An Orthogonal Framework for Fault
Tolerance Composition in Software Systems

Sobia Khurshid Khan

Computing Department
Lancaster University

United Kingdom

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OCTOBER 2015

Acknowledgments

| would like to start my acknowledgments by thanking Almighty Allah for giving me strength
to complete this thesis. | would extremely thankful to my supervisor, Dr Lynne Blair, for all
the guidance and comments provided in all this thesis work. The support she provided had a
great influence to my experience and in the success of this thesis completion. She has been
model of patient and support. | am also thankful to my supervisor Prof. Awais Rashid for his

continuous support and guidance.

| am grateful to all the members of room C31 for the great work environment. They have

provided me opportunities for fruitful discussion and feedback on my research.

| want to express my sincere thanks to my parents specially my dad for his continues prayers
and moral support. | am extremely grateful for my husband Zafar, who has been constantly
caring and supportive in all things over the years. | also thank my wonderful kids:

Muhammad and Saliha for always making me smile.

| thank my entire family member for all the support, belief and encouragement, which had a
great importance in my personal commitment to this thesis. | want to mention the name of
Weronika Khan for her support she gave me with my kids over the years. During all my work,

she never said ‘No’ to me whenever | was in need of her help. Thank you very much!

Abstract

Building reliable systems is one of the major challenges faced by software developers as
society is becoming more dependent on software systems. The failure of any system can
lead to a serious loss, for example serious injury or death in case of safety critical systems
and significant financial loss in the case of business-critical systems. As a consequence, fault
tolerance is considered as a solution to provide reliability, but the fault tolerance capability
is associated with many challenges, such as the right development phase where it needs to
be introduced, how it can be composed with the software, and the issues that arise from this

composition such as complexity and potential undesirable feature interactions.

This thesis presents an orthogonal fault tolerance framework for the composition of design
diversity fault tolerance mechanism with the base system. It further ensures the separation
of concerns between the ‘base’ system and the fault tolerance mechanisms that are
composed with the base system. The composition in this framework is based on operational
semantics that describe the behaviour of the underlying components when composed with
the fault tolerance mechanisms. A custom-built pre-processor is based on these composition
rules, and is used to automatically compose the system component and the fault tolerance
mechanisms. The very introduction of different fault tolerance mechanisms to the system
may cause interactions with other fault tolerance features or with system components. Logic

properties written in CTL and LTL are used in NuSMV to analyse undesirable interactions.

To illustrate its applicability, the framework has been applied to the Home Automation and

Therac-25 software.

Declaration

This thesis has been written by myself, and the work reported herein is my own. Many of the
ideas in this thesis were the product of discussions with my supervisors Prof. Awais Rashid
and Dr Lynne Blair. The work reported in this thesis has not been previously submitted for a

degree in this, or any other form.

Sobia K Khan

Table of Contents

Acknowledgements
Abstract
Declaration

Table of Contents
List of Tables

List of Figures

Chapter 1: Introduction

1.1 Introduction to Fault Tolerance........ccccccccevviiiiiiinnnnnereneeeeiiiiiiiinns o
1.2 Software Fault Tolerance........c.cccceeeiiinmmnnnnreienrineeneeinnncen,
1.2.1 Data Diversity and Design Diversity Techniques......................
1.2.2 Single Version Software Fault Tolerance Mechanismes..............
1.2.3 Multiple Version Software Fault Tolerance Mechanisms........
1.2.4 Software Fault Tolerance at Requirement Specification and
DESIGN LEVEIS...uiiieeieei e
1.3 Software Fault Tolerance and Separation of Concerns (SoC)...........
1.3.1 Aspect Oriented Software Development.......cccccceeeeiieiiccinnnnen,
1.3.2 Orthogonal Variability Model (OVM).......cooovevvrirreeeeeeeeeeeenn,
1.3.3 The Potential for Interaction of Fault Tolerance Features......
1.4 Research Issues, Aims and Objectives.....c.c..cccoerrireneiiiniinnnnnsiinnnns o
1.5 Novel Contributions...........ccoeeiiummmnereiiiiiiiiiiiiiine e

1.7 B0 1= R0 10 1 11 =

Chapter 2: Background Work

2.1 [T 1 { oY [Tt d T o TSR
2.2 Fault Tolerance at Requirement Specification and Design Level

2.2.1 Co-operative Architectural Style.......ccccoeviviiiiiiniiiiiiiiiiiiiee,

iv

A W NN =

O 00 N N N o o

11
13
13

2.3

24

2.5

2.2.2 iFTComponent (idealized Fault Tolerant Component)...............
2.2.3 Architectural Patterns.....c.ccccevieeiniiieiiiiicceccee e
2.2.4 MAL SPeCifiCation .cc.ueeeiiviieiiee et
2.2.5 Aereal Framework (ACME Specification)ccccccvvveeeeeicnnnnnnnn.
2.2.6 DRIP CatalySt .eooueeeieeeiiee ettt
2.2.7 Event B (DEPLOY Project)ceeeeeevceeeeeeesieeee e eiteeee e eeveeee e
2.2.8 Other APProachescccccieeeiiiiiiiee e e
2.2.9 SUMMAIY ettt s e e e e e e eeeeaeeeessasaanes
Aspect-Oriented Modelling and Design Approaches..........cccccereennens
2.3.1 Aspect-Oriented Architecture Model (AAM)ccceevvvvvvveeeeene
2.3.2 TREME it
2.3.3 Motorola WEAVER........uuiiiiieeieeetee et
2.3.4 Aspect] for Exception Handling......cccccceeeiiiiieiicciieeeeeeeeeeee,
2.3.5 Other APProachesccccveieiieciiiiee e e
2.3.6 SUMMAIY ittt ettt e ettt e e e e trrae s e e eearaae s s eeaenanseesnassansnas
Feature Interaction ANalysis.......ccceeerrererenncerenncreeenneeerenscereenncereens seee
241 FIFIEIING cooeeeeiietieeeeee et rrrrree e e e e e e e e e e e ese e nnnnnes
2.4.2 FIN Method (Use Case Driven Analysis).......cccccoeeviveeeeeecnneeennnn.
2.4.3 CHISEL ettt
2.4.4 Other APProachescciiiiiieeiee e
D Y |2 0 0 1=

Comparison and DiSCUSSION.....cccciieeeiiiieneiiiieniiriteniineeneseerennseeneen o

Chapter 3: Orthogonal Fault Tolerance (OFT) Framework

3.1
3.2

3.3

INtrodUCtioN.....ccciiiiiiiiiiiiiiiicnrccerrrre e e e
Orthogonal Fault Tolerance Model........ccceeereeenncerrenneeerennecerennneennns
3.2.1 Feature Dependency AnalysiS.......cccceeeeeieeeeieeiiieeiceceereeeeee e,
3.2.2 CoNSEraiNtS....ccciiiiiiiiiiiiiiicc
3.2.3 Typical Design Diversity MechanisSms.......ccccccvveeeeeeeeieiiecicivnnnennns
Composition in the Orthogonal Fault Tolerance (OFT) Framework......
3.3.1 Introduction to LTS (Labelled Transition Systems)..........ccceeee.....

3.3.2 Operational SEMaNtiCS......ccevvuriiiieiiiiiiiee e

16
18
19
21
22
23
24
27
27
28
29
31
32
33
35
35
36
37
38
40
40

45
47
48
49
50
51
51

34

3.5

3.3.3 Conditions and Actions over Variables........c.cooeeiieeeiiiiieeiiinnns

3.3.4 Handling ‘Generics’ for Fault Tolerance Components...............
3.3.5 Component Composition with Fault Tolerance Conditions......
3.3.6 Pre-Processor Tool (LeX & YacC)....cccccoevvevveciicnnnrrireeeeeeeeeeeeeenn,

3.3.7 Reuvisiting other Fault Tolerance Features handled by ‘Generics’.

Feature Interaction Analysis.........cccceeiiiieneiiiinnnicinicenienienieniene oo
3.4.1 Categories of Feature Interaction........cceccccccviviviieeeeeeeeieeeeeeenn.
3.4.2 Specification of Properties in CTL/LTL.....cccceevveerveenreeesiveenneens

3.4.3 Reasoning about Feature Interactions through CTL/LTL and
Model CheCKING....ccccviiiiiiei ittt

SUMMANY .. iuieuiineireirnireniiresiassinssresssessssstsestsssrsssrssssrassrasssnsssessens

Chapter 4: lllustrative Case Study: A Home Automation System

4.1
4.2

4.3

4.5
4.6
4.7

[T 1 oY [Tt d [] o TSR
Formalisms/Operational SEmMantics.......cccceeverrerrrrreerrenreeeeeeeeeeeeeeee o

4.2.1 Applying Labelled Transition Systems to the Home Automation

4.2.2 Operational semantics for the composition of Home Au-

tomMation COMPONENTS....cccuviiiiiie e e
Introducing Fault Tolerance into the Home Automation System......
4.3.1 Applying an Acceptance Test Fault tolerance formalism.........

4.4.2 Applying a Fault tolerance formalism for Parallel Execution —
WILH VOTEI ...
4.4.3 Applying the Fault tolerance formalism for the Hybrid Voter
4.4.4 Pre-Processor TOO! (LeX & YACE)...uuuuurumriiiiiiiiiiiiiiiiiiiiiveveeeeeeeenn
4.4.5 Lex and Yacc generated NuSMV Models for Home
Automation ComponNeNnts......cccevvvviiiiiii i e
Feature Interaction Analysis.........cccerrrrueiiiiiiinnnnnnniiiniinneenn. o
Introducing New Features in Home Automation.........cccccceevreenennee.

SUMMAAIY .. iuiiieeiiieiiriiireiiieitreirsesirreeraestrsessrasssrssstrassssnssrensssenses se

Vi

54
56
60
60
64
66
67
68

70
72

73
75

75

76
77
77

79
82
83

85
87
89
90

Chapter 5: Case Study: Therac-25

5.1

5.2

5.3

5.4

5.5

INtroduction......cccciiiiiiiiiiiiiiiiiiiienerrre e e, e
5.1.1 Accidents in Therac-25......ccccceiiiiiiiiiiieiiiieeceee e
5.1.2 RecommMeENdations......c.ccueeeiiieiiiiiee it
5.1.3 Orthogonal Fault Tolerance and the Therac-25 System...........
5.1.4 Features of the Therac-25 System.......ccccoeviveeeiiiiciiiee e,
Formal Specification of the Therac-25 System.......c..cccevvvvveeciceens o
5.2.1 Statechart Model for the Therac-25 Components.....................
5.2.2 Finite State Machine Model for the Therac-25 Components.....
5.2.3 SUMMAIY .ottt e e e eeeeeeeeeeresaaas
Fault Tolerance Composition.....cc.ccoiveiiiiimeiiiiennincncnienenniennenens

5.3.1 Composition of N-version Programming Mechanisms with the
Therac-25 COMPONENT.....cuiiiiieeiiiee e e reaee e

5.3.2 Pre-Processor Tool (LeX & YacCC).......cccouvvevvvrnmnrnniirieeeiieeeeeeeeeennn

Model Checking for the Safe Condition and Feature

Interaction ANalysis......ccccceiieeeiiiiieeiiiiiniiiieennsesreeeseerennseerennsees seee

YU 4] 40 T=1 V78N

Chapter 6: Evaluation and Analysis

6.1
6.2
6.3
6.4
6.5

INtroduCtioN.....ccciiiiiiiiiiiiiierrrr e
HYpPOtheses......c.cccuiiiiiiiiiicnrrccrrrec e rene s r e nannennes
N T L N
FUrther Analysis...cccceeeeeeiereeeneerereneereennieerennncerennssessennssssennssnnes

(00T 3 Lol [T £ oY T

Chapter 7: Conclusions

7.1
7.2
7.3
7.4
7.5

Y 4 Yo Lot o o TR
SumMMary of the thesis....ccccccvieerieiiieriiieeeieeieereeiteenceenseeeeenneees ceees
Contribution of the thesis......ccccccccoitrirrrniiiiiiiiiinniiiinccniiee e
FUtUr@ WOrK......cceevevimmmeenniiniiisiinniiiniinninnnninnnsnnncnnesssssssssssses seees

Concluding ReMaArks.......ccceeereeeneerrenniereeenneerennneeeeenncsnseesesaseesens

Vii

92
93
94
94
95
96
97

101
101

102
105

106
109

110
111
112
115
117

119
119
120
123
124

References 125
Appendix A 134
Appendix B 146

viii

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.3:
TABLE 3.1:
Table 6.1:
Table 6.2:

List of Tables

Requirement specifications and design approaches.............

Aspect Oriented Modelling and Design Approaches.............

Feature Interaction AnalysiS.......ccevveeeeeeiieeiccicieeeeee e,

Overall Comparison Table.......ccoceeeeviciieee e,

Fault tolerance mechanisms featuresS......cccoevvvevereivereeinnnens

Soundness with respect to interaction detection...............

Overall Evaluation

26
34
40
44
47
115
117

List of Figures

Figure 3.1: Context of the Proposed Method..........cccccevvviiiiiinciieeen e, 46
Figure 3.2: Orthogonal Fault Tolerance Feature Model...........ccccceeevvciieeennns 49
Figure 3.3: A state machine representing an Acceptance

Test mechanism and checkpointing........ccccccvveeeieiiieeeeecicieeeenn. 57
Figure 3.4: Workflow of Proposed Feature Interaction Analysis Approach... 66
Figure 3.5: Model Checking Based Feature Interaction Analysis....... 72
Figure 4.1: A Feature Diagram for a Smart Home........ccccccoecvieeeeecciee e, 73
Figure 4.2a: Light Controller (LC) State Maching.......cccccoceeecivveviiees rveeieen, 74
Figure 4.2b: Home Status Controller (HSC) State Machine..........ccccccccveeeuneen. 74
Figure 4.3: Composed State Machine for LCand HSC.........ccccoccvvvveiiicieeeninns 75
Figure 4.4: A state machine representing Acceptance Test mechanism and

CheckpoiNting.....c.ueviiivieei e 77
Figure 4.5: A state machine representing voting mechanism with backward

CITON FECOVEIY ceeiiieieiereeereeerererrrrrerennnsnenans sreesseesesssessssessessssesssesssesssassen 80
Figure 4.6: A state machine representing voting mechanism with forward error

FECOVEIY c.eieeieeeeeeeeeeereereteserenaaanaannnaaasassesesaaasaaeeaeeeeeessenersssmnnnnes 80
Figure 4.7a: Light Controller (LC) with AT State Machine...........ccccccvvveeeennneen. 85
Figure 4.7b: Home Status Controller (HSC) with AT State Machine.................. 85
Figure 4.8: Composed Fault Tolerant Home Automation State Machine.......... 86
Figure 4.9: Potential Feature Interactions.......cccccoeeeeeeciiiiiiieeee s 87
Figure 4.10: Sequential ACtion TrigEer......cccuvvivceeeeie e 89
Figure 4.11: Climate Controller triggers the Alarm Component, Light Controller and

Home Status Controller...........cocvevieeeneeninsineneeeeeeeeeen 90
Figure 4.12: Shared trigger interaction between Climate Controller, Alarm and

Light CoONLrollEr....uveieeee e 90
Figure 5.1: Therac-25 Software Features........cccveevecieeeeccieeee e, 96
Figure 5.2: Therac-25 Interface Statechart [Bolton et al. 2008]..........ccccu..... 97
Figure 5.3: Therac-25 Machine Component Statechart..........ccccceeeeeennen.n. 98
Figure 5.4: Therac-25 Interface Component........cooccecciiiiieeeeeeee e 99
Figure 5.5: The Machine Component of the Therac-25.......cccvvevevevceeeeeecnnnns 100

Figure 5.6:

Figure 5.7:

Figure 5.8

Component to compute sensor values for the spreader position with
N-Version Programming.......ccccvuirveeiveerieennesneenneesiesnseseesessssesseesreessesnnes 103
A state machine representing the result of voting mechanism composed
with Interface component finite state machine.......ccccoecovvveceninenenen. 106

Interface Component with voting result for Spreader position........... 106

Xi

Chapter 1

Introduction

1.1 Introduction to Fault Tolerance

Building reliable systems is one of the major challenges faced by software developers as
society is becoming more dependent on software systems. Reliability of a system is one of
the attributes of dependability along with availability, safety and security [Lapri 1985]. The
failure of any system can lead to a serious loss, for example serious injury or death in case of
safety critical systems and significant financial loss in the case of business-critical systems.
However, even though a system may be viewed as being safe (in the sense that no-one has
knowingly been injured), the system may still not be reliable. Faults may exist in the software

that have not yet escalated into accidents.

For this thesis, it is the reliability of systems’ software that is of primary importance, rather
than safety. Fault tolerance and fault avoidance can be seen as constituent attributes of
reliability. The field of fault tolerant systems is a mature one, dating back to the 1960s, and
concerns the design and development of systems that have the capability (without external
assistance) to continue to operate correctly even in the presence of faults [Avizienis 1976].
Providing fault tolerance capability at the implementation level is the traditional way for
achieving reliability and can be time and cost effective. However, modern research has also
focused on providing fault tolerance at the requirement specification and design levels, and
formal properties relating to reliability can be guaranteed with the help of verification and

model checking support.

Various fault tolerance mechanisms have been developed that lie mainly in two major
groups: hardware fault tolerance and software fault tolerance [Chen and Avizienis 1978].
Hardware fault tolerance mechanisms deal with physical faults in hardware components
whereas software fault tolerance mechanisms deal with software design faults or

programming errors. Hardware fault tolerance can be provided by techniques that introduce

redundancy through the replication of components alongside a voting mechanism, for
example triple modular redundancy [Avizienis 1971]. Typically, components have multiple
physical backups and are separated into small parts where extra redundancy is built into all

physical connectors, power supplies, etc.

Software fault tolerance is provided by techniques such as data diversity and design diversity
[Chou 1997]. In data diversity, a software system’s input data is changed (re-expressed)
and/or broken down into smaller units and then later re-combined [Amman and Knight
1987]. In contrast, design diversity proposes the use of different versions of the same
software system [Avizienis and Chen 1977]. It is software fault tolerance that this thesis will

focus on.

In general, the early efforts in building fault tolerant systems were focused mainly at the
later stages of software development such as the implementation level and integration and
testing level. However, dealing with fault tolerance concerns in the early phases of software
development can help developers better manage software risks through the early
identification and resolution of errors and faults [Romonovsky 2007]. Many efforts have
already been made to provide fault tolerance at the levels of requirement specification and
design, e.g. providing fault tolerance at the architectural level, by using ADLs or formal
methods, as well by using formal or semi-formal modelling techniques at the design level.
Fault tolerance has also been considered as a ‘separate concern’ and handled, for example,

in aspect-oriented approaches.

The position of this thesis is to consider software fault tolerance at the design level in order
to lessen the effort and cost to recover from faults and failure at the later stages of software
development. Furthermore, the thesis focuses on providing fault tolerance as a separate
concern that is orthogonal to the underlying system behaviour. This separation of fault
tolerance concerns ensures that fault tolerance features can be introduced independently,
are re-usable and can be more easily maintained. However, this separation implies the need

for subsequent composition of the separated components and fault tolerance concerns.
1.2 Software Fault Tolerance

As mentioned above, there are many mature software fault tolerance mechanisms that are

based on data diversity and design diversity techniques.

1.2.1 Data Diversity and Design Diversity Techniques

Data diversity approaches use only one version of software but different data spaces though
logically equivalent yet diverse sets of input [Amman and Knight 1987]. The N-copy
programming approach is the main example of this technique in which each copy of versions
runs in parallel with different sets of input data. An example of data diversity is a minor
perturbation in input values to get a new set of input values; these new values may avert

software failure and hence allow accurate results to be produced.

On the other hand, design diversity techniques use different versions of the software rather
than the data. These versions are not copies of each other; instead they are independently
designed with different design teams and algorithms — all written to the same specification
[Avizienis and Chen 1977]. An example of design diversity is N-version programming where
independently written, yet functionally equivalent, versions of software that execute in
parallel. A majority voting algorithm then compares all results, and decides (according to its

algorithm) which result or results are correct.
This thesis will focus on design diversity techniques for software fault tolerance.

In addition to these two styles of diversity, software fault tolerance mechanisms can be
divided mainly into two further groups; single version software fault tolerance mechanisms
(that are used for various techniques including data diversity), and multiple version fault

tolerance mechanisms that are used for design diversity.
1.2.2 Single Version Software Fault Tolerance Mechanisms

In addition to considering data diversity, single version software fault tolerance mechanisms
include checkpoint and restart mechanisms, process pairs, atomic actions and exception

handling [Torres 2000].

Checkpoints and restart mechanisms are significant effort towards fault tolerance and
recovery. Although this is considered primarily as a single version fault tolerance technique,
it is also used in multiple version techniques like Recovery Block (see below). In this
technique, states of the system are saved periodically and, on the occurrence of a system
failure, this saved state is used to restore the service to the previous checkpoint, and the
processing can resume from that point. After the successful completion of the tasks, these

checkpoints are deleted to save the memory space [Pradhan 1996].

A process pair is also a single version technique. This technique uses two identical

components that run concurrently on different processors where one is the primary

processor and the other is the secondary (or backup) processor. In the case of a failure,
control from the primary processor passes to the secondary processor. In this technique,
program modules are used to decompose a problem into independent components. These
components are designed to have built in protection to keep any abnormal component
behaviour in one module from affecting the other modules. Beside fault tolerance,
additional benefits of using modularisation include testing and easier maintenance [Pradhan

1996].

An atomic action comprises of a group of processes, where these processes can interact
with each other but not with the rest of the system. In the case of a failure, an exception is
raised and all of the processes in the atomic action can invoke an exception handler to
handle that failure; this means that the processes have the ability of self checking. Hence the
component has the ability to detect certain errors and can take some steps to prevent them
from spreading all over the system. The error detection mechanisms include many checks

like replication, timing, coding and structural checks [Anderson and Lee 1981].

Exception handling techniques are used to detect, contain and recover from unexpected or
exceptional conditions that are contrary to the system’s normal behaviour. Some examples
of exceptional conditions include wrong input data or data corruption, invalid service

requests or system design faults [Randell 1975].
1.2.3 Multiple Version Software Fault Tolerance Mechanisms

Multiple version software fault tolerance mechanisms use multiple versions (or variants) of
software based on design diversity strategies to provide fault free processing. In design
diversity strategies, design of the software is typically written by different design teams to
follow the same specification. These versions can be executed either in parallel or
sequentially. The main motivation behind the different versions is the expectation that
components built differently should fail differently as they have different designers, different
algorithms, and different design tools. In case of the failure of one version, at least one of
the alternative versions should be able to continue processing to produce the correct result.
Examples of these mechanisms include recovery block, N-version programming and N-self

checking programming.

The basic Recovery Block mechanism was first developed by Horning et al. in 1974 [Horning
et al. 1974] and was implemented by Randell in 1975. Recovery block mechanisms use

acceptance tests and a backward recovery scheme, and also need to save the state of the

4

variant currently being executed. In this mechanism, different variants are run sequentially
such that, after one version has been run, its output is passed through an acceptance test
(AT). If the acceptance test is passed then the result of that variant is considered as the
overall output. If the acceptance test fails, the system should use checkpoints and retrieve its
saved safe state or error-free state to restart the execution from that state but using the

next variant [Randell 1975].

N-Version Programming (NVP) was suggested by ElImendorf in 1972 [ElImendorf 1972] and
developed by Avizienis and Chen in 1977. This mechanism typically uses a parallel execution
scheme in which the different variants are executed in parallel and the different outputs are
passed to the adjudicator. The adjudicator may use voting or consensus voting to select the
appropriate result. Alternatively, in this mechanism a sequential execution scheme can be
used along with checkpoints to save the state of the primary variant before an alternate

variant is executed [Avizienis 1985] [Hecht 1979].

N-Self Checking Programming (NSCP) was developed by Laprie et al. in 1988. This
mechanism uses program redundancy to check its own behaviour during execution. The
adjudicator in this case can be the combination of both the acceptance test and the voter,
referred to as a hybrid voter. In other words, this mechanism itself is the combination of
recovery block and N-version programming. In this mechanism, the execution scheme for
different versions can be sequential or parallel and each version uses a separate acceptance
test. As above, if sequential execution is used, checkpoints are needed to store the state for

each version [Laprie 1990].

The Consensus Recovery Block (CRB) mechanism was developed by Scott in 1983, also
combining N-version programming and recovery blocks [Scott 1983]. This mechanism uses n
independent versions of a program, a decision algorithm similar to N-version programming
and an acceptance test similar to that used in a recovery block mechanism. All versions are
executed in parallel and submit their results to a voter. If two or more versions agree on the
same result, the result is considered as a correct output. If there is no output, or the versions
produce wrong or multiple outputs then an acceptance test is used. The result of the primary
version is first passed through the acceptance test. If it passes, it is considered as a correct
output. If the output fails, the result of the next version is passed to the acceptance test. This

process continues until the correct result is found.

This thesis will focus on multiple version techniques for software fault tolerance.

1.2.4 Software Fault Tolerance at Requirement Specification and
Design Levels

Over the years, major causes of faults in software systems have been investigated, including
faults introduced due to bad requirement specification and design. Under the premise that it
is more time and cost effective to recover from such faults at these earlier stages of software
development, many experiments have been performed to test the effectiveness of various
design diversity and multiple version fault tolerance mechanisms; for example, see [Dahl and

Lahti 1979] and [Kelly and Avizienis 1983].

Approaches addressing fault tolerance at the requirement specification and design levels
include architectural approaches with or without formal language specification, modelling
techniques such as labelled transition systems, and model checking techniques to verify fault

tolerance properties.

In summary, this thesis addresses the provision of software fault tolerance mechanisms at
the requirement specification and design level, and will focus on using design diversity and

multiple version techniques.
1.3 Software Fault Tolerance and Separation of Concerns (SoC)

Separation of Concerns (SoC) is considered as a concept for decomposing a software system
into small, loosely-coupled parts called concerns, to deal with the complexity of software
system [Dijkstra 1982]. Each of these concerns is implemented using modularisation
mechanisms, and hence is developed, updated and maintained independent to each other

and can be reused.

Fault tolerance in a software system has the nature of a crosscutting concern, as it has a
global impact on a system and its functionality is scattered over the system in several
components. Like safety and security, fault tolerance concerns are non-functional aspects of
the system and, according to the underlying principles of a separation of concerns, can be

separated from the functional aspects of the system.

In addition, separation of fault tolerance concerns does not need to be considered only at
later stage of software development; rather, it is beneficial to consider it at early stages of

software development such as requirement specification and design levels.

1.3.1 Aspect-Oriented Software Development

Aspect-oriented software development is a broad research area that offers various new
modularisation mechanisms for software systems in order to separate out multiple cross-
cutting concerns from the underlying base system. A small number of aspect-oriented
software development approaches have addressed the issue of fault tolerance by separating
fault tolerance concerns from the base system. [France et al. 2004] proposed an aspect-
oriented modelling approach that allows developers to conceptualize, describe and
communicate logical dependability solutions in isolation, with the help of an aspect-oriented
architecture model (AAM). An alternative aspect-oriented modelling approach is proposed
by [Clarke and Walker 2001][Clarke and Walker 2002] where a design, called a Subject, is

created for each system requirement and presented as UML model views.
1.3.2 Orthogonal Variability Model (OVM)

The idea of orthogonality in this thesis has been inspired by OVM, the Orthogonal Variability
Model [Pohl et al. 2006]. The key benefits of OVM are the improvement of decision making,
communication and traceability. It also aims to make the overall development process

simple, consistent and unambiguous [Pohl et al. 2006].

Design diversity fault tolerance mechanisms consist of different mandatory and optional
features such as the selection of an adjudicator or the number of variants, etc. These
features have dependency relationships between each other [Patrick et al. 2009].
Orthogonality, as a separation of concerns mechanism, can help a designer in understanding
the impact of dependency relationships and decision making in selecting an appropriate fault

tolerance feature since fault tolerance features are isolated.

In this thesis, the incorporation of design diversity fault tolerance mechanisms as an
orthogonal concern is considered to bring the same benefits as mentioned above, including
reusability, modifiability, and reducing cohesion and dependability between a system’s

components and fault tolerance mechanisms.
1.3.3 The Potential for Interaction of Fault Tolerance Features

The separation of fault tolerance concerns from the underlying system components, and the
subsequent composition stage, brings an increased difficulty in system comprehension as it

introduces new interdependencies and interrelationships between fault tolerance features

and software components. If separate fault tolerance concerns are integrated without
consideration of their relationship, dependency and impact on other components, it can

potentially lead to undesirable and unwanted feature interaction problems.

1.4 Research Issues, Aims and Objectives

The overall goal of the thesis is to present an orthogonal fault tolerance approach for
designing fault tolerant systems, composing the orthogonal components and analysing
potential undesirable interactions arising from this composition. The primary purpose of this
orthogonality is to separate the fault tolerance concern from the main software system to
make the overall system consistent, simple and symmetrical. The orthogonal fault tolerance
approach has the following objectives:

* To provide a separation of fault tolerance concerns from the underlying
components of the software system. These separate elements must be effective
when composed with the components of the existing system. Hence, a composition
mechanism provides the way to compose fault tolerance features with the
components of the existing system. This separation of concerns is expressed with an
orthogonal view of the system and ensures that the adaptation of fault tolerance
features can be reasoned about independently before their composition with the
components of the existing software system.

* To explicitly deal with design diversity and multiple version software fault tolerance
mechanisms, including recovery block, N-version programming and N-self checking
programming mechanisms.

* To support reasoning about different fault tolerance features as well as system
components before composition takes place in terms of their dependency
relationships and constraints.

* To deal with any potential undesirable feature interactions that arise through the
composition of fault tolerance features with the components of the software
system. In the case of such scenarios, model checking can be used to check for
feature interactions and, following this, the same style of fault tolerance features

can be applied reflexively to resolve undesirable interactions.

The proposed approach is supported by the model-checking tool NuSMV and also a custom-
built pre-processor written in Lex & Yacc. This pre-processor automatically generates the

composition of the orthogonal fault tolerance components, and also serves to provide the

input translation for the model-checking tool. CTL can be used to verify properties of the
composed system in conjunction with NuSMV to analyse potentially undesirable feature

interactions.

Finally, the approach will be evaluated with the help of two case studies, namely a smart
home automation system and the Therac-25 computer-controlled medical machine for
radiation therapy. In Therac-25, the difference between reliability and safety becomes
apparent. The generation of early Therac machines, ones preceding the Therac-25, were
deemed to be safe even though some of the same software defects existed: safety threats
were averted by a hardware interlock system. Hence, when the failures occurred they did

not escalate into accidents such as injury or death, i.e. the system was safe but not reliable.

1.5 Novel Contributions

In addressing the objectives outlined above, this thesis will make the following novel

contributions:

* Orthogonal Fault Tolerance as a Separation of Concern

It is the first work to propose an orthogonal fault tolerance model as a means to manage
and reason about multiple design diversity fault tolerance mechanisms that may need to
co-exist in a software system. The proposed Orthogonal Fault Tolerance (OFT)
framework provides design diversity fault tolerance mechanisms and can be reasoned
based on feature hierarchy, dependency and constraints. It provides a separation of fault
tolerance concerns to study the effect of new or modified fault tolerance features on the

system without adding complexity to the base system.

* Fault Tolerance Composition

The proposed Orthogonal Fault Tolerance framework approach uses labelled transition
systems and operational semantics to formally underpin the composition approach. The
approach also introduces the concept of fault-tolerance ‘generics’ for specifying different

fault tolerance mechanisms.

* Deals with potential Fault Tolerance Interactions

The proposed approach explicitly deals with the problem of any potential undesirable
feature interactions arising from composition of new/updated fault tolerance features

with the component of software system. A model checking approach is used to analyse

these interactions and a reflexive approach that uses a similar style of fault tolerance is

proposed for the resolution of these interactions.

1.6 Thesis Outline

Chapter 2: Introduces and discusses the related work from the literature in detail. In
particular, work related to architectural fault tolerance, formal methods approaches to
composition, aspect-oriented development considering separation of cross-cutting concerns

and feature interaction handling techniques are considered.

Chapter 3: An overview of the proposed Orthogonal Fault Tolerance (OFT) framework
approach is presented in chapter 3 with detailed methodology and supporting tools. This
chapter outlines the formalisms used in the composition of fault tolerance with the system

and the methodology to deal with the interactions.

Chapter 4: This chapter illustrates the methodology and formalisms with the worked case
study of a home automation system. This chapter further illustrates how undesirable feature
interactions may arise from the composition of fault tolerance with the components of

underlying Home Automation system.

Chapter 5: In this chapter, the methodology is applied to the historically significant case
study of the Therac-25 computer controlled medical machine for radiotherapy. This case
study demonstrates the use of the proposed approach to compose orthogonal fault-
tolerance concerns with the Therac-25 system, in order to demonstrate the removal of well-

known and well-documented software errors.

Chapter 6: This chapter presents an analysis and discussion regarding the evaluation of the
proposed methodology having been applied to the case studies. From this, conclusions are
drawn about the methodology soundness, effectiveness and efficiency. This chapter offers a

critical analysis of the whole presented work.

Chapter 7: This chapter concludes by returning to the aims and objectives outlined in chapter
1 and evaluating to what extent they have been achieved. The shortcomings, future
recommendations and expansions of the proposed approach are also presented in this

chapter.

10

Chapter 2

Background Work

2.1 Introduction

As already mentioned in Chapter 1, society is becoming more and more dependent on
software systems and correspondingly a strong emphasis is on a high assurance that these
systems are indeed reliable. As a consequence, fault tolerance is considered as a solution to
provide reliability, but the fault tolerance capability is associated with many challenges, such
as the right development phase where it needs to be introduced, how it can be composed
with the software, and the issues that arise from this composition such as complexity and
potential undesirable feature interactions. This chapter outlines the research in support of
introducing fault tolerance mechanisms at the requirement specification and design levels,
and dealing with composition and feature interactions. It also identifies the gap in the state
of the art and a research agenda, which introduces the framework for the fault tolerance
composition and analysis of feature interactions. In order to make a comparison between

different approaches, surveyed approaches are broken down into the following areas:

* Fault Tolerance at Requirement Specification and Design Levels: These approaches
address fault tolerance at the initial phases of software development, such as

specification, design and architecture levels.

* Fault tolerance Composition: These approaches have composition specific

mechanisms to integrate different components of the software system.

* Feature Interaction Analysis: These approaches have the capability to analyse and

detect undesirable feature interactions.

In order to make a comparison between different approaches, the focus will be on the

following desired key characteristics as discussed below:

11

System Model: This characteristic shows the type of model being used to express the design
of the system. Examples in terms of modelling are UML, statecharts, finite state machines,

formal methods, temporal logic and UML sequence diagrams.

Fault Tolerance Expressiveness: This characteristic shows what types of fault tolerance
mechanism are supported by the approach and what kind of faults can be handled. Examples

are design diversity or data diversity approaches, and different faults like design errors.

Composition Mechanism: This characteristic describes the framework used to compose the

fault tolerance mechanism with the underlying base system.

Separation of Concerns: Another important characteristic is the separation of fault tolerance
concerns. Different approaches address this separation differently, for example by
addressing it at a semantic or syntax level, or in case of fault tolerance by differentiating
between normal and abnormal behaviour. Some approaches address this separation by

designing functional components and non-functional features separately.

Feature Interaction Analysis: According to this characteristic, after composing fault
tolerance mechanisms with the system’s components, there is a need to analyse potential

undesirable feature interaction that may lead the system into an inconsistent or error state.

Platform and Paradigm dependencies: This characteristic focuses on any platform and
paradigm constraints used by the different approaches. These constraints can be
programming languages like C, Java, C++, etc. or can be operating systems like UNIX,

GNU/Linux, Windows, etc.

Supporting tools and examples/ case studies: This characteristic considers the supportive
tool(s) used by each approach. Furthermore, it briefly describes the examples and case

studies used to demonstrate the approach.

Firstly, each approach is presented with the specified characteristics presented above.
Following this, a comparison will be made based on the characteristics that match the
challenges mentioned in chapter 1, particularly fault tolerance expressiveness,
orthogonality/separation of concerns, composition and feature interaction analysis. Section
2.5 then reviews an overall comparison and analysis of the underlying approaches that are

related to the work in this thesis.

12

2.2 Fault Tolerance at Requirement Specification and Design Levels

The approaches listed in this section have a common characteristic: providing fault tolerance
support at the design and requirement specification levels, rather than at implementation
and testing levels. Each of the main approaches will be discussed in detail, but a summary of

notable other approaches will also be included at the end of each section.
2.2.1 Co-operative Architectural Style

The approach in [deLemos 2001] introduces a co-operative architectural style for modelling
and analysing fault tolerant software systems built from commercial off-the-shelf (COTS)
components, considered as a black box. The co-operative architectural style offers the
means to structure the complex applications and provides a way to add exception handling
fault tolerance mechanism to untrustworthy components. In a co-operative style of
architecture, the abstraction is provided in the form of ‘connectors’ that capture the
collaborative behaviour between the architectural components. Components embody
computation, whereas, connectors are mediating interactions between the architectural
components. These connectors are used to limit the impact of the change to the overall
system architecture. In this approach, system exceptions are handled at the component
level, providing dependability from the untrustworthy components. The approach uses the
UPPAAL model checker and timed automata to analyse the normal and abnormal behaviour

of the co-operative architecture.

Similar to the [deLemos 2001] approach, [Issarny and Banatre 2001] present the
implementation of exception handling within the components and connectors and at the
level of architectural configuration. Components and connectors can raise exceptions.
Exception handling within components and connectors handles exceptions internally to the

specific component or connector and has no impact on the rest of the architecture.

System Model: These approaches are architecture centric, where components and
connectors are used to describe normal and exceptional (abnormal) behaviour of the
component. Components support the representation of structural and behavioural aspects
of a system. Structural behaviour of component is described by name, attributes, description
of structure such as composed-of, and intra-relations between different components.
Similarly, the behaviour aspect of the component identifies the port of the component,

normal, exceptional and failure behaviour of the component. Co-operative connectors

13

encapsulate the collaborative activity between the several components. The behaviour of

the connectors use pre-conditions and post-conditions to start and finish a certain activity.

Fault Tolerance Expressiveness: These approaches deal with the exception handling that
uses a forward error recovery mechanism to bring the system into a new or error-free state.
For the illustration of exceptional behaviour, a handler defines its start and finish event
based on pre and post conditions. It also deals with two types of failure behaviours: failure of
omission and the failure of commission. The exceptional behaviour of a connector is
represented with timed automata with data variables and based on the pre and post

conditions of the collaborative operations.

Separation of Concerns: Co-operative style connectors are used to separate the normal and
abnormal behaviour, providing a level of separation of fault tolerance concerns. Exceptional
behaviour of connectors is represented by timed automata with data variables. The
exceptional signal is raised with the occurrence of the exceptional behaviour when the pre or
post condition for the collaborative operation is not true. This invokes the execution of the
exception handler, and the co-operation is finished assuming that the post-condition for

exception behaviour is true.

Composition Mechanism: The incorporation of an exception handling fault tolerance
mechanism can be done with the co-operative architectural styles using components and
connectors. The architectural connectors are used to add or change the behaviour of
untrustworthy COTS components to build the dependable component. In this approach,
connectors are considered as first class entities that describe the collaborative behaviour,

which provides the basis for implementing error recovery in the presence of faults.

Feature Interaction Analysis: The interactions between the components are dealt with
through the help of co-operative style connectors by identifying the normal, exceptional and
failure behaviours. This approach however, does not address the feature interactions
between the components specifically, and does not deal with undesirable interactions. In
this approach, in fact the interactions between different components are carried out with
the help of connectors to overcome the problem of architectural mismatch as COTS
components are used for building the dependable components. Also, the interactions are
explicitly addressed at a configuration level rather than at the component level. In a co-
operative style architecture, specialised connectors are used to capture the coordinated

behaviour of components.

14

Platform/paradigm constraint: These approaches are not platform or paradigm dependent.

Tool Support/Case Studies: The deLemos’s approach uses UPPAAL model checker [UPPAAL]
and timed automata with extended data variables. The approach is demonstrated on Self
Gas service and VS-40X sounding rocket case studies [deLemos 2001]. Whereas, Issarny and
Banatre’s approach uses the Aster framework [Issarny and Banatre 2001] to provide an

implementation for configuration level exception handling.
2.2.2 iFTC (idealized Fault Tolerant Component)

[Guerra et al. 2002] present the C2 style architecture for an idealized fault tolerant
component architecture model (IFTCM), separating normal and abnormal activity and
introducing specialised C2 connectors. The iC2C style [deLemos 2001] is used to produce an
iCOTS protective wrapping for the components and provides an application specific fault
tolerance capability. A similar approach is presented in [Brito et al. 2009] where architectural
abstractions are used for building fault tolerant element (iFTElement), and can be seen as an
extended form of idealized Fault Tolerant Components (iFTC). These elements can be
instantiated as a component (iIFTComponent) or a connector (iFTConnector) to carry out the

computation and coordination respectively.

This approach deals with exception handling based on the methodology presented in [Rubira
2005] and [Brito et al. 2005]. These approaches define the exception behaviour, and
separate the normal and abnormal behaviours using UML sequence and activity diagrams at
the architectural level. The process algebra CSP is used to give the semantics of UML

sequence diagrams, whereas the B-method is used for the semantics of UML entities.

System Model: In this approach Use Cases and UML component diagrams are used to
describe scenario and system structures. Normal and abnormal behaviour of the component
is dealt with the UML sequence diagrams and UML activity diagrams. The B method and CSP
are used to define the semantics of the components’ behaviour. Two main things are dealt
with through these patterns: first the component implements crash-failure semantics, and

secondly it claims to support dynamic reconfiguration.

Fault Tolerance Expressiveness: This approach deals with fault detection and then a fault’s
localisation and removal. The communication between idealized fault-tolerant components
is only through request/response messages. The response can either be normal, or

otherwise a ‘failure exception’ in the case of an invalid service request or due to a failure in

15

processing a valid request. Internal exceptions are associated with errors detected within a
component that may be corrected, allowing the operation to be completed successfully;

otherwise, they are propagated as external exceptions

Separation of Concerns: As idealized fault tolerant components separate the normal and

abnormal behaviour, they can be seen as a separation of concerns.

Composition Mechanism: The composition of fault tolerance in a component based system
is carried out with the help of the C2 architectural style. Request/ response is the only way of
communication between components. An idealized fault tolerant component encapsulates
the normal and abnormal behaviour inside it. Furthermore, idealised C2 components can be
integrated into any C2 configurations with this C2 architectural style. This composition
provides loose coupling between components as these components may be completely
unaware of each other, especially when one integrates various commercial off-the-shelf

components (COTS), which may have heterogeneous style and implementation language.

Feature Interaction Analysis: Idealised fault tolerant components are integrated together
with C2 style architecture, thus allowing the interaction of iC2Cs with other idealized and/or
regular C2 components. This interaction is for the communication between different

components. There is no mechanism to analyse feature interaction.

Platform/paradigm constraint: As the approach works at the design and modelling level,
there is no discussion about platform dependency. However, this approach targets critical

component base systems and service oriented legacy architectures.

Tool Support/Case Studies: Both the B-method [Abrial 1996] and CSP [Agarwala and Tanic
1989] underpin the use of UML [Alhir 1998]. In extended approaches, ProB [ProB] and other
testing tools have been used. A mine pump control system is used as a case study that can

be found in [Mine].

2.2.3 Architectural Patterns

The work of [Parchas 2004] demonstrates that the application-independent fault tolerance
techniques can be integrated in the architectures via a pattern. This approach is mainly used
for web based services. The services are developed independently by different service
providers and composed using patterns. A comparator provides semantics for similarity or

dissimilarity of different services. A pattern for improving web services availability and

16

dynamic reconfiguration is proposed. It also addresses the dynamic composition of web

services.

This approach deals with the fault tolerant redundant components for self checking pairs and
architecture reconfiguration. The composition mechanism for incorporation of fault
tolerance is via a pattern. The approach is based on diversity of different sources of

information, comparator and bridges.

System Model: This approach uses architectural patterns, where the main elements are:
bridge, comparator, service broker and FT-registry [Parchas 2004]. These architectural
patterns are used for the elimination of mismatches between the required and provided
services, and the provision and management of redundancies. These architectural patterns
are described in terms of UML diagrams representing components, provided and required
interfaces and connections between these interfaces. These patterns can tolerate failure by

imposing crash-failure semantics when inconsistencies are detected in the data.

Fault Tolerance Expressiveness: This approach deals with the redundant components for self
checking pairs, dealing with any kind of mismatch faults. An application-independent fault
tolerant technique can be easily incorporated in architectural modelling such as multi-
versioning derived from the notion of N-version programming (NVP). The architectural
pattern in this approach resembles the N-self checking fault tolerance mechanism but does
not employ two levels of comparison as it does not deal with the design faults. These
patterns only deal with the structure of components, not their behaviour. Hence, these
patterns are mainly suitable for the comparator element such as the self checking
component that compares the mismatches and is assumed to tolerate single fault of the
system. In case of checkpointing in backward recovery, these architectural patterns are not

applicable as it requires integration with the functional behaviour of the system.

Separation of Concerns: The comparator provides the similarity and dissimilarity in the
semantics of different data coming from distinct bridges. It monitors the behaviour of
connected bridges and their internal behaviour. Although all architectural patterns are
syntactically separated and specific to the certain element of the base model, they are not
reusable. Moreover, with these architectural patterns, separation of concerns may not be
directly applicable considering the fact that fault tolerance and fault intrusion are
interrelated at an architectural level. However, these patterns are described in pattern

languages that are not rigorously defined and therefore are not amenable as needed for

17

their identification associated with a particular style. Furthermore, there is no way to deal

with dependability when using heterogeneous style of architecture patterns

Composition Mechanism: The incorporation of fault tolerance can be done with the
architectural patterns by matching and mismatching patterns. There is no orthogonal fault
tolerance rather it is embedded in the component. These patterns are also associated with

the deployment constraints that are integrated with the specific system configuration.

Feature Interaction Analysis: There is no specific mechanism to analyse feature interaction

in patterns for fault tolerant components.

Platform/paradigm constraint: The approach is not platform dependent but explicitly

designed for the web based services.

Tool Support/Case Studies: The approach does not provide any tool support. Nor is it

demonstrated on any case study.
2.2.4 MAL Specification

In particular, a small number of approaches use formal language specification for the
development of fault tolerant systems. [Magee and Maibaum 2006] use the Modal Action
Logic (MAL) specification language for specifying normal and abnormal states and behaviour
of components. The component is described with its attributes, actions and axioms. The MAL
specification is translated to finite state models with Labelled Transition System Analyser
(LTSA) and Finite State Processes (FSP) algebra. Finite state models are used for automated

verification of the required properties of fault tolerance.

The effectiveness of the fault tolerance models can also be verified by the finite state model
derived from the MAL specification. The MAL specification is also used for the specification
and reasoning about dynamically reconfigurable fault tolerance mechanisms for normal and
abnormal behaviour, providing the specification for self healing and self checking fault

tolerance mechanisms.

System Model: The specification used in this approach is component based. The key
elements for fault tolerance representation include the description of component behaviour,
interaction mechanisms such as connectors and coordination, configuration (with behaviour
and states) and description of recovery activity. This approach uses finite state models,

labelled transition system analyser and finite state process algebra for the specification. MAL

18

specifications use deontic operators (actions being obliged, permitted or forbidden). The
semantics of these operators provide an explicit distinction between the ‘good’ or normal
behaviour and abnormal or ‘bad’ behaviour. In the case of normative behaviour, good
actions are executed and lead from good states to good states. In contrast, bad actions lead
to the bad states where recovery is required to re-enter a normative behaviour mode. On

the occurrence of bad behaviour, self healing recovery actions are specified.

Fault Tolerance Expressiveness: MAL specification deals with the self-checking/ self-healing
fault tolerance mechanism with the help of fault tolerance models to demonstrate the
effectiveness of the mechanism. The self healing property of the system is based on the
‘good’ and ‘bad’ states and their sub division to know: if nothing bad happens, then
eventually normative behaviour is resumed. In some situations, normative behaviour is
replaced by some appropriate fault tolerance model such as forward recovery. The Authors
suggested further work to develop the reasoning to address the kind of reasoning for

example new inference rules.

Separation of Concerns: The separation into good and bad states, and associated normative
and abnormative behaviour, provides a level of separation of concerns between normal and
abnormal behaviour. However, this approach does not provide separate fault tolerance

models for the system recovery, as good and bad states co-exist within the component.

Composition Mechanism: There is no explicit definition of composition of fault tolerance

with components of the system.

Feature Interaction Analysis: There is no explicit mechanism to analyse feature interaction
in for fault tolerant components. However, the finite state model of the components of the
system describing the good and bad states shows the normative and abnormal behaviour of

the system.

Platform/paradigm constraint: The approach is neither platform dependent, nor designed

for any particular paradigm.

Tool Support/Case Studies: The approach uses MAL specification and LTSA model checking
tool to check the properties related to the fault tolerance. It is demonstrated on a simple

example of master-server to slave-server.

2.2.5 Aereal Framework (ACME Specification)

19

The approach in [Filho, Brito and Rubira 2006] presents the Aereal (Architectural Exceptions
Reasoning and Analysis) framework, with architectural descriptions of exceptions, and how
exceptions flow between architectural elements. Architecture-based development with
Aereal starts with the requirements analysis and architectural design of the system. The
scenarios where system may fail or fault models are defined with the associated exceptions
for each type of error and exception handling activity. These activities provide results that
show a description of the system’s architecture and their informal specifications. It further

gives the fault model of the system and exceptional activity if any.

The approach integrates ACME, an architectural description language, for the specification of
exceptional information, and uses Alloy, a first order relational language, to check the
properties. The exceptional flows between different elements are captured in an Exception
Flow Model which allows the specification of common rules of exception handling in

software systems.

System Model: Exception flow between architectural elements is specified with the help of a
software architecture view that depicts the exceptional components that catch or signal
exceptions. These exceptional components are associated with the special connectors called
exception ducts through which exceptions flow between components. Then the composition
of the architectural description with the exception flow takes place, producing an extended
architectural description. Finally the structural constraints are analysed to check whether the
architectural description violates any of the exception constraints based on the Alloy

specification.

Fault Tolerance Expressiveness: The special purpose architectural connectors are
unidirectional links through which only exceptions flow. An exception flow adheres to one or
more exceptional styles. Aereal includes an ACME specification for a basic architectural style
for exceptions called SingleExceptionFam on which all exceptional styles are based to catch

and/or signal exceptions.

Separation of Concerns: In the ACME specification, the architectural organisation and
separation between normal views, normal architectural styles and normal connectors and
exceptional views, exception styles and exception ducts promotes a clear separation of

concerns at the architectural level.

Composition Mechanism: The composer tool provided by Aereal is used to read the ACME

specification and the exception flow view and updates the former with exceptions defined by

20

the latter, generating an Alloy specification model. Exception flow views can be composed

with the same architecture using the default semantic ‘union’.

Feature Interaction Analysis: There is no explicit mechanism to analyse feature interaction
for fault tolerant components. However, the two separate design artefacts address the

interactions within the architectural styles and the exception styles.

Platform/paradigm constraint: The approach is neither platform dependent, nor designed

for any particular paradigm.

Tool Support/Case Studies: The approach uses the ALLOY model checker for exceptions and

is demonstrated on a mining control system and a financial system case study.
2.2.6 DRIP Catalyst approach

In [Guelfi et al. 2004], an approach is presented that use MDE (Model Driven Engineering)
process, UML based notation and MDA (Model Driven Architecture) concepts to support
step-wise development of fault tolerant distributed systems, aiming to span design and
implementation through generative methods. DRIP (Dependable Remote Interacting
Process) is a framework specific MDE/MDA method, by combining model-driven generative
and formal techniques. In this approach, Coordinated Atomic Actions (CAA) are used with
the DRIP Catalyst development method to support backward and forward error recovery in
distributed systems. It is called DRIP Catalyst, as it uses combination of MDE, UML-based

notation, MDA tool and formal techniques.

System Model: This approach is architecture centric, and a UML-based language is used for
the formal description of fault tolerance properties, using Java classes. CAAs (Coordinated
Atomic Actions) are represented by UML activity diagrams that are very close to Java syntax;
this allows the automatic transformation of the UML model to generated code. CAAs are
built using the profile of specific design models. However, there is no general notation for

platform-independent-design models.

Fault Tolerance Expressiveness: Coordinated atomic actions (CAAs) are used to address
error recovery techniques and the combination of distributed transactions and atomic
actions, and are applicable for both forward error recovery and backward error recovery.
Forward error recovery relies on exception handling that transforms the system component

to any correct state. UML based fault tolerant transaction profiles are designed for the

21

specific system that are syntactically and semantically well defined. The major disadvantage

of these profiles is their specific dependency on platform.

Separation of Concerns: CAAs are designed as a set of roles cooperating inside each
component and a set of resources accessed by them. As a result, each component has its
own recovery scheme that allows the implementation of fault tolerance properties by raising
and handling exceptions internally. Hence, this approach does not deal with fault tolerance

as a separate concern.

Composition Mechanism: The incorporation of fault tolerance is done within the
architectural Coordinated Atomic Actions. The CAAs are a unified scheme for supporting
error recovery between interacting components. Hence, there is no orthogonal fault
tolerance rather it is embedded in the component and is automatically transformed to the

code level.

Feature Interaction Analysis: This approach does not verify any fault tolerance properties of
their application, before generating the code. Hence, there is no assurance for the
consistency between the verified model and the generated code. Moreover, there is no
mechanism to analyse the inconsistencies and feature interactions in complex concurrent

activities between different coordinated atomic actions.

Platform/paradigm constraint: The approach is explicitly Java platform dependent and was

initially designed for object-oriented distributed systems and service-oriented applications.

Tool Support/Case Studies: The approach uses the CORRECT MDA tool [Guelfi et al. 2004]

and the COALA language [Guelfi et al. 2004] as supportive tools.
2.2.7 Event B (DEPLOY Project)

In [Laibinis and Troubitsyna 2006], the authors propose a formal specification for patterns in
a layered architecture for exception handling. This work also focuses on hardware faults and
human errors. The B method is used to develop the layered architecture. This architecture-
centric approach allows making a smooth transition from the architectural-level system
modelling to specification and refinement of each particular component by using Event B.
Event B is a state based formal approach and its formalism is considered as an extension of B
method. The approach uses patterns to describe the module interface, which can be

instantiated by component-specific data and behaviour during system refinement.

22

Moreover, the proposed refinement-based development techniques have coped well with

modelling the complex mode transition scheme and verification of its correctness.

System Model: The textual Event B language is used for modelling purposes, describing a set
of variables, their initial states, guarded transitions and other invariants. Modelling is also
carried out with UML interface modules and graphical syntax of Event B. Event B also uses
model checker ProB to verify the formalism. Rodin supportive tool can be used for the

mathematical proofs.

Fault Tolerance Expressiveness: This approach does not deal with any specific fault
tolerance mechanisms, nor does it handle any particular faults. However, dependability
properties such as fault tolerance can be specified and then verified through theorem
proving. In example of liquid handling workstation, error situations are anticipated with how
to bring the system back into a normal state by either, roll forward, replicated processes or

rollback as in checkpointing.

Separation of Concerns: This approach does not deal with fault tolerance as a separate
concern or provide any fault semantics. There is no orthogonal fault tolerance rather it is
separated by parameterisation and instantiation multiple times within the modules. The
incorporation of fault tolerance can be done with the help of patterns in modules that split

components into module interfaces and module bodies.

Composition Mechanism: The parallel composition with multiple assignments is used and
satisfies the property of compositionality in the context of modules that describe as

machines.

Feature Interaction Analysis: There is no explicit mechanism for identifying, detecting or

analysing feature interactions between different components.

Platform/paradigm constraint: The approach can be used with ADA, C and Java and

specialised for event based reactive systems.

Tool Support/Case Studies: The approach is applied on a liquid handling work station

Fillwell. Atelier B automatic supportive tool for Event B is used [Fillwell™ 2002].
2.2.8 Other Approaches

Some other formal verification techniques have been proposed to address the fault

tolerance in different software systems. In [Meng, Anita and Daniel 2009], the authors

23

analysed the effect of formal verification and testing due to adding different fault tolerance
mechanisms to baseline systems. They concluded that re-execution was the most efficient
mechanism, followed by parity code, dual modular redundancy and triple modular
redundancy. They also presented the ratio of verification effort and testing effort to assist
designers in their trade-off analysis when deciding how to allocate their budget between
formal verification and testing and can be used in practical industrial production. [Yeung et
al. 2003] proposed the CSP approach using FDR2 to formally verify both the fault-tolerant
software and hardware design. Their work mostly focused on the implementation level using

ProB and the JCSP programming environment [Welch and Martin 2000].

In [Tomoyuki et al. 2001], the authors proposed a symbolic model checking method using
SMV with CTL [Clarke, Grumberg and Peled 1999] formula for the verification of fault
tolerance of systems. [Lanfang et al. 2012] proposed a similar approach for formal
verification of signature-monitoring mechanisms by model checking using operational
semantics and model checking NuSMV [NuSMV]. In contrast, [Daniel and Ruben 2005]
present the idea of using an aspect-oriented approach to add fault tolerance to software and
then the formalism can be applied to the resulting separation of the fault tolerance code
from the function code. [Clarke, Grumberg and Peled 1999] describe four kinds of fault
tolerant abstraction, namely faults, fault-masking, voting and communications. These
abstractions are then formalised and verified. [Kulkarni et al. 2005] propose a similar
approach but mainly focus on the synthesis of fault tolerant system according to the

algorithms which are mechanically verified by using PVS theorem [Owre et al. 1996].

The work of [Keinzle et al. 2005] presents a requirements engineering process to consider
reliability and safety at early phases of software development process. This approach uses
the concept of idealized fault tolerant components with the addition of Dependability
Oriented Requirement Engineering Process (DREP). DREP extends traditional use case

modelling to consider reliability and safety concerns.

The above approaches use formalisms for the automatic verification of fault tolerance
properties at the initial phases of software development such as requirements specification
and design level. The approach of Daniel and Ruben explicitly addresses the separation of
fault tolerance concerns in terms of aspect oriented software development, whereas the
MAL specification supports reasoning about the dynamic reconfiguration of the component

and fault tolerance self-healing mechanisms.

24

2.2.9 Summary

All of the above approach deals with the fault tolerance at the requirement specification or
design level mainly focusing on architecting fault tolerance. In these approaches, there is no
clear mechanism to deal with the feature interaction or the composition of fault tolerance
with the base system. Moreover, few approaches deal with the fault tolerance as a separate

concern; more commonly it is embedded within the component.

Having presented a number of different approaches in detail above, a summary is presented
in tabular form in Table 2.1. The table serves as a quick way to filter out the most desired
properties such as fault tolerance expressiveness, separation of concern, composition and

feature interaction analysis.

25

Co-operative Architectural

Mal Specification

Aereal Framework

iFTComponent

UML, CSP B Method

DRIP Catalyst

UML, CAA, MDE

Event B

UML, B method

Architectural Style Patterns
Bridges, comparator,

Finite state machine,

Exception Styles

Exception views

Components and
System Model Connectors service broker and FT LTS, and Process
registry Algebra Exception ducts
Exception Handling Comparator acts as Self checking and Exception Handling Forward recovery Exception Handling Not specific
Fault Tolerance
Self checking Exceptions (Exception Handling)
Expressiveness
mechanism /any kind of exceptions
Partially Via Comparator Partially addressed Partially addressed with Provides as computation Models N/A
Architectural styles compared the With MAL normal and exceptional is separated for
Separation of Concerns
matches and specification flow of information component and
mismatches between components connectors
Connectors Via Matching Views composition Views composition with Within components and Within architectural With patterns and
Composition Mechanism
Patterns ACME specification connectors coordination actions modules
Partially Partially by matching N/A Partially by separating N/A N/A N/A
Feature Interaction
similar and dissimilar normal and exception
Analysis
patterns design artefacts
N/A Web based services N/A N/A Component based Java Platform and object ADA, C and Java
Platform/paradigm
system. No platform oriented development Reactive systems
constraint
dependent
UPPAAL model N/A MAL, LTSA Alloy, Mining Control ProB, B method MDE and COALA Eclipse Rodin
Client Server System system and Financial

Tool Support/Case Studies

checker, timed
automata, Gas Auto

filling system, VS-40X

System

sounding rocket

Table 2.1 Requirement specification and design approaches

26

2.3 Aspect-Oriented Modelling and Design Approaches

There are many excellent survey papers on Aspect-Oriented techniques, including aspect-
oriented analysis and design approaches [Chitchyan et al. 2005] and aspect-oriented

modelling approaches [Schauerhuber 2007].

This section highlights some of the approaches that are particularly relevant given the thesis’
focus on separating out fault tolerance concerns and composing such concerns with the base

system.
2.3.1 Aspect-Oriented Architecture Model (AAM)

[France et al. 2004] proposed an aspect-oriented modelling (AOM) approach that allows
developers to conceptualise, describe and communicate logical dependability solutions in
isolation with the help of an aspect-oriented architecture model (AAM). This architecture
consists of a set of aspect models and a base architecture. An integrated view of the
architecture is obtained by composing the aspect and base architecture models to produce a
composed AAM with the help of Templates and UML models such as class diagrams and
sequence diagrams. Aspects describe solutions in this approach that crosscut UML module
views and may specify concepts that are not present in a base model. The AAM approach
provides support for the separation of crosscutting concerns such as dependability and also
supports composition of aspect and model views using a composition strategy. Later, a tool
was developed called Kompose [Fleurey et al. 2008] that uses the composition technique
proposed by this approach. This approach is also useful in identifying and resolving conflicts

that arise after the composition of aspects and models.

System Model: This approach uses Template, UML class diagrams, UML sequence diagrams
and architectural views. In this approach, UML provides some support for multidimensional
separation of concerns through the use of different diagram types that can be used to

describe non-orthogonal views of a system.

Composition Mechanism: in this approach, aspect model is composed with the primary
model based on the composition directives provided in AAM. Composition directives tell how
the aspect model can be composed with the primary model. Logical view of architecture is
presented by AAM, where UML notation and interaction diagrams are used for the primary
model and dependability patterns are used for the aspect model. Composer tool has been

built to automate this composition.

27

Feature Interaction Analysis: Interaction of concerns is addressed by this approach with the
help of UML templates and patterns in Analyzer component of the AAM. The approach deals
with the conflicts arising because of composing and integrating aspects and primary model
views. Hence, it deals with the interaction and undesirable properties that arise as a result of
integrating aspect and primary models. Similar to the composition procedure, the feature
interaction analysis requires further effort on the part of the developers but the Model
Analysis component is somehow responsible for analysing the composed model to identify

errors and to determine the extent that dependability objectives are met.

Platform/paradigm constraint: The approach is not constrained to a particular platform

except the use of UML.

Tool Support/Case Studies: A composition tool, Kompose/composer [Fleurey et al. 2008],
has been developed that uses the same aspect oriented architecture model approach to
compose aspects. A small case study of user management system is used to demonstrate the

applicability of the approach.

2.3.2 Theme

The approach by [Baniassad and Clarke 2004] is one of the early aspect-oriented modelling
approaches, and strongly supports work at the requirement specification and design levels.
This approach represents crosscutting system concerns as features and aspects based on the
requirement specifications. The approach is based on the composition patterns presented in
[Clark et al. 2001], with the design unit named Theme. The base theme unit refers to the
base system and the aspect theme refers to the crosscutting aspect as well as any other
behaviour that is triggered by behaviour in some other theme. Modelling of the base theme
is carried out in UML design process, whereas aspect themes are modelled with different
modularisation packages. The modularisation of the aspect theme is similar to the UML
models where the structural view is represented with the help of class diagrams and

behavioural views is represented with the help of sequence diagrams.

System Model: At the requirement analysis phase, this approach uses Theme/Doc that
provides views whereas, at the design phase, the approach uses Theme/UML: standard UML
modelling with class diagrams using stereotypes, UML sequence diagrams to show the
structural and behavioural view of the base theme unit, and the aspect theme unit. Action
views in the requirements document are used to identify the crosscutting behaviours. Each

action is designed separately with Theme/UML. Theme/UML is designed as a platform-

28

independent approach and provides mappings to Aspect). Basically, Theme/UML poses no
restrictions on what UML diagrams might be used for modelling. Moreover, particularly
Theme/UML allows every concern to be refined separately and then to be composed into a

new model.

Composition Mechanism: The Theme approach works at the two levels, at the requirement
specification level and the design level. Composition patterns are used to compose concerns
at the requirement and design level. In Theme/UML, first all non-crosscutting themes are
composed and then crosscutting themes are woven one after the other into the composed

model, thus forcing the developer to consider the ordering of crosscutting themes.

Feature Interaction Analysis: The UML class relationship is used to model interactions
between different concerns, but these are not related to undesirable feature interaction in

anyway.

Platform/paradigm constraint: The Theme approach is an aspect-oriented software

development approach but not platform dependent.

Tool Support/Case Studies: The requirement views are demonstrated with the help of small
example of Course Management Systems whereas the approach is applied on the case study

of location aware game called the Crystal Game.

This approach does not deal specifically with fault tolerance mechanisms, but any fault
tolerance mechanism can be seen in terms of aspects. The Theme approach not only deals
with the aspect theme but any behaviour that can triggered by any other theme unit, hence,

can be use for any kind of faults and exceptions raised.

2.3.3 Motorola WEAVER

In [Cottenier et al. 2007], a tool is developed known as Motorola WEAVER based on SDL,
designed for UML Statecharts that include action semantics. It supports the automatic
generation of source code and platform-specific models by weaving aspects into the
executable UML models. Two main constructs are used by Motorola WEAVER: ‘where’ and
‘what’. Where refers to the locations or jointpoints in the model where crosscutting
behaviour emerges such as transitions. Special constructs known as pointcuts are used the

jointpoint actions behaviours. ‘What’ refers to the behaviour of the crosscutting concerns.

29

An aspect encapsulates the multiple pointcuts and connectors and it also contains a binding
diagram that defines which connectors are bound to which pointcut. The work of [Cottenier,
Berg and Elrad 2006] describes composition semantics between aspects and base models by
using metamodels. Crosscutting behaviour is designed with Specification and Description
Language (SDL) state charts. There are two kinds of jointpoints, action jointpoints are used
for the actions and calls construction whereas transition jointpoints are used for the
tranitions in state machine. A connector is used for the implementation of state machine.
The weaver engine semantically simulates and weaves the model. Moreover, all the weaving
is done at the module level; there is no way to generate aspect code that is weaved together

with the base code.

System Model: This approach uses UML Statecharts that include action semantics. Special
constructs using stereotypes describe the pointcuts and connectors representing jointpoints
and advice. Pointcuts and connectors are encapsulated by a special construct aspect. Finite
state machines are also used to show the behaviour specifications of the components. A
special <<bind>> stereotype defines which pointcuts needs to bind with which pointcut and

similarly for the connectors.

Composition Mechanism: In the Motorola WEAVER, there are three categories for the
composition mechanism: pointcut composition, connector composition and aspect
composition. For the pointcut composition, Boolean operators (and, or, not) are used. In
connector composition, the precedence relationship is considered and the <<follows>>
stereotype is used to compose the connectors with joinpoints. Deployment diagrams are

used for the aspect composition that binds the aspect with the base model.

Feature Interaction Analysis: The WEAVER approach explicitly specifies the precedence
constraints for the pointcuts and connectors that can help reduce the undesirable
interference at the same jointpoints. Moreover, dependability is also considered and the
developer of one aspect must be aware of all potentially conflicting aspects, address conflicts
between different features, hence analyse feature interaction particularly for the specific

domain.

Platform/paradigm constraint: The WEAVER approach can be used with Java, C and C++ and

platform dependent.

30

Tool Support/Case Studies: The Tau tool provides a model explorer that supports the
detailed analysis of models written in C/C++. The approach is illustrated through two

examples of resource server; transaction timeout aspect and two phase commit aspect.
2.3.4 Aspect] for Exception Handling

Several works also take an aspect-oriented approach to fault tolerance and exception
handling concerns at the implementation level such as [Filho et al. 2005]. This approach
works on the modularigin the exception handling with the help of Aspect). Aspect] is
considered as an extension to java based on aspect oriented concepts. The selected case
studies are large, complete, deployable systems. All of the studies are evaluated against pre-
defined attributes for example, cohesion, coupling, conciseness and separation of concerns.
The study shows that AOP improves separation of concern between exception handling code

and normal application code, also promoting the reuse of handlers.

This approach uses matrices to quantitatively measure the attributes such as separation of
concerns. Three matrices are used for this purpose, namely concern diffusion over
components that counts the number of classes and aspects, concern diffusion over
operations that counts the number of methods, and advice and concern diffusion over lines

of code that counts the number of transitions on each line of code.

System Model: In this approach, the error handling parts of the code such as ‘try-catch’, ‘try-
catch-finally’, and ‘try-finally’ blocks of the Java code are modularised in aspects. These
aspects are implemented with before, after and around advice, depending on the execution
of the handler. Aspects to handle exceptions are defined for each class in the base system.
The advice is expressed in terms of pointcuts and join points, which describes precisely
where the additional behaviour should be added, e.g. before, after or around existing

methods.

Composition Mechanism: Composition of aspect is carried out with the help of process
called weaving in which java classes represent aspects. Weaver tool is used to perform

weaving between aspects.

Feature Interaction Analysis: The approach does not address the issues of feature
interaction or the interactions between exception handling aspects and aspects

implementing other concerns.

31

Platform/paradigm constraint: The exception handling can be incorporated in many object
oriented programming language such as Java, C# and C++ and normally considered as

application specific.

Tool Support/Case Studies: Telestrada’s Complaint Management Subsystem (CMS) is taken
as a case study for this approach consisting of more than 12000 LOC and more than 300

classes.

This approach explicitly deals with exception handling fault tolerance mechanisms. In this
approach, the error handling concerns for example try-catch part of the code is moved to the

aspect but the error detection part for example ‘throw’ is not dealt as aspects.
2.3.5 Other Approaches

[Chitchyan et al. 2007] present semantics based composition for requirement engineering to
reason about semantic influences and trade-offs among aspects. The approach uses a
Requirements Description Language (RDL) based on the semantic information of the natural
language. Composition specifications in this approach are based on the requirement
specification semantics that also address the reasoning about composition of aspects and

trade-offs. The approach is applied on two case studies and supported by the MRAT tool.

In the AOM approach proposed by [Clarke and Walker, 2001][Clarke and Walker, 2002] a
design concern, called a Subject, is created for each system requirement and presented as
UML model views. Composition relationships are supported by UML metamodels that also
describe rules for composition. Merge and override operations are used for the integration.
Reconciliation strategies are use to resolve conflicts between property values of
corresponding subject elements. Precedence relationships, transformation functions applied
to conflicting elements, explicit specification of reconciled elements, and default values may

be used for reconciliation.

Similarly, at the implementation level, the work in [Watson et al. 2000] presents an approach
with the ability to discover interactions between aspects with the help of Data Flow Analysis
(DFA). This approach deals with the error detection mechanism in fault tolerant systems, and
the AIDA (Aspect Interference Detection Analysis) tool is used to implement and analyse the
interactions for the Aspect) language. AIDA also produces a visual representation of

interactions by means of an interaction graph.

32

2.3.6 Summary

The approaches presented above are aspect oriented development approaches addressing
the separation of crosscutting concerns and their weaving. However, many issues still need
to be resolved in these approaches for example reasoning about the composition of aspects
and crosscutting concerns to avoid conflicts and interactions between them. Many
approaches are platform dependent. Moreover, almost all of the approaches only consider
exception handling for the fault tolerance and do not focus on other mechanisms such as N-

version programming, recovery blocks, etc.
A summary of the work described above is presented in Table 2.2 below. All of these

approaches fully support a separation of concern but, as it can be seen from the table; most

of approaches partially address the issue of feature interaction analysis.

33

Approach

AOM

THEME

Motorola WEAVER

Aspect)

System Model

UML, templates, class

diagrams, sequence diagram

THEME units, UML Packages,

Class diagram

UML classes, state machines,

SDL

UML, pointcuts, views,

aspects

Composition Mechanism

UML static composition

Theme static composition

Weaver aspects Boolean
Operators OR, AND, NOT and

<<follows>>

Weaver

Weaving process

Feature Interaction Analysis Partially Supported Partially Supported Precedence Constraints N/A
Platform/paradigm AOSD AOSD C, C++and Java Java, C++
constraint Aspect-oriented software
development
Tool Support/Case Studies N/A CMS and Crystal Game Motorola Weaver, Tau Tool Telestrada’s Complaint

Management Subsystem

(CMS) Weaver Tool

Table 2.2 Aspect Oriented Modelling and Design Approaches

34

2.4 Feature Interaction Analysis

The problem of detecting and analysing undesirable interactions is a well-researched area
and, in the particular domain of telecommunications systems, research into feature
interaction has a long history dating back to the 1990s. Comprehensive surveys exist for this
research area, for example those conducted by [Keck and Kuehn 1998] and [Calder et al.

2002].

This section highlights a number of techniques and frameworks that deal with the prediction,

detection and resolution of feature interactions as well as the composition of features.
2.4.1 FlFiltering

[Nakamura and Kikuno 2000] present an approach for feature interaction filtering. The
approach works at the requirement specification level to identify all possible combinations
that have the possibility of feature interaction. The filtering method screens out undesirable
feature combinations before the detection process. The method is supported by a
requirement notation called Use Case Maps (UCMs) based on scenario paths, for the

description of services associated with the UCM Navigator.

In this approach, each feature is expressed as a set of submaps describing scenarios specific
to the feature. The rootmap describes the common scenarios with default submaps, into
which the feature submaps are plugged. Then the information about feature submap
plugging is provided in a stub configuration represented in terms of a matrix, called the
configuration matrix. Once each configuration matrix has been characterised, composition of
different configurations is carried out by a matrix composition operator based on the

semantics of the composition.

System Model: This approach uses the Use Case Maps (UCMs) requirements notation. UCMs
provide a system-wide path structure that addresses all possible combinations that have a

possibility of feature interactions. Fl filtering uses the stub-plug-in concept of UCMs.

Composition Mechanism: The approach uses a matrix composition for composing different
configurations. The composition is performed by checking only pre-conditions of the feature
submaps. The concepts of fork and join are used to compose the features in stub
configurations, where OR fork/join describes an alternative scenario path and AND fork/join

describes a concurrent scenario path.

35

Separation of Concerns: Each feature and configuration is considered separately, hence

addressing separation of concerns.

Feature Interaction Analysis: The approach addresses the problem of analysis of feature
interactions before detection takes place. Fl-prone combinations can be identified but for

the Fl detection, there is still the need to employ more formal definitions and techniques.

Platform/paradigm constraint: The approach works at the requirement specification level,
but is specific for telecommunication systems. The approach is very general and need further

work for adoption in other domains.

Tool Support/Case Studies: For designing Use Case Maps, UCM Navigator is used to help to
draw syntactically correct UCMs. The Fl filtering experiments are carried out on a Basic call

model of the Telephony system.
2.4.2 FIN Method (Use Case Driven Analysis)

[Kimbler and Sobirk 1994] present the FIN detection method based on Use Case Driven
Analysis of a system at the requirement specification level. There are two models derived
from the informal description of services and feature. The first model is use case model that
describes the users and services associated with these users in use case. The other model is
called service usage model that captures the dynamic dependencies between the services
and their features. These dependencies can further work out with the help of service usage

graphs. All possible scenarios can be generated from the Service Usage Model.

The feature detection starts from the scenarios generated from the service usage model.
This model provides the feature sequence that can be used in the identification of
interactions. Similarly, [Felty et al. 2000] also use the FIN tool aided by the model checker
COSPAN to check inconsistency between service features. This approach uses formal
methods to automatically detect undesirable feature interaction by using linear temporal

logic (LTL) at the specification stage.

System Model: This approach uses Use Case Driven Analysis at the requirement specification
level to analyse all possible scenarios of the system with the help of Use Case Models and
Service Usage Models (SUM). SUMs describe all possible scenarios and automatically analyse
them in order to detect interaction-prone feature pairs. These pairs are then manually

analysed to determine the occurrence of any undesirable interactions.

36

Composition Mechanism: The approach does not provide any composition mechanism, and

only focuses on feature interaction.

Separation of Concerns: This approach does not explicitly address the issue of separation of

concerns.

Feature Interaction Analysis: The FIN detection method fully addresses the problem of
analysis and detection of feature interactions with the help of the automated tool and Use

Case Driven Requirement specifications.

Platform/paradigm constraint: The approach works at the requirement specification level,
but is specific for telecommunication systems and also deals with only functional

requirements.

Tool Support/Case Studies: The FIN method is supported by a tool with graphical support for
the specification of features and use cases. The tool also supports creation of the service

usage graphs and automatic detection of interaction prone feature combinations.

2.4.3 CHISEL

[Turner 2000] describes the CHISEL notation (a graphical language for describing
telecommunication services and features) in the context of feature interaction. The CHISEL
approach focuses on understanding the feature design first, without the formal notation.
CHISEL gives the event sequences that characterise the features with the help of Message
Sequence Charts (MSCs), hierarchical textual descriptions, finite state automata, regular
expressions and process algebra. Moreover, the extension of CHISEL incorporates the use
two formal languages: SDL (Specification Description Language) and LOTOS (Language for
Temporal Order Specification). This gives rise to a new name for the extended approach,

namely CRESS (CHISEL Representation Employing Systematic Specification).

CRESS uses SDL to specify the features in a system and LOTOS with its synchronous

communication provides the interactions between features.

System Model: This approach uses CRESS that has formal denotation given by SDL . However
the interpretation of CRESS corresponds closely to an LTS (Labelled Transition System).
CHISEL diagrams are translated to Message Sequence Charts, hierarchical textual

descriptions, finite state automata, regular expression and process algebra at the

37

requirement specification level. This helps to address possible combinations that have the

possibility of feature interaction.

Composition Mechanism: The approach uses SDL and LOTOS specification for the
composition of different features and services. CHISEL diagrams are given a formal
representation in SDL and LOTOS. Feature Interaction Analysis: LOTOS in CRESS uses
synchronous communication that provides the interactions between features. Features are
simulated and the detailed exploration of each feature’s behaviour is analysed in depth. The
verification of desired and undesired behaviour of the feature when composed with a

number of other features is carried out with the help of LOLA’s TextExpand function.

Platform/paradigm constraint: The approach works at the requirements specification level,
but is specific for telecommunication systems. The approach is flexible to adapt for feature

interaction analysis in other domains as well.

Tool Support/Case Studies: Features are simulated and analysed for SDL using LOLA (LOTOS
Laboratory), along with the detailed exploration of each feature’s behaviour in depth. The
verification of desired and undesired behaviour of the feature when composed with a

number of other features is carried out with the help of LOLA’s TextExpand function.
2.4.4 Other Approaches

[Blam et al. 1994] present a formalism for the specification of services and their composition
by using first order linear temporal logic. Their methodology is supported by the Z
specification language, where logical operators can be used to compose different modules.

The aim of this methodology was to reduce deadlocks and composition of services.

[Hay and Atlee 2000] consider each feature as a separate concern and model them as
separate labelled-transition systems by defining a conflict-free (CF) composition operator.
This approach claims to prevent feature interactions by defining conflict and violation free
composition (CVF). [Bredereke 2000] uses formal semantics for detecting feature
interactions in the telecommunication domain by using CSP language. The work of [Plath and
Ryan 2000] describes the development of a SFI (SMV Feature Integration) tool that changes
the traditional SMV [McMillan 1993] code to a compact code with which the model checker
can work. This approach describes the detailed semantics for each service and feature

construct for the telephony system.

38

[Kelly et al. 1995] designed two different types of models to investigate feature interactions

by using ITU’s standard specification language, SDL.

Moreover, there are few online approaches to address feature interaction while features are
running. [Marples and Magill 1998], [Reiff 2000] and [Cain 1992] describe the use of a
Feature Manager to analyse and detect feature interactions in telecommunication services

at run time.

The problem of feature interactions is not limited to the telecommunications domain.
Interaction analysis is a well-formed area in the aspect oriented community. The work of
[Katz et al. 2008] describes a generic categorisation of aspects which can aid in the analysis
of interactions with an automatic detection analysis. Its main application to interference
between modules is when advices apply at the same joinpoint, as the categorisation can aid
with determining the correct order of application. [Clifton and Leavens 2002] propose a
language to see the impact between different modules and provide some interaction

analysis in terms of the specifications of the respective advices.

There are also some model-checking approaches to interaction analysis in an aspect
orientated context. [Goldman and Katz 2007] present a modular aspect verification
technique to analyse the aspects’ impact by using linear temporal logic (LTL) formulae. In this
approach, the aspect’s behaviour can be verified independently from a base system by

weaving the aspect in LTL and model checking the result.

A similar approach is presented by [Krishnamurthi et al. 2004]. Model checking is used to
determine if the properties of the base system will indeed remain inviolated when the aspect
is woven. This approach is useful to detect bad interactions between aspects and base

models.

[Kolberg et al. 2003] discuss the issue of compatibility between services in a home
environment giving reasons, why and how services interact. This approach further presents a
taxonomy of interactions followed by an approach to prevent interactions. The issue of
feature interactions is illustrated with a number of scenarios focusing on automatic
detection of feature interactions between services in the home. Similarly, [Soares et al.
2012] propose the use of state graphs to predict the feature interactions between off-the-
shelf systems. The approach uses pre-deployment simulations to forecast feature

interactions before deployment.

39

2.4.5 Summary

The approaches surveyed above all address feature interaction analysis and detection at the
requirement specification and design level, but most of the above approaches deal with the
telecommunication domain. Especially, these approaches do not consider the undesirable

interactions that arise when fault tolerance have been added.

A summary of these approaches is provided in Table 2.3 below.

Approach FI Filtering FIN CHISEL
Composition Mechanism Stub-configuration Theme static composition LOTOS and SDL specifications
composition
Feature Interaction Analysis Supported Supported supported
Platform/paradigm Telecommunication AOSD Telecommunication
constraint
Tool Support/Case Studies UCM Navigator, Telecom CMS and Crystal Game SDL, LOTOS, LOLA

Table 2.3: Feature Interaction Analysis

2.5 Comparison and Discussion

An overall comparison of results from this chapter are summarised in Table 2.4. Together,
these surveyed studies provide an important insight into the direction of fault tolerance at
requirement specification and design phase, aspect oriented design and modelling
addressing separation of concerns, feature composition and feature interactions analysis.
However, there are also a number of limitations of these approaches, regarding the

requirements laid out in chapter 1 for this thesis:

Most of the approaches described in the architecting fault tolerance section provide an
explicit description of components, the notion of connectors, configuration, and
architectural interfaces and also explicitly deal with exception handling. Most of the
surveyed approaches have successfully shown the differentiation between the fault
tolerance requirements and functional requirements. But most of them are dealing with a
very basic level of exception handling. Other approaches provide formal or model based
notations for specifying fault tolerance properties. These approaches also focus on the
architecture level and are based on existing languages or notations such as CSP, Petri Nets, B
method, etc. Few approaches are supported by automated tools to implement a fault
tolerant system, either supporting model-driven development such as DRIP Catalyst, or

providing primitives for implementing fault tolerant architectures.

40

There is still a need to describe the complex fault tolerance mechanisms such as active
replication or N version programming with a separation of concerns. Aspect oriented
modelling approaches are considered as a good solution for that. It is also believed that the
orthogonal view of the fault tolerance with separate concerns can support reusability and

easy maintainability of different fault tolerance mechanisms than a large monolithic system.

As can be seen in Table 2.4, the approaches under fault tolerance at architectural level
classification partially address the issue of separation of concerns, fault tolerance
composition and the feature interaction analysis. Mostly aspect oriented approaches deals
with the separation of concerns and the composition of these concerns. However, this is still
a big challenge to develop a language for expressing composition strategies and techniques.
These approaches generally discuss the aspect weaving but do not addresses specifically

fault tolerance concerns at a certain desired level.

Various studies successfully highlight the problem of feature interactions and provide
solutions to overcome this problem. These approaches use formal methods, logic properties,
and model checking tools, behaviour semantics and software engineering techniques to
address the problem of interactions, albeit most commonly in a telecommunications setting.
A few of the approaches also discuss the methodology for the composition of features and to
some extent compositionality. The problem of compositionality is still a problem especially

when fault tolerance features are composed with the system.

Similarly, as shown in Table 2.4, the approaches under feature interaction analysis
classification partially address the composition of features. However, these approaches do
not address the impact of interactions that arise after composition of fault tolerance

concerns to the base system.

In summary the following issues remain unaddressed and hence form the focus of this thesis.

* Design diversity fault tolerance mechanisms: The focus of the thesis is on
incorporating design diversity fault tolerance mechanism at the design level based
on the requirement specifications. Most of the surveyed approaches deal with
exception handling mechanisms, but do not provide any mean to manage different
features of design diversity mechanisms. Design diversity fault tolerance

mechanisms are comprised of various other mechanisms such as atomic actions,

41

checkpointing, etc. Hence, it is necessary to provide a broader view of different fault
tolerance mechanisms.

Orthogonal Fault Tolerance Framework at Design Level: Although surveyed
approaches deal with fault tolerance at the design level, most are very specific to
architectural configurations such as components, connectors, etc. Model driven
approaches such as DRIP provides a concept of modularisation and can be a
motivational approach that used separation of fault tolerance concerns. However, an
orthogonal view of the fault tolerance concerns is missing in most of the surveyed
approaches. With the introduction of an orthogonal framework, fault tolerance
mechanisms are well separated and can be reused with different components of the
base system. The separation of concerns is aimed to reduce software complexity and
improve software evolution by keeping track of different fault tolerance
mechanisms.

Composition of Fault Tolerance Mechanisms: The surveyed techniques deal with the
composition of crosscutting aspects but not specific to any design diversity fault
tolerance mechanism. In particular, when fault tolerance is incorporated in a system,
there may be unintended or uncertain interactions which can be resolved by
reasoning before composition. The orthogonal view of the fault tolerance
mechanism will help in composition of these features, as provides dependency
relationships and constraints between features.

Dealing with interaction: The approaches in the telecommunications domain deal
with the problems of feature interaction prevention, detection and resolution. None
of the surveyed approaches address the problem of interactions arising when fault
tolerance mechanisms are composed with the system. To deal with potential
undesirable interactions, it is very important and crucial to know about the features’
dependencies. With respect to fault tolerance, the selection of the appropriate
mechanism also depends on the clear understanding of components’ dependency
relationships. Incorporating fault tolerance into a system also brings with it an
increased difficulty in system comprehension and increase interaction between

different components.

Therefore, although there have been well mature areas such as aspect oriented community

and feature interaction in telecommunication, a framework for orthogonal fault tolerance is

not yet available that can address the automatic composition of design diversity fault

tolerance at the requirement specification and design phase with the automatic composition

42

and interaction analysis. These areas still provide an inspiration for separation of concern
and feature interaction analysis for designing fault tolerance system. In summary, with the
inspiriting aspect of each area, the development of such a framework must necessarily

integrate the speciality of each area discussed above.

43

Fault tolerance expressiveness

Separation of Concern

Feature Interaction Analysis

Fault tolerance composition

Fault Tolerance at Architectural Level

Co-operative Architectural Style

O,

O,

)

Architectural Patterns

MAL Specification

AEREAL Framework

iFTElement

Model-Driven approach

DRIP Catalyst (CORRECT Project)

Formal Specification Approach

Event B (DEPLOY Project)

Aspect Oriented Composition Approach

AOM

Aspect)

Theme

Motorola WEAVER

O |0 o 6|l corBO | ©|0 O

© 6 0 o 000 | oo

® @ @@ © © OB00 0| 0|0 B

o0 |6 o 0 ¢/0006C | O |6 OO

Fl Filtering
)) FIN
Feature Interaction Analysis
CHISEL
O ®
Table 2.4 Overall Comparison Table
Legend: @ rully Addressed D Partially Addressed (O Not Addressed

44

Chapter 3

Orthogonal Fault Tolerance (OFT) Framework

3.1 Introduction

The orthogonal fault tolerance framework presented in this thesis ensures the separation of
concerns between the ‘base’ system and the fault tolerance mechanisms that are composed
with the base system. This orthogonal approach has been inspired by OVM, the Orthogonal
Variability Model [Pohl et al. 2006]. The key benefits of OVM are the improvement of
decision making, communication and traceability. It also makes the overall development
process simple, consistent and unambiguous. This model provides a cross-sectional view of
the variability across all software development artefacts [Pohl et al. 2005]. By using a similar
orthogonal modelling approach for fault tolerance, it brings similar benefits for fault tolerant

software systems.

In the proposed orthogonal fault tolerance model, fault tolerance mechanisms are well
separated and can be reused with different components of the base system. The separation
of concerns aims to reduce software complexity and improve software evolution by keeping
track of different fault tolerance mechanisms. The orthogonality in this thesis also
establishes the relationships and constraints between features of different design diversity
fault tolerance mechanisms based on their dependencies. In addition, analysing the
dependencies among features provides essential information for feature selection and
integration without impacting on other features of the base system, enabling multiple fault

tolerance needs to be managed.

The composition of the orthogonal fault tolerance mechanism with the base system is based
on operational semantics that describe the behaviour of the underlying components when
composed with the fault tolerance mechanisms. The custom-built pre-processor is based on
these composition rules, and is used to automatically compose the system component and
the fault tolerance mechanisms. For the pre-processor, features of orthogonal fault

tolerance mechanisms are represented as ‘generics’; these will be discussed in more detail in

45

Section 3.3.4. The orthogonal fault tolerance framework is also supported by the model
checking tool NuSMV; the automatically generated output of the pre-processor is used as an

input for NuSMV.

The very introduction of different fault tolerance mechanisms to the system may cause
interactions with other fault tolerance features or with system components. Logic properties

written in CTL are used in NuSMV to analyse undesirable interactions.

Figure 3.1 shows the overall context of the proposed approach: a software system in which
both the main system component and the fault tolerance features are expressed using
Labelled Transition Systems. These two orthogonal parts of the overall system are then
composed using a pre-processor underpinned by operational semantics, and this tool
automatically generates the input language for the model checker. The models are then
verified for correctness, including the absence of inconsistencies and interactions, with the

help of logical properties written in CTL in the model checking tool NuSMV.

Pre-Processor |

|

SuiApepun

LTS

sjusuodwo)
walsAg

| NuSMV Feature
Model Interaction
Checker Analysis

LTS

Composition

LTS

Operational Semantics
Translation Rules

Jeuo8oyuo

saJnjeaq
14 Jouoissaudx3

(s,c,e,a,5) —

LTL/CTL Properties for
Interaction Analysis

Legend: s: initial state, c: condition, e: event, a: actions, s’: final state

Figure 3.1: Context of the Proposed Method

The rest of this chapter will describe the different elements of the Orthogonal Fault
Tolerance Model in greater detail. Section 3.2 contains details of the different features of
fault tolerance mechanisms, including subsections on feature dependency analysis and
constraints. Section 3.3 provides detail on the composition in the orthogonal fault tolerance
framework with labelled transition systems, operational semantics, handling ‘generics’,

composition of components with fault tolerance features and the pre-processor. The feature

46

interaction analysis with subsections on NuSMV model checking and classification of CTL and

logic properties is provided in Section 3.4, followed by a summary in Section 3.5.
3.2 Orthogonal Fault Tolerance Model

As explained in the introductory chapter, the focus of the proposed approach is on software
fault tolerance that uses design diversity to build reliable and fault tolerant systems. Design
diversity mechanisms are mainly developed to deal with design faults. By using design
diversity, a central assumption is that failure is rare in the presence of different software
variants. This work is on the design level rather than the implementation and testing level.
Table 1 shows the main characteristics of the design diversity software fault tolerance
mechanisms that have been considered so far. All of these use multiple versions of the
software components that comply with the same specification, but that have different
designs and implementations. In addition to multiple versions, four other main features are
considered in the Orthogonal Fault Tolerance Model: Judgment Criteria, Execution Scheme,

Error Processing Technique and Checkpoints.

Features
A UC SIS WA AT Judgment Execution Scheme Error Processing Checkpoints
Criteria Technique

Recovery Block AT Sequential Backward Yes

Voter Parallel Forward No
N-Version Programming AT Sequential Forward No

Voter Parallel
N-self checking Programming Hybrid Sequential/Parallel Forward/ Backward Yes/No
Distributed Recovery Block AT Sequential Forward No
Consensus Recovery Block Hybrid Sequential/Parallel Forward/ Backward Yes/No

TABLE 3.1: Fault tolerance mechanisms features

In Table 3.1, the rows show five common design diversity fault tolerance mechanisms. The

different features employed in these mechanisms are shown by the columns of the table.

* The judgment criterion is the adjudicator that helps to decide the correct result
among different variants. There are three different adjudicators: Acceptance Test

(AT), Voter and Hybrid (combination of both the Acceptance Test and the Voter).

* The variants in different design diversity fault tolerance mechanisms run either
sequentially or in parallel. For a Hybrid adjudicator, both execution schemes are

used: sequential for the Acceptance Test and parallel for the Voter.

47

* Regarding the error processing technique, backward error processing normally
recovers the system to the previous state whereas forward error recovery brings the

system to a new safe state such as with the use of exceptional handling.

* Checkpointing is used to save the system states that will act as recovery points. For
the backward error processing, checkpointing is used; the forward error processing

technique does not uses checkpointing unless the adjudicator is the hybrid voter.

The details of the dependency constraints and relationships between these different

features of fault tolerance mechanisms are presented in the following section.
3.2.1 Feature Dependency Analysis

Before specifying the formalisms for different features of design diversity fault tolerance
mechanisms, it is important to define dependency constraints and relationships between

them.

The Orthogonal Fault Tolerance Feature Model (see Figure 3.2) is inspired by Brito’s feature
model for fault tolerance mechanisms [Brito et al. 2009]. The main focus of this model is on
the four features of fault tolerance mechanisms (Judgment Criteria, Execution Scheme, Error

Processing Technique and Checkpointing) already presented in Table 3.1.

The Orthogonal Fault Tolerance Feature Model (OFTM) captures the various features found
in fault tolerance mechanisms reported in literature, as well as the relationships between
features. As a result, not only known fault tolerance mechanisms but also bespoke ones can
be derived from the OFTM. Relationship constraints such as mutual dependency and mutual
exclusivity (depicted by dotted lines in Figure 3.2) are also captured in the OFTM to ensure
that only valid combinations of features are included in the fault tolerance mechanism

derived from the model.

48

FTmechanisms
characteristics

Variant Execution
scheme

Judgment Criteria Checkpointing

Error Processing
Technique

Backward Error Forward Error | Absolute ‘ ‘ Relative ‘
Recovery Recovery
H
H
H
H
H
H
H
)
H -
'—----| Acceptance Test "‘ ---- { Voting ‘ | Comparison || Sequential ‘ | Parallel
. T
H
H
H
Legend:

Feature Mandatory Optional I e Relationship
Feature Feature

Figure 3.2: Orthogonal Fault Tolerance Feature Model

According to the OFTM, there are four mandatory features of fault tolerance techniques;
these relate to the number of versions in use, and also the type of execution scheme,

adjudicator and error recovery scheme being used. The mandatory features are as follows:

i n different Versions of the component, where n can be any number; denoted by

VER;

ii. the Execution Scheme, which may be sequential or parallel;

denoted by ES = SEQ v PAR;

iii. an Adjudicator that is used to decide the correctness of the versions’ result, which
may be Acceptance Test, Voting or Hybrid (a combination of both);

denoted by AD = AT v VOT v HYB;

iv. the Error Recovery scheme, which can be Backward or Forward;

denoted by ER=B v F.

The next section provides the detail of constraints for the valid composition of these fault

tolerance features.

3.2.2 Constraints

There are a number of constraints that must be satisfied to ensure that these features are

combined in valid ways. The first two constraints involve whether the additional feature of

49

checkpointing is to be used, while the remaining constraints control the valid combinations

of adjudicator and execution schemes.
1. Backward recovery is always accompanied by Checkpointing; B <Ch;
2. Forward recovery never uses Checkpointing; F <-Ch;
3. Versions running sequentially require an acceptance test as the adjudicator;
SEQ = AT (i.e. sequential execution cannot use a voter; SEQ =-VOT);

4. However, use of the acceptance test does not imply sequential execution (since an

acceptance test may be part of a hybrid adjudicator for parallel execution);
AT # SEQ;

5. Versions running in parallel either use a voter or a hybrid adjudicator;
PAR < VOT v HYB.

These constraints help in selecting different features from the orthogonal fault tolerance

model that is added to the system components.
3.2.3 Typical Design Diversity Mechanisms

Three of the standard fault tolerant mechanisms are Recovery Block, n-Version Programming
and n-Self-Checking Programming. The following points show how these can be achieved in

relation to the above constraints:

* By combining constraints 1 and 3, it is possible to achieve a Recovery Block
mechanism. This would consist of n-Versions executing Sequentially with an

Acceptance Test and Backward Error Recovery (and hence also Checkpointing);

* Using constraint 5, it is possible to achieve n-Version Programming (NVP) that
executes in Parallel with Forward Error Recovery and uses either a Voter or a Hybrid

adjudicator;

* Also using constraint 5, it is possible to achieve n-Self-Checking Programming (NSCP)
that executes in Parallel with Forward Error Recovery but that always uses a Hybrid

adjudicator.

50

3.3 Composition in the Orthogonal Fault Tolerance (OFT) Framework

Operational semantics are introduced in order to provide a formal basis to underpin the
rules for composition in the OFT framework. Operational semantics are used to show the
behaviour of different processes by specifying transitions from a process’s state on a
particular event. The purpose of developing operational semantics is to give behavioural
descriptions of programs and systems, in the form of mathematical formalisms, to support
understanding and reasoning about the behaviour of programs and software systems
[Prasad 2003]. More specifically, in this thesis, operational semantics are used to provide the
rules for the composition of the orthogonal fault tolerance concerns with the underlying

system components.

To provide an operational description of a system, Labelled Transition Systems (LTS) are used

to denote the execution of events that cause the transitions to occur.

3.3.1 Introduction to LTS (Labelled Transition Systems)

A Labelled Transition System (LTS) is a graph of states and labelled transitions (represented
by nodes and edges respectively) which describes the behaviour of a system: in a given state,
the possible actions from that state are described, each of which may cause the system to

transition into a new state.

A Labelled Transition System is formally represented by a 4 tuple: < S, E, §, sp>.
Let S be a non-empty set of states: S = {sq, s1, ...}.
Let E be a non-empty set of events: E = {e4, e,, ...}.
6 is the transition relation: 6:S x E x S (denoting the Cartesian product of sets).
Sg is the initial state.
Note that the transition relation (s, e, s’) € & is typically written:
s—s

that denotes that the LTS moves from state s to state s’ on the occurrence of event e.

3.3.2 Operational semantics

Sequential Execution. Assume that an event e is followed sequentially by process P. This

sequential operation is denoted by the operator ;" and can be represented as follows:

e

e;P->P

51

Parallel Execution: Full Synchronisation. Assume that two processes, P; and P,, are running
in parallel and let s; and s, denote the states of processes P, and P, respectively. The full
synchronisation behaviour P, | | P, can be computed by the following inference rules.

If both processes can transition into a new state by performing an event e, then the parallel

composition can be described as follows:

e , e ,
S1™51,S,2S,y

I
S1llsz = sqls;

The graphical representation of the above inference rule is as follows:

P, e

P111P,

Other forms of parallel composition can also be defined using operational semantics such as

interleaving and composition on selective events [Bolognesi 1987] as follows:

Interleaving. Assume that two processes, P, and P,, are running in parallel and let s; and s,
denote the initial states of processes P, and P, respectively. The interleaving behaviour P, || |
P, can be computed by the following inference rules.

If process P; can transition from s; into a new state by performing an event e;, then the

parallel interleaving composition of P, | | | P, can be described as follows:

€1
S =S

€1
silll sz = sy |1l sz
Similarly, if process P, can transition from s, by performing an event e;:

€2
S, ™S,

€2 '
silll sz = s1 |ll's,

Selective composition. Assume that two processes, P, and P,, are running in parallel and

should be synchronised on a given set of events, E, where e, e,, ... € E. Let s; and s, denote

52

the initial states of processes P, and P, respectively. The selective composition P, |[E]| P,
can be computed by the following inference rules.
If processes P, and P, can both transition into new states by synchronising on an event e € E,

then the selective composition of P; |[E]| P, can be described as follows:

e , e ,
S1 ™S1, S Sy

e ,
s1|[Ell sz = s; |[E]] s,
However, if one process P; can transition into a new state on an event e & E, then the

process can progress independently of P,:

€ ’
S1 ™S5

€ ’
s1l[E]| sz = s; [[E]l s
Note that the interleaving operator is a special case of the selective composition operator
|[E]| where E is empty, and that full synchronisation is a special case of the selective

composition operator where E contains all possible events.

Choice. If there are two or more alternative behaviours of the process, the choice operator
expresses two alternative behaviour descriptions. Suppose s can transition to the state s’ on
the occurrence of an event e;. Similarly, s can transition to the state s”’ on the occurrence of
an event e,. This is represented by the following interference rules:

€1
s—s'

€1
e;; P [JeyP > P
Similarly for e,,

€2
S % SII

€2
e;; P [JesP, > Py

If e; and e, are identical events, then the choice will be made non-deterministically.

Graphically, the above inference rule can be represented as follows:

= -
=
P1[1P,

e
e 2
PZ 2 g

53

3.3.3 Conditions and Actions over Variables

It will sometimes be necessary to express conditions (guards) over variables to ensure that
the transitions only take place under the specified conditions (expressed as predicates over
variables). Similarly, actions may be expressed that change the value of variables, e.g.
increment/decrement variables.

Consider the following example that represents a sequence of events x followed by an event

Y.

Suppose that it is necessary to count the number of occurrences of an event x before an event
y occurs. This can be expressed by using the integer variable, count. For the purpose of this

example, y can only occur if count 210, and this event resets the value of count.

X, count +

/’\ x, count ++

count=0

count> 10,y, count=0

As can be seen, this requires the introduction of conditions and actions associated with

events. The syntax for these is as follows:

Condition:
Let Var = [a-zA-Z][a-zA-Z0-9]*
and Op_cond €{ <, <, ==,>,>
A (Boolean) condition can now be expressed as:

Var Op_cond Var

Action:
As above, let Var = [a-zA-Z][a-zA-Z0-9_]*
let Num = [0-9]*

and Op_actE {+, -, *, /}.

54

An action can now be expressed as:
Var = Num
| Var Op_act Num
Note that the usual shorthand will be adopted for incrementing/ decrementing the value of a

variable, e.g. x = x+1 will be denoted by x++.

It is straightforward to extend the operational semantics to incorporate these conditions and

actions over variables. For example, consider the sequential execution rule of 3.3.2:

-
e;P->P
This can be extended with conditions and actions by considering the condition-event-action

triple as follows:

c.ea
<cea>P—P

This ensures that if the condition ¢ holds, the event e will be performed and will be

accompanied by action a.

Similarly, regarding the first composition rule of 3.3.2:

e , e ,
S1™51,S,2S,y

I
S1llsz = sqls;

If one process can now transition into a new state if condition c; holds and perform event e
and action a;, while a second process can also transition with event e but on condition c, and
with action a,, then the parallel composition can be described as follows:

C1,€a;1 C2,€,az
S1 751,82, /5,

c1&&cy,e,a;a; ,
Sills; — > s4]ls,

In the result of this rule, the transition with event e only occurs if the combined constraint
c1&&c; holds; both actions a; and a, will be performed as a result of the transition. If either c1

or c2 fails to hold, then the transition is blocked.

55

3.3.4 Handling ‘Generics’ for Fault Tolerance Components

To be able to handle generics, it is necessary to extend the LTS definition with two new
elements: a new state to represent a ‘stop’ state and a new event T to represent an internal

event. An extended LTS with support for fault tolerance generics is as follows:

A Labelled Transition System is formally represented by a 4 tuple: < S, E, §, sp>.
Let S be a non-empty set of states: S = {stop, s, S1, ...}.
Let E be a non-empty set of events: E = {T, ey, e,,...}, where T is an internal event.
6 is the transition relation: 6:S x E x S (denoting the Cartesian product of sets).
Sg is the initial state.

Note that the transition relation (s, e, s’) € & is typically written:

S—S

that denotes that the LTS moves from state s to state s’ on the occurrence of event e.

The reason for not specifying everything directly as state machines in NuSMV is that a style of
specification, termed ‘generics’ here, is introduced for the specification of fault tolerance
components. To illustrate this, a simple example of an Acceptance Test is given below. Further
examples of alternative fault tolerance mechanisms will be presented in the context of the
case studies in Chapters 4 and 5.
To express the behaviour of an Acceptance Test in a style that is orthogonal to the underlying
system, it is necessary to introduce the concept of ‘generic’ states: states that will later be
mapped onto actual states from the underlying system components.
Let the mapping function f: G = s from the set of generic states G to the set of states S be the
function f such that, for every g € G, there exists a unique state f(g) € S.
Let G = {g3, g, ...} be a non-empty set of generic states such that G € S, where:
38 cS s.t.VseS: g s

i.e. there exists a subset of states from the underlying system onto which each generic

state can be mapped.
Let c represent the Boolean condition necessary for the acceptance test to pass,
Let Rp(g) represent the saved recovery point of the generic state g used in the case of the
acceptance test failing, Rp(g) € S,
Let T represent an internal event for transitions on failure to the saved recovery point,

Let n represent the number of software versions.

56

The necessary transitions relating to an acceptance test with checkpointing (saved recovery
points) can now be expressed as follows:
¢ !
g8

lc,tn++

g—> Rp(g)

In a given generic state, g, when the acceptance test is passed control moves to a second
generic state, g’, where both of these states map on to a normal transition in the underlying
system, i.e. the fault tolerance component does not affect the underlying system behaviour if
the acceptance test is passed. Note that no event needs to be specified in the description of
the transition between generic states, since this will be determined by the event offered by

the underlying system component (see the first composition rule below).

However, in the case when the acceptance test fails, control moves from the generic state, g,
via the internal event,t, to the saved recovery point. The algorithm for the mapping of generic
states on to states from the underlying system will be given in section 3.3.6 below.

Graphically, this can be represented as shown in Figure 3.3:

Figure 3.3: A state machine representing an Acceptance Test mechanism and checkpointing

This state machine shows that if the Acceptance Test is passed, then the underlying system
component can continue as usual by transitioning from g to a new state g’. However, if the
Acceptance Test fails, this means that the current version of the system component will
terminate and control will be passed to the next version of the component starting at the

saved recovery point.

Using the style of operational semantics presented above, it is possible to give the following
two inference rules to allow an underlying system component to be composed with a FT

feature such as an Acceptance Test:

e C

s—s,g-g
————— (i) acceptance test succeeds
sllg—s'

57

In this first inference rule, if the Acceptance Test is passed (c is true), then the state of the

ce
underlying system component progresses as usual (s — s'), and the generic states g and g’
are mapped to the concrete states (s and s’), and then disappear as shown in above

interference rule result.

The purpose of introducing fault tolerance mechanisms is to eliminate the system
transitioning to a stop state or inconsistent state on failures and instead bring the system to

a safe state.

In the second inference rule below, if the Acceptance Test fails (c is false), then the state of
the underlying system component moves (via an internal action) to the saved recovery point
represented by RP(s). With the help of ‘generics’, g is mapped on to a concrete state s: g - s.

Similarly for the recovery point, the generic Rp(g) is mapped on to Rp(s).

lc,t,n++
g——Rp(®
Ic,t,n++

s|lg —— Rp(s)

(ii) acceptance test fails

However, at this low level of abstraction there is insufficient information to fully represent
the different versions of components that are required for fault tolerance, so it is necessary

to introduce a higher level of abstraction, through processes (instead of states).

Let process P; represents the behaviour of component version n when starting at the initial
state, and let P;[s;] represent the behaviour of component version i when starting at state s;.

P’ represents the new behaviour of this component once an event has been completed.

Similarly, let process F represents the initial behaviour of the fault tolerance component, and
F' represent the behaviour once the Acceptance Test has passed. In the case of the
Acceptance test failing, RP(F) denotes the recovery point of the fault tolerant component
from its initial state g. In this case, the next version of the process P; needs to be executed,

i.e. Pi+1.

It is now possible to rewrite both of the above inference rules to include the required level of
information regarding different versions of components:

€] ¢ !

P->P F->F

——e——— (iii) acceptance test succeeds

B||F = P’

With this first inference rule, only the level of abstraction has changed. If the Acceptance

Test is passed (c is true), then process P; (representing the underlying system behaviour)

58

progresses as usual by performing event e and transitioning to process P;'. As above, the
transition of the generic process F to F' does not require an event, since the event is

determined by the underlying system component.

However, consider the above case where the Acceptance Test fails. If states are simply

replaced by processes, the second inference rule would become the following:

lc,t,n++

F—— Rp(F)

lc,t,n++

P; I F—— Rp(P)

(iv) acceptance test fails

However, this makes no reference to the next version of the process, P;,;, needing to be

invoked from the saved recovery point. Hence, the following inference rule is introduced:

Ic, T ,n++

F——Rp(F), 3P4y

T (v) acceptance test fails with versions
P I F ——— P41 [Rp(P)]

This new inference rule takes into account the sequential execution (>>) of different versions

of the component.

If process P; has transitioned into a recovery point Rp (indicative of a failed acceptance test),
then process P;; must be instantiated sequentially (assuming variation i+1 of the process

exists). This new process P;,; will be started at the saved recovery point represented by Rp(P))

In the case that P;;; does not exist, the composition will be stopped.

Ic, T ,n++

F—— Rp(F), #Py,

= (vi) no versions left

P; Il F > stop
Examples of Voting and Hybrid fault tolerance mechanisms will be presented in the context of
the case studies in chapters 4 and 5, but it is worth noting here that these can be expressed in
a similar way with a variable ‘r' that represents the voting result and both ‘¢’ and ‘r

representing the hybrid voter as follows:

€ ' r !
s—os',g—og

re
sllg—s’

With the Voter, the result ‘r’ replaces the AT condition ‘c’.

e | cr
Ss—>s ,g—>g
c&&r,e

sllg——s

With a Hybrid Voter, both ‘r’ and ‘c’ are used.

59

It can be noted that with the introduction of the orthogonal fault tolerance mechanism, in the
case of failure, the composition of the underlying system component with the fault tolerant
feature ensures that the system stays in a safe state (represented by the saved recovery
point). An example showing the implementation of this composition through the custom built

pre-processor is now presented below.

3.3.5 Component Composition with Fault Tolerance Conditions

As stated in Section 3.3.3 above, components can be composed in parallel with conditions
taken into account; if both conditions hold then composition proceeds as stated in the
composition rule given above:

C1,€a;1 C2,€,az
S1 751,82, — 5,

c1&&cy,e,a;a; ,
Sqlls; — > s4]ls,

Note that this assumes the sequential execution rule for the condition-event-action presented

in Section 3.3.3 above:

c.ea
<cea>P—P

However, if one or more fault tolerance conditions fail, then the synchronised transition on
event e is blocked, and a component’s recovery points must be taken into account. The

inference rules for this kind of behaviour are as follows:

lcq,T

s1 — Rp(sy)

lcy,T
s1lls2 — Rp(s1)lls2
And similarly,

ey, T

s, — Rp(s,)

ey, T
s1llsz — s1lIRp(sz2)

3.3.6 Pre-Processor Tool (Lex & Yacc)

The Orthogonal Fault Tolerance framework provides the separation of fault tolerance
concerns and the base system. The features of different fault tolerance mechanisms are
handled independently and composed with the base system component with the help of

operational semantics presented above (3.3.2 and 3.3.4).

60

This composition has been implemented as a Pre-processor, to be executed before the use
of the model checking tool NuSMV, and has been written in Lex and Yacc. The role of this
Pre-processor is to compose fault tolerance generics with the base system components and
produce a file representing the composed system that is suitable for input into NuSMV. The
reason for selecting Lex and Yacc for this implementation is its rapid application prototyping,

easy modification and simple maintenance of the program.

During the first phase, the pre-processor reads the specification input file (describing states,
events, transitions and initial states for the system components and fault tolerance features),
and uses regular expressions to scan and match strings and convert them to tokens. This
stage generates a file lex.yy.c, which contains C code for the Lexer. In the second phase, Yacc
uses a context free grammar to generate the constructs required for the NuSMV input file.
To parse an expression, shift-reduce parsing is used. This phase generates the files y.tab.h
and y.tab.c. Both of these c files are compiled and produce the required output file (in

NuSMV format).

The textual and graphical representation of a simple example for a Recovery Block
mechanism is as follows. Note that a Recovery Block mechanism involves n-Versions
executing sequentially with an acceptance test and backward error recovery (and hence also
recovery checkpoints) — as mentioned in the description of a Recovery Block mechanism in

the first bullet point of Section 3.2.3.

Spec: simple.txt

Define Comp; a
states = {s1, s2}; o
events = {a, b};
start = s1, a; // initial state &event for NuSMV b
transitions = {
s1, ,a, ,s2;
s2, _,b,_,s1};
The specification file for the acceptance test is as follows:
Spec: at.txt g, lc, _, n++, Rp(9);};

Define FT;

states = {g, g'};

condition= {c};

n = 1; // number of software version
max_n = 3; // max number of versions

start =g, c;
transitions = {
g,¢_ _3;

61

Note: The integer variable, n, is used to represent software versions and can be incremented
on the failure of one version. The variable g represents the generic states onto which any
state from the underlying component can be mapped on. For the purposes of this simple
example, it is also assumed that the saved recovery point is set to be the state from which the

failed transition started, but executed on the next sequential version of software.

In Yacc, an algorithm (represented by the pseudocode below) starts by finding all transitions
involving generic states from the fault tolerance feature. The algorithm then searches for all
possible matching transitions from the underlying system component, and maps the generic
transitions onto these component transitions. The system transitions are then augmented
with the extra information from the fault tolerance feature; this can take the form of adding
conditions and actions, and/ or changing the destination state. The overall result of this for
the acceptance test is the inclusion of the additional guard condition ‘c’. In the case of the
failure of this condition, the software version being executed will also be incremented and

recovery will be from the state represented by the saved recovery point.

This algorithm is based on the operational semantics provided in section 3.3.2 with the
choice of implementing parallel composition or sequential composition and also considering
conditions and actions for the fault tolerance acceptance test condition and incrementing

variants respectively.

62

executeVer:
if (n<= max_n)
for (startGeneric in FT.states) // loop through all FT states
// search for matching FT transitions
genericTransitions = searchTransitions(FT, startGeneric)
if (genericTransitions != null)
// at least one matching generic transition exists
for (genericTransition in genericTransitions)
for (startComp in Comp.states) // loop through all Comp states
// search for matching Comp transitions
compTransitions = searchTransitions(Comp, startComp)
if(compTransitions != null)
// at least one matching Comp transition exists
// ... so the generic transition(s) can map onto it/them
for (compTransition in compTransitions)
// need to add c and a from the generic transition to the comp transition
compTransition.condition = compTransition.condition
&&genericTransition.condition
compTransition.action = compTransition.action
: genericTransition.action
if (isNotRecoveryPoint(genericTransition.endState))
// leave start/end states from Comp as they stand
else if (isRecoveryPoint(genericTransition.endState))
// end state needs to change to recovery point
compTransition.endState
=recoveryPoint(compTransition.startState)
thisVersion.stop;
executeVer(n+1, compTransition.endState)

Pseudocodel: Handling generics for a Recovery Block mechanism

Execution of this algorithm results in the composition of simple.txt and at.txt as illustrated in

the summary below:

[a ca
I c, a
g—g,51 25,25 5, Ie, T, n+ v, met
[b c,b

g-g.s5,os 25,058

lc,n++ a et
g—— Rp(g),s; = s, = s; — nextVer:s;

lc,tn++ b Ic,T
g —— Rp(g),s; = s; = 5, — nextVer:s,

The above algorithm illustrates the composition of an orthogonal fault tolerance acceptance
test with an underlying system component. The context of this acceptance test mechanism is
one of the sequential execution of the different software versions, and the use of saved
recovery points (checkpoints). When the Acceptance Test condition is passed, the system
transitions to a new state s,, but when the Acceptance Test condition is not true, the system
recovers to the previous state that is the recovery point, but executed on the next version of
software. The output of the pre-processor is produced in a form that is suitable for input into

the model-checking tool NuSMV. The input format and the output produced (composed

63

FSMs with fault tolerance and model checking in NuSMV screenshots) are shown with the

help of case studies and are presented in Appendices A & B.

3.3.7 Revisiting other Fault Tolerance Features handled by ‘Generics’

A similar algorithm is used in the cases of n-version programming or n-self-checking
programming, where a parallel execution scheme is used along with either Voting or a Hybrid

adjudicator (as described in Section 3.2.3).

More generally, in this section the different fault tolerance features presented in Table 1.3

are revisited to show how they are handled by ‘generics’.

® Judgment Criteria: The acceptance test, voter and hybrid voter can be handled by

‘generics’ as already presented in detail in Section 3.3.4.

[ce
g—g =s; —s, acceptance test
The generic FT component imposes a condition on a transition between states of the

underlying system component. For example, a motion_detected transition

motion_detected AT-condition, motion_detected .
s; —— s, would become s, s, when composed with

the FT component that requires an Acceptance test to be passed.

Similarly, in case of voter, the generic FT component imposes the voting result on a transition
between states of the underlying component.
r , r.e
g—>g =sS;—>s, voter

For example, a motion_detected transition (when composed with the generic voting component)

Voting—result, motion_detected
would become s, S,

However, in case of Hybrid voter, both AT-condition as well as Voting-result are

imposed on a transition between states of the underlying component.

cr , c&&r,e X
g—>g =s; ——s, hybridvoter

For example, a motion_detected transition (when composed with a generic hybrid component)

AT-condition && Voting—result, motion_detected
would become s, S,

* Execution Scheme: With the introduction of an integer variable, n, execution
schemes can be specified such as a sequential execution scheme, where the

increment of variable n specifies that the next sequential version is executed:

lc,tn++ e Ic,T
g —— Rp(g),s; = s, = s; — nextVer:s;

64

Similarly, in a parallel execution scheme, all n versions can be executed
simultaneously and generate a result ‘r' based on a majority voting algorithm. The
forward error recovery scheme in parallel execution scheme can be specified as
follows, where exc(s) represents a new forward safe state represented by exception

handling:

r‘[
g — exc(g), s1 5 Sy = 51 = exc(sq)

Error Processing Technique: As presented in Section 3.3.3, there are two error
processing techniques: backward error recovery and forward error recovery. In the
case of backward error recovery, the execution transitions to the state represented
by the recovery point (typically the previous state), but executed (as above) on the

next sequential version:

Ic,t,n++
g—— Rp(g),s1 S Sy = 51 =3 nextVer: S1

In the case of forward error recovery, if the voting does not produce a majority
result then the system transitions to a new safe state, for example by using
exception handling. This new safe state needs to be introduced into the
specification of the fault tolerance feature. Suppose this new safe state is
represented by exc(g) that will be mapped on to a new state from the underlying

system component:

r,t
g — exc(g), 51 5 5, = 51 = exc(sq)
Checkpointing: As explained in the constraints Section of 3.2.2, checkpointing is
always dealt with in the context of backward error recovery and recovery points and

can therefore be presented as above, as if the acceptance test condition fails:

lc,t,n++ ot
g—— Rp(g),s1 S S, = s; — nextVer: sy

If checkpointing is taken into account for the parallel execution scheme, it can be

represented as follows:

Ir,t

g — Rp(g),s1 5 S2 = 51 = Rp(s1)
In this case, the control will not pass to the next version as all versions are executed

in parallel, but in case of failure the previous safe state will be retrieved.

65

3.4 Feature Interaction Analysis

Similar to introducing fault tolerance at the requirement specification and design level, early
analysis and detection of feature interactions can help prevent costly and time consuming
problems at the later stages of software implementation. It is therefore essential to address
and reason about these interactions as early as possible, such as at the requirement

specification and at the design level.

[Calder et al. 2000] have presented a critical review on feature interactions concentrating on
three different research trends; software engineering, formal methods and online

techniques. Background research in this area has been covered in Chapter 2.

In the OFT framework, fault tolerance features are specified separately, and later composed
with the system’s components to offer reliability. However, sometimes the orthogonal
nature of this approach may cause undesirable interactions. The proposed approach for
handling such feature interaction analysis has three parts, as described in Fig 3.4:

1. Classification of Categories of Interactions: it is essential to have a sound
classification towards a general scheme for detecting and analysing undesirable
feature interactions.

2. Specification and ability to Reason about Interactions: reasoning about these
classifications is achieved in terms of specifying desirable/ undesirable
properties in CTL.

3. Tool Support: the model-checking tool NuSMV is used to support the analysis of

feature interactions.

Interaction
Categories —xl .)
Intery
v
Reasoning
CTL
1 Reasonieg in
NuSMV
Medel
/#,/\A—_.
7 testure \. K/ NoFeature
\‘h. .._,/ __*_

Figure 3.4: Workflow of Proposed Feature Interaction Analysis Approach

66

3.4.1 Categories of Feature Interaction

In traditional feature interaction research such as [Kolberg et al. 2003] and [Soares et al.

2012], feature interactions are helpfully classified according to categories such as:

(i) Multiple Action Interaction: These types of interaction arise when two different
components are controlling the same service (or device), but simultaneously
invoke it with different actions. For example, one component may want to turn a
device off whilst the other component wants to turn it on.
The figure below shows this type of interaction, where C represents the

components and S represents the service.

(ii) Shared Triggered Interaction: This type of interaction arises when a component
sends the same event to two different services (or devices) that then perform
conflicting actions. An example might be when a motion detected event is sent
to two different services that control different elements of a home automation
system — one service might try to turn an automatic light service on, whilst the

other might turn an intruder alarm service on.

€y, a9

€,3;

(iii) Sequential Action Interaction: In this type of interaction, the first component
changes some element of the environment, which in turn may trigger a second
component. For example, a component controlling the temperature in a room
may lead to a window being opened, but this movement within the environment

may trigger an intruder alarm.

67

< :Dai{ s >Environmentchange
/'/S_\ e -
%nsor) i G

- S~

(iv) Resource Contention: Resource contention interactions occur when the number
of requested resources is greater than the number of available resources. In the
case where the number of allocated resources is equal to the number of
available resources, an additional request to the resources will result in a
resource contention interaction. In the figure below, R represents a single

resource and C; and C, represent the components trying to interact with this

resource.
O—C—©
(v) Assertion Invalidation: The expected and intended behaviour of the system can

be represented through assertion properties, which can later be validated
through model-checking. This type of interaction is detected when a component
or feature intention is violated in the system. In other words, an assertion
invalidation interaction occurs when an assertion made for the system’s

behaviour is invalidated or false. An example is:

AG (p—>q) which means that whenever property p has been raised, property g

must also have been raised.

If this assertion p is true and q is false, it means the assertion is violated and the
source of this violation needs to be tracked down. It is possible (though not
necessary) that the source of the interaction is one of the above categories, such

as shared trigger interaction or sequential action interaction.
3.4.2 Specification of properties in CTL

Logic properties are formulated in CTL (computation tree logic), allowing the analysis of

interactions, deadlocks and other correctness properties such as liveliness and safety.

68

Logic properties are formulated based on the classification of interaction presented in
Section 4.1. Typically, these can be specified as safety properties of the system that indicate

that an undesirable property would never occur.

CTL is used to represent the properties with standard logical operators (A, V, -, =, ©, =, <, >,

etc.) and temporal operators. A summary of the temporal operators follows:

Always: AG p, EG p

The formula AG p describes that for all the possible paths of the system, property p is always

(or globally) true.

In contrast, the formula EG p requires that there is some path of the system along which

property p is always true.

Eventually: AF p, EF p

In the logic formula AF p, for all the paths of the system, eventually (at some point in the
future) property p must hold. That is, all the possible evolutions of the system will eventually

reach a state satisfying property p.

Similarly, logic formula EF p requires that there exists some path of the system that

eventually satisfies property p.

Until: A[pUq],E[pUq]

According to the formula A [p U q], in all paths of the system property p must be true until a

state is reached that satisfies property qg.

With E [p U q], there must exist a path through the system in which property p is true until a

state is reached that satisfies property qg.

Next: AX p, EXp

The formula AX p requires that for all possible paths through the system, property p is true in

all next states reachable from the current state.

Similarly EX p requiring that in at least one path through the system, property p is true in a

next state reachable from the current state.

69

3.4.3 Reasoning about Feature Interactions through CTL and Model

Checking

The proposed method of reasoning about the above classifications of Feature Interactions is
based on the specification of properties in CTL, and then using model checking with the
support of the tool NuSMV. This aims to detect each type of feature interaction defined in

the classification above.

Previous model checking based feature interaction detection methods have, for example,
used the SPIN model checker (Promela) for web services [Zhang et al. 2007] and LOTOS and
SDL for Telecommunications [Blom et al. 1992]. However, for the OFT framework, the

NuSMV model checker is used.

CTL formulae can be used to model-check for the above mentioned styles of feature
interaction as represented below, where ‘p’ represents the property where the first
component controls the service, and ‘q’ represents the property where the second

component controls the service.
For Multiple Action Interactions, the temporal operator AG can be used, for example:
AG!(p &q)

According to this property, it should never be the case that the two components C; and C,
are controlling the same service at the same time by requiring conflicting properties (actions)

to be true.

For example, ensuring that one component does not turn a device off whilst the other

component turns it on: AG ! (on & off).

For Shared Trigger Interactions, one component controls a service through one event, and a
second service based on the same event. A formula to ensure this does not occur can be
represented as follows:

AG! (p -> AF(g&r))
For example, a motion detection event might cause one service to try and turn an automatic
light service on, whilst the other might turn an intruder alarm service on. This could be
represented as:

AG! (motionDetected ->AF(automaticLights_on & intruderAlarm_on))

70

For Sequential Action Interaction, if the first component changes the environment, this
change triggers a second component. This style of interaction can be represented as follows:
AG((p&q) -> AFr)

For example, a Climate Control component opens and closes windows according to the
temperature, which might cause a sensor to detect motion due to environment change; this
may trigger other components to take action according to this motion detection such as
initiating a lighting by presence feature and turning the intruder alarm on. This type of

interaction can be represented as:

AG((windowOpen & motionDetected) ->AF(lightingByPresence & intruderAlarm_on))

For Resource contention, a temporal logic AG can be used as follows:

AG!(p&q)

According to this property, it will never be the case where two components can hold the
resource at the same state. For example, in the case of a shared printer between two
components, only one can be the state of printing while other needs to be in waiting state

until the printer is free. This example can be represented as follows:

AG ! (c;. state = printing & c,.state = printing)

For Assertion Invalidation, different combinations of temporal and Boolean logics can be
used depending on the assertions made according to the system’s intended and expected
behaviours. For example in the above case of a shared printer, suppose that whenever a
component has requested the printer, it will eventually obtain it. This assertion can be

represented with temporal logic as follows:

AG ((c;. state = requesting & waiting) ->AF (c,.state = printing))

In this example, if the logic formula is false, that means assertion is violated. Furthermore,
the reason of this assertion violation will help to find out the resolution of this assertion

raised.

Further illustration of using CTL formulae with the worked example of home automation and
the safety property in Therac-25 case study will be presented in Chapter 4 and in Chapter 5

respectively.

71

3.5 Summary

An Orthogonal Fault Tolerance (OFT) framework has been outlined in this chapter. With the
help of this framework, fault tolerance features can be composed with the components of
the underlying system at the early stages of software development. Moreover, fault
tolerance features are considered as separate concerns and their composition is
underpinned by operational semantics. Using a logic-based feature interaction analysis
method, CTL logic properties are specified to analyse and detect feature interactions with
the support of the NuSMV model checking tool. A summary of the proposed approach with

feature interaction analysis is presented in Fig 3.5 below.

| FT Features ‘ ‘ Components | |\Fg

Lex & Yacc

1

Input language
for NusSMV

NuSMV

Feature Interaction
Analysis

CTL

Figure 3.5: Model Checking Based Feature Interaction Analysis

72

Chapter 4

lllustrative Case Study: A Home Automation

System

4.1 Introduction

The illustrative example that will be used to highlight the key elements of the proposed
approach is that of a simple Home Automation scenario, where a house is fully equipped
with a set of electrical sensors and actuators. Figure 1 below is a Feature Diagram for a smart

home, which provides security and illumination services.

Initially this example will be presented with no fault tolerance mechanisms incorporated.
These will be considered once the basic example and relevant formalisms have been

introduced.

llumination

Climate Control
O

| Perimeter Detection | | Lighting by Presence

¥
I
|

|
Visual | Outside |

Detection | |

Alarm

In Home Security

Sense

Presence

Sensin | | Silent |
Simulation €

Legends:

Features \ Mandatory)K Optional E_’ Relationships

Figure 4.1: A Feature Diagram for a Smart Home

Grey boxes and black solid circles are used to show the mandatory features while white

boxes are optional features.

73

As an example, assume that the Illumination feature Lighting by Presence is on. The purpose
of this feature is to automatically turn the lights on. It detects motion by using a motion
sensor. This links to the In Home Security Feature, Presence simulation, which simulates
presence in the home by automatically turning lights on. Finite state machines will be used

to show the behaviour of different features of the system.
Figure 4.2a shows the Light Controller (LC) component of the Home Automation System.

MD
NMD ’\v MD

NMD

Figure 4.2a: Light Controller (LC) State Machine

Key: MD: Motion Detection, NMD: No Motion Detection, LBP: Lighting by Presence, AL_on: Automated Lights On,

This state machine shows that, from the initial Automatic Lights On state, if no motion is
detected then the system stays in the same state, but once motion is detected then the
system transitions into a Lighting By Presence state. From this new state, if motion is
detected then the system stays in this state, but if no motion is detected then the system

transitions back into the Automatic Lights On state.

Now consider a scenario where a new feature, Presence Simulation (for security) is required.
This feature simulates that the home is occupied by turning lights on and off while the
occupants are away. The Home Status Controller (HSC) component identifies the status of
the home: either empty or occupied. This status is determined by using a motion detector

sensor.

Figure 4.2b shows the Home Status Controller (HSC) component of the Home Automation

System.

.

Figure 4.2b: Home Status Controller (HSC) State Machine

Key: MD: Motion Detection, NMD: No Motion Detection, H_empty: Home Empty, H_occupied: Home Occupied

74

In order to model the Presence Simulation feature, if the home is empty, then the Automated
Lights feature will be enabled, otherwise the Lighting by Presence feature will be utilised.
Both of the components (Light Controller (LC) and Home Status Controller (HSC)) use a motion

detection sensor to perform the required task.

Figure 4.3 below shows the initiative (and manual) composition of these two state machines.
These components are synchronising on the common events: motion detected and no motion
detected, i.e. using the motion detection sensor to control both the home status and the

home illumination.

Figure 4.3: Composed State Machine for LC and HSC

Key: MD: Motion Detection, NMD: No Motion Detection, LBP: Lighting by Presence, AL_on: Automated Lights On,

H_empty: Home Empty, H_occupied: Home Occupied
4.2 Formalisms /Operational Semantics

Operational semantics give a precise description of the behaviour of a program or a system,
and are used to give behavioural descriptions in a mathematical form that supports
understanding and reasoning about the system’s behaviour. (see Section 3.3.1)

This section will show the application of Labelled Transition Systems (LTS) to the Home

Automation.

4.2.1 Applying Labelled Transition Systems to the Home Automation

System

A Labelled Transition System (LTS) for the Light Controller (LC) is a 4 tuple <S¢, E¢, 8.¢, Sico>-
Let S,c be the set of states S;c= {AL_on, LBP}, where the initial state s,co= AL _on.
Let E,¢c be the set of events E,c= {MD, NMD}.

Let 6,c be the transition relation; the set of transition relations can be written as:
MD MD
Trevpy = {AL_on — LBP,LBP — LBP}and
NMD NMD
TLC(NMD) = {LBP — AL_On, AL_On — AL_On}

75

Similarly, a Labelled Transition System for the Home Status Controller (HSC) is a 4 tuple

<Susc, Ensc, Onsc, Shsco™.
Let Sysc be the set of states Sysc = {H_empty, H_occupied}, where sysco = H_empty.
Let Eysc be the set of events Eysc = {MD, NMD}.

Let &usc be the transition relation; the set of transition relations can be written as:
MD] __MD)
Tuscvp) = {H_empty — H_occupied, H_occupied — H_occupied} and

NMD NMD
Tyscevmp) = {H_occupied — H_empty, H_empty — H_empty}

4.2.2 Operational semantics for the composition of Home Automation

components

Operational semantics, as presented in Section 3.3.2, are used for the composition of the
Light Controller (LC) and the Home Status Controller (HSC). The LC and HSC components are
designed to run in parallel and, from their initial states, the same event (MD) triggers a
transition into their respective next states. Hence, according to the inference rule for the
parallel composition presented in Section 3.3.2, the components can be composed as follows.

For the first event, MD, the two possible transitions are as follows:

MD MD
AL_on — LBP,H_empty — H_occupied

MD
AL_on ||H_empty — LBP||H_occupied

MD MD
LBP — LBP, H_occupied — H_occupied

MD
LBP |[|H_occupied — LBP||H_occupied

Similarly, for the second event, NMD, the two possible transitions are:

NMD NMD
LBP — AL_on, H_occupied — H_empty

NMD
LBP||H_occupied — AL_on||H_empty

NMD NMD
AL_on — AL_on, H_empty — H_empty

NMD
AL _on||H_empty — AL_on||H_empty

Since the initial start states were specified as AL_on and H_empty, and since MD and NMD
are both events on which synchronisation occurs, the operational semantics ensure that
there is no way of the composition entering other combinations of states such as AL _on | |

H_occupied and LBP || H_empty.

76

4.3 Introducing Fault Tolerance into the Home Automation System

Three different combinations of design diversity fault tolerance features are considered here
for implementing fault tolerance: firstly the incorporation of an Acceptance Test mechanism
with checkpointing in a Sequential execution scheme, secondly a Parallel execution with a
Voter mechanism and thirdly a Parallel execution with a Hybrid voter (voter and acceptance
test). These three design diversity software fault tolerance techniques are considered as
basic techniques to cope with the design faults in operational system. These fault tolerance

techniques will be considered in turn below in the context of the Home Automation System.

4.3.1 Applying an Acceptance Test Fault tolerance formalism

Using the style of operational semantics and handling of fault tolerance ‘generics’ presented
in Section 3.3.2 and 3.3.4, an acceptance test can be applied to the LC and HSC components.

This acceptance test can be represented as follows:

Figure 4.4: A state machine representing Acceptance Test mechanism and checkpointing

As presented in Section 3.3.4, the labels g and g’ represent generic states and ‘c’ is the
condition required for the acceptance test to be passed. The operational semantics can be
applied here to compose this acceptance test with the LC component of Home Automation

as follows, i.e. the composition of figure 4.2a and figure 4.4:

MD [
AL_on —» LBP,g— ¢’

D (i) acceptance test succeeds
AL _on||g — LBP

According to this inference rule, if the Acceptance Test is passed (c is true), then the state of

c,MD
the LC component progresses as usual (AL_on — LBP).

Similarly for the other transitions, if the acceptance test succeeds:
[NMD ¢, NMD
g— g',LBP — AL_on = LBP —— AL_on
[NMD c,NMD
g— g',AL_on — AL_on = AL_on —— AL_on

c MD c,MD
g—g',LBP — LBP = LBP — LBP

In contrast, suppose the Acceptance Test fails:

77

lc,t,n++

g—— Rp(g)
Ic,t,n++
AL_on||g —— Rp(AL_on)

(ii) acceptance test fails

According to this inference rule, the Acceptance Test is not passed (c is false), and the state

Ic,t,n++
of the LC component is saved as a recovery point (AL_on —— Rp(AL_on)). This recovery

point of the state is normally equivalent to the previous state.

Similarly for the LBP state, if the acceptance test fails:

Ic,t n++

Ie,T,n++
g —""Z Rp(g) = LBP||g —— Rp(LBP)

These rules can also be expressed with processes, as in inference rule (iii) of Section 3.3.4:

e (o
LC; » LC;' ,F > F’

e (iii) acceptance test succeeds
LCi ||F - LCL"

If the Acceptance Test is passed (c is true), then process LC; progresses as usual by

transitioning to process LC; .

However, in the case where the Acceptance Test fails:

Ic,t
F— Rp(F)

o (iv) acceptance test fails
LC; Il F — Rp(LC,)

However, the next version of the LC component is invoked with the inference rule (v)

introduced in Section 3.3.4.

ALCi4q
T
(Rp(LC;) » LCiyq) = LCiq[Rp(LCH] I F

(v) acceptance test fails with versions

This inference rule shows the sequential execution of n versions of LC, when the acceptance
test fails. If version LC; has transitioned into a recovery point in the case of a failed
acceptance test, then the second version LCy; must be instantiated via sequential
composition. The next version LC;; will be started at the saved recovery point represented

by Rp (LC)), and will continue execution in parallel with the fault tolerance component F.

Y In this simple system, all states are saved as recovery points as there are only two states. In the case of more
complex systems, only the latest states are saved and recovered on failure. On successful completion, these
states are removed/deleted from the memory.

78

In the case that no more versions of the component exist i.e. LCy;, does not exist, the

composition will be stopped.

ALC;1q
Rp(LC;) 5 stop

(vi) no versions left

Similarly, these rules can be applied to the composition of the fault tolerance mechanism

(using generics) with the HSC component of Home Automation.

4.4.2 Applying a Fault tolerance formalism for Parallel Execution with

Voter

Many fault tolerance mechanisms use parallel execution as an execution scheme. Voting is
an important feature in parallel execution and is used in N-version Programming
mechanisms. The Voter acts as an adjudicator and is responsible for checking the correctness
of the result produced by n variants running in parallel. In case there is a majority
agreement, the agreed result is used as the "correct" result. If there is no majority, failure in
the result of the voter occurs; in this case, the state will either remain unchanged or the
system will transition forward to a new safe state. The decision as to which approach will be

taken will be specified in the configuration file of the Lex/Yacc pre-processor.

A state machine can be used to depict the behaviour of the Voter mechanism. In this state
machine,
let g represent any state from the system component (a ‘generic’ initial state),
let g’ represent the future state after voting is applied,
let r represent the result of voter
let e be an event from the component with which the result of the voting will be
composed.
Let Rp(g) represent the saved recovery point of the generic state g, used in the case
of the backward recovery,
Let T represent an internal event for transitions on failure to the saved recovery
point where Rp(g) refers to the recovery point of the safe state g,

Graphically the voting mechanism can be represented as follows:

79

'
.
It

Figure 4.5: A state machine representing voting mechanism with backward error recovery

Note: there is no need to increment the version variable, n++, since all versions are executing
in parallel.
The above finite state machine represents a voting mechanism with backward error recovery
and needs to be composed with the components of the base system. The choice of forward
error recovery and backward error recovery needs to be provided in the configuration files
of the pre-processor. The rules for the composition of generic states with underlying system
states have been presented in Section 3.3.4.
Applying these rules, g is a finite set of states which are considered as composition points, r
is the voting result, g’ is the next state after applying voting if voting is successful. In the case
of Ir, the state transitions to a safe state, that will have been saved as a recovery point in
case of backward error recovery.

g 5 g =>s S

Irt

Irt
g — Rp(g) = s — Rp(s)

If, in contrast, forward error recovery is selected and voting fails, then this involves a

transition to a new forward safe state represented as exc(s).

Fig 4.6 shows the voting mechanism with forward error recovery with the introduction of a

new forward safe state ‘exc(g)’ as presented in Section 3.3.7.

Figure 4.6: A state machine representing voting mechanism with forward error recovery

In case of forward error recovery, the system state transitions to a new safe state
represented by exception handling, exc(g); this state will be mapped on to a new state from

the underlying system component.

Irt Irt
g — exc(g) = s — exc(s)

80

This composition is based on the following operational semantics and composition rules as
presented in Section 3.3.2:

€] r !

s—s',g—>g

T,e
sllg—s’

(i) Voting succeeds; r is the voting result

In this first inference rule, if the voting is performed and r is the result, then the state of the

underlying system component progresses as usual with an extra guard condition r.

In the second inference rule, if the voting is unsuccessful and fails to produce the majority
result, then in the case of backward error recovery the state of the underlying system

component moves into the saved recovery state:

It
g — Rp(g)

e (iia) Voting fails (backward error recovery)
sllg — Rp(s)

However, in case of voting failure and forward error recovery, a new safe state represented

by exception handling will be introduced:

Ir,t

g — exc(g)

e (iib) Voting fails (forward error recovery)

s ||g — exc(s)

Using the style of operational semantics presented above, the inference rule for composing

the generics with the LC component of Home Automation can be applied as follows:

r MD r,MD
g—g',AL_on — LBP = AL_on — LBP

r NMD r,NMD
g—- g',LBP — AL_on = LBP —— AL_on

r NMD r,NMD
g—g',AL_on — AL_on = AL_on —— AL _on

r MD r,MD
g—g',LBP — LBP = LBP — LBP

In the case of failure of voting and backward error recovery,

Ir,t MD Ir,T
g — Rp(g),AL_on — LBP = AL_on — Rp(AL_on)

In the case of forward error recovery,

Ir,t MD Irt
g — Rp(g), AL_on — LBP = AL_on — exc(AL_on)

According to the inference rules with processes presented in Section 3.3.2, the LC

component can be composed with a fault tolerance feature as follows:

81

r
F->F

— ¢ (iii) Voting succeeds
LC ||F > LC'

If r is the voting result, then process LC progresses as usual and transitions to process LC’.

However, in the case where the voting does not produce the correct result:

Ir,T
F — Rp(F)

e (iv) Voting result with recovery point
LC ||F = Rp(LC)

In the case of forward error recovery:

Ir
F N FII

— (v) Voting result with forward recovery

LC ||F = s3
Similarly voting can be applied to the HSC component of Home Automation.

4.4.3 Applying the Fault tolerance formalism for the Hybrid Voter

The Hybrid Voter uses a combination of both the acceptance test and the voting algorithms
presented above. In this mechanism, the result of different variants is first evaluated against
acceptance test conditions ¢, and only accepted results are sent to the voter and generate
the voting result r. The only difference with the acceptance test presented in Section 4.3.1 is
the use of n versions. In the case of the Hybrid voter, all n versions are executed
simultaneously in parallel. The results from the versions that have passed the acceptance

test go forward for voting.

Using the same style of operational semantics, it is possible to give the following inference

rules according to the possible operations presented above:

e | Cc&&r ,
Ss—>s,g—§8

c&&r,e
sllg—s

(i) cis the acceptance test condition and r is the voting result

In this first inference rule, if the acceptance test condition c is true and voting is performed
and r is the result, then the state of the underlying system component progresses as usual

with an extra guard condition c&&r before the other state starts.

A further possibility with the hybrid voting scheme is that the acceptance test condition
passes, but voting fails to product the correct result. In this case, the state of the system

component transitions to a new safe state called an exceptional state and represented as

82

exc(state); this needs to be defined in the configuration file of Lex and Yacc (as represented

in Section 3.3.7).
c&&!r,t
g — exc(g)

c&&!r,Tt
S ||g —— exc(s)

(ii) voting fails

Using the style of operational semantics presented above, the inference rules can be applied

to the LC and HSC components of the Home Automation system.

However, in the case of a hybrid voter mechanism, where multiple versions are executing in
parallel, there is a chance for execution to be blocked. In this fault tolerance mechanism, the
results of different variants (suppose vi, v, and vs) are first evaluated against independent
acceptance test conditions c;, ¢; and cs. Importantly, only accepted results are sent to the
voter to generate the voting result r. However, if the strictly synchronous operational
semantics is applied to all the versions, then none of these versions can pass the composition
criteria c;&&c,&8&c3, and execution will be blocked and will not progress to the voting. In this
case, a refinement is required to the existing operational semantics to accommodate this.
For example, in the case of hybrid fault tolerance, the conjunction operator forces each
acceptance test to be true. This is too strong and, instead, all successful acceptance tests

should go forward to voting, with any results that fail the acceptance test being ignored.
4.4.4 Pre-Processor Tool (Lex & Yacc)

The Pre-processor is written in Lex and Yacc and is used to handle fault tolerance generics
and compose them with the base system components. The detail of handling these fault
tolerance generics was presented in Section 3.3.4, and can be applied to the LC and HSC
components as follows:

Spec: LC.txt

Define Comp;

states = {AL_on, LBP};

events = {MD, NMD};

start = AL_on, MD; // needs to specify the

initial state and initial event for NuSMV NMD MD MD
transitions = {
AL on, ,MD, ,LBP; C
LBP, , NMD, _, AL_on; NMD

AL_on, ,NMD, , AL_on;
LBP, _, MD, _, LBP};

The specification file for the acceptance test is as follows:

Spec: at.txt Define FT;
states = {g, g'};
condition = {c};
n=1; // number of software version

83

max_n =3; // max number of versions

start =g, c;
transitions = {
g,¢_ _3;

g, lc, _, n++, Rp(9):};

According to the operational semantics presented in Section 4.2 and 4.3, the pre-processor
performs the composition of the LC component and the fault tolerance acceptance test. An
algorithm for the composition of system components with the fault tolerance features has
been given in pseudocode in Section 3.3.7. According to this algorithm, in Yacc, the generic
states of the AT are mapped to the states of the LC component with the additional guard
condition ‘c’ for the acceptance test. The following basic composition is obtained from the

Lex and Yacc pre-processor:

[« MD c,MD
g—g',AL_on — LBP = AL_on — LBP

le,t,n++ MD,n=1 lc,t,n++
g —— Rp(g),AL_on LBP = AL_on —— AL _on

c NMD ¢NMD
g—g',LBP — AL_on = LBP —— AL_on

le,t,n++ NMD,n=1 lc,T,n++
g — Rp(g),LBP —— AL,, = LBP —— LBP

The graphical representation of this composition is as follows:

lc,T, n+ <2 lc, T, n++
! ¢, NMD .H

Similarly, generics are applied to HSC and their composition. The detailed code of Lex and

Yacc with the generated input file for NuSMV is presented in Appendix A.

4.4.5 Lex and Yacc generated NuSMV Models for Home Automation

Components

The above section has shown how Lex and Yacc can be used to compose different FT
mechanisms with the underlying system components. It is now necessary to compose these

composite FSMs together in order to analyse the overall behaviour using NuSMV.

84

The finite state machines presented below show the graphical representation of the NuSMV
model presented in Appendix A for the Light Controller and Home Status Controller

composed with fault tolerance mechanisms, as generated by the pre-processor.

For the Home Automation components, this principle is used to introduce fault tolerance
into the system. Suppose that 3 variants of the Light Controller (LC) component are running
sequentially. Let process Py, P,, P; represent the behaviour of LC component versions 1, 2
and 3, the states of the primary process P, are saved as recovery points. If the acceptance
test evaluation condition ‘c’ is passed, the process’s state is progressed as usual; otherwise if
the test fails or if any errors are detected by other means, then the system is recovered back
to the latest safe recovery point ‘Rp’ and the second process P, starts executing from that

particular Rp, as illustrated in Figures 4.7a and 4.7b below.

¢,, MD, Rp=AL_on

¢, T, Rp=AL_on, n++ Ic,, T, Rp=LBP, n++

(=)D

Figure 4.7a: Composite FSM of Light Controller (LC) with AT

¢, NMD, Rp=LBE

C,, MD, Rp=H_empty

Ic,, T, Rp=H_empty, n++ Ic,, T, Rp=LBP, n++

¢,, NMD, Rp=H_occupied

Figure 4.7b: Composite FSM of Home Status Controller (HSC) with AT

Key: c: Acceptance Test Condition, Rp = Recovery Point, MD: Motion Detection, NMD: No Motion
Detection, LBP: Lighting by Presence, AL_on: Automated Lights On, H_empty: Home Empty,

H_occupied: Home Occupied, t: internal action

When composed together, it is expected that, if the home is empty, then the Automated
Lights feature will be enabled; otherwise the Lighting by Presence feature will be utilized.
The Home Status Controller indicates whether the status of the home is empty or occupied.
On the basis of this information, the Illlumination component enables the feature of

Automatic Light On or Lighting by Presence.

85

Through the analysis of traces in NuSMV, the following composed FSM is generated. This
represents the composition of the above two composite FSMs. Figure 4.8 below shows the
automatic composition of these two state machines in NuSMV

¢ c && cyse, MD,

Rp=AL_on||H_empt
Icic OR leyse, NMD, B —onl[H_empty lc\c OR lcyse, MD,

Rp=AL_on||H_empty Rp = LBP| |H_occupied

H_occupied

Crc && cyse, NMD,
Rp = LBP| |H_occupied

Figure 4.8: Composed Fault Tolerant Home Automation State Machine

4.5 Feature Interaction Analysis

The above finite state machines of LC and HSC components of a Home Automation as well as
fault tolerance features have been generated by the Lex and Yacc pre-processor, and are
presented (in textual form) in Appendix A. The Lex and Yacc pre-processor generates the files
for the input language of NuSMV model checking. The input language of NuSMV is composed
of variable declarations, state initialisations, state transitions, and a list of properties written
in temporal logic formulae. In NuSMV, LTL specifications are introduced by the keyword

“LTLSPEC”, whereas CTL specifications are introduced by the keyword “SPEC”.

With the introduction of fault tolerance mechanisms (acceptance tests) into two components
of Home Automation, one area of potential feature interaction to check for is, if one
component proceeds normally, whilst the other one fails. This may potentially result in

inconsistent states such as LBP| |H_empty or AL_on| |H_occupied.
However, the operational semantics presented in Section 3.3.5 force synchronisation on the

shared events, MD and NMD, so these inconsistent states can never occur.

Graphically these potential feature interactions can be represented as in Figure 4.9 below.

86

Cuc && cyysc, MD,
Rp=AL_on| |H_empty

16,0 && loyse, T,
Rp=AL _on||H_empty

Ioy e && loyee, T,
Rp=LBP| |H_occupied

€ c && Cyge, NMD,
Rp = LBP| | H_occupied

EE I B

o Cic &8 IGuec, MID, e && Igysc, NMD, \
e Rp=H_empty Rp = H_occupied !
1
1

Figure 4.9: Potential Feature Interactions

Beyond this specific case, further potential feature interactions can be validated through

model checking logic properties as follows.

Assertion Invalidation
a) SPECAG !(LC.state = AL_on & HSC.state = H_occupied)

This model checking formula indicates that if the state of the light controller is Automatic
Lights on (AL_on) then there will never be the case where the status of the Home is Home
Occupied (H_occupied). In Figure 4.8 it is clearly shown that with the recovery points and
acceptance test, the states of the Light Controller (LC) or the Home Status Controller (HSC)
synchronise on the event MD or NMD, and never lead to an inconsistent state. The formula is
true as there is no such case where Home is occupied and the Automatic light mode is on, and

this property is shown to be valid through model checking with the tool NuSMV.

b) SPEC AG!(LC.state = LBP & HSC.state = H_empty)
Similarly, this model checking formula indicates that if the state of the light controller is
lighting by Presence then there will never be the case where simultaneously the status of the
Home is empty. Again, this formula is true and is validated through model checking with

NuSMV.

Fault Tolerance Property

a) SPEC AG((LC.state = AL_on &!c,¢) -> AX(LC.state = AL_on))

87

This formula states that if LC is in the AL _on state and the fault tolerance acceptance test

condition is false, then the state will remain unchanged and acts as a recovery point.

b) SPEC AG((LC.state = LBP & !c,¢) -> AX(LC.state = LBP))
Similarly, this formula states that if LC is in the LBP state and acceptance test condition is false
then the state will remain unchanged.

Both of these logic formulae can be verified by model checking through NuSMV.

4.6 Introducing New Features in Home Automation

In the feature diagram for the smart home in Figure 4.1, an Alarm feature is present under the
Security feature. For the illustrative purpose of this feature interaction analysis, suppose that
the Alarm feature is enabled in case of ‘Away from Home’ functionality. The purpose of the
Alarm feature is to detect motion and any suspicious activity in the home results in the alarm

being turned on.

Secondly, the ‘Away from Home’ functionality also aims to give the impression that the house

is occupied by enabling Automatic Lights on at random or pre-defined times.

Finally, a new feature of Climate Control can also be added to the Home Automation. The
Climate Control feature is represented as an optional feature in feature diagram presented in
Figure 4.1. The Climate Control service controls the heating of the house, the air-conditioning,

the window blinds and also the windows.

Scenario. Imagine the situation in the case that a home’s occupants are away from home. The
owner sets the Alarm feature and Automatic Lights feature on to protect home from
intruders. The Alarm as well as Light Controller monitors the state of the house through
motion detection sensors in the house. In addition to motion detection, the Alarm feature
also monitors the other objects like lights, blinds, doors, etc. The owner has also turned on
the climate control feature to control the heating of the house, and has the capability to

achieve this by closing/ opening blinds and windows.

In this scenario, when the automatic lights are turned on, the alarm will be triggered resulting
in a call out. Similarly, when the climate control feature opens a window, again the Alarm

feature will be triggered. This behaviour is undesirable and can be classified as a sequential

88

action interaction as described in Section 3.4. In this interaction, the climate control
component opens the windows to lower the temperature, whereas, the motion sensor
detects movement in the environment that triggers the Alarm feature. Figure 4.10 shows this

interaction graphically.

Action:
Climate Qpen
Control Windows

Motion
Detection

Trigger

Figure 4.10: Sequential Action Trigger

The temporal logic for detecting this type of interaction is as follows:

SPEC AG !((ClimateControl.state = Window_open & MD) -> AF(Alarm_on))

This formula indicates that if the Climate Controller requests the action to open the Windows
then there will never be the case where the sensor detects this motion. As represented in

Figure 4.10, it is clear that this formula is not true and model-checking fails on this formula.

Similarly, a further shared trigger interaction can occur where the climate control service
opens the windows and blinds and triggers the motion detection. Since motion detection is
shared between different components of Home Automation, the movement caused by the
climate control service can also trigger the Light Controller to move into the LBP state, the
Home Status Controller to move into the H_occupied state, and also turns the security Alarm

on. Figure 4.11 shows how motion detection triggers these other components.

89

Climate Controller

temp< 18 Light Controller NMD
18<temp<21 18<temp<21 MD NMD
temp >21 MD

Home Status Controller NMD

MD

\l/ MD NMD

Figure 4.11: Climate Controller triggers the Alarm Component, Light Controller and Home Status Controller

The temporal logic for detecting this type of interaction is as follows:

SPEC AG (MD -> |AF(Alarm.state = on & (LC.state = LBP & HSC.state = H_occupied)))
This model checking formula checks whether the motion detection triggered by climate
control service further invokes the other components. This formula is false as motion
detection turns the alarm on and brings the light controller to lighting by presence mode, as

represented in Fig 4.12.

Figure 4.12: Shared trigger interaction between Climate Controller, Alarm and Light Controller

With the help of model checking verification, these types of undesirable interactions are
detected that lead the system to inconsistent states. Further discussion and analysis will be

presented in Chapter 6.

4.7 Summary

In this Chapter, the proposed orthogonal framework for the fault tolerance composition has
been applied to the components of the Home Automation based on the operational
semantics presented in Chapter 3. Using generics and the associated algorithm for the
processing of generics, the Lex and Yacc pre-processor generates the input language for the

NuSMV model checking tool. For the detection of feature interactions, CTL/LTL logic

90

properties are applied to the NuSMV model to verify the classified properties for the
composed components of the Home Automation.

In summary, the ability of the Orthogonal Fault Tolerance Framework to provide fault
tolerance generics based on the constraints and relationships is shown with the worked
example of Home Automation. This Chapter has successfully shown the composability of
orthogonal fault tolerance features and exhibited the feature interaction approach to detect
potential undesirable feature interactions as classified.

Further evaluation and analysis will be presented in Chapter 6, based on the evaluation
criteria of separation of concern, expressiveness of fault tolerance, composability,
compositionality and soundness of feature interaction analysis.

In the following Chapter, a second case study will be considered, based on the Therac-25

system.

91

Chapter 5

Case Study: Therac-25

5.1 Introduction

The Therac-25 was a computer-controlled medical machine used for medical radiation
therapy in the 1980s, and developed by AECL (Atomic Energy of Canada Ltd.). It was known
as a linear accelerator, as it accelerated a beam of electrons at high energy to generate X-
rays. Electron beams were used to treat shallow tissues whereas X-rays were used for
deeper treatment.

The Therac-25 software was developed by a single person, using PDP 11 assembly language,
and involved the re-use of some of the routines from the earlier Therac-6 and Therac-20
software. However, both of these earlier systems had a hardware single-pulse shutdown
circuit; this acted as a hardware interlock to prevent overdosing by detecting an unsafe level
of radiation and halting beam output after one pulse of high energy and current. In contrast,
software was responsible for monitoring the whole procedure of the treatment with the
Therac-25, including information about the prescribed dose, and setting up the machine by
turning the beam on. When an operator turned the beam on, it was assumed that all the
operational checks on the physical status of the machine were satisfied. This software was
also responsible for the turning the beam off on the completion of the treatment, or on
malfunctioning of the software. There was also an interlock system that was controlled by

software, to shut down the machine in the presence of hardware malfunction.

The reason for selecting the Therac-25 as a case study is it has been well documented in
terms of its behaviour, the various software errors that occurred, and the recommendations
for future safety-critical software development. There are also several formal specification

and verification studies available on this case study.

The Orthogonal Fault Tolerance (OFT) framework proposed in this thesis provides
redundancy and self-checking capabilities through the introduction of design diversity fault

tolerance features to reduce the chances of software errors. With the automatic

92

composition of these features based on the operational semantics, it is claimed to reduce
serious software design errors. Hence the Therac-25 is a good candidate on which to

evaluate the proposed OFT framework.

5.1.1 Accidents in Therac-25

There were six serious accidents between 1985 and 1987 due to overdoses of radiation by
the Therac-25 system, in which three people were killed and three were seriously injured.
The reasons behind these accidents were two-fold: software errors in the interface
component and the failure of the software interlock system. These accidents have been well
documented in [Leveson 1970][Leveson 1992][Turner 1993] and [Thomas 1994], but a
summary is presented here as context for this case study.

* An Editing Problem in the Interface Component

The three most serious accidents happened due to two different software problems in the
interface component of the Therac-25 software. The interface had many options to edit the
patient’s records to correct any data entry mistakes. Continuous pressing of the edit buttons
and ignoring imprecise error messages such as “Malfunction 54” led, in two of the accidents,
to the problem of an overdose being given to the patients. The machine also displayed a
“treatment pause,” indicating a problem of low priority in “dose input 2”. There was no
explanation of this error messages neither in a manual nor in documentation of the Therac-
25. This was the cause of the third accident, since the operator had ignored the low priority
warning (such warnings were commonplace and frequently ignored), and the system
indicated that the full treatment dose had not yet been delivered; treatment continued to be

administered and an overdose occurred.

* Failure in software interlock

The other accidents were due to a failure in the software that controlled the interlock of the
Therac-25 machine. This problem was considered as a “failure in software interlock”, where
the light shield was not in a precise position. If the X-ray mode was selected, then the shield
needed to be placed in between the beam and the patient. However, in these accidents, the
shield position was not in the right place and this caused the radiation over-dose. The
software interlock should have ensured that this did not happen, but the software failed to

protect this critical state of the Therac-25 machine.

93

5.1.2 Recommendations

After investigating the reasons behind these incidents, it was found that the Therac-25
accidents involved software coding errors as well as errors in software requirements
[Leveson 1993]. Basic software engineering principles such as proper documentation,
software quality assurance, errors explanations, were violated in the Therac-25 software.
The design of the Therac-25 software did not contain self-checks, error-detection and error
handling features [Leveson 1995]. Some of these software errors had also existed in the
Therac-20 software (elements of which had been re-used in the Therac-25 software), but
independent hardware interlocks on this earlier machine had protected patients from
radiation overdoses [Leveson 1993]. In contrast, the Therac-25 system relied primarily on

software checks.

Further recommendations and regulations are recounted in [Jacky 1994] including:

* Introducing formal specification and model checking

* Redundancy and diversity should be incorporated

* Reducing the number of editing keys.

* Error messages explanations

* Documentation and manuals should be written properly so that reusability can be

achieved.

Hardware related recommendations were also made such as design and testing of the
hardware of the Therac-25. Suggested hardware changes were to have extra protection
against software errors, where again the main focus was beam shutoff, energy mode and
shield position. Hardware is beyond the focus of this thesis, but the proposed OFT

framework will focus on the other recommended points from above.

5.1.3 Orthogonal Fault Tolerance and the Therac-25 System

As already stated in section 5.1.2, the Therac-25 accidents were due to poor software
engineering principles when designing and implementing the system. There was no clear
specifications and verification of the system, and the fault handling or fault detection
mechanism embedded in the Therac-25 complex software were not sufficient to deal with
design faults. It was also noted that the design of such a complex medical safety critical

system was developed by a single programmer [Leveson and Turner 1993].

94

With reference to the recommendations suggested earlier, the proposed orthogonal fault
tolerance framework offers diversity and redundancy along with the formal specifications of
the system. The OFT framework also provides the composition mechanism to combine
different design diversity fault tolerance features with the software system. Design diversity
fault tolerance mechanisms provide features such as an adjudicator (acceptance test, voter,
or hybrid voter) that can be used to verify the correctness of the behaviour. There is also a
clear need to model the Therac-25 in a way that processes may be parameterised [Thomas
1994]. This parameterisation can be done by introducing different fault tolerance

mechanisms, as will be illustrated in section 5.2.

With the help of the OFT framework, the composition of fault tolerance mechanisms with
the system’s components is carried out with the help of operational semantics and logic
properties are verified with a model checking tool. Logic properties can be written in CTL or
LTL to specify and verify the desired properties of the interface and the machine
components. This will be illustrated in section 5.3. Finally, as will be shown in section 5.4, the

proposed framework also provides a way to analyse undesirable interactions.

5.1.4 Features of the Therac-25 System

In this section, the features of the Therac-25 are presented in terms of the feature diagram
and dependency relationship. In the Therac-25 system, there are two modes of operation for
the radiation beam, one is the electron mode and the other is the X-ray mode. An electron
beam (low energy) can be fired directly at a patient whereas, for the X-ray beam, a shield is
placed and bombarded with accelerated electrons (high energy) that results in an X-ray
beam. The risk here was that it proved possible to fire the high energy electrons (X-ray) at
the patient directly without placing the shield correctly in between. Therefore, the position
of the shield has a significant importance in the whole procedure of radiotherapy in the

Therac-25.

The Therac-25 software has a number of main features as represented by the following

feature diagram (Figure 5.1).

95

| Therac-25 |

Beam Shield
Intensity
Mode | Administration | | Electron | | X-ray | | High | | Low || High | | Low |
Selection | 2
— —l_—_—_—_—_:_—_rl—_—_—_—__l'________ - _:_ R
I_l.____ R _J ________ |
Legends:

Features \ Mandatory)\ Optional | > Relationships

Figure 5.1: Therac-25 Software Features

In the Therac-25 software, there are a few mandatory features:

* Interface: the beam data can be entered by selecting the prescribed mode, patient
data can be entered and edited, and the beam can be fired and the treatment can
be administered;

* Mode of operation: the mode can be set to either X-ray treatment or electron
treatment;

* Beam intensity: can be set to a high intensity beam (for X-ray treatment) or, by
default, a low intensity beam (for electron treatment);

* Shield/Spreader position: can be set to a high position (for X-ray treatment) or, by

default, a low position (for electron treatment);

5.2 Formal Specification of the Therac-25 System

Initially, in section 5.2.1, the Therac-25 system will be presented using Statecharts, as
represented in [Bolton 2008]. The clarity of specification, and the similarity with the finite
state machines required by the proposed OFT framework, mean that this published formal
model is adopted as the representative specification of the Therac-25 system. Then in
section 5.2.2, a final state machine representation of the Therac-25 system will be given,

mirroring the Statechart specification, but in the format used in the OFT framework.

96

5.2.1 Statechart Model for the Therac-25 Components

In the Statechart model of the Therac-25 system [Bolton 2008], there are two main
components of the Therac-25 software, namely:
* Interface Component (involved in the error in editing; see section 5.1.1)

* Machine Component (involved in the software interlock error; see section 5.1.1)

Interface Component of the Therac-25: Statechart

Figure 5.2 shows the Statechart model for the Therac-25’s interface component [Bolton
2008]. At initialization, the interface is in the edit mode, and the mode of operation is in

neither the x-ray or electron beam mode.

Interface '—"'i
e >/ ™~
/ /7>{ Edit F— “pr
aef N
1 . _

/

X ~
XRay “x", SelectX “e”, SelectE EBeam
/* ~N s —

/’{ XDataEntry }‘—/ '\% EDataEntry }*-\

\-4 XBeamReady ‘ EBeamReady }»/

- A A -

| AN | J
b, Flrell 4 N | “b", Fire

-

Treatment
Administered

& T

Figure 5.2 Therac-25 Interface Statechart [Bolton 2008]
Key: x: X-ray, e: Electron, b: Beam, ¢: Enter, 1*: Edit/Change

This statechart shows that from the initial Edit state, on the occurrence of event “SelectX”,
the system will go to the “XDataEntry” state. Similarly on the occurrence of “SelectE” event,
the next state will be “EDataEntry”. In states, “XDataEntry” and “EDataEntry”, the
parameters for the X-ray and Electron beams are entered and can be edited. The upward
error shows that the editing leads the system to the edit state. An Enter event leads the
system to the “XBeamReady” and “EBeamReady” state, and then the Fire event indicates

that treatment is administered while the beam is firing.

The first accident mentioned in section 5.1.2 was caused due to an interface component
design error. The process of editing a patient’s data to correct an error allowed the machine

to enter into an unsafe state whereby the machine administered X-rays to patients, without

97

the spreader (shield) in place'. This can be proved by model checking CTL formulae, but first
it is necessary to present the Statechart model for the machine component since
synchronisation occurs between the interface and machine components on the events

SelectX/E and Fire.

Machine Component of the Therac-25: Statechart

Figure 5.3 shows the Statechart model for the Therac-25 machine component; this comprises

of three Statecharts, namely BeamLevel, Spreader and BeamFire [Bolton 2008].

BeamlLevel i
s ~
/4 % Neither }< \
SelectX - P L ~ SelectE
- Vg -
v] ¥
./;(\ ~ s =N =
™~ rd ™~ 8 Seconds e ~ e ™~
-
SelectE SelectX
Xset XtoE 8 Seconds EtoX ESet
=
N / ~ S . S . 4
. / . . /
. J C _/
Reset Reset
Spreader C)i BeamfFire
1
- SelectE 1 - €. Reset
— 1 -
¥ | i N ¥
' N ™ i N Y
|
{ OutOfPlace InPlace I Waiting ‘ Fired
1
PR / ! N /N S
k SelectX } ! L }
1
i

Fire

Figure 5.3 Therac-25 Machine Component Statechart

At initialisation, all three statechart models are synchronised awaiting SelectX and SelectE
commands. In BeamLevel model, with the SelectX command, the system transitions to mode
X (x-ray), whereas the SelectE command causes the system to transition to mode E
(electron). The transition from mode X to mode E (or vice-versa) takes 8 seconds; in the
meantime the Statechart resides in the intermediate states (XtoE or EtoX). A Reset command

sets the machine back to the initial state.

For the spreader model, the SelectX command moves the spreader (shield) from out of place
to in place. The SelectE command then moves the spreader back to out of place. When the
Fire command is seen by the BeamFire model, it transitions into the Fired state, indicating
that the beam has been fired. The machine then automatically resets to the initial state once

the prescribed dose has been delivered.

' The terms spreader and shield are synonymous in the context of Therac-25. When the spreader is
said to be in place, this is equivalent to the shield being in the high position, and vice-versa.

98

Model Checking the Unsafe Condition

As mentioned above, the unsafe condition caused by a software design error in the interface
component can be verified by model checking. Bolton et al. evaluate this unsafe condition

with the following CTL formula:

CTL#1: AG —(BeamLevel = X A Spreader = OutOfPlace A BeamFire = Fired)

This formula checks that in every future state, it is not the case that the system can be in the

x-ray mode, the spreader (shield) be out of place, and the beam be fired.

As reported in [Bolton 2008], when model checking was performed on this formula, and
applied to the Interface Statechart above, the condition was not satisfied; this was the reason

behind one set of fatal accidents caused by the Therac-25 software.

5.2.2 Finite State Machine Model for the Therac-25 Components

For the proposed orthogonal fault tolerance framework, the Statechart components of the

Therac-25 are first mapped on to finite state machine (FSM) representations.

Interface Component of the Therac-25: FSM

As above, the interface component is considered as the first component of the Therac-25 to
study. The finite state machine representation of the Statechart interface component (Figure

5.2) is given in Figure 5.4 below.

change

SelectX

Figure 5.4 Therac-25 Interface Component

Key: x: X-ray, e: Electron, b: Beam, ¢: Enter, Change

99

The textual form of the finite state machine (in NuSMV format) is presented in Appendix B.
Again, as with the Statechart models, before any logic formulae can be model checked, it is

first necessary to present the FSM for the machine component.

Machine Component of the Therac-25: FSM

The second component is the machine component of the Therac-25. The earlier Statechart
model has also been translated into a finite state machine representation. In the Statechart
model, there were three sub-models, namely beam level, spreader and beam fire, all running
in parallel. The finite state machine representation of the Statechart model of the machine
component (Figure 5.3) is given in Figure 5.5 below. Note that the sub-model X from Figure
5.3 is represented by XSet and the sub-model E is represented by ESet and the transition is

guarded with time of 8 sec.

BeamLevel Spreader

SelectX

OutOfPlace @

SelectE, 8sec

SelectX, 8sec

BeamFire M
Fire - Reset

Figure 5.5: The Machine Component of the Therac-25

Again, the textual form of the finite state machine in NuSMV format is given in Appendix B.2.

Model Checking the Unsafe Condition

As with the Statechart model, the same logic property CTL#1 can be used to evaluate the

unsafe condition of the Therac-25 system:

CTL#1: AG —(BeamLevel = X A Spreader = OutOfPlace A BeamFire = Fired)

100

This CTL formula ensures that, for all paths through the model, it will never be the case that
the beam level is set to X-ray, the spreader is out of place and the beam is fired.
However, as expected, this formula is false for the NuSMV representation of our FSM model.

A counterexample trace is provided by the NuSMV tool:

Countertrace#l:

-> State: 1.1 <-
Interface.state = Edit
BeamLlevel.state = Neither
Spreader.state = OutOfPlace
BeamFire.state = waiting
Command = SelectX

-> State: 1.2 <-
Interface.state = XDataEntry
BeamLevel.state = XSet
Spreader.state = InPlace
Command = Fire

-> State: 1.3 <-
BeamFire.state = Fired
Command = SelectE

-> State:1.4 <-
Spreader.state = OutOfPlace
Command = SelectX

As expected?, this trace shows that the software of the Therac-25 is unsafe: in the last part of

the trace, the command is for the X-ray beam when the spreader is still out of place.

5.2.3 Summary

This section has presented the implementation of the interface and the machine
components as finite state machines in NuSMV. Traces have been provided to show the
underlying unsafe conditions for the Therac-25 components; this replicates previous work
from [Bolton et al. 2008] and [Thomas 1993].

However, as yet, there are no fault tolerance mechanisms incorporated in the specifications

as required by the OFT framework. This is addressed in the following section.

5.3 Fault Tolerance Composition

In this section, design diversity fault tolerance mechanisms are composed with the machine
the interface components of the Therac-25 with the help of Lex and Yacc pre-processor that

generates the input file for NuSMV. The complete composition details can be found in

2 This is consistent with both [Bolton et al. 2008] and [Thomas 1993] who identify an identical counter-
trace.

101

Appendix B. The operational semantics for the composition of fault tolerance mechanisms to
the components follow those already presented in Chapters 3 and 4. Logic properties written
in CTL and LTL will be used to prove the correctness of the behaviour once the fault

tolerance mechanisms have been introduced.

5.3.1 Composition of N-version Programming Mechanisms with the

Therac-25 Component

As described in chapter 3, there are various different software fault tolerance mechanisms
that could be applied to this case study, including Recovery block, N-version programming,
and N-self checking programming mechanisms. Similarly, there are various different forms of
adjudicator that can be used with these fault tolerance mechanisms. A few of these
mechanisms have already been used with the worked example of the Home Automation
system presented in Chapter 4, such as AT and Recovery block. For illustrative purposes
here, the N-version programming mechanism is selected to compose with the Therac-25
system. The adjudicator that will be used with N-version programming mechanism is the
“voter”. The following constraint is relevant to N-version programming as presented in
Section 3.2.2:
Versions running in parallel either use a voter or a hybrid adjudicator;

PAR < VOT v HYB.

In the context of the above constraint, the adjudicator “voting” is used for the parallel
execution of 3 versions of software responsible for the computation of the Spreader position
in the Therac-25 software. Firstly the position of the spreader/shield is manually set by the
operator; this occurs before the system enters the prescribed data entry state (XDataEntry or
EDataEntry). Secondly, the software then verifies the position with the sensor data; the finite
state machine sub-model, Spreader in Fig 5.6, determines the automatic placement of the
spreader based on the chosen event. According to this model, on the occurrence of the
command XSelect, the spreader moves to InPlace position, while on the occurrence of the

command ESelect, the Spreader comes back to its initial state as OutOfPlace.

102

Processes to compute

Spreader Position Adjudicator

Sensor Data

R; % range

ProcessP1 |7 T

Pt Decision
Process P2 Mechanism
Ryt rang%. Voting

R; + range!

Consensus Result

Process P3

;Rfi range

Figure 5.6: Component to compute sensor values for the spreader position with N-version Programming

The N-version programming model that uses a voter as adjudicator is presented in Fig 5.6.
The three independent processes with different specifications, P1, P2 and P3, are executed
in parallel and used to compute the position of the spreader based on the sensor data; the
result of each individual process is denoted by R; + range (where range denotes a margin of
error). The voter then acts as an adjudicator and uses a majority consensus to decide upon
the final result, denoted by R:. This final consensus result is composed with the finite state
sub-model: Interface — where it is considered as a guard condition to transition from the Edit

state to X/ EDataEntry states.

In a similar way to section 4.4.2, the voting mechanism can be applied to the Interface

component of the Therac-25 software system and represented graphically as follows:

Figure 5.7: A state machine representing voting mechanism with backward error recovery

The above finite state machine represents the orthogonal voting mechanism with backward
error recovery and needs to be composed with the Interface component of the Therac-25

machine from Fig 5.4.

103

As presented previously, g and g’ represent generic states that are considered as
composition points, and r is a condition that represents the result of the voter. In the case of
Ir, the state transitions to the saved recovery point, represented as Rp(g). This composition
is based on the following operational semantics and composition rules already presented in
Chapters 3 and 4.

55 ,g 5 g’

e (i) Voting succeeds; r is the voting result

sllg—s'
In this first inference rule, if the voting is performed and r is the result, then the state of the

underlying system component progresses as usual with an extra guard condition r.

In the second inference rule, if the voting is unsuccessful and fails to produce a majority
result, then in the case of backward error recovery the state of the underlying system

component moves to the saved recovery point.

It
g — Rp(g)

e (ii) Voting fails (backward error recovery)
sllg = Rp(s)

As will be presented below in Figure 5.8, the finite state machine of the Interface component
of the Therac-25 is augmented with the additional guard condition as “SP = R{”, where SP is
used for the position of the spreader computed by three versions of software based on the
sensor data. ‘R{ refers to the final result achieved from the voting algorithm. This condition

is used to guard the selection of the beam (X-ray or Electron).

In the state machine model, this means that the condition R; guards the events SelectX and
SelectE when transitioning from the Edit state to the states XDataEntry and EDataEntry.
Hence, the possible execution options for the composition of fault tolerance with this

portion of the Interface component are as follows:

SelectX R¢
Edit —— XDataEntry,g - g’

R¢,SelectX
Edit | g —— XDataEntry

(ia) Voting succeeds; Ry is the final voting result

Similarly, for the event ESelect,

SelectE R¢
Edit —— EDataEntry,g - g’

R¢,SelectE
Edit || g — EDataEntry

(ib) Voting succeeds; Ry is the final voting result

104

In the second inference rule, if the voting is unsuccessful and fails to produce the majority
result, then the state of the underlying system component remains unchanged and presents

as follows:

It

g8
Irt
Edit || g — Rp(Edit)

(ii) Voting fails (backward error recovery)

The complete implementation is provided in Appendix B.2.

5.3.2 Pre-Processor Tool (Lex & Yacc)

As presented in Chapter 3 and 4, the Pre-Processor written in Lex & Yacc is used to handle
fault tolerance generics independently based on the algorithm presented in Section 3.3.5.
This can be applied to the Interface component of the Therac-25 software as follows. Again,
only the portion relevant to the fault tolerance mechanism and resulting guard is shown;

however, the full state machine is shown in Figure 5.8 and is included in Appendix B.

Spec Therac.txt
Comp: Interface SelectX

states = { Edit, DataEntry, DataEntry}; @
events = {SelectX, SelectE}; @

start = Edit Seloct
transitions = {

Edit, , XSelect, , XDataEntry
Edit, , ESelect, , DataEntry};

The specification file for the voting mechanism is as follows:

Spec ft.txt
states = {g, g'};

r
condition = {r}; o

start ={g, r};

transitions = { e

gr_ _8g;
g !Ir,_, _, Rp(g)}h

With the operational semantics and composition rules presented in Section 3.3.2 and 3.3.5,
the pre-processor performs the composition of the Therac-25 components and the fault
tolerance voting mechanism with backward recovery. The graphical representation of this

composition is as follows:

105

R, T
R, SelectX

Ry, SelectE

Figure 5.7: A finite state machine representing the result of voting mechanism composed

with Interface component finite state machine.

Figure 5.8 presents the Lex and Yacc generated model for the Interface component, shown

next to the other Therac-25 components.

Interface

Change,
Reset

S| d
BeamlLevel preader

SelectX

OutOfPlace I

SelectE

§P= Ry, Select E Select

SelectE, 8sec
— e T

SelectX, 8sec

BeamFire @
Fire - Reset

Figure 5.8 Interface Component with voting result for Spreader position

Keys: Rs: Voting result for Spreader Position, !Rs: unsuccessful voting result

5.4 Model Checking for the Safe Condition and Feature Interaction

Analysis

By introducing the N-version programming fault tolerance mechanism to the Interface
component of the Therac-25 machine, it is claimed to reduce or eliminate the chances of
software design errors. Specifically, by using N-version programming to check the position of
the spreader, the resulting guard condition should always be composed with the selection of

the beam. With this composed fault tolerance, there are now two options:

106

(i) The voter succeeds and reaches a majority voting, that allows the X-ray or
Electron beam to be selected and the component transitions to the respective
data entry state.

(ii) The voter fails to reach a majority voting, in which case the component remains

in the safe state until the operator manually changes the spreader position.

CTL and LTL logic properties are applied to the NuSMV model of the Therac-25 interface and
the machine component (composed with the N-version programming mechanism for the
automatic computation of the spreader position), to verify the safety of the model. The
implementation detail of the Therac-25 component in NuSMV, the logic properties, and the
NuSMV output are all given in Appendix B.2. The original CTL#1 logic property has been

translated into the context of the different components in NuSMV as follows:

CTL#1: AG —(BeamLevel = X A Spreader = OutOfPlace A BeamFire = Fired)

Translated CTL#1: SPEC AG ! (BeamLevel.state = XSet & Interface.state = XBeamReady &

Spreader.state = OutOfPlace & BeamFire.state = Fired)

This CTL formula states that for all paths through the model, it will never be the case that the

beam level is set to X-ray, the spreader is out of place and the beam is fired.

When model-checking is applied to the formula, the safety property is found true as
expected. This demonstrates that the composition of the fault tolerance mechanism has
prevented the critical software error of the Therac-25 system. In the case that voting
succeeds, the system composition continues as normal, whereas in the case that voting fails,
the system remains in a safe state and awaits the operator to manually adjust the spreader

position.

In a similar manner, NuSMV can also be used to prove the symmetric property where the

system is in Electron mode but the spreader is InPlace:
CTL#2: SPEC AG ! (BeamLevel.state = ESet & Interface.state = EBeamReady & Spreader.state

= InPlace & BeamFire.state = Fired)

Assertion Invalidation: The original Therac-25 error originated from the ability for the Beam

level to be in ESet mode while the Interface component is in X-ray mode, and vice-versa.

107

These properties can be classified as assertion invalidations and can be checked in NuSMV as

follows:

CTL#3: SPEC AG ! (BeamLevel.state = ESet & Interface.state = XBeamReady)

CTL#4: SPEC AG ! (BeamLevel.state = XSet & Interface.state = EBeamReady)

Both of these properties can be proved to be true in NuSMV, i.e. these inconsistent states

can never occur.

Other possible feature interactions in the Therac-25 can be analysed based on the

classification presented in Chapter 3 as follows.

Multiple Action Interaction: In the Therac-25 software, all commands are synchronised from
the Interface component to the different subcomponents of the machine component such as
BeamlLevel, Spreader and the BeamFire. A multiple action interaction can occur if there is a
conflict between the actions of sub-components. To check this type of interaction, the
following style of temporal logic formula needs to be checked:
SPEC AG (BeamLevel.state = XSet & Spreader.state = OutOfPlace)

This model checking formula indicates the undesirable situation where the state of the
BeamLevel component is XSet and the spreader position is OutOfPlace. This formula is
proved to be false, which means that this multiple action interaction never occurs in the

system.

Shared Trigger Interaction: In the Therac-25 system, the different components synchronise
on the shared events SelectX and SelectE. For this reason, a single event triggers two

different components:

SPEC AG (SelectX — AF(BeamLevel.state = XSet & Spreader.state = InPlace)

and similarly,

SPEC AG (SelectE — AF(BeamLevel.state = ESet & Spreader.state = OutOfPlace)

In the original Therac-25 (without fault tolerance), these properties would both have failed.
However, with fault tolerance and the added guard condition, it can be shown in NuSMV

that these properties are both true.

108

Sequential Action Interaction: Similarly, another potential feature interaction can be where
the Spreader receives the SelectX command and brings the spreader InPlace. The resulting
change in the environment may trigger other components to perform some action. However,
in the Therac-25 system, no component detects movement of the spreader, so this type of

feature interaction will not occur.

Resource Contention: In the original Therac-25 system, the Spreader component receives the
XSet command from the Interface component and is in the process of bringing the spreader
InPlace, while the BeamlLevel component resets the beam mode to ESet. This created a
resource contention for the Spreader. However, the introduction of the fault tolerant

mechanism (specifically the guard condition) has prevented this interaction occurring.

5.5 Summary

In this chapter, the voting mechanism from the orthogonal fault tolerance framework
approach has been applied to the Interface component of the computer-controlled medical
machine Therac-25. The N-version programming fault tolerance mechanism has been
applied to the Therac-25 components, and composition applied according to the operational
semantics presented in Chapter 3. The Lex and Yacc pre-processor processed the fault
tolerance generics based on the algorithm presented in Chapter 3. This generates the input
language for the NuSMV model checking tool that is used for the feature interaction analysis.
CTL/ LTL logic properties are applied to the NuSMV model of the Therac-25 to verify the
given properties for the composed components.

In this Chapter, it has been shown that the well documented and published serious software
error is removed with the introduction of N-version programming fault tolerance. Further
potential feature interactions in the Therac-25 software system were classified and validated
using CTL/LTL logic properties in NuSMV model checking.

Further evaluation and analysis, spanning both case studies, will now be presented in

Chapter 6.

109

Chapter 6

Evaluation and Analysis

6.1 Introduction

The goals of this chapter are to evaluate the OFT framework and to demonstrate the
successful integration of design diversity fault-tolerance mechanisms with system
components. The evaluation of this framework is based on the criteria outlined in Chapter 3:
separation of concerns, expressiveness of fault-tolerance mechanism for the orthogonality,
composability and compositionality for the fault tolerance composition, and soundness of
the feature interaction analysis approach. The evaluation draws on the worked example of

Home Automation and the Therac-25 system as presented in Chapters 4 and 5.

The main purpose of the evaluation is to determine whether the approach presented in this
thesis meets the desirable criteria described in Chapter 1 and which have formed the
comparison criteria in Chapter 2. In particular, the evaluation will determine whether this
framework can accurately express the orthogonal view of design diversity fault tolerance
mechanisms and support their composition, followed by support for the detection of
undesirable interactions. In order to measure these criteria, the results will be compared

based on the following sub-criteria:

Separation of fault tolerance concerns: Concerns are defined as primary entities for
decomposing software into manageable and comprehensible modules. In this thesis,
different features of software design diversity fault tolerance mechanisms are dealt with
separately, including consideration of their dependency relationships and constraints. The
orthogonal and separate fault tolerance concerns are considered helpful in reducing

complexity if they can be demonstrated to be easy to manage, design and modifiable.

Expressiveness of fault tolerance: with the help of the orthogonal feature model and
generics, it is possible to describe different features of software fault tolerance mechanisms
such as error processing technique, checkpointing, etc. The approach is considered

expressive if it describes a wide range of features of fault tolerance easily.

110

Composability: The composition of fault tolerance features with the system component
need to be automatically composable. Hence functional components of the software system
cannot interfere with the fault tolerance component before this composition. This is

achieved by separation of fault tolerance concerns.

Compositionality: In this thesis, it would be helpful to determine if the composition
approach were compositional. To validate this property, the approach would need to satisfy

the following:

(Cal IF1) 11 (CelIF2) = (Call Ca) || (F1l [F2) (i)

(Call Cg) |1 Fy (ii)

(Cal IF2) [1 (Cel [Fa)

Where C, and Cg are components and F; and F, represent the fault tolerance components.

Soundness: The interaction analysis approach presented in this thesis is considered sound if
it is able to detect all the potential interactions arising through the composition of fault
tolerance with the system component. The model checking approach with temporal logic is
used to analyse the composed behaviour for such undesirable interactions. Note that a
sound analysis may give false positives; i.e. in terms of interaction analysis, it may find

interactions that are not considered as ‘bad’ interactions.
6.2 Hypotheses

Given the above evaluation criteria, the following hypotheses are posited, the verification or
falsification of which will determine the success or failure of the proposed orthogonal fault

tolerance framework in the thesis.

H1: The framework presented in this thesis is considered as expressive as it provides
separation of concern with an orthogonal view of design diversity fault tolerance
mechanisms. For the purpose of this evaluation, generics are applied on two case studies
that are able to automatically compose fault tolerance with the system component. Both the

system and fault tolerance mechanisms remain independent and orthogonal.

H2: The composition mechanism presented in this thesis is composable and compositional.
For the purpose of this evaluation, the mathematical laws of commutativity and associativity

are applied.

111

H3: The orthogonal fault tolerance framework is sound with respect to the interactions
found. For the purpose of this evaluation, the NuSMV model checking tool is used and this
approach will be considered sound if it is able to detect undesirable interactions that are

introduced due to the orthogonal handling of fault tolerance mechanisms.
6.3 Analysis

In this section the evaluation criteria are examined, and conclusions drawn as to the veracity

or otherwise of the proposed hypotheses.
Separation of Fault Tolerance Concerns

For both case studies, an orthogonal view of different design diversity fault tolerance
mechanism has been presented. Different fault tolerance mechanisms were presented in
terms of a feature diagram with dependency relationships and constraints. Furthermore,
fault tolerance features were handled independently and orthogonally with the help of
generics, and a pre-processor underpinned by operational semantics was used to
automatically compose fault tolerance with the underlying system components. In this
manner, a good separation of fault tolerance concerns was evident, where this separation

enables the complexity of introducing fault tolerance to be managed.
Expressiveness of the Fault Tolerance Framework

The OFT framework is considered expressive in several aspects, including the ability to
express a variety of recovery behaviours in response to occurrence of failure. Different
features can be composed automatically with the underlying system component. The
labelled transition system and operational semantics increase its expressiveness through the
addition of guard conditions, actions, and the ability to model features such as multiple

versions.

However, a limitation of the OFT framework with respect to fault tolerance expressiveness is
that this approach is inapplicable for the real time situations and dynamic nature of today’s
fault tolerant software systems. To make it applicable to dynamic systems, there is a need to
study and explore existing methods to address dynamic configuration of the system such as
through the use of domain-specific modelling languages (DSMLs) to model the dynamic

architecture and the set of valid system configurations.

112

Composability

Orthogonal fault tolerance features are automatically composed with the components of
Home Automation and the Interface component of the Therac-25 software. In both of these
examples, ‘generics’ are used to express the fault tolerance features and the composition is

based on the operational semantics on labelled transition systems.

In the Home Automation case study, a new component Climate Control was easily integrated
and composed with the system. However, for this component, no fault tolerance mechanism
was added, but feature interaction was detected as shown in Chapter 4. The resolution to
this feature interaction could be the introduction of a further fault tolerance feature into the

composed system, which is discussed further below.
Compositionality

In the Home Automation case study, two independent acceptance test features of a recovery
block mechanism are composed with the Light Controller component and the Home Status
Controller component. In this case, although the acceptance tests are independent, they are
both of the same style of fault tolerance, namely recovery block. Hence, regarding the two

compositionality formulae presented above, there is only one fault tolerance mechanism, F;.

Applying this to the case of the Home Automation case study, the second compositionality

formula (Cal |[F1) || (Cg||F1)=(Cal]| Cg) || F1 can be shown to hold as follows:
(LCIIF) I (HSCI|F) = (LC|| HSC) || F

Regarding the left hand side of this equivalence relation: in Chapter 4, Figures 4.7a and 4.7b
represent the composition of the Light Controller with the fault tolerance feature and the
Home Status Controller with the fault tolerance feature respectively, as given by the

inference rules below.

e (o4
LC; » LC;' ,F > F’

e (LC|IF)
LCl”F i LCi'

e C
HSC; - HSC;' ,F > F’

T (HSC|| F)
HSC; ||F = HSC;'

113

Both of these composed state machines (i.e. figures 4.7a and b) can themselves be
composed using the pre-processor and underlying operational semantics to give the state

machine shown in Figure 4.8.

Regarding the right hand side of this equivalence relation: in a similar way, Figure 4.3

represents LC | | HSC, as also given by the inference rule:

LC; > LC;", HSC; - HSC;"

. (LC Il HSC)
LCL' ||HSCL d LCl-'||HSCi'

This can itself be composed with F, using the pre-processor, and gives the identical state

machine as in Figure 4.8.

e e C
LC; - LC;', HSC; - HSC;", F > F’

e (LC||HSC|| F)
LCl||HSCl i LCL"“HSCL"

On the other hand, the first compositionality formula is not satisfied, as two different fault

tolerance mechanisms cannot be composed.
(LC I Fa) [(HSCI| Fy) = (LC || HSC) || (F1 || F2)

For example if one component is using acceptance test feature and the other is using voting
feature, these two features cannot be composed. The reason behind this is the constraints
associated with these features; for example, these two features may require different

execution schemes.
Soundness

The NuSMV tool was used for both studies and was used to check for undesirable feature
interactions. These interactions were first classified and then temporal logic formulae were
written in LTL and CTL and were used to model check and validate the different formulae.
Table 6.1 shows the number of interactions obtained by NuSMV in the analysis of each case

study.

Analysis of the Therac-25 case study yielded precisely the correct interactions; that is, the
known and published design faults of the system were detected. In the case of the Home

Automation system, the identified interactions corresponded to the classifications of

114

interaction type that were expected. However, it is still a matter for further research to

determine if all possible interactions have been found by the proposed technique.

Case Study Model Checking Feature
Interactions Analysis

Home Automation 5

Therac-25 4

Table 6.1 Soundness with respect to interaction detection

From the feature interaction analysis, the following conclusions are drawn:

1. Hypothesis H3 has not been falsified and the breadth of the evaluation gives strong
confidence that the feature interaction in proposed framework is indeed sound.

2. The larger Therac-25 case study yielded fewer interactions. However, this is not
surprising given the well-studied nature of this case study.

3. For the Home Automation case study, the analysis identified all expected
interactions and identified no false positives. However, this approach gives no proof

that further interactions do not exist.
6.4 Further Analysis

There are two areas of work that merit further discussion relating to further analysis and
evaluation of the proposed approach. The first concerns the choice of underlying operational
semantics and the second relates to an opportunity to ‘reflexively’ apply the orthogonal fault
tolerance mechanisms as a means to resolve feature interactions. Both will be discussed in

turn below.
Choice of Underlying Operational Semantics

As described in Chapter 4, a fault tolerance mechanism (acceptance test) was introduced with
two components, Light Controller and Home Status Controller, of the Home Automation
system. The operational semantics presented in Section 3.3.5 were designed as synchronous
communication semantics, and hence force synchronisation on the shared events, MD and
NMD, when the components are composed together. One advantage of this approach is that
this composition avoids the occurrence of inconsistent states that may occur if a failure occurs
in one of the components where the failure of the acceptance test prevents a transition on
event MD or NMD, but the other component’s acceptance test is passed and the component

transitions as normal (as presented in Figure 4.9).

115

However, there is also a limitation with this style of composition: in the case of multiple
components with an acceptance test and synchronous communication, in the case of failure
of a single acceptance test all of the other components are blocked and cannot continue until

the failed acceptance test is passed.

In the field of distributed systems, this type of failure is known as a partial failure; in such case
it is desirable, even in the presence of a fault in one part of the system, that the rest of the
system continues to function correctly. This type of failure would require a weakening in the

style of operational semantics currently supported by the OFT framework.

The limitation of strictly synchronous operational semantics has been addressed in the field
of distributed systems, by the introduction of the notion of ‘named localities’, as in the work
of [Schmitt and Stefani 2004]. In such work, different localities can exhibit different failure
and control semantics. For example, whereas a failure in a wide-area network may prevent
sub-networks from being able to communicate with each other, the communication within
local sub-networks is not restricted. Hence different semantics operate according to the

context of the localities.

Reflexive Feature Interaction Resolution through Orthogonal Fault Tolerance

In the Home Automation case study, the actions of the Climate Control component, i.e.
opening windows and blinds, trigger the motion detection sensor and result in a number of

feature interactions, as has been shown in Figure 4.10.

A possible solution to resolve these interactions is the introduction of a fault tolerance
mechanism in the Climate Control component. Consider the scenario presented in Figure
4.11, where shared trigger interactions and sequential action interactions can occur when the
climate control service opens the windows and triggers the motion detection. Since motion
detection is shared between different components of Home Automation, the movement
caused by the climate control service can also trigger the Light Controller to move into the
LBP state, the Home Status Controller to move into the H_occupied state, and also turns the

security Alarm on.

Suppose now that a fault tolerance mechanism is applied to the sensing element of the
Climate Control component, with the purpose of validating the motion sensing. There are two
ways in which this may be achieved. The first would be the application of an acceptance test
that checks a condition relating to the style of movement (e.g. duration and/ or location of

movement). The second approach would be to consider a system that contains multiple

116

sensors, where voting could be applied on the values of the different sensors, in order to

validate the context of motion detected.

In general, it is believed that ‘reflexively’ applying a fault tolerance mechanism may serve as a

valuable mechanism for resolving certain styles of feature interaction such as shared trigger

interactions and sequential action interactions. However, more research is required in order

to validate this hypothesis.

6.5

Conclusion

Based on the above discussion, the overall evaluation is shown in Table 6.2.

Evaluation Criteria Home Automation Therac-25
Separation of Concerns High High

H1: Orthogonality Fault Tolerance Medium Medium
Expressiveness
Composability High High

H2: Composition Compositionality Medium N/A
Soundness High Medium

H3: Feature Interaction

Analysis

Table 6.2: Overall Evaluation

The evaluation in this table draws the following conclusions:

1. The OFT framework addresses the separation of fault tolerance concerns for the

home automation and the Therac-25 system. The separation of concern criteria is
high as it clearly demonstrates the separation of design diversity fault tolerance
mechanisms and provides an orthogonal view without adding complexity to the
underlying system. In contrast, the fault tolerance expressiveness is medium for both
case studies as it only deals with the design diversity fault tolerance mechanism and
design faults. For full expressiveness, other styles of fault tolerance techniques, such
as data diversity, should also be considered.

The Composability criteria for the OFT framework in both case studies is high, as
different fault tolerance mechanism are composed with the specified components of
the Home Automation and with the Therac-25 component. The compositionality is
medium, as in the Home Automation system only formula (ii) is true. Note that in the
Therac-25 system, this is not applicable as only one component, namely the

Interface component, had fault tolerance applied.

117

3. For the feature interaction analysis, soundness is considered high in home
automation, as the expected interactions were found in NuSMV. Similarly, in the
Therac-25 system, the expected interaction is detected and the known software fault

prevented.

The above evaluation shows that the orthogonal fault tolerance framework proposed in this
thesis brings remarkable benefits for the incorporation of design diversity fault tolerance
mechanism with the underlying system component of two case studies. It also provides a
model checking approach for the feature interaction analysis. It also shows that this
orthogonal fault tolerance approach is absolutely composable and partially compositional as

shown in Section 6.3.

The major benefit of orthogonality is to enhance the separation of fault tolerance concern
that promotes the independence and isolation of fault tolerance concerns. These properties
further reduce complexity as constraints dependencies and relationships between fault
tolerance features are provided in detail. Potential undesirable feature interactions are

validated in both of the case studies as classified in different categories.

Therefore, this has shown that the approach detailed in this thesis is a promising approach
that meets the desirable criteria put forward in Chapter 1: namely, designing fault tolerance
at the architecture level, supporting the separation of fault tolerance concerns as an
orthogonal view, constructing generics to represent fault tolerance features, and finally

supporting the detection of undesirable feature interactions through model checking.

118

Chapter 7

Conclusions

7.1 Introduction

In this thesis, an Orthogonal Fault Tolerance (OFT) framework is proposed to give an
orthogonal view of different features of design diversity fault tolerance mechanisms. A pre-
processor has been developed to automatically compose fault tolerance features with the
underlying system components and undesirable feature interactions are analysed with the
help of the model checking tool NuSMV. The conclusions of the thesis are presented in this
chapter, which is structured as follows: Section 7.2 presents a summary of the thesis on a
chapter-by-chapter basis, Section 7.3 then reviews the main research results of the thesis
followed by other significant results, Section 7.4 identifies directions for future work, and

finally, Section 7.5 concludes the chapter and the thesis with some closing remarks.
7.2 Summary of the thesis

Chapter 1 introduced the background to this thesis, focusing on the need for reliable systems
and providing fault tolerance at the early stages of software development, such as at the
requirement specification and design phase. Furthermore, it introduced key techniques
within fault tolerant systems such as data diversity and design diversity techniques, single
version and multiple version mechanisms, and the potential for a separation of concerns
approach within this field. The remainder of the chapter then discussed the research aims

and objectives, and the contributions and the structure of the thesis.

Chapter 2 then surveyed the existing approaches under three main areas, namely: fault
tolerance at the requirement specification and design phase, composition techniques for
fault tolerance behaviours, and feature interaction analysis. Different approaches under
each area have been discussed and analysed with different characteristics in order to
address the challenges associated with the composition of fault tolerance. The analysis

showed that no surveyed platform addressed all the requirements in a balanced way.

119

Chapter 3 presented the proposed approach and framework of this thesis in addressing the
challenges identified in Chapter 1 and 2. In particular, an Orthogonal Fault Tolerance (OFT)
framework was introduced. Constituents of the OFT were described, namely the feature
model for different design diversity fault tolerance mechanisms, and dependency
relationships and constraints associated with different features of fault tolerance
mechanisms. The Lex and Yacc pre-processor was developed based on the algorithms for the
automatic composition of fault tolerance and handling of fault tolerance ‘generics’. Finally,
feature interaction analysis was described with a help of CTL and LTL logic properties

supported by a model checking tool NuSMV.

Chapter 4 illustrated the overall framework with the worked example of a Home Automation
system. Two components of a Home Automation system, a Light Controller (LC) and a Home
Status Controller (HSC) have been used for illustrative purposes. Different fault tolerance
mechanisms were automatically composed with the components of Home Automation, with
this composition being based on the operational semantics presented in Chapter 3. The

chapter concluded by presenting an analysis of undesirable feature interactions.

Chapter 5 applied the Orthogonal Fault Tolerance framework to the Therac-25 case study, a
computer controlled medical machine for radiotherapy treatment. Firstly, serious accidents
of the Therac-25 were discussed that occurred due to a software error in the system. Then
the existing published formalisms to describe and validate that error were presented. The
fault tolerance mechanism from the proposed framework was introduced into the Interface
component of the Therac-25. The automatic composition of these fault tolerance
mechanisms, with the help of a pre-processor and interaction analysis in NuSMV, was shown

to successfully overcome the known problem in software design.

Chapter 6 provided an overall evaluation of the OFT framework. First, the evaluation criteria
were presented such as separation of concerns, expressiveness of fault tolerance,
composability and compositionality, and soundness of the feature interaction approach.
Both case studies Home Automation system and the Therac-25 machine were evaluated
against these criteria. Finally the chapter revisited the objectives and challenges presented in

chapters 1 and 2, and made a comparison of the OFT framework with other approaches.

7.3 Contributions of the thesis

The main contributions of the thesis are as follows.

120

1. OFT Framework

This thesis has proposed an Orthogonal Fault Tolerance framework to handle different
features of design diversity fault tolerance mechanisms as separate concerns. The separation
of fault tolerance concerns was the first main aim of the proposed approach and brought the

following benefits:

a) To manage the complexity of the underlying system where fault tolerance concerns were

addressed independently.

b) To provide an orthogonal view of fault tolerance concerns relative to the underlying
system components. This orthogonal view also shows the dependency relationships and

constraints associated with different features of fault tolerance mechanisms.

c) Different features of fault tolerance mechanisms were presented in terms of a feature

diagram that is simple and consistent.

Importantly, the thesis has shown that the fault tolerance mechanisms can indeed be

usefully separated and dealt with as separate concerns.
2. Fault Tolerance Composition through ‘Generics’

In this framework, the concept of ‘generics’ have been introduced and presented, along with
an algorithm and pre-processor tool that automatically composed them with the underlying
system components. This composition was the second main aim of the thesis and was
underpinned by operational semantics applied to labelled transition systems for both the
fault tolerance generics and the components of the base system. The pre-processor
automatically transformed the composition to the input language model of NuSMV model

checking tool.

This is therefore a successful achievement of the thesis objectives, and opens up further
research areas including further developing the composition mechanism and underlying
operational semantics into a model that offers different semantics for different contexts of

failure within large-scale distributed systems, as discussed in chapter 6.
3. Feature Interaction Analysis through Model Checking

The analysis of undesirable feature interactions was the third main objectives of the thesis.

The use of temporal logic and the NuSMV model checking tool to analyse these interactions

121

have been outlined. First, classification is made for different feature interaction categories
and then these classifications are represented with a style of temporal logic in CTL/ LTL in
NuSMV model checking tool. The model checker validates the property or provides a counter
trace for the desired property. This also opens up a further research area through refining
the feature interaction analysis with a ‘reflexive’ approach to feature interaction resolution,

as discussed in chapter 6.

In addition to these main contributions of the thesis, further contributions that have been

made by this research are as follows:
4. Research and Identification of the Problem Domain

A comprehensive survey of state of the art techniques and state of practice approaches to
software fault tolerance has been given with an abundant bibliography that covers progress
in this field. The research and the background study have been used in this thesis as the basis
for the development of the proposed framework with its subcomponents. It is believed that
it will be helpful for any further research and development by other researchers in the area

of design diversity software fault tolerance composition and feature interaction analysis.

5. Platform and Domain Independent Framework

The OFT framework presented in this thesis has not been tied to a particular underlying
platform, component model, or domain for its realisation. The proposed framework can be
used to introduce design diversity fault tolerance to any platform and to any component

model based on any domain.
6. Underlying Operational Semantics for the Composition

Another significant contribution of the thesis has been the underpinning of the automatic
fault tolerance composition by operational semantics. The semantics and behaviour of a

system have a significant impact on the composition and on the overall system.

However the framework, as presented, has used synchronous operational semantics. As
mentioned above, for certain types of complex system this may be viewed as a limitation of

the approach.

122

7.4 Future Work

Two areas of further work have already been considered in chapter 6 and briefly referred to
above, namely (i) a study of alternative underlying semantics that move beyond the
synchronous composition as presented within the OFT framework, and (ii) an investigation in
the further feasibility of the OFT framework offering a ‘reflexive’ feature interaction

resolution approach.

Beyond these two areas, this section describes some further directions for future work that

may be carried out based upon the proposed framework presented in this thesis:
Extension for Dynamically Adaptive Systems

The proposed framework, as presented, is only applicable to static configurations of systems.
However, dynamically adaptive systems have been increasing in use and popularity, whereby
the system’s behaviour is changed in response to its operational context, user requirements,
or needs of other systems and services with which it interacts. Such systems must adapt in
the presence of threats and faults and be able to react to hazardous situations. The
proposed framework, if extended for dynamically adaptive system, must be able to provide
trustworthiness and dependability to those systems. One direction to explore here is the
models@run.time community and their use of software models to support runtime

reasoning [Bencomo et al. 2014].
Integration with other Feature Interaction Approaches

The proposed framework for the analysis of feature interactions is based on the model
checking of temporal logic properties. Many different styles of feature interaction analysis
such as software engineering (including focussed techniques and process models), formal
methods, and online techniques have been proposed in the literature that offers different
benefits in different circumstances. In reality, it may be that a hybrid approach can be used

to more fully support the feature interaction analysis associated with fault tolerant systems.
Further Case Studies

Further work is needed to apply the OFT framework to larger and more complex case
studies. There are two possible directions that this work could go. Firstly, systems such as
those used in home care for the elderly and smart cities may be explored and examined for

the variety of fault tolerance mechanisms that they will exhibit. Secondly, large scale and

123

complex distributed systems could be studied for different failure models and associated

semantics.
7.5 Concluding Remarks

Over the last decades, providing fault tolerance capability at the implementation level has
been the traditional way for achieving reliability. Such approaches were time and cost
effective. However, modern research has also focused on providing fault tolerance at the
requirement specification and design levels, and formal properties relating to reliability can
be guaranteed with the help of verification and model checking support. Despite the
research undertaken in providing fault tolerance at the early stages of software
development, the major short-comings have been the lack of fault tolerance expressiveness
in terms of maintaining a separation of concerns, its composition with the underlying system
component and analysing the potential feature interactions raised by this composition. This
thesis has argued the need for a framework that introduced fault tolerance at the
specification and design level while having an independent and orthogonal view. Hence, the
Orthogonal Fault Tolerance framework has been presented, whose goal has been to
embrace the automatic composition of orthogonal design diversity fault tolerance and the
analysis of potential undesirable feature interactions. It is hoped that the thesis has provided

a significant contribution to future directions in this field.

124

References

[Abrial 1996] J.R. Abrial, “Assigning Programs to Meanings”, Cambridge University Press,
1996. ISBN 0-521-49619-5.

[Agarwala and Tanik 1989] S. Agarwala and M.M. Tanik, “System Specification with
communicating sequential processes (CSP)”, Technical report (Southern Methodist

University, 1989.
[Alhir 1998] S.S. Alhir, “UML in Nutshell: A Desktop Quick Reference”, 1998.

[Amman and Knight 1987] P.E. Amman and J.C. Knight. Data Diversity: An Approach to
Software Fault Tolerance. In Proc. of 17th Intl. Symposium on Fault Tolerant Computing, June

1987.

[Anderson and Lee 1981] T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice,

Prentice/Hall, 1981.

[Avizienis 1971] A.A. Avizienis, "Arithmetic Error Codes: Cost and Effectiveness Studies for
Application in Digital System Design," IEEE Trans. Comp. vol. C-20, no. 11, November 1971,
pp. 1,322-1,331.

[Avizienis 1976] A.A. Avizienis, "Approaches to Computer Reliability: Then and Now," Proc.
AFIPS NCC, vol. 45, 1976, pp. 401-411.

[Avizienis and Chen 1977] A.A. Avizienis, L. Chen, “On the implementation of N-version
programming for software fault tolerance during execution”. In Proceedings of the IEEE

International Computer Software and Applications Conference, 1977, pp. 149-155.

[Avizienis and Kelly 1984] A.A. Avizienis, and J.P.J. Kelly, “Fault Tolerance by Design

Diversity: Concepts and Experiments,” IEEE Computer, Vol. 17, No. 8, 1984.

[Avizienis 1985] A.A. Avizienis, “The N-Version Approach to Fault-Tolerant Software”

December 1985, pp. 290 - 300.

[Baniassad and Clarke 2004] E. Baniassad, and S. Clarke. "Theme: An approach for aspect-
oriented analysis and design." In Proceedings of the 26th International Conference on

Software Engineering, pp. 158-167. IEEE Computer Society, 2004.

125

[Bencomo et al. 2014] N. Bencomo, R.B. France, H.C. Cheng, U. ABmann. “Models@run.time
- Foundations, Applications, and Roadmaps [Dagstuhl Seminar 11481, November 27 -
December 2, 2011]. Lecture Notes in Computer Science 8378, Springer 2014, ISBN 978-3-
319-08914-0.

[Blom et al. 1994] J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular
specification of telephone services. In L.G. Bouma and H. Velthuijsen, editors, [15], pp. 197-

216, May 1994.

[Bolton et al. 2008] M.L. Bolton, E.J. Bass, and R.l. Siminiceanu. "Using formal methods to
predict human error and system failures." In Proc. 2nd Int. Conf. Appl. Human Factors

Ergonom. 2008.

[Bolognesi et al. 1987] T. Bolognesi, and E. Brinksma. "Introduction to the ISO specification

language LOTOS." Computer Networks and ISDN systems 14, no. 1, 1987, pp. 25-59.

[Bredereke 2000] J. Bredereke. Families of formal requirements in telephone switching. In
Feature Interactions in Telecommunications and Software Systems VI, I0S Press, pp. 257—

273, May 2000.

[Brito et al. 2005] P.H.S. Brito, and C.M.F. Rubira. "A framework for analyzing exception flow

in software architectures." ACM SIGSOFT Software Engineering Notes 30, no. 4, 2005, pp. 1-7

[Brito et al. 2009] P.H.S. Brito, R. deLemos, C.M.F. Rubira, and E. Martins. "Architecting fault
tolerance with exception handling: verification and validation." Journal of Computer Science

and Technology 24, no. 2, 2009, pp. 212-237.

[Brito et al. 2009] P.H.S. Brito, C.M.F. Rubira and R. delLemos, “Verifying architectural

variabilities in software fault tolerance techniques, 2009.

[Calder et al. 2002] M. Calder, M. Kolberg, E.H. Magill and S. Reiff-Marganiec, “Feature

Interaction: A Critical Review and Considered Forecast”, 2002.

[Cain 1992] M. Cain. Managing run-time interactions between call processing features. In

IEEE Communications Magazine, pp. 44-50, February 1992.

[Chen and Avizienis 1978] L. Chen, and A. Avizienis, “N-Version Programming: A fault
Tolerance approach to Reliability of software Operation,” University of California Los

Angeles, 1978.

126

[Chitchyan et al 2007] R. Chitchyan, A. Rashid, P. Rayson, and R.W. Waters, “Semantics-

based Composition for Aspect-Oriented Requirements Engineering”, 2007, pp. 36-48.

[Chitchyan et al. 2005] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M.P. Alarcon, J. Bakker,
B. Tekinerdogan, S. Clarke, and A. Jackson. "Survey of aspect-oriented analysis and design

approaches", 2005.

[Chou 1997] T.C.K. Chou, Beyond Fault Tolerance, IEEE Computer, April 1997, pp. 47-49.

[Clarke, Grumberg and Peled 1999] E.M. Clarke, O. Grumberg, and D.A. Peled, Model
checking. Cambridge MA: MIT Press, 1999.

[Clarke and Walker 2001] S. Clarke and R.J. Walker. Composition patterns: An approach to
designing reusable aspects. In The 23rd International Conference on Software Engineering

(ICSE), Toronto, Canada, 2001.

[Clarke and Walker 2002] S. Clarke and R.J. Walker. Towards a standard design language for
AOSD. In The 1st International Conference on Aspect-Oriented Software Development,

Enschede, The Netherlands, April 2002.

[Clifton and Leavens 2002] C. Clifton and G.T. Leavens, “Observers and assistants: A proposal

for modular aspect-oriented reasoning”, 2002.

[Cottenier et al. 2007] T. Cottenier, A.V.D. Berg, and T. Elrad, "The Motorola WEAVR: Model
weaving in a large industrial context." Aspect-Oriented Software Development (AOSD),

Vancouver, Canada 32 (2007): 44.

[Cottenier, Berg and Elrad 2006] T. Cottenier, A. V. D. Berg, and T. Elrad, “Modeling Aspect-

Oriented Compositions”, 2006.

[Dahll and Lahti 1979] G. Dahll and J. Lahti. An investigation into the methods of production

and verification of highly reliable software, 1979.

[Daniel and Ruben 2005] L. Daniel and A. Ruben: Formal Verification of Fault Tolerance

Aspects, 2005.

[deLemos 2007] R. deLemos, C. Gacek and A. Romonovsky, “Architecting Dependable

Systems”, volume 2677, 2007.

127

[deLemos 2001] R. deLemos, Describing evolving dependable systems using co-operative
software architectures. In ICSM ’01: Proceedings of the IEEE International Conference on

Software Maintenance (ICSM’01), 2001.

[Dijkstra 1982] E.W. Dijkstra, "On the role of scientific thought". Selected writings on
Computing: A Personal Perspective. New York, NY, USA: Springer-Verlag. pp. 60-66. ISBN 0-
387-90652-5.

[Elmendorf 1972] X.R. Elmendorf, "Fault-Tolerant Programming ," Proc. 1972 Int. Symp.

Fault-Tolerant Computing, June 1972, pp. 79-83.

[Felty and Namjoshi 2000] A. Felty and K. Namjoshi. Feature specification and automatic

conflict detection. pp. 179-192, May 2000.

[Filho Guerra and Rubira 2003] F.C. Filho, P.A.C. Guerra, and C.M.F. Rubira, “An
Architectural-Level Exception Handling System for Component-Based Applications”. In LADC,

2003.

[Filho, Brito and Rubira 2006] F.C. Filho, P.H.S. Brito, and C.M.F. Rubira, “Specification of
Exception Flow in Software Architectures” - Special Issue on Architecting Dependable

Systems, 2006.

[Filho et al. 2005] F.C. Filho, C.M.F. Rubira, and A. Garcia. "A quantitative study on the

aspectization of exception handling." In ECOOP Workshop, p. 137, 2005.

[Fleurey et al. 2008] F. Fleurey, B. Baudry, R. France, and S. Ghosh. "A generic approach for
automatic model composition." In Models in Software Engineering, pp. 7-15. Springer Berlin

Heidelberg, 2008.

[France et al. 2004] R. France, I. Ray, G. Georg, and S. Ghosh. "Aspect-oriented approach to

early design modelling." IEE Proceedings-Software 151, no. 4, 2004, pp. 173-185.

[Goldman and Katz 2007] M. Goldman and S. Katz, “Modular aspect verification”, pp. 308-
322, 2007.

[Guelfi et al. 2004] N. Guelfi, R. Razavi, A. Romanovsky, and S. Vandenbergh, “DRIP Catalyst:
An MDE/MDA Method for Fault-tolerant Distributed Software Families Development”. In

OOPSLA and GPCE, 2004.

128

[Hay and Atlee 2000] J. Hay and J.M. Atlee. Composing Features and Resolving Interactions.
pp. 110-119, 2000.

[Hecht 1979] H. Hecht, “Fault-tolerant software for real-time applications,” ACM Computing

Surveys, vol. 8, no. 4, pp.391-407, 1976.

[Horning et al. 1974] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith and B. Randell, “A program
structure for error detection and recovery,” Lecture Notes in Computer Science, vol. 16,

pp.177-193, 1974.

[Issarny and Banatre 2001] V. Issarny, and J. Banatre, Architecture-based exception
handling. In HICSS '01: Proceedings of the 34th Annual Hawaii International Conference on

System Sciences, 2001.

[Jacky 1999] J. Jacky, Lessons from the formal development of a radiation therapy machine
control program. In Michael G. Hinchey and Jonathan P. Bowen, editors, Industrial-Strength

Formal Methods in Practice, pp. 185—-206. Springer-Verlag, 1999.

[Katz et al 2008] E. Katz, S. Katz, W. Havinga, T. Staijen, N. Weston, F. Tainai, A. Rashid and

H. Nguten, “Detecting interference among aspects”, 2008.

[Keck and Kuehn 1998] D.O. Keck and J. Kuehn, "The feature and service interaction problem
in telecommunications systems: A survey." Software Engineering, IEEE Transactions on 24,

no. 10, 1998, pp. 779-796.

[Kelly and Avizienis 1983] J.P.J. Kelly and A. Avizienis. A specification-oriented multi-version

software experiment, 1983.

[Kelly et al. 1995] B. Kelly, M. Crowther, J. King, R. Masson, and J. Delapeyre. Service
validation and testing. In Feature Interactions in Telecommunications Systems Ill, pp. 173—

184, October 1995.

[Kimbler and Sobirk 1994] K. Kimbler and D. Sobirk. Use case driven analysis of feature
interactions. In Feature Interactions in Telecommunications Systems, 10S Press, pp. 167-177,
May 1994.

[Kolberg et al. 2003] M. Kolberg, E.H. Magill, and M. Wilson. "Compatibility issues between
services supporting networked appliances." Communications Magazine, IEEE 41, no. 11,

2003, pp. 136-147.

129

[Krishnamurthi et al. 2004] S. Krishnamurthi, K. Fisher and M. Greenberg, “Verifying aspect

advice modularly”, 2004.

[Kulkarni et al. 2005] S.S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir. "Mechanical
verification of automatic synthesis of fault-tolerant programs." In Logic Based Program

Synthesis and Transformation, pp. 36-52. Springer Berlin Heidelberg, 2005.

[Laibinis and Troubitsyna 2004] L. Laibinis, and E. Troubitsyna, “Fault Tolerance in a Layered
Architecture: A General Specification Pattern in B”. In Software Engineering and Formal

Methods (SEFM ’04).

[Lanfang et al. 2012] T. Lanfang, T. Qingping, X. Jianjun and Z. Huiping, Formal Verification of
Signature-monitoring Mechanisms by Model Checking, ComSIS, Vol. 9, No. 4, 2012.

[Laprie 1990] J. Laprie, “Definition and Analysis of Hardware and Software Fault Tolerance,

1990.

[Leveson 1993] N. Leveson, An Investigation of the Therac-25 Accidents. IEEE Computer, Vol.

26, No. 7, July 1993, pp. 18-41.

[Leveson 1995] N. Leveson, "Medical devices: The Therac-25." Appendix of: Safeware:

System Safety and Computers, 1995.

[Leveson and Turner 1993] N. Leveson and C.S. Turner. An investigation of the Therac-25

accidents. IEEE Computer, 26(7), pp. 18—41, July 1993.

[Magee and Maibaum 2006] J. Magee and T. Maibaum, “Towards specification, modelling

and analysis of fault tolerance in self managed systems”. In SEAMS 2006.

[Marples and Magill 1998] D. Marples, and E.H. Magill. "The Use of Rollback to Prevent
Incorrect Operation of Features in Intelligent Network Based Systems." In FIW, pp. 115-134.

1998.

[McMillan 1993] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993

[Meng, Anita and Daniel 2009] Z. Meng, L. Anita and J.S. Daniel, “Analyzing Formal

Verification and Testing Efforts of Different Fault Tolerance Mechanisms”, 2009.

[Mine] Mine Pump Control System, http://www.ic.unicamp.br/“ra014861/FaTC2 [accessed
31/5/16].

130

[Mustafiz and Kienzle 2009] S. Mustafiz, and J. Kienzle. "DREP: A requirements engineering
process for dependable reactive systems." In Methods, Models and Tools for Fault Tolerance,

pp. 220-250. Springer Berlin Heidelberg, 2009.

[Nakamura et al. 2000] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo. "Feature

Interaction Filtering with Use Case Maps at Requirements Stage." In FIW, pp. 163-178, 2000.

[NuSMV] New Symbolic Model Checker, http://nusmv.fbk.eu/ [accessed 31/5/16].

[Owre et al. 1996] S. Owre, J. Rushby, N. Shankar, S. Rajan & M.K. Srivas, “PVS: Combining
Specification, Proof Checking, and Model Checking”, 1996.

[Parchas and deLemos 2004] E. Parchas and R. deLemos, An Architectural Approach for
Improving Availability in Web Services. In Third Int. Workshop on Architectures for

Dependable Systems, WADS 2004.

[Plath and Ryan 2000] M. Plath and M. Ryan. Defining Features for CSP: Reflections on the

Feature Interaction Contest. pp. 202-216, 2000.

[Pohl et al. 2006] K. Pohl, F.V. Linden, A. Metzger: Software Product Line Variability
Management. SPLC, 2006: 219

[Pradhan 1996] D.K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall, Inc.,
1996.

[ProB] ProB Modelling Language, https://www3.hhu.de/stups/prob/ [accessed 31/5/16].

[Randell 1975] B. Randell, “System Structure for Software Fault Tolerance,” IEEE

Transactions on Software Engineering, 1975, University of Newcastle UK.

[Reiff 2000] S. Reiff. Identifying resolution choices for an online feature manager. In Feature
Interactions in Telecommunications and Software Systems VI, 10S Press, pp. 113-128, May

2000.

[Romonovsky 2007] A. Romanovsky, “On exceptions, exception handling, requirements and
software lifecycle,” in 2007 Proceedings of the 10th IEEE International Symposium on High

Assurance Systems Engineering, Nov. 2007, pp. 301-301.

[Rubira et al. 2005] C.M.F. Rubira, R. delemos, G. Rodrigues M. Ferreira, and F.C. Filho.
"Exception handling in the development of dependable component-based

systems." Software: Practice and Experience 35, no. 3, 2005, pp. 195-236.

131

[Schauerhuber et al. 2007] A. Schauerhuber, W. Schwinger, E. Kapsammer, W.
Retschitzegger, M. Wimmer, and G. Kappel. "A survey on aspect-oriented modeling

approaches." Relatorio tecnico, Vienna University of Technology, 2007.

[Schmitt and Stefani 2004] A. Schmitt and J. Stefani, The Kell calculus: A family of higher-
order distributed process calculi. In Lecture Notes in Computer Science, Springer-Verlag.

Workshop of Global Computing, 2004.

[Scott 1983] R. Scott, “Data Domain Modelling of Fault-Tolerant Software Reliability,” Ph.D.

Thesis, North Carolina State University at Raleigh, 1983.

[Soares et al. 2012] C. Soares, R.S. Moreira, R. Morla, J. Torres, and P. Sobral. "Prognostic of
feature interactions between independently developed pervasive systems." In Prognostics

and Health Management (PHM), pp. 1-8, IEEE, 2012.

[Thomas 1993] M. Thomas, “The Story of the Therac-25 in LOTOS”, 1993.
http://www.dcs.gla.ac.uk/~muffy/papers/HIS1.ps [accessed 31/5/16].

[Tomoyuki, Tatsuhiro and Tohru 2001] Y. Tomoyuki, T. Tatsuhiro, K. Tohru” Automatic

verification of Fault Tolerance Using Model Checking”, 2001.

[Torres 2000] P.W. Torres, “Software fault tolerance: A tutorial”, NASA/TM-2000-210616,
2000.

[Turner 1993] C.S. Turner, "An Investigation of the Therac-25 Accidents." COMPUTER 18, no.
9162/93 (1993): 0700-001830300.

[Turner 2000] K.J. Turner, "Realising architectural feature descriptions using LOTOS.
"CALCULATEURS PARALLELES RESEAUX ET SYSTEMES REPARTIS 12, no. 2, 2000: pp. 145-188.

[UPPAAL] Integrated Modelling Tool, http://www.uppaal.org [accessed 31/5/16].

[Welch and Martin 2000] P. Welch, J. Martin. "Formal Analysis of Concurrent Java Systems"

Communicating Process Architectures, 2000.

[Weston et al. 2007] N. Weston, T. Francois, and A. Rashid. "Interaction analysis for fault-

tolerance in aspect-oriented programming", 2007, pp. 95-102.

[Yeung and Schneider, 2003] W.L. Yeung and S.A. Schneider: Formal Verification of Fault
Tolerant Software Design. The CSP Approach, 2003.

132

[Zhang et al. 2007] J. Zhang, F. Yang, and S.U. Sen. "Detecting feature interactions in web
services with model checking techniques." The Journal of China Universities of Posts and

Telecommunications 14, no. 3, 2007, pp. 108-112.

133

Appendix A
Pre-processor and NuSMV - The complete implementation

Home Automation

Al Purpose of Lex and Yacc

The following section A.2 depicts the Lex file for the components of the Home
Automation such as Light Controller and the Home Status Controller.

A.2 The Scanner: LC.flex

[* neesseaeec Scanner for the Finite State Machines Language ™ ***** ek

%o{
/*::===
C-Libraries and Token Definitions

el el gyl el ————— */

#include <stdio.h>
#include <string.h>

#include "y.tab.h" /* Token definitions and yylval*/

void yyerror(char *);

%}

[=============Token Definitions and Regular Expressions and Rules for FSM===
% %

[\\ARAN 1+ ;

component return COMPONENT;

states return STATES;

start return START;

events return EVENTS;

transitions return TRANSITIONS;

[a-zA-Z][a-zA-Z0-9_]* { yylval.str = strdup(yytext); return WORD; }
[0-97 {yylval.str = strdup(yytext); return NUMBER; }

=" return EQUALS;
return COLON;
" return LCB;
"} return RCB;
return COMMA,;
return SEMICOLON;
{ fprintf(stderr,"unexpected char '%c'\n", yytext[0]);
[* or yyerror("unexpected char '%c\n"); */
exit(-1);

}
%%
[=================================FND of Rules======================
[¥*===================== gybroutines =============================== ¥/
int yywrap()
{ return 1; }
/*

void yyerror(char *str)
{ fprintf(stderr,"%s\n",str);

}

int main()

{
[[======== open a file handle to a particular file:===================
FILE *fh = fopen("LCfsm.txt", "r"); /I make sure it's valid:
if ('fh) {

134

yyerror("l can't open LCfsm.txt");

return -1;
} /l set lex to read from it instead of defaulting to STDIN:
yyin = fh;
/' lex through the input:
yylex();
return O;
}
*/
A3 Input Configuration File: LCfsm.txt

The configuration file for the Light Controller and the Home Status Controller is
represented in A.3 as follows:

component = LC:
states = {AL_on, LBP };
events = {MD, NMD};
start = AL_on; MD;
transitions = {
AL on, ,MD, ,LBP;
AL _on, ,NMD, , AL_on;
LBP, , MD, , LBP;
LBP, ,NMD, , AL on;
|3
component = HSC:
states = {H_empty, H_occupied };
events = {MD, NMD};
start = H_empty; MD;
transitions = {
H_empty, , MD, _, H_occupied;
H_empty, , NMD, _, H_empty;
H_occupied, _, MD, _, H_empty;
H_occupied, _, NMD, _, H_occupied;

2
FTconfiguration
Version 3;

AT condition;
Recovery points;

A.4 The Parser: LC.yacc

%{/********************Parser for Simp|e flnlte state machine*********************/

=== ======= S S o o oo oo oo =—=—z=—c=T == == ==____===============*/
#include <stdio.h> /* For1/O */

#include <stdlib.h> /* For malloc */

#include <string.h> /* for strcmp */

#define YYSTYPE char* /* for string type */

int yylex(void);

const int len = 10; // max length of state and event names
constint len_t = 10; // max length of transitions

135

const int arraylen =10; // max number of states and events

const int arraylen_t = 20; // max number of transitions
constintlen_c=10; // max length of conditions (for transitions)
constintlen_a = 20; // max length of actions (for transitions)

char compName[len];

char startState[len];

char statearray[arraylen][len];
char eventarray[arraylen][len];

typedef struct {
charslflen]; // start state
charc[len_c]; // condition
char e[len]; // event
char aflen_a]; // action
chars2[len]; //end state
} Transition;
Transition transitionarray[arraylen_t];
inti=0;
char pos="s"; //will hold value s (states), i (initial), e (events) or t (transitions)
void yyerror(char *str);
int isValidState(char *str);
int isValidEvent(char *str);
int isValidTransition(Transition *t);
int isValidCondition(char *cond);
int isValidAction(char *action);
char* getTransition(Transition *t);
//#define DEBUG
%}
// tokens are strings or structs (representing transitions)
%union {
char *str;
// TO DO: struct for transitions
}
%token COMPONENT EQUALS WORD COLON STATES START EVENTS TRANSITIONS LCB RCB
COMMA SEMICOLON UNDERSCORE
%%

// ---- COMPONENT ----
component :
COMPONENT EQUALS componentName COLON componentParts
componentName :
WORD
{
#ifdef DEBUG
printf("#componentName\n");
#endif
strcpy(compName, yylval);
// print out component name
printf("COMPONENT:\n %s\n", compName);

}

136

componentParts:
states start events transitions

// ---- STATES ----
states :statelLabel EQUALS LCB list RCB SEMICOLON
{
#ifdef DEBUG
printf("#states\n");
#endif
// print out list of states
printf("STATES:\n");
int count;
for (count=0; count<i; count++)
printf(" s[%d] = %s\n", count, statearray[count]);

}
statelabel : STATES
{
#ifdef DEBUG
printf("#stateLabel\n");
#endif
// new component part so set pos to new value and make sure array index is reset
pos ='s';
i=0;
} ;

// ---- START STATE ----
start : startLabel EQUALS startName SEMICOLON

’

startLabel : START

{
#ifdef DEBUG
printf("#startLabel\n");
#endif

// new component part so set pos to new value and make sure array index is reset

pos ="i';

i=0;

} ;
startName : WORD

{

#ifdef DEBUG
printf("#startName\n");
#endif

// check word is in list of states

if (isValidState(yylval)) {
// success so print out start state
strcpy(startState, yylval);

printf("START STATE:\n %s\n", startState);

1

else {
yyerror("Error: start state not contained in list of states\n");
exit (-1);

137

ki
b
// ---- EVENTS ----
events :eventLabel EQUALS LCB list RCB SEMICOLON
{
#ifdef DEBUG
printf("#events\n");
#endif
// print out list of events
printf("EVENTS:\n");
int count;
for (count=0; count<i; count++)
printf(" e[%d] = %s\n", count, eventarray[count]);

} ;
eventlLabel : EVENTS
{
#ifdef DEBUG
printf("#eventLabel\n");
#endif
// new component part so set pos to new value and make sure array index is reset
pos ="'e';
i=0;

}

// ---- LIST OF NAMES ----
list :hame
| list COMMA name

’

name :WORD
{
#ifdef DEBUG
printf("#name\n");
#endif
// we’ve found a state or event name, so add to appropriate array
if (pos=='"s') {
strcpy(statearray[i], yylval);
}
else if (pos=='"e') {
strcpy(eventarray[il, yylval);
} //increment array counter
i++;
} ;
// ---- TRANSITIONS ----
transitions : transitionLabel EQUALS LCB listTransitions RCB SEMICOLON
{
#ifdef DEBUG
printf("#transitions\n");
#endif
// print out list of transitions
printf("TRANSITIONS:\n");
int count;
for (count=0; count<i; count++)

138

printf(" t[%d] = %s\n", count, getTransition(&transitionarray[count]));
P
transitionLabel : TRANSITIONS
{
#ifdef DEBUG
printf("#transitionLabel\n");
#endif
// new component part so set pos to new value and make sure array index is reset
pos ='t';
i=0;
}
listTransitions : transition
| listTransitions SEMICOLON transition
transition:
slname COMMA condition COMMA ename COMMA action COMMA s2name
{
#ifdef DEBUG
printf("#transitions\n");
#endif
// increment array counter
i++;

}

// ---- TRANSITION ELEMENTS ----
slname: WORD
{
#ifdef DEBUG
printf("#sname\n");
#endif
// we’ve found a state name, so check it’s valid
if (lisValidState(yylval)) {
yyerror("Error: state not contained in list of states:");
yyerror(yyval);
exit (-1);
}
strcpy(transitionarray[i].s1, yylval);
}
condition : UNDERSCORE
{// still to implement
#ifdef DEBUG
printf("#condition\n");
#endif
strcpy(transitionarray[il.c, " ");
} ;
ename : WORD
{
#ifdef DEBUG
printf("#ename\n");
#endif

139

// we’ve found an event name, so check it’s valid
if (lisValidEvent(yyval)) {
yyerror("Error: event not contained in list of events:");
yyerror(yyval);
exit (-1);
}

strcpy(transitionarrayl[i].e, yylval);

}
action : UNDERSCORE
{// still to implement
#ifdef DEBUG
printf("#action\n");
#endif
strcpy(transitionarray(il.a,

}

nony,
’

s2name: WORD
{
#ifdef DEBUG
printf("#sname\n");
#endif
// we’ve found a state name, so check it’s valid
if (lisValidState(yylval)) {
yyerror("Error: state not contained in list of states:");
yyerror(yyval);
exit (-1);
ki
strcpy(transitionarray[i].s2, yylval);

}
// ---- END RULES ----
%%
extern FILE *yyin;
extern int yylex();
extern int yyparse();
int isValidState(char *str)
{
int count;
for (count=0; count<arraylen; count++) {
//printf("str is -%s-; array element %d is -%s\n",str,count,statearray[count]);
if (strcmp(str, statearray[count]) == 0)

return 1;
1
return 0;
}
int isValidEvent(char *str)
{
int count;

for (count=0; count<arraylen; count++) {
//printf("str is -%s-; array element %d is -%s\n",str,count,statearray[count]);
if (strcmp(str, eventarray[count]) == 0)

140

return 1;

1
return 0;
}
int isValidTransition(Transition *t)
{
if (isValidState(t->s1)
&& isValidCondition(t->c)
&& isValidEvent(t->e)
&& isValidAction(t->a)
&& isValidState(t->s2))
return 1;
else
return O;
}
int isValidCondition(char *cond)
{ //still to implement
return 1;
}
int isValidAction(char *action)
{ //still to implement
return 1;
}

char *getTransition(Transition *t)
{ char *trans;
trans = (char *)malloc(len_t);
strcpy(trans, t->s1);
strcat(trans, ", ");
strcat(trans, t->c);
strcat(trans, ", ");
strcat(trans, t->e);
strcat(trans, ", ");
strcat(trans, t->a);
strcat(trans, ", ");
strcat(trans, t->s2);
//printf("printTransition returning %s\n", trans);
return trans;

}
void yyerror(char *str)
{
fprintf(stderr,"%s\n",str);
}
int main()
{

// open a file handle to a particular file:
FILE *fh = fopen("LCfsm.txt", "r");
// make sure it's valid:

if (Ifh) {
yyerror("Error: | can't open LCfsm.txt");
return -1;
}

141

// set lex to read from it instead of defaulting to STDIN:
yyin = fh;
do{

yyparse();
} while (Ifeof(yyin));
return O;

A.5 The compilation sequence:

Yacc —d myfile.yacc

Flex myfile.|

cc lex.yy.c y.tab.c —o myfile.exe —Ifl
./myfile.exe <config.txt

A.6 The Output Files:

Light Controller NuSMV Code
What follows is the input for NuSMV for the Light Controller with the recovery block
fault tolerance. This code is automatically generated by Lex and Yacc.

MODULE main

VAR

state: {AL_on, LBP};

RP : {AL_on, LBP};

version : 1..3;

-- sensing being examined

sensing : {MD, NMD};

-- true if AT is passed

ATpassed: boolean;

--RP: {None, AL_on, LBP};

ASSIGN

init(state) := AL_on;

next(state) := case

state = AL_on & (sensing = NMD & ATpassed = TRUE) : LBP;
state = LBP & (sensing = MD & ATpassed = TRUE) : AL_on;
state = AL_on & (ATpassed = FALSE) : AL_on;
state = LBP & (ATpassed = FALSE) : LBP;
TRUE : {AL_on, LBP};

esac;

ASSIGN

--init(RP) := None;

next(RP) := case

state = AL_on & (ATpassed = FALSE) : AL_on;
state = LBP & (ATpassed = FALSE) : LBP;
TRUE : {AL_on, LBP};

esac;

ASSIGN

init(version) := 1;

next(version) := case

ATpassed = FALSE & version < 3 : version+1;
--version=3:1;

TRUE : {version};

142

Home Status Controller NuSMV Code
What follows is the input for NuSMV for the Home Status Controller with the
recovery block fault tolerance. This code is automatically generated by Lex and Yacc.

MODULE main

VAR

state: {H_empty, H_occupied};

RP : {H_empty, H_occupied};

version : 1..3;

-- sensing being examined

sensing : {MD, NMD};

-- true if AT is passed

ATpassed: boolean;

--RP: {None, AL_on, LBP};

ASSIGN

init(state) := H_empty;

next(state) := case

state = H_empty & (sensing = MD & ATpassed = TRUE) : H_occupied;
state = H_occupied & (sensing = NMD & ATpassed = TRUE) : H_empty;
state = H_empty & (ATpassed = FALSE) : H_empty ;
state = H_occupied & (ATpassed = FALSE) : H_occupied ;
TRUE : {{H_empty, H_occupied}};

esac;

ASSIGN

--init(RP) := None;

next(RP) := case

state = H_empty & (ATpassed = FALSE) : H_empty;

state = H_occupied & (ATpassed = FALSE) : H_occupied;
TRUE : {H_empty, H_occupied};

esac;

ASSIGN

init(version) := 1;

next(version) := case

ATpassed = FALSE & version < 3 : version+1;
--version=3:1;

TRUE : {version};

esac;

Traces of Home Status Controller running in NuSMV

The figure below shows the traces of Home status controller with acceptance test fault

tolerance.

143

Command Prompt - nusmv -int hscat.smv = | B S

ATpassed = FALSE
NuSMU > simulate —» -k 3
roooeooeex Simulation Starting From State 1.1 FEIEIIEIIIIE
NuSMU > show_traces —v
<t —— HiduunniiggEiiiid Trace number: 1 Hi#HHHHERBHERERHERE —>
Trace Description: Simulation Trace
Trace Type: Simulation
—> State: 1.1 <-
state = H_empty
RP = H_empty
version = 1
sensing = NMD
ATpassed = FALSE
—> State: 1.2 <-
state = H_empty
RP = H_empty
version = 2
sensing = NMD
ATpassed = FALSE
—> State: 1.3 <-
state = H_empty
RP = H_empty
version = 3
sensing = MD
ATpassed = TRUE
—> State: 1.4 <-
state = H_occupied
RP = H_empty
version = 3
sensing = MD
ATpassed = FALSE
NuSMU >

A7 NuSMV model for the Composition of the Light Controller and the Home Status
Controller

MODULE main

VAR

Lcstate: {AL_on, LBP};

Hscstate: {H_empty, H_occupied};
RP : {AL_on, LBP, H_empty, H_occupied};
version : 1..3;

-- sensing being examined

sensing : {MD, NMD};

-- true if AT is passed

ATpassedl: boolean;

ATpassed?2 : boolean;

ASSIGN

init(Hscstate) := H_empty;

next(Hscstate) := case

Hscstate = H_empty & (sensing = MD & ATpassedl = TRUE & ATpassed2 = TRUE) : H_occupied;
Hscstate = H_occupied & (sensing = NMD & ATpassedl = TRUE & ATpassed2 = TRUE) :H_empty;
Hscstate = H_empty & (ATpassedl = FALSE | ATpassed2 = FALSE) : H_empty ;

Hscstate = H_occupied & (ATpassed1 = FALSE | ATpassed2 = FALSE) : H_occupied ;

TRUE : {{H_empty, H_occupied}};

esac;

ASSIGN

init(Lcstate) := AL_on;

next(Lcstate) := case

Lcstate = AL_on & (sensing = MD & ATpassedl = TRUE & ATpassed2 = TRUE) : LBP;

Lcstate = LBP & (sensing = NMD & ATpassedl = TRUE & ATpassed2 = TRUE) : AL_on;

Lcstate = AL_on & (ATpassedl = FALSE | ATpassed2 = FALSE) : AL_on;

144

Lcstate = LBP & (ATpassedl = FALSE | ATpassed2 = FALSE) : LBP;

TRUE : {AL_on, LBP};

esac;

ASSIGN

--init(RP) := None;

next(RP) := case

Lcstate = AL_on & (ATpassedl = FALSE | ATpassed2 = FALSE) : AL_on;
Lcstate = LBP & (ATpassedl = FALSE | ATpassed2 = FALSE) : LBP;

Hscstate = H_empty & (ATpassedl = FALSE | ATpassed2 = FALSE) : H_empty;
Hscstate = H_occupied & (ATpassed1 = FALSE | ATpassed2 = FALSE) : H_occupied;
TRUE : {H_empty, H_occupied};

esac;

ASSIGN

init(version) := 1;

next(version) := case

ATpassedl = FALSE & version < 3 : version +1;
ATpassed2 = FALSE & version < 3 : version + 1;
--version=3:1;

TRUE : {version};

esac;

/* R R R R R R J— J— R R R

A.8 CTL and LTL Properties for Feature Interaction Analysis

——%*

What follows are the logical properties written in CTL to check the feature interactions based

on the classifications presented in Chapter 4.

SPEC AG !(LC.state = AL_on & HSC.state = H_occupied)
SPEC AG!(LC.state = LBP & HSC.state = H_empty)

SPEC AG((LC.state = AL_on &!c,¢) -> AX(LC.state = AL_on))
SPEC AG((LC.state = LBP & !c,c) -> AX(LC.state = LBP))

/*===
A.9 Introduction of a new component ‘Climate Control’ in Home Automation
/*::::::::::::::::::::::::::Configuration File=========================

component = CC:

states = {wind_open, wind_clos };

temp: 18..21;

start = wind_open; 18;

transitions = {
wind_open, _, temp <18, _, wind_close;
wind_open, , 18<temp<21 _, wind_open,;
wind_close, _, temp>21, _, wind_close;
wind_close, , 18<temp<21, _, wind_close;

|

Checking Logic Properties for Feature Interaction

a) SPEC AG !((ClimateControl.state = Window_open & MD) -> AF(Alarm_on))

b) SPEC AG (MD -> IAF(Alarm.state = on & (LC.state = LBP & HSC.state = H_occupied)))

145

Appendix B

Therac-25 — Additional Information

B.1 Input Configuration File: Therac.txt

The configuration file for the Interface component of the Therac-25 is as follows:

/* Configuration File */

component = Therac_Interface:

state : {Edit, XDataEntry, EDataEntry, XBeamReady, EBeamReady, Treatment_Ad};

events = {XSelect, ESelect, Fire, Reset, change, enter};

start = Edit;

transitions = {
Edit, _, XSelect, _, XDataEntry;
Edit, _, ESelect, _, EDataEntry;
XDataEntry , enter, XBeamReady;
XDataEntry, change,Edit;
EDataEntry, enter, EBeamReady;
EDataEntry, change, Edit;
XBeamReady, change, XDataEntry;
EBeamReady, change, EDataEntry;
XBeamReady, Fire, Treatment_Ad;
EBeamReady, Fire, Treatment_Ad;
Treatment_Ad, Reset, Edit;}

/* End Config File /
B.2 The Output File: Therac-25 NuSMV Code

The pre-processor generates the following output file (suitable as the input file for NuSMV) based on
the specification of the Interface component. This component is further composed with other
components of the Therac-25 such as Beam Level, Spreader and the Beam Fire.

MODULE T1(command) --//Interface
VAR
state : {Edit, XDataEntry, EDataEntry, XBeamReady, EBeamReady, Treatment_Ad};
ASSIGN
init(state) := Edit;
next(state) := case
state = Edit & command = XSelect : XDataEntry;
state = Edit & command = ESelect : EDataEntry;

state = XDataEntry & command = enter: XBeamReady;
state = XDataEntry & command = change: Edit;

state = EDataEntry & command = enter: EBeamReady;
state = EDataEntry & command = change: Edit;

state = XBeamReady & command = change:XDataEntry;

146

state = EBeamReady & command = change:EDataEntry;

state = XBeamReady & command = Fire: Treatment_Ad;
state = EBeamReady & command = Fire: Treatment_Ad;
state = Treatment_Ad & command = Reset : Edit;

TRUE : state;

esac;

MODULE T2(command) --//BeamLevel
VAR
state : {Neither, XSet, ESet};
Time: 0..8;
--//event : {Fire, Reset};
ASSIGN
init(state) := Neither;
next(state) := case
state = Neither & command = XSelect : XSet;
state = Neither & command = ESelect : ESet;
state = XSet & command = ESelect & Time >=8 : ESet;
state = ESet & command = ESelect & Time >=8: XSet;
state = XSet & command = ESelect & Time <8 : XSet;
state = ESet & command = ESelect & Time <8: ESet;
TRUE : state;
esac;

MODULE T3(command) --//Spreader//
VAR
state : {OutOfPlace, InPlace};
ASSIGN
init(state) := OutOfPlace;
next(state) := case

state = OutOfPlace & command = XSelect : InPlace;
state = InPlace & command = ESelect : OutOfPlace;

TRUE : state;

esac;
MODULE T4(command) --//BeamFire//
VAR

state : {waiting, Fired};

ASSIGN
init(state) := waiting;
next(state) := case

state = waiting & command = Fire : Fired;
state = Fired & command = Reset : waiting;

TRUE : state;
esac;
MODULE main
VAR
command : {XSelect, ESelect, Fire, Reset, change, enter};

Interface : T1(command);

BeamLevel :T2(command);
Spreader: T3(command);

147

BeamFire: T4(command);

B.3 Interface Component with N-version Programming Fault Tolerance

MODULE T1(command) --//Interface
VAR
state : {Edit, XDataEntry, EDataEntry, XBeamReady, EBeamReady, Treatment_Ad};
ASSIGN
init(state) := Edit;
next(state) := case
state = Edit & command = XSelect : XDataEntry;
state = Edit & command = ESelect : EDataEntry;
state = XDataEntry & command = enter : XBeamReady;
state = XDataEntry & command = change: Edit;
state = EDataEntry & command = enter : EBeamReady;
state = EDataEntry & command = change: Edit;
state = XBeamReady & command = change:XDataEntry;
state = EBeamReady & command = change:EDataEntry;
state = XBeamReady & command = Fire: Treatment_Ad;
state = EBeamReady & command= Fire: Treatment_Ad;
state = Treatment_Ad & command = Reset : Edit;
TRUE : state;
esac;

MODULE T2(command) --//BeamLevel
VAR
state : {Neither, XSet, ESet};
Time: 0..8;
--//event : {Fire, Reset};
ASSIGN
init(state) := Neither;
next(state) := case
state = Neither & command = XSelect : XSet;
state = Neither & command = ESelect : ESet;
state = XSet & command = ESelect & Time >=8 : ESet;
state = ESet & command = ESelect & Time >=8: XSet;
state = XSet & command = ESelect & Time <8 : XSet;
state = ESet & command = ESelect & Time <8: ESet;
TRUE : state;
esac;

MODULE T3(command) --//Spreader//
VAR
state : {inplace, outofplace};
ASSIGN
init(state) := outofplace;
next(state) := case
state = outofplace & command = XSelect : inplace;
state = inplace & command = ESelect : outofplace;
TRUE : state;
esac;

MODULE T4(command) --//BeamFire//
VAR

148

state : {waiting, Fired};

ASSIGN

init(state) := waiting;

next(state) := case
state = waiting & command = Fire : Fired;
state = Fired & command = Reset : waiting;

TRUE : state;
esac;
MODULE main
VAR
command : {XSelect, ESelect, Fire, Reset, change, enter};
Rf:{7,0};
ASSIGN

--init(command) :=
next(command) := case
Rf = 7 : XSelect;
Rf =0 : ESelect;
TRUE : {XSelect, ESelect};

esac;
init(Rf) := 0;
next(Rf) := case
Rf =0 & command = XSelect : 7;
Rf =7 & command = ESelect : 0;
TRUE : Rf;

esac;

VAR
Interface : T1(command);
BeamLevel :T2(command);
Spreader: T3(command);
BeamFire: T4(command);

B.4 CTL and LTL Properties for Feature Interaction Analysis

CTL Properties to check the safe condition and feature interaction analysis for the Therac-25 software:
--Safety Property

SPEC AG !(BeamLevel.state = XSet & Spreader.state = OutOfPlace & BeamFire.state = Fired)

SPEC AG ! (BeamlLevel.state = ESet & Interface.state = EBeamReady & Spreader.state = InPlace &
BeamFire.state = Fired)

SPEC AG ! (BeamLevel.state = ESet & Interface.state = XBeamReady)

SPEC AG ! (BeamLevel.state = XSet & Interface.state = EBeamReady)

SPEC AG (BeamLevel.state = XSet & Spreader.state = OutOfPlace)
SPEC AG (SelectX — AF(BeamLevel.state = XSet & Spreader.state = InPlace)

SPEC AG (SelectE — AF(BeamLevel.state = ESet & Spreader.state = OutOfPlace)

149

B.5 Trace of the Interface Component

The output shows that the logical properties are true as expected.

r

Command Prompt - nusmv -int machine.smv

NuSMU > check_ctlspec

—— specification AG (EX TRUE> is true

—— specification AG ?{((BeamLevel.state = XSet

eamFire.state = Fired) is false

—— as demonstrated by the following execution

Trace Description: CTL Counterexample

Trace Type: Counterexample

—-> State: 1.1 <-
command = XSelect
Interface.state
BeamLevel.state
Spreader.state
BeamFire.state

—> State: 1.2 <-
command = Fire
Interface.state RDataEntry
BeamLevel.state KSet
Spreader.state = InPlace

—> State: 1.3 <-
command = ESelect
BeamFire.state = Fired

—> State: 1.4 <-
command = XSelect
Spreader.state = OQutOfPlace

NuSMU >

Edit

Neither
OutOfPlace
waiting

& Spreader.state = OutOfPlace) & B

sequence

150

