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Abstract: 

This paper addresses the important topic of electromechanical systems identification with an 

application in robotics. The standard IDIM-LS method of identifying models for robotic systems is 

based on the use of a continuous-time inverse dynamic model whose parameters are identified from 

experimental data by linear Least Squares estimation. The paper describes a new alternative but 

related approach that exploits the State-Dependent-Parameter (SDP) method of nonlinear model 

estimation and compares its performance with that of IDIM-LS. The SDP method is a two-stage 

identification procedure able to identify the presence and graphical shape of nonlinearities in 

dynamic system models with a minimum of a priori assumptions. The performance of the SDP 

method is evaluated on two electromechanical systems: the Electro-Mechanical Positioning System 

(EMPS) and the second link of the TX40 robot. The experimental results demonstrate how SDP 

identification helps to avoid over-reliance on prior conceptions about the nature of the nonlinear 

characteristics and correct any deficiencies in this regard. Finally, a simulation study shows how the 

resulting SDP model is able to facilitate nonlinear control system design using linear-like design 

procedures. 

 

  



1 Introduction 

1.1 Robot identification 

A standard method of identifying models for robotic systems is based on the use of a continuous-

time inverse dynamic model and the application of Least Squares (LS) estimation based on 

experimental data measured while the robot is being used to track trajectories that excite its full 

range of dynamic behaviour. For this reason, the Inverse Dynamic Identification Model with Least 

Squares (IDIM-LS) method, as it is called, is applied with the system operating within a closed loop. It 

has been applied successfully for the identification of the inertial parameters of several prototypes 

and industrial robots, (Olsen, Swevers, & Verdonck, 2002; Swevers, Verdonck, & De Schutter, 2007; 

Hollerbach, Khalil, & Gautier, 2008; Calanca et al., 2011; Gautier, Janot, & Vandanjon, 2013; Janot, 

Vandanjon, & Gautier, 2014a; Janot, Vandanjon, & Gautier, 2014b), amongst others. Good results 

can be obtained using this approach provided appropriate bandpass filtering of the joint positions is 

used to calculate low noise estimates of the joint velocities and accelerations. 

Other identification methods have been tried: the Total Least-Squares (Xi, 1995); the extended 

Kalman filter (Gautier & Poignet, 2001; Kostic et al., 2004); an algorithm based on Linear Matrix 

Inequality (LMI) tools (Indri et al., 2002); a Maximum Likelihood (ML) approach (Olsen, Swevers, & 

Verdonck, 2002); the Closed-Loop Output-Error method (Östring, Gunnarsson, &Norrlöf, 2003; 

Gautier, Janot, & Vandanjon, 2013); the Set Membership Uncertainty method (Ramdani & Poignet, 

2005); a method which estimates the nonlinear effects in the frequency domain (Wernholt & 

Gunnarsson, 2008); and an instrumental variable approach that combines the direct and inverse 

dynamic models (Janot, Vandanjon, & Gautier, 2014a; Janot, Vandanjon, & Gautier, 2014b).  

Another promising approach that allows for the identification and estimation of nonlinearities in 

dynamic systems is the State-Dependent-Parameter (SDP) method of nonlinear model estimation 

considered in the present paper. This SDP methodology is also a tool that has proven useful in a 

number of practical applications in various different areas of study (see e.g. (Young, 2011) and the 

prior references therein). 

 

1.2 The SDP method 

The SDP method is a statistical identification procedure able to identify the presence and graphical 

shape of nonlinearities in dynamic system models based on experimental sampled data, with a 

minimum of assumptions about the nature of the nonlinearities. SDP estimation is carried out in two 

distinct stages (see e.g. (Young, 2005)): the first, a non-parametric identification stage, where the 

detailed model structure is identified; and the second, a parametric estimation stage, where the 

(normally constant) parameters that characterize a selected parameterization of this structure are 

optimized in some appropriate manner. 

In the first, non-parametric stage of SDP modelling, the recursive SDP estimation algorithm is an 

extension of the stochastic approach to time variable parameter (TVP) estimation (e.g. (Young, 1999) 

and the prior references therein). As in this TVP case, SDP estimation exploits the power of recursive 

fixed interval smoothing (FIS) estimation to obtain lag-free, smoothed estimates of the parameter 

variations. However, it differs from TVP estimation in two important respects (for the detailed 

description, see (Young 2000, 2001; Young et al., 2001)). First, in order to allow for the rapid variation 



that state dependency can induce in the parameters, the data are sorted into some other, normally 

non-temporal order (e.g. ascending order of magnitude), so that the rate of change of the parameter 

variations between samples in this sorted data space is much smaller than in the original observation 

space. Secondly, an iterative "back-fitting" algorithm is used to allow for the possibility of different 

state dependency in each parameter. 

As we see in the later experimental examples, this nonparametric stage results in a plot of each SDP 

against its associated state variable, so providing a graphical portrayal of the non-linearity and its 

location within the model. In other words, non-parametric SDP estimation identifies the structure of 

the non-linear model, preparatory to the second, parametric estimation stage. Here, the non-

linearities are parameterized in some parametrically efficient manner involving parameters that are 

normally constant and estimated using a suitable optimization approach (see e.g. (Beven et al., 

2012)). It is this two-stage approach that most distinguishes the SDP method from other related 

approaches to nonlinear system modelling, such as linear and nonlinear parameter varying 

(LPV/NLPV) methods (e.g. Previdi and Lovera (2003)). The two stages are useful in practice because 

they help to ensure that the model is parsimonious, with nonlinearities identified and estimated only 

where they occur within the non-linear SDP model structure. 

SDP modelling was developed in this two-stage manner so that it could act as a major tool in Data-

Based Mechanistic (DBM) modelling (see, e.g. (Young, 1998b) and the prior references therein), 

where the non-parametric stage often allows for the interpretation of the nonlinear model elements 

in some physically meaningful manner. Such an interpretation is less straightforward in the case of 

"black-box" nonlinear models, such as LPV and NLPV, that exploit linear combinations of basis 

functions or neural net algorithms (see e.g. (Previdi & Lovera, 2004) and the comment on this in 

(Young, 2005)). Moreover, it is important to note that the non-parametric model can be used in its 

own right, depending on the nature of the application, and so it is not always parameterized; 

whereas parameterization is the norm in LPV identification. 

 

1.3 Contributions of the paper 

Surprisingly, the SDP method has not received much attention in the field of mechanical engineering 

(e.g. robotics), although its potential for use in this context was reported some years ago (Young, 

1996, 1998). This may due to the fact that the dynamic models of electromechanical systems are 

most often formulated directly from the Newton’s laws or Lagrange’s equations. The models are thus 

available directly in a physically meaningful form and black-box identification and estimation is not 

considered necessary, although this does mean that the modeller is assuming that the physical 

interpretation is completely correct. In order to evaluate the performance of the SDP method, it is 

applied on two electromechanical systems: the Electro-Mechanical Positioning System (EMPS) and 

the second link of the TX40 robot; and its performance is compared with that of the IDIM-LS method. 

The contribution of the paper is four-fold. First, a SDP-based identification method that combines the 

continuous-time IDM and the SDP method is introduced and experimentally validated on both the 

EMPS and the second link of the TX40 robot. Second, it is shown how this SDP-based method is able 

to improve on the performance of the standard IDIM-LS method. Third, a new, iterative SDP-based 

algorithm is proposed that is able to provide a graphical portrayal of a multi-SDP nonlinearity on the 

second link of the TX40 robot. It is shown that this iterative SDP-based algorithm yields accurate 



graphical results provided the effects encompassed in the multi-SDP disturbance are sufficiently 

separable. Finally, a simulation example illustrates how the EMPS model with a SDP identified 

nonlinearity can be used in the design of a closed loop servomechanism control system. 

The rest of the paper is organized as follows. Section 2 reviews the usual LS-based identification 

method, IDIM-LS, and presents the results obtained by applying this and the new SDP method to 

data obtained from experiments on the EMPS prototype. Section 3 presents the iterative SDP-based 

algorithm that is able to extract the non-linearities encompassed in a multi-SDP model and 

demonstrates its practical utility by application to the second link of the TX40 robot. This is followed 

by Section 4 that deals with SDP control system design. Concluding remarks are given in the last 

Section 5. 

2 First case study: the Electro-Mechanical Positioning System 

2.1 Experimental setup 

The EMPS is a high-precision Electro-Mechanical Positioning System (see Fig. 1). It is a standard 

configuration of a drive system for the prismatic joints of robots or machine tools. It is connected to a 

dSPACE digital control system for easy control and data acquisition using Matlab and Simulink 

software. Its main components are 

• A Maxon DC motor equipped with an incremental encoder. As we will see later, the DC 

motor is position-controlled. 

• A Star high-precision low-friction ball screw drive positioning unit and a load in translation. 

• An encoder at the extremity of the ball screw. This encoder is not used in this study. 

• An accelerometer on the load which measures its acceleration. The accelerometer is not 

used in this study. 

All variables and parameters are given in SI units on the load side. 

 

Fig.1. EMPS prototype and its instrumentation 

 



2.2 Standard Physically-Based Modelling of the EMPS 

2.2.1 Direct dynamic model 

The direct dynamic model (DDM) of a robot expresses the acceleration vector as a function of the 

motor torque, joint position and velocity vector (Khalil & Dombre, 2002). From Newton's laws, we 

have 

τ τidm fricMq offset= − −ɺɺ .      (1) 

where q , ,  are the joint position, velocity and acceleration in m, m.s-1 and m.s-2 respectively; 

idmτ  is the motor force in N; τ fric  is the friction force in N; M  is the mass in Kg; offset is the offset of 

measurements. In the case of a ‘linear’ friction model, τ fric  is given by 

( )τ fric v cF q F sign q= +ɺ ɺ ,      (2) 

where vF  and cF  are the viscous and Coulomb friction parameters in N/m.s-1 and N, respectively. 

Although the friction model is usually non-linear (especially at low velocities), this simple friction 

model is always valid over a range of velocities (Khalil & Dombre, 2002) and the physical parameters

M , vF , cF  and offset are referred to as the "dynamic parameters". 

2.2.2 Inverse dynamic model 

The inverse dynamic model (IDM) of a robot expresses idmτ  as a function of q , qɺ   and qɺɺ  (Khalil & 

Dombre, 2002). In the case of a linear friction model, the IDM of the EMPS is given by 

( )τidm v cMq F q F sign q offset= + + +ɺɺ ɺ ɺ .   (3) 

The important difference between this version of the model and the DDM in (1) is that equation (3) is 

linear in relation to the dynamic parameters, i.e., 

( ), ,idm q q qτ = IDM θɺ ɺɺ ,     (4) 

where ( ) ( ), , 1q q q q q sign q=   IDM ɺ ɺɺ ɺɺ ɺ ɺ  the ( )x1 4  matrix of basis functions of the IDM and 

T

v cM F F offset =  θ is the ( )x4 1  vector of the 4 dynamic parameters. This linearity in the 

unknown parameters makes the IDM relatively easy to estimate using standard statistical methods. 

This is in contrast to the DDM, which is normally nonlinear with respect to the dynamic parameters 

and so less straightforward to identify statistically from the experimental data. As a result, it is rarely 

used for robot identification (Swevers, Verdonck, & De Schutter, 2007; Gautier, Janot, & Vandanjon, 

2013). 

 

2.3 Data acquisition and control of the EMPS 

The data available for identification of the EMPS are the measurements q  denoted measq  and the 

control signal denoted as ν . The control signal ν  results from the control law and is linked to idmτ  by 

the following relationship 



idmτ gτν= ,       (5) 

where gτ  is the "drive gain" of the EMPS. Although gτ is normally provided by the manufacturers, it 

can be identified using special tests (Gautier & Briot, 2014). In the case of the EMPS, this yields 

g 35.15N / Vτ = . 

As the EMPS is a system involving a pure integrator, it cannot be identified in open loop and so it is 

first position-controlled by a Proportional-Derivative (PD) controller. In (Gautier, Janot, & Vandanjon, 

2013) it has been shown that a PD control is sufficient to identify the dynamic parameters of robots 

because excellent tracking is not needed for this purpose. The PD control signal ν  is given by 

( )p v r vK K q q K qν − −= ɺ ,      (6) 

where pK  is the proportional gain and vK  is the derivative gain. The calculation of the control gains 

pK  and vK  is based on the closed-loop block-diagram for the EMPS, as shown in Fig.2, where p  

denotes the differentiation operator, while qw denotes the noise on the position. 

 

Fig.2. Closed-loop block-diagram for the EMPS prototype 

 

It is assumed that qw is serially independent and homoscedastic, with a bounded variance. These 

assumptions are usually valid in practice. The EMPS can be modelled as  

( ) 2q d Mpτ= − ,       (7) 

where ( )v cd F q F sign q offset= + +ɺ ɺ  is the linear friction model plus the offset effect, considered as a 

state-dependent input disturbance. Expression (7) is typical in robotics (and in mechanical 

engineering in general, see e.g. (Noel, Schoukens, & Kerschen, 2015)). This explains why such systems 

are considered as double-integrator systems with a state-dependent perturbation. Naturally, such 

systems cannot be identified in open loop because they are unstable. 

The closed-loop relations are given by 

( ) ( )q r dq H p q H p d= − ,    (8) 

with ( ) 2
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The gains pK  and vK  are calculated by comparing ( )qH p  with the following second-order transfer 

function ( )
2

2
1 1q

n n

p
H p p

η
ω ω
 

= + + 
 

, where nω  is the natural frequency of the closed loop and η  is 

the damping coefficient. This yields
2

2
n

p
n

M
K

M

ω
ηω

=  and 
2 n

v

M
K

gτ

ηω
= . With 2 20nω π= ⋅  rad/s, 1η =

selected to avoid overshoot and  M  = 95 kg from Computer-Aided-Design (CAD) values, this 

produces the gain settings pK  = 62.83 1/s and vK  = 679.26 V/ms-1. 

Note that the above simple control design procedure includes approximations, so the design 

specifications are not met completely in practice. However, this is not important when the resulting 

experimental data are being used only for identification purposes. More sophisticated nonlinear 

control system design methods can be exploited after an adequate nonlinear model of the system 

has been identified. This is discussed later in Section 4. 

 

2.4 Standard LS-based identification of the EMPS 

As pointed out previously, the traditional identification method developed for robotic systems has 

been based on the use of the IDM combined with simple linear Least Squares (LS) estimation. 

However, in this example, we are considering a closed-loop situation and this requires a special 

approach to identification, see e.g. (Van den Hof, 1998). 

First, a pragmatic approach, based on an efficient "tailor-made" data filtering, can be used (see e.g. 

(Gautier, Janot, & Vandanjon, 2013)). In (3), q  is estimated with its estimate q̂  obtained by filtering 

measq  through a zero-phase lowpass filter; while  are calculated from q using either a central 

differentiation algorithm (see e.g. (Gautier, Janot, & Vandanjon, 2013)); or preferably, as in the 

present paper, by an optimal filtering algorithm based on recursive fixed interval smoothing (Young 

et al, 1993)1. Hence, the actual motor force τ  differs from idmτ  by an error idme  because of model 

mismatch, noisy measurements and data filtering. The resulting estimation model is then 

( )ˆ ˆˆ, ,q q q eτ = +IDM θɺ ɺɺ .      (9) 

so that, from SN  available samples of the measured signals observed at discrete-time instants while 

tracking the trajectories ( )r r rq ,q ,qɺ ɺɺ , the following over-determined system of regression equations is 

obtained: 

idm idm idm= +y X θ ε ,      (10) 

                                                           
1
This is available as the IRWSM routine in the CAPTAIN Toolbox for Matlab (see 

http://captaintoolbox.co.uk/Captain_Toolbox.html/Peter_Young.html). 



where idmy  is the ( )1SN ×  sampled vector of τ ; idmX  is the ( )4SN ×  matrix of ( )ˆ ˆˆ, ,q q qIDM ɺ ɺɺ ; idmε  is 

the ( )1SN ×  vector of idme  error terms and SN  is the number of samples where the sampling is 

regular, with a constant sampling interval Ts. 

The motor force τ is perturbed by high-frequency disturbances and, since there is no information on 

high frequencies variations because the data ( )ˆ ˆq̂,q,qɺ ɺɺ  are lowpass filtered, a parallel decimation 

procedure is used to eliminate torque ripples and any samples at high frequencies that contain no 

information. By applying the tailor-made data prefiltering, the filtered regression model is assumed 

to be free of any significant circulatory noise that could lead to biased estimates, so that simple LS 

can be used to deliver the following estimates 

( ) 1ˆ T T
LS idm idm idm idm

−
=θ X X X y .     (11) 

The identifiability of the LS solution (11) is ensured if idmX  is a column-full-rank matrix i.e. 

( ) 4idmrank =X  and this requires that the trajectories ( )r r rq ,q ,qɺ ɺɺ  are sufficiently exciting. 

Provided the LS identification residuals are zero mean and white (serially uncorrelated), and it is 

assumed that idmX  is deterministic, then the covariance matrix of the LS estimates can be calculated 

as follows using standard linear regression theory (see e.g. Young, 2011 and Janot, Vandanjon, & 

Gautier, 2014a): 

( ) 12ˆ
idm

T
LS idm idmεσ

−
=Σ X X ,     (12) 

where ( )2 ˆˆ 4
idm idm idm LS SNεσ = − −y X θ . 

( )
( )

2
ˆˆ ,
LS i

LS i iθσ = Σ  is the ith diagonal coefficient of LSΣ . The relative standard deviation 
( )

ˆ%
LS iθσ  is given 

by ( )
( ) ( )

ˆ ˆ
ˆˆ ˆ% 100

LS i LS i
LS iθ θσ σ θ=  for ( )ˆ 0LS iθ ≠ . 

Note that the statistical assumptions required for these results to apply are met in the present 

practical context thanks to the accurate experimental data and appropriate data filtering (see Janot, 

Vandanjon, & Gautier, 2014a) and (Brunot et al., 2015). However, if this filtering is not adequate and 

the noise level is too high, then the LS estimation would need to be replaced, for instance, by the 

instrumental variable approach presented in (Janot, Vandanjon, & Gautier, 2014a). 

 

2.5 SDP-based identification method of the EMPS 

As stated in section 2.2, the linear friction model (2) is only valid within a given velocity range. At low 

velocities, the friction normally exhibits clear non-linear effects (e.g. Stiction and Stribeck etc.). It is 

convenient, therefore, to introduce a state-dependent parameter that is able to cope with such non-

linearities. Also, in order to validate/invalidate the assumption that the other dynamic parameters 

are time-invariant, other state-dependent parameters may be identified during SDP estimation. 



In the case of the EMPS, the mass M may be acceleration-dependent. The IDM is thus rewritten as 

( ) ( )idm fricM q qq dτ = +ɺɺ ɺɺ ɺ , (13) 

with ( )fric fricqd τ=ɺ  and ( )M qɺɺ  allowing for the possibility of any significant acceleration dependency. 

Note that ( )fricd qɺ  is simply the friction force that depends only on the velocity and so it can be 

considered, therefore, as a state-dependent parameter ( ( )fricd qɺ  is used instead of ( )d qɺ  in order to 

avoid ambiguity with the linear friction model). 

The IDM (13) is now written as a linear-in-the-state-dependent-parameters form given by 

( ), ,idm sdp sdpq q qτ = IDM θɺ ɺɺ , (14) 

with ( ) [ ], , 1sdp q q q q=IDM ɺ ɺɺ ɺɺ  and ( ) ( ) T

sdp fricM q d q =  θ ɺɺ ɺ . 

As with the IDIM-LS method, the actual force τ  differs from idmτ  by an error sdpe  and so, in a similar 

fashion, the following over-determined system of equations is obtained 

( )ˆ ˆˆ, ,idm sdp sdp sdpq q q= +y X θ εɺ ɺɺ ,     (15) 

where sdpX  is the ( )2SN ×  sampled matrix of ( )ˆ ˆˆ, ,sdp q q qIDM ɺ ɺɺ ; sdpε  is the ( )1SN ×  sampled vector of 

sdpe  and ˆ ˆˆ, ,q q qɺ ɺɺ  are constructed as explained in Section 2.4. 

The acceleration-dependent mass ( )( )M q tɺɺ  and the friction nonlinearity ( )( )fricd tqɺ  are 

simultaneously estimated by the SDP routine in the CAPTAIN Toolbox. The SDP routine provides 

( )ˆ q̂M ɺɺ , the estimate of ( )q̂M ɺɺ , the ( )1SN ×  sampled vector of the acceleration-dependent mass 

( )ˆM qɺɺ ; and ( )ˆ ˆ
fric qd ɺ , the estimate of ( )ˆ

fric qd ɺ , the ( )1SN ×  sampled vector of the velocity-dependent 

friction fricd . As a result, the SDP model residual, ˆsdpε , is calculated as 

ˆˆ diag
sdp idm sdp sdp= −ε y X Θ ,     (16) 

where ( )ˆ
S

diag
sdp Ndiag =

 
X q Iɺɺ  is the ( )2S SN N× ⋅  matrix of ( )ˆ ˆˆ, ,sdp q q qX ɺ ɺɺ  all of whose sampled 

basis functions are diagonalized and horizontally stacked; ( )ˆdiag qɺɺ  is the ( )S SN N×  diagonal matrix 

whose the ith element is the ith element of q̂ɺɺ  the ( )1SN ×  sampled vector of q̂ɺɺ ; 
SNI  is the ( )S SN N×  

identity matrix; and  ( ) ( )ˆ ˆ ˆ ˆ ˆ
TT T

sdp fricq q =
  

Θ M dɺɺ ɺ  is the estimate of ( ) ( )ˆ ˆ
TT T

sdp fricq q =
  

Θ M dɺɺ ɺ  the 

( )2 1SN⋅ ×  sampled vector of sdpθ  . Finally, the relative error is given by ˆ sdp idmε y . 

 



2.6 Experimental results 

The dynamic parameters M , vF , cF  and offset are first identified with the standard identification 

IDIM-LS  approach described in section 2.4. 

As pointed out in section 2.4, since it is possible to generate very accurate experimental data and 

utilize appropriate data filtering, the LS estimates can be considered as unbiased, even though the 

EMPS is identified in closed loop. This point is dealt with in (Janot, Vandanjon, & Gautier, 2014a) and 

(Brunot et al., 2015). The LS estimates and the relative errors are given in Table 1. 

The acceleration-dependent mass estimated by the SDP method is illustrated in Fig.3. We see that 

the SDP estimation suggests a constant value very similar to the IDIM-LS estimate (there is only a 

difference of 60g which is negligible compared with 95Kg). Note also that the optimized Noise 

Variance Ratio (NVR) associated with the ( )ˆ q̂M ɺɺ  term in the SDP regression, which defines the 

amount of state dependency (see Young 2011), is 1.0e-23 i.e. virtually zero; while the NVR associated 

with ( )ˆ ˆ
fric qd ɺ  is 2.9. This large difference between the two NVR's is consistent with our a priori 

knowledge and suggests that the mass is not acceleration-dependent. As similar results are obtained 

with a position- and velocity-dependent mass i.e. ( )M q  and ( )M qɺ , respectively, it can be assumed 

that the mass is state-invariant. Given the large value of 2.9 for the NVR associated with the friction 

SDP estimate, the SDP method is able to reconstruct the shape of the frictional nonlinearity, as 

shown in Fig.4. Finally, the relative error obtained with the SDP-based identification method is only 

1.5%. 

At first glance, the results obtained with the standard IDIM-LS identification method and the linear 

friction model seems quite acceptable. Indeed, the relative error is small (less than 5%) and the 

estimated mass is close to its CAD value i.e. 95kg. However, the relative error obtained using SDP 

estimation is only 1.5% and we need to examine the reason for this discrepancy between the results. 

This is due to the estimates of the friction parameters, as revealed in Fig.4. Here we see that there is 

a small but sustained difference between the red and blue lines in the lower part of the curves 

(negative velocities), which suggests that there could be a small bias in the latter (see the enlarged 

panel in the lower right corner of Fig.4). In other words, there is a small error in the friction model 

identified by the standard method and the SDP friction estimate eliminates this by suggesting an 

asymmetrical friction model; i.e. a model that depends on the sign of qɺ  where, for negative 

velocities, the red and blue lines are not perfectly parallel. This asymmetry can be explained by the 

fatigue of the screw. 

In order to take this asymmetry into account, the friction model is modified to 

( ) ( )( ) ( ) ( )( )0 0 0 0v c v cfric F F sign F F sigq q nq qτ + + + + − − − −= + + +ɺ ɺ ɺ ɺ , (17) 

where 0+
 and 0−

 are two operators defined by ( ) ( )1
0

2

sig q
q q

n+ + 
=  

 

ɺ
ɺ ɺ  and ( ) ( )1

0
2

sig q
q q

n− − 
=  

 

ɺ
ɺ ɺ ;

vF+  and cF+  (resp. vF−  and cF− ) are the viscous and Coulomb friction coefficients for the positive 

(resp. negative) velocities. Finally, ( )0 q+
ɺ  (resp. ( )0 q−

ɺ ) returns qɺ  if 0q >ɺ  (resp. 0q <ɺ ) and 0 

otherwise. 



When equation (17) is inserted into (1), it yields the following linear-in-the-parameters IDM 

asi ydm m asymτ = IDM θ , (18) 

with ( ) ( )( ) ( ) ( )( )0 0 0 0asym q sign sigq q nq q+ + − − =
 

IDM ɺ ɺ ɺɺ ɺ ɺ  and 
T

asym v c v cM F F F F+ + − − =  θ . 

As in the previous situations, the actual force τ  differs from idmτ  by an error asyme  and the resulting 

over-determined set of equations takes the form, 

asym asym asyidm m= +θy X ε ,     (19) 

where idmy  is the ( )1SN ×  sampled vector of τ ; asymX  is the ( )5SN ×  matrix of ( )ˆˆ, ˆ,asym qq qIDM ɺ ɺɺ ; and 

asymε  is the ( )1SN ×  vector of asyme  error terms. The LS estimates of (19) and their associated 

deviations are given by (11) and (12), idmX  being replaced with asymX . 

The resulting estimates and the relative error are given in Table 2. These confirm that the friction has 

asymmetric behaviour because vF+  is significantly different from vF− , while the estimate of M has not 

changed. Furthermore, the LS relative error has now decreased to 1.5%, a value that is compatible 

with the relative error obtained with the non-parametric SDP method. The direct comparison plotted 

in Fig.5 shows clearly that the agreement between the SDP estimated friction shape and the 

asymmetrical friction model reconstructed with the above LS estimates is now acceptable. This finally 

estimated relationship is the parameterised SDP model of the EMPS, which we will term the IDIM-

SDP model. Clearly, if the prior assumptions of the IDIM-LS estimation are modified in the light of the 

SDP estimation, then the IDIM-LS estimation results would be the same. 

 

Table 1 : IDIM-LS estimates of the EMPS with the standard linear friction model 

Parameters IDIM-LS estimates (
( )

ˆ%
LS iθσ ) 

M  (kg) 95.08 (0.15%) 

vF  (N/ms-1) 202.30 (0.74%) 

cF  (N) 20.53 (0.64%) 

offset (N) -3.19 (1.81%) 

Relative error 3.7% 

 

  



 

Table 2 : Parametric IDIM-SDP estimates for an asymmetrical friction model 

Parameters LS estimates (
( )

ˆ%
LS iθσ ) 

M  (kg) 95.12 (0.11%) 

vF +
 (N/ms-1) 165.80 (0.92%) 

cF +
 (N) 20.19 (0.67%) 

vF −
 (N/ms-1) 238.89 (0.64%) 

cF −
 (N) 20.85 (0.65%) 

Relative error 1.5% 

 

 

Fig.3: Direct comparison between mass estimated with the IDIM-LS method (blue dots) and the 

acceleration-dependent mass estimated with the SDP algorithm (red crosses): it is clear that the 

mass is acceleration-independent. 

 



 

 

Fig.4. The upper panel shows a direct comparison between the friction nonlinearity reconstructed 

with the LS estimates of the linear friction model (blue dots) and the nonlinearity estimated by the 

SDP algorithm (red crosses). The enlarged portion shown in the lower panel reveals a small but 

persistent error that suggests an asymmetrical friction model. 
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Fig.5. Direct comparison between the friction nonlinearity estimated with the asymmetrical linear 

friction model (2nd stage IDIM-SDP model, blue dots) and the friction nonlinearity previously 

estimated by the first stage SDP algorithm (red crosses), showing that the two estimates are 

consistent and confirm the asymmetry. 

 

3 Second case study: TX40 robot 

3.1 Introduction and presentation of the TX40 robot 

In the previous section, it has been shown that the SDP method can be used as a two-stage 

alternative to the IDIM-LS method for estimating and evaluating the quality of the friction model; an 

alternative that helps to avoid over-reliance on prior conceptions about the nature of the nonlinear 

characteristics. In this section, SDP estimation is evaluated on a more challenging system: the TX40 

robot. 

The Stäubli TX40 robot has a serial structure with six rotational joints. Its kinematics are defined by 

the DHM notation, as in Fig.6 (Khalil & Dombre, 2002). The geometric parameters defining the TX40 

frames are given in Table 3: 0=jσ  means that joint j  is rotational; jα  and jd  give, respectively, the 

angle and the distance between 1−jz  and jz  along 1−jx ; jθ  and jr  give, respectively, the angle and 

the distance between 1−jx  and jx  along jz . 

The joint positions and the control signals are stored with a measurement frequency 
  
fm = 5kHz . The 

Reference trajectories are fifth order polynomials that excite the base parameters sufficiently for 

identification purposes. 
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Table 3: Geometric parameters of the TX40 robot 

j σj αj dj θj rj 

1 0 0 0 θ1 0 

2 0 -π/2 0 θ2 0 

3 0 0 d3 = 0.225m θ3 r3 = 0.035m 

4 0 π/2 0 θ4 r4 = 0.225m 

5 0 -π/2 0 θ5 0 

6 0 π/2 0 θ6 0 

 

 

Fig.6: Link frames of TX40 Stäubli robot 

 

3.2 Inverse dynamic model of the second link with the usual method 

When only the second link is moving, with the others maintained at their steady-sate levels, the IDM 

of the second link (also known as the arm of the robot) reduces to 

22 22 2 2grav fridm icqZZ offsetτ ττ ++= +ɺɺ ,     (20) 

where 
2idmτ  is the second joint torque; 

2gravτ  is the gravity torque of the second link given by 

( ) ( )
2 2 2 2 2grav gMX cos q gMY sin qτ − += , 2MX  and 2MY  being the components of the gravity effect;

29.81 /g m s=  is the gravity constant; 
2fricτ  is the friction torque of the second link; 2q , 2qɺ  and 2qɺɺ , 

are, respectively, the position, velocity and acceleration of the second link; 2ZZ  is the total inertia of 

the second link; and 2offset  is an offset parameter. 

In the case of a linear friction model, 
2fricτ  is given by 



( )
2 2 2 2 2ric vf cq F gn qF siτ += ɺ ɺ ,      (21) 

where 2vF  and 2cF  are the viscous and Coulomb friction parameters of the second link. 

The resulting IDM is linear in relation to the dynamic parameters, i.e., 

( )
2 2 2 2, ,idm q q qτ = IDM θɺ ɺɺ ,      (22) 

where ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2, , cos sin 1q q q q g q g q q sign q=  −  IDM ɺ ɺɺ ɺɺ ɺ ɺ  is the ( )1 6×  matrix of the 

basis functions of the IDM and [ ]2 2 2 2 2 2

T

v cZZ MX MY F F offset=θ  is the ( )6 1×  vector of the 

dynamic parameters. As 2τ  differs from 
2idmτ  by an error 

2idme and there are SN  available samples of 

the measured signals, it is straightforward to formulate the following over-determined system of 

equations 

2 2 2idm ididm m= +X εθy ,      (23) 

where 
2idmy  is the ( )1SN ×  sampled vector of 2τ ; 

2idmX  is the ( )6SN ×  matrix of ( )2 2 2
ˆ ˆˆ , ,q q qIDM ɺ ɺɺ ;

2idmε  

is the ( )1SN ×  vector of 
2idme  error terms; and 2 2 2

ˆ ˆˆ , ,q q qɺ ɺɺ  are constructed as explained in section 2.4. 

The LS estimates from equation (19) and their associated covariance matrix are given by (11) and (12)

, with idmX  being replaced with 
2idmX , again under the assumption that the prefiltering has been fully 

effective in its removal of noise from the variables. 

 

3.3 Using the SDP function of the CAPTAIN Toolbox to retrieve the shapes 

of gravity and friction 

When using the SDP estimation method, the IDM is rewritten in the form 

( )
2 2 2 2 2,idm q d qZZ qτ = +ɺɺ ɺ ,       (24) 

with ( ) ( ) ( )
2 22 2 2 2, q qq d qd d qq = +

ɺ
ɺɺ  where ( ) ( ) ( )

2 2 2 2 2 2qd q gMX cos q gMY sin q= − +  and 

( ) ( )
2 2 2 2 2 2 2v cqd q F F signq q offset= + +
ɺ
ɺ ɺ ɺ . 

It is assumed here that the parameter ( )2 2,d q qɺ  depends on the position 2q  and the velocity 2qɺ  so, 

ideally, it should be identified using the Multi-SDP method, (see e.g. Sadeghi et al., 2010). 

Unfortunately, such a multi-state dependent algorithm is quite involved and has not yet been fully 

implemented in the CAPTAIN Toolbox. As a result, the existing SDP routine in CAPTAIN cannot be 

used directly in this situation. This difficulty has been partially circumvented, however, by developing 

an additional iterative "back-fitting" procedure, which is quite similar to that used in the standard 

SDP algorithm. Provided it converges satisfactorily, back-fitting estimation such as this is reasonably 

justified in this example because the perturbations can be considered as decoupled: i.e. one depends 

on the position alone, while the other depends on the velocity alone, so the estimation is potentially 

“separable”. 



As in the case of IDIM-LS estimation, 2τ  differs from 
2idmτ  by an error 

2sdpe  and so, from SN  available 

samples, the following system of regression equations is obtained 

( )
2 22 2 2 2

ˆ ˆ,ˆidm sdpZZ q q+ +=y q d εɺɺ ɺ ,      (25) 

where ( )2 2
ˆ,ˆ qqd ɺ  is the ( )1SN ×  sampled vector of ( )2 2

ˆ,ˆd q qɺ ; 
2sdpε  is the ( )1SN ×  sampled vector of 

2sdpe ; 2 2 2
ˆ ˆˆ , ,q q qɺ ɺɺ  are constructed as explained in Section 2.4.; and 2q̂ɺɺ  is the ( )1SN ×  sampled vector  of 

2q̂ɺɺ . The SDP iterations then involve the following, three step procedure, with steps 2 to 3 repeated 

until convergence is achieved: 

1. Initial Step: the estimate of ( )2 2
ˆ,ˆ qqd ɺ , denoted by ( )2 2

ˆ ˆ,q̂ qd ɺ , is calculated as follows 

( ) �
22 2 2 2ˆˆ ˆ, idmq Zq Z= −d y qɺɺɺ , 

where �2ZZ  is the CAD value of 2ZZ . Then, the shapes of ( )
2 2q qd  and ( )

2 2q qd
ɺ
ɺ  are initialized with 

( )
2 2

0ˆ ˆq qd  and ( )
2

0
2

ˆ ˆ
q q =d 0
ɺ
ɺ , respectively, since they are assumed to be unknown to the users. 

for k=1,2, …, until convergence 

At each step k, 

2. the estimate of ( )
2 2ˆq

k qd , denoted by ( )
2 2

ˆ ˆq
k qd , is estimated using the SDP algorithm: here, the 

measurement vector is ( ) ( )
2 22 2 2

ˆ ˆˆˆ ˆ, kk
q qqq q−=y d d

ɺ
ɺ ɺ ; the regressor is =z 1 ; and the state vector is 

2ˆ=x q , 2q̂ , being the ( )1SN ×  sampled vector of 2q̂ . 

3. the estimate of ( )
2 2

ˆk
q qd
ɺ
ɺ , denoted by ( )

2 2
ˆ ˆk

q qd
ɺ
ɺ , is estimated using the SDP algorithm: here, the 

measurement vector is ( ) ( )
2 22 2 2

ˆ ˆ ˆ,ˆ ˆk
q
k

q qq q−=y d d
ɺ

ɺ ; the regressor is again =z 1 ; but the state 

vector is now 2
ˆ=x qɺ , 2q̂ɺ , being the ( )1SN ×  sampled vector  of 2q̂ɺ . 

end 

The following convergence criterion has been found to yield good results 

( ) ( )
( )

2 2 2 2

2

1

2

ˆ ˆ ˆ ˆ, ,ˆ

ˆ ˆ ˆ

ˆ

,

k k

k

q q
tol

q q

q q

−−
≤

d d

d

ɺ ɺ

ɺ

, 

where ( ) ( ) ( )
2 22 2 2 2

ˆ ˆ ˆ, ˆˆ ˆ ˆk k
q

k
qqq q q= +d d d
ɺ
ɺɺ  is the estimate of ( ) ( ) ( )

2 22 2 2 2
ˆ, ˆˆ ˆk k

q q
k q qq q= +d d d

ɺ
ɺɺ  at step k  and tol  

is a threshold defined by the users (between 0.5% and 5.0%). Finally, the relative error is simply given 

by 
2

ˆ sdp idmε y  with � ( )
2 2 2 2 2

ˆ ˆˆ ˆ ,k
sdp idm ZZ q q= − −ε y q dɺɺ ɺ . 

Although this back-fitting procedure is reasonably justified in this example, caution is still necessary 

because gravity and friction are low-frequency phenomena, so that it is not clear a priori that the SDP 



algorithm will be able to extract ( )
2 2qd q  and ( )

2 2qd q
ɺ
ɺ  from ( )2 2,d q qɺ  in a completely separable 

manner. However, as we see below, it does work reasonably well in this example when only the 

second link is moving. 

 

3.4 Experimental results 

3.4.1 Only the second link is moving 

The dynamic parameters are first identified with the IDIM-LS method with only the second link being 

excited by the fifth-order polynomial trajectories that are required to ensure good estimation of the 

dynamic characteristics. The other links are maintained at their steady-state levels. 

The IDIM-LS estimates are given in Table 4.  The reference values are the CAD values for the inertia 

and gravity parameters; and the friction parameters are the estimated values given in (Janot, 

Vandanjon, & Gautier, 2014a). The reconstruction is quite good with a relative error of 5.8%. Finally, 

the estimates of inertia, gravity and friction parameters are close to the reference values. 

The iterative-SDP estimation procedure outlined above in section 3.3 is initialized with ( )
2 2

0ˆ ˆq qd  and 

( )
2

0
2

ˆ ˆ
q q =d 0
ɺ
ɺ , while tol =1% is used as the convergence criterion. In order to evaluate the resulting 

estimates, the SDP nonlinearities ( )
2 2

ˆ ˆq
k qd  and ( )

2 2
ˆ ˆk

q qd
ɺ
ɺ  identified by this procedure are regressed on 

( ) ( )2 2ˆ ˆ 1gcos q gsin q−    and ( )2 2
ˆ ˆsignq q 
 
ɺ ɺ , respectively, using standard linear least squares 

estimation. These constant parameter LS estimates are referred to as the IDIM-SDP estimates in 

Table 4 and one would expect these to be close to the IDIM-LS estimates if the SDP method is to be 

considered successful and the SDP identified nonlinearities ( )
2 2

ˆ ˆq
k qd  and ( )

2 2
ˆ ˆk

q qd
ɺ
ɺ  are to be trusted. In 

this case, the SDP iterative algorithm converges in 5 iterations and the results plotted in Fig.7, 

together with the parameter estimates given in Table 4, demonstrate that the iterative SDP 

algorithm does indeed yield very good results in this example. In particular, the shape of the gravity 

and friction nonlinearities reconstructed by the SDP-based algorithm match the shape of the same 

nonlinearities  reconstructed with the IDIM-LS estimates pretty well. The model output is compared 

with the measured data in the left hand panel of Fig.8; the residuals are serially uncorrelated and the 

amplitude distribution of the normalized SDP error distribution appears reasonably Gaussian (see the 

right hand panel in Fig.8). Similar results are obtained with the IDIM-LS method but they are not 

shown here. In addition, the estimates of inertia, gravity and friction parameters are close to the 

reference values and the relative error obtained with the SDP-based algorithm is 4.5%, less than the 

5.8% obtained using the IDIM-LS method. 

Examination of the results shows that there is one small but interesting difference between the 

nature of the estimated offsets obtained by IDIM and SDP estimation. These differences can be 

explained by the implementation of the SDP algorithm, which attempts to identify a separate offset 

for each state-dependent nonlinearity, with one offset identified for the friction and another for the 

gravity. However, by adding these two identified offsets together, we obtain the value given in Table 

4, which is very close to the IDIM-LS-identified value. In other words, the SDP algorithm has 



conveniently separated the parameter 2offset  into two offsets (one for the friction and one for the 

gravity). 

 

Table 4 : IDIM-LS and IDIM-SDP estimates compared with the reference values 

Parameters IDIM-LS estimates SDP estimates Reference values 

2ZZ  1.56 (1.44%) X 1.60 

2vF  5.52 (2.08%) 5.52 (1.99%) 5.68 

2cF  7.06 (0.47%) 7.05 (0.42%) 7.77 

2MX  2.84 (0.16%) 2.83 (0.14%) 2.80 

2MY  0.026 (39.18%) 0.045 (38.38%) 0.0 

2offset  0.055 (8.61%) 0.062 (8.54%) 0.0 

relative error 5.8% 4.5% X 

 

 

Fig.7.The Friction nonlinearity estimated by the non-parametric 1st stage SDP method compared 

with the friction effect identified with the IDIM-LS method (left panel); and a similar comparison 

between the two gravity effect nonlinearities in the right panel. 
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Fig.8. Direct comparison of the measured data with the output of the SDP-based identification 

method (IDIM-SDP, left panel) and histogram of the normalized error (right panel). A similar result 

is obtained with the IDIM-LS method. 

 

3.4.2 All the links are moving simultaneously 

In this situation, all the six joints of the TX40 robot are now excited with fifth-order polynomial 

trajectories that ensure good estimation of the dynamic characteristics. The dynamic parameters of 

the second link are again identified using SDP estimation. Here, the gear ratio is quite high i.e. 

greater than 10, so the second link is seen as a one-degree-of-freedom robot and its IDM is still given 

by (22). As in the previous examples, the SDP estimation results are similar to those obtained by the 

IDIM-LS method but they provide further insight into the detailed nature of the nonlinearity. 

The IDIM-LS estimates are given in Table 5 and the comparison of the model output with the 

experimental data is shown in Fig.9. The estimates of inertia and friction parameters are quite close 

to the reference values but while the amplitude distribution of the normalized IDIM-LS error looks 

reasonably Gaussian, the error is serially correlated. Not surprisingly, therefore, the model output 

does not explain the measured data very well, with a relative error of 20.0%. Such a result is a reason 

for concern because a relative error is expected to be less than 10%. 

As reported in section 3.4.1, the iterative SDP estimation procedure is initialized with ( )
2 2

0ˆ ˆq qd  and 

( )
2

0
2

ˆ ˆ
q q =d 0
ɺ
ɺ ; tol =1% is used as the convergence criterion; while the SDP nonlinearities ( )

2 2
ˆ ˆq

k qd  and 

( )
2 2

ˆ ˆk
q qd
ɺ
ɺ  identified by this procedure are regressed on ( ) ( )2 2ˆ ˆ 1gcos q gsin q−    and ( )2 2

ˆ ˆsignq q 
 
ɺ ɺ , 

respectively. In this case, the algorithm converges in 6 iterations and the results plotted in Fig.10 

demonstrate, together with the parameter estimates given in Table 5, that the gravity and friction 

shapes reconstructed by the algorithm do not match the gravity and the friction shapes 

reconstructed with the IDIM-LS estimates. The observed mismatches that can be seen in Fig.10 are 

due to the fact all the links are moving in the experiments and so some neglected coupling effects are 

being excited. Interestingly, the mismatches reflect, and so account for, such neglected coupling 

effects, so that the explanation of the data using the multi-SDP model, as shown in Fig.11, is rather 

better than that for the IDIM-LS estimated model in Fig.9. This confirmed by the calculation of the 

relative errors, 20.0% with the IDIM-LS method and 11.0% with the SDP method. 
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These experimental results demonstrate once again the utility of the SDP estimation approach in 

highlighting where problems exist in nonlinear modelling and how they may be corrected. They also 

show how SDP estimation can be used as a tool in Data-Based Mechanistic (DBM) modelling. This is 

an inductive modelling strategy where less weight is placed on prior assumptions and more weight 

on the information in the experimental data. Only after carefully analysing the experimental data 

using appropriate model identification and signal processing tools, such as SDP estimation, does the 

modeller consider, at the mechanistic stage of the procedure, the prior assumptions and hypotheses, 

in order to see if these are compatible with the identified, data-based model. Or, if the data-based 

model is found to be deficient in any ways, as in this case when all the links are moving 

simultaneously, the modeller must consider whether new data need to be collected in order to 

examine these deficiencies using a better experimental design. And then, depending on the new SDP 

estimation results, the parametric form of the nonlinearities can be modified and re-estimated. 

 

Table 5 : IDIM-LS and SDP estimates compared with the reference values 

Parameters IDIM-LS estimates SDP estimates Reference values 

2ZZ  0.9636 (2.17%) X 1.09 

2vF  5.2358 (2.64%) 5.1711 (1.85%) 5.68 

2cF  7.8059 (4.17%) 7.8245 (2.78%) 7.77 

2MX  0.5636 (16.53%) 0.3573 (7.31%) 2.21 

2MY  -3.6043 (3.08%) -3.2864 (1.07%) 0.0 

2offset  12.8879 (8.61%) 9.5048 (3.48%) 0.0 

relative error 20.0% 11.0% X 

 

 

Fig.9. Direct comparison with the IDIM-LS method (left panel) and histogram of the normalized 

IDIM-LS error (right panel). The reconstructed torque does not match very well the measured one 

and although the error distribution is reasonably a Gaussian distribution the errors are serially 

correlated. This tends to show that the IDM given by (23) is not well specified while all the joints 

are moving. 
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Fig.10 : Friction shape reconstructed with the SDP method compared with the friction effect 

identified with the IDIM-LS method (left panel) and gravity shape reconstructed with the SDP 

method compared with the gravity effect identified with the IDIM-LS method (right panel). The 

mismatches observed suggest there are missing couplings. 

 

 

Fig.11. Direct comparison with the SDP-based method (left panel) and histogram of the normalized 

SDP-based error (right panel). A better matching between the reconstructed torque and the 

measured one is obtained. Furthermore, the error distribution is reasonably Gaussian but again 

there is some serial correlation. This shows that the IDM given by (23) is not well specified while all 

the joints are moving. This IDM must be therefore rejected. 

 

4 State-Dependent Parameter Control of the EMPS System 
One advantage of SDP nonlinear models is that they can form the basis for control system design 

based on the use of linear control theory: see (Taylor et al., 2008; and chapter 9 in Taylor et al., 

2013). This SDP approach has some similarities with other methods that have been proposed, such as 

exact linearisation by feedback (Isidori, 1995) (better known as the computed torque in robotics: see 
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Khalil & Dombre 2002), velocity-based linearization (Leith & Leithead, 1998); and Linear Parameter 

Varying (LPV) based control design (see e.g. White et al., 2013). 

In this section, we consider how this methodology can be applied to the control of the simulated 

EMPS system represented by the DDM in equation (1), written as: 

1 2 3 4( )q c q c sign q c cτ= + + +ɺɺ ɺ ɺ ,    (26) 

where, 

1 vc F M= − ; 2 cc F M= − ; 3c offset M= − ; and 4 1c M= . 

Based on the LS estimates given in Table 1, the values of these parameters are: 

1 2.1277c = − ; 2 0.2123c = − ; 3 0.0336c = ; and 4 0.0105c = . 

 

4.1 Derivation of the SDP control model 

Considering u τ=  as the input and x q=  as the output, this estimated model can be represented as 

follows in transfer function form: 

4

( )sdp

q

c
x u

p p a

y x w

=
+

= +
,     (27) 

where r r rp d dt=  is the derivative operator;  qw  represents the additive noise with a noise/signal 

ratio by standard deviation of 5%; and  sdpa  is an SDP estimated by the SDP routine in CAPTAIN using 

data from the prior closed loop experiments on the EMPS unit when controlled by the linear PD 

controller. 

As we have seen in previous sections, sdpa  defines the nonlinear characteristics of the open loop 

system and although it is denoted here as a parameter and used as such in the SDP control system 

design, it is a complete nonlinear function. This is illustrated in the Simulink model of the open-loop 

system appearing at the left of Fig.12 with the SDP nonlinearity block shown expanded at the right of 

the Fig.12. The functional form of sdpa  is shown as the red part of the curve in Fig.13, while the blue 

parts of the curve are extrapolations to the estimated linear parts of the curve. These extensions of 

the relationship are required to handle larger fluctuations in the velocity arising from the more rapid 

SDP controlled response of the closed loop system. Note how the extrapolations reveal the 

asymmetry of the estimated nonlinearity, as exposed by the SDP estimation. 

It will be seem that Fig.13 is a combination of the non-parametric SDP estimate and the parametric 

extrapolations. This combined form was chosen here, rather than the fully parametric form in 

equation (17), because it demonstrates how SDP control can be implemented directly using the non-

parametric estimates, the parametric estimate or a hybrid combination of both, as here. This can be 

particularly useful if the estimated nonlinearity is rather complex, such as those shown in Fig.10, 

which would be more difficult to parameterize by simple relationships. 



 

 

Fig.12. Simulation of the EMPS with the SDP-based control 

 

 

Fig.13. Friction model used with the SDP-based control 

 

4.2 SDP control system design: re-design of the PD controller 

The idea of using SDP models to simplify nonlinear control system design has a long heritage (see e.g. 

Young, 1981; Young, 1996). In the latter reference, it follows from research into linear control system 

design based on the Non-Minimal State Space (NMSS) form of the system model (see section 4.3). 

The NMSS control gains in the SDP case are effectively updated at each sampling instant, based on 

the linear "snapshot" of the SDP model at this sampling instant. Taylor et al. (2008) have shown that, 

using this approach, the stability of the closed loop non-linear system is guaranteed for "all-pole" 

systems, such as (27) and that good control system designs can be obtained for more general 

models. Although stability is not guaranteed in the case of model mismatch, the Monte Carlo-based 

uncertainty analysis reported in the paper suggests that the SDP/PIP approach is relatively robust to 

such uncertainty. 
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As an initial exercise in SDP control system design, let us consider re-design of the simple PD 

controller used for the identification studies described in section 2.3 but based on the SDP transfer 

function model (27) and desired closed loop characteristics with 1.0η =   (critical damping) and   

250nω = rad/s. As in section 2.3, the design is carried out by simple block diagram analysis with an 

SDP-based Proportional-Derivative (SDP-PD) pre-compensator p vK pK+ . The closed loop transfer 

function obtained in this manner is given by 

( )4

2
4 4( )

p v

sdp v p

c K K
x

a c K p c

p

p K
r

+
=

+ + +
,     (28) 

where r  is the command input, i.e. the reference. Since the system is second order, this PD control 

is equivalent to state variable feedback, so we see that both poles are assignable. And because the 

open-loop system model has a free integrator, the closed loop system exhibits "type 1" performance 

with unity gain and zero steady-state error to step command inputs. 

If the desired closed loop TF denominator has damping dη  and natural frequency ndω , then we see 

that the values for the control gains can be computed from the equations: 

2
4/p ndK cω= ; 4(2 ) /v d nd sdpK a cη ω= − ,    (29) 

where it will be noted that the vK  gain is a function of the SDP parameter sdpa  and so the closed 

loop system synthesized with these gains includes the SDP nonlinearity, reflecting the nonlinear 

nature of the SDP-PD control system. In particular, because it is a state-dependent parameter, it 

changes or "adapts" in response to the changes in velocity.  

The simulated response of the closed loop system to a step input command starting at zero, with a 

final value of 0.05m, is plotted in Fig.14 where it will be noted that the rapid response has a total 

settling time of 0.04 seconds. Also plotted in Fig.14 is the response of the conventional, linear PD 

controlled system used in the identification studies, where we see that the response is clearly much 

slower and oscillatory, with a total settling time about three times as long. 

 

 

Fig.14. Output step response obtained with the SDP-based control (black solid line) and the PD 

control (black dash-dot line) 
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4.3 SDP control system design: PIP-SDP outer-loop control system design 

The NMSS-based Proportional-Integral-Plus (PIP) approach to control system design has been 

described comprehensively in the recent book by (Taylor et al., 2013), which includes all aspects of 

the design process, as well as numerous examples illustrating its application. In the present EMPS 

example, it could be applied directly, using the EMPS model in discrete-time NMSS form, but is would 

then require nonlinear modification of the kind described in previous sections, which is not 

straightforward once the model is transformed into discrete-time, digital form.  

A simple, alternative approach is to implement PIP control as an "outer-loop" or "trimming" control 

that considers the SDP-PD controlled system, which is effectively linearized by its SDP mechanization, 

as the system to be controlled. The discrete-time model required for this design is obtained by 

statistical identification and estimation based on input-output data from the SDP-PD controlled 

system using optimal Refined Instrumental Variable (RIV) estimation for continuous time systems 

(see Young, 2011), as implemented by the RIVCBJID and RIVCBJ routines in the CAPTAIN Toolbox.  

The discrete-time model required for PIP control system design is then obtained via the Matlab c2d 

continuous to discrete-time conversion routine. The sampling interval for such conversion is at the 

discretion of the control system designer but, in this case, the discrete-time model so obtained, for a 

sampling interval of 0.01 s, is: 

1 2 1

1 2

0.0107 0.0088 0.0025
( ) ( )

1 1.8660 0.8706

z z z
x k r k

z z

− − −

− −

− +=
− +

,     (30) 

where rz−  is the backward shift operator, i.e. ( ) ( )rz x k x k r− = − . 

The PIP design for this model system is based on Linear-Quadratic (LQ) optimization of the associated 

NMSS model form, where the NMSS control gains are computed by the the PIPOPT and GAINS 

routines in the CAPTAIN Toolbox. These use the numerator and denominator model coefficients in 

(30) together with the user specified weightings on the error, ew; control input, uw; and the non-

minimal state variables xw where, in this example, 10ew= ; 1.0uw= ; and 1.0xw= . A serially 

connected loop gain 5.0LG =  is added to the design in order to tune the closed loop response so 

that it just meets the constraint imposed by a required 0.15 m/s velocity limit. 

The full details of this PIP-SDP control system design and evaluation are given in (Young, 2015). This 

shows that the closed loop system responds well to any violation of hard constraints and is not 

sensitive to uncertainty in the estimated model parameters, including the SDP nonlinearity, unless 

these reach very high levels. Consequently, this control system design represents a reasonable, 

simulation-based starting point for future planned research and development studies. 

 

5 Conclusions 
This paper has shown how the concept of State-Dependent Parameter (SDP) models for nonlinear 

dynamic systems can be exploited to aid the identification and control of electro-mechanical 

systems. It has demonstrated how SDP identification provides an alternative to the existing standard 



methods of statistical identification for such systems; an alternative that can help to avoid over-

reliance on prior conceptions about the nature of the nonlinear characteristics.  

When used as a tool in the experimental evaluation of an Electro-Mechanical Positioning System 

(EMPS), the first, non-parametric estimation stage in the SDP identification procedure is able to 

discover deviations from the assumed nonlinear characteristics of the system and quantify the 

resulting nonlinear characteristics in a practically useful SDP form. The second IDIM-SDP stage, based 

on least squares estimation of the suitably parameterized SDP model, can be considered as a logical 

improvement of the standard IDIM-LS method. One application of such SDP models is to facilitate 

nonlinear control system design using linear-like design procedures. This is illustrated by simulation 

studies that show how the SDP model of the EMPS system can be used as the basis for the SDP 

Proportional-Integral-Plus (SDP-PIP) design of a nonlinear control system for the EMPS. 

SDP identification is one of the tools used for the Data-Based Mechanistic (DBM) modelling of 

dynamic systems. This general, inductive method of modelling differs from the alternative, 

hypothetico-deductive "grey-box" approach that is often used for identifying electro-mechanical 

systems. In particular, only after initial, purely data-based "black-box" modelling are any prior 

assumptions and hypotheses considered in order to see if they are compatible with the identified 

model, or whether new data need to be collected in order to examine any significant differences. A 

typical example of how SDP identification can be exploited in such a diagnostic role is demonstrated 

by the results of experiments that show SDP identified deficiencies in the initially assumed nonlinear 

characteristics of the Stäubli TX40 robot system. 

6 References 
Beven, K. J., Leedal, D. T., Smith, P. J.,  and Young, P. C., 2012, Identification and representation of 

state dependent nonlinearities in flood forecasting using the DBM methodology. System 

Identification, Environmetric Modelling and Control (London: Springer-Verlag), pp 341-366. 

Brunot, M., Janot, A., Carrillo, F., Garnier, H., Vandanjon, P.O., and Gautier, M., 2015. Physical 

parameter identification of a one-degree-of-freedom electromechanical system operating in closed 

loop. Proceedings of the17th IFAC Symposium on System Identification (SYSID 2015), Beijing, China. 

Calanca, A., Capisani, L. M., Ferrara, A., and Magnani, L., 2011, MIMO Closed Loop Identification of an 

Industrial Robot. IEEE Transactions on Control System Technology, 19, 1214-1224. 

Gautier ,M., and Khalil, W., 1992, Exciting trajectories for the identification of the inertial parameters 

of robots. International Journal of Robotics Research, 11, 362-375. 

Gautier, M., and Poignet, P., 2001, Extended Kalman Filtering and Weighted Least-squares Dynamic 

Identification of Robot. Control Engineering Practice, 9, 1361-1372. 

Gautier, M., Janot, A., and Vandanjon, P.O., 2013, A New Closed-Loop Output Error Method for 

Parameter Identification of Robot Dynamics. IEEE Transactions on Control System Technology, 21, 

428-444. 

Gautier, M., and Briot, S., 2014, Global Identification of Joint Drive Gains and Dynamic Parameters of 

Robots. Journal of Dynamic Systems, Measurement, and Control, 136, 1-9. 



Hollerbach, J., Khalil, W., and Gautier, M., 2008, Springer Handbook of Robotics (Berlin Heidelberg: 

Springer). 

Indri, M., Calafiore, G., Legnani, G., Jatta, F., and Visioli A., 2002, Optimized Dynamic Calibration of a 

SCARA Robot. Proceedings of the 15th IFAC World Congress (IFAC WC 2002), Barcelona, Spain. 

Isidori, A., 1995, Nonlinear Control Systems (Berlin: Springer-Verlag). 

Janot, A., Vandanjon, P.O., and Gautier, M., 2014a.A Generic Instrumental Variable Approach for 

Industrial Robots Identification. IEEE Transactions on Control Systems Technology, 22, 132-145. 

Janot,  A., Vandanjon, P.O., and Gautier, M., 2014b, An instrumental variable approach for rigid 

industrial robots identification. Control Engineering Practice, 25, 85-101. 

Khalil, W., and Dombre, E., 2002, Modeling, identification and control of robots (London: Hermes 

Penton). 

Kostic, D., de Jager, B., Steinbuch, M., and Hensen, R., 2004, Modeling and Identification for High-

Performance Robot Control: An RRR-Robotic Arm Case Study. IEEE Transactions on Control System 

Technology, 12, 904-919. 

Leith, D. J., and W. E., Leithead, 1998, Gain-scheduled and nonlinear systems: Dynamic analysis by 

velocity-based linearization families. International Journal of Control, 70, 289–317. 

Noel, J-P., Schoukens, J., and Kerschen, G., 2015, Grey-box nonlinear state-space modelling for 

mechanical vibrations identification. Proceedings of the 17th IFAC Symposium on System 

Identification (SYSID 2015), Beijing, China. 

Olsen, M. M., Swevers, J., and Verdonck, W., 2002, Maximum Likelihood Identification of a Dynamic 

Robot Model: Implementation Issues. International Journal of Robotics Research, 21, 89 – 96. 

Östring, M., Gunnarsson, S., Norrlöf, M., 2003, Closed-loop identification of an industrial robot 

containing flexibilities. Control Engineering Practice, 11, 291-300. 

Previdi, F., and Lovera, M., 2003, Identification of a class of nonlinear parametrically varying models. 

International Journal on Adaptive Control and Signal Processing, 17, 33–50. 

Previdi, F.,Lovera, M., Identification of non-linear parametrically varying models using separable least 

squares. International Journal of Control, 77, 1382-1392. 

Ramdani, N., and Poignet, P., 2005, Robust Dynamic Experimental Identification of Robots with Set 

Membership Uncertainty. IEEE/ASME Transactions on Mechatronics, 10, 253 – 256. 

Sadeghi, J., Tych, W., Chotai, A., and Young, P.C., 2010, Multi-state dependent parameter model 

identification and estimation for nonlinear dynamic systems. Electronics Letters, 46, 1265 - 1266. 

Swevers, J., Verdonck, W., and De Schutter, J., 2007, Dynamic model identification for industrial 

robots - Integrated experiment design and parameter estimation. IEEE Control Systems Magazine, 27, 

58-71. 



Taylor, C. J., A. Chotai, and P. C., Young, 2008, Non-linear control by input–output state variable 

feedback pole assignment. International Journal of Control, 82, 1029–1044.  

Taylor, C. J., P. C., Young, and A., Chotai, 2013, True Digital Control. Chichester: Wiley. 

Van den Hof, P.M.J., 1998, Closed loop issues in system identification. Annual Reviews in Control, 22, 

173-186. 

Wernholt, E., and Gunnarsson, S., 2008, Estimation of Nonlinear Effects in Frequency Domain 

Identification of Industrial Robots. IEEE Transactions on Instrumentation and Measurement, 57, 856-

863. 

White, A. P., Zhu, G., and Choi, J., 2013, Linear Parameter-Varying Control for Engineering 

Applications (London: Springer-Verlag). 

Xi, F., 1995, Effect of Non-Geometric Errors on Manipulator Inertial Calibration, Proceedings of 

International Conference on Robotics and Automation (ICRA 1995), Nagoya, Japan. 

Young, P.C., 1981, A second generation adaptive autostabilization system for airborne vehicles. 

Automatica, 17, 459–470.  

Young, P.C., 1996, A general approach to identification, estimation and control for a class of 

nonlinear dynamic systems, in M. I. Friswell and J. E. Mottershead (Eds.), Identification in Engineering 

Systems, University of Wales: Swansea. 

Young, P.C., 1998, Data-based mechanistic modeling of engineering systems. Journal of Vibration and 

Control, 4, pp. 5–28. 

Young, P.C., 1998, Data-based mechanistic modeling of environmental, ecological, economic and 

engineering systems. Environmental Modelling & Software, 13, 105–122,. 

Young, P.C., 1999, Nonstationary time series analysis and forecasting. Progress in Environmental 

Science, 1, 3–48, 1999. 

Young, P.C., 2000, Stochastic, dynamic modelling and signal processing: time variable and state 

dependent parameter estimation, in Nonlinear and Nonstationary Signal Processing, W.J. Fitzgerald, 

A. Walden, R. Smith and P.C. Young, Eds, Cambridge: Cambridge University Press, 2000, pp. 74–114. 

Young. P. C. , 2001, The identification and estimation of nonlinear stochastic systems. in A. I. Mees, 

editor, Nonlinear Dynamics and Statistics (Birkhauser: Boston), pp 127–166.  

Young, P.C., 2005, Comments on Identification of non-linear parametrically varying models using 

separable least squares’ by F. Previdi and M. Lovera: black-box or open box? International Journal of 

Control, 78, 122-127. 

Young, P.C., 2011, Recursive Estimation and Time-Series Analysis: An Introduction for the Student and 

Practitioner (Berlin: Springer-Verlag). 



Young, P.C., 2015, SDP control of second order electro-mechanical positioning systems. Technical 

Report TN/PCY/2, Systems and Control Group, Lancaster Environment Centre, Lancaster University, 

UK. 

Young, P.C., Foster, M., and Lees, M. J., 1993, A direct approach to the identification and estimation 

of continuous-time systems from discrete-time data based on fixed interval smoothing. Proceedings 

12th IFAC World Congress (IFAC WC 1993), Sydney, Australia.  

Young, P.C., McKenna, P., and Bruun, J., 2001, Identification of nonlinear stochastic systems by state 

dependent parameter estimation. International Journal of Control, 74, 1837–1857. 

 


