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Improved bounds on the decoding failure probability of

network coding over multi-source multi-relay networks
Amjad Saeed Khan and Ioannis Chatzigeorgiou

Abstract—This letter considers a multi-source multi-relay net-
work, in which relay nodes employ a coding scheme based on
random linear network coding on source packets and generate
coded packets. If a destination node collects enough coded
packets, it can recover the packets of all source nodes. The links
between source-to-relay nodes and relay-to-destination nodes are
modeled as packet erasure channels. Improved bounds on the
probability of decoding failure are presented, which are markedly
close to simulation results and notably better than previous
bounds. Examples demonstrate the tightness and usefulness of
the new bounds over the old bounds.

Index Terms—Network coding, sparse random matrices, prob-
ability of decoding failure, linear dependence.

I. INTRODUCTION

The exploitation of cooperative diversity and the inclusion
of network coding in multi-source multi-relay networks, in
order to achieve excellent performance and high diversity
gain, has attracted the interest of the research community.
For example, it has been demonstrated in [1] that the use
of network coding combined with cooperative diversity not
only increase network reliability but also improve network
throughput. Moreover, it has been shown in [2] and [3] that
they can be significantly useful for wireless networks with
disruptive channel and connectivity conditions.

This letter considers linear network coding over a multi-
source multi-relay network, where N source nodes are sup-
ported by M relay nodes for the delivery of packets over
packet erasure channels. To the best of our knowledge, an
exact expression for the probability of decoding failure at a
destination is not available but an effort has been made in [4],
in which the author derives upper and lower bounds. However,
the bounds presented in [4] are tight only for a certain range
of parameters, including erasure probabilities, the values of
N , M and the size of the finite field. As shown in Section V
of this letter, the existing upper bound is poor for a large
number of source nodes and for large finite fields. Moreover,
the existing lower bound is independent of the field size and
is loose for small finite fields and low erasure probabilities.

The motivation for this work is to derive improved bounds
on the probability of decoding failure. To this end, the main
contributions of this letter can be summarized as follows: (i)
we have reformulated the problem statement in order to asso-
ciate the probability of decoding failure with the probability
of attaining singular sparse random matrices, and (ii) we have
revisited the expressions for upper and lower bounds in [4]
and obtained alternative expressions, which are better than the
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previous bounds for any field size and any value of N and
M . Furthermore, the proposed lower bound incorporates the
effect of the field size in contrast to the previous lower bound.

II. SYSTEM MODEL

We consider a system with N source nodes and M relay
nodes, {S1,S2, . . . ,SN} and {R1,R2, . . . ,RM}, respectively,
as shown in Fig. 1, where M ≥ N . Each source node Si has a
packet xi to transmit to a destination D via M relay nodes. No
source-to-destination links are assumed. The links connecting
source-to-relay and relay-to-destination nodes are modeled as
independent packet erasure channels characterized by erasure
probability εSR and εRD, respectively.

The communication process is split into two phases. In the
first phase, all the source nodes transmit their information
packets simultaneously to the relay nodes over orthogonal
broadcast channels. In the second phase, each relay node
generates a coded packet by randomly combining the suc-
cessfully received packets from the N source nodes. The M
coded packets are then forwarded to the destination D over
orthogonal channels. The coded packet yi, which is transmitted
by the ith relay node, can be expressed as yi =

∑N
j=1 ci,jxj ,

where ci,j is a coding coefficient selected independently at
random over a finite field Fq of size q. Because of the link
condition εSR between the source node Sj and the relay node
Ri, each relay node receives packets from different source
nodes. In contrast to [5] where coding coefficients are chosen
uniformly at random, our system model imposes that the zero
coefficient is assigned to erased packets and the remaining
q − 1 non-zero coefficients are selected uniformly at random
by each relay for successfully received packets. Consequently,
the coding coefficient distribution is given by

P [ci,j = t] =


εSR, if t = 0

1− εSR
q − 1

, if t ∈ Fq \ {0}
(1)

where 0 ≤ εSR ≤ 1. For a given relay node i, the sequence
ci,1, . . . , ci,N forms a row vector, which is known as the
coding vector of the coded packet yi. As is commonly assumed
in network coding [6], coding vectors are transmitted along
with the corresponding coded packets. When the destination
D receives N linearly independent coded packets, the packets
of all source nodes can be recovered. Transmission of source
packets over erasure channels and random linear coding at
relay nodes is analogous to sparse random linear Network
Coding (NC), which uses sparse random matrices [7], [8].
Based on the work of Blömer [7] and Cooper [8], this paper
derives improved upper and lower bounds on the probability
that the destination will fail to recover the source packets.
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Figure 1. A network consisting of N source nodes, M ≥ N relay nodes
and a destination D. The packet erasure probability of a source-to-relay link
and a relay-to-destination link is represented by εSR and εRD, respectively.

III. PRELIMINARY RESULTS AND FORMER BOUNDS ON
THE PROBABILITY OF DECODING FAILURE

Consider a matrix A ∈ FM×N
q , whose elements are the

coding coefficients ci,j such that the ith row of A represents
the coding vector associated with the ith coded packet received
by the destination D. The destination can recover the packets
of the N source nodes if and only if rank(A) = N . Thus,
the decoding failure probability at the destination D can be
defined as Pfail :=Pr{rank(A)<N}. It is related to the linear
dependence of the vectors of matrix A and is defined as:

Definition 1. The vectors of matrix A ∈ FM×N
q are said to be

linearly dependent if and only if there exists a column vector
x ∈ FN×1

q \{0} such that

Ax = 0. (2)

When there is no packet loss between the relay-to-
destination channels, i.e., εRD = 0, the probability that the
elements of the ith row of matrix A add up to zero, i.e.,
ci,1 + ci,2 + . . .+ ci,N = 0, is given by [7]

γN = q−1 + (1− q−1)(1− 1− εSR
1− q−1

)N . (3)

Taking into account that matrix A consists of M rows, the
probability Pr(Ax = 0) can be obtained as

Pr(Ax = 0) = γMN =
(
q−1 + (1− q−1)(1− 1− εSR

1− q−1
)N
)M

. (4)

The expected number of decoding failures at the destination D
is given by the following theorem, which is a straightforward
adaptation of [7, Theorem 3.3], [8, Theorem 3] to the system
model under consideration.

Theorem 1. For a linear network coding scheme over N
source nodes, M ≥ N relay nodes and a single or multiple
destinations, which are interconnected by links characterized
by packet erasure probabilities 0 ≤ εSR ≤ 1 and εRD = 0, the
expectation of the decoding failures can be obtained as

µ0(N,M)=E(Ax = 0)=
1

q − 1

N∑
w=1

(
N

w

)
(q − 1)wγMw (5)

where A ∈ FM×N
q is the coding matrix at a destination.

Following the same line of reasoning, a direct extension
of (5) for εRD ≥ 0 has been made in [4, Theorem 1] and was
used to upper bound the probability of decoding failure.

Corollary 1. The probability of decoding failure at a destina-
tion is bounded from above as:

Pfail ≤
1

q − 1

N∑
w=1

(
N

w

)
(q − 1)w

[
εRD + (1− εRD)γw

]M
(6)

where N is the number of source nodes, M ≥ N is the
number of relay nodes and εSR, εRD represent the packet
erasure probabilities between the network nodes.

However, (6) is only tight for limited values of erasures εSR
and εRD, depending on N , M and q. In particular, the upper
bound takes values greater than 1 when either the field size
is big or the difference between the number of source and
relay nodes is small. This disparity between the probability
of decoding failure and the upper bound will be demonstrated
in Section V. In an effort to improve the tightness of (6),
Seong et al. proposed the selection of the minimum value
between the upper bound in (6) and 1 [9]. A lower bound on
the probability of decoding failure has also been obtained by
Seong in [4, Theorem 2]:

Theorem 2. Consider a network comprising N source nodes
and M ≥ N relay nodes, assume that links are modeled
as packet erasure channels with erasure probabilities εSR
and εRD, and let A ∈ FM×N

q be the coding matrix at a
destination node. The probability of decoding failure Pfail is
lower bounded by

Pfail ≥
N∑

k=1

(
N

k

)(
(εSR + εRD − εSRεRD)

M
)k

× (1− (εSR + εRD − εSRεRD)
M )N−k.

(7)

The bounds in (6) and (7) are used in [9] and [10]. For
example, (6) is employed in [10] to evaluate the performance
gains introduced by linear NC in a practical network architec-
ture for emergency communications. However, the following
section will derive new bounds, which are considerably tighter
than the previous bounds and can significantly improve the
quality and accuracy of results presented in the literature.

IV. IMPROVED BOUNDS ON THE PROBABILITY OF
DECODING FAILURE

A. Upper Bound

For εRD = 0, an upper bound on the decoding failure
probability can be obtained by extending and adapting [7,
Theorem 6.3] as follows:

Lemma 1. Let A ∈ FM×N
q be the coding matrix at a

destination node of a network consisting of N source nodes
and M relay nodes. If the internode erasure probabilities are
0 ≤ εSR ≤ 1 and εRD = 0, the probability of decoding failure
is upper bounded by

ηmax(N,M) = 1−
N∏
i=1

(1− βM−i+1
max ) (8)

where βmax = max(εSR,
1− εSR
q − 1

).
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Proof: Let us assume that the first i − 1 columns of
A, denoted by A1,A2, . . . ,Ai−1, are linearly independent.
This implies that by using elementary column operations,
matrix A can be transformed into a matrix that contains an
(i− 1)× (i− 1) identity matrix. Without loss of generality,
let us assume that the first i−1 rows form the identity matrix.
The columns of this matrix represent the basis for the vector
space spanned by A1,A2, . . . ,Ai−1. Therefore, the probabil-
ity that Ai is linearly independent from A1,A2, . . . ,Ai−1

depends only on the last M − i+1 elements of Ai. This
probability is lower bounded by 1 − βM−i+1

max , where βmax

specifies the maximum probability of obtaining an element
from Fq . Hence, matrix A contains an N × N non-singular
matrix with probability at least

∏N
i=1(1− βM−i+1

max ). As a result,
the probability that matrix A does not contain an invertible
matrix and, consequently, a decoding failure will occur is
upper bounded by subtracting this product from one, which
completes the proof.

Lemma 1 will be used to obtain a tighter upper bound on
Pfail. Before we invoke it, we shall first revisit (6) and rewrite
it as:

Pfail ≤
M∑
r=0

(
M

r

)
εM−r
RD (1− εRD)

rµ0(N, r). (9)

This change is possible if [εRD+(1−εRD)γw ]M is expanded
into a sum, as per the binomial theorem.

Theorem 3. For a network coding scheme over multi-source
multi-relay networks, composed of N source nodes and M
relay nodes with packet erasures εSR and εRD, the probability
of decoding failure is upper bounded by

Pfail≤
M∑
r=0

(
M

r

)
εM−r
RD (1− εRD)

rmin{ηmax(N, r), µ0(N, r)}. (10)

Proof: As inferred from (9), the number of packet de-
liveries by the relays follows the binomial distribution. If we
employ Theorem 1 and Lemma 1 on the number of received
coded packets r, a tight upper bound can be obtained by taking
the minimum of outcomes and multiply with the probability
distribution of r. Summing the resultant quantity gives (10),
which concludes the proof.

Remark. It is worth noting that the upper bound is not simply
the minimum between two cumulative probability distributions
(CDFs), that is, the right-hand of (6) and the CDF of (8) for
all possible numbers of relay nodes. Instead, the right hand
of (6) has been rewritten in the form of (9), which enabled
us to identify the minimum between µ0 and ηmax for each
possible number of relay nodes, and use it in the computation
of the CDF shown in (9).

B. Lower Bound

The bound that was derived in [7, Theorem 6.3] was
extended to an upper bound on the probability that an M ×N
matrix A does not contain an invertible N × N matrix in
Lemma 1. The same approach can be followed to obtain a
lower bound as follows:

Lemma 2. Let A ∈ FM×N
q be the coding matrix at a

destination of a network consisting of N source nodes and
M relay nodes. If the internode erasure probabilities are
0 ≤ εSR ≤ 1 and εRD = 0, the probability of decoding failure
is lower bounded by

ηmin(N,M) = 1−
N∏
i=1

(1− βM−i+1
min ) (11)

where βmin = min(εSR,
1− εSR
q − 1

).

Proof: The proof follows exactly the same line of rea-
soning as that of Lemma 1.

An improved lower bound on Pfail can be obtained if the
right-hand side of (8) is denoted by P0(N,M) for εRD = 0,
that is

P0(N,M) =

N∑
k=1

(
N

k

)
(εMSR)

k(1− εMSR)N−k (12)

and then combined with (11) in Lemma 2. In particular:

Theorem 4. For a linear network coding scheme over N
source nodes and M ≥ N relay nodes, let εSR and εRD be
the packet erasure probabilities of the internode links. The
probability of decoding failure is lower bounded by

Pfail≥
M∑
r=0

(
M

r

)
εM−r
RD (1− εRD)

rmax{ηmin(N, r), P0(N, r)}. (13)

Proof: In contrast to Theorem 3, here we employ
Lemma 2 and (12) on the number of received coded packets
r, and we select the maximum of outcomes. The rest of the
proof follows the same reasoning as that presented in the proof
of Theorem 3.

V. RESULTS

This section compares the analytical expressions of the pro-
posed bounds to simulation results. In addition, the proposed
upper bound and lower bound, which shall be referred to as
UB-new and LB-new, are contrasted with the old bounds rep-
resented by (6) and (7), which shall be referred to as UB-old
and LB-old. To obtain simulation results, each scenario was
run over 104 realizations, failures by the destination to recover
the packets of all source nodes were counted, and the decoding
failure probability was measured.

Fig. 2 shows numerical results of the upper bounds ob-
tained from (6) and (10) and labeled UB-old and UB-new,
respectively. We observe that, in contrast to UB-old, UB-new
is significantly tighter to the simulated performance. When
the number of source nodes and the number of relay nodes
increase to N = 30 and M = 35, respectively, it can be clearly
seen that the UB-old curve moves far away from the simulated
curve but the proposed UB-new expression still provides a
tight bound. This reveals the fact that UB-old produces a worse
approximation error for large values of N .

Fig. 3 evaluates the probability of decoding failure for
q = {4, 64}, and contrasts the proposed bounds (UB-new and
LB-new) with the old bounds (UB-old and LB-old). The figure
demonstrates that for εSR ∈ [0.1, 0.7], the network experiences
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Figure 2. Comparison between simulation results and the theoretical upper
bounds obtained from (6) and (10) for different values of N and M , when
q = 2, εRD = 0.1 and εSR ∈ [0.1, 0.9].
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Figure 3. Effect of field size q on network performance and comparison
between the proposed bounds and the old bounds for εSR ∈ [0.1, 0.9], when
N = 20, M = 25 and εRD = 0.1.

only a small probability of decoding failure. Furthermore,
the figure shows that UB-new and LB-new are very close
to the simulated performance and outperform UB-old and
LB-old, respectively. In particular, when q = 64, UB-old and
LB-old are markedly loose while UB-new and LB-new are
very tight to the actual simulation results. The performance of
the network deteriorates for values of εSR greater than 0.75.
Moreover it is interesting to notice that, for large values of q,
the upper bounds deviate from the simulation results and the
simulations can be better approximated by the lower bounds.

Figs. 4 and 5 plot the probability of decoding failure versus
the number of relays M with N =10 and q= {2, 4}. It is
evident that the probability of decoding failure decreases with
an increasing number of relays and field size. The figures also
demonstrate that, when M < 2N , UB-new and LB-new are
close to the simulated outcomes, compared to UB-old and
LB-old, respectively. It follows from (7) that LB-old depends
only on the erasures εSR and εRD, and does not depend on the
field size q, thus shows no improvement for q = 4. However,
LB-new approaches the simulation results, when q increases
to 4. For example in Fig. 5, when q = 4 and M ≤ 14, both
UB-new and LB-new are very tight, while UB-old and LB-old
are noticeably far from the simulated performance.

VI. CONCLUSIONS

We presented improved upper and lower bounds on the
probability of decoding failure in a multi-source multi-relay
network, which employs linear network coding. The proposed
analysis for counting failures provided significantly tighter
bounds, which outperform existing bounds, derived in [4].
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Figure 4. Performance of the network for an increasing number of relays
M . The proposed bounds and the old bounds have been plotted for N = 10,
εSR = 0.7, εRD = 0.2 and different values of field size q.
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Figure 5. Network performance and comparison between the proposed
bounds and the old bounds for N = 10, an increasing number of relays
M , εSR = 0.3, εRD = 0.1 and different field size q.

Several examples, which considered various numbers of source
nodes and relay nodes, different field sizes and a range of
erasure probabilities, established the shortcomings of the ex-
isting bounds and demonstrated the tightness of the proposed
improved bounds. Finally, we assert that the proposed bounds
can also be used to better estimate the performance of systems
employing sparse random linear network coding schemes,
presented in the literature.
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