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Abstract 

Land surface spatial heterogeneity plays a significant role in the water, energy, and carbon 

cycles over a range of temporal and spatial scales. Until now, the representation of this spatial 

heterogeneity in land surface models has been limited to over simplistic schemes due to 

computation and environmental data limitations. This study introduces HydroBlocks—a 

novel land surface model that represents field-scale spatial heterogeneity of land surface 

processes through interacting hydrologic response units (HRUs). HydroBlocks is a coupling 

between the Noah-MP land surface model and the Dynamic TOPMODEL hydrologic model. 

The HRUs are defined by clustering proxies of the drivers of spatial heterogeneity using 

high-resolution land data. The clustering mechanism allows for each HRU’s results to be 

mapped out in space, facilitating field-scale application and validation. The Little Washita 

watershed in the United States is used to assess HydroBlocks’ performance and added benefit 

from traditional land surface models. A comparison between the semi-distributed and fully 

distributed versions of the model suggests that using 1000 HRUs is sufficient to accurately 

approximate the fully distributed solution. A preliminary evaluation of model performance 

using available in-situ soil moisture observations suggests that HydroBlocks is generally able 

to reproduce the observed spatial and temporal dynamics of soil moisture. Model 

performance deficiencies can be primarily attributed to parameter uncertainty. HydroBlocks’ 

ability to explicitly resolve field-scale spatial heterogeneity while only requiring an increase 

in computation of one to two orders of magnitude when compared to existing land surface 

models is encouraging—ensemble field-scale land surface modeling over continental extents 

is now possible.  
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Key Points: 

 Development and implementation of a field-scale resolving land surface model. 

 A novel clustering algorithm is used to derive hydrologic response units from high-

resolution environmental data.  

 The model is run over the Little Washita watershed and validated using available in-

situ soil moisture observations. 

 1000 hydrologic response units are sufficient to robustly model field-scale spatial 

heterogeneity over the Little Washita watershed. 
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1. Introduction  

The land surface plays a pivotal role in the Earth system over a range of spatial and temporal 

scales. It absorbs and releases greenhouse gases, emits aerosols, and interacts with the 

atmosphere and hydrosphere through the exchange of water, energy, and momentum 

[Heimann and Reichstein, 2008]. As a result, the land surface components and processes have 

a profound impact on the global climate, food and energy production, freshwater resources, 

and biodiversity [Rodriguez-Iturbe and Porporato, 2004; Seneviratne et al., 2006; Betts, 

2009; Wood et al., 2011; Sheffield et al., 2014]. These are the primary reasons behind the 

continued development and use of land surface models—to more fully characterize the land 

surface’s inner-dynamics and to understand how it interacts and co-evolves with the Earth 

system [Liang et al., 1994; Ek et al., 2003b; Shevliakova et al., 2009; Niu et al., 2011; Oleson 

et al., 2013]. 

Current land surface models simulate the global terrestrial water, energy, and 

biogeochemical cycles using grid sizes ranging from 10-100 km—orders of magnitude 

coarser than the characteristic spatial scales of many critical land surface processes (e.g., 

runoff generation) [Beven et al., 2015]. To address this discrepancy, land surface models use 

parameterizations to represent sub-grid spatial heterogeneity in coarse scale models [Beven 

and Kirby, 1979; Sivapalan et al., 1987; Liang et al., 1994; Avissar, 1995]. However, existing 

schemes continue to oversimplify the role of the fine-scale physical environment 

(topography, soil properties, parent material, and microclimates) and largely ignore sub-grid 

spatial interactions among the different land surface components and processes [Cavender-

Bares et al., 2004; Katul et al., 2007; Manzoni and Porporato, 2009; Mitchell et al., 2012; 

Porporato and Rodriguez-Iturbe, 2013; Chaney et al., 2014; Clark et al., 2015b]. 

Recognizing the role of fine-scale spatial heterogeneity in land surface processes, the 

land modeling community is revisiting how spatial heterogeneity is represented in land 



 

This article is protected by copyright. All rights reserved. 

surface models by capitalizing on existing high-resolution global landscape datasets, high 

performance computing, and decades of research in hydrology, ecology, geomorphology, and 

soil science [Wood et al., 2011; Bierkens et al., 2014]. A promising path forward is to use 

process-based models that aim to fully resolve the subsurface and surface processes [Kollet 

and Maxwell, 2006; Camporese et al., 2010; Brunner and Simmons, 2012; Maxwell et al., 

2014]. In theory, if these models are run at sufficiently high spatial resolutions, there is a 

reduced need to parameterize sub-grid spatial heterogeneity. However, compared to classic 

land surface models, these models require multiple orders of magnitude increase in 

computation. This is especially relevant given that for operational use, models need to be able 

to efficiently handle ensemble frameworks to account for the unavoidable input, parameter, 

and structural uncertainties. 

A more immediate solution appears to be between the existing oversimplified 

parameterizations of spatial heterogeneity in land surface models and the fully distributed 

process-based models. One emerging approach is to use hydrologic response units—derived 

from available field-scale landscape information—to formalize and expand existing sub-grid 

tiling schemes in land models [Subin et al., 2014; Clark et al., 2015a]. A hydrologic response 

unit (HRU) is defined as the points in a watershed (or macroscale grid cell) with similar 

characteristics (e.g., topography, soil, and land cover); the points that define the HRU do not 

need to be spatially contiguous. HRUs are analogous to the tiles in the mosaic schemes in 

existing land surface models (e.g., [Oleson et al., 2013]). Assuming the subsurface and 

surface connections between HRUs are defined appropriately, this modeling approach can 

encompass lumped models (one HRU), semi-distributed models (multiple HRUs), and fully 

distributed models (one HRU per grid cell). The fully distributed model can be used to define 

a reduced number of HRUs to accurately represent the fine-scale spatial patterns and 

interactions of the land surface components and processes in the semi-distributed model. This 
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allows for a robust representation of fine-scale spatial heterogeneity in land surface models 

while ensuring computational efficiency for use in operational numerical weather prediction 

and climate modeling and to allow for ensemble frameworks to account for parameter, input, 

and structural uncertainty. 

This study introduces HydroBlocks
1
, a land surface model that capitalizes on 

hydrologic response units to explicitly represent field-scale land surface spatial heterogeneity. 

HydroBlocks couples Noah-MP, a vertical 1-dimensional (1-d) land surface model that acts 

independently on each response unit, to Dynamic TOPMODEL, a hydrologic model designed 

to link the hydrologic response units via a subsurface kinematic wave. The model is 

developed, implemented, and validated over the Little Washita watershed in Oklahoma, USA. 

The K-means clustering algorithm is used to cluster available land data to define the HRUs. 

The number of HRUs required to approximate the spatial heterogeneity of the fully 

distributed solution is assessed. Finally, HydroBlocks’ two main advantages (computational 

efficiency and its ability to approximate the fully distributed solution) are used to run a Latin 

Hypercube Sample ensemble to assess the role of model parameter uncertainty and determine 

the model’s ability to reproduce available in-situ soil moisture observations.  

2. Land Surface Model: HydroBlocks 

This section presents the HydroBlocks land surface model. It is divided into 1) an overview 

of NoahMP, the 1-d vertical land surface model that acts independently on each hydrologic 

response unit (HRU); 2) an overview of Dynamic TOPMODEL, the hydrologic model that 

connects the HRUs via a kinematic subsurface wave; 3) the coupling between Noah-MP and 

Dynamic TOPMODEL. Figure 1 illustrates how HydroBlocks represents spatial 

heterogeneity and how each hydrologic response unit interacts. 

                                                           
1 
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2.1 Noah-MP  

Noah-MP is a process-rich 1-d vertical land surface model that improves on the widely used 

Noah model [Ek et al., 2003a]. The primary reasons it was chosen for HydroBlocks are: the 

model represents the primary vertical processes that control the water, energy, and carbon 

cycles at the land surface, its multi-physics options makes it amenable to tailoring to local 

needs and data availability, the simplicity of the code makes it readily available for coupling 

to a hydrologic model, and its use in operational weather forecasting research [Dudhia, 2014] 

ensures it will continue to undergo development and improvements in the future. This section 

offers a brief overview of the model. For a comprehensive overview see [Niu et al., 2011]. 

Noah-MP is a complex, physically based model that captures the primary vertical 

subsurface and surface land processes. It includes an explicit representation of the vegetation 

canopy layer to separately compute the canopy and surface temperatures; this allows for the 

representation of the differences in energy fluxes over vegetation and bare ground. A 

modified two-stream radiation transfer scheme considers vegetation canopy gaps to compute 

fractions of sunlit and shaded leaves and their absorbed solar radiation [Yang and Friedl, 

2003]. The controls of atmospheric and soil moisture conditions on transpiration rates can be 

modeled by choosing from a Jarvis-type or Ball-Berry type scheme to relate stomatal 

resistance to photosynthesis of sunlit and shaded leaves [Ball et al., 1987; Jacquemin and 

Noilhan, 1990; Collatz et al., 1991]. There is also a dynamic vegetation module for short-

term prediction of vegetation condition (e.g., LAI) [Dickinson et al., 1998]. A three-layer 

snow model is implemented that enables percolation, retention, and refreezing of melt water 

within the snowpack [Niu and Yang, 2004].  

2.2 Dynamic TOPMODEL 

Dynamic TOPMODEL is a semi-distributed hydrologic model that extends the well-

established TOPMODEL [Beven and Freer, 2001; Metcalfe et al., 2015]. It aims to maintain 
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its predecessor’s computational efficiency achieved through grouping of landscape areas of 

hydrologic similarity into hydrologic response units (HRUs), while relaxing key assumptions 

that limit TOPMODEL’s application to frequently wetted catchments displaying moderate 

topography. The primary difference is the replacement of the assumption of a succession of 

quasi-steady-state water table configurations with a kinematic wave routing algorithm to 

route subsurface flow between HRUs. This allows a more flexible grouping, or discretization, 

strategy that can take into account any number of landscape layers considered to provide 

relevant information on the hydrological characteristics of areas within the catchment. In 

addition, the introduction of a maximum soil moisture deficit parameter      allows the 

simulation of variable contributing areas apparent when hillslope connectivity is broken as 

upslope areas start to dry out [Barling et al., 1994; McGuire and McDonnell, 2010]. When 

the deficit in any unit reaches     , flow from that unit ceases.  

As in the original TOPMODEL, inter-cell slopes determined from gridded 

topographic data are assumed to be a reasonable approximation for the local hydraulic 

gradient [Beven, 2012]. Once the HRUs have been defined, the proportions of flow between 

the cells comprising each HRU are determined. The flow fractions are then aggregated into a 

flow matrix of weights W (n by n) that encapsulates the proportions of flow between HRUs. 

The i
th

 row in W defines how the HRU
 
i’s total output, Qout

i
, is distributed to surrounding 

response units, including itself. The total input, Qin
i
 is the weighted sum, using the 

corresponding entries in W, of all the upstream outputs, Qout
j
. This can be readily generalized 

to an arbitrary number n of response units and formulated as a simple vector-matrix 

multiplication. The vector of size n of all response units’ input, Qin, can be calculated by the 

product of the vector of size n of all response units’ output, Qout, and the n by n matrix of 

weights, W.  
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The HRUs are assumed to be spatially homogenous. This allows us to define the 

specific input into each unit as    
      

     and the specific output as     
      

    . 

Where bi is the sum of the width of all grid cells that belong to HRU i. 

Following [Beven and Freer, 2001]), the subsurface flow       
  is solved at each time 

step via a four-point implicit finite volume solution to the subsurface kinematic wave 

equation: 

  

  
  

  

  
    

      
          

       
  

      
       

 

  
   

              
  

        
         

 

  
     

   

where   is the kinematic wave speed,   is the recharge rate,    is the time step,    is the 

effective length of each response unit (i.e., grid size), and   is a time-weighting parameter 

(explicit to implicit). Assuming the topographic gradient defines the hydraulic gradient and 

the transmissivity decays exponentially as a function of soil moisture deficit, the kinematic 

wave speed   is defined as: 

  
 

 

  

  
   

 

 
          

 
   

The four-point finite volume solution is used each time step to solve for      at each 

response unit via a system of equations – there is one equation per HRU. For a complete 

overview of the solution see [Metcalfe et al., 2015]. The main difference in this study’s 

implementation is that c is fixed at the beginning of each time step making the system of 

equations linear. Although this study uses this solution to the kinematic wave for subsurface 

flows only, it can also be used for surface flows.  
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2.3 Coupling between Noah-MP and Dynamic TOPMODEL  

 The coupling between the land surface and hydrologic model is sequential. At the 

beginning of each time step, Noah-MP computes the surface and subsurface vertical fluxes 

and updates the soil moisture content and water table depth at each HRU. The change in 

subsurface storage deficit per unit time before and after updating Noah-MP is interpreted as 

the recharge rate. Dynamic TOPMODEL uses this recharge rate in the four-point implicit 

scheme to compute each response unit’s subsurface input and output flow. At the end of each 

time step, HydroBlocks uses Dynamic TOPMODEL’s change in subsurface storage deficit at 

each HRU to update the water table depth and soil moisture profile in Noah-MP. The current 

implementation updates both Noah-MP and Dynamic TOPMODEL using a 15-minute time 

step. 

3. Data 

3.1 Study area – Little Washita, Oklahoma 

The Little Washita watershed is a 610 km
2 

tributary of the Washita River in southwest 

Oklahoma. It has gently to moderately rolling topography with hills and outcrops. Its soils 

cover a large range from sands and silts to clays, deep to shallow, and are generally well 

drained. Its land cover includes rangelands, pastures, forests, croplands, quarries, water 

bodies, urban development, and highways. The catchment’s climate is moist and sub-humid 

(~750 mm annual rainfall) with much of the annual rainfall occurring during the spring and 

fall. Summers are long, hot, and dry while winters are short and generally temperate (16
o
 

Celsius annual mean temperature) [Allen and Naney, 1991; Cosh et al., 2006]. The United 

States Department of Agriculture’s Agricultural Research Service (USDA-ARS) began 

collecting rainfall data in the Little Washita in 1961. In 1994, the catchment’s 

instrumentation was expanded and upgraded to also include measurements of air and soil 

temperature, relative humidity, and solar radiation. This study uses the 18 sites that were in 
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operation between 2004 and 2007. Each site has high-quality, hourly soil moisture 

measurements of the top 5 cm making it suitable to assess HydroBlocks’ ability to simulate 

observed field-scale soil moisture values. Figure 2 shows a map of the Little Washita 

watershed and its channel network.  The locations of the 18 soil moisture probes are also 

shown. 

3.2 Land and meteorological data 

To define the hydrologic response units and to run the HydroBlocks model, this study relies 

on available datasets that cover the entire contiguous United States (CONUS) at varying 

spatial and temporal resolutions.   

Land Cover - The land cover data come from the 2006 National Land Cover Database 

(NLCD), a 16-class land cover classification at a spatial resolution of 30 meters (~1 arcsec) 

that spans CONUS [Fry et al., 2011]. The parameters associated with each land cover type 

come from the North American Land Data Assimilation System (NLDAS-2;[Xia et al., 

2012]). The annual NDVI product from the Web-enabled Landsat Data (WELD) is also used.  

This dataset is a 30-meter composite of Landsat Enhanced Thematic Mapper Plus (ETM+) 

mosaics from 2002 to 2012 over CONUS [Roy et al., 2010]. 

Topography - The 1-arcsec USGS National Elevation Data set (NED) provides the elevation 

information. The NED data set covers CONUS and is created primarily from the USGS 10 

and 30 meter digital elevation models, and from higher resolution data sources such as light 

detection and ranging (lidar), interferometric synthetic aperture radar (ifsar), and high 

resolution imagery [Gesch et al., 2009]. This study uses the DEM and a series of derived 

products including flow accumulation area, slope, topographic index, eight directional (d8) 

flow direction, and the number of immediately upslope grid cells that contribute to a given 

grid cell (NIU).  
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Soil Properties - The soil properties come from the recently developed POLARIS dataset 

[Chaney et al., 2016], a new continental soil dataset that uses random forests to spatially 

disaggregate and harmonize gridded SSURGO (Soil Survey Geographic) [Staff, 2013] to 

provide a consistent 30-meter soil product over the entire contiguous United States. When 

possible, for each soil series, the hydraulic properties come directly from the SSURGO 

database. The remaining soil hydraulic properties (e.g. Brooks-Corey parameters) are derived 

using a series of pedotransfer functions [Maidment, 1993]. The flow direction map calculated 

from the NED dataset is used with the saturated hydraulic conductivity to calculate each grid 

cell’s mean upslope saturated hydraulic conductivity.  

Meteorology - The model’s meteorological forcing data is provided by the NLDAS-2 [Xia et 

al., 2012] data system. This dataset uses observations to bias-correct shortwave radiation and 

surface meteorology reanalysis at a 1/8 degree spatial resolution and 1 hour temporal 

resolution. When available the precipitation data come from the NCEP’s Stage IV radar 

product (~4km) [Lin and Mitchell, 2005].  

4. Methods 

4.1 Hydrologic response units: K-means clustering  

HydroBlocks relies on hydrologic response units to represent the spatial heterogeneity of the 

water, energy, and carbon cycles. How these HRUs are defined determines the number of 

response units necessary to approximate the fully distributed solution. Following [Newman et 

al., 2014]), the HRUs are constructed by clustering proxies of the drivers of spatial 

heterogeneity (i.e., topography, land cover, soil properties, and meteorology). This method 

should suffice to represent the heterogeneity of the system when the chosen proxies are 

representative of the spatial drivers of the land surface states and fluxes. Table 1 provides a 

summary of the proxies of the drivers of spatial heterogeneity used in the clustering method.  
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The k-means clustering algorithm is used to partition the n dimensional proxy space 

into k clusters (hydrologic response units); n is the number of proxies of spatial heterogeneity. 

The algorithm defines the clusters by iterating each cluster center’s position – the mean of its 

constituent instances – to minimize the within cluster sum of squares [MacQueen, 1967]. 

Having defined the hydrologic response units, each element on the fully distributed grid is 

assigned an HRU. The model parameters are then assigned by computing the mean of the 

parameters of all the grid cells that belong to a given HRU. If the chosen proxies are adequate 

to represent the spatial heterogeneity of the catchment and the number of HRUs is sufficient, 

the differences between the HRU mean of the parameters and its corresponding grid cells on 

the fully distributed grid should be relatively small. An additional advantage to including 

latitude and longitude in the clustering is that spatial heterogeneity in the meteorology can be 

directly represented in the model; the mean of all the grid cells that belong to a given HRU on 

the fully distributed grid is computed at each time step for each meteorological variable. 

Having assembled the HRUs, Dynamic TOPMODEL’s flow matrix W is constructed by 

determining the connections between the HRUs. HydroBlocks can then be run using the 

defined hydrologic response units and their derived parameters and meteorological inputs.  

4.2 Approximating the fully distributed solution 

The current implementation of HydroBlocks can be run as a lumped, semi-distributed, or 

fully distributed model; the number of HRUs and their configuration determines the model 

type. The lumped model version will use a single HRU for the catchment while the fully 

distributed model will assign a unique HRU to each grid cell. Since the only difference 

between the models is the HRU configuration, this can be a useful diagnostic tool for existing 

tiling schemes in land surface models since it allows for a direct assessment of how well 

these schemes represent the spatial heterogeneity of the fully distributed solution. It can also 
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provide insight into the drivers of spatial heterogeneity that are not adequately represented in 

the tiling scheme.  

Here a method is presented that formalizes how the number and configuration of tiles 

or hydrologic response units are defined over the Little Washita. First, the fully distributed 

version of the HydroBlocks model is run over 2004 at a 30-meter spatial resolution and 15-

minute time step to produce a synthetic truth of the spatial heterogeneity of the catchment at 

each time step. This allows for a straightforward evaluation of the performance of semi-

distributed model configurations.  

Using the proxies defined in Table 1 and the k-means clustering algorithm, a suite of 

model configurations are constructed by varying the number of hydrologic response units. 

The chosen number of HRUs is 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, and 

10,000.  HydroBlocks is run for each model configuration over 2004 at a 15-minute time step. 

For each simulation (including the fully distributed model configuration), the spatial mean 

and spatial standard deviation are computed for a suite of model output variables including 

top-layer soil moisture, precipitation, sensible heat, latent heat, and runoff. The Kling-Gupta 

efficiency metric calculated between each variable’s semi-distributed model time series 

(spatial mean and spatial standard deviation) and its corresponding fully distributed model 

time series is used to assess the performance of each semi-distributed model configuration. 

The Kling-Gupta Efficiency (KGE) metric [Gupta et al., 2009], as shown below, combines 

linear correlation  , standard deviation bias    
      

    
, and mean bias terms    

      

    
.  

                              

4.3 Parameter Uncertainty: Latin Hypercube Sample 

To validate HydroBlocks’ ability to represent field-scale information, the model is run over 

the Little Washita watershed between 2004 and 2007 at a 15-minute time step. The number of 

HRUs is set to be 1000. This number, as will be shown in section 5.2, is found to adequately 
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approximate the fully distributed solution. To obtain both optimal model performance while 

assessing the role of model parameter equifinality, the latin hypercube sampling technique 

(LHS; [McKay et al., 1979]) is used to assess model performance across the model parameter 

space. The LHS is used to generate 100 parameter sets by sampling (assuming uniform 

distributions) from the 4 parameters listed in Table 2. These parameters are chosen due to 

their impact on simulated soil moisture; all response units have the same parameter value. For 

each parameter set, 2004 and 2005 are used to spin-up HydroBlocks. 2006 through 2007 are 

then used to assess model performance by constraining the ensemble using available in-situ 

soil moisture observations. The model’s ability to simulate soil moisture is analyzed since it 

is a state variable that is heavily controlled by the fine-scale physical environment and plays 

an important role in other land surface processes (e.g., latent heat). The Kling-Gupta 

Efficiency (KGE) metric is used to assess the model performance between each probe and the 

simulations of its corresponding grid cell on the fully distributed grid (i.e., corresponding 

HRU). The median of the KGE of all the probes for each ensemble member is computed and 

used as the sole metric of model performance.  

5. Results 

5.1 HydroBlocks example over the Little Washita 

To further understand the HRU clustering algorithm and the HydroBlocks model, an example 

over the Little Washita watershed is explored using 3 hydrologic response units. In this case, 

only the topographic index map is used as input to the k-means algorithm to define the 3 

HRUs. The algorithm assigns an HRU to each 30-meter grid cell in the catchment. As shown 

in Figure 3, k-means uses the topographic index to partition the catchment into three 

distinctive regions. The HRUs are ranked from lowest to highest accumulation area.  In this 

example this corresponds to ranking them from lowest to highest topographic index, however, 

this will not always be the case. Per the definition of topographic index, in general, HRU1 
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represents ridges, moderate to steep slopes, and low flow accumulation areas. HRU3 

represents valleys, flat regions, and high flow accumulation areas.  

The connections between the HRUs are calculated using the 30-meter d8 flow 

direction raster derived from the NED DEM. Figure 3 provides an example of the 

connections between the hydrologic response units. They flow into each other and also into 

themselves.  The flow matrix W is also shown in Figure 3. It summarizes these connections 

and assigns weights to define how the outflow of an HRU is distributed among its 

surrounding response units. Note that given that the d8 flow direction map defines the 

connections, if the d8 accumulation area were used as the proxy of heterogeneity instead of 

the topographic index, the flow matrix would be an upper triangular matrix. However, since 

this example uses the topographic index there can be backflow from grid cells with higher 

accumulation area to grid cells with lower accumulation area. This explains the backflow 

from grid cells in HRU3 into grid cells in HRU2 and grid cells in HRU2 into grid cells in 

HRU1.  

After assigning each HRU’s model parameters and meteorological data, HydroBlocks 

is run between January 1
st
, 2004 and December 31

st
, 2004 at a 15-minute time step. Each 

HRU has its own output time series of states and fluxes. Figure 4 shows the daily results for 

precipitation, soil moisture, latent heat, and sensible heat for the three response units. There is 

negligible difference in the time series of precipitation. If latitude and longitude were also 

used as proxies to define the hydrologic response units this would no longer be the case. The 

most noticeable feature in Figure 4 is the clear differences in the time series of soil moisture. 

This can be attributed solely to subsurface redistribution. The convergence from HRU1 and 

HRU2 into HRU3 leads to a shallower water table depth in HRU3. This results in higher 

surface soil moisture content and an increase in available water in HRU3. Not surprisingly, 

this drives the differences in latent heat and sensible heat between the three response units. 
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This provides an example of how a simple representation of spatial heterogeneity in the 

catchment can lead to large differences in not only the simulated soil moisture but also in the 

simulated surface fluxes.  

5.2 Approximating the fully distributed solution 

As shown in section 5.1, using 3 response units in HydroBlocks already defines distinct 

spatial patterns in the simulated surface fluxes and soil moisture. However, it will be rare that 

a catchment the size of Little Washita requires only 3 HRUs to approximate the spatial 

heterogeneity of the fully distributed solution. To address this concern, the method outlined 

in section 4.2 is used to assess the required number of HRUs to approximate the fully 

distributed solution. This is accomplished by running HydroBlocks with an increasing 

number of hydrologic response units. Note that in this section all the proxies from Table 1 are 

used to define the HRUs.  

 Given that each grid cell is assigned an HRU in the clustering algorithm, the model 

results can be readily mapped out in space. This not only allows for field-scale predictions 

but also facilitates robust comparison between the semi-distributed and fully distributed 

solutions. Figure 5 compares the 30-meter mapped model output for the different model 

configurations on October 22
nd

, 2004 for daily soil moisture, storage deficit, latent heat, and 

precipitation. The apparent coarse grid at 10 HRUs is because the latitude and longitude 

proxies are driving the heterogeneity of the model. From visual inspection, the simulations 

using 1,000 and 10,000 HRUs most closely approximate the fully distributed solution. The 

increase in coarseness of the rainfall product as the number of HRUs increase is due to the 

effective spatial resolution of the input meteorological data set (~ 4 km).  

 Figure 6 shows the change in the time series of the spatial mean and spatial standard 

deviation of soil moisture as the number of hydrologic response units increases. At 10 HRUs, 

the model reproduces the soil moisture mean of the fully distributed model. However, 10 
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HRUs is not sufficient when the goal is to reproduce the fully distributed model’s time series 

of spatial standard deviation. At 2 HRUs, the spatial heterogeneity is driven mainly by rain 

events. There is a noticeable improvement when using 10 HRUs; a further increase in the 

number of HRUs continues to improve the performance. However, it appears that the semi-

distributed model only approximates but never completely reproduces the fully distributed 

simulation. This is not surprising since a fraction of the spatial heterogeneity will be due to 

field-scale heterogeneity that will be represented only if every grid cell on the fully 

distributed grid is assigned a unique HRU.  

 Figure 7 uses the KGE metric and its components (α, β, and  ) to formalize the 

comparison of the time series of the spatial mean and standard deviation between the semi-

distributed and fully distributed model simulations. It assesses how the performance metrics 

vary as a function of the number of hydrologic response units. The variables used in this 

comparison are top-layer soil moisture content, surface runoff, baseflow, sensible heat, 

precipitation, and latent heat. The results from Figure 7 for both the spatial mean and spatial 

standard deviation are analyzed below.  

Spatial mean - The linear correlation ( ) between the time series of spatial mean of 

the semi-distributed and fully distributed simulations is close to 1 for all variables at 10 

HRUs except baseflow; the same result applies to the bias in the standard deviation (α). The 

noticeable weakness when using a low number of response units (nhru) is the bias in the mean 

(β). In these cases, latent heat is positively biased and sensible heat and runoff are negatively 

biased. This suggests that at low nhru, HydroBlocks releases too much water as 

evapotranspiration and not enough as runoff. At around 100 HRUs, these biases in sensible 

heat and latent heat diminish. Although diminished, the negative bias in baseflow continues 

at 10,000 HRUs – and most likely beyond.  
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Spatial standard deviation – As expected from Figure 6, the time series of the spatial 

standard deviation converges to the fully distributed solution at a slower rate than the spatial 

mean. The linear correlation of precipitation spatial heterogeneity is high because at many 

time steps the rainfall is 0 throughout the catchment regardless of the model configuration. 

This also helps explain the excellent linear correlation of surface runoff at relatively low 

number of response units. However, the biases in the mean and standard deviation terms 

suggest that the semi-distributed model never completely represents the spatial heterogeneity 

of the fully distributed model – regardless of the number of HRUs. This appears to be 

especially true for baseflow. Closer inspection of the modeled surface runoff and baseflow 

spatial heterogeneity suggests that the semi-distributed model struggles to adequately 

represent the spatial properties of baseflow. As will be addressed in the discussion, this 

further suggests that assuming homogenous HRUs is not adequate; instead sub-HRU 

parameterizations may be required to ensure convergence with the fully distributed solution 

when attempting to represent baseflow spatial heterogeneity.  

5.3 Computational efficiency 

The primary reason to use a semi-distributed model instead of relying exclusively on the fully 

distributed model is due to computation and storage limitations. For example, on a 32-core 

machine it takes 60 hours to run the fully distributed version of HydroBlocks over the Little 

Washita at a 30-meter spatial resolution between January 1
st
, 2004 and December 31

st
, 2004 

at a 15-minute time step. Furthermore, more than 250 gigabytes is necessary to store the 

model output. To assess the computational benefits of using a reduced number of hydrologic 

response units to run HydroBlocks, Figure 8 shows the change in model runtime as a function 

of the number of hydrologic response units. Up to 100 HRUs, the computation savings with 

respect to the fully distributed model is above three orders of magnitude. At 1,000 HRUs it is 

above 2 orders of magnitude.  
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The growth in runtime per HRU after 500 is explained by the complexity of the flow 

matrix used in the subsurface redistribution scheme in Dynamic TOPMODEL (see section 

2.2). The flow matrix defines the number of terms and their positions in a system of linear 

equations; this system is used to solve for the subsurface outflow at each HRU. In the fully 

distributed model, although the number of unknowns is very large, it is straightforward to 

solve the system of linear equations at each time step since each HRU flows into one and 

only one HRU. This is not the case for the semi-distributed model where one HRU can flow 

into multiple HRUs and backflows occur. The storage requirements of HydroBlocks do scale 

linearly. In this example, for 1,000 HRUs the simulation for 2004 requires less than 0.5 

gigabytes of storage – orders of magnitude less than the fully distributed model.  

5.4 Model Validation: Latin Hypercube Sample  

One of the primary goals behind the development of HydroBlocks is the accurate simulation 

of field-scale soil moisture. To assess whether HydroBlocks achieves this goal, it is evaluated 

using the USDA-ARS Micronet network of soil moisture probes in the Little Washita (see 

Figure 2). The model is run using 1000 HRUs; the results in section 5.2 suggest that this is an 

acceptable threshold to approximate the soil moisture spatial heterogeneity simulated by the 

fully distributed model. HydroBlocks is run between 2004 and 2007 using 100 different 

parameter sets drawn from a Latin Hypercube Sample (see section 4.3 for more details). Point 

soil moisture observations available between 2006 and 2007 are used to evaluate the model 

performance of each probe’s corresponding grid cell (HRU). The performance of the model 

at each soil moisture probe collocated HRU is calculated using the KGE metric and its 

components (α, β, and  ). The optimal catchment parameter set is chosen as the set that leads 

to the highest median KGE among all the probes – the same parameter values are used at 

each response unit in the catchment.  
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Figure 9 shows the model performance at the 18 soil moisture probes when using the 

catchment’s optimal parameter set. It also shows the spread in model performance from the 

top performing parameter sets from the LHS ensemble. Figure 10 summarizes these results 

by using the KGE, linear correlation  , bias in the mean β, and bias in the standard deviation 

α. For most probes, the linear correlation   between the probes and their corresponding 

simulated grid cells is high. This result appears to be driven primarily by the quality and 

spatial detail of the input precipitation data. Not being able to represent the consistently high 

soil moisture values towards the beginning of 2006 appears to drive the low correlation at a 

number of sites. The choice of parameter set does not have a large impact on the correlation. 

The simulations are generally unbiased at many sites; at these sites α and β  approach 1. 

There are 6 sites at which there are noticeable positive biases. These biases are driven by the 

modeled soil moisture being too wet; this can most likely be attributed to biases in the 

prescribed soil properties including soil porosity, field capacity, wilting point, and residual 

soil water content.  Overall, these model validation results over the Little Washita suggest 

that 1) the accuracy of the precipitation product is the primary driver of the linear correlation 

between the probes and the simulation and 2) uncertainty in the soil hydraulic properties is 

the primary driver of bias in the mean and standard deviation in the simulated soil moisture 

content.  

6. Discussion 

6.1 Improving sub-grid spatial heterogeneity in land surface models 

A primary motivation behind the development of HydroBlocks is to capitalize on decades of 

research and existing field-scale global datasets to improve the representation of spatial 

heterogeneity in land surface models. Existing models represent sub-grid heterogeneity 

through a mosaic approach; each tile represents a fraction of the grid cell. These tiles account 



 

This article is protected by copyright. All rights reserved. 

for the spatial heterogeneity of land cover, lakes, wetlands, water management, urban areas, 

soil heterogeneity, topography, and glaciers [Avissar and Pielke, 1989; Koster and Suarez, 

1992; Nijssen et al., 1997; Essery et al., 2003; Shevliakova et al., 2009; Oleson et al., 2013]. 

A persistent weakness in the mosaic approach is the lack of spatial interactions among tiles. 

In HydroBlocks, tiles (i.e. HRUs) interact laterally via a subsurface kinematic wave. This 

approach enables HydroBlocks to explicitly represent subsurface water redistribution while 

maintaining computational efficiency. As shown in Figures 3, 4, and 5 and discussed in 

section 5.1, accounting for the lateral interactions among HRUs has an important role in the 

modeled soil moisture spatial heterogeneity, which, in turn, contributes to the simulated 

spatial patterns of latent heat and sensible heat, among others.  

Although not used in this study, HydroBlocks also uses a surface kinematic wave to 

model overland and channel flow; in the future, this could be used to account for surface 

water redistribution, erosion, and reinfiltration. Interactions among tiles could also be used in 

land surface models to improve the representation of processes that are influenced by lateral 

movement due to surface wind patterns including fires, blowing snow, and seed dispersal, 

among others. HydroBlocks presents a straightforward and computationally efficient path 

towards a more explicit accounting of the impact of lateral interactions among tiles. This will 

lead to an improved representation of field-scale land surface components and processes and 

provide a more complete coupling between the modeled water, energy, and carbon cycles.  

6.2 Deriving the hydrologic response units 

HydroBlocks can be run as a semi-distributed model (multiple HRUs) or fully distributed 

model (one HRU per grid cell). The goal with the semi-distributed model is to reproduce the 

fully distributed model while minimizing computational expense; this relies on the number 

and configuration of the prescribed HRUs. Over the Little Washita watershed, the results in 

section 5.2 suggest that around 1000 HRUs are necessary to successfully approximate the 
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fully distributed model’s catchment mean and standard deviation for latent heat, soil moisture, 

surface runoff, and sensible heat, among others (except baseflow). This result is dependent on 

both the clustering mechanism and the chosen proxies of spatial heterogeneity (see Table 1). 

For example, when using 1000 HRUs—assembled by using NDVI as the single proxy of 

spatial heterogeneity—the results vary; the semi-distributed model’s ability to reproduce the 

fully distributed fine-scale spatial patterns of soil moisture and surface runoff decreases 

substantially.  

The role that the proxies of spatial heterogeneity play in deriving the appropriate 

HRUs is further exemplified in baseflow generation. To produce baseflow, HydroBlocks 

requires an HRU’s water table to be above ground. This condition becomes a significant 

challenge when trying to approximate the fully distributed solution during the dry season. In 

the fully distributed simulation, during this period, baseflow generation ceases except for a 

small subset of grid cells within the catchment that have highly specific environmental 

characteristics (local and upslope). This was the rationale for using as proxies of spatial 

heterogeneity the number of immediately upslope grid cells that contribute to a given grid 

cell (NIU) and the mean upslope saturated hydraulic conductivity. Without these two 

variables, the model performance at 1000 HRUs decreases substantially when trying to 

reproduce the spatial patterns of baseflow of the fully distributed simulation. Future work 

should investigate other proxies that improve the semi-distributed model’s spatial patterns of 

baseflow during the dry season. Following [Newman et al., 2014], one promising path 

forward is to use the fully distributed model output maps (e.g., baseflow) as the proxies of 

spatial heterogeneity. By identifying the key areas that play a dominant role in the fully 

distributed spatial patterns, this approach might also lead to a reduction in the number of 

required HRUs.  
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Another potential path forward to both minimize the number of necessary HRUs and 

to improve the modeled spatial patterns of baseflow in the semi-distributed model is to 

improve the clustering algorithm. Using the K-means clustering algorithm is a brute force 

approach that does not necessarily account for the physical configuration of the catchment. 

For example, dividing the catchment into sub-basins is a more realistic spatial division than 

the latitude and longitude grid used in this study (see Table 1). However, there is no 

straightforward mechanism to include the sub-basin structure within K-means. A more 

plausible path forward is to first divide the catchment into a predefined number of sub-basins 

and then use K-means to find each sub-basins characteristic HRUs. A preliminary evaluation 

shows that this type of clustering approach also speeds up the simulations when compared to 

the original clustering algorithm since it leads to a more simplified flow matrix that results in 

a system of linear equations that is faster to solve for each update of Dynamic TOPMODEL. 

6.3 Revisiting the representative elementary area concept 

Through a set of model experiments using a modified version of TOPMODEL, [Wood et al., 

1988] and [Famiglietti and Wood, 1995] introduced the concept of a representative 

elementary area (REA) for hydrologic and land surface modeling; the REA is defined as the 

catchment scale above which field-scale spatial heterogeneity can be represented through 

sub-grid parameterizations instead of needing to rely on fully distributed modeling. In other 

words, it is the spatial scale (~grid cell size) above which macroscale land surface models are 

applicable. The REA has been found to be around 1 km
2
, although the REA is known to vary 

as a function of the catchment’s physical environmental characteristics and the model 

complexity [Blöschl et al., 1995].  

Usually, HRU models consider HRUs to be spatially contiguous regions within a 

catchment (e.g., sub-basin); each HRU’s field-scale processes are modeled via sub-HRU 

parameterizations. In these models, an REA can be established for the minimum HRU spatial 
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scale. However, this is not how HRUs are defined in HydroBlocks. In this study, HRUs are 

defined as points in a catchment with similar field-scale environmental characteristics that 

need not be spatially contiguous (see Figure 3). The HRUs are defined such that each one 

will have a unique hydrologic response. Therefore, the concept of REA is not applicable to 

the HRUs currently defined in HydroBlocks. However, as discussed in section 6.2, the 

authors are implementing a hierarchical clustering method to more adequately define the 

HRUs. First, the catchment is divided into sub-basins and then the HRUs are defined per sub-

basin. In this scenario, the REA would be the area of the sub-basin. Future work will use this 

hierarchical clustering method in HydroBlocks to further explore the REA concept in 

hydrologic and land surface modeling. The available field-scale environmental datasets and 

computational resources makes it feasible to perform this study over the entire contiguous 

United States. This will provide further understanding on how environmental characteristics 

impact the REA spatial scale and lead to a more informed configuration of sub-grid spatial 

heterogeneity in macroscale land surface models.  

6.4 Quantifying and constraining model uncertainty  

Although an explicit representation of field-scale land surface processes has the potential to 

more accurately depict the observed spatial and temporal dynamics over the land surface, it 

will also lead to an increase in model uncertainty due to the need for higher resolution model 

parameters and meteorological input data [Beven and Cloke, 2012]. To ensure the increase in 

process detail in the next generation of land surface models results in improved modeling of 

the land surface, these models must be able to handle robust ensemble frameworks to 

quantify and constrain model uncertainty [Chaney et al., 2015]. The possibility to run 

thousands of simulations in a short time period was one of the primary benefits of the original 

TOPMODEL and an important driver in the development of Dynamic TOPMODEL [Beven 

and Freer, 2001]. Although using around 100 to 1000 HRUs in HydroBlocks increases 
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computational demand when compared to current land surface models, the model is still 

highly computationally efficient. The results in section 5.3 show how the model can be run 

around 500 times using 1000 HRUs in the time it takes to run the fully distributed mode once. 

This makes it possible to resolve the physical processes at field-scales enabling the model 

results to be directly compared to in-situ observations while accounting for model uncertainty 

through robust ensemble frameworks (e.g., Latin Hypercube Sample). Although this study 

focused exclusively on assessing the performance of the simulated surface soil moisture (see 

section 5.4), future validation efforts should extend the analysis to include other states and 

fluxes of the water, energy, and carbon cycles including streamflow, latent heat, and sensible 

heat, among others.  

6. Conclusions 

This study introduces HydroBlocks, a novel land surface model that couples the NOAH-MP 

land surface model and the Dynamic TOPMODEL hydrologic model. HydroBlocks 

represents a catchment’s spatial heterogeneity via dynamically interacting hydrologic 

response units (HRUs). The model defines the response units by using the K-means algorithm 

to cluster high-resolution drivers of spatial heterogeneity (soil, topography, land cover, and 

position). The model’s structure provides a seamless link between lumped, semi-distributed, 

and fully distributed modeling. A set of simulations with an increasing number of HRUs 

show that over the Little Washita watershed, the semi-distributed version of the model can 

adequately approximate the spatial mean and spatial standard deviation of the fully 

distributed version of the model with around 1000 HRUs. In other words, the spatial patterns 

of the fully distributed model can be reproduced with a fraction of the computational expense. 

A 100 Latin Hypercube Sample is then used to evaluate model performance over each 

catchment’s network of soil moisture observations and to assess the role of model parameter 

uncertainty. The results confirm that HydroBlocks’ ability to handle large ensembles is 
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crucial to provide reliable fine scale detail. HydroBlocks’ reliance on interacting hydrologic 

response units provides a promising path forward for macroscale land surface modeling. It 

will enable land surface models to improve the representation of the role of the fine-scale 

physical environment in land surface processes and to explicitly model the sub-grid spatial 

interactions of the water, energy, and carbon cycles.  
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Figure 1. HydroBlocks represents spatial heterogeneity through hydrologic response units 

(HRUs). These response units are defined according to a catchment’s land cover, topography, 

soil, and position maps. At each time step, the Noah-MP land surface model updates the 

vertical profile of each response unit and Dynamic TOPMODEL connects the response units 

via a subsurface kinematic wave.  
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Figure 2. The Little Washita watershed is a 610 km
2
 tributary of the Washita River in 

southwest Oklahoma, United States. The catchment is shown via the NED elevation data and 

the derived channel network. The ids and locations of the soil moisture probes in the USDA-

ARS Micronet network are also shown. 
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Figure 3. As an example, the K-means clustering algorithm is applied to the topographic 

index map to define 3 hydrologic response units over the Little Washita. The flow direction 

map derived from the 30-meter NED DEM is then used to compute the connections between 

the HRUs. As shown in the flow matrix, the HRUs either flow into themselves or into another 

HRU. 
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Figure 4. HydroBlocks is run over the Little Washita watershed using the 3 hydrologic 

response units defined in Figure 3. This simple example illustrates the semi-distributed 

model’s ability to represent spatial heterogeneity of soil moisture, latent heat, and sensible 

heat. 
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Figure 5. Comparison between the semi-distributed and fully distributed HydroBlocks model 

output over the Little Washita on October, 22
nd

 2004. The panels offer a visual comparison 

between the mapped daily top-layer soil moisture content, soil water storage deficit, latent 

heat, and precipitation for the different model configurations (10, 100, 1,000, 10,000 HRUs, 

and fully distributed). 
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Figure 6. Modeled catchment soil moisture mean and standard deviation using HydroBlocks 

with 2, 10, 100, 1,000, and 10,000 HRUs and the fully distributed model over the Little 

Washita watershed. 
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Figure 7. Convergence of the Kling-Gupta efficiency metric KGE, linear correlation  , bias 
i   he me   β    d  he bi s i   he s   d rd devi  io  α with increasing number of HRUs. 

Metrics are based on comparisons of daily time series of simulated spatial mean (left) and the 

spatial standard deviation (right) of the semi-distributed and fully distributed versions of the 

HydroBlocks model, and are provided for soil moisture (), baseflow (Qb), surface runoff 

(Qs), precipitation (P), sensible heat (SH) and latent heat (LH).   
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Figure 8. Analysis of the time it takes to run the HydroBlocks model for one year over the 

Little Washita as a function of the number of hydrologic response units. The blue line is the 

semi-distributed runtime divided by the fully distributed run-time. The green line is the semi-

distributed runtime divided by the number of hydrologic response units.  
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Figure 9. The observations of 18 soil moisture probes (green dots) in the ARS Micronet 

network in the Little Washita watershed are used to validate the HydroBlocks model output 

from the Latin Hypercube Sample. The optimal parameter set simulations (blue line) are 

bounded by the simulations of the best performing 10%, 25%, and 50% parameter sets. 
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Figure 10. The spread in model performance from the 100 set Latin Hypercube Sample is 

visualized at each of the 18 soil moisture probes in the Little Washita watershed via boxplots 

of a suite of performance metrics including Kling-Gupta Efficiency (upper left panel), linear 

correlation (upper right panel), bias in the mean (lower left panel), and bias in the standard 

deviation (lower right panel). The performance at each site when the catchment optimal 

parameter set is used is shown via the light orange dots.  
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Table 1. Drivers of the spatial heterogeneity of land surface processes and their 

corresponding proxies used for defining the hydrologic response units. 

Driver of Spatial Heterogeniety  Proxy Dataset* Spatial Resolution 

Land Cover NDVI  

 

WELD 30 meters 

Soil Properties 

Ksat 

POLARIS 

30 meters 

Mean upslope Ksat
 

Topography 

Accumulation area  

NED 

30 meters 

NIU  

Meteorology 
Latitude 

N/A 
30 meters 

Longitude 

 

*  See section 3.2 for a description of these datasets and the proxies. 
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Table 2. Parameter definition and ranges used in the 100 set Latin Hypercube Sample. 

Parameter Description Lower 

Limit 

Upper Limit 

m (meters)  Form of the exponential decline in conductivity 0.001 10.0 

Smax (meters) Maximum effective soil moisture deficit  0.1 1.0 

psoil Scaling factor of the residual point, wilting point, 

field capacity, and porosity.  

0.5 1.0 

pksat Scaling factor of the saturated hydraulic conductivity 0.25 4.0 

 

 

 

 


