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Abstract

A key challenge for call centres remains the forecasting of high frequency
call arrivals collected in hourly or shorter time buckets. In addition to the
complex intraday, intraweek and intrayear seasonal cycles, call arrival data
typically contain a large number of anomalous days, driven by the occur-
rence of holidays, special events, promotional activities and system failures.
This study evaluates the use of a variety of univariate time series forecasting
methods for forecasting intraday call arrivals in the presence of such out-
liers. Apart from established statistical methods we consider artificial neural
networks (ANNs). Based on the modelling flexibility of the latter we intro-
duce and evaluate different methods to encode the outlying periods. Using
intraday arrival series from a call centre operated by one of Europe’s leading
entertainment companies, we provide new insights on the impact of outliers
on the performance of established forecasting methods. Results show that
ANNs forecast call centre data accurately, and are capable of modelling com-
plex outliers using relatively simple outlier modelling approaches. We argue
that the relative complexity of ANNs over standard statistical models is off-
set by the simplicity of coding multiple and unknown effects during outlying
periods with ease.
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1. Introduction

A key challenge in many call centres is the accurate forecasting of inbound
call volumes required to support short, medium and long-term decisions.
With 60–80% of the overall operating budget of a call centre resulting from
staffing costs (Brown et al., 2005; Aksin et al., 2007), accurate and robust
forecasting for workload management is an important issue. In recent years
consumer demand for call centre services has increased along with the dra-
matic expansion in the service industry (Shen and Huang, 2005; Aksin et al.,
2007). With this increase in the number of call centres and the amount of
call centre data, new challenges related to the handling and forecasting of
such data are presented. Firstly, call centre arrivals data are typically high-
dimensional and sampled at a high frequency, usually collected in daily or
smaller time buckets (e.g. 15 or 30 minute periods). Under these conditions
conventional statistical models designed for low frequency time series may
break down and be inappropriate (Kourentzes and Crone, 2010). Secondly,
call centre arrivals data exhibit complex seasonal patterns (De Livera et al.,
2011). The data often contains intraday, intraweek and even intrayear de-
pendencies, meaning that call arrival volumes will typically exhibit multiple
seasonal cycles which need to be modelled (for example, see Taylor, 2008a).

Call centre arrival data is also context sensitive, meaning that the data
can contain strong effects from holidays, special events, promotional activities
and unexplained variations (Andrews and Cunningham, 1995). These will
usually exhibit very different arrival characteristics from regular patterns
of call arrivals, weakening or even destroying the correlation structures in
the data. This may affect model specification and parameter estimation
(Chatfield, 2013). This is distinct from the behaviour of electricity load data
known to exhibit similar time series seasonal structure. Hence modelling call
centre data may require data cleansing. When outliers are due to holiday and
promotional effects, these can often be captured through past experience and
reference to market information. On the other hand, when outliers are due
to systems errors and other unexplained events they become more difficult
to identify and model.

Many forecasting models assume as a standard approach that this infor-
mation is either available or that the forecaster has an external methodology
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for tackling outliers. Some methods developed specifically for call centre data
acknowledge this issue. For example, Taylor et al. (2006) take the approach
of removing such days, while Shen and Huang (2005) describe the application
of singular vector decomposition for outlier detection but provide no empir-
ical evaluation. Many others however avoid this problem by assuming the
data pre-cleansed (for examples see: Jongbloed and Koole, 2001; Avramidis
et al., 2004; Taylor, 2008a; Pacheco et al., 2009; Taylor, 2010b). Conejo et al.
(2005) in forecasting electricity prices try to automatically correct outliers
using conventional time series modelling approaches, but have limited success
as the high frequency nature of the data makes such approaches inappropri-
ate. Nonetheless, in the context of electricity load forecasting Kourentzes
(2011) demonstrates that there are substantial accuracy benefits to be had
from modelling irregular load patterns.

This study has two aims. First we evaluate a variety of univariate time
series forecasting methods that are in theory capable of modelling data ex-
hibiting characteristics of intraday call centre arrivals. This evaluation is
central to identifying which method is most fit for purpose (Petropoulos
et al., 2014). We identify empirically artificial neural networks (ANNs) as
having the best forecasting performance and argue that this is due to their
modelling flexibility. This is a useful finding given the limited research in
ANNs for forecasting call centre data, despite evidence which shows them
capable of handling the complex seasonal structure of this data (Lee Willis
and Northcote-Green, 1983; Temraz et al., 1997). We augment the best per-
forming method to model special events and outlying days. We introduce
and evaluate multiple alternative methodologies, ranging from including the
outlier information in the forecasts to cleaning the data prior to fitting the
forecasting model. This addresses a gap in research of practical significance,
considering the difficulty and cost associated with manual exploration and
treatment of high frequency data by experts, and limited advancements in
automatic outlier identification for such data. Note that we restrict our atten-
tion to time series methods that forecast call arrivals volume and we do not
investigate models for call arrivals rate, for example by consider other classes
of methods e.g. those which incorporate stochastic models (Avramidis et al.,
2004) and those based on assumptions of a Poisson process (Aldor-Noiman
et al., 2009; Ibrahim and L’Ecuyer, 2013).

The rest of the paper is organised as follows: first we describe the nature of
call centre data by introducing the dataset for the empirical results. Section 3
presents the evaluation of numerous forecasting methods and assesses the
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impact of outliers on the performance of these methods. Subsequently in
Section 4 presents and evaluates various alternatives to modelling of outliers
using the best performing forecasting method. The final section provides a
summary and concluding comments.

2. Call centre arrival data and outliers

2.1. Case study dataset

To illustrate the data properties of call arrival time series we describe
the two time series that are used in the empirical evaluations. These record
calls received by a large call centre of one of Europes leading entertainment
companies representing inbound sales calls.

The data is sampled at half-hourly intervals and covers a period of 103
weeks and 3 days from 29 June 2012 to 23 June 2014 inclusive, including
bank holidays and weekends. Fig. 1 provides examples of the two time series.
Observe that between each day there are some hours with zero values, which
represent the hours that the call centre is not operational. Furthermore, it
is evident that there are some days with extraordinary levels of calls, which
we refer to as outlying days.
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Figure 1: Examples from the two time series from Sunday 25th May to Tuesday 24th June
2014.
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Fig. 2 provides a weekly seasonal plot of the first time series. To make
the plot less cluttered we provide various percentiles. The difference between
the outer bands and the the median provides some insight into the variabil-
ity of each half-hourly interval of the time series. Two seasonal cycles are
evident: an intraday and an intraweek. Monday to Friday look relatively
similar, although Monday, Wednesday and Friday exhibit slightly increased
afternoon/evening variability. The weekend days are substantially different.
Also note that the starting time for each day is not always at 08:00, reflecting
slight variations in the starting time that the call centre services calls. The
second series exhibits similar seasonal properties.
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Figure 2: Seasonal percentiles plot for time series 1.

For these time series we are provided with periods of extraordinary ac-
tivity. These were identified by experts in the organisation that the data
originate from, using domain knowledge. In total there are 87 such outlying
days for the first time series and 115 for the second.

2.2. Outliers in call arrival data

In addition to the regular patterns present in call centre time series a
number of irregular patterns exist. One type of irregularity is due to the ef-
fects of external factors such as bank holidays and marketing or promotional
activities. For example, customer mailings can be geared toward generating
increased call centre traffic (Andrews and Cunningham, 1995). These types
of shocks can be identified and anticipated fairly accurately, given that they
are driven either by actions of the company or calendar events. However, on
top of these there are events that are unexpected and an organisation has
little information about them a-priori. For example such events might be
unexpected problems with products, causing an influx of customer support
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calls, and so on. A further type of irregularity is posed by unexpected vari-
ations in the data due to system and data collection errors. These are often
unforeseen and difficult to identify and explain without expensive manual
intervention, which is often infeasible given the large amounts of data under
consideration.

Regardless the source of the irregular variations call centre data, and in
general high frequency data, present a special type of outlier, where the ex-
traordinary behaviour may last several consecutive periods, instead of a single
period that is common in low frequency time series forecasting. Therefore,
while call arrivals may differ within half-hourly or hourly periods, we con-
sider analysing call data as whole days providing information about outlying
days as curves varying over time. For example, call centre arrivals can be
different throughout the duration of a bank holiday as compared to a working
day. Such outliers can be different both in terms of volume of calls but also
the shape of the call pattern over the duration a fixed period, in contrast to
conventional outliers that cause only differences in the location of the value
of a time series. Consequently, we treat all outliers as full days and therefore
all half-hour periods on such days as constituting a single (day) outlier. To
better illustrate this Fig. 3 plots the median seasonal weekly pattern of the
second time series from the case study and known outlying periods. It can be
seen that the outliers vary both in shape and location and diverge substan-
tially from the median of the time series evidence that different modelling
and operational responses are required for these ’special’ days as a whole.
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Figure 3: Median seasonal profile and known outliers for time series 2.

There are two challenges that are associated with the presence of outliers
in the data. First, they have an impact on the quality of the fitted model;
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and second, they need to be forecasted in the out-of-sample periods. The
presence of these outlying periods can lead to model misspecification and
biased parameter estimates (Gelper et al., 2010; Koehler et al., 2012; Chat-
field, 2013). Since outliers can last for several periods, typically complete
days, these can also bias the estimation of seasonal patterns. This problem
is exacerbated for methods that may be overparametrised, such as exponen-
tial smoothing with multiple seasonal cycles (Gould et al., 2008), amongst
other methods (Draper and John, 1981; Tsay, 1989). When an outlier is
expected to occur in the future periods the forecasting methods need to be
able to account for this. Given the size and frequency of such outliers in call
centre arrival time series it is perhaps not surprising that simple methods
like Seasonal Moving Average are found to perform well (Taylor, 2008a).

To the best of our knowledge, the literature on call centre forecasting
does not provide guidelines how to deal with such data. Similar forecasting
applications, like electricity load forecasting, do not provide clear guidelines
either, focusing mostly on forecasting the normal periods.

An alternative is to analyse such outliers as functional data (Ramsay and
Silverman, 2002). Instead of considering call arrivals in a traditional time se-
ries manner, data can be viewed as curves (for example of daily duration) that
are observed sequentially in time (Hyndman and Shang, 2009) and therefore
apply functional data analysis (Silverman and Ramsay, 2005). In contrast to
normal outliers, functional outliers differ not only in level, but also in shape
over the duration of a fixed period. This means that outliers may lie outside
the range of the vast majority of data or they may be within the range of
the rest of the data but have a very different shape than other curves; the
former referred to as magnitude outliers and the latter called shape outliers
(Hyndman and Shang, 2010). In some cases outliers will exhibit a combina-
tion of both features. Here, in the proposed solutions to modelling outliers
in call centre arrivals the notion of function outlier will be useful, as our ob-
jective is to track both the differences in shape and magnitude. We therefore
consider outliers as whole days across multiple observations as opposed to
conventional additive or innovative outliers which consider individual obser-
vations. In addition to simplifying modelling complexity by treating each
high frequency observation as distinct, this approach provides insights at
the aggregate level of days of the week which is valuable for many types of
operational and capacity planning decisions.
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3. Evaluation of call centre forecasting methods

Developments in time series forecasting for call centre arrival data have
focused primarily on advanced methods for capturing the complex seasonal
patterns in the data as well as dealing with the high-frequency, big data
aspects of the problem (for examples see Antipov and Meade, 2002; Shen
and Huang, 2005; Taylor, 2008a; Shen, 2009; Aldor-Noiman et al., 2009;
Taylor and Snyder, 2012; Ibrahim and L’Ecuyer, 2013). Meanwhile, simple
methods such as the intraweek seasonal moving average, have been shown
to outperform more advanced ones (Tandberg et al., 1995; Taylor, 2010b;
Ibrahim and L’Ecuyer, 2013), with Taylor (2008a) suggesting “to use more
advanced methods may not be the solution”. On the other hand flexible
methods, such as neural networks, have been overlooked, which we attempt
to address here.

3.1. Forecasting Methods for Call Centre Data

3.1.1. Seasonal Näıve

The Näıve method is a fundamental benchmark for forecasting. It can be
extended to its seasonal variant as ŷt+h = yt+h−m where yt is the recorded
arrivals at a call centre at period t = 1, . . . , n, ŷt are the forecasted arrivals,
h is the forecast horizon and m the length of the seasonal cycle. As this
formulation allows capturing only a single seasonal cycle we evaluate coding
both the daily (m = 48) and the weekly (m = 336) seasonalities separately.
Namely using the Seasonal Näıve we define Näıve Day and Näıve Week.

3.1.2. The Seasonal Moving Average

Following the works by Tandberg et al. (1995) and Taylor (2008a, 2010b)
the Seasonal Moving Average is considered as a good contender for forecast-
ing call centre arrivals. It is calculated as:

ŷt+h =
1

k

k∑
i=1

yt+h−mk, (1)

where k is the number of seasonal periods considered in the calculation of
the moving average. Similar to the Seasonal Näıve we build for each seasonal
length: MA Day and MA Week. To identify the appropriate order k of
the Seasonal Moving Average we measure the sum of squared errors over a
validation set and pick the order that results in the minimum error.
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3.1.3. Exponential Smoothing

Hyndman et al. (2002) embedded the pre-existing exponential smoothing
methods within a statistical state space framework: ETS, which is used in
this paper. ETS is able to model time series with various characteristics in
terms of trend (none, linear, multiplicative, damped or not) and seasonality
(none, additive, multiplicative) and how the error term interacts (additive,
multiplicative). Combining all different options in terms of trend, season
and error up to 30 different model forms of ETS can be described (Hyndman
et al., 2008; Ord and Fildes, 2013). The appropriate form can be selected by
using information criteria, such as the Akaike Information Criterion (Hyn-
dman et al., 2002), or alternatively combine different forms (Kolassa, 2011;
Kourentzes et al., 2014b). In particular for the available call arrivals time
series the presence of zero values restricts the model forms to additive and
given the seasonality and lack of trend ETS(A,N,A) is a reasonable:

yt = lt−1 + st−m, (2)

lt = lt−1 + αet, (3)

st = st−m + γet, (4)

where yt, lt and st model the value of the series, the level and seasonality
components at time t respectively and the smoothing parameters α and γ
control how fast each component updates from errors et. The seasonal period
is m can be adjusted accordingly to capture different seasonal cycles. The
model requires an initial level and m initial seasonal values. These, together
with the smoothing parameters, are optimised using maximum likelihood
estimation.

Gardner (2006) observed that for seasonal ETS the number of free param-
eters increases substantially. This is particularly relevant for high frequency
time series, where the number of initial states can become very high. For
example fitting a model with no trend and daily seasonal cycle sampled at
half-hourly intervals requires 2 smoothing parameters and 49 initial values
to be estimated, while for a weekly seasonal cycle the latter increases to 337
initial values. All these would need to be optimised incurring a high compu-
tational cost and potential optimisation issues. In this study both seasonal
lengths are used, resulting in ETS Day and ETS Week.
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3.1.4. Double Seasonal Exponential Smoothing

Given the restriction of ETS to modelling a single seasonality research has
focused to extend it to model multiple seasonal cycles. Taylor (2003) pro-
poses an extended exponential smoothing method that is capable of capturing
two seasonal cycles simultaneously and models error autocorrelation. Tay-
lor (2010a), based on this work, provides an innovations state space model,
which is used in this paper and named ETS Double hereafter:

yt = lt−1 + st−m1 + dt−m2 + φzt−1 + et, (5)

lt = lt−1 + αet, (6)

st = st−m1 + γet, (7)

dt = dt−m2 + δet, (8)

zt = yt − (lt−1 + st−m1 + dt−m2), (9)

where dt is the component for the second seasonal cycle. The two seasonal
cycles have periods m1 and m2 and the model now requires four parameters
to be estimated: α, γ, δ, φ and m1 +m2 + 2 initial values. All are optimised
using maximum likelihood estimation. Note that Gould et al. (2008) echoing
the arguments of Gardner (2006) warns on the implied dimensionality of the
initial states of such models.

3.1.5. Autoregressive Integrated Moving Average

The Autoregressive Integrated Moving Average (ARIMA) constitute an-
other popular class of models in univariate time series forecasting. While ex-
ponential smoothing primarily captures integrated moving average processes,
always implying non-stationary time series, ARIMA can capture both autore-
gressive and moving average processes, and the order of integration permits
the modeller to capture either stationary or non-stationary series. ARIMA
models can be easily extended to include any number of seasonal cycles by
simply multiplying appropriate seasonal polynomials. For a detailed presen-
tation of ARIMA and single seasonal ARIMA the reader is referred to Box
et al. (2008). Multiple seasonal ARIMA models are discussed and evaluated
in detail by Taylor (2008b), who finds that the Double Seasonal Exponential
Smoothing outperforms such models.

Although ARIMA models are very flexible and powerful, at the same time
they are very difficult to specify, which has been one of the key reasons for
them not being widely applied in practice. This is particularly relevant to
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seasonal and multiple seasonal ARIMA for which the potential search space
for the polynomials’ orders is greatly expanded and an exhaustive evaluation
of all alternative specifications quickly becomes infeasible. To overcome this
we follow the methodology by Hyndman and Khandakar (2008) who recom-
mend to first identify the appropriate differencing by employing the KPSS
and OCSB statistical tests and then proceed to identify the orders of the
polynomials using a stepwise search with the Akaike Information Criterion.
We build ARIMA Day, ARIMA Week and ARIMA Double in analogy to the
exponential smoothing models discussed above.

3.1.6. Artificial Neural Network

Artificial Neural Networks (ANNs) in various forms have been success-
fully applied in multiple forecasting applications (Zhang et al., 1998; Hamid
and Iqbal, 2004), demonstrating forecasting performance at least as good as
established statistical forecasting methods (Adya and Collopy, 1998). ANNs
are well placed to forecast high frequency time series (Kourentzes and Crone,
2010) and in particular seasonal ones, with several examples coming from
electricity load forecasting (Hippert et al., 2005), where they are implemented
successfully in electric utility operations and standard software packages,
such as the ANNSTLF architecture (Khotanzad et al., 1998) employed in
over 50 utilities worldwide. Yet there is very limited application of ANNs in
call centre forecasting and the results are mixed. Pacheco et al. (2009) apply
an Improved Backpropagation Neural Network to forecasting incoming phone
calls in a multi-skill call centre. For call groups having complex behaviour the
ANN is found to forecast better than exponential smoothing. However for
call groups with low incoming flow exponential smoothing is best. Balaguer
et al. (2008) predict the number of forthcoming service requests to a support
centre using Time Delay Neural Networks, which outperformed ARMA mod-
els in predicting the number of requests 6 hours ahead. Other studies apply
ANNs but do not compare to any standard benchmarks such as single or
double exponential smoothing, making difficult to assess their performance
(for examples see Li et al., 2011; Millan-Ruiz and Hidalgo, 2010).

The mixed results can be partially explained by the inconsistent mod-
elling practices in building ANNs. Indeed Armstrong (2006), doing a meta-
analysis of empirical evidence in the forecasting literature, argued that ANNs
have not advanced sufficiently to permit their widespread use, due to mod-
elling complexity, lack of robustness and transparency, in particular when
considered against established statistical methods. However, recent research
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has started to address these limitations, revealing modelling best practices
(identification of input variables, use of ensembles of networks, etc; see Crone
et al., 2011), resulting in reliable forecasts. The most common type of ANNs
used for forecasting is the Multilayer Perceptrons (Zhang et al., 1998):

ŷt = β0 +
H∑

h=1

βhg

(
γ0i +

I∑
i=1

γhipi

)
, (10)

where I denotes the number inputs pi, which can be lags of the target time
series or external variables, and H is the number of hidden nodes in the net-
work. The weights w = (β,γ), with β = [β1, . . . , βH ] and γ = [γ11, . . . , γHI ]
are for the hidden and output layer respectively. The β0 and γ0i are the
biases of each node, and serve a similar purpose to the intercept in conven-
tional linear regression. The transfer function g(·) may be non-linear and is
usually either the sigmoid logistic or the hyperbolic tangent function.

The network described in Eq. (10) has a single hidden layer that has
been shown to be sufficient to give the network universal approximation
capabilities, when the number of hidden nodes H is sufficient (Hornik, 1991).
The adequacy of a single hidden layer is supported by empirical evidence
(Zhang et al., 1998). From Eq. (10) it is easy to appreciate the flexibility of
MLPs. Any type of input variables can be used to map the behaviour of the
time series in hand, linearly or nonlinearly, permitting interactions between
the inputs, if any. This flexibility is one of the key strengths of ANNs, but
also one of the reasons for the inconsistent and opaque modelling practices
in the literature, due to the large number of options.

To produce forecasts with ANNs we need to identify the appropriate input
variables, the size of the hidden node and select the network training setup.
To select the hidden nodes we employ the methodology described by Crone
and Kourentzes (2010) as extended by Kourentzes and Crone (2010), which is
based on regression diagnostics to identify the relevant autoregressive inputs
for the ANN. The two seasonal cycles of the call arrivals data are coded using
pairs of trigonometric dummy variables:

s1,j = sin (2πt/mj) , (11)

s2,j = cos (2πt/mj) , (12)

where mj = {48, 336}, resulting in four additional inputs. Because of the
flexibility of ANNs this parsimonious encoding was found to be adequate
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to capture multiple seasonal cycles (Crone and Kourentzes, 2009).The num-
ber of hidden nodes is identified experimentally, by tracking the setup that
provides the minimum MSE in the validation set.

Standard network training is used, employing Scaled Conjugate Gradi-
ent Descent (Møller, 1993), with early stopping by tracking the error on a
validation set (Ord and Fildes, 2013). To avoid poor quality solutions the
network is trained with different initial weight 50 times and an ensemble of
all trained networks is used to produce the final forecast. The median com-
bination operator is used, as it is shown to be more accurate and converge to
reliable and stable ANN forecasts with smaller ensembles (Kourentzes et al.,
2014a).

3.2. Experimental design

Both time series are split into two samples, one used for fitting and one
for testing the out-of-sample performance of the various forecasting methods.
The latter sample is comprised by the last 100 days (4,800 data points) of the
complete sample. The forecast horizon that is used for the evaluation is from
1 to 48-steps ahead, i.e. up to one day ahead forecast. We employ a rolling
origin evaluation scheme, collecting for each method 4,753 48-step ahead
forecasts, facilitating the comparison between methods. For the Seasonal
Moving Average and ANN a validation sample is also required. To this
purpose we retain 100 days prior to the test set, when such a sample is
needed.

To further validate our results we repeated the experiment by removing
the last 100 days of the time series and constructing a new test set with the
preceding 100 ones, effectively constructing again 4,753 48-step ahead rolling
origin forecasts. Naturally, the new test set included different outlying days.
Nonetheless the results from the second test provide the same findings as the
first one and therefore for brevity we report and discuss only the detailed
results of the first test.

To measure the accuracy of the forecasts the Relative Mean Absolute
Error (RMAE) is used (Davydenko and Fildes, 2013):

MAE =
h∑

t=1

|yt − ŷt| , (13)

RMAE =
MAEMethod 1

MAEMethod 2

(14)
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We prefer RMAE over other metrics because its calculation is not affected by
zero or low values, while being scale independent. If RMAE = 1 then both
methods are equally accurate; if RMAE > 1 then Method 2 is more accurate
and the opposite is true when RMAE < 1. Here we will be using the MAE
of the ANN forecasts as the denominator for all methods.

Finally we track the accuracy in three separate cases: (a) overall; (b) for
normal observations; and (c) for outlying observations. This way we can
compare the performance of each method under different conditions. The
errors are measured across all observations and periods with zero arrivals are
not excluded.

3.3. Results

The forecast accuracy across both time series for the out-of-sample RMAE
performance is summarised in table 1. The best performance in each column
is highlighted in boldface.

Table 1: Average RMAE of forecasting methods

Method Overall Outlier Normal

Näıve Day 1.416 1.165 1.529
Näıve Week 1.383 1.107 1.500
MA Day 1.326 1.199 1.404
MA Week 1.181 0.909 1.279
ETS Day 1.744 1.403 1.872
ETS Week 1.504 1.227 1.608
ETS Double 1.119 0.924 1.196
ARIMA Day 1.254 1.180 1.288
ARIMA Week 1.144 0.918 1.228
ARIMA Double 1.826 1.434 1.991
ANN 1.000 1.000 1.000

The best overall performance is achieved by ANN. This is consistent
across normal periods, while for outlying periods MA Week performs best,
validating the strong performance of the seasonal moving average observed
by Taylor (2008a). Considering the option of capturing a single seasonal cy-
cle, the intraday or intraweek, for all methods the weekly variant performs
best consistently across all three cases: overall, outlier and normal. ETS
Double substantially outperforms both ETS Day and ETS Week. This is not
the case for ARIMA Double, which is outperformed by the simpler ARIMA
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Week. This is attributed to the complexity of specifying the orders and
optimising the parameters of ARIMA Double.

If ANN are not considered, when comparing across method families we
observe that the more complex ETS variants are outperformed by the sim-
pler Näıve and MA. This is explained by the difficulties associated with the
specification and parametrisation of such models as discussed in section 3.1.3.
Biased parameter estimates which fail to robustly capture seasonal patterns
lead to poor performance not only for outlying days but also deteriorate per-
formance during normal days. Note that this is not the case for ARIMA Day
and ARIMA Week that both perform competitively. For both models once
the data are seasonally differenced low order polynomials are adequate to
fit the time series, hence avoiding the high-dimesional optimisation needed
for ETS. Comparing ETS Double with MA Week it can be seen that cod-
ing the double seasonal patterns is beneficial for normal periods, but not for
outlying ones, where MA Week is the most accurate method. ETS Double
outperforms ANN when considering only outlying periods.

Based on these results we can draw the following recommendations: for
forecasting normal periods ANN is the most accurate with almost 20% differ-
ence from the second best method, providing substantial support for using
neural networks in call centre forecasting. However, when evaluating the
accuracy on outlying periods the much simpler MA Week is best. In the fol-
lowing section we will attempt to augment ANNs by modelling these outlying
periods explicitly. We choose ANNs not only for their good performance, but
also for simplicity in extending them to include additional information.

4. Modelling call arrival outliers with ANNs

Above we empirically established that ANN is a good candidate for pro-
ducing accurate call centre arrival forecasts. Based on this we evaluate a
number of strategies to code outliers in the inputs of ANNs, which range
from merely indicating to the network that an event is taking place to pro-
viding information about the shape of the outlier. Consequently, we assume
that outliers are known in advance and that all outliers are labelled ac-
cordingly. This allows us to compare the alternative strategies proposed by
having to encode always the same outlying days and focus solely on assess-
ing their performance. We do not consider additional exogenous or dynamic
variables such as days preceding or following a ’special day’ and our focus is
on modelling the outlying days exclusively. However the contextual informa-
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tion of normal or outlying days, i.e. the type and shape of preceding days,
is available through the autoregressive inputs of ANNs. In total we consider
nine different strategies. All these attempt to capture the functional form of
the outlying periods. To further highlight the usefulness of ANNs in mod-
elling such outliers we augment ETS double to include the same inputs and
evaluate the relative gains.

4.1. Outlier encoding methods

4.1.1. Single Binary Dummy Variable

Using binary dummy variables to capture outliers is standard practice
in time series modelling. The binary nature of the dummy contains the
information whether an event is occurring or not. In a regression context that
simply models an additive shift. However for ANNs the effect is not restricted
to additive shifts, or even the same effect when the event is happening, as
we discuss in more detail in section 5.1. Therefore, a very simple input for
the ANN is to add a single binary dummy whenever an outlier is known to
occur, which will be named ANN Bin1.

4.1.2. Multiple Binary Dummy Variables

In a linear regression context to model multiple outlying periods that
have different periods several binary dummies must be introduced. We can
use the same approach with ANNs, where parsimony is traded with aiding
the model to fit to the data. To capture a shape that lasts S periods we need
S − 1 binary dummy variables to eliminate information redundancies in a
linear context, resulting in ANN BinS-1. Neural networks, being nonlinear,
do not need this special treatment resulting in ANN BinS. Alternatively, we
can introduce a variable selection step to choose how many separate binary
dummies need to be retained. Depending if a stepwise or backward approach
is used these are named ANN Bin Step and ANN Bin Back respectively.

4.1.3. Single Integer Dummy Variable

Using a single binary dummy to code functional outliers merely provides
the information to the network that an event is taking place and the rest is
left to its approximation capabilities. However note that the approximation
starts by assuming the effect is identical across the various periods, as the
binary dummy is always equal to 1. We can indicate to the network that this
is not true by switching the binary dummy with an integer dummy valued:
1, 2, . . . , S. Again we rely to the approximation capabilities of the network
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to capture the exact effect of the outlier. This very parsimonious coding has
been shown to be an effective way to capture deterministic seasonality with
ANNs (Crone and Kourentzes, 2009). We will refer to this strategy as ANN
Int.

4.1.4. Trigonometric Dummy Variables

Using trigonometric variables to capture patterns with neural networks
is common for seasonality. We extend its use to capture patterns of outlying
days, using a pair of sine and cosine variables with a daily period. When
periods are normal the values of the trigonometric variables are replaced
to zero. This way we indicate to the network both the duration of the
special events and their timing of occurrence. This strategy requires only
two variables and is named ANN SinCos.

4.1.5. Profile Dummy Variable

Another approach is to explicitly provide the network an indication of the
shape of the outlier. A single input is used, the values of which are calculated
as the average of all outlying shapes. Again we rely upon the approximation
capabilities of the network to fit to the different specific outliers and this
strategy is referred to as ANN Profile.

4.1.6. Model Separately

An alternative would be to model outlying and normal periods indepen-
dently. In this case we construct two subseries from the original one. All
outliers are separated into a new series containing only outliers. Another
series is created from the original one, where all outliers are replaced with
the seasonal median of the original series normal periods. Replacing out-
liers with the median is a practical approximation, which is robust to any
unknown outliers in the time series. The ‘outlier’ series is modelled by a sepa-
rate network. This strategy, which is named ANN Replace, requires building
two separate networks, but no special new inputs.

4.2. Double Seasonal Exponential Smoothing with outlier coding

We augment ETS Double to include the various outlier coding strategies
by revising the forecast equation of the model. The seasonality states are
calculated as in the normal case, but the measurement equation (6) is mod-
ified to include an additional additive term with regressors X tr, where X t
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contains all additional variables prescribed by the strategies above at time t
and r is a vector containing the respective coefficients for each dummy.

yt = lt−1 + st−m1 + dt−m2 + φzt−1 +X tr + et. (15)

The estimation of the model is done in the conventional way. For addi-
tional details how to include exogenous variables in ETS and evidence of the
forecasting performance of the modification, albeit for the single seasonal
case, the reader is referred to Hyndman et al. (2008) and Kourentzes and
Petropoulos (2015).

4.3. Empirical evaluation

Using the same experimental setup as before we compare the performance
of the alternative outlier coding strategies. Table 2 provides the average
RMAE for overall, normal and outlier periods, both for ANN and ETS Dou-
ble.

Table 2: Average RMAE of ANN and ETS Double with outlier coding

ANN ETS Double
Method Overall Outlier Normal Overall Outlier Normal

Control 1.000 1.000 1.000 1.119 0.924 1.196
Bin1 0.976 0.931 0.992 1.132 0.965 1.193
BinS 0.903 0.844 0.927 1.610 1.190 1.790
BinS-1 0.898 0.850 0.919 1.604 1.190 1.782
Bin Step 0.913 0.867 0.933 1.614 1.190 1.795
Bin Back 0.913 0.862 0.935 1.414 1.089 1.566
Int 0.946 0.926 0.954 1.124 0.944 1.192
SinCos 0.966 0.889 0.992 1.378 1.038 1.536
Profile 0.975 0.944 0.987 1.136 1.002 1.193
Replace 1.016 1.055 0.997 1.182 1.188 1.192

First let us focus on the ANN results. With the exception of ANN Re-
place, all other approaches improve upon the base ANN. ANN Replace also
improves when evaluated only on normal periods. This demonstrates that
ANNs have been able not only to fit the normal periods better, but also learn
the behaviour of the outlying periods and predict them relatively accurately
in the out-of-sample.

Let us focus our analysis at the performance of the different methods for
forecasting normal periods. We anticipate that if the outliers are modelled
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accurately, this will have a positive impact in the accuracy of the method
for the normal periods, since the parametrisation will not be biased, as dis-
cussed above. Comparing the different methods we can observe some dis-
tinct behaviours. Methods that use multiple binary dummies (ANN BinS,
ANN Bin S-1, ANN Bin Step and ANN Bin Back) perform best, with ANN
BinS-1 being the most accurate. The neural network has been able to code
the various outliers using in this particular case 47 binary dummies for 48
observations-long days. The flexibility of the network makes it possible to
model the complex behaviours of the different types of outliers in a relatively
simple way, without needing the modeller to explicitly code different causes
or groups of outliers.

ANN Int follows in terms of accuracy. It was assumed that the network
would benefit by providing the information that the periods of the outlier
have different values. Comparing ANN Int with ANN Bin there is support
for this.

ANN SinCos has weak performance. To explain this we need to consider
the nature of the inputs. When an outlier was observed a complete period
of a sine and a cosine are provided as inputs. These variables are equal to
zero for all other periods. A zero input is expected to have no effect in a
linear regression, but as discussed above a neural network can code multiple
responses with the same input.

Finally ANN Replace improves upon the base ANN, but only marginally.
This shows that the seasonal median used to replace the outlying values
in the‘normal subseries’ was not adequate. Although one can argue about
different ways to replace outlying values, letting the neural network simulta-
neously estimate normal and outlying periods is simpler and performs well
as the rest of the results suggest.

The results for the the outlying periods are similar. Note that ANN
Replace performs worse than the base ANN that has no special treatment
for outliers. To forecast the outlying periods ANN Replace fits a network on a
series comprised solely by outliers. The empirical evidence suggests that the
lack of systematic patterns does not allow the networks to train adequately.

ANN BinS and ANN BinS-1 are simpler than ANN Bin Step and ANN
Bin Back, and therefore should be preferred since their is no observed loss of
accuracy. Between the two there are marginal differences and therefore we
recommend using the most parsimonious so as to make the computational
cost of the network smaller. Consider that even a single additional input
requires H additional weights to be trained, the number of the hidden nodes.
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The rest of table 2 provides the results for ETS Double. In this case we
do not see the performance gains observed by ANN. This can be explained
by the way that the additional information is handled by ETS Double. The
model is capable of capturing unique additive linear effects for each addi-
tional regressor, as quantified by r. This lacks the flexibility of the nonlinear
ANN and ETS Double would require much more complex handling of out-
liers. We argue that the resulting modelling simplicity of outliers with ANNs
counterbalances the additional complexity of the method itself over standard
statistical models.

Concluding, table 3 provides the percentage gains in accuracy of the rec-
ommended ANN BinS-1 over the best performing statistical benchmarks from
table 1. We can observe that overall accuracy gains are about 20%, with on
average more than 5% gains in accuracy during periods of outliers.

Table 3: Percent gains in accuracy of ANN BinS-1

Method Overall Outlier Normal

MA Week +22.7% +4.7% +27.1%
ETS Double +18.4% +6.2% +22.0%

A more detailed comparison of the top performing members of each model
family is provided in Fig. 4. We observe that ANN with no outlier coding
are consistently more accurate than other univariate alternatives across all
forecast horizons. The inclusion of such information (ANN BinS-1) in turn
consistently outperforms the univariate ANN. The differences for short hori-
zons between the forecasts are small, with the exception of Näıve Week and
MA Week the RMAE of which is poor for short horizons but improves as the
errors of the other forecasts increases for longer horizons.

5. Discussion

In this section we consider why ANNs work and the implications for the-
ory and practice. We argue here that their flexibility makes them particularly
suited for modelling this type of outliers and data. Considering Eq. (10) one
can observe that the various network inputs can interact. This permits ANN
to be ‘context aware’ when capturing outliers. This reduces the need for
the call centre analyst and forecaster to specify complex and often unknown
behaviour of outlying and ’special’ days.
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Figure 4: RMAE per horizon for top performing forecasts.

5.1. Why ANNs work: An illustrative example

To better illustrate this property of ANNs consider the example of a
seasonal time series with two outliers, one approximately during the sea-
son minimum and one during the maximum. Both outliers change the value
towards the mean of the time series, therefore require adjustment of the base-
line towards the opposite direction. We construct ANNs with two neurons
in the hidden layer, following the setup described earlier. We fit one network
with appropriate autoregressive inputs and a single binary dummy to indi-
cate when the outlier is taking place and a network without the additional
dummy variable. The resulting fits can be seen in Fig. 5. Observe that the
ANN without the additional information has poor fit during the outlying
periods, while the opposite is true for the ANN with the dummy variable.
Note that the network is capable of fitting well to the two different outliers,
that require opposite adjustments, using only a single dummy variable.

Due to the small size of the network we can fully observe how the out-
put is calculated during the two outlying periods. Fig. 6 visualises the two
neurons in the hidden layer and the output node. The input weights and the
respective inputs and outputs are provided. The network has three inputs,
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two autoregressive lags of order 1 and 12 and a single binary dummy. To
highlight the impact of the dummy the inputs and outputs with and without
the dummy for the two outlying periods are provided. Note that during the
remaining normal periods the value of the binary dummy is equal to zero
and therefore does not affect the construction of the forecasts.
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Figure 6: ANN neurons inputs and outputs for the outlying periods.

Focusing on the first neuron we observe that without the dummy variable
the input of the hyperbolic tangent transfer function is equal to the sum of the
autoregressive inputs multiplied by their respective weights, plus a constant
term. For both outlying periods the resulting value is relatively high and at
the highly nonlinear region of the hyperbolic tangent. On the other hand
when the binary dummy is considered, the inputs are shifted towards the
linear part of the neuron. Observe that the shift for the first outlier (square)
is −0.36 while for the second (circle) is −0.86, due to the nonlinearity of the
transfer function.
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For the second neuron the inputs for the second outlier remain at the
nonlinear region with only small changes in the output, as the shift of −2.49
cause by the binary dummy has minimal effect due to the shape of the hy-
perbolic tangent transfer function. Contrary, for the first outlier the binary
dummy shifts the inputs to a different nonlinear behaviour, resulting to a
substantial change in the output. The total change of the output for the first
outlier is just −0.07, while for the second is −1.09. The relatively massive
difference in the outputted value is due to the sum of the weighted autoregres-
sive inputs before the effect of the binary dummy is considered, pushing the
input to a different region of the nonlinearity and thus causing the dummy
to have a different effect.

The linear output node combines the outputs from the two neurons in the
hidden node and shifts them by a constant value. Observe that the weight
of the first neuron is approximately equal to 1. The second neuron has a
weight of −0.69, so as both outputs of the second neuron were negative they
will contribute with a positive shift to the final output. For the first outlier
(square) the total shift caused by the inclusion of the dummy variable results
in an upward shift. This is appropriate as the first outlier is higher than the
anticipated value of the series. On the other hand the total shift for the sec-
ond outlier is negative, effectively reducing the output value, resulting in an
opposite shift as it is appropriate for the time series in hand. This behaviour
arises from the nonlinear behaviour of the neurons and the interaction of
the inputs of the ANN, something that is impossible with other conventional
statistical models in section 3, as demonstrated in table 2 as well.

This illustrates that ANNs have a substantial advantage in being able
to model economically, in terms of number of inputs, complex outlying be-
haviours. Introducing only a limited number of dummy variables is enough
to capture the multiple different shapes and magnitudes of outlying days
avoiding the need to resort to overcomplicated outlier encoding or treatment
methods. This is very useful for modelling high frequency outliers that may
last several periods as is the case for the call centre time series. In such cases
the ANN is aware of any interactions with the baseline values, as well as any
proceeding outlying values.

5.2. Implications for practice

The problem of modelling outliers and special days for high frequency
data remains a major challenge in call centre forecasting and OR practice in
general. In the literature there is very limited research on the topic. Due
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to the nature of the data conventional outlier modelling methods are not
applicable, which has led practitioners to develop various ad-hoc approaches
in lack of best practices. Our work is attempting to contribute to this by
evaluating several strategies to model such days.

At the same time we investigate the performance of various forecasting
methods for predicting the volume of call arrivals. Although this is not
the first study to do this, it differs in two aspects relevant for practice: (i) it
extends the types of methods considered to include ANN, a flexible nonlinear
forecasting method; (ii) evaluates each method by considering a modelling
methodology that can be fully automated.

The first aspect turns out to be significant, as we find ANNs to be uniquely
capable in modelling and predicting outlying days with only simple extensions
of the input vector. This limits the need for ad-hoc unproven approaches that
practitioners often have to resort to in dealing with such days. We argue that
this simplifies the forecasting task.

The second aspect is very relevant for practice as automation is impor-
tant for organisations. Forecasts have to be scalable, adaptive to the prob-
lem and dataset at hand and relatively insensitive to different levels of the
user’s statistical expertise. Organisations typically give more importance
to the domain knowledge of the expert, rather than statistical skills. The
various alternative methods that were considered in this analysis can all be
implemented in a fully automatic way and all are arguably feasible imple-
mentations for companies. Although statistical expertise cannot be replaced,
solutions that do not require an extensive setup or customisation from users
can be more widely and easily used in practice.

We find that ANNs are not only producing accurate call arrivals volume
predictions, but also capture outliers effectively. Therefore a single fore-
casting method is capable of handling both normal and special days. We
anticipate that this can eventually lead in a simplification of the forecasting
process itself. Although as a method ANNs are surely more complex than
other alternatives evaluated here, such as Seasonal Moving Averages that
have been found to perform well, once seen as a holistic forecasting solution
the complexity of ANNs is offset by the simplification of the forecasting pro-
cess. Last but not least, the expert no longer needs to manually treat and
forecast special days, thus having more time to simply mark such days for
the statistical forecast and focus on adjusting any predictions when addi-
tional useful information is available. Therefore we argue that a simplified
forecasting process allows experts to add more value through their domain
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knowledge skills. Extending this argument, it raises an interesting question
for the design and software implementation of forecasting support systems.
We already argued that methodologies that can be automated are crucial
for practice. Their benefits will only be fully materialised if the forecasting
support systems provide the appropriate support to the expert user in terms
of information provided and feedback, as well as inputs to the system.

Nonetheless, ANNs have been criticised for being ‘black-box’. Our recom-
mended method does not provide descriptive insights to experts. It primarily
offers predictive improvements and it is still left up to the expert to highlight
the behaviour of a particular special event. To this end ANNs can support
experts by means of sensitivity analysis, where one can simulate the effect on
the forecasts of various events and special days. This is far from a complete
solution, but it is offering a new direction for further research and a starting
point for practitioners to model such days. It is natural that the modelling
objective will indicate the most appropriate method for practitioners.

Finally, a relevant discussion point is the generality of the strategies to
code outliers evaluated here to other high frequency time series forecasting
problems. Although one would need to empirically verify their effectiveness,
we anticipate that applications with similar data characteristics, such as tele-
vision and online viewership, electricity load, server load of online activities
and so on, would benefit, thus having potential for wider practical usefulness.

6. Conclusions and future research

In this paper we have gone beyond previous studies on forecasting call
centre arrival data to consider the effect of outlying periods and how to
best forecast call arrivals when these are present. We find ANNs to be the
most accurate of all methods in our empirical evaluation. However, when
looking only during outlying periods the simpler double seasonal exponential
smoothing and the seasonal weekly moving average perform better.

Motivated by the flexibility of ANNs we go on to show that their per-
formance can be substantially improved by explicitly modelling outlying pe-
riods, with improvements in accuracy of about 20% overall, and more than
5% gains in accuracy during outlying periods over the best performing al-
ternatives. The use of multiple binary dummies is found to yield the best
performance of all methods for the chosen dataset, while ANN Bin S-1 is
chosen over ANN BinS due to having fewer free parameters and marginally
superior accuracy. We argue that even though ANNs are relatively more
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complex than conventional statistical methods, the simplicity of modelling
outlying call arrivals periods makes them attractive.

However more work is needed in this area. Specifically it may be the case
that not all outlying periods are labelled correctly. Future work should aim to
introduce methods for automatically identifying and validating the presence
outlying patterns, especially given the high frequency nature of call centre
data, as well as the number of different call types that maybe monitored.

Furthermore, in this study we only focused on evaluating point forecasts
of call arrival volumes. Naturally it is possible to make use of empirical ap-
proaches to calculate prediction error distributions for the methods in this
paper, when analytical ones are not available. Density forecasts of arrival
rates are useful for supporting staffing decisions and accounting for uncer-
tainty in call arrival volumes (Gans et al., 2003; Taylor, 2008a). Taylor
(2012) show how density forecasts can be produced using models based on
exponential smoothing together with assumptions of Poisson arrivals, while
Weinberg et al. (2007) generate density forecasts using a multiplicative Gaus-
sian model estimated within a Bayesian framework. We see the incorporation
of our work on outlier modelling into density forecast models of call centre
arrival rates as useful future research.
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