
0 
 

Series Estimation of Functional-Coefficient Partially Linear Regression 

Model 

 

 
Kien C. Tran* 

Department of Economics 

University of Lethbridge 

4401 University Drive W 

Lethbridge, Alberta 

T1K 3M4 CANADA 

 

and 

 

Efthymios G. Tsionas 

Department of Economics 

Lancaster University Management School 

LA1 4YX U.K.   

 

 

 

Abstract 

 

This paper develops an alternative and complement estimation procedure for functional 

coefficient partially linear regression (FCPLR) model based on series method. We derive the 

convergence rates and asymptotic normality of the proposed estimator. We examine its finite 

sample performance and compare it with the two-step local linear estimator via a small scale 

Monte Carlo simulation.  

 

 

 

 

 

 

Keywords: Functional-coefficient, Series approximation, Convergence rate, Asymptotic 

normality. 

 

________ 
* Corresponding Author. Emails: kien.tran@uleth.ca and tsionas@otenet.gr. Part of this paper was written while the 

first author was visiting the Department of Economics, Athens University of Economics and Business, Athens and 

The University of Macedonia, Thessaloniki, Greece. We are grateful to Bruce Hansen and an anonymous referee for 

constructive comments and suggestions that led to substantial improvement of the paper. All the remaining errors 

are our own responsibilities.    

mailto:kien.tran@uleth.ca
mailto:tsionas@otenet.gr


1 
 

1. Introduction 

 

Functional coefficient models have increasingly become more popular in applied research for 

various disciplines including among others, economics and finance due to their flexibility and 

interpretability. For an excellent overview on the methodological and theoretical development on 

the functional coefficient models, see for example Fan and Zhang (2008). 

 Despite their popularity, most of the work thus far has focused mainly on assumption that 

the coefficient functions have the same smoothing variables, albeit various degree of smoothness 

is allowed. In practice, this can be a restrictive assumption. To relax this assumption, recently, 

Wong et al. (2008) extend the functional coefficient models to allow for the functional 

coefficient functions to depend on different smoothing variables. Their model which they called 

functional coefficient partially linear regression (FCPLR) model which can be written as: 

 

 '( ) ( ) , 1, , ,
i i i i i
y u x z e i n   (1) 

 

where 
i
y  is the dependent variable, d

i
x  is a vector of explanatory variables excluding 

constant term, p

i
u  and q

i
z  are vectors of covariates assumed to be exogenous, 

i
e  is a 

random error assumed to be i.i.d. with zero mean and variance 2 ; (.)  and (.)  are some 

measurable (unknown) functions. For identification purpose, it is assumed that the elements in u   

are not contained in x  and z . It is clear from (1) that it includes other interesting models as 

special cases. When '( )u u , it reduces to the partially linear varying coefficient model, and 

when (.) 0, 1, ,
j

j d , it becomes the nonparametric regression model. Model (1) also 

includes the partial linear regression model when (.)
j j

, for all j  and additive model when 

all 1
j
x .  Finally, if we let ' '(1, )

i i
X x , ' '( , ) ( ( ), ( ) )

i i i i
u z u z  and rewrite model (1) as 

' ( , )
i i i i i
y X u z e  then model (1) can be viewed as a generalization of the varying coefficient 

model by allowing for different covariates in different coefficient functions. Thus, model (1) 

generalizes the varying coefficient models to allow for even greater flexibility and 

interpretability. 

To estimate the unknown coefficient functions, Wong et al. (2008) propose to use two-step 

local linear fitting kernel based approach coupled with one-step back-fitting algorithm. They also 
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derive the asymptotic properties for their estimator. However, albeit local linear estimator is 

known to possess desirable properties, their estimation procedure involves two-step procedure 

where in each step, different bandwidths are used and in addition, certain restrictions need to be 

imposed on the bandwidths between the two-step algorithms. Consequently, this make their 

estimation procedure more complicated. 

Alternatively, one can estimate the unknown functions in model (1) using general series 

method such as spline or power series, which requires only a single step estimation (see for 

example, Newey (1997) and Ahmad et al. (2005)), and this is the approach taken in this paper. 

The series method is known to be particularly suitable than kernel methods under certain type of 

restrictions, such as additive separability and varying coefficient structures, and it is also 

computational simpler because the results can be displayed by relatively few coefficients. Newey 

(1997) proposed a general series estimation approach for general nonparametric regression 

whilst Ahmad et al. (2005) proposed a series estimation procedure for a partially linear varying 

coefficient model in which '( )u u  in model (1).  

The main contribution of this paper is of two folds. First, we consider series estimation 

procedure as an alternative and complement approach to the kernel smoothing technique to 

estimate the unknown functions in (1). Our estimation procedure is similar in spirit as Ahmad et 

al. (2005). In addition, we show that, via Monte Carlo simulation, the finite sample performance 

of the series estimator is as good as the two-step local linear kernel based estimator and it is 

simpler to compute.  Second, we provide a synthesis on the asymptotic properties of the series 

estimator obtained in Newey (1997) and Ahmad et al. (2005). 

The paper is organized as follows. Section 2 introduces the series estimation approach and 

develops the asymptotic properties of the proposed estimator. Section 3 reports some Monte 

Carlo simulation results. Section 4 concludes the paper. The proofs of the theorems are gathered 

in the appendix. 

 

2. Series Estimation  

 

 To simplify the discussion and for exposition purposes, we confine our attention to the case 

in which u  and z  are one-dimensional. Extension to the multivariate u  and z  is straightforward 

and involves no fundamentally new ideas. However, implementation with both  u  and z  having 

more than two dimensions may have difficulty due to the curse of dimensionality. 



3 
 

 Let 
1

{ , , , }n
i i i i i
y u x z  be an i.i.d. random sample from (1). Note that extension of our 

estimation method to dependent time series data is more complicated and beyond the scope of 

the paper, and hence we will not consider it here. With the series estimation method, we 

approximate unknown coefficient function (.)  by some linear combination of L  known base 

functions { }Lp  such that '( ) ( )Lu p u  where '

1
( ) [ ( ), , ( )]L

L
p u p u p u  is a ( 1)L  vector of 

base functions and '

1
( , , )

L
 is a ( 1)L  vector of unknown parameters. Similarly, for 

1, ,j d , we approximate the unknown coefficient functions (.)
j

 by 
'( )j jk k

j j
q z , a linear 

combination of 
j
k  base functions, where 

'

1
( ) [ ( ), , ( )]j

j

k

j j jk
q z q z q z  is a ( 1)

j
k  vector of the 

base function and 
'

1
( , , )j

j

k

j j jk
 is a ( 1)

j
k  vector of unknown parameters. The 

approximating functions ( )Lp u  and ( )jk

j
q z  have the property that, as L  and 

j
k  grow, there are 

linear combinations of ( )Lp u  and ( )jk

j
q z  that can approximate respectively, any smooth function 

( )u  and ( )
j
z  arbitrarily well in mean square errors.  

Define 
1

d

jj
K k , following Ahmad et al. (2005), we use a linear combination of K  

functions, '( , )K

i i
q x z  to approximate ' ( )

i i
x z  where 1 ' ' '

1 1
( , ) [ ( ), , ( ) ]dk kK

i i i i id d i
q x z x q z x q z  and 

1 ' ' '

1
( , , )dk k

d
 are ( 1)K  matrices. For convenient, we now introduce some matrix 

notations. We define ( 1)n  vector  '

1
( , , )

n
Y y y ,   an ( 1)n  vector '

1
( , , )

n
, an 

( )n L  matrix '

1
( ( ), , ( ))L L

n
P p u p u , an ( )n K  matrix '

1 1
( ( , ), , ( , ))K K

n n
Q q x z q x z , 

' ' '

1 1
( ( ), , ( ))

n n
G x z x z , and '

1
( ( ), , ( ))

n
u u ,  then (1) can be rewritten as 

 

 ,Y P Q   (2) 

 

where   { } { }e P G Q . Let ˆ  and ˆ  denote the least squares estimator of  

and , respectively, obtaining by regressing  Y  on ( , )P Q . By using the standard argument of 

partitioned regressions, the estimators  ˆ  and ˆ  are given by 
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 ' 'ˆ ( ) ,
L Q Q

PM P PM Y   (3) 

 ' 'ˆ ( ) ,
K P P

QM Q QM Y   (4) 

 

where (.)  denotes generalized inverse and we use the subscripts L  and K  to denote that these 

estimators are dependent of the number of approximating functions; ' '( )
Q n
M I Q QQ Q  and 

' '( )
P n
M I P PP P . However, under the conditions given below, both '( )QQ  and '( )PP  

will be asymptotically nonsingular matrices, hence the generalized inverses will be standard 

inverses for large n . Consequently, the estimators of (.)  and (.)
j

 can be obtained, 

respectively as ˆ ˆ( ) ( )
L

u P u  and 'ˆ ˆ( ) ( ) , 1, , .j jk k

j j j
z q z j d   

Now we derive the convergence rates as well as the asymptotic normality of the proposed series 

estimators. To do this, we first define the following. 

A function ( , , )f u x z  is said to belong to the functional coefficient partially linear class of 

functions ( )f  if 
1

( , , ) ( ) ( )
d

j jj
f u x z u x z  for some continuous functions ( )u  and 

( )
j
z ; 2[ ( ) ]E u ,  2 2

1
[ ( ) ]

d

j jj
E x z  and (0) 0 . Then, for any scalar or vector 

function ( , , )h u x z , we use the notation [ ( , , )]E h u x z  to denote the projection of ( , , )h u x z  onto 

additive functional coefficient functional space  (under 
2
L -norm). Let 

( , , ) ( , , ) [ ( , , )]u x z h u x z E h u x z  , then it follows that 

 
' '{ ( , , ) ( , , )} inf {[ ( , , ) ( , , )][ ( , , ) ( , , )]},

f
E u x z u x z E h u x z f u x z h u x z f u x z  

 

where infimum is in the sense that 

 
' '{ ( , , ) ( , , )} {[ ( , , ) ( , , )][ ( , , ) ( , , )]},E u x z u x z E h u x z f u x z h u x z f u x z  

 

for all f and for square matrices A  and B , A B  indicates that A B  is negative 

semidefinite.  



5 
 

 Let  denote the ( ) ( )L K L K  variance-covariance matrix of ' ' '( ( ), ( , ) )L K

i i i
p u q x z  

whose smallest eigenvalue is bounded above zero, and the largest eigenvalue is bounded for 

every L  and K , that is '{[ ( ), ( , )][( ( ), ( , )]}L K L K

i i i i i i
E p u q x z p u q x z . The matrix  can be 

decomposed as  

 

,pp pq

qp qq

 

 

where '

pq qp
. Thus, the conditional variance of ( )L

i
p u  given ( , )K

i i
q x z  is given by 

1

|ppq pp pq qq qp
, and the conditional variance of ( , )K

i i
q x z  given ( )L

i
p u  is 

1

|qq p qq pq pp qp
. We use " "d  to denote convergence in distribution, 

' 1/2|| || ( )B BB  if B  is a vector and ' 1/2|| || ( ( ))B tr BB  if B  is a matrix where (.)tr  is the 

trace operator. The following assumptions will be used to establish the convergence rates as well 

as the asymptotic normality of (̂ )u  and ˆ ( ), 1, ,
j
z j d . 

 

Assumption 1: 
1

( ) { , , , }n
i i i i i

i y u x z  are independent and identically distributed as 
1 1 1 1
( , , , )y u x z  

and the support of 
1 1 1
( , , )u x z  is a compact subset of 2d ; 

2

1 1 1 1
( )var( | , , ) ( , , )ii y u x z u x z  is a 

bounded function on the support of 
1 1 1
( , , )u x z . 

Assumption 2:   For every L , there is a non-singular matrix A  such that for ( ) ( )L LP u Ap u : 

( )i  the smallest eigenvalue of '[ ( ) ( ) ]L L

i i
E P u P u  is bounded away from zero uniformly in L ; ( )ii  

there exists a sequence of constants 
0
( )L  that satisfy the condition 

0
sup || ( ) || ( )

u

L

u S
P u L  

where ( )L L n  is non-random such that 2

0
( ( ) ) / 0L L n  as n , where 

u
S  is the 

support of 
1
u . 

Assumption 3:   For every K , there is a nonsingular matrix B  such that for 

( , ) ( , )K KQ x z Bq x z : ( )i  the smallest eigenvalue of '[ ( , ) ( , ) ]K K

i i i i
EQ x z Q x z  is bounded away 

from zero uniformly in K ; ( )ii  there exists a sequence of constants 
0
( )K  that satisfy the 
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condition 
( , )( , ) 0

sup || ( , ) || ( )
x z

K

x z S
Q x z K  where ( )K K n  is non-random such that 

2

0
( ( ) ) / 0K K n  as n , where 

( , )x z
S  is the support of 

1 1
( , )x z .    

Assumption 4:   There exists 
0
0  such that 0'sup | ( ) ( ) | ( )

u

L

u S L
u p u O L  for every L . 

Assumption 5:  For 
1

( , ) ( )
d

j jj
g x z x z , there exist some 0 ( 1, , )

j
l d , 

1 ' ' '

1
( , , )dk k

g gK d
, such that 

( , )

'

( , ) 1
sup | ( , ) ( , ) | ( )j

x z

dK

x z S g jj
g x z q x z O k . In 

addition, 
1 1

min{ ,..., } , ( ) 0j
d

d jj
k k n k  as n . 

 

Most the above assumptions are adopted from Newey (1997) and Ahmad et al. (2005) for the 

purpose of our analysis. Assumption 1 is standard for series estimation with . . .i i d  data, albeit the 

bounded conditional variance is difficult to relax without affecting the rates of convergence. 

Assumptions 2 and 3 impose bounded second moment matrices away from singularities and 

restricting the magnitudes of the series terms. Assumptions 4 and 5 state that there exists some 

positive constants such that the uniform approximation errors to the functions shrink at particular 

rates. Assumptions 4 and 5 are not the weakest conditions but it is known that many series 

functions satisfy these conditions (e.g. power series and splines).  

Under the above assumptions, we can now state our main asymptotic results. 

 

Theorem 1: Under Assumptions 1-5, as n , we have 

 

 0
222

1
ˆ( ) [ ( ) ( )] ( ) (( / ) ( / ) ( ))j

d

u p jj
i u u dF u O L n K n L k  where ( )

u
F u  is 

the cumulative distribution function of u . 

 

 0
222

1
ˆ( ) [ ( ) ( )] ( ) (( / ) ( / ) ( ))j

d

j j z p jj
ii z z dF z O L n K n L k , 1, ,j d , 

where ( )
z
F z  is the cumulative distribution function of z . 

 

Theorem 1 implies that the convergence rate of (̂ )u  and ˆ ( ) ( 1, , )
j
z j d  depends on both L  

and K , and it consists of two terms. The first term (( / ) ( / ))L n K n  is essentially due to the 
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convergence rate of the variance whereas the second term 0
22

1
( )j

d

jj
L k  corresponds to 

the convergence rate of the squared bias. The next theorem gives the asymptotic normality of 

(̂ )z  and '

1
ˆ ˆ ˆ( ) ( ( ), , ( ))

d
z z z . 

 

Theorem 2: Under Assumptions 1-5, and in addition, 0 0nL , 
2

1
( ) 0j

d

jj
n k  then 

as n , we have 

 

 1/2 ˆ( ) ( , , ) ( ( ) ( )) (0,1)d

u
i V u L K u u N , 

 

 1/2 ˆ( ) ( , , , ) ( ( ) ( )) (0, )d

z n
ii V x z L K z z N I ,  

 

where 1 2 ' 1

|
(.) ( , , ) ( ) ( )L L

u ppq
V n u x z p u p u  and 1 2 ' 1

|
(.) ( , , ) ( , ) ( , )K K

z qq p
V n u x z q x z q x z . 

Consistent estimators (.)
u
V  and (.)

z
V  are given by 1 2 ' 1

|
ˆ ˆˆ(.) ( , , ) ( ) ( )L L

u ppq
V n u x z p u p u  and 

1 2 ' 1

|
ˆ ˆˆ(.) ( , , ) ( , ) ( , )K K

z qq p
V n u x z q x z q x z  where 1

|
ˆ
pp q

 and 1

|
ˆ
qq p

 are obtained from the 

partitioned matrices of 1 '

1
ˆ [ ( ), ( , )][( ( ), ( , )]

n L K L K

i i i i i ii
n p u q x z p u q x z  and  

2 1 '

1
ˆ ˆˆ( , , )

n

i ii
u x z n ee  where ' 'ˆ ˆ ˆ( ) ( , )L K

i i i i i
e y p u q x z . 

 

The basic ideas of the proofs of both Theorems 1 and 2 are mainly from Newey (1997) and 

Ahmad et al. (2005). They are given in the Appendix for the readers’ interest. 

Note that the convergence rates of ( )i  and ( )ii  in Theorem 2 are not n , and as in the case of 

nonparametric regression estimator, they are slower than n  as the smoothing parameters 

shrink. The convergence rates are implicitly embedded in the variance terms (.)
u
V  and (.)

z
V . In 

addition, Theorem 2 shows how to construct the asymptotic standard errors as well as the 

confidence intervals for ( )z  and ( )z . 

Remarks:  
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(i) The results presented in Theorems 1 and 2 provide a synthesis on the convergence rates and 

asymptotic normality of series estimator derived in Newey (1997) and Ahmad et al. (2005). For 

example, if we set '( ) 0u u  for all u  in (1) the results in Theorem 1 reduces to the results 

of Ahmad et al. (2005). Similarly, if we set the general function considered in Newey (1997) to a 

varying coefficient model such as (1), the results in Theorem 2 can also be deduced from the 

results presented in Newey (1997).  

(ii) Theorem 1 gives the convergence rates of the series estimator for ( )u  and ( )
j
z  and they 

simultaneously depend on the approximating terms L  and K , hence it is more difficult to 

determine the optimal choice for L  and K  that balance between biases and variances. However, 

in a special case where we set 
j
k L  for all j  then it is easy to show that the optimal choice for 

L   such that 02( / ) ( / ) ( 1)L n dL n d L  


 is 01/(1 2 )*L n 



 for 

0
0 . Moreover, in order to 

satisfy the asymptotic normality in Theorem 2, we would need to choose larger L  than the 

optimal 
*L  (i.e., undersmoothing) since the condition 0 0nL 


 also needs to hold. However, 

if one wishes not to undersmoothing data, the asymptotic normality of the estimator, in general, 

can still be achieved but the estimator has the asymptotic bias component which is unknown in 

general, and equals to the approximation errors, see for example, Hansen (2013, Chapters 12.12 - 

12.14), and Huang (2003) for more detailed discussion on the difficulty of obtaining asymptotic 

bias for general case with splines. 

 

3. Monte Carlo Simulation 

 
To examine the finite sample performance of the proposed series estimator, and also to compare 

it with the two-step local linear kernel based estimator suggested by Wong et al. (2008), we 

conduct some simulations.  To this end, we consider the same the data generating process (DGP) 

as in Wong et al. (2008). The model is: 

 

1 1 2 2
( ) ( ) ( )

i i i i i i i
Y u x z x z , 

 

where 
2( ) exp( 16 )u u u , 2

1
( ) 0.138 (0.316 0.982 )exp( 3.89 )z z z   and 

2

2
( ) 0.437 (0.659 1.260 )exp( 3.89 )z z z . The error term 

i
 are generated as 



9 
 

2. . . (0,0.2 )
i
i i d N , 

1
, ,
i i i
u z x  and 

2i
x   are each generated by the . . . [ 5,5]i i d Uniform  

distribution. The sample size is 400n  and the number of replications is 400 . We compute 

and compare the estimated square root of mean square errors (RMSE) of (̂ )
i
u  and ˆ ( )

j i
z  which 

respectively defined by 
1/2

2

1 1
ˆ ˆ( (.)) (1/ ) (1/ ) ( ( ) ( ))

R n

r i ir i
RMSE R n u u  and 

1/2
2

1 1
ˆ ˆ( (.)) (1/ ) (1/ ) ( ( ) ( ))

R n

j jr i j ir i
RMSE R n z z  for 1,2j , where R  is the 

number of replications, (̂ )u  and ˆ ( )
j
z  are  respectively, the estimates of ( )u  and ( )

j
z  from 

the thr  replication based on either the series method or the two-step local linear approach. For 

the series method, we use a univariate cubic B-spline which defined as 

 

4 3

0 4 0

41
( | , , ) ( 1) [max(0, )]

3!
j

jj
B z t t z t

j
,  

 

where 
0 4
( , , )t t  are equally space design knots. For the two-step local linear and one-step back 

fitting approach with optimal choice of the smoothing parameters 
1
h  and 

2
h , see Wong et al. 

(2008). For the series method, we select the number of approximating terms L  and K  by the 

leave-one-out least squares cross-validation (CV) that minimize the approximate MSE. Recently, 

Hansen (2012) shows that for estimating regression function with series method, the CV 

approach is not only computationally simple method, it is also asymptotically optimal among the 

alternative selection criteria, in the sense that the CV-selected estimator is asymptotically 

equivalent to the infeasible best-fitting estimator when all approaches were evaluated based on 

integrated MSE. 

The simulation results are displayed in Table 1. Note that, the last column in Table 1 shows the 

sum of the three RMSE. From Table 1, we observe that the series and the two-step kernel 

methods give similar estimation results for the three functional coefficients. Consequently, both 

the series and two-step kernel methods can be a useful tool in estimating the FCPLR model. 

Next, we evaluate the 95% empirical coverage probabilities of the functional coefficients based 

on Theorem 2. Specifically, for a given value of u  and z , the 95% confident intervals for ( )u  
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and ( ), 1,2
j
z j , are computed as ˆ ˆ( ) 2

u
u s  where ˆ

û u
s V  and ˆ ˆ2 jj

j z
s  where 

ˆˆjj jj

z z
s V  with ˆ jj

z
V  is the thj  diagonal element of the matrix ˆ

z
V . For simplicity, we evaluate 

these quantities at three different quantiles of u  and z : 25%, 50% and 75%. In addition, since 

undersmoothing is required, we first assume L K  for all cases, and use 
* *(1.5 ,2.5 )L L L  as 

the number of approximating terms, where *L  is the optimal value selected by using CV 

procedure. The results are displayed in Table 2. Our results indicated that the coverage 

probabilities of interval estimates based on the series estimators are very close to the true 

coverage probabilities and there are very little distortions.  

 

4. Concluding Remark 

 
In this paper, we propose an alternative and complementing approach for estimating the FCPLR 

model. Specially, we suggest a series method which is simpler to implement in practice than the 

kernel method. We established a synthesis on the consistency and asymptotic normality of the 

proposed estimator. Limited Monte Carlo simulations suggested the proposed estimator perform 

well in finite sample.  

Note that, in practical application where we have dependent time series and this may not fit the 

general setting of this paper where the data are assumed to be independent. For dependent time 

series data, we conjecture that our approach can be still be applied to geometrically -mixing 

and strictly stationary data; and under a different set of regularity conditions (especially on the 

boundedness conditions), the convergence rate of the estimator still hold, although the 

asymptotic variance may have a different forms. Extension our approach to dependent time 

series data and perhaps dynamic panel data (see Lee (2013) and Tran (2014)) are interesting 

problems and deserves further research.   
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Appendix A: Mathematical Proofs 

 

First we present some useful lemmas which are the results that will be used in the proofs of 

Theorem1 and Theorem 2. Following the arguments of Newey (1997), we will assume without 

loss of generality, that 
L

A I  and 
K

B I  where 
R
I  is an identity matrix of dimension R ;  A  

and B  are defined in Assumptions 2 and 3. Thus, ( ) ( ), ( , ) ( , )L L K KP u p u Q x z q x z  and 

'[ ( ) ( ) ]L L

L L
E p u p u I , '[ ( , ) ( , ) ]K K

K K
E q x z q x z I . Also, we define an indicator 

function 1
n

 which equals to 1  if '( )WW  is nonsingular and 0  otherwise, for W P  or Q . 

 

Lemma A.1   ( )i  
0

ˆ ( ( ) / ) (1)
L L p p
I O L L n o ; 

   ( )ii
0

ˆ ( ( ) / ) (1)
K K p p
I O K K n o  

where 'ˆ /
L
PP n  and 'ˆ /

K
QQ n . 

 

PROOF:  See Theorem 1 of Newey (1997).   

 

Lemma A.2 ( )i   0
2 2( )

p
O L  where ' 1 '( )PP P ,  satisfies Assumption 4. 

( )ii  
2 2

1
( )j

d

g g p jj
O k  where ' 1 '( )QQ QG , 

g
 satisfies 

Assumption 5. 

 

PROOF: The proof follows the same arguments as in the proof of Lemma A.2 in Ahmad et 

al. (2005).   

 

Lemma A.3 ( )i    
2

' 1 '1 ( / ) ( / ) ( / )
n p
PP n Pe n O L n   

( )ii  
2

' 1 '1 ( / ) ( / ) ( / )
n p
QQ n Qe n O K n  
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PROOF: To prove ( )i , taking the conditional expectation of ( )i , we have 

 

 
2

' 1 '[1 ( / ) ( / ) | , , ]
n

E PP n Pe n u x z   

      
' ' 1 ' 1 '1 {[( / )( / ) ( / ) ( / )] | , , }

n
E eP n PP n PP n Pe n u x z  

      ' 1 ' '(1)1 ( ( ) ( | , , ) / )
p n
O tr P PP PE ee u x z n   

      (1)1 ( / )
p n
O C L n   

 

by Lemma A.1 and Assumption 1. Thus, 
2

' 1 '1 ( / ) ( / ) ( / )
n p
PP n Pe n O L n . The proof of 

( )ii  follows similarly.    

 

Lemma A.4 ˆ 0
p

 where 1 '

1
ˆ [ ( ), ( , )][( ( ), ( , )]

n L K L K

i i i i i ii
n p u q x z p u q x z  

 

PROOF: First note that by Assumption 6 and by using argument as in Newey (1997), 

without loss of generality we set I    where I  is an identity matrix of dimension ( )L K . 

Then it can be shown that as in Lemma 1,  
0

ˆ ( ) ( ) / (1)
p p
O L K L K n o .          

 

Proof of Theorem 1:  The basic idea of the proof of this theorem is mainly from Newey (1997) 

and Ahmad et al. (2005).  

( )i  By (2) and (3), we can write 

 

' 1 '

' 1 '

' 1 ' ' 1 ' ' 1 '

' 1 '

ˆ ˆ( ) ( )

ˆ( ) ( ( ) ( ) )

ˆ ( / ) ( / ) ( / ) ( ( ) / ) ( / ) ( ( ) / )

ˆ( / ) ( ( ) / )

P P P Y Q

P P P P Q e P G Q Q

P P n Pe n P P n P P n P P n P G Q n

P P n PQ n

  

 

Hence, 
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2 22 ' 1 ' ' 1 '

2
' 1 '

2
' 1 '

ˆ1 1 ( / ) ( / ) ( / ) ( ( ) / )

1 ( / ) ( ( ) / )

ˆ1 ( / ) ( ( ) / )

n n

n

n

P P n Pe n P P n P P n

P P n P G Q n

P P n PQ n

  

 

The first term 
2

' 1 '1 ( / ) ( / ) ( / )
n p
PP n Pe n O L n  by Lemma A.3( )i .  The second term 

0
2 2' 1 '1 ( / ) ( ( ) / ) ( )

n p
PP n P P n O L  by Lemma A.2( )i . Similarly, it is 

straightforward to show that the third term 
2 2' 1 '

1
1 ( / ) ( ( ) / ) ( )j

d

n p jj
PP n P G Q n O k  

because the function G  is approximated by Q  and hence, the convergence rate will depend on 

1

d

jj
K k . The last term looks more complicated because it involves the convergence rate of 

ˆ( ) . However from (4), ˆ( ) can be expressed explicitly as a function of ˆ( )  and by 

substituting this expression into the last term and solve for ˆ( ) , it can be shown that  

2
' 1 ' ˆ1 ( / ) ( ( ) / ) ( / )

n p
PP n PQ n O K n . Thus, by combining the above results, also by 

noting that 1 1
n

 almost surely, we have 

 

  0
2 22

1
ˆ (( / ) ( / ) ( ))j

d

p jj
O L n K n L k    (A.1)   

 

Next, by triangle inequality, we have 

 

0 0

0

2 ' ' 2

2 ' 2

22 2

1

22

1

ˆ ˆ[ ( ) ( )] ( ) [ ( )( ) ( ( ) ( ))] ( )

ˆ [ ( ) ( )] ( )

(( / ) ( / ) ( )) ( )

(( / ) ( / ) ( ))

j

j

L L

u u

L

u

d

p jj

d

p jj

u u dF u p u p u u dF u

p u u dF u

O L n K n L k O L

O L n K n L k
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by (A.1), Lemma A.1 and Assumption 4( )i . Thus, we have proved Theorem 1( )i . The proof of 

Theorem 1( )ii  follows the same arguments as in the proof above and hence omitted here.      

 

Proof of Theorem 2:   The detailed proof of this theorem is a straightforward extension of the 

Theorems 2 and 3 of Newey (1997), so we discuss the heuristic idea of the proof here. First 

observe that 

 

' 1 '

' 1 '

' 1 '

ˆ ˆ1 ( ( ) ( )) 1 ( )

1 {( ) ( )}

1 {( ) ( )}

1 {( ) }

n n

n Q Q

n Q Q

n Q Q

n u u nP

nP PM P PM P

nP PM P PM G Q

nP PM P PM e

   (A.2)    

and 

 

' 1 '

' 1 '

' 1 '

ˆ ˆ1 ( ( ) ( )) 1 ( )

1 {( ) ( )}

1 {( ) ( )}

1 {( ) }

n n

n P P

n P P

n P P

n z z nQ

nQ QM Q QM G Q

nQ QM Q QM P

nQ QM Q QM e

   (A.3)    

 

By Lemma A.4, we have ˆ 0
p

 as n , thus, the first two terms in ( .2)A  and ( .3)A

can be shown to be asymptotically negligible by Assumptions A.4 and A.5. By combining the 

last term in ( .2)A  and ( .3)A along with the result of partitioned regression, yields 

 

' 1 ' '

1

' 1 ' '

1 {( ) } 0 1 /ˆ
01 {( ) } 1 /

n Q Q n

n P P n

nP PM P PM e P Pe n

QnQ QM Q QM e Qe n
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First note that  
1 1ˆ 0

p
 as n . Second, following Newey (1997, proof of 

Theorem 3) and the fact that 1 1
n

 almost surely, the limit distribution of the quantity 

'

'

/

/

Pe n

Qe n
 is approximately normal with mean zero and variance 2( , , )x u z . By using the 

inverse matrix formula of the partitioned matrix, we have 

 
1

1 1 1
1 | |

1 1 1 1 1 1

| |

1 1 1 1 1 1

| |
1 1 1

| |

pp pq pp q pp q pq qq

qp qq qq qp pp q qq qq qp pp q pq qq

pp pp pq qq p qp pp pp pq qq p

qq p qp pp qq p

 

 

 and the desired result is obtained using the above expression.     
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Table 1: RMSE of Functional Coefficients 

Methods ( )u  
1
( )z  

2
( )z  Total 

2-Step Kernel 0.00251 0.00732 0.00701 0.01684 

Series 0.00250 0.00733 0.00700 0.01683 

 

 

 

Table 2: 95% Coverage Probabilities 

Quantile 

of u   or 

z   

( )u  
1
( )z  

2
( )z  

 *1.5L L  *2.5L L  *1.5L L  *2.5L L  *1.5L L  *2.5L L  

0.25  0.952  0.951 0.951  0.950 0.953  0.952 

0.50  0.957  0.950 0.954  0.955 0.953 0.952 

0.75 0.952  0.953 0.951  0.953 0.953  0.956 

 

 


