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Abstract

This paper presents a discussion of some of the issues associated with the
multiple sources of uncertainty and non-stationarity in the analysis and
modelling of hydrological systems. Different forms of aleatory, epistemic,
sematic and ontological uncertainty are defined. — The potential for epistemic
uncertainties to induce disinformation in calibration data and arbitrary non-
stationarities in model error characteristics, and surprises in predicting the
future, are discussed in the context of other forms of non-stationary. It is
suggested that a condition tree is used to be explicit about the assumptions that
underlie any assessment of uncertainty. This also provides an audit trail for
providing evidence to decision makers.

Introduction

[ first started carrying out Monte Carlo experiments with hydrological models in
1980, while working at the University of Virginia. This was not a new approach
at that time, but the computing facilities available (a CDC600 “mainframe”
computer at UVa) made it feasible for the types of hydrological model being used
then. Adopting a Monte Carlo approach was a response to a personal “gut
feeling” that traditional statistical approaches (at that time an analysis of
uncertainty around the maximum likelihood model) were not sufficient to deal
with the complex sources of uncertainty in the hydrological modelling process.
Over time, we have learned much more about how to discuss facets of
uncertainty in terms of aleatory, epistemic, ontological, linguistic, and other
types of uncertainty (for one set of definitions see Table 1). Our perceptual
model of uncertainty is now much more sophisticated but I will argue that this
has not resulted in analogous progress in uncertainty quantification and, more
particularly, uncertainty reduction. As one referee on this paper suggested, it can
be argued that the classification of uncertainties is not really necessary: there are
only epistemic uncertainties (arising from lack of knowledge) because we simply
do not know enough about hydrological systems and their inputs and outputs. It
is then a matter of choice as to how to treat those uncertainties, including formal
probabilistic and statistical frameworks.

What is clear is that such epistemic uncertainties will limit the inferences that
can be made about hydrological systems. In particular, we are often dependent
on the uncertainties associated with past observations (see, for example, Figure
1) and have not really done a great deal about reducing hydrological data
uncertainties into the past. Some observational uncertainties can certainly be
treated as random variability or aleatory, but can also be subject to arbitrary



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

uncertainties. Here, I use the word arbitrary to distinguish epistemic
uncertainties that do not have simple structure or stationary statistical
characteristics on the time scales used for model calibration and evaluation. This
time scale qualification is important in this context since the only information we
will have about the impact of different sources of uncertainties on model outputs
will be contained in the sequences of model residuals within some limited period
of time. It is easy to show that stochastic models based on purely aleatory
variability can exhibit apparent short period irregularity or non-stationarity (see
for example Kousoyiannis, 2010; Montanari and Koutsoyiannis, 2012). However,
there is then the question of how to identify the characteristics of long period
variability from shorter periods of model residuals that might contain the type of
arbitrary characteristics defined above. It has been shown that some arbitrary
uncertainties of this type might be disinformative to the model calibration
process (Beven et al, 2011; Beven and Westerberg, 2011; Beven and Smith,
2014; Kauffeldt et al., 2013; Figure 1), even if they might be informative in other
senses (such as in identifying inconsistences in hydrological observations, Beven
and Smith, 2014).

A disinformative event in this context is one for which the observational data are
inconsistent with the fundamental principles (or capacities in the sense of
Cartwright, 1999) that might be applied to hydrological systems and models.
Most hydrological simulation models (as opposed to forecasting models, see
Young and Beven, 2013) impose a principle of mass balance. @~ We expect
catchment systems to also satisfy mass balance (and energy balance, and
momentum balance, see Reggiani et al.,, 1999). The observational data, however,
might not. Figure 1 is a good example of this, with far more output as discharge
from the catchment than the recorded inputs for that event. While there are
some circumstances, such as a rain-on-snow event where this could be realistic
scenario, clearly no model that is constrained by mass balance would be able to
reproduce such an event, suggesting that the residuals would induce bias in any
model inference. It also suggests that we should take a much closer look at the
data to be used in model calibration and evaluation before running a model
(including the neglect of potential snowmelt inputs).

The implication of allowing that some model residuals might be affected by this
type of arbitrary epistemic uncertainty is that commonly used probabilistic or
statistical approaches to uncertainty estimation do not take enough account of
the epistemic nature of uncertainty in the modelling process. It is not just a
matter of finding an appropriate statistical distribution or, alternatively, some
non-parametric probabilistic structure for the model residuals (e.g. Schoups and
Vrugt, 2010; Sikorska et al., 2014), especially when the sample of possible
arbitrary uncertainties (or surprises) might be small. It will be suggested in
what follows that we need to be more pro-active about methods for uncertainty
identification and reduction. This might help to resolve some of the differences
between current approaches.

Defining Types of Uncertainty (and why the differences are important)
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Past analysis in a variety of modelling domains in the environmental sciences has
distinguished a variety of types of uncertainties and errors, including aleatory
uncertainty, epistemic uncertainty, semantic or linguistic uncertainty and
ontological uncertainty (e.g. Beven and Binley, 1992; McBratney, 1992; Regan et
al., 2002; Ascough et al., 2008; Beven, 2009; Beven et al., 2014; Raadgever et al,,
2011; Beven and Young, 2013). Table 1 lists one such classification relevant to
the application of hydrological models. In particular, the definition of aleatory
uncertainty is constrained to the case of of stationary statistical variation (noting
that this might involve a structural statistical model but with stationary
parameters), for which the full power of statistical theory and inference is
appropriate. Epistemic uncertainties, on the other hand, have been broken
down into those associated with model forcing data and observations of system
response, and those associated with the representation of the system dynamics.
As in Figure 1, the observational data might sometimes be hydrologically
inconsistent, and might lead to disinformation being fed into the model inference
process (Beven et al, 2011; Beven and Smith, 2014). Any of these might be
sources of the rather arbitrary nature of errors in the forcing data and resulting
model residual variability noted above.

Many aspects of the modelling process involve multiple sources of uncertainty,
and without making very strong assumptions about the nature of these different
sources it is not possible to separate the effects of the different uncertainties
(Beven, 2005). Attempts to separate the error associated with rainfall inputs to
a catchment, for example, result in some large changes to event inputs and a
strong interaction with model structural error (e.g. Vrugt et al.,, 2008; Kuczera et
al, 2010; Renard et al, 2010). The very fact that there are epistemic
uncertainties arising from lack of knowledge about how to represent the
response, about the forcing data, and about the observed responses, reinforces
this problem. If we knew what type of assumptions to make then the errors
would no longer be epistemic in nature.

Defining a method of uncertainty estimation (and why there is so much
controversy about how to do so)

Uncertainty estimation has been the subject of considerable debate in the
hydrological literature. There are those who consider that formal statistics is
the only way to have an objective estimate of uncertainty in terms of
probabilities (e.g. Mantovan and Todini, 2006; Stedinger et al., 2008) or that the
only way to deal with the unpredictable is as probabilistic variation (Montanari,
2007; Montanari and Koutsoyiannis, 2012). There are those who have argued
that treating all uncertainties as aleatory random variables will lead to
overconfidence in model identification, so that more informal likelihood
measures or limits of acceptability might be justified (e.g. within the GLUE
framework of Beven, 2006, 2012; Beven and Binley, 1992, 2013; Freer et al,,
2004; Smith et al., 2008; and within Approximate Bayesian Computation by Nott
et al. 2012; and Sadegh and Vrugt, 2013, 2014). There are those who recognise
the complex structure of hydrological model errors but who use transformations
of different types to fit within a formal statistical framework (e.g. Montanari and
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Brath, 2005).  Some of these opinions have been explored in a number of
commentaries and opinion pieces (Beven, 2006a,b, 2008, 2012; Hamilton, 2007;
Montanari, 2007; Hall et al., 2008; Sivakumar, 2008; Todini and Mantovan, 2008)
as well as in more technical papers.

There is, of course, no right answer - precisely because there are multiple
sources of epistemic uncertainty, including model structural uncertainty, that are
impossible to separate. There are also different frameworks for assessing
uncertainties and different ways of formulating likleihoods. If we had knowledge
of the true nature of the sources of uncertainty then they would not be epistemic
and we might then be more confident about using formal statistical theory to
deal with all the sources of unpredictability. As noted earlier, some epistemic
uncertainties should be reducible by further experimentation or observation, so
that there is an expectation that we might move towards more aleatory residual
error in the future. In hydrology, however, this still seems a long way off,
particularly with respect to the hydrological properties of the subsurface. And
if, of course, there is no right answer then this leaves plenty of scope for different
philosophical and technical approaches for uncertainty estimation - or, put
another way, how to define an uncertainty estimation methodology involves
ontological uncertainties (Table 1). In this situation there is a lot of uncertainty
about uncertainty estimation, and this is likely to be the case for the foreseeable
future.  This has the consequence that communication of the meaning of
different estimates of uncertainty can be difficult. This should not, however, be
an excuse for not being quite clear about the assumptions that are made in
producing a particular uncertainty estimate (Faulkner et al, 2007; Beven and
Alcock, 2012; see later).

Defining non-stationarity (in catchments and model residuals)

Many people think that the only important distinction in the modelling process is
between variables that are predictable and uncertainties that are not. Model
residuals might have components of both: some identifiable predictable
structure as well as some unpredictable variability. The structure indicates
some aspect of the system dynamics (or boundary condition and evaluation
data) that is not being captured by the model. It is often represented as a
deterministic function. In the very simplest case, a stationary mean bias; in more
complex cases the function might indicate some structured variability in time or
space, such as a trend or seasonal component. The unpredictable component, on
the other hand, is usually treated as if the variability is purely aleatory on the
basis that if something is not predictable then it should be considered within a
probabilistic framework (e.g. Montanari, 2007) albeit that, as already noted, the
nature of that variability might have some long time scale properties
(Koutsoyiannis, 2010; Montanari and Koutsoyiannis, 2012).

This is important because it has implications for evaluating models as
hypotheses in the face of epistemic errors (or long time scale aleatory errors).
Hypothesis testing has traditionally been the realm of statistical inference and
probability, including the recent application of Bayesian statistical theory to
hydrological modelling (e.g. Clark et al.,, 2011). Purely empirically, probability
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and statistics can, of course, describe anything from observations to model
residuals regardless of the actual sources of uncertainty as an expression of our
reasonable expectations (Cox, 1946). However, for any particular set of data,
the resulting probabilities are conditional on the sample being considered. This
is one reason why we try to abstract the empirical to a functional distributional
form or the type of empirical non-parametric distributions used by Sikorska et al.
(2014) or Beven and Smith (2014).

For simple cases where the empirical sample is random and stationary in its
characteristics (after taking account of any well defined structure) then there is a
body of theory to suggest what we should expect in terms of variability in
statistical characteristics as a function of sample size. There is also then a
formal relationship between the statistical characteristics and a likelihood
function that can be used in model evaluation. The simplest case is when the
statistics of the sample have zero mean bias, constant variance, are independent
and can be summarized as a Gaussian distribution. More complex likelihood
functions could take account of bias, heteroscedasticity, autocorrelation and
other assumptions about the distribution. = Even these more complex cases,
however, are what I have called ideal cases in the past (e.g. Beven, 2002; 2006a).
Fundamentally, they assume all variability in model residuals is aleatory in
nature.

But real problems are not ideal in this sense, as illustrated above they are subject
to arbitrary epistemic errors. It is then debatable as to whether it is appropriate
to treat the errors as if they are aleatory. The reason is that the effective
information content of any observations (or model residuals) will be reduced by
epistemic uncertainties relative to the ideal case. Why is this? It is because the
stationary parameter assumption of the aleatory component gives the possibility
of future surprise a very low likelihood. Yet evaluating the performance of
hydrological models in real applications often reveals surprises that are clearly
not aleatory in this way, including occasional surprises of gross under or over
predictions.  This makes it difficult to define a formal statistical model of the
residual structure and consequently, if the methods of estimating likelihoods in
formal statistics are not valid, makes hypothesis testing of models more difficult
(e.g. Beven, 2010; Beven et al., 2012).

Consider the situation where the estimates of rainfall over a catchment might be
of variable quality during a series of events in a model calibration period. The
error in the estimates is not aleatory or distributional in nature because the
distribution of events is not expected to be stationary (except possibly over very
long periods of time but that is not really of interest for the period of calibration
data that might be available). This is the context in which we can describe the
variability as rather arbitrary i.e. we do not really know whether the rainfall
uncertainties conform to any statistical distribution or if the errors in a
calibration period are a good guide to the errors in the prediction period that we
are actually interested in. The same could be true, of course, for aleatory errors
with long-term properties (see examples in Koutsoyiannis, 2010; Montanari and
Koutsoyiannis, 2012; Koutsoyiannis and Montanari, 2015). The underlying
stochastic process might then be stationary but it might be difficult to identify
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the properties of that process from a short-term sample with apparently non-
stationary statistics. These are then both forms of epistemic uncertainty. In both
cases we lack knowledge about the arbitrary nature of events or the stochastic
process. We could in principle, of course, constrain that uncertainty by better
observational methods, or longer data series - though that is not very useful
when we only have access to calibration data collected in the past, even if we
might hope to have improved data into the future.

An interesting example in this respect is the post-audit analyses of a number of
groundwater modelling studies presented in Konikow and Bredehoeft (1992)
and Anderson and Woessner (1992). Model predictions of future aquifer
behavior were compared with what actually happened as the future evolved. In
most studies the models failed to predict the future that actually happened. In
some cases this was because, with hindsight, the original model turned out to be
rather poor; in other cases it was because the future boundary conditions for the
simulations had not been well predicted. In hindcasting with the correct
boundary conditions the predictions were much better. Hindcasting is not all
that useful, however. Where modelling is used to inform decision making (as in
these groundwater cases) it is predictions of the future that are required. In
these studies therefore, error characteristics were not stationary and the future
turned out to hold epistemic surprises (either that the calibrated model was
poor, or that the changes in boundary conditions were not those expected).

These examples involve a number of forms of non-stationarity. These are
summarized in Table 2. In Class 1 we place the classical definition of non-
stationarity discussed by Koutsoyiannis and Montanari (2015) in the context of
stochastic process theory. They, in fact, consider that this is the only legitimate
use of the word non-stationarity in being consistent with its technical definition.
In doing so, they are assuming that once any deterministic structure has been
taken into account, all forms of epistemic error can be represented by a
stationary stochastic model. The parameters of that model will, under the
ergodic hypothesis, converge to the true values of the stochastic process as more
and more observations are collected. That might, in the case of a complex
stochastic process (or even some simple fractal processes) take a very large
sample, but that does not negate the principle. Indeed, for a deterministic
dynamical system, a stochastic representation will have stationary properties
only if it is ergodic. If non-stationarity is assumed, then the system will not have
ergodic properties and, Koutsoyiannis and Montanari (2015) suggest, inference
will be impossible. This view means either we are back to treating all epistemic
uncertainty as aleatory and stationary, once any deterministic structure has been
removed, or we are simply left with unpredictability as a result of lack of
knowledge.

This view has the backing of formal stochastic theory but I think there are two
issues with it. The first is the difference between what might hold in the ergodic
case and the limit sample of behaviours we have in calibrating models in
practical applications. The example of a stationary stochastic process giving rise
to apparently non-stationary behavior and statistics used to illustrate
Koutsoyiannis and Montanari (2015) illustrates this nicely. If we have access
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only to a limited part of the full record, we might see periods of different
statistical characteristics, or periods that include jumps. Real hydrological data
might certainly be of this form, but the identification of the true stochastic
process would not be possible without very long series (this is true for any
fractal type behavior). The fact that we know that the changing statistics are
produced by a stationary process in such a hypothetical example, does not
negate the fact that the statistics are changing and we should be wary of using an
oversimplified error model (see discussion of Figure 2 below).

Secondly, the dynamics of a nonlinear catchment model will introduce changes in
the statistical properties of residuals both in the way it processes errors in the
inputs and as a result of model structural error that cannot be compensated by a
simple deterministic non-stationarity. From a purely hydrological point of view
we expect that model residuals should have rather different characteristics on
the rising limb to those around the peak to those on the falling limb in terms of
bias, changing variance, and changing autocorrelation. The problem will be
greater for the type of arbitrary event to event epistemic input (or model
structure) error discussed above. The error in that event will also have an effect
on setting up the antecedent conditions for the following event, and in some
catchments, for some time into the future. The statistics of the error will be
changing. Again therefore we should be wary of using an oversimplified error
model. It is possible that again there may be a complex stochastic model that
would describe all the potential changes in error statistics, but it is doubtful if it
would be identifiable given the small sample of potential errors in a calibration
period. It is notable that, even given a long period of calibration data, Sikorska
et al. (2014) did not attempt to identify an underlying stochastic model of the
residuals, but instead used a non-parametric probabilistic approach (in the
reasonable expectation tradition of Coxian probability, Cox, 1946), to represent
the changing variability of the modelling uncertainties under different
circumstances (see also Beven and Smith, 2014). There is a difficulty with any
non-parametric method, however, of how to deal with potential uncertainties in
the future that are outside the range of those seen in the past.

Why is it important to make these distinctions? It is because it has an impact on
what we should expect in testing a model as a hypothesis of how a catchment
functions, and in particular whether it should be considered to be fit for purpose.
For example, catchments change over time (Non-stationarity Class 2) but models
are often fitted with parameters that are assumed constant in time (and often
space). Why is this considered acceptable practice? Perhaps, because there is
an implicit expectation that this type of non-stationarity will be dominated by
uncertainty in the boundary conditions used to drive a model (including the
potential for Non-stationarity Class 3). There may, of course, be some clues as to
whether these non-stationarities are important if there is some identifiable
structure in the model residuals that could be included as a deterministic
component in Non-stationarity Class 1. But we might only see the net effect of
all these non-stationarities in the changing properties of the unpredictable
errors (Non-stationary Class 4). But these are rarely investigated. In practical
applications, statistical model inference is normally carried out as if all sources of
error were aleatory with simple stationary properties. This assumption allows
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the full power of statistical inference to be applied to model calibration but
would seem to be an unrealistic assumption for hydrological and other
environmental models.

Defining likelihood (and the implications for information content and
hypothesis testing).

The advantage of taking a formal statistical approach to model calibration is that
there is a formal link between the structure of a set of model residuals and the
appropriate likelihood function. If, and only if, the assumptions about the
structure of the errors are valid, then there is an additional advantage that there
is a theoretical estimate of the probability of predicting a new observation.
These advantages are undermined by the non-stationarities that arise from
epistemic error that will generally reduce the information content (or introduce
more disinformation) in the inference process than would be the case if all errors
were simply aleatory with stationary parameters. So treating all sources of error
as if aleatory will result in over-conditioning (and less protection against
surprise in prediction). There is evidence for this in the very tight posterior
parameter distributions that often arise in Bayesian calibrations of rainfall -
runoff models. The likelihood surface is made very peaky such that models with
very similar error variance can have tens or even hundreds of orders of
magnitude difference in likelihood (Figure 2). That really does not seem realistic
to me, and did not when I first started evaluating likelihoods of multiple runs in
the 1980s. The origins of the GLUE methodology lie there.

So one way ahead here might be to find more realistic likelihood functions that
reflect the reduced information content for these non-ideal cases and are robust
to epistemic error. The question then is how to properly reflect the real
information in a set of data when the variations are clearly not aleatory and
when the summary statistics might be significantly period dependent. Again,
whether the long-term properties are stationary or not is not really relevant, we
want to protect against surprise in prediction (as far as is possible for an
epistemic problem). In the rainfall-runoff modelling case it has been suggested
that the use of summary statistics for model evaluation, such as the flow duration
curve, might be more robust to error in this sense (e.g. Westerberg et al., 2011b;
Vrugt and Sadegh, 2013).

Beven et al. (2011) and Beven and Smith (2014) show how, for the relatively
flashy South Tyne catchment in northern England (322 km?2), it is possible to
differentiate obviously disinformative events from informative events in model
calibration within the GLUE methodology. They take an event-based approach
to model evaluation that tries to reflect the relative information content expected
for informative and disinformative events. They suggest that factors that will
increase the relative information content of an event include: the relative
accuracy of estimation of the inputs driving the model; the relative accuracy of
observations with which model outputs will be compared (including
commensurability issues); and the unusualness of an event (extremes, rarity of
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initial conditions,....). Factors that will decrease the relative information content
of an event include: repetition (multiple examples of similar conditions);
inconsistency of the input and output data; the relative uncertainty of
observations (e.g. highly uncertain overbank flood discharges would reduce
information content of an extreme event, discharges for catchments with ill-
defined rating curves might be less informative than in catchments with well
defined curves); and also a preceding disinformative / less informative event
over the dynamic response time scale of the catchment.

The approach depends on classifying events prior to running the model into
different classes based on rainfall volume and antecedent conditions. Outlier
events can be identified and examined to see if they are disinformative in terms
of their runoff coefficients or other characteristics. Limits of acceptability are
established for model performance in each class of informative events and a
likelihood measure is based on average model performance in each class. The
information content for informative events following disinformative events is
weighted less highly.

Models that do not meet the limits of acceptability are rejected (given zero
likelihood) in the GLUE methodology and do not therefore contribute to the set
of models to be used in prediction. This is one way of testing models as
hypotheses. Epistemic error also plays a role here in that we would not want to
make false negative (Type II) errors in rejecting a model that might be useful in
prediction because it has been forced with poor input data. This is more serious
than a false positive error in that if a poor model is not initially rejected we can
hope that future evaluations would reveal its limitations.  Statistical inference
deals with this problem by never giving a zero likelihood, only very very small
likelihoods to models that do not perform well (as seen in the orders of
magnitude change in Figure 2). This also means, however, that no model is ever
rejected and hypothesis testing has to depend on some other subjective criterion,
such as some informal limits on the Bayes ratios for competing models. One
implication for this is that if no model is rejected, there is no guarantee that the
best model found is fit for purpose. This must also be assessed separately.

For the South Tyne catchment it turns out that using a standard data set, as
collected by the Environment Agency, there were a large number of
disinformative events as distinguished by unrealistically high or low runoff
coefficients. Excluding these events from the model calibration results in
different posterior distributions of the model parameters (see Figure 3). It also
allows the characteristics of informative and disinformative events to be
considered separately.

When it comes to prediction, however, we do not know a priori whether the next
event will be informative or disinformative. This can only be evaluated post-hoc,
once the future has evolved (in model testing, of course, the “future” considered
is some “validation” data set). = This may involve non-stationarities of error
characteristics that have not been seen in the calibration period. Beven and
Smith (2014) allowed for this by evaluating the error characteristics for
informative and disinformative events separately and treating each new event as
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if it might be either informative or disinformative (Figure 4). It was shown to
help in spanning the observations for events later shown to be disinformative,
but clearly cannot deal with every surprise that might occur in prediction,
particularly when the system itself is non-stationary.

Defining model rejection in hypothesis testing (and why uncertainty
estimation is not the end point of a study)

In the case of the modelling study of the South Tyne catchment, some models
were found that satisfied the limits of acceptability. This is not always the case;
in other studies no models have satisfied all the criteria of acceptability imposed
(see, for example, the attempts at “blind validation” of the SHE model by Parkin
et al. 1996, and Bathurst et al., 2004; and the studies of Pappenberger et al,,
2007; Page et al., 2007; Choi and Beven, 2009; Dean et al., 2009; and Mitchell et
al,, 2011, within the GLUE framework using a variety of different models).

In terms of the science this is, of course, a good thing in that if all the models are
rejected then improvements must be made to either the data or the model
structures and parameter sets within those structures being used. That is how
real progress is made. But the possibility of epistemic errors in the data used to
force a model might make it difficult to make an assessment of how constrained
any limits of acceptability should be. We know that all models are
approximations and so such limits should be set to reflect the expectation of how
well a model should be able to perform. This is a balance. We should not expect
a model to predict to a greater accuracy than the assessed errors in the input and
evaluation data. If it does we might suspect that it has been over-fitted to
accommodate some of the particular realisation of error in the calibration data.

But we also do not want to make that Type II false negative error of rejecting a
model that would be useful in prediction, just because of epistemic errors and
disinformation in the forcing or evaluation data. This suggests that if we do
reject all the models tried as not fit for purpose we should look first at the data
where the model is failing and assess the potential for error in that data,
especially if the failures are consistent across a large number of models. In
rainfall-runoff modelling this is rarely done, but hydrological modellers are
beginning to become more aware of the issues (e.g. Krueger et al, 2009;
McMillan et al., 2010, 2012; Westerberg et al., 2011a; Kauffeldt et al., 2013). We
also have to be careful that we have searched the model space adequately to
ensure that no models have been missed. This can be difficult with high
numbers of parameters, when the areas of acceptable models in the model space
might be quite local. Iorgulescu et al. (2005) for example made 2 billion runs of a
model in a 17 parameter space of which 216 were found to satisfy (rather
constrained) limits of acceptability. Blazkova and Beven (2009) made 600000
runs of a continuous simulation flood frequency model and found that only 37
satisfied all the limits of acceptability. They also demonstrated that whether this
was the case depended on the stochastic realisation of the inputs used.
Improved efficiency of sampling within this type of rejectionist strategy might
then be valuable (e.g. the DREAMagc code of Sadegh and Vrugt, 2014).
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But where all the models tried consistently fail, and we do not have any reason
for suggesting that the failure is due to disinformative data, then it suggests that
a better model is needed. This might lead to new hypotheses about how the
system is functioning, or new ways of representing some processes (see also
Gupta and Nearing, 2014). Model rejection is not a failure, it is an opportunity
to improve either the model or data or both. Finding a better model will not
provide total protection against future epistemic surprises but would, we hope,
be a step in the right direction. How big a step is possible, however, will also
depend on reducing uncertainty in the forcing and evaluation data.

Communicating uncertainty to users of model predictions

There are two main reasons for incorporating uncertainty estimation into a
study. One is for scientific purposes, to improve understanding of the problem,
and carry out hypothesis testing more rigorously. The second is because taking
account of the uncertainty in model predictions might make a difference to a
decision that is made in a practical application, for example, whether the
planning process can take account of uncertainty in the predicted extent of
flooding for the statutory design return period. For this second purpose it is
necessary to communicate the meaning of the model predictions, and their
associated uncertainties, to decision makers (e.g. Faulkner et al., 2007).

But, as we have seen, there can be no right answer to the estimation of
uncertainty. Every estimate is conditional on the assumptions that are made and
in most applications there are many assumptions that must be made (see, for
example, Beven et al,, 2014). In this case it might be useful to the communication
process if the users, or particular groups of users, are introduced to the nature of
those assumptions. In fact, it will generally facilitate the communication process
if the users can be involved in making decisions about the relevant assumptions
whenever possible. The collection of assumptions that underlie any particular
application can be considered to be a form of “Condition Tree” (Beven and
Alcock, 2012; Beven et al.,, 2014). At each level of the condition tree the
assumptions must be made explicit, forming a form of audit trail for the analysis.
It has even been suggested! that every uncertainty assessment should be labelled
with the names of those who produced it (and, by extension, perhaps those who
agreed the assumptions on which it is based).

Can we talk of confidence rather than uncertainty in model simulations?

Decisions about hydrological systems are made under uncertainty, and often
severe uncertainty, all the time. Decision and policy makers are, however, far
more interested in evidence than uncertainty. Evidence-based framing has
become the norm in many areas of environmental policy (e.g. Boyd, 2013). In
the UK, the Government has considered standards for evidence (Intellectual
Property Office, 2011) and the Environment Agency has an Evidence Directorate
and produces documents summarising the evidence that underpins its corporate
strategy. Clearly such an Agency wants to have confidence in the evidence used

1 For example by Jonty Rougier at Bristol University
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in such policy framing. Confidence should be inversely related to error and
uncertainty, but is often assessed without reference to quantifying uncertainty in
either data or model results.

An example case study is the benchmarking exercise carried out to test 2D flood
routing models (Environment Agency, 2013). Nineteen models were tested on
12 different test cases, ranging from dam break to fluvial and urban flooding. All
the test cases were hypothetical with specified roughness parameters, even if in
some of the cases the geometry was based on real areas. Some had some
observations available from laboratory test cases. Thus, confidence in this case
represents agreement amongst models. It was shown that not all models were
appropriate for all test cases, particularly those involving supercritical flow, and
that some models that used simplified forms of the St. Venant equations while
faster to run had more limited applicability.  Differences between models
depended on model implementation and numerics, so that acceptability of a
model in terms of agreement with other models was essentially a subjective
judgment.

There is an implicit assumption in assessing confidence in this way that in real
applications to less than ideal datasets, the models that agree can be calibrated
to give satisfactory simulations for mapping and planning purposes. While the
report did recommend that future comparisons should also aim to assess the
value of models in assessing uncertainty in the predictions, the impacts of
epistemic uncertainty in defining the input, roughness parameters, and details of
the geometry of the flow domain would seem to be more important than the
differences between models in which we have confidence after such testing (see
Beven et al, 2014). In real applications confidence can only be assessed by
comparison with observed data, while allowing for uncertainties in inputs. Even
then, there is evidence that effective values of roughness parameters might
change with the magnitude of an event, so that confidence in calibration might
not carry over to more extreme events (Romanowicz and Beven, 2003). Yet, for
planning purposes, the Environment Agency is interested in mapping the extent
of floods with annual exceedance probabilities (AEP) of 0.01 and 0.001. Itis, of
course, rather rare to have observations for floods within this range of AEP,
more often we need to extrapolate to such levels.

It is possible to assess the uncertainty associated with such predictions and to
visualise that uncertainty either as probability maps (e.g. Leedal et al., 2010;
Neal et al., 2012; Beven et al., 2014) or as different line styles depending on the
uncertainty in flood extent in different areas (Wicks et al., 2008). In some areas,
where the flood fills the valley floor, the uncertainty in flood extent might be
small, but the uncertainty in water depth, with its implications for damage
calculations, might be important. In other, low slope, areas the uncertainty in
extent might be significant. The advantage of doing both estimates is that
confidence can be given a scale, even if as in the Intergovernmental Panel on
Climate Change (IPCC) that scale is expressed in words rather than probability.
In fact, the [PCC distinguishes a scale of confidence (from “very low” to “very
high”) from a scale of likelihood (from “exceptionally unlikely” to “virtually
certain” based on a probability scale) (IPCC, 2010). Confidence indicates how
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convergent the estimates of past and future change are at the current time;
likelihood the degree of belief in particular future outcomes. Thus the summary
of the outcomes from IPCC5 states that “ocean warming dominates the increase
in energy stored in the climate system, accounting for more than 90% of the
energy accumulated between 1971 and 2010 (high confidence). It is virtually
certain that the upper ocean (0-700 m) warmed from 1971 to 2010, and it likely
warmed between the 1870s and 1971. It is very likely that the Arctic sea ice cover
will continue to shrink and thin and that Northern Hemisphere spring snow
cover will decrease during the 21st century as global mean surface temperature
rises.” (IPCC, 2013).

Now the I[PCC will not assign any probability estimates to any of the model runs
that contribute to their conclusions. They are described as projections, subject
to both model limitations and conditional on scenarios of future greenhouse gas
emissions. The future scenarios, and hence any probability statements, are
necessarily incomplete. This has not, however, stopped the presentation of
future projections in probabilistic terms in other contexts, such as those derived
from an ensemble of regional model runs in the UK Climate Projections (UKCP09,
see http://ukclimateprojections.defra.gov.uk). The outcomes from UKCP09 are
being used to assess impacts on UK hydrology (e.g. Bell et al.,, 2012; Kay and
Jones, 2012; Cloke et al., 2010) but there is sufficient epistemic uncertainty
associated with both the input scenarios and the climate model implementations
to be concerned about expressions of confidence or likelihood in these cases,
when the probabilities may be incomplete and we should be aware of the
potential for the future to surprise (Beven, 2011; Wilby and Dessai, 2010).
Incomplete probabilities are inconsistent with a risk-based decision theoretic
approach based on the exceedance probabilities of risk, although it might be
possible to assess a range of exceedance curves under different assumptions
about future scenarios (Rougier and Beven, 2013).

We are often in this situation. Hence the need to agree assumptions and
methodologies with potential users of model outcomes as discussed in the last
section. Consequently any expressions of confidence or likelihood are
conditional on the assumptions, a conditionality that depends not only on what
has been included, but also what might have been left out of an analysis. There
will of course be epistemic uncertainties that are “unknown unknowns”. Those
we do not have to worry about until, for whatever reason, they are recognized as
issues and become “known unknowns”. More important are factors that are
already “known unknowns”, but which are not included in the analysis because
of lack of knowledge or lack of computing power or some other reason.
Confidence and likelihood need to reflect the sensitivity of potential decisions to
such factors since they are not easily quantified in uncertainty estimation.

An uncertain future?

So while quantitative uncertainty estimation is valuable in assessing the range of
potential outcomes consistent with an (agreed) set of assumptions, it will
generally be the case that difficult to handle epistemic uncertainties will mean
that the assessment is incomplete (for good epistemic reasons). Future
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surprises come from that incompleteness (e.g. Beven, 2013). Assessments of
evidence, and expressions of confidence and likelihood should reflect the
potential for surprise and robust decisions need to be insensitive to both the
assessed uncertainty and the potential for surprise (erring on the side of caution,
risk aversion or being precautionary). From a modeller’s perspective this has
the advantage that it will reduce the possibility of a future post-audit analysis
showing that the model predictions were wrong, even if why that is the case
might be obvious with hindsight (it is quite possible that this will be the case
with the current generation of climate models as future improvements start to
reduce the errors in predicting historical precipitation, for example).

From a decision maker’s perspective, the issues are more problematic. If, even
with a detailed (and expensive) assessment of uncertainty, there remains a
potential for surprise then just how risk averse or precautionary is it necessary
to be in order to make robust decisions about the future. The answer is
probably that we often cannot afford to be sufficiently robust in adapting to
change; it will just be too expensive. The costs and benefits of protecting against
different future extremes can be assessed, even if the probability of that extreme
might be difficult to estimate. In that situation, the controlling factor is likely to
be the available budget (Beven, 2011). That should not, of course, take away
from the responsibility for ensuring that the science that underlies the evidence
is as robust as possible, and communicated properly, even if those uncertainties
are high and we cannot be very confident about future likelihoods in providing
evidence to decision makers.
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Table 1. A classification of different types of uncertainty

Type of Uncertainty Description

Aleatory Uncertainty Uncertainty with stationary statistical
characteristics. May be structured (bias,
autocorrelation, long term persistence) but can be
reduced to a stationary random distribution

Epistemic Uncertainty | Uncertainty arising from a lack of knowledge about

(system dynamics)

how to represent the catchment system in terms of
both model structure and parameters. Note that
this may include things that are included in the
perceptual model of the catchment processes but
which are not included in the model. They may also
include things that have not yet been perceived as
being important but which might result in reduced
model performance when surprise events occur.

Epistemic
(forcing
data)

Uncertainty

and response

Uncertainty arising from lack of knowledge about
the forcing data or the response data with which
model outputs can be evaluated. @ This may be
because of commensurability or interpolation
issues when not enough information is provided by
the observational techniques to adequately describe
variables required in the modelling process. May
be a function of a limited gauging network, lack of
knowledge about how to interpret radar data, or
non-stationarity and extrapolation in rating curves.

Epistemic Uncertainty
(disinformation)

Uncertainties in either system representation or
forcing data that are known to be inconsistent or
wrong. Real surprises. Will have the expectation of
introducing disinformation into the modelling
processes resulting in biased or incorrect inference
(including false positives and false negatives in
testing models as hypotheses)

Semantic /
Uncertainty

Linguistic

Uncertainty about what statements or quantities in
the relevant domain actually mean (there are many
examples in hydrology including storm runoff,
baseflow, hydraulic conductivity, stationarity etc).
This can partly result from commensurability issues
that quantities with the same name have different
meanings in different contexts or scales.

Ontological Uncertainty

Uncertainty associated with different belief systems.
Relevant example here might be beliefs about
whether formal probability is an appropriate
framework for the representation of beliefs about
the nature of model residuals. Different beliefs
about the appropriate assumptions could lead to
very different uncertainty estimates so that every
uncertainty estimate will be conditional on the
underlying beliefs and consequent assumptions.
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887 Table 2. Defining non-stationarity. Different classes of epistemic error
888 thatlead to non-stationarity in model residual characteristics.

Class Source Description
1 Non-stationarity of a Change over time that can be described
stochastic process by a deterministic function, including

structure in model residuals that might
compensate for consistent model or
boundary condition error. All other
variability will be stochastic in nature
(see Koutsoyiannis and Montanari,

2015)
2 Non-stationarity in Expectation that model parameters and
catchment possibly structure representing
characteristics catchment characteristics will change

over time or space in a way that will
induce model prediction error if
parameters are considered stationary

3 Non-stationarity in Expectation that model boundary
boundary conditions conditions will change over time or
space in a way that will induce model
prediction error if boundary conditions
are poorly estimated. In some cases
may include disinformative data as
defined in the text.

4 Non-stationarity in Expectation  that the  statistical
model residual characteristics of the model residuals
characteristics will vary significantly in time and space

because of epistemic uncertainties
about the causes of the unpredictable
model error. May result from arbitrary
epistemic uncertainties in boundary
conditions, long-term stochastic
variability or inclusion of disinformative
calibration data.
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Figure 1. Example of an event where the runoff coefficient based on the measured
rainfalls and stream discharges is about 1.4. This clearly violates mass balance and will
therefore be disinformative in calibrating a model that is constrained to maintain mass

balance to represent that catchment area.
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Figure 2. Top: Root mean square errors for four model parameter sets within the same
model structure (a simple single tank conceptual rainfall-runoff model, see Beven and
Smith, 2014). Bottom: Likelihood ratios or posterior odds for 3 of the models, relative to
the first (+ symbol in upper plot), evaluated using a formal likelihood and updated after
the addition of further years of model residuals. The formal likelihood used allows for a
mean bias, constant variance and 1st order autocorrelation and assumes a Gaussian
distribution of model residuals. While similar in root mean square error (and visual
performance), the different models have likelihood ratios that evolve to be 1040 different
as 6 years of data are added, followed by a rapid reduction in likelihood ratio over the
next 3 years.
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Figure 3. Posterior probability density functions for model parameters evaluated both
with (solid line) and without (dotted line) calibration events classified as disinformative.
Further details of this study can be found in Beven and Smith (2014).
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Figure 4. A sample of events taken from the model evaluation period. Each eventis
treated as if it is either informative (shaded 95% prediction bounds) or disinformative
(dotted 95% prediction bounds). The first event is evaluated (a posteriori) as
disinformative, the last two as informative. Further details of this study can be found in
Beven and Smith (2014).



