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Abstract—Code virtualization built upon virtual machine (VM)
technologies is emerging as a viable method for implementing
code obfuscation to protect programs against unauthorized
analysis. State-of-the-art VM-based protection approaches use
a fixed scheduling structure where the program follows a single,
static execution path for the same input. Such approaches,
however, are vulnerable to certain scenarios where the attacker
can reuse knowledge extracted from previously seen software to
crack applications using similar protection schemes. This paper
presents DSVMP, a novel VM-based code obfuscation approach
for software protection. DSVMP brings together two techniques to
provide stronger code protection than prior VM-based schemes.
Firstly, it uses a dynamic instruction scheduler to randomly
direct the program to execute different paths without violating
the correctness across different runs. By randomly choosing
the program execution paths, the application exposes diverse
behavior, making it much more difficult for an attacker to
reuse the knowledge collected from previous runs or similar
applications to perform attacks. Secondly, it employs multiple
VMs to further obfuscate the relationship between VM bytecode
and their interpreters, making code analysis even harder. We have
implemented DSVMP in a prototype system and evaluated it using
a set of widely used applications. Experimental results show that
DSVMP provides stronger protection with comparable runtime
overhead and code size when compared to two commercial VM-
based code obfuscation tools.

Index Terms—Code virtualization; Code Obfuscation; Dy-
namic cumulative attack

I. INTRODUCTION

Unauthorized code analysis and modification based on re-
verse engineering is a major concern for software companies.
Such attacks can lead to a number of undesired outcomes,
including cheating in games, unauthorized used of software,
pirated pay-tv etc. Industry is looking for solutions for this
issue to deter reverse engineering of software systems. By
making sensitive code difficult to be traced or analyzed, code
obfuscation is a potential solution for the problem.

Code virtualization based on a virtual machine (VM) is
emerging as a promising way for implementing code obfus-
cation [1], [2], [3], [4], [5], [6], [7]. The underlying principal
of VM-based protection is to replace the program instructions
with virtual bytecodes which attackers are unfamiliar with.
These virtual bytecodes will then be translated into native ma-
chine code at runtime to execute on the underlying hardware
platform. Using a VM-based scheme, the execution path of the
obfuscated code is controlled by a virtual instruction scheduler.
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A typical scheduler consists of two components: a dispatcher
that determines which bytecode is ready for execution, and a
set of bytecode handlers that translate bytecodes into native
machine code. This process replaces the original program
instructions with bespoke bytecodes, allowing developers to
conceal the purpose or logic of sensitive code regions.

Prior work on VM-based software protection primarily
focuses on making a single set of bytecodes more complicate
and uses one virtual instruction scheduler. Such approaches
rely on the assumption that the scheduler and the bytecode
instruction set are difficult to be analyzed in most practical
runtime environments. However, research has shown that is an
unreliable assumption [8] under certain scenarios (referred as
cumulative attacks in this paper) where an adversary can easily
reuse knowledge obtained from other applications protected
with the same scheme to preform reverse engineering. To
protect software against cumulative attacks, it is important
to have a certain degree of uncertainty and diversity during
program execution [9].

This paper presents DSVMP (dynamic scheduling for VM-
based code protection), a novel VM-based code protection
scheme to address cumulative attacks. Our key insight is
that it will be more difficult for the attacker to analyze the
implementation if the program behaves differently in different
runs. DSVMP achieves this by introducing rich uncertainty
and diversity into program execution. To do so, it exploits
a flexible, multi-dispatched scheme for code scheduling and
interpretation. Unlike prior work where a program always
follows a single, fixed execution path for the same input across
different runs, the DSVMP scheduler directs the program to
execute a randomly selected path when executing a pro-
tected code region. As a result, the program follows different
execution paths in different runs and has non-deterministic
behavior. Our carefully designed scheme ensures that the
program will produces a deterministic output for the same
input despite the execution paths look differently from the
attacker’s perspective. To analyze software protected under
DSVMP, the adversary is forced to use a large number of trail
runs to understand how the program algorithm works. This
significantly increases the cost of code reverse-engineering.

In addition to dynamic instruction scheduling, DSVMP
brings together two other techniques to increase diversity of
program behaviour. Firstly, DSVMP provides a rich set of
bytecode handlers, which are implemented using different al-



gorithms and data structures, to translate a bytecode instruction
to native code. Handlers for a particular bytecode all generate
an identical output for the same input, but their execution
paths and data accessing patterns are different from each
other. During runtime, our VM instruction scheduler randomly
selects an bytecode handler to translate a virtual instruction
to the native machine code. Since the choice of handlers is
randomly determined at runtime for each bytecode instruction
and the implementation of different handlers are different,
the dynamic program execution path is likely to be different
in different runs. Secondly, DSVMP employs a multi-VM
scheme so that various code regions can be protected using
different bytecode instruction sets and VM implementations.
This further increases diversity of the program, making it
even harder for an adversary to analyze the software behavior
or reuse knowledge extracted from other software products
(as different products are likely to be protected by different
bytecodes instructions and VM implementations).

The whole is greater than the sum of the parts. These tech-
niques, putting together, enable DSVMP to provide stronger
code protection than any of the VM-based techniques seen so
far. We have evaluated DSVMP on four widely used applica-
tions: md5, aescrypt, bcrypt and gzip. Experimental
results show that DSVMP provides stronger protection with
comparable runtime overhead and code size when compared
to two commercial VM-based code obfuscation tools: Code
Virtualizer [2] and VMProtect [3].

This paper makes the following contributions:
• It presents a dynamic scheduling structure for VM-based

code obfuscation to protect software against dynamic
cumulative attacks.

• It is the first to apply multiple VMs to enhance diversity
of code obfuscation.

• It demonstrates that the proposed scheme is effective in
protecting real-world software applications.

II. BACKGROUND

VM-based code obfuscation transforms native instructions
of protected code regions to virtual instructions. Virtual in-
structions are encoded into bytecodes which will be translated
to native machine code at runtime. In the process of protection,
a new VM section is inserted to the end of target program and
the entry point of a protected code region is redirected to a
function call to the VM. Classical VM bytecodes are based on
a stack machine model where computation is performed using
stack operations like push and pop. When entering the VM,
context of the native program, which includes information such
as local variables, function arguments, return address etc., will
be stored in a VM memory space called VMContext consisting
of a number of virtual registers. When exiting the VM, the
native context will be restored. At the heart of the VM is an
interpreter with two components: a dispatcher to determine
which bytecode instruction is ready for execution and a set
of bytecode handlers to translate a bytecode to naive machine
code. The idea of VM-based code obfuscation is to use a set of
bespoke bytecode instructions to make it harder to understand
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Figure 1: Diversity affects effectiveness of the attack. In this example, a
dark small square represents reusable attacking knowledge. Diverse program
execution increases the difficulty of attacks.

how the program works by tracking the program execution.
Such protection will become invalid once the adversary figures
out how bytecodes are mapped into native code.

Cumulative attacks, Figure 1 illustrates how an attacker
can reuse knowledge extracted from the previous runs of the
same application or other applications (that are protected using
the same VM scheme) to perform attack. This is referred as
cumulative attacks in this paper. In the first scenario, the soft-
ware always follows the same execution path across multiple
runs, and a few runs will allow an attacker to obtain sufficient
knowledge about the program behavior. In the second scenario,
the program execution path changes across different runs. As
such, it will take longer and many more runs to gather enough
information to perform the attack. As can be seen from this
simple illustration, diversity keys to protect against dynamic
cumulative attacks. This work aims to achieve this purpose.

III. THE ATTACK MODEL

In this work, we assume that the adversary holds an exe-
cutable binary of the target software and can run the program
in a malicious host environment [10]. We also assume the
adversary has the tools and skills to access memory and
registers, trace program instructions, and modify the program
instructions and control flows using tools like “IDA” [11],
“Ollydbg” [12] and “Sysinternals suite” [13]. The aim of the
adversary is to completely reverse the internal implementation
of the target program. Our goal is to increase the difficulties in
terms of time and efforts for an adversary to reverse the target
program implementation using VM-based code obfuscation.

A classical approach to reverse engineer a VM-protected
program typically follows three steps [8], [14] described as
follows. The first step is to reverse engineer the two es-
sential components of a VM interpreter: the dispatcher and
bytecode handlers. To do so, the attacker needs to locate
these components and analyze how the dispatcher schedules
bytecode instructions. The second step is to understand how
each bytecode is mapped to machine code. The third step is
to use knowledge obtained in the first two steps to recover
the original logical implementation of the target program. A
skilled attacker is able to use knowledge gathered from parts
of the program to analyze other protected regions of the same
program or other applications protected using the same VM
scheme and bytecode instructions. In this work, we assume



the attacker has the necessary tools and skills to implement
the above attacks.

IV. CODE PROTECTION SCHEME OF DSVMP

To address the problem of cumulative attacks, we want
to introduce a certain degree of diversity and uncertainty
into program execution. This is achieved through using a
diversified scheduling structure (Section V) and multiple VMs
(Section VI) in DSVMP. Like other VM-based protection
schemes, DSVMP focuses on protecting critical code regions to
minimize the runtime overhead. Figure 2 depicts the system
architecture of DSVMP. Code protection of DSVMP follows
several steps described as follows:

Code translation: DSVMP takes in a compiled program
binary and does not require having access to the source
code. Code segments need to be protected are translated into
native machine instructions (e.g. x86 instructions) using a
disassembler (Step 1 ), which will then be mapped into a
set of virtual instructions (Step 2 ).

Diversifying: As a departure from prior work on VM-
based code obfuscation, DSVMP employs multiple VM in-
struction scheduling policies where each scheduler can have
more than one dispatcher and one handler can be scheduled by
another handler and each virtual instructions can be interpreted
by more than one handlers. A set of initial handlers will be
randomly obfuscated to provide stronger protection for the
particular code region (Step 3 ). Furthermore, each handler
will be obfuscated VMNum (VMNum >= 1) times by
using the deformation engine, resulting in VMNum sets of
semantically equivalent handlers with different implementa-
tions and control flows (Step 4 ). Then, virtual instructions
are encoded into 2∗VMNum sets of bytecodes. For each set
of handlers, there will be two sets of corresponding bytecodes
(details in Section V-B) (Step 5 ). Subsequently, DSVMP
constructs multiple VMs, where each VM contains one set
of handlers and two sets of bytecodes (Step 6 ).

Code generation: Finally, a new section will be inserted
into the program binary, which contains VMNum VMs and
their components such as dispatchers, VMContext etc. It also
fills the original code region with junk instructions (Step 7 ).

This is an overview of our approach. We describe the
implementation of DSVMP in more details in the following
sections.

V. DSVMP SCHEDULING STRUCTURE

The DSVMP VM scheduler uses multiple dispatchers to
determine which bytecode instruction should be interpreted at
given time. A unique design of DSVMP is that the dispatcher
used to schedule bytecodes will be dynamically changed at
execution time. To further increase the diversity of program
behaviour, DSVMP also uses multiple bytecode instruction sets
and bytecode handlers.

A. Multiple bytecode handlers
In classical VM-based code obfuscation, a single dispatcher

is responsible for fetching a bytecode instruction and deter-
mining which bytecode handler should be used to decode the
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Figure 2: Offline code protection process. DSVMP takes in a program binary.
For each protected code region, it translates native instructions into bytecodes.
Next, it generates multiple bytecode handlers that are semantically equivalent
but implemented in different ways. It then generates the corresponding
driver-data and multiple VMs. Finally, the generated VMs and associated
components will be inserted into the program binary and fills the original
code region with junk instructions.

1 l o d s b y t e / word / dword p t r ds : [ e s i ]
2 . . . . . .
3 push eax
4 r d t s c ;−−−−−−−−−−−−−−−−−−−−−−−−
5 mov ecx , 2
6 d i v ecx ; s t r u c t u r e c o n t r o l u n i t
7 cmp edx , 0
8 j z l a b e l ;−−−−−−−−−−−−−−−−−−−−−−−−
9 l o d s dword p t r ds : [ e s i ]

10 . . . . . . ; t o t h e n e x t h a n d l e r
11 add dword p t r ds : [ e d i +48] , eax
12 jmp dword p t r ds : [ e d i +48]
13 l a b e l : push ebx ;−−−−−−−−−−−−−−−−−−−−−−−−
14 d i v b l
15 movzx eax ,AH ; r e t u r n t o a d i s p a t c h e r
16 add eax , 9 dH

Figure 3: Each bytecode handler has a control unit that randomly determines
whether the control after exiting the handler should be given to a dispatcher
or an alternative bytecode handler.

bytecode. Because each bytecode instruction is decoded by a
fixed handler, an adversary can easily work out the mapping
of a bytecode instruction and its handler. From the mapping,
the adversary can correlate the native machine code to each
bytecode to analyze the program behavior.

To overcome this issue, for each bytecode handler, we create
a number of alternative implementations which all produce
an equivalent output for the same input. The alternative
implementations, however, are implemented in different ways
using e.g. different algorithms, data structures or obfuscation
methods.

We insert a control unit at the end of each bytecode handler.
Before exiting a bytecode handler, the control unit randomly
determines whether the control should be given to a dispatcher
or another handler. Figure 3 shows an example of a DSVMP
bytecode handler’s control unit. The control unit (lines 4-8)
randomly determines to execute the code at line 9 or line 13.
At line 9 , the “lods” (a load operand in the x86 assembly)
instruction fetch an offset value to calculate the address of
an alternative bytecode handler. By contrast, the instruction at
line 13 will return to a dispatcher randomly.
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Figure 4: Using multiple dispatchers and insert a control unit to handlers
increases the diversity of program executions. In this example, the type of
handlers and the order of them are called are different across execution runs.

B. Multiple bytecode instruction sets and dispatchers

The bytecode instruction set determines the execution order
of handlers. Compared to a single bytecode instruction set,
multiple bytecode instruction sets provide stronger protection
because the execution path of handlers will be more dynamic.
Hence, DSVMP uses multiple bytecode instruction sets.

Our current implementation provides two bytecode instruc-
tion sets for each VM, DriverData1 and DriverData2. The
DriverData1 is a standard bytecode instruction sets where
each bytecode considers of the handler’s serial number (a ID
indicates which handler should use to interpret the virtual in-
struction) and the operand. DriverData2 has a different format
compared to DriverData1. The first data of DriverData2 is
the handler’s serial number, The rest of DriverData2 include
the offset value between two adjacent handlers (for example,
handler21 and handler43 in Figure 4) and the operand. Recall
that a control unit is inserted to the end of each handler. Before
exiting the handler, if the control unit chooses to execute the
next handler, it will fetch the corresponding offset value from
DriverData2. These bytecodes are all encrypted in our system.

DSVMP also provides multiple dispatchers to further in-
crease the diversity of program execution. As an example, con-
sidering Figure 4 that shows two possible program execution
using three dispatchers. As can be seen from the diagram,
the handler also can schedule another handler and the type
of handlers to be invoked and he order they are called are
different in two different execution runs. Therefore, knowledge
about the program control flow extracted from the first run
does not apply to the second one.

VI. MULTIPLE VMS

In contrast to classical VM-based obfuscation approaches
that uses a single VM (SVM), DSVMP uses multiple VMs.
Multiple VMs offer different sets handlers and bytecode
instruction sets. Under such settings, bytecode instructions can
be scheduled by different VMs and a bytecode instruction can
be interpreted by more than one handler. Therefore, there will
be more than one mapping from a bytecode instruction to
handlers. Together with the multiple bytecode instruction sets,
multiple VMs further increase the diversity and uncertainly of
program execution.
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Figure 5: The structure of multiple VMs. Each VM has one set of unique
handlers and two sets of bytecode instructions, DriverDataSetN1 and Driver-
DataSetN2.

1 STARTSDK
2 00401036 mov eax , ebx
3 00401038 sub eax , 03
4 ENDSDK

Figure 6: Example assembly code snippet for a code region to be protected.

To schedule the multiple VMs, we need to alter the dis-
patcher structure. The dispatcher will need to determine which
VM to use at runtime. To do so, we first calculate the address
offet between the current VM and the VM to be used. We
then store the value of the register ESI (a register points to
the address of the current bytecode instruction) and change the
pointer of the new bytecode address according to the offset
value. Figure 5 shows the multiple VM structure. The VM,
the set of bytecode handlers and bytecode instructions will
be randomly switched across different code regions in both a
single execution and across different program runs.

VII. EXAMPLE

We use the x86 code snippet shown in Figure 6 as an
example to illustrate how DSVMP operates. STARTSDK and
ENDSDK are used to mark the begin and end of the code region
respectively, and 00401036 and 00401038 are the address the
two assembly instructions.

A. Process of protection

Firstly, DSVMP automatically inserts two additional in-
structions (“push 0x40103b” and “ret”) after two key
instructions in order to jump back to execute the native code
after the protected code region. It then converts the native
instructions to virtual instructions according to a translation
convention. The resulted virtual instructions is given in Table I.
DSVMP’s bytecode instructions are based on a stack machine
model. Here the load instruction is used to push operands
into the stack, and the store instruction is used to pop results
out from the stack and store the result to the virtual context
(VMContext).

After translating the native code to virtual instructions, we
use the deformation engine to transform the initial bytecode
handlers set. For this example, we generate two sets of
bytecode handlers which are semantically equivalent but are
implemented in different ways. We also randomly shuffle
the serial numbers of these handlers, resulting in two new
sets of handlers: HAS1 and HAS2. Each set of bytecode
handlers is associated with two bytecode instruction sets:



Table I: Generated virtual instructions for the example shown in Figure 6.

Instr.1 Instr.2 Instr.3 Instr.4
NI mov eax, ebx sub eax, 0x03 push 0x40103b ret

VI

move 0x08
load
move 0x04
store

move 0x04
load
load 0x03
sub
store
move 0x04
store

load 0x40103b ret

Notes: In the table, “NI” indicates the native x86 instructions, and “VI” donates the
virtual instructions. Here, our system inserts “Instr.3” and “Instr.4” in order to jump
back to execute the native code after returning from the protected code region.

DriverDataSet11 and DriverDataSet12 for HSA1 and Driver-
DataSet21 and DriverDataSet22 for HSA2. The resulted pro-
gram is illustrated in Figure 7. We store the virtual instructions
in the bytecode format.

We also encrypt the resulted bytecode instructions using
different keys for different sets of handlers. For example,
DriverDataSet11 and DriverDataSet12 will be encrypted us-
ing one key, and DriverDataSet21 and DriverDataSet22 will
be encrypted using another key. We fill the code segment
to be protected with junk instructions. Finally, we create a
new code section attached to the end of the target program.
The new code section contains the implementation of the
handlers, different sets of bytecode instructions, dispatchers
and other VM components such VMContext and routines
such as VMInit (used to initialize the VM) and VMExit
(use for cleanup before exiting the VM).

B. Runtime execution

Runtime execution of the protected code region is illustrated
in Figure 7, which follows a number of steps:

• Step1: The entry of the protected code segment contains
an “jmp VMInit” instruction. This transfers the control
to the VM initialization routine, VMInit, which saves
the host context and initializes the virtual context. The
initialized routine also selects a VM to use. In this
example, we assume we use two VMs and VM2 is chosen
at the beginning.

• Step2: Next, a dispatcher starts working. It fetches a
bytecode from the DriverDataSet21. After decoding, the
dispatcher gets an address of “6a”. It then jumps execute
“0x6aHandler”, the next bytecode “07” is its operand.

• Step3: A control unit will be executed (see Sec-
tion V-A) before exiting the “0x6aHandler”. The
control unit randomly selects to execute another han-
dler, “0x85Handler”, or return the controler to the
dispatcher. If it chooses to return to the dispatcher, the
program execution moves to Step 5.

• Step4: Assume the control unit decides to execute han-
dler, “0x85Handler”. It will then fetch a bytecode
from DriverDataSet22, decoding it and getting the offset
address of “0x85Handler” . Using the offset, the con-
trol unit will jump to “0x85Handler”. After executing
the handler, the program execution moves to Step 3.

• Step5: If the control unit chooses to return the control
to a dispatcher, it will randomly select a dispatcher to

6a 07 85 91 6a 00 85 
91 6a 02 85 91 6a 03
85 91 71 01  ...
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Figure 7: The execution process of the protected program. Here each VM has
two sets of bytecode instructions and one set of handlers.

continue the execution. This moves to Step 6.
• Step6: The selected dispatcher randomly selects one VM

to use. The dispatcher fetches a bytecode from this VM,
decoding the bytecode to get the handler serial number.
It then jumps to execute the handler. After executing the
handler, the program execution moves to Step 3.

• Step7: Step 3 and Step 4 are iterated until all the
bytecodes get executed. The finally step is to invoke the
VMExit to restore the native context and to continue
executing the target program.

VIII. SECURITY STRENGTH ANALYSIS

This section analyzes the security strength provided by
DSVMP. We first analyze the number of possible execution
paths. Then we discuss the diversity of code structures.

A. Program execution paths

Recall that our design goal is to increase the diversity of
program execution, so that in different runts the protected
region will not follow a single execution path across runs.
In this analysis, we assume there are 10 different dispatchers.
This number matches the current implementation of DSVMP.
We use the example presented in Section V-B as a case study.
In this example, DriverDataSet11 and DriverDataSet21 each
has 103 bytes of data. They contain a total of 78 handler serial
numbers. In this analysis, we exclude the last handler because
of it is used to exit the VM. This leave us 77 handlers where
each handler can lead to 11 different execution paths. This is
because at the end of executing each handler, a control unit
will determine whether the control should be given to another
handler or one of the 10 dispatchers (see Section V-A) – 11
possibilities in total.

In combination, these options give 1177 possible execution
paths for each protected code region. Therefore, the prob-
ability, p, for a protected code region to follow the same
execution path across different runs is p = 1

1177 , a very
small number. Bear in mind that so far we have assumed
that the protection scheme uses just one VM. The multi-VM
strategy employed by DSVMP further increases the number
of possible execution paths. In fact, the more dispatchers
and VMs are, the greater number of possible execution paths
will be. The current DSVMP implementation provides five
different VMs. Together with the multiple dispatchers and
bytecode instruction straggles, for the setting used in this
section, DSVMP gives a single code region 11385 possible
execution paths. Given the massive number of choices, it will



Table II: The relevant information about the program.

Basic info of program Info of protected-software

prog. key code prog. Node
Num

Branch
Num

i<n∑
i=0

DR(i)
i<n∑
i=0

DF (i)

A mov eax,ebx
sub eax,03

A’ 23 5 46 18

B pop eax
add eax,ebx

B’ 48 9 96 36

Notes: In the table, the number of n which in
i<n∑
i=0

DR(i) and
i<n∑
i=0

DF (i) are equal

to the NodeNum.

be rare for a protected code region to take the same execution
path across different runs.

B. Code structures

To prevent an adversary from resuing knowledge obtained
from other software to perform attacks, we would like applica-
tions protected by DSVMP exhibit distinct code structures. In
other words, we would like programs after code obfuscation to
be as much dissimilar as possible in terms of code structures.

Blietz et al. [15] proposed a method to measure the similar-
ity of program structures, using control flow information such
as the number of branches and back blocks, the nesting level
of the code etc. We draw lessons from this method to analyze
code structures for programs protected using DSVMP. We use a
number of metrics to describe program code structures. These
metrics are:

• NodeNum: the number of basic blocks of the protected
region.

• BranchNum: the number of basic blocks where the last
instruction is a conditional jump instruction.

• DR(V i): the number of in and out instructions for the
basic block, Vi. This metric is defined as DR(V i) =
Din(V i) +Dout(V i) where Dout (V i) refers to the out-
degree and Din (V i) refers to the in-degree and they
mean the number of arcs that start or end at V i.

• DF (V i): the data flow relationship of basic block, Vi.
This is used to measure the frequency of Vi’s information
exchange. It is defined as DF (V i) = Flowin(V i) +
Flowout(V i), where Flowin is the number of reading
instruction in Vi and Flowout is the number of writing
instruction in Vi.

Table II gives two examples of code regions to be pro-
tected. These are two simple code snippets and without code
obfuscation, these two examples have very similar structures
because all of then with just one basic block and no branches.
Transforming the code regions using DSVMP, we obtain dif-
ferent metric values for both code regions, which indicate the
transformed code segments have distinct structures. We use the
following formula to quantify the code structure information,
X after code obfuscation.

SInforX = NodeNumX +BranchNumX

+
i<n∑
i=0

(DR(i) +DF (i))

Applying this formula for the transformed code segments,
A’ and B’, listed in Table II, we get :

SInforA′ = NodeNumA′ +BranchNumA′

+
i<n∑
i=0

(DR(i) +DF (i))

= 23 + 5 + (46 + 18)
= 92

SInforB′ = NodeNumB′ +BranchNumB′

+
i<m∑
i=0

(DR(i) +DF (i))

= 48 + 9 + (96 + 36)
= 189

where n = NodeNumA′ and m = NodeNumB′ . From
SInforA′ and SInforB′ , we can calculate the similarity
SDiff , for two code structure, A’ and B’ as:

SDiff =
|SInforA′ − SInforB′ |
SInforA′ + SInforB′

=
97

281
= 34.5%

Thus it can be seen the code structure similarity between
two A’ and B’ is 34.5%. This example shows that DSVMP can
significantly increase the dissimilarity of code structures even
for simple code segments. We also observe that the similarity
between transformed code regions drops significantly as the
complexity of original code segments increases.

IX. PERFORMANCE EVALUATION

A. Experimental Setup

In our experiments, we used three VMs and five dispatchers
for DSVMP. We used IDA [11] to debug the program to obtain
the control flow graph of the protected code region, and used
it to locate some of key nodes such as dispatcher. However, for
some basic blocks that end with an indirect jump instruction,
IDA can not get the target address automatically. This means
that the control flow graph of the program is incomplete, and
we maybe lack of some key connections between basic blocks.
In addition, previous attacking experience will be useless
because one will have process the program binary from scratch
during each program run. We have to spend a lot of time to
collect dynamic instructions, and as far as possible to manually
connect the control flow graph in a single run.

Then we used OllyDbg [12] to perform the dynamic debug-
ging, and locate the dispatcher. It uses the x86 register ESI
as the program counter for bytecode instruction. Further, we
uses ESI to track the movement of tainted data and find that
the bytecodes will be decrypted and stored in register EAX.
This value is the serial number of handler which should be
executed. We can use these values to analyze the execution
order of handlers, so repeat the above operation and collect all
those values that scheduled by each dispatcher. All these data,
however, still cannot restore the execution logic of handlers,
because these bytecodes from multiple VMs, the same data
may represent different meanings. In addition, the handlers
that we collected by dispatcher are not all of them, because in
DSVMP some handlers probably scheduled by other handlers
(see Section V). What counts is DSVMP has the different
bytecode handler scheduling for different runs, which makes
the dynamic debugging more difficult.



Table III: Information of the bechmarks.

prog. Size(KB) Func. to protect Instr.
Protect

Instr.
Executed

md5 11 Transform 563 6869163
aescrypt 142 encrypt-stream 1045 5502747
bcrypt 68 Blowfish-Encrypt 54 43945017
gzip 56 deflate 154 35877278

B. Evaluation Platform and Benchmarks

We evaluated DSVMP on a PC with an 3.0 GHz Intel
CoreTM 2 Duo processor and 4GB of RAM. The PC runs the
Windows 7 operating system. We evaluated our approach using
four widely use applications: md5 [16], aescrypt [17],
bcrypt [18] and gzip [19]. We used these applications to
process a test image file. The size of the file is 763 KB.
Table III gives information of the protected code regions
for each benchmark. The 3rd column of the table gives
the function to be projected and the 4th column shows the
number of instructions of the function. Finally, the number of
instructions got executed with the functions while processing
the test file is shown in the last column of the table.

C. Code Size and Runtime Overhead

Code size: For each target benchmark, we applied
DSVMP to the target function and repeated the process for five
times. For each protection run, we used a different number of
VMs. Figure 8 (a) shows how the DSVMP multi-VM scheme
affects the code size. As described before, each VM has two
bytecode instruction sets and one set of handlers, the code
size of the protected program grows as the number of VM
increases. Moreover, there is a strong correlation between the
code size of and the number of protected instructions. This
explains why aescrypt has the fastest increase of code size
as it has the largest number of protected instructions (see
Table III). For the same reason, the code size of bcrypt
grows slower than other programs, as this benchmark has the
least number of protected instructions.

Runtime overhead: To evaluate the runtime overhead of
DSVMP, we used each benchmark to process the file. We
repeated the process for 10 times and report the average
runtime overhead per benchmark. The results are shown in
Figure 8 (b). As can be seen from this diagram, the runtime
overhead increases as the number of VM used increases. The
only exception is that the 3-VM configuration (3VM) has a
lower overhead than a 2-VM one. One possible reason is that
the implementation strategy we used for multi-VM protection.
Furthermore, aescrypt has a much higher runtime overhead
than other benchmarks. The encrypt-stream function of
aescrypt is more complex and thus has a higher number of
virtual instructions compared to other benchmarks. As such, it
takes longer to execute the obfuscated code for this program
compared to other benchmarks.

D. Comparisons with state-of-the-arts

We also compared DSVMP against two commercial VM
protection systems, Code Virtualizer (CV) [2] and VMPro-
tect [3], in terms of code sizes and runtime overhead. We
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Figure 8: (a) The impact of code sizes for configurations with a different
number of VMs. (b) The average runtime overhead per instruction with
different VMs.
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Figure 9: (a) The comparison of impact on file size with VMProtect and Code
Virtualizer. (b) The comparison of average runtime overhead per dynamically
executed critical instruction with VMProtect and Code Virtualizer.

use the FISH32 (White) VM from the 24 customized VMs of
CV to perform code protection because this VM has moderate
runtime overhead. We used a configuration of two VMs for
DSVMP, DSVMP-2VM, in this experiment.

Code size: Figure 9 (a) shows the impact on code size of
three VM-based protection systems. The code size of programs
protected under CV grows faster than the other two schemes.
However, the resulted code size of CV is relatively stable
across benchmarks. On the other hand, the code sizes of
DSVMP and VMProtect are comparable and smaller than CV.

Runtime overhead: Figure 9 (b) shows the average run-
time overhead of the three schemes. Code protected under
CV has the most expensive runtime overhead, which on
average is 2x higher than DSVMP. Among the three schemes,
VMProtect has the smallest overhead while DSVMP has a
slightly higher overhead compared to VMProtect. Consider
that DSVMP provides stronger protection with a diverse set
of handlers, dispatchers and VMs, we argue that the modest
increase in runtime overhead is acceptable.

X. RELATED WORK

Early work on the binary code protection relies on simple
encryption and obfuscation methods, but they are vulnerable
to the sophisticated, diversified attacks developed over the
past years. Traditionally, techniques like junk instructions [20],
packers [21], [22], are used to protect software against attacks
based on disassembly and static analysis. There are also
other code protection techniques like code obfuscation [23],
control flow and data flow obfuscation [24], [25], [26], all
aim to obfuscate the semantic and logical information of the
target program. In practice, these approaches are often used



in combination to provide stronger protection. DSVMP also
leverages some of the code obfuscation techniques developed
in the past for code protection.

There is a growing interest in using code virtualization to
protect software from malicious reverse engineering. Fang et
al. [4] proposed a protection scheme based on multi-stage
code obfuscation. Their approach iteratively transforms the
critical code region several times with different interpretation
methods to improve security. Yang et al. [5] presented a nested
virtual machine for code protection. Using their approach,
an adversary would have to fully reverse engineer a layer
of the interpreter before moving to the next layer, which
increases the cost of attacks. Averbuch et al. [27] introduces
an encryption and decryption technology on the basis of VM-
based protection. This approach uses the AES algorithm and
a customize encryption key to encrypt the virtual instructions.
During runtime, the VM will decrypt the virtual instruction
and then dispatch a handler to interpret the virtual instructions.
Wang et al. [6] proposed a protection scheme to increase
the time diversity of protected code regions. This is achieved
by constructing several equivalent but different forms of sub
program execution paths, from which a path will be randomly
selected to execute at runtime.

As a departure from prior work, DSVMP presents a dynamic
scheduling structure to improve security for software. DSVMP
has integrated several novel techniques to increase the diversity
and uncertainly of program execution. These include using
a control unit to diversify the execution path of bytecode
handlers and using multiple VMs and dispatchers to randomly
schedule instructions from multiple bytecode instruction sets.
Integrating these techniques allows DSVMP to provide a more
diverse program execution structure compared to prior work in
the area. This richer set of diversity can better protect software
against code reverse engineering [28].

XI. CONCLUSIONS

This paper has presented DSVMP, a novel VM-based code
protection scheme. DSVMP uses a dynamic scheduling struc-
ture and multiple VMs to increase diversity of program execu-
tion. We have shown that code segments protected by DSVMP
rarely follow the same execution path across different runs.
The dynamic program execution brought by DSVMP forces
the attacker to have to use many trail runs to uncover the
implementation of the protected code region. As such, DSVMP
significantly increases the overhead and effort involved in code
reverse engineering. We have evaluated DSVMP using four
real world applications and compared it to two state-of-the-art
VM-based code protection schemes. Our experimental results
show that DSVMP provide stronger protection with comparable
overhead of runtime and code size.
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