx-P9 cells not induced for expression of TbHP40BirA*::myc, i.e. grown 
without the presence of doxycycline, but still cultured in the presence of excess biotin, were 
settled onto coverslips. The slides were then fixed, permeabilised and decorated with 
streptavidin conjugated to TRITC (at a concentration of 1/200 in blocking buffer B), merged with 
DAPI. N, nucleus; K, kinetoplast; scale bars, 10 µm.  

Figure 5.3. Expression of TbHP40BirA*::myc in procyclic SmOx-P9 T. brucei.  
A-F. TbHP40BirA*::myc localises to the branched mitochondrion of  procyclic T. brucei. Cells 
were incubated with doxycycline 24 hours prior to settling on glass coverslops and fixed with 
para-formaldehyde in preparation for indirect immunofluorescence. A-D: TbHP40BirA*::myc 
fixed permeabilised cells  were decorated with anti-myc antibody used at a concentration of 
1/1000 (in blocking buffer B), merged with DAPI. E-F: DIC. N, nucleus; K, kinetoplast; scale bars, 
10 µm.  
G-H. Smox-P9 T. brucei not induced for expression of TbHP40BirA*::myc, i.e. grown without the 
presence of doxycycline for comparison against the induced cells were settled onto coverslips 
for indirect immunofluorescence. Here, fixed and permeabilised cells were decorated with the 
anti-myc antibody used at a concentration of 1/1000 (in blocking buffer B), merged with DAPI. 
N, nucleus; K, kinetoplast; scale bars, 10 µm.  
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Figure 5.5. The LC-MS/MS scatter plot showing the proteins identified in the SILAC-enriched 
‘medium’-labelled TbHP40BirA* cell line  ratio versus proteins identified in the ‘light’-labelled 
SmOx-P9 parental cell line plotted with respect to intensity. 
The x-axis shows the ratio of ‘medium’-labelled proteins versus ‘light’-labelled proteins, 
identified according to the peptides detected by mass spectrometry. The y-axis shows the 
relative abundance of the proteins.  Scales are logged so data is normally distributed, and the 
ratios normalised because the base peak originally lay to the left of zero. Colours are assigned 
according to the levels of SILAC enrichment according to the colour scale shown in B.    
  

Figure 5.5  
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Figure 5.6. The LC-MS/MS scatter plot showing the proteins identified in the SILAC-enriched 
‘heavy’-labelled TbHP40BirA* cell line  ratio versus proteins identified the in ‘light’-labelled 
SmOx-P9 parental cell line plotted with respect to intensity. 
The x-axis shows the ratio of ‘heavy’-labelled proteins versus ‘light’-labelled proteins, identified 
according to the peptides detected by mass spectrometry. The y-axis shows the relative 
abundance of the proteins. Scales are logged so data is normally distributed, and the ratios 
normalised because the base peak originally lay to the left of zero. Colours are assigned 
according to the levels of SILAC enrichment according to the colour scale shown in B.    
  

Figure 5.6  
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Figure 5.7. TheLC-MS/MS scatter plot comparing proteins identified in the SILAC-enriched 
‘medium’-labelled TbHP40BirA* cell line ratio versus ‘light’-labelled SmOx-P9 parental cell line 
against proteins identified in ‘heavy’-labelled TbHP40BirA* cell line ratio versus ‘light’-labelled 
SmOx-P9 parental cell line. 
The x-axis shows the ratio of ‘heavy’-labelled proteins versus ‘light’-labelled proteins, identified 
according to the peptides detected by mass spectrometry. The y-axis shows the ratio of 
‘medium’-labelled proteins versus ’light’-labelled proteins, identified according to the peptides 
detected by mass spectrometry. Scales are logged so data is normally distributed and the ratios 
normalised because the base peak originally lay to the left of zero. Colours are assigned 
according to the levels of SILAC enrichment according to the colour scale shown in B.    
  

Figure 5.7  
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Tb927.11.2920 (TbHP40) 
MSRCGRKLDMSSGYWLPRRLLLVRHGESEANVDRALYSKVPDWKIPLTARGREQAFECGRRLRKIIKNEKL
YVYYSPYTRTRQTLTEVRKSLLPSQVQGEREDERLREQEIGNFQPLDKMDEMWAERSEFGRSYYRFPDGES
SVDVGDRVSKFFDSLFRERVELNYLSARKQMITGSSNDVGPASFTVPDDDDHNVVIISHGLLIRLFVGRWYS
APMEVFETMKNPPNCGIVVLERREAGRLVMTDTSKKLFGSDPLLEMMKFDGKDNVQLFRHLFAEGGYSF
SAGEGTDR 

A. 

B. 

C. 

D. 
Tb927.9.13920 (KMP-11) 
MATTYEEFAAKLDRLDAEFAKKMEEQNKRFFADKPDEATLSPEMKEHYEKFEKMIQEHTDKFNKKMRE
HSEHFKAKFAELLEQQKNAQFPGK 
Tb927.9.13880 (Unspecified Product) 
MATTYEEFAAKLDRLDAEFAKKMEEQNKRFFADKPDEATLSPEMKEHYEKFEKMIQEHTDKFNKKMRE
HSEHFKAKFAELLEQQKNAQFPGK 
Tb927.9.13820 (KMP-11) 
MATTYEEFAAKLDRLDAEFAKKMEEQNKRFFADKPDEATLSPEMKEHYEKFEKMIQEHTDKFNKKMRE
HSEHFKAKFAELLEQQKNAQFPGK  

Figure 5.8. Identification of TbHP40 from mass spectrometry results 
A. Details of the two peptides identified by mass spectrometry that are associated with TbHP40 
(Tb927.11.2920).  
B. The full length amino acid sequence of TbHP40. The positions of the peptides identified by 
mass spectrometry are highlighted in red. 
C. Details of the anomalous enriched peptide identified by mass spectrometry in the M/L 
normalised data (Figure 5.5). This peptide was associated with three possible candidate protein 
IDs.  
D. The full length amino acid sequences of the three candidate protein IDs described in Figure 
5.8 C. The location of the peptide identified by mass spectrometry is highlighted in purple. 

Figure 5.8  
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Figure 5.9. Detection of the constitutive co-expression of TbHP40::myc3 from pDex477 and 

TbHP30::GAFSINPAM from pDex377 in procyclic 427 T. brucei (referred to as 40MYC30GSP).  

A-C. The co-expression of 40MYC30GSP, both of which localise to the mitochondrion of T. brucei, 

imaged by immunofluorescence. A-B: 40MYC30GSP decorated with anti-myc antibody at a 

concentration of 1/1000 in blocking buffer B; B is merged with DAPI; N, nucleus; K, kinetoplast; C: 
DIC.  
D. Western blot detection of 40MYC30GSP in T. brucei. Lane 1: 427 T. brucei whole cell protein sample 

(negative control); Lane 2: 40MYC30GSP whole cell protein sample; Lane 3: 40MYC30GSP cells lysed using 

IP Lysis/Wash buffer, insoluble pellet fraction; Lane 4: 40MYC30GSP cells lysed IP Lysis/Wash buffer, 

soluble supernatant fraction protein sample. Lanes 2-4 show detection of a protein which 
corresponds with the expected size of TbHP40::myc3 (~39 kDa). The blot was decorated with the 

anti-myc antibody at a dilution of 1/1000 in blocking buffer A.  
E-G. The co-expression of 40MYC30GSP, both of which localise to the mitochondrion of T. brucei, 

imaged by immunofluorescence. E-F: 40MYC30GSP decorated with anti-DB9 antibody at 1/200 in 

blocking buffer B; F: merged with DAPI; N, nucleus; K, kinetoplast; G: DIC.  
H. Western blot detection of 40MYC30GSP. Lane 1: 427 T. brucei whole cell protein sample (negative 

control); Lane 2: 40MYC30GSP whole cell protein sample; Lane 3: 40MYC30GSP cells lysed using IP 

Lysis/Wash buffer, insoluble pellet fraction; Lane 4: 40MYC30GSP cells lysed IP Lysis/Wash buffer, 

soluble supernatant fraction protein sample. Lanes 2-4 show detection of a protein which 
corresponds to the expected size of TbHP30::GAFSINPAM (~44 kDa). The blot was decorated with 
the anti-DB9 antibody at a dilution of 1/100 in blocking buffer A.  
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Figure 5.10. Detection of 40MYC30GSP co-expressed in procyclic T. brucei using co-

immunoprecipitation techniques.  
A. Western blot detection of the co-immunoprecipitation of 40MYC30GSP. Lane 1: Flow-through from 

myc-immobilised resin; Lane 2-4: resin washes; Lane 5: Conditional resin wash; Lane 6-8: resin 
elutions. All protein samples were loaded in ‘non-reducing’ Lane Marker Sample Buffer. Lanes 6-8 
show the detection of a protein which corresponds with the expected size of TbHP40::myc3. The 

blot was decorated with anti-myc antibody at a dilution of 1/1000 in blocking buffer A. 
B. Western blot detection of the co-immunoprecipitation of 40MYC30GSP. Lane order: Same as 5.10 A. 

However, there is no detection of the TbHP30::GAFSINPAM signal, which is lost after 40MYC30GSP is 

incubated with the myc-immobilised resin. All protein samples were loaded in ‘non-reducing’ Lane 
Marker Sample Buffer. The blot was decorated with anti-DB9 antibody at a dilution of 1/100 in 
blocking buffer A. 
C. A Western blot examining the stability of TbHP30::GAFSINPAM when incubated with the co-
immunoprecipitation IP Lysis/Wash buffer in the presence of a cocktail of protease inhibitors. Lane 
1: Time (post-incubation on the myc-immobilised resin) = 0 hours; Lane 2: Time = 1 hour; Lane 3: 
Time = 2 hours; Lane 4: Time = 3 hours; Lane 5: Time = 4 hours; Lane 6: Time = 5 hours; Lane 7: Time 
= 16 hours; Lane 8: Blank; Lane 9: recombinant TDP43 (positive control) indicated with a black 
arrow. The Western blot detected faint bands which corresponded to the expected size of 
TbHP30::GAFSINPAM up until 5 hours (Lane 6), positive control still detected. The blot was 
decorated with anti-DB9 antibody at a dilution of 1/100 in blocking buffer A. 
D. Silver stain detection of proteins from a repeated co-immunoprecipitation experiment in the 
presence of the protease inhibitor cocktail. Lane 1: 40MYC30GSP lysate (pre-resin incubation); Lane 2: 

40MYC30GSP lysate 1 hour post-incubation on resin; Lane 3: resin flow-through after 4 hour 

incubation with 40MYC30GSP lysate; Lane 4: resin wash one; Lane 5: resin wash three; Lanes 6-8: resin 

elutions; Lane 9: 40MYC30GSP whole cell protein sample in Laemlii buffer. All protein samples except 

Lane 9 were loaded in ‘non-reducing’ Lane Marker Sample Buffer. 

Figure 5.10  
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Figure 5.11. The LC-MS/MS scatter plot showing the proteins identified in the SILAC-enriched 
‘medium’-labelled 40MYC30GSP cell line ratio versus proteins identified in the ‘light’-labelled 427 

parental cell line plotted with respect to intensity. 
The x-axis shows the ratio of ‘medium’-labelled proteins versus ‘light’-labelled proteins, 
identified according to the peptides detected by mass spectrometry. The y-axis shows the 
relative abundance of the proteins. Scales are logged so data is normally distributed and the 
ratios normalised because the base peak originally lay to the left of zero. Colours are assigned 
according to the levels of SILAC enrichment according to the colour scale shown in B.    
  

Figure 5.11  
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Figure 5.12. The LC-MS/MS scatter plot showing the proteins identified in the SILAC-enriched 
‘heavy’-labelled 40MYC30GSP cell line ratio versus proteins identified in the ‘light’-labelled 427 

parental cell line plotted with respect to intensity. 
The x-axis shows the ratio of ‘heavy’-labelled proteins versus ‘light’-labelled proteins, identified 
according to the peptides detected by mass spectrometry. The y-axis shows the relative 
abundance of proteins. Scales are logged so data is normally distributed and the ratios 
normalised because the base peak originally lay to the left of zero. Colours are assigned 
according to the levels of SILAC enrichment according to the colour scale shown in B.    
  

Figure 5.12  
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Figure 5.13 The LC-MS/MS scatter plot comparing proteins identified in the SILAC-enriched 
‘medium’-labelled 40MYC30GSP cell line ratio versus ‘light’-labelled 427 parental cell line against 

proteins identified in ‘heavy’-labelled 40MYC30GSP cell line ratio versus ‘light’-labelled 427 

parental cell line. 
The x-axis shows the ratio of ‘heavy’-labelled proteins versus ‘light’-labelled proteins, identified 
according to the peptides detected by mass spectrometry. The y-axis shows the ratio of 
‘medium’-labelled proteins versus ‘light’-labelled proteins, identified according to the peptides 
detected by mass spectrometry. Scales are logged so data is normally distributed and the ratios 
normalised because the base peak originally lay to the left of zero. Colours are assigned 
according to the levels of SILAC enrichment according to the colour scale shown in B.    

Figure 5.13  

A. 

B. 
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A. 

Table 5.1 Peptide data of the co-immunoprecipitation SILAC-enriched 40MYC30GSP experiment 

obtained by LC-MS/MS. 
A. Table showing the peptides relating to TbHP40 (Tb927.11.2920).  
B. The full length amino acid sequence of TbHP40, the location of the peptides identified by LC-
MS/MS are highlighted in red. 

Table 5.1  
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Table 5.1. Continued… 

Tb927.11.2920 (TbHP40) 
MSRCGRKLDMSSGYWLPRRLLLVRHGESEANVDRALYSKVPDWKIPLTARGREQAFECGRRLRKIIKNE

KLYVYYSPYTRTRQTLTEVRKSLLPSQVQGEREDERLREQEIGNFQPLDKMDEMWAERSEFGRSYYRFP

DGESSVDVGDRVSKFFDSLFRERVELNYLSARKQMITGSSNDVGPASFTVPDDDDHNVVIISHGLLIRLF

VGRWYSAPMEVFETMKNPPNCGIVVLERREAGRLVMTDTSKKLFGSDPLLEMMKFDGKDNVQLFRH

LFAEGGYSFSAGEGTDR 

B. 

A. 
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Tb927.11.2910 (TbHP30) 

MAVVRRCSHHRICKQWDRIVSCGSLKAPLCDVMHFTSSTWPPHLHPQPTTQTVRPLEVSKETKALVEEPAVAV

NLCETAANAATTDPASSMFSVPSPTSAYVTHTESQGRMSITIRSGDRRQMLKFPTQPVEPVKRIIFLRNGRSLAN

VNVCTHVTTPDWRIPIVPEGEEESYDAGRRLAQLIGDEPVYYYLSPYVRCRQSFKHVLRGYDAYRSEHKMEGESIV

GVREDVRLRDGDIGRYKSKGELLHHLAEREKYGKFYYRFPHGESGADVCDRVTSFLDAFQRERMDFPMDTNVVI

LTHGQTIRMFVKRWFNLTVDTYHSMVSPPTGSISTLTRMHHRSSFRLDDACIESMRLPPSLNKYNGYKYRNKQV

LGSMSTGAPFM 

Table 5.2 Peptide data of the co-immunoprecipitation SILAC-enriched 40MYC30GSP experiment 

obtained by LC-MS/MS 

A. Table showing the peptides relating to TbHP30 (Tb927.11.2910).  

B. The full length amino acid sequence of TbHP30, the location of the peptides identified by 

LC-MS/MS are highlighted in red. 

B. 

A. 

Table 5.2  
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Chapter 6 

Heterologous expression in Trypanosoma brucei of candidate 

mitochondrial proteins from Naegleria gruberi 

Classically N. gruberi was thought of as an obligate aerobe that relied on mitochondrial 

oxidative phosphorylation for its survival. However, sequencing and annotation of the N. 

gruberi nuclear genome predicted an unexpected capacity for anaerobic metabolism (Fritz-

Laylin et al., 2010b; Ginger et al., 2010). Within the list of predicted enzymes for anaerobic 

metabolism were FeFe-hydrogenase, three proteins (HydE, HydF and HydG) which are 

commonly associated with FeFe-hydrogenase maturation, a nitrite reductase, and other 

enzymes associated with substrate level phosphorylation such as acetyl CoA synthetase (ADP 

forming) (Figure 6.1). FeFe-hydrogenase is a crucial enzyme that is essential for the 

production of hydrogen during anaerobic fermentation and is generally inactivated when in 

the presence of oxygen (see Section 1.4). Presumably, the FeFe-hydrogenase and its other 

enzymes classically linked to anaerobic metabolism permits N. gruberi survival in anaerobic 

conditions.  

In my hands, placement of N. gruberi trophozoites under anaerobic conditions in the 

presence and absence of nitrate and nitrite source and treatment with metabolic inhibitors 

(rotenone, antimycin A, oligomycin A, sodium azide or salicylhydroxamic acid at 

concentrations ranging from 0.5-500 µM) resulted in encystment. In contrast, application of 

the mitochondrial poison rotenone (a complex I inhibitor) at 5 µM killed the cells (data not 

shown). Thus, there appears to be no potential for anaerobic growth and division by 

axenically cultured N. gruberi. However, when placed under anaerobic conditions a small 

amount of H2 production has been observed (David Lloyd, University of Cardiff, personal 

communications; Tsaousis et al., (2014)). 

Some of the enzymes associated with anaerobic metabolism in N. gruberi were predicted to 

be mitochondrial on a basis of N-terminal leader sequences that were predicted to act as 

mitochondrial targeting sequences (Fritz-Laylin et al., 2010b). Others were predicted to be 

mitochondrial on a basis of their likely substrate specificity (e.g. acetyl CoA synthetase [ADP 

forming]). Yet, until now experimental evidence for mitochondrial localisation was lacking. 

Indeed, a recent study performed on a basis of heterologous expression in yeast of partial N. 

gruberi FeFe-hydrogenase sequences suggested that this enzyme was actually cytosolic 
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(Tsaousis et al., 2014). In this chapter I first provide a bioinformatic overview of FeFe-

hydrogenase occurrence and protein architecture among eukaryotes, and then describe the 

results from a series of experiments designed to probe the localisation of the enzymes listed 

in Table 6.1. 

 

6.1 Bioinformatic analysis of a range of eukaryotic FeFe-hydrogenanses 

All FeFe-hydrogenases identified here (Figure 6.2) contain a large iron hydrogenase domain, 

ca. 300 amino acids, located towards the C-terminus. Many proteins also have a ‘4Fe-4S 

ferredoxin’ domain (along with at least one copy of its associated binding domain) and a 

complex I ‘G-subunit’. Blastocystis hominis, a stramenopile capable of inhabiting the 

gastrointestinal tract of humans and many other animals, contains an FeFe-hydrogenase that 

localises to the hydrogenosomes in a cell (Stechmann et al., 2008). The B. hominis FeFe-

hydrogenase has an additional flavoprotein-like domain found downstream of the iron 

hydrogenase domain that is not seen in the FeFe-hydrogenase of N. gruberi, or indeed any of 

the other eukaryotes mentioned in this section.  

Chlamydomonas reinhardtii is a flagellated green alga found in soil and freshwater that 

encounters anoxic conditions and is capable of a rapid switch to anaerobic metabolism 

(Gfeller and Gibbs, 1984). Nutrient limitations can trigger C. reinhardtii to produce H2 under 

light and dark conditions (Melis and Happe, 2001; Melis et al., 2000). This is due to the 

presence of FeFe-hydrogenases that localise to the chloroplast (Atteia et al., 2013; Forestier 

et al., 2003; Happe and Kaminski, 2002). Entamoeba histolytica is an obligate anaerobic 

flagellate that possesses a cytosolic FeFe-hydrogenase, although so far hydrogen production 

can only be detected when the FeFe-hydrogenase is overexpressed in transformed E. 

histolytica cells (Nixon et al., 2003). Both C. reinhardtii and E. hystolytica are unrelated yet 

have short, relatively simple FeFe-hydrogenases compared to that of N. gruberi. Giardia 

intestinalis and Trichomonas vaginalis are also anaerobic flagellates both of which, along 

with E. histolytica, are human parasites. T. vaginalis does not possess a classical 

mitochondrion, and instead has membrane-bound hydrogenosomes that rely on 

fermentation using H+ as a final electron acceptor to make molecular hydrogen (see Section 

1.4) (Muller et al., 2012; Putz et al., 2006). G. intestinalis, like E. histolytica have the greatly 

reduced forms of mitochondria known as mitosomes (Müller et al., 2012). The G. intestinalis 

FeFe-hydrogenase, like E. histolytica, is also cytosolic and both function independently of the 

mitosome (Nixon et al., 2003). The G. intestinalis FeFe-hydrogenase has low hydrogen 
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production rates (approximately 10-fold lower than T. vaginalis) (Ellis et al., 1992; Lloyd et 

al., 2002) Both T. vaginalis and G. intestinalis again have relatively simple FeFe-hydrogenases 

that look almost identical to one another, differing in length by only 6 residues and both are 

fairly similar to that found in C. reinhardtii. However, T. vaginalis also possesses an additional 

bigger 64 kDa FeFe-hydrogenase that contains a ferrodoxin domain, which is not present in 

the shorter isoform. In the case of T. vaginalis, the presence of multiple FeFe-hydrogenases 

may reflect the fact it (or its ancestor) is an obligate anaerobe that has adapted to a specific 

environment, whereas C. reinhardtii is an autotroph that is also capable of surviving in the 

prolonged absence of oxygen (Gfeller and Gibbs, 1984; Happe and Kaminski, 2002).  

Chlorella variabilis is another chlorophyte green alga that classically photo-respires, but it 

too possesses FeFe-hydrogenase and can generate molecular hydrogen (Meuser et al., 

2011). The C. variabilis FeFe-hydrogenase appears almost identical in domain architecture to 

that of Naegleria gruberi, and only differs in length by 33 amino acids. Sawyeria 

marylandensis belongs to the Heterolobosea, as does N. gruberi. It is a microaerophile that 

contains hydrogenosomes and grows with trace amounts of oxygen in its environment 

(Barbera et al., 2010). Again the S. marylandensis FeFe-hydrogenase strongly resembles that 

of N. gruberi and C. variabilis. Another heterolobosean amoeboflagellate is Psalteriomonas 

lanterna that contains an FeFe-hydrogenase which localises to the hydrogenosomes (de 

Graaf et al., 2009). The domain architecture of the P. lanterna FeFe-hydrogenase appears to 

be slightly less complex than that of N. gruberi, as it lacks an apparent ferredoxin domain 

towards the N-terminus. Neocallimastix frontalis is an anaerobic chytrid that contains 

hydrogenosomes and an FeFe-hydrogenase (Davidson et al., 2002; van der Giezen et al., 

1997). The N. frontalis FeFe-hydrogenase again looks very similar in architecture to that of 

Naegleria gruberi, C. variabilis and S. marylandensis. The unrelated ciliate Nyctotherus ovalis 

is an anaerobic symbiont that grows in the hindgut of cockroaches. N. ovalis also has 

hydrogenosomes (Boxma et al., 2005a) and it is perhaps not surprising to see that its FeFe-

hydrogenase is longer and more complex than the others analysed, as this is its primary 

method of energy generation (Boxma et al., 2005a). N. ovalis still retains features in the first 

half of the enzyme which look very similar to the FeFe-hydrogenases of Naegleria gruberi, C. 

variabilis, and S. marylandensis, but then has additional domains related to Complex I 

subunits in the C-terminal half of the protein (Boxma et al., 2007).  

All of the hydrogenases found in Chlamydomonas reinhardtii, Entamoeba histolytica, Giardia 

intestinalis and Trichomonas vaginalis are shorter and less complex in domain architecture 

than the FeFe-hydrogenase found in Naegleria gruberi. The domain architecture in N. gruberi 
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most closely resembles that found in the green alga Chlorella variablis since they both have 

extended N-termini compared to many of the other FeFe-hydrogenases illustrated in Figure 

6.2. The N. gruberi FeFe-hydrogenase also greatly resembles those found in the close relative 

S. marylandensis and the unrelated fungi Neocallimastix frontalis. The FeFe-hydrogenases 

found in Nyctotherus ovalis and B. hominis appear more complex in terms of their domain 

architecture than that of Naegleria gruberi since both have additional C-terminal domains 

that are not present in N. gruberi. The B. hominis sequence is only 8 residues longer than N. 

gruberi but the Nyctotherus ovalis sequence is significantly longer by by 446 residues. 

The different architectures seen across a range eukaryotic hydrogenases perhaps argue in 

favour of multiple independent acquisitions of this enzyme. The phylogenetic relationships 

between all of the FeFe-hydrogenases described above was not pursued, because of 

previous reports that concluded that FeFe-hydrogenase phylogenies have poor resolution 

capabilities (Embley, 2006; Ginger et al., 2010; Hug et al., 2010). However, these earlier 

publications did not compare the domain architecture of the full length FeFe-hydrogenase 

proteins.  

 

6.2 Antibody-based detection of N. gruberi FeFe-hydrogenases 

Upon arrival to Lancaster, polyclonal FeFe-hydrogenase anti-peptide antibodies had been 

raised against short peptide sequences found in the N. gruberi FeFe-hydrogenase (NgFeHyd). 

The relative positions of the peptides used as antigens are shown in red on the cartoon 

schematic of the NgFeHyd (Figure 6.3 B). Preliminary Western blot analysis of amoebae and 

differentiating flagellates revealed several proteins decorated by the anti-peptide antibody. 

The NgFeHyd would be expected to be seen at approximately 80 kDa; although no bands are 

detected in this region, a series of distinct bands were observed (Figure 6.3 A). Two proteins 

of higher molecular weight than the 80kDa size marker are seen in Figure 6.3 A. One of these 

bands is approximately 100 kDa in size and if NgFeHyd migrates aberrantly on SDS-PAGE 

conceivably the antibody recognises its target (this is expected since trophozoites have been 

observed to produce H2, therefore its anticipated that NgFeHyd protein would be present in 

whole cell protein samples - see Tsaousis et al., (2014)). Proteins of lower molecular weight 

identified by the affinity purified anti-sera may correspond to cross-reacting proteins or may 

simply be due to proteolysis of the sample.  
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To explore further whether any of the protein bands detected in Western blotting using the 

anti-FeFe-hydrogenase antibodies correspond to the NgFeHyd or a proteolytic cleavage 

product, anti-sera was next tested against recombinant protein. Here, a gene sequence 

coding for the first 273 amino acids of FeFe-hydrogenase and flanked by NdeI and XhoI 

restriction sites was commercially synthesised (known as FeHydΔ274-752). This commercially 

synthesised gene was excised from the standard cloning vector pEX-A (in which it was 

supplied) by digestion with NdeI and XhoI and cloned into NdeI-XhoI digested pET-28a 

(Novagen) (for vector map see Appendix II Figure B.2) to give FeHydΔ274-752 with an N-terminal 

hexa-histidine tag. This was transformed into XL-1 blue competent E.coli. Following 

successful transformation of the E. coli, colonies were observed on the ‘ligation’ plate and six 

colonies were picked to be taken forwards for overnight growth and the isolation of plasmid 

DNA using a GeneJET™ Plasmid Miniprep kit (ThermoFisher Scientific). Plasmid DNA was 

screened by digestion with the restriction enzymes XbaI and XhoI. Following digestion, 

presence of a vector-based backbone at size ~5300 bp and an insert at size ~800 bp 

corresponding to FeHydΔ274-752 was taken to be indicative of a successful clone. From the 

image shown in Figure 6.4 A it was clear that two plasmid mini-preps (colonies 1 and 5) 

contained insert. Colony 6 yielded plasmid of uncertain origin and was not pursued further, 

colony 5 (marked with an asterisk on figure 6.4 A) was taken forward for DNA sequencing, 

then subsequently used in further downstream protein expression experiments. 

The FeHydΔ274-752 pET-28a colony 5 was re-transformed into Rosetta™2(DE3)pLysS competent 

cells (Novagen) in preparation for small scale expression and protein solubility experiments. 

Small scale induction showed IPTG inducible expression of a protein of ~35 kDa in size; this 

was found to be insoluble protein rather than soluble (Figure 6.5 A-B). Detection with the 

anti-His antibody confirmed that the induced protein did possess a hexa-histidine tag (Figure 

6.5 C). The induced protein was also detected using the NgFeHyd anti-peptide antibody 

(Figure 6.6 D), indicating that the antibodies recognised the peptide antigen originally 

synthesised for antibody production, and therefore that in theory the antibodies detect the 

N. gruberi FeFe-hydrogenase. 

Since the NgFeHyd anti-peptide antibody could theoretically recognise its target, the 

decision was made to attempt to raise another polyclonal antibody, FeHydΔ274-752, by carrying 

out large scale induction followed by purification of the recombinant FeHydΔ274-752 protein to 

provide antigen for antibody production in chicken hosts. Chickens were chosen so that the 
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derived anti-sera derived could potentially be used in conjunction with the NgFeHyd anti-

peptide antibody (sourced from rabbit hosts) for immunofluorescence experiments. 

Large scale induction of the recombinant FeHyd Δ274-752 in Rosetta™2 (DE3) pLysS competent 

cells (Novagen) was utilised to provide enough protein for antibody production. The 

recombinant protein was purified using the ӒKTA-prime insoluble protein protocol, using 

metal-ion chromatography and SDS-PAGE downstream purification (Figure 6.6 A). The 

purified protein was sent to Covalab for polyclonal antibody production using chicken hosts. 

FeHydΔ274-752 was also purified using the benchtop pH shift insoluble protein protocol (Figure 

6.6 D-E), which eliminated the need for downstream purification using SDS-PAGE gels and 

could be used in ELISA testing. Unfortunately, the Covalab ELISA tests of both chickens 

immunised with FeHydΔ274-752 showed no reactivity (data not shown) and there was no 

detection of recombinant FeHydΔ274-752 using the raw sera from either chicken under the 

conditions outlined in Section 2.19 (data not shown). 

 

6.3 Heterologous expression of N. gruberi enzymes in T. brucei 

Since attempts to raise a polyclonal antibody against FeHydΔ274-752 were unsuccessful 

experiments to look at FeFe-hydrogenase localisation in N. gruberi were not pursued further, 

but an alternative strategy to identify where the N. gruberi FeFe-hydrogenase (and 

subsequently its associated maturases) might localise was used. To do this, T. brucei was 

used for heterologous expression experiments. Here the rationale was that if any of the N. 

gruberi proteins localise to the T. brucei mitochondrion, then despite the several or many 

hundred million years since T. brucei and N. gruberi shared their last common ancestor 

(Hampl et al., 2009; Simpson et al., 2006a), this would be good evidence for the 

mitochondrial localisation of FeFe-hydrogenase and its associated maturases in N. gruberi. 

For instance, mitochondrial targeting sequences from diatoms (sister group to the 

alveolates) can successfully target yeast mitochondria (Danne and Waller, 2011) and the 

human homologue of the conserved mitochondrial protein frataxin can target the 

mitochondrion of T. brucei (Long et al., 2008a).  

I also looked at the expression profiles of various anaerobic enzymes under the assumption 

that the expression of RNA translates to the production of protein. Microarray analysis of N. 

gruberi steady state RNA as it differentiates into its flagellate form (Fritz-Laylin and Cande, 

2010) indicates that there is transcription of the FeFe-hydrogenase gene and its three 
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associated maturases, HydE, HydF and HydG (Figure 6.7 B-E); which is expected because 

trophozoites produce H2 (Tsaousis et al., 2014). There is also some possibility that the 

expression of FeFe-hydrogenase, HydE and HydG may increase during differentiation (Figure 

6.7 B-C, Figure 6.7 E).  

For FeFe-hydrogenase localisation, focus was on the importance of the N-terminal leader 

sequence. Codons for the first 60 N-terminal amino acids of FeFe-hydrogenase were fused 

upstream of coding sequence for a HA-epitope tag and GFP (Figure 6.7 A) and cloned into the 

T. brucei pDex377 expression vector by a previous post-graduate student (J. Kelly) 

(henceforth this plasmid is known as FeHydΔ61-752:HA:GFP). Previous preliminary experiments 

regarding the localisation of the tagged proteins had proved inconclusive.  

For the three FeFe-hydrogenase associated maturases, (since none of the encoding 

maturation proteins genes were predicted to contain introns) a slightly different approach 

was used. Full length coding sequences for the gene models HydE, HydF and HydG were 

amplified by PCR (figure 6.8 A), using N. gruberi NEG-M genomic DNA as a template. The 

resultant PCR products for HydE, HydF and HydG were purified using the GeneJET™ PCR 

Purification Kit and then ligated into the pGEM®-T Easy (Promega) vector. The ligated HydE, 

HydF and HydG plasmids in the pGEM®-T Easy (Promega) vector were transformed into XL-1 

blue competent E. coli and colonies observed on the three different ‘ligation’ plates. Colonies 

from the HydE, HydF and HydG ‘ligation’ plates were selected for overnight growth in LB 

broth and the plasmid DNA extracted from the E. coli using the GeneJET™ Plasmid Miniprep 

Kit (Fermentas). Miniprepped DNA was screened by digestion with the HindIII and XhoI 

restriction enzymes. Restriction vector maps shown in Figure 6.8 A (HydE), 6.8 B (HydF) and 

6.8 C (HydG).  

Plasmid DNA for HydE isolated from the T Easy vector by restriction digest using HindIII and 

XhoI was then cloned into a variant of the pDex377 expression plasmid (Wickstead et al., 

2003) (for vector map see Appendix II Figure B.3 A) which contained a pre-existing triple-myc 

tag. When this pDex377 variant was cut with HindIII and XhoI then ligated with HindIII and 

XhoI digested insert, this would result in HydE C-terminally fused to 3 tandemly placed myc 

epitopes.  

Plasmid DNA for HydF and HydG had to be cloned into the pDex377-myc3 using an 

alternative strategy due to HydF and HydG coding sequences each containing internal HindIII 

sites. The HydF and HydG open reading frames cloned into T Easy were initially digested 

away from the T Easy vector using NotI. NotI ends were then ‘blunted’ using the Klenow 
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fragment of DNA polymerase I. The ‘blunt ended’ HydF and HydG inserts were then digested 

with XhoI. The pDex377-myc3 was initially digested with HindIII, ‘blunted’ with the Klenow 

fragment, digested with XhoI and then ligated with ‘blunt’-XhoI ended HydF and HydG 

inserts. 

Ligated plasmids were transformed into XL-1 blue competent E. coli and miniprep plasmid 

DNA prepared in the usual fashion using the restriction enzymes BglII and XhoI to screen for 

insert (BglII was used for screening because the pDex377-myc3 has a BglII site 144 bases 

upstream of the HindIII site which was destroyed during the cloning process; the HydF coding 

sequence also has an internal BglII site which helped differentiate it easily from HydG during 

the screening process). Plasmids containing HydF and HydG inserts were sent for DNA 

sequencing and before transfection into procyclic T. brucei.  

The pDex377-derived vectors containing FeHydΔ61-752:HA:GFP, HydE::myc3, HydF::myc3 and 

HydG::myc3 were all linearised by digestion with NotI and then transfected into procyclic 427 

T. brucei. These constructs are targeted to the 177-base pair repeats of the 

minichromosomes in T. brucei, and in a 427 background constitutive expression of myc-

tagged or GFP proteins occurs (Wickstead et al., 2002, 2004). Evidence for the expression of 

these constructs was sought by fluorescence microscopy and Western blotting.  

For cell lines expressing FeHydΔ61-752:HA:GFP, HydE::myc3, HydF::myc3 and HydG::myc3 whole 

cell lysates were separated by SDS-PAGE and blotted onto Amersham Hybond-P membranes. 

Membranes were probed with anti-HA (Figure 6.9 A) or anti-myc (Figure 6.9 B) monoclonal 

antibodies. The bands detected on the anti-myc Western blots corresponded with the sizes 

expected for full length proteins for HydE (predicted size of 59.6 kDa), HydF (predicted size 

of 61 kDa) and HydG (predicted size of 63.9 kDa). A band detected on the anti-HA Western 

blot corresponds with the expected size of the FeHydΔ61-752:HA:GFP (34.3 kDa).  

Indirect immunofluorescence microscopy was used to look at the localisation of HydE::myc3, 

HydF::myc3 and HydG::myc3 using anti-myc monoclonal antibody and the anti-HA 

monoclonal antibody to look at the localisation of FeHydΔ61-752:HA:GFP. Fluorescence was 

performed in a background where live cells had been incubated with MitoTracker® Red 

CMXRos (Invitrogen) prior to cell fixation. DeltaVision images of all four populations show 

clear mitochondrial localisation of FeHydΔ61-752:HA:GFP, HydE::myc3, HydF::myc3 and 

HydG::myc3, all of which were confirmed by MitoTracker co-localisation experiments (Figure 

6.10). 
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In subsequent experiments I went on to assess the mitochondrial candidature of N. gruberi 

nitrite reductase (NirK) and acetyl CoA synthetase (ADP forming). As with FeFe-hydrogenase 

and its associated maturases, microarray analysis suggests that there may be increased 

steady state mRNA expression levels of NirK during N. gruberi differentiation from the 

amoeboid trophozoites to the flagellate form, whereas the candidate acetyl CoA synthetase 

(ADP forming) appears to be more abundant at the transcript level in trophozoites (Figure 

6.11 A-B). 

The full length coding sequence of the N. gruberi nitrite reductase enzyme (henceforth 

known as NirK:HA) fused in-frame to produce a C-terminal 10 amino acid HA epitope-tagged 

protein (Figure 6.11 C) had been cloned previously into the pDex377 by post-graduate 

student (J. Kelly). Although the expression plasmid had been produced, no convincing 

localisation experiments had again been conducted.  

For the acetyl CoA synthetase (ADP forming), just as with FeFe-hydrogenase, the focus was 

on whether the N-terminal sequence was sufficient to direct import of GFP into a T. brucei 

mitochondrion. A synthetic construct of the first 100 N-terminal amino acids of the N. 

gruberi acetyl CoA synthase (ADP forming) (henceforth known as ACSΔ101-1100:HA:GFP) with a 

C-terminal HA-epitope tag and a downstream GFP tag (Figure 6.11 D) was ordered (Eurofins). 

The ACSΔ101-1100:HA:GFP construct was then also cloned into the pDex377 expression vector.  

Both the NirK:HA and ACSΔ101-1100 constructs were transfected into procyclic 427 T. brucei for 

constitutive expression, and evidence of expression was detected by fluorescence 

microscopy and Western blotting.  

Western blot analysis of NirK:HA expression (Figure 6.9 C) using the anti-HA antibody shows 

expression of a protein that corresponds with the expected size of Nirk:HA (44.5 kDa). The 

ACSΔ101-1100 Western blot (Figure 6.9 D) when probed with anti-HA antibody detects a protein 

that is slightly bigger than the expected size of the ACSΔ101-1100::HA::GFP fusion (39 kDa). The 

indirect immunofluorescence slides using the anti-HA monoclonal antibody revealed that 

both NirK:HA and ACSΔ101-1100::HA::GFP show clear mitochondrial localisation when co-

localisation with MitoTracker was performed (Figures 6.12 A-D, 6.12 E-H, respectively). 
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6.4 Summary of the characterisation attempts of N. gruberi novel mitochondrial 

proteins 

In this chapter I have provided evidence for the mitochondrial localisation of a variety of 

candidate N. gruberi enzymes that are classically associated with anaerobic metabolism in 

other organisms. Predictions were initially made regarding the mitochondrial localisation of 

FeFe-hydrogenase, its three associated maturases HydE, HydF and Hyd G, the nitrite 

reductase and the acetyl CoA synthetase (ADP forming) and experiments reported here 

tested those predictions. In my view, based on other studies showing the conservation of 

mitochondrial protein targeting across species (Danne and Waller, 2011; Long et al., 2008a), 

my data proves a strong indication that the N. gruberi proteins tested would also localise to 

mitochondria in N. gruberi. Collectively the data suggests that the mitochondria of N. gruberi 

are extremely metabolically flexible.  

In contrast to the results presented here, a previous study (Tsaousis et al., 2014) found 

evidence which suggested the N. gruberi FeFe-hydrogenase and the HydE maturase both 

localised to the cytosol rather than the mitochondria. In attempts to try and resolve why 

there is such conflicting evidence, the 5’region of the FeFe-hydrogenase (1251 bp; referred 

to from hereon as FeHydΔ418-752)  used by Tsaousis et al., (2014) was fused in-frame upstream 

of a C-terminal HA and GFP tag, then transfected into procyclic T. brucei in the normal 

manner. Despite several independent attempts, stable transformants were never obtained. 

Since expression of the FeHydΔ418-752 mutant was never observed in T. brucei, the 

mitochondrial localisation results yielded from the yeast expression system used by Tsaousis 

et al., (2014) could not be compared. However, the C-terminal deletion in the FeHydΔ418-752 

construct occurs halfway through the iron hydrogenase domain (IPR009016). This could 

affect how the recombinant protein folds since incorrect disulphide bond formations may 

occur, and some may be missing entirely because of the incomplete iron hydrogenase 

domain that is expressed. This can affect the tertiary structure of the expressed protein and 

potentially lead to protein mis-folding (Rosano and Ceccarelli, 2014), which in turn could 

have an effect on the stability of the heterologously expressed protein. Consequentially, mis-

folding could result in a masking effect on the N-terminal mitochondrial targeting sequence, 

resulting in the protein being unable to reach the correct target. This may contribute to a 

partial explanation for why mitochondrial localisations for FeFe- hydrogenase and HydE were 

not seen in yeast by Tsaousis et al., (2014). Additionally, since yeast is much more 

evolutionary distant to N. gruberi than T. brucei is, it may be that the yeast system cannot 

recognise the N. gruberi mitochondrial targeting sequences. 
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In my experiments, I only expressed the first 60 N-terminal amino acids in order to see 

whether the predicted N-terminal import sequence was sufficient to target the T. brucei 

mitochondrion, and therefore import the remainder of the protein. Tsaousis et al., (2014) 

also argued that the N-terminal region of the N. gruberi FeFe-hydrogenase is unusually long 

when aligned with other eukaryotic FeFe-hydrogenase sequences, but when the domain 

architecture is analysed carefully (Figure 6.2), the N-terminus of the N. gruberi FeFe-

hydrogenase is in similar length to those found in C. reinhardtii and P. lanterna. The 

evolutionary history of eukaryotic FeFe-hydrogenases is obscure and sequences align poorly 

with one-another (Embley, 2006; Ginger et al., 2010; Hug et al., 2010). An in depth study of 

the phylogeny of FeFe-hydrogenases (Hug et al., 2010) found that most of the deep structure 

of the resultant phylogenetic trees are poorly resolved and no convincing evidence for 

eukaryotic monophyly could be found. Many eukaryotic FeFe-hydrogenases were 

interspersed with homologous eubacterial sequences in two of the three clades because of 

at least two separate origins of eukaryotic FeFe-hydrogenases from within the eubacteria 

(Hug et al., 2010). With regards to the FeFe-hydrogenase associated maturases, Tsaousis et 

al., (2014) also only expressed the first 690 bp of HydE, whereas in my experiments full 

length sequences of HydE, HydF and HydG were expressed in procyclic T. brucei. 

Some of the immunofluorescence data presented by Tsaousis et al., (2014) used 

heterologous antibodies derived from T. vaginalis proteins (Bui and Johnson, 1996) to probe 

the localisation of N. gruberi FeFe-hydrogenase and HydE in trophozoites. The authors 

reported that the N. gruberi FeFe-hydrogenase and HydE are cytosolic and exhibit no co-

localisation with the Mitotracker signal. However, the representative trophozoite cells 

shown by Tsaousis et al., (2014) have a more complex fluorescence pattern detected by the 

T. vaginalis anti-sera than just cytoplasmic localisation alone. There is a possibility that two 

signals are present in the cell, in both the cytoplasm and the mitochondria since there is 

what appears to be partial punctate co-localisation with the Mitotracker signal on the 

merged images shown in Figure 3.4 D & H. from Tsaousis et al., (2014). Using heterologous 

antibodies in immunofluorescence localisation experiments has been shown previously to 

yield dubious and unreliable results e.g. (Regoes et al., 2005). Here, in immunofluorescence 

microscopy experiments Regoes et al. (2005) used heterologous anti-Cpn60 antibodies 

against fixed Giardia cells and suggested localisation of a Giardia Cpn60 protein that proved 

incorrect when Giardia-specific anti-Cpn60 antibodies were made (Regoes et al., 2005). 

Therefore one might be cautious over the cellular localisation data presented by Tsaousis et 

al., (2014) that relied upon a heterologous antibody for detection. 
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H
+
 

Figure 6.1. A simplified cartoon schematic highlighting the potential anaerobic metabolic 
capabilities of N. gruberi.   
Enzymes linked to anaerobic metabolism are highlighted with a black asterisk. Abbreviations: 
Fdxox, ferrodoxin in its oxidised state; Fdxred, ferrodoxin in its reduced state; III, complex III; c, 

cytochrome C; NirK, nitrite reductase. 
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Table 6.1  

Table 6.1. Accession numbers and JGI protein IDs of the candidate mitochondrial proteins 
from N. gruberi analysed in this thesis. 
Genes encoding full length proteins were expressed in procyclic T. brucei or alternatively N-
terminal coding sequences (FeFe-hydrogenase, acetyl CoA synthetase [ADP forming]) were 
fused to a GFP gene for expression in procyclic T. brucei. 
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Figure 6.2 
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Figure 6.2. Cartoon schematic diagrams showing the domain architecture of a range of 
eukaryotic FeFe-hydrogenases.  
FeFe-hydrogenase domains were detected using InterPro (Mitchell et al., 2015) and SMART 
(Letunic et al., 2014; Schultz et al., 1998).  
No FeFe-hydrogenases have, to my knowledge, been identified yet in red algae or the 
apicomplexan Cryptosporidium sp.  
Note that some ‘4Fe-4S’ ferredoxin domains do not always contain two associated 4Fe-4S 
motifs, which classically mediate the transfer of electrons in metabolic reactions (pale grey 
squares located within the dark grey squares) 
Abbreviations: a.a., amino acids; LECA, last eukaryotic common ancestor 
See below for key - InterPro reference number in brackets: 

4Fe-4S ferrodoxin (IPR017896) 

4Fe-4S binding domain conserved site (IPR017900) 

Iron hydrogenase (IPR009016) 

Ferredoxin (IPR001041) 

Complex I G subunit (IPR019574) 

Thioredoxin-like fold (IPR012336) 

Complex I 51kDa subunit (IPR011538) 

Complex I F subunit (IPR019575) 

Flavoprotein-like (IPR029039 
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  Figure 6.3 

A. 
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  Iron hydrogenase 
  

1 752 
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Peptide antibody 
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N. gruberi FeHyd
Δ274-752

 

50 a.a. 

Figure 6.3. Initial characterisation of the N. gruberi FeFe-hydrogenase using the anti-peptide 
antibodies. 
A. Protein samples taken during N. gruberi differentiation were separated by SDS-PAGE using a 
10% gel, blotted onto an Amersham Hybond-P PVDF membrane, and decorated using the anti-
peptide antibody at a dilution of 1/250 in blocking buffer A. The lane designated A is the protein 
sample taken whist N. gruberi was still in its amoebal form, before the initiation of 
differentiation; lane D

3.5
 is the protein sample taken 3.5 hours into differentiation; lane D

4.5
 is the 

protein sample taken 4.5 hours into differentiation. 
B. A cartoon schematic of the N. gruberi FeFe-hydrogenase. Note the two red bars towards the 
beginning and the end of the blue sequence line, which indicate the relative positions of the 
peptides that the anti-peptide anti-hydrogenase antibodies are targeted towards.  

C. A cartoon schematic of the FeHyd
Δ274-752

 used firstly to test further the usefulness of the anti-
peptide anti-hydrogenase antibodies and then expressed as recombinant protein for antibody 

production (termed anti- FeHyd
Δ274-752

) in chicken hosts. Highlighted is the N-terminal His-tag 
(black bar); a peptide sequence used as antigen for the aforementioned anti-peptide antibody 
(red bar) and the fragment of the ferredoxin domain, present in the N. gruberi FeFe-
hydrogenase. a.a., amino acids. 

Ferredoxin domain 
fragment 

1 273 
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  Figure 6.4  

Figure 6.4. Restriction mapping for successful cloning of the coding sequence for FeHyd
Δ274-752

 

into the expression vector pET28a. 

A. 1% agarose gel electrophoresis of XbaI and XhoI digested plasmid minipreps isolated from 

colonies transformed with a ligation mixture that contained NdeI-XhoI cut FeHyd
Δ274-752

 coding 

sequence and NdeI-XhoI cut pET28a vector. Resultant plasmids were then screened by digesting 

with XbaI and XhoI. For plasmids containing the FeHyd
Δ274-752 

insert the double digest released 

an insert approximately 800 bp in size, and a vector backbone of approximately 5 kb. Following 

sequencing, the colony marked with an asterisk was taken forwards for transformation into 

Rosetta™ 2(DE3)pLysS competent E. coli cells (Novagen). Abbreviations: bp, base pairs. 

B. A cartoon restriction map for FeHyd
Δ274-752

 plasmid. Highlighted are the cloning sites and the 

expected sizes of the resultant DNA fragments after digestion with the XbaI and XhoI restriction 

enzymes. 
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Figure 6.5  
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Figure 6.5. Expression and detection of the recombinant FeHyd
Δ274-752 

expressed in Escherichia 
coli.  

A. The 10% SDS-PAGE gel of the small scale induction of FeHyd
 Δ274-752 

 in E. coli with IPTG over a 
3 hour period; T=0 hour sample was taken before the addition of IPTG.  A protein approximately 
35 kDa in size not present at T=0 can be seen to be gradually increasing in expression levels over 
time.  
B. The 10% SDS-PAGE gel for the solubility test. The same 35 kDa protein from 6.5 A can be seen 

distinctly in the pellet (P) sample, indicating that FeHyd
Δ274-752 

is an insoluble protein, 
presumably expressed in inclusion bodies. S, supernatant.  

C. Western blot detection of FeHyd
Δ274-752 

samples taken during small scale induction with IPTG. 
The Western blot was decorated with the anti-His antibody at a dilution of 1/5000 in blocking 
buffer A. Lane 1: Sample before induction; Lane 2: Sample taken 1 hour post induction; Lane 3: 
Sample taken 2 hours post induction; Lane 4: Sample taken 3 hours post induction. 

D. Western blot detection of FeHyd
Δ274-752 

samples taken during small scale induction with IPTG. 
The Western blot was decorated with the NgFeHyd anti-peptide antibody at a dilution of 1/250 
in blocking buffer A. Lane 1: Sample before induction; Lane 2: Sample taken 1 hour post 
induction; Lane 3: Sample taken 2 hours post induction; Lane 4: Sample taken 3 hours post 
induction. 
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Figure 6.6  

Figure 6.6. Purification of recombinant FeHyd
Δ274-752 

in Escherichia coli in preparation for 
polyclonal antibody production.  
A. The 10% SDS-PAGE gel showing the post-purification analysis of ÄKTA-Prime Plus fractions of 

the elution of FeHyd
Δ274-752

. Fractions 11-16 were pooled and subjected to further purification.  

B. The 8% SDS-PAGE gel showing purification under denaturing conditions of FeHyd
Δ274-752

 using 
urea and pH changes for elution. This method eliminated the need for SDS-PAGE gels for further 

purification and the eluted FeHyd
Δ274-752

 is in an ELISA-compatible buffer. Abbreviations: S/N, 
supernatant; F/T, flow through; W1, wash 1; W2, Wash 2; D1-4, elution buffer D pH 5.9. 

C. The 8% SDS-PAGE gel showing the purification under denaturing conditions of FeHyd
Δ274-752

 
using urea and pH changes for elution. Abbreviations: S/N, supernatant; F/T, flow through; W1, 

wash 1; W2, Wash 2; E1-4, elution buffer E pH 4.5. Elution of FeHyd
Δ274-752 

is seen predominantly 
in the E2 and E3 lanes. 
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N. gruberi FeHydΔ61-752:HA:GFP 

25 a.a. 
FeFe-hydrogenase N-terminal fragment 
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A. 

Figure 6.7. Expression of the N. gruberi FeFe-hydrogenase and the associated maturases 

A. Cartoon of the FeHyd
Δ61-752

:HA:GFP protein expressed in procyclic T. brucei. The putative leader 

sequence of the FeFe-hydrogenase was fused to a HA-tag followed by a GFP-tag at the C-terminus. 

B-E. Microarray data analysis suggests the upregulation of mRNA expression for FeFe-hydrogenase 

and the three associated maturases, HydE, HydF and HydG, as N. gruberi differentiates from  

amoebae to the flagellates. X-axis, Time in minutes; Y-axis, Arbitrary units of expression. 
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Figure 6.8. Cartoon restriction maps for HydE, HydF and HydG coding sequences with T Easy 
vectors, and the strategies for cloning genes into the pDex377-derived expression vector in 
preparation for expression in T. brucei.  
A-C. Enzyme restriction maps for HydE, HydF and HydG respectively, highlighting the internal 
HindIII sites in HydF and HydG and fragment sizes expected from restriction mapping.  
D-E. Flow diagrams highlighting the use of the Klenow enzyme for blunt end cloning of HydF and 
HydG into the pDex377 expression vector.  
Restriction enzyme labels are colour co-ordinated with positions on the diagrams. bp, base pairs. 
Cartoons are not drawn to scale. 
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Figure 6.9. Expression of N. gruberi enzymes in procyclic 427 T. brucei. All protein samples were 
whole cell lysates resuspended in boiling hot Laemlii buffer in absence of protease inhibitors.  

A. Western blot detection of FeHyd
Δ61-752

:HA:GFP in  T. brucei. Lane 1 shows expression of two 
bands ~33 kDa and ~31 kDa respectively, the predicted size of full length protein being 34 kDa. 
The smaller band could be due to processing of the predicted mitochondrial transit peptide 
following import of the GFP into the mitochondrion. The blot was decorated with the anti-HA 
antibody at a dilution of 1/1000 in blocking buffer A. 
B. Western blot detection of FeFe-hydrogenase associated maturases, expressed in T. brucei. 
The Western blot was decorated with the anti-myc antibody at a dilution of 1/1000 in blocking 
buffer A. Lane 1 shows HydE::myc3 with a expression detected at ~60 kDa which corresponds 

with the predicted size of HydE (59.6 kDa). Lane 2 shows HydF::myc3 with expression detected 

at ~64 kDa, which corresponds to the predicted size of HydF (61 kDa). The array of other smaller 
proteins is possibly due to proteolytic degradation. Lane 3 shows HydG::myc3 with a expression 

detected at ~69 kDa, which is close to the predicted size of HydG (63.9 kDa), again the other 
smaller proteins detected are likely to be products of proteolysis.  
C. Western blot detection of NirK:HA, expressed in T. brucei. The Western blot was decorated 
with the anti-HA antibody at a dilution of 1/1000 in blocking buffer A. Lane 1: NirK:HA construct 
with expression detected at ~50 kDa, the predicted size of NirK:HA being 44.5 kDa. The other 
fainter bands in this lane are likely to be products of proteolysis. 

D. Western blot analysis of ACS
Δ101-1100

:HA:GFP, expressed in procyclic T. brucei. The Western 
blot was decorated with the anti-HA antibody at a dilution of 1/1000 in blocking buffer A. Lane 

2 shows ACS
Δ101-1100

:HA:GFP with a band at ~49 kDa, the predicted size of ACS:HA:GFP is 39 kDa. 
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Figure 6.10  
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Figure 6.10. Expression and localisation of N. gruberi FeHyd
Δ61-752

:HA:GFP and associated 
maturases HydE, HydF and HydG in procyclic 427 T. brucei. 

A-D. Localisation of FeHyd
Δ61-752

:HA:GFP  to the mitochondrion of T. brucei. Indirect 

immunofluorescene used to image the HA-tagged FeHyd
Δ61-752

:HA:GFP . A: DIC; B: FeHyd
Δ61-

752
:HA:GFP slides decorated with the  anti-HA antibody at a dilution of 1/1000 in blocking buffer 

B, merged with DAPI; C: MitoTracker merged with DAPI; D: Merged. 
E-H. Localisation of HydE::myc3 to the mitochondrion of T. brucei. Indirect immunofluorescene 

used to image the myc-tagged HydE. A: DIC; B: HydE slides decorated with anti-myc at a dilution 
of 1/1000 in blocking buffer B, merged with DAPI; C: MitoTracker merged with DAPI; D: Merged. 
I-L. Localisation of HydF::myc3 to the mitochondrion of T. brucei. Indirect immunofluorescene 

used to image the myc-tagged HydF. A: DIC; B: HydF slides decorated with anti-myc, merged 
with DAPI; C: MitoTracker merged with DAPI; D: Merged. 
M-P. Localisation of HydG::myc3 to the mitochondrion of T. brucei. Indirect immunofluorescene 

used to image the myc-tagged HydG. A: DIC; B: HydG slides probed with anti-myc, merged with 
DAPI; C: MitoTracker merged with DAPI; D: Merged. 
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Figure 6.11. Expression of N. gruberi nitrite reductase (NirK) and acetyl CoA synthase (ACS
Δ101-

1100
:HA:GFP). 

A-B. Microarray data analysis shows upregulation of mRNA expression for NirK and acetyl CoA 
synthetase (ADP forming) as N. gruberi differentiates from amoebae to flagellages. X-axis, Time 
in minutes; Y-axis, Arbitrary units of expression. 
C. Cartoon of the NirK protein expressed in procyclic 427 T. brucei. The domain architecture of 
the full length NirK sequence is shown, along with the HA tag fused at the C-terminus. 

D. Cartoon of the ACS
Δ101-1100

:HA:GFP protein expressed in procyclic 427 T. brucei. The first 100 
amino acids of the N-terminal sequence were fused to a C-terminal HA-tag followed by a GFP 
tag. 
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Figure 6.12  

Figure 6.12. Expression and localisation of N. gruberi NirK:HA and ACS
Δ101-1100

:HA:GFP in 
procyclic 427 T. brucei. 
A-D. Localisation of NirK:HA to the mitochondrion of T. brucei. Indirect immunofluorescence 
was used to image the HA-tagged NirK:HA. A: DIC; B: NirK:HA slides decorated with the anti-HA 
antibody at a dilution of 1/1000 in blocking buffer B, merged with DAPI; C: MitoTracker merged 
with DAPI; D: Merged. 

E-H. Localisation of ACS
Δ101-1100

:HA:GFP  to the mitochondrion of T. brucei. Indirect 

immunofluorescence was used to image the HA-tagged ACS
Δ101-1100

:HA:GFP. A: DIC; B: ACS
Δ101-

1100
:HA:GFP slides decorated with the anti-HA antibody at a dilution of 1/1000 in blocking buffer 

B, merged with DAPI; C: MitoTracker merged with DAPI; D: Merged. 
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Chapter 7 

General Discussion 

Often, classical biochemical and molecular biological techniques utilised in the 20th century 

focused around identifying and developing assays for purification of enzymes from cells and 

molecular approaches including degenerate PCR and genomic DNA or cDNA library screening 

to move from protein sequence to gene identification and cloning (Guengerich et al., 2010). 

However, with the development and advancements in next-generation sequencing 

techniques, complete (or near complete) genomes can be rapidly generated for a selected 

organism, and at relatively low-costs compared to the original Sanger sequencing methods. 

Subsequently, the sequencing of genomes from hundreds of eukaryotes and thousands of 

prokaryotes has revealed a plethora of novel gene products for each organism that are of 

unknown function (Lynch et al., 2014). The challenge then faced for a lot of these 

uncharacterised gene products is to attempt to uncover the function of a protein in vivo, 

often when an in vitro assay of function is not available (Hanson et al., 2010).  

The paralogous gene pair TbHP40 and TbHP30 are considered to be members of the histidine 

phosphatase super-family, based on the analysis of the amino acid sequence and the 

presence of a PGAM domain. Despite TbHP30 containing a degenerate crucial active site 

residue, there are still enough sequence similarities to consider it a histidine phosphatase. 

However, due to the massive diversities amongst known histidine phosphatase family 

members, in terms of function and substrate-specificity (Rigden, 2008), associations with this 

family this does not provide much further indication as to the function of TbHP40 and 

TbHP30 within T. brucei.  

In the data presented here, both TbHP40 and TbHP30 are shown to localise to the 

mitochondria in procyclic T. brucei. This provides the first indication that they may have an 

enzymatic function and be associated with a function or pathway within mitochondria. 

TbHP30 is also thought to be the degenerative paralogue of TbHP40, and it is not unheard of 

in trypanosome biology for a catalytically dead paralogue to assume a regulatory role in 

controlling the active copy of the enzyme. In examples reported thus far, the catalytically-

inactive paralogue is required to form a complex with the catalytically active copy, in order 

to produce a fully-active enzyme (Nguyen et al., 2013; Velez et al., 2013; Willert et al., 2007). 

The functional S-adenosylmethionine decarboxylase (AdoMetDC) gene in T. brucei codes for 

an essential enzyme involved in the polyamine biosynthesis pathway, the genome also 
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encodes a second AdoMetDC gene that is a paralogue named prozyme (Willert et al., 2007). 

Both AdoMetDC and prozyme were found to be expressed in procyclic and bloodstream 

form T. brucei by Northern blot analysis. The analysis of AdoMetDC showed it was stimulated 

by putrescine, but with low efficiency. However, upon the addition of prozyme, AdoMetDC 

activity increased 1200-fold and the complex formed between the two could be co-purified 

using a nickel agarose and anion-exchange chromatography. The two subunits could then be 

detected as a single peak on a Western blot at a 1:1 molar ratio (Willert et al., 2007). In 

humans, AdoMetDC functions as a homodimer which is regulated by putrescine, but the 

trypanosomatids have evolved this novel mechanism for regulation of AdoMetDC. By relying 

on the formation of a heterodimer of AdoMetDC with a catalytically inactive subunit 

prozyme, which arose due to a tandem duplication of the ancestral gene, activity of 

AdoMetDC can be regulated by expression levels of prozyme (Velez et al., 2013; Willert et al., 

2007). 

A further step in the polyamine biosynthesis pathway is also regulated using the same 

mechanism (Nguyen et al., 2013). The gene duplication of deoxyhypusine synthase (DHS) has 

resulted in a catalytically impaired copy and a catalytically inactive paralogue. The paralogue 

is required to oligomerise with the subunits capable of catalytic activity in order to form a 

fully functioning heterotetrameric enzyme. Both DHS copies were shown to be essential for 

T. brucei growth and infectivity in mice and could be co-purified as a stable heterotetramer 

consisting of a 2:2 ratio of active:inactive paralogous gene products (Nguyen et al., 2013). 

Based on these novel examples of enzyme regulation in T. brucei, it is therefore not 

unreasonable to hypothesise that the degenerate TbHP30 may have a regulatory role in 

controlling the function of TbHP40, in a similar mechanism to AdoMetDC and DHS. The 

homology surface modelling of TbHP40 revealed that the active site of TbHP40 is located 

within a relatively deep pocket. This could be indicative of the potential substrates that 

TbHP40 may be capable of acting upon; relatively small molecules are more likely to access 

the recessed active site, rather than large protein substrates which would encounter much 

more stearic hindrance. Unfortunately, since no significant sequence matches within PDB 

could be found for TbHP30, it was impossible to produce a reliable homology model for this 

protein. Dimerization of histidine phosphatase subunits in order to form active enzymes is 

not uncommon. For example, the TIGAR histidine phosphatase from Danio rerio (freshwater 

zebrafish), upon which TbHP40 was partially modelled, functions as a homodimer in vivo (Li 

and Jogl, 2009). The structure of zebrafish TIGAR was solved using x-ray crystallography and 

has the classic histidine phosphatase fold consisting of a central six-stranded mixed β-strand 
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core that is flanked either side by two α-helicies (Li and Jogl, 2009). The β5 strand of one 

TIGAR monomer interacts with the β5 strand of another to form a symmetrical homodimer 

(Li and Jogl, 2009). However, due to TbHP30 being unsuitable for homology modelling using 

the MOE software, it was subsequently unfeasible to attempt homology modelling of both 

TbHP40 and TbHP30 as a heterodimer. Due to this, the homology model presented in this 

thesis should be reviewed with a certain amount of caution. If TbHP40 and TbHP30 do 

interact as a heterodimer within cells, the binding of the two subunits could cause 

substantial conformational changes to the configuration of the active site region. It was 

perhaps just luck that TbHP40 was identified as the sequence to study from all of the 

identified kinetoplast orthologues. Attempts to model orthologues from a range of other 

organisms, including Leishmania major, Naegleria gruberi and Arabidopsis thaliana, were 

either unsuitable for homology modelling (as was the case with TbHP30) or produced 

unviable models, i.e. when surface modelling the active site, it was found that the ‘RHG’ triad 

was buried deep within the molecule, with no obvious access to potential substrates from 

the surface. 

Searching for proteins that potentially interact with TbHP40 provided the first evidence that 

TbHP40 and TbHP30 do interact with one-another within procyclic T. brucei.  It was 

surprising that only TbHP40 itself was biotinylated and identified in the mass spectrometry 

data from the BioID experiments, but this could be due to the presence of the large BirA* tag 

at the C-terminus of ectopically-expressed TbHP40. At 35 kDa in size, the addition of the 

BirA* tag could be causing stearic hindrance problems, especially if a TbHP30 subunit is 

required to form a heterodimer with TbHP40. Interestingly, the data from the co-

immunoprecipitation experiments, when analysed by mass spectrometry, identified both 

TbHP40 and TbHP30 as interacting partners, but no other candidate proteins. Both TbHP40 

and TbHP30 peptides were recovered from the mass spectrometry data with good sequence 

coverage from the N- and C- terminals for TbHP40, however, no sequence coverage to the N-

terminus of TbHP30 was found. This is consistent with the data from the proteomics studies 

of both bloodstream and procyclic T. brucei, all of which also recovered TbHP30 peptides 

(Fisk et al., 2013; Niemann et al., 2013; Panigrahi et al., 2009; Urbaniak et al., 2012; Urbaniak 

et al., 2013). None of these studies found any peptide evidence that corresponded with the 

long N-terminus of TbHP30. TbHP30 is predicted to have (a presumably cleaved) N-terminal 

mitochondrial import leader sequence. Yet in Western analyses, the protein detected is 

always close to the expected size that would correspond to the full length TbHP30 with the 

addition of a C-terminal tag. In regards to TbHP40, only one proteomic dataset, the one 
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undertaken by Niemann et al., (2013), reported peptides that corresponded to TbHP40 in 

procyclic T. brucei only. TbHP30 protein may be more abundant in the cell than TbHP40, in 

both the bloodstream and procyclic stages of the lifecycle. This in turn may suggest that 

TbHP40 is the limiting factor, and the expression levels of TbHP40 regulates how much 

‘active’ protein is available within a cell (‘active’ in the sense that TbHP40 and TbHP30 

subunits combine to form a functional heterodimer). On the other hand, it may just be that 

TbHP30 is a better substrate for trypsin digestion during the sample preparation, or that 

TbHP30-derived tryptic peptides ionise more readily in the mass spectrometer and thus, the 

protein is therefore easier to detect than TbHP40.  

The patchy distribution of candidate orthologues and homologues to TbHP40 and TbHP30 is 

unusual and intriguing. TbHP30 is exclusively found within the kinetoplastids, for which 

sequence data is available. Its presence in the free-living Bodo saltans indicates that this 

gene duplication arose before many lineages adapted to parasitism, but the retention of 

both copies in all of the parasitic lineages analysed suggests that both have a function within 

a cell, and this could be the first indication that they may be essential or at least serve an 

important function, if the generalisation that parasites streamline their metabolism is to be 

believed. The heterolobosean Naegleria gruberi was identified to contain two candidate 

orthologues to TbHP40, even though one of the predicted proteins identified lacked a start 

codon (gene models predicted for Naegleria are not always perfect (Fritz-Laylin et al., 2010)).  

It still had the ‘RHG’ catalytic triad. As previously mentioned, these orthologues were not 

suitable for homology modelling, but the published microarray dataset is available for N. 

gruberi, as it differentiates from the amoebal form to the flagellate form (Fritz-Laylin and 

Cande, 2010). Further analysis of the microarray dataset suggests both of these genes may 

be upregulated during differentiation, particularly the gene for which a start methionine is 

not predicted for the protein product (Figure 7.1).  

The attempts to knock-out TbHP40 and TbHP30 provide further indication that both genes 

are essential in procyclic T. brucei, since it proved so difficult to remove the TbHP40/TbHP30 

locus on the second allele. Even after introducing ectopically-expressed copies of both 

TbHP40 and TbHP30 on the minichromosomes of T. brucei, it still proved too difficult to 

produce a null mutant. However, both of these ectopically-expressed copies contained C-

terminal triple-myc tags, which like the BirA* tag, could in some way interfere with the way 

the TbHP40 and TbHP30 protein folds or potentially block interactions with  other potential 

partners in vivo, masking the true functions of the protein. In order to proceed with these 

experiments if time had permitted, the next step would be to use site-directed mutagenesis 
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to remove the C-terminal tags from the ectopically-expressed TbHP40 and TbHP30, and then 

attempt the second round knock-outs again with just native proteins being expressed. These 

potential problems with the myc tags may also provide an explanation for why no additional 

candidate interacting partners were identified in the co-immunoprecipitation experiments.  

If one is to consider how next to move forward in determining the function of TbHP40 and 

TbHP30, it is maybe worth reflecting on examples of proteins where function was initially 

elucidated in the absence of a functional assay. Members of the cytochrome P450 

superfamily utilise haem when oxidising a substrate, and at least 58 cytochrome P450 

enzymes have been identified in humans (Stark and Guengerich, 2007). Some cytochrome 

P450 enzymes can be very promiscuous with respect to the substrates that they will act 

upon and collectively, the range of physiological substrates that can be subjected to catalysis 

by the cytochrome P450 family is very broad. The function of the cytochrome P450 enzymes 

in fungi such as Claviceps purpurea and bacteria such as Streptomyces coelicolor were 

elucidated firstly by identifying sequence homology with the mammalian cytochrome P450 

enzymes and further characterised using gene knockouts and heterologous expression 

experiments (Haarmann et al., 2006; Zhao and Waterman, 2007), emphasising perhaps the 

relevance of the techniques I employed to try and work out the function of TbHP40 and 

TbHP30, albeit that their function still remains unclear.  

In other work, phylogenetic profiling showing the strict co-occurrence of frataxin with two 

other proteins indicated a role for frataxin, previously an enigmatic protein, in mitochondrial 

Fe-S cluster assembly (Huynen et al., 2001). In many organisms, including trypanosomes, 

frataxin is an essential component of the Fe-S cluster assembly machinery (Long et al., 

2008b). Recently, proteome microarray analyses have led to the identification of YcgC, an 

Escherichia coli protein, as a completely novel class of protein deacetylase. No clue to the 

function of this protein was evident from its amino acid sequence (Tu et al., 2015). Similarly, 

phylogenetic profiling was key to the identification of enzymes responsible for the synthesis 

of isopentenyl diphosphate via an alternative pathway to the classic mevalonate pathway 

found in many organisms, and which in humans is most classically associated with 

cholesterol biosynthesis (statins are powerful inhibitors of the rate-limiting step of the 

human mevalonate pathway) (Dellas et al., 2013). Thus, a range of techniques can be 

blended to work out the function of proteins first identified as part of genome sequencing 

projects. Given (i) the striking striking differences in the metabolic pathways active in 

bloodstream versus procyclic T. brucei mitochondria – relatively few of the classical 

mitochondrial pathways are believed to be active in bloodstream mitochondria (Bringaud et 
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al., 2006) – and (ii) the indication that TbHP40 and TbHP30 are expressed in bloodstream and 

procyclic mitochondria, if TbHP40 and TbHP30 take an intermediary metabolite as substrate 

then it may be possible to look through the inventory of metabolic pathways predicted to be 

active in the mitochondrion of bloodstream T. brucei and ask if any pathway is missing the 

identification of enzymes catalysing reactions known to be required for that pathway. If any 

such missing reaction is likely to be catalysed by a mutase or phosphatase, then TbHP40 and 

TbHP30 would be prime candidates for the missing enzyme(s). Alternatively, if TbHP40 

and/or TbHP30 dephosphorylate proteins, and thus act within a signalling network, then it is 

worth looking through (a) phosphoproteomic data published by Urbaniak, Zilberstein and 

others (Urbaniak et al., 2013; Zilberstein, 2015) to determine the extent to which known 

mitochondrial proteins are subject to phosphorylation and (b) published mitochondrial 

proteomes to assess the abundance and diversity of protein kinases and phosphatases that 

would form the basis of mitochondrial signalling networks. In Toxoplasma gondii, 

bioinformatics-led assembly of a secreted repertoire of protein kinases has been used to 

provide insight into the host-parasite interaction (Peixoto et al., 2010).  

The final chapter of my results provided experimental support for the mitochondrial 

localisation of FeFe-hydrogenase and other enzymes of anaerobic metabolism predicted 

from the N. gruberi genome. One might therefore suggest an additional class of 

mitochondrion to those proposed by Muller et al., (2012): the class VI mitochondrion 

capable of oxidative phosphorylation, anaerobic hydrogen production, and other anaerobic 

forms of ATP production (e.g. NO2
- respiration). However, perhaps the more pertinent 

question is whether the ubiquitous, if still little studied, protist N. gruberi is highly unusual 

with regard to its metabolic flexibility or if it merely represents a tip of an iceberg with 

respect to metabolic flexibility amongst free-living eukaryotic heterotrophs? Currently, 

amongst unicellular eukaryotes, genome sequencing efforts have been skewed towards 

organisms of biotechnological relevance or pathogens. Amongst the algae, genome 

annotations of Chlamydomonas reinhardtii and Cyanophora paradoxa have revealed 

extensive potential for anaerobic metabolism (Mus et al., 2007; Price et al., 2012). There are 

also a wide variety of endosymbiotic associations between protists that involve elaborate 

metabolic dependencies (Nowack and Melkonian, 2010) and examples of where protists 

such as the ciliate Histiobalantium natans sequester chloroplasts to sustain an oxidative 

metabolism within an anoxic environment (Esteban et al., 2009). Thus, there is every reason 

to believe that as the genome sequencing of an ever-broadening range of free-living 

eukaryotes is completed, more metabolically-flexible protists like Naegleria will be 
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discovered. Many eukaryotes remain unculturable and thus our appreciation of biological 

diversity in the protists is maybe incomplete. Recently, Subulatomonas tetraspora was 

identified as a member of a previously unrecognised major group of eukaryotes (Katz et al., 

2011), Tsukubamonas globosa was identified as a divergent member of the Discoba 

(Kamikawa et al., 2014; Yabuki et al., 2011), and the rappemonads were identified as an 

unculturable diverse group of plastid-bearing algae (Kim et al., 2011). These papers perhaps 

illustrate how much is yet to be learnt with regard to eukaryotic diversity. It will also be 

important to learn how N. gruberi makes use of its anaerobic metabolic potential, although 

this might not be straight forward as the genome sequenced strain of Naegleria has been 

laboratory entrained for over 50 years and currently no method for genetic transformation 

of Naegleria is available.  
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A. 

Figure 7.1. mRNA abundance of the candidate Naegleria gruberi HP40 orthologues.  
A-B. Microarray analysis suggests upregulation of the two identified TbHP40 candidate 

orthologues, referred to as ‘N.gruberi HP40-A’ (the sequence that lacks a start codon) and ‘N. 

gruberi HP40-B’ in amino acid sequence alignments in Chapter 3, as N. gruberi differentiates 

from the amoeba to the flagellate. X-axis, Time in minutes; Y-axis, Arbitrary units of expression. 

B. 

Figure 7.1  
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Chapter 8 

Appendices  

8.1 Appendix I - abbreviations from Figure 1.12 

AA, amino acid; AOB, amino oxobutyrate; 1,3BPGA, 1,3-bisphosphoglycerate; C, cytochrome 

c; Cit, citrate; CoASH, coenzyme A; DHAP, dihydroxyacetone phosphate; F-6-P, fructose 6-

phosphate; FBP, fructose 1,6-bisphosphate; G-3-P, glyc-eraldehyde 3-phosphate; G-6-P, 

glucose 6-phosphate; GLU, glutamate; Gly-3-P, glycerol 3-phosphate; IsoCit, isocitrate; 2Ket, 

2-ketoglutarate; OA, 2-oxoacid; Oxac, oxaloacetate; PEP, phosphoenolpyruvate; 3-PGA, 3-

phosphoglycerate; Pi, inorganic phosphate; PPi, inorganic pyrophosphate; SAG, glutamate -

semialdehyde; SucCoA, succinyl-CoA; T[SH]2, reduced form of trypanothione; UQ, 

ubiquinone pool. Enzymes are: 1, hexokinase; 2, glucose-6-phosphate isomerase; 3, 

phosphofructokinase; 4, aldolase; 5, triose-phosphate isomerase; 6, glycerol-3-phosphate 

dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde-3-phosphate dehydrogenase; 9, 

glycosomal phosphoglycerate kinase; 10, cytosolic phosphoglycerate kinase; 11, 

phosphoglycerate mutase; 12, enolase; 13, pyruvate kinase; 14, phosphoenolpyruvate 

carboxykinase; 15, pyruvate phosphate dikinase; 16, glycosomal malate dehydrogenase; 17, 

cytosolic (and glycosomal) fumarase (FHc); 18, glycosomal NADH-dependent fumarate 

reductase; 19, mitochondrial fumarase (FHm); 20, mitochondrial NADH-dependent fumarate 

reductase; 21, glycosomal adenylate kinase; 22, malic enzyme; 23, unknown enzyme; 24, 

alanine aminotransferase; 25, pyruvate dehydrogenase complex; 26, acetate:succinate 
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Figure B.1. The pGEM®-T Easy Vector map used for routine cloning. Reproduced from the 
Promega Technical Manual - pGEM®-T and pGEM®-T Easy Vector Systems.  

Figure B.1  

8.2 Appendix II – restriction maps for plasmids used in this study 
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Figure B.2. The pET-28a vector map and a detailed map of the cloning/expression region, 
highlighting the presence of the His•Tag. Reproduced from Novagen pET-28a-c(+) Vectors 
data sheet. 

Figure B.2  
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  A. 

B. 

Figure B.3  

Figure B.3. The pDex-based vector maps. Reproduced from the Wickstead lab. Website: 
http://www.wicksteadlab.co.uk/vectors.shtml  
A. The pDex 377 vector map, as described by Kelly et al. (2007). 
B. The pDex477-Y2 vector map, as by Kelly et al. (2007). This vector was kindly provided by 
Bill Wickstead (University of Nottingham).  

http://www.wicksteadlab.co.uk/vectors.shtml
http://www.wicksteadlab.co.uk/vectors.shtml
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Figure B.4. The pLEW100v5b1d-HYG vector map. In the TbHP40::myc::BirA* cell line, the full 
length coding sequence for TbHP40 replaced the luciferase gene. Reproduced from the Cross 
lab. This vector was kindly provided by Brooke Morriswood (University of Wuerzburg). 

Figure B.4 
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