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1 Abstract 

Keith Beven was amongst the first to propose and demonstrate a combination of conceptual 

rainfall-runoff modelling and stochastically-generated rainfall data in what is known as the 

“continuous simulation” approach for flood frequency analysis. The motivations included the 

potential to establish better links with physical processes and to avoid restrictive assumptions 

inherent in existing methods applied in design flood studies. Subsequently attempts have 

been made to establish continuous simulation as a routine method for flood frequency 

analysis, particularly in the UK. The approach has not been adopted universally, but 

numerous studies have benefitted from applications of continuous simulation methods. This 

paper asks whether industry has yet realised the vision of the pioneering research by Beven 

and others. It reviews the generic methodology and illustrates applications of the original 

vision for a more physically-realistic approach to flood frequency analysis through a set of 

practical case studies, highlighting why continuous simulation was useful and appropriate in 

each case. The case studies illustrate how continuous simulation has helped to offer users of 

flood frequency analysis more confidence about model results by avoiding (or exposing) bad 

assumptions relating to catchment heterogeneity, inappropriateness of assumptions made in 

(UK) industry-standard design event flood estimation methods and the representation of 

engineered or natural dynamic controls on flood flows. By implementing the vision for 

physically-realistic analysis of flood frequency through continuous simulation, each of these 

examples illustrates how more relevant and improved information was provided for flood risk 

decision-making than would have been possible using standard methods. They further 

demonstrate that integrating engineered infrastructure into flood frequency analysis, and 

assessment of environmental change are also significant motivations for adopting the 

continuous simulation approach in practice. 
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2 Introduction 

Building on advances in hydrological modelling made in the 1970s, in particular the 

physically-based TOPMODEL concepts (Beven and Kirkby, 1979), Keith Beven (1986, 

1987) was amongst the first hydrologists to demonstrate what is now described as a 

“continuous simulation” (CS) approach for flood frequency analysis. This paper examines 

how the original vision to “provide more physically-based techniques for prediction of flood 

frequency characteristics” (Beven, 1987) has been realised, and what lessons can be learned 

from applications in practice. 

Probabilistic methods have underpinned the design and economic analysis of flood mitigation 

measures for over 50 years (Benson, 1968). In a flood frequency analysis, peak river flows 

are regarded as a random variable, Y, and the probability of the flow not exceeding a given 

value Y = y is  

 

   
y

YY dyygyG
0

       (1) 

 

where gY(y) is a probability density function describing Y.  The temporal scale is usually 

defined such that GY(y) represents the annual probability, and the return period in years is 
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Flood frequency analysis is often combined with hydraulic modelling to calculate flood 

extents or water levels that inform planning or engineering designs. In economic appraisal of 

flood protection works, it is useful to integrate possible flood damages over the distribution 

of hydrological events to estimate the expected damage, 

 

dyygyz
y

YZ  )()( ,      (3) 

where z(y) is the damage corresponding to the event Y = y. Sometimes the damage z
  

associated with a small tail probability Pr(z > z) =  is required, especially in applications 

relating to flood insurance. A robust description of gY(y) is therefore important for a range of 

flood risk management decisions.  

Furthermore, the damaging effects of flooding may be controlled not only by the peak flows, 

y, but also by other features of the flow regime, in particular the volume flowing onto the 

floodplain during an event, or temporal aspects such as the speed of onset of flooding or the 

duration of flow above a threshold. By modelling the full flow hydrograph, it is possible in 

the CS approach to extract not only the distribution of peaks, gY(y), but also these related 

features, which can be referred to as a coherent vector of connected variables, Y, whose joint 

density gY(y) is made accessible through CS, informing decisions such as dam safety, 

(Blazkova and Beven, 2004), flood protection design or operational planning. 

Hence, there are four central motivations for adopting a CS approach. By exploiting 

conceptual understanding of catchment hydrology through rainfall-runoff modelling, the aim 

is to improve confidence in estimates of gY(y) in the following circumstances: 
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1) for events more extreme than previously observed (extrapolation into the tails of 

gY(y)), 

2) for analysis in ungauged catchments (to overcome lack of observations), 

3) to assess impacts of environmental change on gY(y), 

4) to assess the joint probability distribution of a set of features of the flow regime, such 

as flood volumes or duration of flows above a threshold gY(y). 

The four motivations are explored in more detail below and through the subsequent case 

studies. In many cases, there are further advantages to adopting a CS approach, specifically 

overcoming the need to make simplifying assumptions about the combined probabilities of 

extreme events and their antecedent conditions, and also to avoid the highly simplified, 

artificial temporal storm profiles that are often required in conventional design event 

methods, but which may not adequately capture precipitation sequences of relevance to a 

particular application (both points discussed by Calver et al., 1999 as considered in national 

CS research in the UK).  

 

2.1 Extrapolation to extreme events 

In assessing flood risk it is important to model the tail probabilities robustly, especially since 

peak flow distributions can be heavy-tailed (El Adlouni et al., 2008, Strupczewski
 
 et al., 

2011). This is difficult where river flow measurements are limited, which is often a problem 

encountered in practice.  

Sometimes further information may be gained from historical or paleoflood evidence (e.g. 

Stedinger and Cohn, 1986; Kjeldsen et al., 2014c). More often, additional information from 

the recent past can be gained from weather data. Classically, design event models based on 
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unit hydrograph theory have been applied to transform information about rainfall 

distributions into estimates of extreme river flows. A more direct connection between the 

distribution functions of rainfall and river flows was proposed by Eagleson (1972), 

introducing the derived distributions concept using a statistical model for the joint 

distribution of rainfall intensity and duration, combined with kinematic runoff routing. In this 

pioneering work some assumptions about runoff production were needed to integrate 

analytically over the rainfall events. However, Eagleson’s rainfall model, with the addition of 

a storm inter-arrival time distribution, served as the basis for the CS studies of Beven (1986, 

1987). Further developments are discussed later. 

In Beven (1987), the underlying hypothesis was that “as basin scale increases, changes in 

catchment geomorphology and other characteristics may be expected to lead to changes in the 

dynamics of flood runoff…”. Research building on this early investigation of the physical 

controls on flood frequency has provided useful insights (e.g. Robinson and Sivapalan, 1997) 

and there is some evidence of physical scaling laws that may help in understanding how to 

extrapolate robustly into the tail of the flood flow distribution (e.g. Gupta, 2004, Bernardara 

et al., 2008). Some of the motivating science cited by Beven was the development of 

geomorphological network theories in hydrology (Rodríguez-Iturbe and Valdés, 1979, 

Córdova and Rodríguez-Iturbe , 1983, Gupta and Waymire, 1983).  However, hydrological 

theory has not coalesced into a definitive, unified set of equations that can be applied with 

generality to make predictions about flood risk in all practical circumstances. Indeed, the 

search continues for fundamental theories to explain the evolution and dynamics of hydro-

geomorphological systems (Beven, 2015).  
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Hence, a variety of models with different representations of physical processes are still in use 

for hydrological applications in practice, as exemplified in the case studies below.  Many 

applications of CS, whilst seeking physically robust models of extreme hydrological events, 

place even greater emphasis on the influence of flood mitigation infrastructure systems. 

Where these systems are complex, adaptive, or involve storage that is sensitive to variation in 

(spatial and temporal) rainfall sequences then a CS approach is beneficial because it “allows 

study of the system under varying operational scenarios” (Bras et al., 1985), as explored in 

the Bentley Ings and Medway case studies later in this paper.  

2.2 Extrapolation to ungauged catchments 

Numerous studies have explored the application of CS for ungauged catchments through 

regression or region-of-influence parameter transfers, including in Europe (Blazkova and 

Beven, 1997, Sefton and Howarth, 1998, Calver et al., 1999, Seibert, 1999, Xu, 1999, 

Viviroli et al, 2009), the USA (Abdulla and Lettenmaier, 1997, Kokkonen et al., 2003), 

Australia (Post and Jakeman, 1999), Japan (Yokoo et al., 2001) and Africa (Servat and 

Dezetter, 1993). Reviews include Kay et al. (2006), Parajka et al., (2005) and Razavi and 

Coulibaly (2013). Despite this intense activity, and renewed impetus from the IAHS 

international decade on Predictions in Ungauged Basins (Sivapalan et al., 2013), prediction in 

ungauged catchments remains an important source of uncertainty in CS flood frequency 

analysis (Lamb and Kay, 2004, Wagener and Wheater, 2006) 

2.3 Change analysis 

A related motivation for CS applications is modelling the effects of changes in climate and 

land use on flood frequency. In the case of land use change, a physically-based modelling 

approach appeals because of the potential to link model parameters to physical change 

scenarios. This is closely related to parameterising a model for an ungauged catchment, with 
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the additional problem that whilst land use can have a localised influence on runoff 

(Verstraeten and Poesen, 1999), it has proven difficult to detect changes in the distribution of 

peak flows at catchment scale (O’Connell et al., 2007, Beven et al., 2008, Lins and Cohn, 

2011). This issue is compounded by uncertainties in translating between real, physical 

changes in a catchment and the conceptual parameters of a hydrological model (see Beven, 

1989, 1995, 2000, 2001).  

Changes in climate can affect all input variables to a hydrological model over a range of time 

scales, from annual or seasonal temperature changes to shifts in the temporal distribution of 

rainfall (Westra et al., 2014). Models that account continuously for water balance changes 

can, in principle, integrate over multiple scales. Hence CS is an effective tool for climate 

change impacts analysis (see River Lossie case study below) and has been applied in support 

of national guidance on climate change and flood risk in the UK (Reynard et al., 2001). 

3 Methods 

A general view of the CS approach is that it replaces the distribution function GY with an 

empirical distribution function HY, such that 

 

      )(, tMHHG MM  yyy YYY    (4) 

 

where flow events are outputs of a hydrological model, M, which contains a vector of 

parameters, M, and a vector of time-varying boundary conditions, M(t). In practice, HY may 

also be replaced by estimates for the parameters of GY inferred from modelled time series 

outputs from M.  
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The inputs to the hydrological model may be derived directly from measurements if the 

hydrological model is simply applied to exploit weather records that are longer than gauged 

flow records. More often though, M will be time series of synthetic data generated using a 

weather model,  

 

  WM tW  , ,      (5) 

 

where W is a vector of model parameters and t is time. The model W then becomes a key 

stochastic component, allowing the hydrological system to be modelled deterministically 

through M, although M and W may also be sampled from distributions for the purposes of 

uncertainty analysis (see Lossie case study). Further epistemic uncertainty could be explored 

by allowing for multiple plausible weather models, whilst assumptions about future change 

can be expressed through time-varying model parameters. 

3.1 Catchment models 

In principle M in equation (4) could be any hydrological model. Boughton and Droop (2003), 

Lamb (2005) and Beven (2011) reviewed models applied in CS studies. Typically these have 

been conceptual storage or transfer function models with some physical interpretation, chosen 

for their parsimonious structures to aid parameterisation and to achieve fast run times. Some 

CS studies have used more explicitly physics-based catchment models, such as the IHDM 

(Calver and Cameraat, 1993) and SHETRAN (Kilsby et al., 1998). The Probability 

Distributed Model (PDM, Moore, 1985, 2007, Moore and Bell, 2002) has been used in 

several applications, including case studies reviewed later in this paper, and within a gridded 
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flow routing scheme for national applications in the UK for climate change impacts 

assessment (Bell et al., 2007). 

It will be seen that representation of infrastructure can be an important motivation for CS 

applications, requiring additional models for floodplain storage, particularly structures that 

are operated adaptively to manage flood events such as sluices and gates. These systems can 

often be represented in detail in hydraulic river modelling software (e.g. packages assessed 

by Environment Agency, 2013), as shown in two case studies below.  

An understanding of the physical influences on flood risk in a catchment may, in principle, be 

gained through studying the sensitivity of the derived distribution of flood peaks, or 

associated variables, to perturbation of model parameters. However, where calibration data 

are available, studies of model uncertainty have shown that interactions between parameters 

in the model M may lead to difficulty in identifying definitive “best estimates” (see, for 

example, the River Lossie case study below, Lamb, 1999, Blazkova and Beven, 2009, and 

many examples cited by Beven and Binley, 2014). Franchini et al. (2000) found that 

parameter interactions could be important not only within the rainfall-runoff model M, but 

also between parameters of hydrological and weather models (W, see below) when combined 

in a CS analysis, particularly with respect to the curvature of the flood frequency growth 

curve (i.e. the effects of the shape and scale parameters of an extreme value distribution fitted 

to gY). 

3.2 Weather models 

Building on Eagleson’s (1972) assumption of an exponential joint distribution for rain 

intensity and duration, the models that are applied to operationalise the function W in 

equation (5) have since grown more complex. In general, the emphasis is on precipitation, 

which tends to dominate over other atmospheric boundary conditions. Cox and Isham (1994) 
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identified three types of rainfall model that can be applied: empirical statistical models, 

dynamic meteorological models and conceptual stochastic models informed by physical 

reasoning. However, for climate change impacts analysis or in catchments where large soil 

moisture deficits occur, a CS approach can be useful in representing the evolving soil 

moisture state. Ideally, W therefore represents a model for coherent sets of weather variables 

or processes, including snow accumulation and melt where necessary. 

For moderately large catchments the rainfall in a CS model should ideally be spatially and 

temporally varying, although point rainfall models have been found to be at least as good in 

permeable catchments where long residence times smooth the effects of rainfall patterns 

(Defra, 2006). Recently advances have been made in spatial-temporal modelling (Defra, 

2006, Serinaldi and Kilsby, 2014, Burton at al., 2008, Blanc et al., 2012, Hashemi et al., 

2000). Assumptions of spatial uniformity in early CS studies reflected a lack of statistical 

techniques or data processing capacity to work with large, spatial data sets. Now there are 

fewer restrictions in this respect, and advances in statistical theory relating to multivariate 

extremes (Davison et al., 2012, Heffernan and Tawn, 2004) allow for spatial-temporal 

analysis over large scales (Lamb et al, 2010, Keef et al. 2013), and multi-site rainfall 

simulators are already being applied in CS studies (for example see Falter et al., 2015 and 

Hundecha and Merz, 2012).  

It is now also becoming possible to consider using dynamic atmospheric weather models 

(numerical weather prediction, NWP) as an input to a CS flood analysis. For example, recent 

climate change attribution studies have shown the feasibility of running extremely large 

ensembles or 100,000 or more seasonal time series simulations of flood events with a linked 

atmospheric and hydrological modelling chain (Kay et al., 2011).  
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One of the most challenging aspects of CS in practice may be the choice and implementation 

of a suitable sampling scheme for generation of stochastic weather data, especially in 

combination with analysis of uncertainty in weather and hydrological model parameters. The 

precise approaches to be implemented will vary depending on the structure of the models 

used in any given CS analysis. Lamb (2005, Figure 8 therein) illustrated an approach for the 

calibration of a rainfall-runoff model in the context of a CS flood frequency analysis, while 

Kjeldsen et al. (2014b) discuss more complex methods that have been applied for assessment 

of uncertainty in a CS study based on the application of fuzzy rules within a Bayes Monte 

Carlo framework.  

4 Applications: case studies 

Four case studies from catchments in the UK (Figure 1) are presented to demonstrate 

practical applications of CS for flood frequency analysis and illustrate the progression in 

operational hydrology from Beven’s (1986, 1987) early concepts of a single rainfall model 

driving a single hydrological model to later ideas on uncertainty (e.g. Beven and Binley, 

1992), and other developments such as spatially-varying stochastic rainfall modelling, which 

was not readily available during early work on CS. The selection of case studies is intended 

to be illustrative, not exhaustive, and is necessarily a small sub-set of applications in practice, 

many of which will be unpublished consultancy projects. The case studies were chosen to 

illustrate how CS has met requirements to: 

1. overcome a lack of data in a hydrologically complex catchment, 

2. integrate spatially-distributed hydrological responses with adaptively-managed flood 

management infrastructure, 

3. account for uncertainty in hydrological modelling and future climate, 

4. investigate land management changes and their role in flood mitigation. 
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Each case study illustrates specific applications of the CS approach, implemented through 

methodological innovations relative both to industry-standard flood estimation methods or 

the CS approach outlines by Beven (1987). The case study applications and associated 

innovations are summarised in Table 1. 

 

4.1 Sparse data and hydrological complexity: Bentley Ings 

4.1.1 Motivations 

Situated on clay drift to the east of Bentley, near Doncaster, South Yorkshire, Bentley Ings is 

a low-lying area of mixed urban and arable land affected by mining subsidence and draining 

via pumps into the River Don. The study was motivated by a need to assess the required 

capacity of Bentley pumping station, draining a catchment of 41 km
2
, to help manage flood 

risk (Figure 2). Bentley Ings occupies around 10% of the total catchment, the rest being 

limestone slopes to the west. Recharge to the limestone can migrate beyond the topographic 

catchment, emerging in springs at the base of scarp slopes further west. However, a greater 

proportion of the rainfall may follow the topographic drainage network during flood 

conditions. Around 18% of the catchment is urbanised. 

 

The CS application here followed a similar approach to Beven (1987) by linking a point 

stochastic rainfall model and a hydrological model, but with modifications appropriate to the 

complex catchment situation.  Flood frequency analysis is rarely straightforward in highly 

permeable, heavily urbanised or pumped catchments (Robson and Reed, 1999; Webster, 

1999; Kjeldsen, 2010). All three problems are present at Bentley Ings. There are no 

permanent river gauging stations in the catchment and transfer of flood frequency 
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information (Kjeldsen et al, 2014a) from elsewhere is problematic since there are unlikely to 

be any gauged catchments with a similar combination of complicating factors. A statistical 

approach to estimation of GY(y) from gauged peak flow data was therefore not possible, and 

rainfall-runoff modelling was required.  

In the UK, the recommended method at the time was the event-based Revitalised Flood 

Hydrograph rainfall-runoff model (Kjeldsen et al., 2005), a unit-hydrograph approach not 

well-suited to very permeable or urban catchments. In general, the assumptions of design 

event rainfall-runoff methods are difficult to support on complex catchments where it is 

difficult to identify what conditions are most likely to cause flooding. A CS approach was 

applied to avoid strong assumptions about the size, shape and duration of the design flood 

event.  

4.1.2 Methodology 

Three models were developed and linked together: a stochastic rainfall model, a deterministic 

conceptual model to convert the rainfall into runoff, and a deterministic hydraulic model to 

route the runoff through the Bentley Ings drainage channels and calculate water levels.  The 

approach taken was to gather flow and rainfall data from temporary instruments, operated for 

a short period, with the aim of learning enough to calibrate the hydrological model and help 

condition the rainfall simulations. 

Rainfall was simulated as a stochastic point-process (Bartlett-Lewis rectangular pulses, 

BLRPM, Onof and Wheater, 1993) using a hybrid of the gamma distribution model of Onof 

and Wheater (1994) and the Generalised Pareto model of Cameron et al. (2001). Faulkner and 

Wass (2005) describe how the model selects an initial pulse intensity from a gamma 

distribution, and if this exceeds a threshold u then the intensity (constrained to be greater than 
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u) is re-sampled from a Generalised Pareto distribution. Using the threshold improves the 

representation of extreme short-duration rainfall (Cameron et al., 2001).   

The nine rainfall model parameters were initially calibrated to the statistical characteristics of 

hourly rainfall measurements then adjusted, by trial and error, to give a close match to the 

mean and variance of local extreme rainfalls for rainfall durations of one to three days, as 

characterised by the Flood Estimation Handbook (FEH) design rainfall statistics (Faulkner, 

1999).  The FEH rainfall frequency analysis pooled data from a large number of gauges to 

extend rainfall growth curves to long return periods, and thereby provide more reliable 

estimates than from analysis at a single local gauge.  The calibration objective was to 

reproduce the features of rainfall in the Bentley catchment that are important for producing 

high flows in the low-lying watercourses.  Separate parameter sets were obtained for summer 

and winter. 

Three temporary flow gauges (Figure 2) were installed and operated for up to eight months. 

The flow data were used to calibrate PDM (Probability Distributed Moisture, Moore, 2007) 

rainfall-runoff models for three sub-catchments, accounting for 78% of the catchment. 

Figure 3 is an example calibration fit, showing reasonable simulation of low flows and the 

highest peak flows, although some over-responsiveness for small events. Parameters for three 

smaller ungauged sub-catchments in the impermeable Bentley Ings area were transferred 

from a gauged analogue catchment 40km away, with similar lacustrine clay geology. 

River channels and structures were represented in a hydraulic model using the one-

dimensional (1D, spatially) Saint-Venant equations, and floodplains using the two-

dimensional (2D, spatially) shallow water equations, with dynamic linking between these two 

components.   
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Eight thousand years of rainfall and flow data were simulated. For efficiency, a hierarchical 

approach was taken in which the 150 largest events (defined in terms of peak flow on the 

largest sub-catchment) were then abstracted for detailed hydraulic modelling. It was assumed 

that the events from the 8,000-year simulation that would result in the 100 highest water 

levels throughout the hydraulic model domain would be contained within this set of 150.  The 

resulting peak water levels at every model node were ranked, and design water levels for 

return periods of interest estimated using Gringorten (1963) plotting positions.   

 

4.1.3 Results 

The stochastic rainfall model gave good agreement with important characteristics of local 

rainfall; average annual totals matched to within 1% and the 100 year return period rainfall 

from the FEH was matched to within 3% for 1- and 3-day durations (Figure 4).   

There is no long-term river flow record with which to compare the simulated peak flows.  

Alternative methods for ungauged catchment flood estimation (Kjeldsen et al, 2008) gave 

much lower design flows.  During its short 7-month period of operation, one flow logger 

recorded a peak flow more than twice the estimate of the 2-year flood obtained by regression 

on catchment properties.  Although the flow record was too short to draw any statistically 

significant conclusions, the finding did cast serious doubt on the results of conventional flood 

estimation methods which do not account for the uniqueness of the catchment.   

The way in which the CS modelling contributed to understanding of the flood hazard in the 

Bentley catchment is illustrated in Figure 5.  The symbols show the location of nodes in the 

1D hydraulic model network.  At each node there is potential for a different simulated flood 

event to yield the estimated 100-year return period water level.  The ten events that do so at 
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the largest number of model nodes are distinguished by colours on the figure.  The labels of 

each event give an indication of its severity in terms of peak flow and maximum 12–hour 

volume.  The ranks provided in each label are calculated using the simulated annual 

maximum flows at the sub-catchment that provides the largest amount of runoff.  Note how 

for some events the relative severity of the peak flow can be quite different from that of the 

volume. The resilience of planned flood mitigation measures can therefore be tested against a 

range of possible hydrological scenarios, each consistent in some way with a 100-year return 

period event, whereas without a CS analysis many of these scenarios would not be identified. 

Some spatial consistency is evident in the results, although on some watercourses there are 

numerous changes in the composition of the design event, indicating variation in the 

sensitivity over different parts of the drainage network to different aspects of the simulated 

events, such as peak flow on the various tributaries, volume of flow, and timing of tributary 

response. 

 

In comparison with other methods, CS modelling was perceived by the operating authorities 

to have provided a greater degree of confidence that the design flows and water levels were 

representative of processes in the catchment, thus strengthening the basis of the 

refurbishment plans for the pumping station.   

Bentley Ings is an example of one of the primary motivations for CS, extrapolation to 

ungauged catchments. Naturally some uncertainties remained, including concerns over the 

calibration of the PDM rainfall-runoff models to a short, and relatively dry, flow record. It is 

possible that runoff generation processes change in wetter conditions, as reported in other 

permeable catchments (Midgley and Taylor, 1995; Bradford and Croker, 2007). The use of a 

spatially uniform rainfall model was considered justifiable given the relatively small 
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catchment area. However, interpretation of the results and planning of future work would 

have been more straightforward if uncertainty had been quantified explicitly.  

 

4.2 Flood risk management infrastructure: The Medway 

4.2.1 Motivation 

This case study illustrates a natural progression from the early vision for CS by drawing 

together multiple rainfall-runoff models, with spatially varying rainfall inputs, and hydraulic 

modelling, in a complex catchment. The River Medway in Kent, SE England, is one of four 

main tributaries (with the Eden, Teise and Beult) draining a catchment of around 1,300km
2
 

(Figure 6).  As a commitment under the European Flood Directive (2007/60/EC), areas of 

flood risk had to be mapped, in turn driving a hydrological assessment with the following 

objectives: 

 to provide “design” flows for flood mapping, 

 to support option development for future flood alleviation schemes, including 

floodplain storage, 

 to support future local flood risk assessments. 

 

The catchment accumulates substantial soil moisture deficits over the summer.  Runoff is 

therefore sensitive to antecedent conditions over a range of time scales.  Response times vary 

spatially, making it difficult to specify one, unique “design storm” for a flood event model. 

These heterogeneities lead to complex patterns of flooding.  For example, a record-breaking 

flood on the Eden barely registered high flows on the Beult, yet in December 2013 high-

ranking flow events were observed on all tributaries. 
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A large in-line flood storage area (FSA) at Leigh controls flow from 500km
2
 of the Eden and 

Medway catchments, protecting Tonbridge and the Middle Medway from flooding.  

Extensive open floodplain in middle reaches provides additional natural attenuation. 

The controlled and natural storage make inundation extents sensitive to volumes as well as 

peak flow rates.  Probabilistic analysis is complicated by the FSA’s adaptive operating rules; 

large events are regulated at a higher flow than smaller ones, with decisions made on the 

basis of a 24-hour-ahead forecast.  The variation in relative timing of responses in the 

tributaries, contributing variable proportions of the total Medway flow, further challenges 

assumptions made in industry-standard UK design event models (Kjeldsen, 2005), because of 

the need to represent temporal variability in hydrodynamic model boundary conditions. The 

catchment is large and responsive enough that application of a spatially uniform rainfall 

return period would fail to represent variation across the tributaries.  Assuming a fixed event 

rainstorm profile would risk failing to capture the susceptibility of the storage areas to multi-

peaked events.  A statistical analysis of observed floods was thwarted by their short record 

and changes in storage area operation over time.  

The above factors all motivated the development of a CS model. The study took place within 

the context of requirements from the commissioning agency to avoid piecemeal design flow 

estimation by deriving a consistent design flow dataset, applicable to the whole catchment.  

The CS approach inherently provided this by integrating the time and space variability in 

flood-producing conditions.   
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4.2.2 Methodology 

CS on the Medway required two river models. One was a linked 1D-2D hydraulic model to 

simulate all flood pathways and give detailed flood extents.  Run times were several days per 

event for this model. The second was a simplified whole catchment model designed to route 

rainfall to flow accurately, at all risk areas, without simulating inundation extents in detail.  

Run times for this model were minutes per storm. It was used to identify events of specified 

probabilities that then formed boundary conditions for the detailed 1D-2D model. The whole 

catchment model comprised nine PDM sub-catchment rainfall-runoff models and 1D 

hydraulic models (similar to the Bentley Ings case, see above).  The hydraulic models were 

calibrated using data at flow gauges on the Eden at Vexour, the Medway at Colliers Land 

Bridge, the Teise at Stonebridge and the Beult at Stilebridge. 

The modelling included adaptive rules for operation of gates controlling discharge from the 

Leigh FSA as a function of predicted inflows. These were checked against the actions of 

operational staff, using their own modelling tools, to demonstrate that the CS model would 

choose the same course of action as the operators.  Figure 7 shows model fits for peak 

inflows and event volumes in the FSA after calibration against all events between 1999 and 

2014. 

Synthetic rainfall was initially simulated through a spatially-varying stochastic daily rainfall 

model (GLIMCLIM, Chandler 2002), fitted to data at 15 rain gauges in the catchment.  As in 

Bentley Ings, calibration included adjustments to match estimates of extreme rainfall from 

pooled UK data (Faulkner, 1999), for accumulations longer than 24 hours.   

Simulated daily rain was disaggregated to a 5,000-year series of hourly data for each sub-

catchment by assuming the same hourly temporal profile in each sub-catchment.  Rainfall 

totals could therefore vary between catchments per event, but had the same dimensionless 
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time profile.  The within-day rainfall profiles were generated by the same sub-daily point 

process model used for the Bentley study, fitted to data from Weirwood gauge (see Figure 6). 

The simplified whole catchment model was run for the full 5,000-year hourly simulation, and 

a sub set of 3,175 events was selected by identifying flow annual maxima from PDM 

simulations with return periods of greater than three years at any of the four calibration flow 

gauges.  

4.2.3 Results 

Simulated rainfall totals agreed well at the rain gauge sites with the pooled national FEH 

model over a wide range of durations, for return periods in the range 25 to 100 years 

(Figure 8 shows example results at Weirwood). Estimation uncertainty obscures the 

difference between the models for more extreme events. In most cases, the hybrid stochastic 

model and FEH rainfall models both suggest slightly higher frequencies for a given rainfall 

accumulation than obtained from a plotting position estimate using the rain gauge 

observations. This may be due to the short period of observed record (less than 15 years). 

Daily observations, available for a longer period at Weirwood, suggested slightly higher 

estimates for extreme rainfall depths than those derived from the shorter hourly record.  

Flow outputs from the catchment model are compared with observed annual maximum 

(AMAX) flows and fitted frequency distributions in Figure 9.  There is close agreement 

between the CS estimates and the gauged data on the Medway, especially when compared 

with confidence intervals (calculated using the resampling method of Faulkner and Jones, 

1999). Vexour is an exception where the most extreme (rank 1) observed AMAX is the 1968 

flood, which skews the fitted distribution and the confidence intervals.  The CS results are not 

impacted by this outlier and highlight the extreme magnitude of that event.  Downstream of 

the Medway-Eden confluence the gauged AMAX distribution is more aligned with the CS 
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results. The final plot illustrates the benefits of CS by providing an estimate of the flood 

frequency distribution Gy(y) downstream of the flood storage area, incorporating its adaptive 

operating rules. 

 

The application of CS provided the first robust assessment of the standard of protection for 

Tonbridge offered by the FSA, based on explicit simulation of the operation of the Leigh 

flood gates. It achieved the goal of developing a consistent set of catchment-wide design 

flows and addressed the concerns raised about inappropriate assumptions in more typical 

flood frequency analysis methods used within the industry.  

The use of CS enabled the consultant to address this complex natural and engineered 

catchment system by, in effect, testing the resilience to flood risk over a wide range of 

plausible flood event and operational scenarios within a probabilistic simulation.  

Uncertainties about input data, modes and outputs were constrained and quantified by 

comparisons with reliable observations where they existed (simulated rainfall was compared 

to observations and national statistical models, CS flood frequency curves at model 

boundaries were compared to observed peak flows).  For the Medway, the CS approach 

eliminated poor assumptions of uniform rainfall profiles in design-event or standard 

statistical flood frequency methods and gave the user a more coherent, catchment-wide flood 

risk analysis than would otherwise have been possible. 
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4.3 Uncertainty about future climate: River Lossie, Scotland 

4.3.1 Motivation 

The 216 km
2
 River Lossie catchment in the north east of Scotland has a long history of 

flooding. A flood in 2002, the largest since 1829, caused widespread damage, notably in the 

main settlement of Elgin.  Plans for a Flood Protection Scheme (FPS) at Elgin were already 

underway following events in 1997 and 2000. The 2002 event highlighted the importance of 

robust estimation of extreme flows. The sequence of three major events in five years also 

raised questions over stationarity assumptions in flood frequency analysis and the possible 

effects of climate change.  Coincidentally, publication of the UK Climate Impact Change 

Programme scenarios in 2002 (UKCIP02, Hulme et al., 2002) presented a new opportunity 

for exploring climate change impacts. 

By continuously accounting for soil moisture changes, and therefore simulating both wet and 

dry antecedent conditions (e.g. Quinn and Beven, 1993), CS was the most appropriate 

approach to exploring flood frequency analysis under climate change scenarios. Cameron 

(2006) built upon earlier work by Blazkova and Beven (1997) and Cameron et al. (1999 and 

2000) to apply CS to this data-limited catchment. The analysis applied the Generalised 

Likelihood Uncertainty Estimation (GLUE) methodology of Beven and Binley (1992) to 

quantify uncertainties associated with rainfall-runoff model parameter estimation, and 

UKCIP02 scenarios to represent uncertainty about future climate. The study therefore draws 

together elements of CS as originally envisaged by Beven (1986, 1987), including use of 

TOPMODEL to simulate runoff. 

 

 



 

 

This article is protected by copyright. All rights reserved. 

4.3.2 Methodology 

A stochastic rainfall model was used to drive TOPMODEL generating 2,000 years of hourly 

data initially under baseline climatic conditions.  The rainfall model was a variant of the 

Cameron et al. (1999) approach, using duration classes to allow dependence between mean 

storm intensity and duration (where mean storm intensity, duration and storm inter-arrival 

times were sampled from empirical density functions derived from observed rainfall data).   

This particular study focussed upon floods with return periods of up to 1 in 200 years and it 

was determined that, for this purpose, there was a sufficiently large sample within the 

observed rainfall data to allow the model to generate storms of sufficient magnitude with no 

parameterisation required (Cameron, 2006).  Uncertainty in the rainfall model was therefore 

not explicitly considered in this particular application but has been considered in other studies 

(Cameron et al., 1999 and 2000).     

Uncertainty about the TOPMODEL simulations was assessed by weighting randomly 

sampled parameter sets according to the agreement of the corresponding simulations with a 

flood frequency curve and flow duration curve derived from gauged data. The two 

comparisons were used to identify parameter sets judged to be hydrologically realistic, as 

detailed in Table 2. It can be seen that there is a fairly wide range in the parameter values 

illustrating the difficulty in parameter identifiability as discussed by Beven and Binley (1992) 

and Beven (1993).  Likelihood weights were rescaled over the simulations in order to 

produce a cumulative sum of 1.0. The weighted empirical distribution function of the 

discharge estimates was then constructed for each simulated AMAX flow, and used to extract 

flow estimates for cumulative likelihoods of 0.025, 0.5, and 0.975.  This allowed 95% 

uncertainty bounds and a median estimate to be derived (Figure 10).    
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UKCIP02 scenarios for “Low”, “Medium-Low”, “Medium-High” and “High” emissions 

were modelled for the 2080s (a 30 year period centred on the 2080s; monthly output was 

available for these scenarios). The scenario data represented changes in monthly temperature 

ranging from 1.29 °C (for January, "Low emissions") to 4.09 °C (for September, "High 

Emissions").  Percentages changes in monthly rainfall ranged from -31% to + 24% (for July 

and January, respectively from the "High Emissions" scenario). For a given scenario, the 

percentage rainfall changes for a given month were applied directly to the stochastic rainfall 

series which had been generated under current climatic conditions with an hourly timestep. 

Potential evapotranspiration (PET) was perturbed by applying changes derived from a 

Thornthwaite PET series (based on the UKCIP02 temperature changes) to the TOPMODEL 

PET parameter, which controls the amplitude of an assumed sinusoidal PET series.     

4.3.3 Results 

Results for baseline conditions and for the “Medium-High” scenario are shown in Figure 10.  

It can be seen that there is reasonable coverage of observed AMAX flow data and a 

frequency curve derived from pooled statistical analysis of AMAX data from hydrologically 

similar catchments under the current climatic conditions. Figure 11 shows distributions for 

the estimated 200-year flow (a key parameter for planning controls in Scotland) under current 

climatic conditions and the four UKCIP02 scenarios. The results illustrate that although there 

is an overlap in the uncertainty bounds between the current and future climate scenarios, 

particularly for lower magnitude flood events (up to about 60 m
3
/s), there is also an increase 

in flood magnitude overall in the future scenarios in line with emissions levels.    

A further example in Table 3 illustrates the estimated change in 50
th

 percentile estimate of 

peak flow for a variety of return period events under the four climate change scenarios (the 

50
th

 percentile is shown for illustrative purposes and it is recognised that there is a degree of 
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overlap in the uncertainty bounds across the scenarios, as noted in the discussion of Figure 11 

above). The largest increase (14% under the “High” scenario for the 200-year event) is less 

than the 20% figure that was recommended at the time as a sensitivity test in flood risk 

planning guidance (see SEPA, 2015), suggesting that the guidance was precautionary in this 

particular case. 

 
This study demonstrated that CS could be applied as an appropriate methodology for analysis 

of flood frequency to support the planning of mitigation measures, with explicit analysis of 

uncertainty through multiple climate change scenarios and Bayesian analysis of model 

uncertainties.    

4.4 Land use and flood risk: Holnicote, Devon 

4.4.1 Motivation 

Flood management agencies in the UK and elsewhere interested in the use of natural 

processes as flood management measures (WWF, 2002; Scottish Government, 2009; 

Environment Agency, 2012), sometimes known as “Natural Flood Management” (NFM). To 

help in developing an evidence base, the National Trust, a charity that owns large areas of 

countryside in England, chose a pair of demonstration catchments in SW England, the Aller 

Water and Horner Water, to test NFM techniques. Their headwaters include uplands on 

Exmoor and steep wooded gullies leading to lower-lying areas of grassland and arable 

agriculture. Most of the land lies in the Holnicote Estate, owned by the National Trust.   

The demonstration study, described by Defra (2015), included river flow and water quality 

monitoring before and after installation of NFM measures (blocking of upland drains, 

creation of floodplain storage, installation of woody debris dams, leaky weirs and wet 
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woodland floodplain to attenuate flows), along with hydrological and hydraulic modelling of 

some measures.   

CS was used to represent the hydrological effects of altering agricultural practices. The 

motivation was to explore how soil condition and soil management in the Holnicote Estate 

could affect rapid runoff generation, and hence frequency of river flooding. The principal 

reason for choosing CS was the desire to use a rainfall-runoff model whose parameters could 

be altered to reflect land management changes in sub-catchments, especially with respect to 

soil characteristics. It was thought desirable to select a technique that continually accounted 

for soil moisture, so that the effects of changes could be represented over a long period, 

accounting for any long-term persistence and encompassing a wide range of flow conditions. 

A secondary motivation was to estimate flood frequency downstream of the confluence of the 

two rivers, to aid in hydraulic modelling of the impacts of flood meadow restoration.  

4.4.2 Methodology  

The methodology was similar to that described for the Bentley Ings study, using the BLRPM 

rainfall model calibrated against local raingauge data and FEH frequency statistics. The main 

aims in calibration were to reproduce extreme rainfall depths, principally for a duration 

around 3 hours, which is critical in the Holnicote catchments, and to allow for seasonal 

variation. 

PDM rainfall-runoff models were calibrated to flow data from one permanent gauge and one 

temporary project gauge. Both were calibrated using data from the baseline period only, i.e. 

before installation of the NFM measures. A 2000-year simulation enabled estimation of 

design flows from simulated AMAX flows for return periods up to 100 years.  The rainfall-

runoff models were then re-run with parameters altered to simulate changes in soil condition 
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from good to severely degraded.  The way in which the soil might become degraded varies 

according to land use. For example, in moorland areas, degradation was taken as resulting 

from loss of peatm whereas on improved grassland it might result from increased stocking 

density leading to over-compaction, or conversion to intensive arable production.   

The parameters altered were those that represent the process of infiltration and generation of 

rapid runoff, as guided by a set of empirical formulae linking PDM parameters to physical 

catchment characteristics (Calver et al., 2005). 

4.4.3 Results 

It was possible to achieve a close match to the statistical characteristics of extreme rainfall 

over the critical duration for the catchment (3 hours).  Figure 12 shows rainfall frequency 

distributions from five alternative parameter sets of the stochastic model, in comparison with 

the FEH statistics. 

 

Similarly, the empirical distribution function of peak flows, HY(y), estimated from the CS 

model on the Horner Water was in good agreement (within 20%) with a flood frequency 

distribution estimated directly from the 31 years of gauged AMAX flows. Figure 13 is a 

frequency plot of the simulated annual maximum flows alongside the observed annual 

maximum flows and a Generalised Logistic distribution estimated using L-moments 

(Hosking and Wallis, 1997).  The figure also provides an indication of the sensitivity of the 

derived flood frequency relationship to two key parameters of the PDM rainfall-runoff 

model, showing how changes in assumed soil characteristics lead to steeper or shallower 

flood growth curves. These effects would be indistinguishable from sampling uncertainty in 

the FEH analysis, being enclosed by the 95% confidence limits of the flood frequency 
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distribution estimated from the gauged data, but may reflect real sensitivity to catchment 

change.   

As a result of the modelled changes in land management, peak flows were found to increase 

by 6-9% over a range of return periods relevant to management of flood risk in the 

catchment, from quantiles around the 5-year return period (corresponding to a low level 

agricultural flood bank) through to 75 years or greater, of relevance for property protection.   

Despite the good performance of CS modelling in representing baseline conditions, there was 

considerable uncertainty in linking changes in soil management practice to changes in 

parameters of the PDM models. Notwithstanding this uncertainty, the results of the modelling 

were helpful in informing the debate about the future management of the Holnicote Estate 

and assist in the targeting the implementation of appropriate NFM measures across the 

landscape. 

. 

5 Discussion 

The case studies illustrate how the vision for more physically-based flood frequency analysis 

has been realised in practice, both in dealing with hydrological complexity and incorporating 

engineered water management systems (Bentley Ings and Medway), especially those that 

respond adaptively. The Lossie and Holnicote cases illustrate applications of CS for change 

analysis, tackling, in different ways, potential climate (Lossie) or catchment (Holnicote) 

changes. 

With CS models that encapsulate conceptual understanding of physical systems, it is possible 

to extract various relevant features of the simulated flows (y|M in equation 4), such as flood 

volumes, timing or duration. This was important, in all of the case studies, to establish 
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confidence in the flood frequency analysis by comparison with observations or alternative 

models to confirm that the component parts were fit for purpose. Such corroboration need not 

be restricted to flood flows; for example, simulations can be usefully compared with gauged 

data using flow duration curves (Lossie case study, see also Lamb, 1999). Checks on the rates 

of rise and timing of multiple peak flow events, as in the Medway example, help establish 

confidence in a model. 

CS methods are appealing for climate change impacts analysis, as discussed in the Lossie 

case study but, in practice, projected changes in peak river flows are often applied as change 

factors to adjust results from other estimation methods. Hence there has been partial uptake 

of CS for change analysis, but also a combination of models being applied in particular flood 

management decisions. This points to a need for analysis approaches that can handle multiple 

models and multiple outputs. Indeed, this is not a new situation in that multiple alternative 

methods already co-exist in industry guidance for flood estimation.   

With CS there is much greater scope for catchment-wide outputs and a more complete, 

realistic description of events than with more conventional methods. The description of HY 

can be multivariate, rather than uniquely defined in terms of only one variable such as peak 

flow (see Gräler et al., 2013). This should permit closer links between hydrological frequency 

analysis and the real problems posed in applications by simulating coherent sets of outputs 

that support the analysis of decision variables, which may be metrics such as Z (equation 3) 

that integrate over multiple aspects of flood risk, rather than univariate measures such as peak 

water level at a single point in space. 
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6 Management of uncertainty 

CS first emerged as a method of building more explicit physical realism into a probabilistic 

flood analysis. It may also be regarded more generally as a method of constraining 

uncertainty in the estimation of the distribution function GY(y), or decision variables that 

depend on it. 

In an empirical analysis of gauged flow data, uncertainty in GY(y) would most obviously be 

considered in terms of sampling error, and its effect on estimators for coefficients in a 

parametric model for GY(y). The suitability of any particular choice of model for GY(y) or 

univariate distributions within it (especially the distribution of peak flows) would typically be 

considered qualitatively by hydrologists, through an assessment of the assumptions of 

stationarity, independence in flood peak data and representativeness.  

CS allows for a more comprehensive and structured approach to managing uncertainties that 

stem from errors in accounting for physical processes in a catchment system. Even if a CS 

model must inevitably be a simplified view of reality, the focus on processes enables these 

important epistemic uncertainties to be exposed and constrained, or least acknowledged 

explicitly. In the above case studies, the identification of epistemic uncertainties could also be 

framed in rather less theoretical terms as the avoidance of unrealistic assumptions, something 

that was found to encourage constructive discussion with end-users. 

 

Quantification of uncertainty presents some difficulties with CS because the complex model 

chains and data sets are not amenable for analytical calculation of confidence intervals or 

other measures of uncertainty. The Lossie case study (and references therein) illustrates how 

uncertainty may be assessed using sampling-based approaches. Explicit representation of 

temporal dependence in rainfall, at increasing scales, remains a source of uncertainty that 
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should be accounted for, especially for systems with long natural response times (e.g. 

groundwater catchments) or where flood storage induces sensitivity to runoff volumes, and 

hence the temporal distribution of inputs. As catchment system models grow in scale, the 

robust representation of spatial and temporal variabilities will become increasingly 

important.  

Software tools for CS lag behind more established flood frequency analysis methods, 

certainly in the UK if not elsewhere. The lack of convenient, packaged software tools may 

impede routine application of CS within industry, but may also be advantageous in that 

applications tend to be developed as catchment-specific models.  

 

7 Conclusions and forward look 

CS is often, in practice, a more expensive option for flood frequency analysis than the 

application of statistical approaches to infer GY(y) from gauged data, or the application of 

event-based models derived from unit hydrograph theory and regionalised runoff or “loss 

model” coefficients. Extra work is needed to assemble data sets, including time series 

evapotranspiration data (typically not required for other flood estimation methods), to 

calibrate and test stochastic rainfall models, as well as the rainfall-runoff model, and to run 

long simulations.  

Most importantly, there are few, if any, standardised data sets and tools to support the 

parameterisation of CS models and rainfall inputs. In the UK research was undertaken to 

develop national procedures (Calver et al., 1999, Defra, 2005), but was not driven through 

into day-to-day practice (with access to data resources and modelling tools being a 

limitation). An application of CS requires time, effort and skill to establish suitable model 
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parameterisations. In view of the additional costs, the end-user has to believe that CS will 

deliver benefits that justify the cost. In the authors’ experience, the benefits accrue through 

increased confidence gained by the avoidance or mitigation of unrealistic assumptions, and 

by permitting a more coherent, multivariate probabilistic view than available from 

conventional hydrological frequency analysis methods.  

In early applications of CS the challenges of managing large data sets and model simulations 

were a constraint. Now computational and data storage constraints are rapidly diminishing, 

although with increasingly rich data come new needs to manage complex data sets and meta-

data. Approaches based on CS should benefit from wider availability of conditioning data 

such as open data portals (e.g. SWITCH‐ ON Consortium, 2014, CUASHI, 2015). The 

analysis of uncertainties continues to demand research about methods for sampling and 

integration over multiple dimensions, including uncertainty in chains of models (or "model 

fusions") that link separate components for weather generation, runoff modelling, river and 

floodplain hydraulics and infrastructure (Beven and Lamb, 2014).  

As applications scale up geographically it becomes more important to consider the 

fundamental sources of spatial-temporal variation that give risk to the flood risk. Advances in 

weather data analysis and modelling, both statistical and dynamical models, have already 

moved beyond the spatially univariate, rainfall intensity-duration distributions of Eagleson 

(1972) and Beven (1986, 1987). New models and data need to be accessible for hydrologists 

in a way that can be linked to hydrological models, and adapted for uncertainty analysis.  

The problem definition in applications of CS has, in the authors’ experience, often been 

expressed in terms of hydrological or hydraulic variables such as peak flows or water levels. 

There remains a need to integrate simulated flood scenarios into decision analysis, and the 

richer hydrological outputs that may be generated by CS models offers great potential to do 
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this, and also increases the complexity of the analysis required in order to obtain the most 

value from the simulations. 

The case studies presented here exemplify how the original vision to “provide more 

physically-based techniques for prediction of flood frequency characteristics” has been 

realised successfully. In particular, they illustrate how process-based reasoning underlying 

Beven (1986, 1987) and others’ research has been integrated with river basin management 

infrastructure, also one of the early motivations for CS in engineering studies (Bras et al, 

1985). 

What lessons can be learned from applications in practice? The CS approach helps flood risk 

managers to be confident about probabilistic analysis in situations where the catchment 

hydrology challenges assumptions in event-based models, where fitting statistical 

distributions to gauged data is unfeasible or restrictive (in terms of the target variables), and 

where there is sufficient risk exposure to justify investing time and resources in specialist 

modelling. Where the above conditions are not met, it remains unlikely that a CS approach 

will be commissioned by flood management agencies. It could be said, therefore, that CS 

remains a method applied in special cases, and by implication that the vision for “more 

physically-based techniques” for flood frequency analysis has been realised selectively. 

Applications, at least in the UK, are constrained by the absence of standardised data resources 

or models for CS. However even were these resources to exist, it seems likely, given the 

focus on processes in the CS approach, that they would be applied as a foundation for more 

locally-tuned models, echoing concepts of “uniqueness of place” (Beven, 2000) in 

environmental modelling. As data and tools continue to evolve, it could be that more flood 

hydrology studies seek to view their catchments as unique.  
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Figure 1. Location of selected case studies in the UK 
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Figure 2: Catchments draining to Bentley Ings, UK. 
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Figure 3: Example PDM calibration for the northernmost sub-catchment at Bentley Ings 
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Figure 4: Frequency plot of simulated annual maximum rainfalls (24-hour duration): 

comparison with FEH rainfall frequency distribution 
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Figure 5: Range of simulated annual maximum floods giving rise to the 100-year return 

period water level at each node of the hydraulic model.  The labels of each event indicate the 

ranks of the peak flow and the 12-hour maximum volume simulated for one of the PDM sub-

catchments, 1 being the highest rank and 8000 the lowest.   

  



 

 

This article is protected by copyright. All rights reserved. 

 

Figure 6: Medway catchment 
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Figure 7: Simulated and observed peak inflows (left) and event volume (right) to the Leigh 

flood storage area 
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Figure 8:  FEH and CS model rainfall frequency curves at Weirwood Reservoir plotted 

against observed annual maxima (AMAX) (1999-2014) for different durations.  At the 24 

hour duration a longer AMAX series (red crosses) has been assembled using multiple local 

daily gauges (1955-2014) 
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Figure 9:  Comparison of CS and gauged (observed) river flow annual maxima (AMAX), 

plotted using Gringorten positions with Generalised Extreme Value curves with confidence 

limits established by bootstrapping fitted to the observations 
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Figure 10: Median and 95% likelihood weighted uncertainty bounds for the baseline climate 

conditions (solid lines) and climate change (dotted lines) under the “Medium-High” 

UKCIP02 climate change scenario.  Observed annual maxima flow data are shown as circles. 
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Figure 11: CDFs calculated for the 200 year event under baseline climatic conditions and 

under climate change scenarios 
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Figure 12: Frequency plot of annual maximum rainfalls (3-hour duration): comparison with 

FEH rainfall frequency distributions, with five alternative parameter sets for the stochastic 

model  
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Figure 13: Comparison of simulated and observed annual maximum flows and fitted flood 

frequency distribution for the Horner Water at West Luccombe 
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Table 1. Summary of selected application case studies. 

 Catchment features 

and study motivation 

Models used Innovations 

Bentley Ings 41 km
2
 lowland 

pumped catchment, 

permeable geology.  

Objective to assess 

required pump capacity 

for flood management.  

Point process rainfall 

model. 

Three PDM rainfall-

runoff models linked to 

1D/2D hydraulic 

system model. 

Multi-distribution rainfall model, 

conditioned on standard national 

marginal analysis for extreme 

rainfall quantiles. 

Hydrological calibration based on 

temporary flow gauges added 

confidence relative to standard 

models for ungauged catchments. 

Hierarchical sampling procedure to 

make efficient use of 

computationally expensive hydraulic 

model. 

Medway 1,300 km
2
 catchment 

containing significant 

engineered flood 

attenuation 

infrastructure and 

sensitive to both 

seasonal and short-term 

variation in forcing. 

Requirement for 

coherent basin-scale 

analysis for risk 

mapping and 

assessment of flood 

management options.  

Spatially-varying 

stochastic daily rainfall 

model. 

Point process local sub-

daily rainfall models. 

9 PDM hydrological 

models. 

Detailed 1D/2D 

hydraulic system 

model combined with 

efficient 1D river 

network routing model. 

Use of spatial stochastic rainfall 

model at daily scale and 

disaggregation via local point 

process models is an advance over 

Beven (1987) approach and industry-

standard practice. 

Use of efficient 1D routing model to 

identify important events in 

stochastic simulation allows 

practical application of complex 

1D/2D system model with long run 

times. 

 

Losise 216 km
2
 upland, 

relatively impermeable 

catchment. 

Requirement for 

climate change 

analysis. 

Point stochastic rainfall 

model based on 

multiple distribution 

functions. 

TOPMODEL 

hydrological model. 

Application of Bayesian Monte 

Carlo method (GLUE) to assess 

uncertainty in projected changes in 

flood peaks, accounting for 

uncertainty in rainfall and 

hydrological model parameters. 

Holnicote Pair of 18-22 km
2
 

responsive catchments 

draining steep 

headwaters into arable 

lowland floodplains. 

Point process 

stochastic rainfall 

model. PDM 

hydrological model. 

Adjustment of model parameters to 

represent changes in land 

management. 
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Table 2: Parameter ranges of the 1000 realistic TOPMODEL parameter sets, defined as those 

which yielded both a weighted sum of absolute errors of 12 m
3
/s or less (when evaluated 

against the observed flood peaks) and a value of 18.5 or less on a chi-squared test between 

the simulated and observed flow duration curves.  These evaluations were made through 

running TOPMODEL with observed rainfall. 

Parameter Range 

m (recession) 0.0304 to  0.0450 m 

DTH1 (effective drained porosity) 0.0011 to 1.0000 

SRMAX (maximum root zone storage) 0.0130 to  0.0348 m 

T0 (transmissivity) 0.6701 to  7.9565 (log scale) 

STDT (standard deviation from transmissivity) 0.8054 to  9.9877 (log scale) 
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Table 3: Flood flows (Q) estimated for return periods (T) of up to 200 years as derived from 

the median model simulation under current climatic conditions and for each of the four 

UKCIP02 climate change scenarios for the 2080s.  Percentage changes between the flood 

flows estimated under the current climate and under the climate change scenarios are also 

shown (to the nearest whole percentage).   

                                             Return period, T (years) 

 10 25 50 75 100 200 
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88  107  121  129  136  151  

Low 

 

 

89 1 109 2 125  3 134  4 141  4 156  3 

Medium- 

Low 

 

89 1 110 3 126 4 136 5 143 5 160 6 

Medium-High 

 

92 5 114 7 131 8 142 10 150 10 168 11 

High 

 

93 6 117 9 135 12 146 13 154 13 172 14 

 


