Electronic Supplementary Information

Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL

Diane E. Halliwell,^a Camilo L. M. Morais,^b Kássio M. G. Lima,^b Júlio Trevisan,^c Michele R. F. Siggel-King,^{de} Tim Craig,^d James Ingham,^d David S. Martin,^d Kelly A. Heys,^a Maria Kyrgiou,^{f,g} Anita Mitra,^{f,g} Evangelos Paraskevaidis,^h Georgios Theophilou,ⁱ Pierre L. Martin-Hirsch,^{aj} Antonio Cricenti,^k Marco Luce,^k Peter Weightman,^d and Francis L. Martin^{a,1}

^aCentre for Biophotonics, LEC, Lancaster University, Lancaster, UK; ^bBiological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil; ^cInstitute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Brazil; ^dDepartment of Physics, University of Liverpool, Oliver Lodge Building, Liverpool, UK; ^eAccelerator Science and Technology Centre (ASTEC), STFC Daresbury Laboratory, UK; ^fInstitute of Reproductive and Developmental Biology, Department of Surgery & Cancer, Faculty of Medicine, Imperial College, London, UK; ^gWest London Gynaecological Cancer Centre, Imperial College NHS Healthcare, London, UK; ^hDepartment of Obstetrics and Gynaecology, University of Ioannina, Ioannina, Greece; ⁱSt James Hospital, Leeds, West Yorkshire, UK; ^jDepartment of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Trust Foundation, Preston, UK; ^kIstituto di Struttura della Materia, CNR, via del Fosso del Cavaliere 100, Rome, Italy; ⁱSchool of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK

Number of Pages = 13 Number of Figures = 11

Figure S1. SNOM-IR-FEL images of normal cells: (a) topography; **transmission images: (b)** Amide I; (c) Amide II; (d) Lipids; and, (e) DNA. The colour scale bar arrow in (b) applies to (b-e) and indicates increasing biomarker absorption. SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free electron laser.

Figure S2. **SNOM-IR-FEL images of low-grade dyskaryosis:** (**a**) topography; **transmission images:** (**b**) Amide I; (**c**) Amide II; (**d**) Lipids; and, (**e**) DNA. The colour scale bar arrow in (**b**) applies to (**b-e**) and indicates increasing biomarker absorption. SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free electron laser.

The SNOM-IR-FEL images and associated topography of the pre-invasive lesion (CIN2, HGCGIN) are presented in the main body of the text (see Figure 6).

Figure S4. SNOM-IR-FEL images of adenocarcinoma Stage 1B1: (a) topography; transmission images:
(b) Amide I (imaged from different site to topography shown here); (c) Amide II; and, (d) Lipids. (e)
Topography of cells from a second area; and, (f) the corresponding SNOM transmission image for the DNA
biomarker. The colour scale bar arrow in (b) applies to (b-d, f) and indicates increasing biomarker absorption.
SNOM-IR-FEL: Scanning near-field optical microscopy coupled to an infrared-free electron laser.

Figure S5. Transmission SNOM-IR-FEL: Hotelling T^2 versus Q Residuals graphs for the type of cells according to each biomarker response: (a) Amide I; (b) Amide II; (c) Lipids; and, (d) DNA. All 5 samples fell within the 95% confidence limits (blue dotted line), and shows there were no outliers. The score for Hotelling T^2 ranged from 96.51% to 97.56%; whilst the score for Q residuals ranged from 2.44% and 3.49%. CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free electron laser.

Figure S6. Transmission SNOM-IR-FEL: Validation of the PCA model using Q Residuals to measure variation outside the PCA model for each sample according each biomarker response: (**a**) Amide I; (**b**) Amide II; (**c**) Lipids; and, (**d**) DNA. The optimal score for Q Residuals is 0% and here ranged from 2.44% to 3.49%. All 5 samples fell within the 95% confidence limits (blue dotted line), shows there were no outliers and that the data fits the model well. CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free electron laser.

Figure S7. Transmission SNOM-IR-FEL: Validation of the PCA model using Hotelling T^2 to measure variation within the PCA model for each sample according each biomarker response: (a) Amide I; (b) Amide II; (c) Lipids; and, (d) DNA. The optimal score for Hotelling T^2 is 100% and here ranged from 96.51% to 97.56%. All 5 samples fell within the 95% confidence limits (blue dotted line), shows there were no outliers and that the data fits the model well. CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free electron laser.

Figure S8: ATR-FTIR spectroscopy: Average infrared spectra of cell types.

ATR-FTIR spectroscopy: Attenuated total reflection Fourier-transform infrared spectroscopy; CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia.

Figure S9. **ATR-FTIR spectroscopy:** Scores plot of 1st and 2nd principal components at a 95% confidence level. ATR-FTIR spectroscopy: Attenuated total reflection Fourier-transform infrared spectroscopy; CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; principal components.

Figure S10. AFM imaging of adenocarcinoma Stage 1B1: (a) Optical image (×10 magnification) identifying cells for investigation by AFM; and, (b) AFM topography image of two intermediate glandular cells [area 2 in (a)], the lower cell has two nuclei. The cells exhibit a long axis of ~75 μ m. The cell thickness was measured at ~200 nm, whereas the nuclei protruded ~1 μ m in height from the substrate. (c) AFM topography; and, (d) deflection image of a cell identified [area 1 in (a)] as having a single enlarged nucleus separated from the rest of the cell by a halo. AFM: atomic force microscopy.

Figure S11. The computational steps taken in processing the data.