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Abstract  

This paper reports a highly economical and accessible approach to generate different discrete relative 

humidity conditions in spatially separated wells of a modified multi-well plate for humidity assay of 

plant-pathogen interactions with good throughput. We demonstrated that a discrete humidity gradient 

could be formed within a few minutes and maintained over a period of a few days inside the device. The 

device consisted of a freeway channel in the top layer, multiple compartmented wells in the bottom layer, 

a water source, and a drying agent source. The combinational effects of evaporation, diffusion, and 

convection were synergized to establish the stable discrete humidity gradient. The device was employed 

to study visible and molecular disease phenotypes of soybean in responses to infection by Phytophthora 

sojae, an oomycete pathogen, under a set of humidity conditions, with two near-isogenic soybean lines, 

Williams and Williams 82, that differ for a Phytophthora resistance gene (Rps1-k). Our result showed that 

at 63 % relative humidity, the transcript level of the defense gene GmPR1 was at minimum in the 

susceptible soybean line Williams and at maximal level in the resistant line Williams 82 following P. sojae 

CC5C infection. In addition, we investigated the effects of environmental temperature, dimensional and 

geometrical parameters, and other configurational factors on the ability of the device to generate 

miniature humidity environments. This work represents an exploratory effort to economically and 

efficiently manipulate humidity environments in a space-limited device and shows a great potential to 

facilitate humidity assay of plant seed germination and development, pathogen growth, and 
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plant-pathogen interactions. Since the proposed device can be easily made, modified, and operated, it is 

believed that this present humidity manipulation technology will benefit many laboratories in the area of 

seed science, plant pathology, and plant-microbe biology, where humidity is an important factor that 

influences plant disease infection, establishment, and development. 

 

Introduction 

Controlled humidity environments are highly desired in plant science and agriculture research.1-3 The 

ability to generate stable and controllable humidity conditions is of significant benefit for assaying the 

role of air water content in seed germination and plant development and growth, and studying 

interactions between plants and biological species (e.g., microbes, pathogens, and pests).4 Current 

greenhouse and growth chamber technologies require sensors and computer-assisted water spray and 

air ventilation to obtain specified humidity levels.5,6 Air humidity-regulating control of commercial plant 

growth environments is often obtained by combining humidifier and dehumidifier.7 These methods have 

relatively insufficient flexibility and low accuracy in creating a large number of variable humidity levels, 

thus affecting throughput of various humidity assays in plant sciences. New research and development 

efforts of considerable magnitude are therefore needed to realize flexible, precise, and economic 

regulation of humidity environments with high efficiency.  

Concentration gradients of diffusible molecules have been flexibly generated in microfluidic lab-chip 

devices using flow-based or diffusion-based methods.8-12 These approaches allow for flexible 

manipulation of chemical concentrations at a small scale, thus facilitating studying many scientifically 

important biological phenomena, such as chemotaxis and morphogenesis of single cells and multicellular 

microorganisms.13-19 The flow-based method uses an external pumping system to produce stable 
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gradients perpendicular to parallel laminar flows of varying concentrations. The diffusion-based 

approach produces a chemical concentration gradient along a channel by free-diffusion between two 

sources, but the resulting gradient is often hard to maintain over long time periods.20.21 Kang et al. 

developed a device that generated concentration gradients parallel to the direction of flow by using a 

convective-diffusive balance in a counter-flow configuration.22 Du et al. established spatially and 

temporally controllable concentration gradients of molecules in a microfluidic device.23 Nezhad et al. 

developed diffusion based and flow based gradient microfluidic devices to stimulate pollen tubes.24  

While continuing efforts have been made to realize various miniature controlled environments for 

different biological applications, it should be pointed out that flexible manipulation of discrete humidity 

environments is relatively under-researched in miniaturization research and development area for plant 

science, plant pathology, and plant-microbe biology, where humidity is regarded as one of major 

environmental factors in affecting plant disease infection, establishment, and development.  

Soybean [Glycine max (L.) Merr.] is one of the most important crops with high economic value 

worldwide. In the United States, soybean is the second most important row crop after corn. It is 

estimated that soybean suffers yield reduction valued over 2.6 billion dollars annually from various 

diseases.25 Among the diseases, Phytophthora root and stem rot caused by Phytophthora sojae alone 

results in annual soybean yield losses valued around 0.3 billion dollars.26 P. sojae is an oomycete 

pathogen and can cause pre-emergence damping off leading to total crop failure. Owing to its economic 

importance of the disease, soybean-P. sojae has been widely accepted as a model plant-pathogen 

interaction for over four decades.  

A series of Rps genes has been identified and utilized in breeding Phytophthora resistant soybean 
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cultivars.27 Of these, the Rps1-k locus was cloned. It contains two genes encoding coiled coil-nucleotide 

binding-leucine repeat containing proteins.28,29 Because the oomycete pathogen P. sojae evolves rapidly 

and overcome the newly introduced Rps genes,30 a better understanding of this model system is 

becoming essential for designing or creating durable Phytophthora resistant soybean line. Furthermore, 

plant diseases are greatly influenced by various environmental conditions (e.g., light, temperature, soil 

water stress, nitrogen, etc.). Among these environmental factors, relative humidity or air water content 

plays a major role in disease development. Unfortunately, how the environmental humidity factor 

influences the outcome of the soybean-P. sojae interaction is unknown. 

In this paper, we report on the development of a highly economical and accessible miniature device 

able to create a stable discrete humidity gradient in a space suitable for studying humidity requirements 

of the soybean-pathogen interaction. The proposed multi-well plate-like humidity devices can be easily 

made, used, and modified by unskilled persons in most biology and agriculture laboratories. We 

demonstrated the workability of the humidity device in assaying humidity conditions for studying both 

visible and molecular phenotypes in the soybean-P. sojae interaction.  

 

Device Design  

The proposed device consists of two layers in a vertical direction (Fig. 1a and d). The top layer is 

spatially continuous and capped by a transparent lid. The bottom layer is partitioned into multiple 

identical wells. These wells are open at the top into the freeway space of the top layer. Two device 

configurations, namely I-shaped and U-shaped devices, are studied for the purpose of illustrating and 

verifying the underlying principle. The I-shaped device has a straight top channel and a linear array of 
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rectangular wells (Fig. 1a-c). In the U-shaped device, an array of cylindrical wells locates in the bottom 

layer and a U-shaped freeway channel is formed in the top layer by using a one-end-opened partition 

wall (Fig. 1d-f). To obtain a discrete humidity gradient, water and desiccant drying agent are respectively 

preloaded into two wells at the two extreme ends of the bottom layer (Fig. 1a and d). Water vapors 

evaporate from the water surface of the “source” reservoir and diffuses horizontally towards the 

desiccant reservoir or “drain” along the continuous top layer of the device (Fig. 1b and e). While passing 

each well, water vapors diffuse and convect downwards into the wells of the bottom layer. Herein, 

evaporation, diffusion, and convection are the driving forces for mass transfer of water vapors. The 

equilibrium concentration gradient of water vapors in the top layer arises from a balance of water 

evaporation at the source and water absorption by the drying agent at the drain. For each well, the 

water vapor right above the well serves as the source of the well, but there is no drain at the bottom of 

the well. As a result, when an equilibrium is established, the vapor inside the well will be distributed 

uniformly, except for the region near the top opening of the well where a small gradient of vapor will 

occur. Therefore, a steady-state discrete humidity gradient is formed within the separated wells of the 

bottom layer, while a continuous humidity gradient still appears in the top layer of the device (Fig. 1c and 

f). As long as the water and desiccant drying agent sources are sufficient, the discrete humidity gradient 

in the wells will remain in its steady state. For example, when humidity of one or multiple wells is 

changed due to possible absorption of water vapors by plant seeds or pathogens, the water vapors in the 

top freeway channel will automatically transport into the corresponding wells to compensate for the 

vapor loss until reaching a new equilibrium vapor gradient through local diffusion and convection. 
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FIG 1. Generation of a discrete humidity gradient in the I-shaped (a-c) and U-shaped (d-f) devices. Device photos 

are shown in (a) and (d). Schematics with key dimensions are given in (b) and (e). (c) and (f) give humidity gradients 

(top view) in the top and bottom layers of the I-shaped (c) and U-shaped (f) devices, respectively. Insets in (a) and 

(d) show soybean in the devices for studying soybean-pathogen interactions. 

 

To accommodate the size of soybean seedlings, each well in the I-shaped device was designed to be 

10 mm long, 35 mm wide, and 35 mm tall. There were 12 wells in the bottom layer, with a 2 mm 

separation between the adjacent wells. The top layer of the device was comprised of 5 mm deep space 

between the bottom layer and the transparent slab lid (Fig. 1a, 1b). The outer dimensions of the device 

were 146 mm (L) × 40 mm (W) × 40 mm (H). The I-shaped device was assembled by gluing multiple 

pieces of pre-machined transparent poly (methyl methacrylate) or PMMA (1/8-inch thick; Plexiglas; Alsip, 

USA) using acrylic adhesives (3M8155; 3M; St. Paul, USA). The U-shaped device was designed to be like a 

commercial 24-well tissue culture plate. This device had the outer dimensions of 110 mm (L) × 83 mm 
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(W) × 25 mm (H) and the size of each well was 16 mm diameter and 15 mm deep. The separation 

between the adjacent wells of this device was 2.5 mm. The top freeway channel was 8 mm in depth (Fig. 

1d, 1e). The digital pattern of the U-shaped device was designed in AutoCAD (Autodesk; San Rafael, CA) 

and fabricated with a PMMA block (3/4-inch thick; Plexiglas; Alsip, USA) by using a high-precision milling 

machine (CNC Masters; Irwindale, USA).  

To study dynamic process of generating a discrete humidity gradient in the I-shaped and U-shaped 

devices, we built a computational model for the devices, based on a finite element analysis (FEA) 

method based software COMSOL Multiphysics (Burlington, USA). Generally, relative humidity has a linear 

function with water vapour concentration in the air.31 The FEA simulations were conducted by 

establishing an equilibrium relation between the vapour source, the drain with the drying agent, and the 

moist air concentrations at different locations of the top and bottom layers. A convection-diffusion 

model was thus used to simulate the humidity gradient generation process in the device based on the 

convection-diffusion transport equation below:  

                                (1) 

where c, D, and u are the concentration, the diffusivity, and the flow rate of water molecules in gaseous 

state, respectively. The diffusion coefficient D was set as 2.82×10-5 m2/s at room temperature.32 The flow 

rate of water molecules u was set at zero due to no external driving force. For normalization purpose, a 

constant vapour concentration of 1 mol/m3 was used at the water reservoir and zero concentration was 

used at the desiccant reservoir. Time increment was set to be 5 sec to illustrate the time-varying process 

of forming a discrete humidity gradient. A steady-state analysis was conducted to check uniformity and 

stability of the generated gradient. 
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Fig. 2a shows time-lapse images of the simulated humidity profiles at different time points in the 

I-shaped device. Fig. 2b shows time-varying humidity in each well of this device. The simulation result 

indicates the closer the well was away from the water source, the shorter the time required to establish 

a stable humidity in the well. Specifically, the shortest establishment time was ~130 sec for the first well 

(see label #1 in Fig. 2a), while the longest time was ~550 sec for the last well (see label #10 in Fig. 2a). Fig. 

2c shows the steady-state humidity gradient in the I-shaped device. Five humidity-tracing lines were set 

at different depths of the device. The result shows that due to combining the upper freeway channel and 

the lower compartmented wells, a discrete humidity gradient was well established along the wells in the 

bottom layer, while a continuous humidity gradient appeared in the top layer and decreased along the 

diffusing direction (line A in Fig. 2c). It should be noted that the humidity of each well was spatially 

uniform (lines C-E in Fig. 2c), except for a small humidity drop at the opening of the well (line B in Fig. 2c). 

The spatial resolution of discrete gradient depends on the number of wells included in the device. For 

example, for the I-shaped device, let us assume the relative humidity levels above the water and 

desiccant reservoirs are RHwt and RHdes, respectively, and there are N number of wells in the device. The 

humidity level in well n (1 ≤ n ≤ N) can be estimated as (RHwt – RHdes) n / N + RHdes.  

 Similarly, we also conducted simulations for the U-shaped device and obtained similar results as 

shown in Fig. 2d-f. In particular, the simulated time of reaching a stable humidity in a well varied from 

~140 sec at well #1 to ~820 sec at well #10. It should be noted that the humidity values of wells #5 and 

#6 at the spatial turning point of the U-shaped device were deviated from a linear fit for all humidity 

data (Fig. 2f). This is because the geometrical constrains of these two wells were not similar to other 

wells in the same device (Fig. 2b). 
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FIG 2. Simulated dynamic process to generate discrete humidity gradients in the I-shaped and U-shaped devices. (a) 

and (d) give time-lapse images of water vapor movement inside the devices at different time points. (b) and (e) plot 

simulated relative humidity as a function of time in each well of the I-shaped (b) and U-shaped (e) devices. The 

wells of the I-shaped and U-shaped devices are numbered from #1 to #10 as shown in (a) and (c), respectively. The 

water and drying agent reservoirs are not numbered. (c) and (f) give simulated steady-state relative humidity 

gradient in the continuous top layer (line A), at the interface (line B) between the top and bottom layer, and at the 

three different depths (lines C-E) in the welled bottom layer, of the I-shaped (c) and U-shaped (f) devices, 

respectively. 

 

Device characterization 

To monitor humidity development process in the wells of the lower layer of the device, we inserted 

four mini relative humidity sensors (SHT11; Sensirion, Staefa, Switzerland) into the wells #1, #5, #6, and 

#10 (at the half depth of the wells) via the tiny holes punched through the transparent lid. These holes 
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were sealed witch epoxy before measurement. The relative humidity sensors were controlled by a 

microcontroller board (Arduino Duemilanove; Arduino LLC, Somerville, USA) to multiplex readouts. 

Real-time relative humidity data were collected by a built-in program of the Arduino board via USB cable. 

Fig. 3a shows the measured process of generating a stable discrete relative humidity gradient in the 

I-shaped device. The result demonstrates that depending on the location of a well, it took about 100 to 

600 seconds to reach a steady-state humidity, and that the stabilized humidity remained constant over 

the tested 48 hours. As expected, the wells closer to the water reservoir require shorter time to establish 

stable humidity environments. Also, there is a close correspondence between the discrete humidity 

gradients generated via the FEA simulation and in the conducted experiments (Fig. 3b). Fig. 3c indicates 

that the wells had a decreasing relative humidity from ~91%, next to the water reservoir, to ~22%, next 

to the desiccant reservoir. In the U-shaped device, the measured discrete relative humidity values and 

distribution (Fig. 3d-f) were similar to the simulation results mentioned. Specifically, the steady-state 

relative humidity levels were 90%, 82%, 76%, 69%, 63%, 48%, 44%, 37%, 29%, and 21% from well #1 to 

#10. The lowest relative humidity (21%) was stabilized within ~750 sec, while the highest one (90%) was 

obtained within ~170 sec. 
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FIG 3. Experimental humidity generation process in four wells (#1, #5, #6, and #10) of the I-shaped and U-shaped 

devices each, over a 48-hour period (a, d) and a close-up of the first 1000 seconds (b, e). For the purpose of 

comparison, the simulated results of relative humidity as a function of time are also given in (b, e). Experimental 

steady-state humidity in each well is given in (c, f). Here (a-c) and (d-f) present the results for the I-shaped and 

U-shaped devices, respectively.   

 

Humidity in the soybean-Phytophthora sojae interaction 

We investigated the influences of the discrete relative humidity gradient generated in the U-shaped 

device on visible and molecular phenotypes in the soybean-P. sojae interaction. Williams (rps1-k) is 

susceptible to P. sojae CC5C isolate, while Williams 82 is resistant due to introgression of the 

Phytophthora resistance Rps1-k gene into the Williams background from the soybean line Kingwa. 

Two-day old etiolated seedlings of the soybean cultivars Williams and Williams 82, grown in coarse 

vermiculites, were either inoculated with P. sojae isolate CC5C zoospores (1×105 spores/ml) or treated 
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with sterile water, and then incubated under a range of relative humidity from 21% to 90% in dark and at 

22 oC for up to 48 h in the U-shaped device (Fig. 4). We observed that the development of typical disease 

phenotypes was depended on humidity conditions. Typical dark brown hypersensitive response (HR) was 

observed for Williams 82, while similar dark brown symptom response was recorded for the susceptible 

Williams line under lower relative humidity condition (below 45%) due to failure of the pathogen to 

establish compatible interactions. Seedlings of both lines shriveled when relative humidity was 21%. 

 
FIG 4. Investigation of the soybean-P. sojae interaction under variable relative humidity conditions. A pair of near 

isogenic soybean lines that differ for a Phytophthora resistance gene (Rps1-k) was investigated for responses of 

soybean to the oomycete pathogen under a range of humidity conditions. Two-day old etiolated soybean seedlings 

of the cultivar Williams (rps1-k) and Williams 82 (Rps1-k) were inoculated with 100 μl P. sojae isolate CC5C 
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zoospores suspension (105 spores/ml) for 30 min as shown in (a). A range of humidity condition was generated by 

the U-shaped device shown in Fig. 1c. Inoculated seedlings were arranged upside down in the device as shown in 

(b). Twenty-four hours following inoculation, the seedlings were observed for disease phenotypes (c) and (d). The 

seedlings shown in (d) are from the zoomed section of (c), shown by a white rectangle. In (d), black arrows show 

the resistant response of Williams 82 (Rps1-k) to the pathogen, while orange arrows show the susceptible response 

of Williams (lacking Rps1-k) to the pathogen. In (e), ten P. sojae infected seedlings under variable humidity 

condition are shown. The black arrows show resistant response of Williams 82 (upper panel) and the orange arrows 

indicate susceptible response of Williams (lower panel) under variable relative humidity condition with the left 

most seedlings were exposed to 90% relative humidity while the right most ones to 21% relative humidity. Scale 

bars in (a)-(e) represent 10 mm. 

 

To determine the role of humidity on the host responses to pathogen infection, we conducted 

quantitative RT-PCR (qRT-PCR) for the soybean defense gene GmPR1. Total RNA samples were extracted 

from the P. sojae-infected or water treated root tissues using the miRNeasy Mini Kit (Qiagen; Venlo, 

Limburg, The Netherlands). To eliminate any contaminating genomic DNA, we treated the RNA samples 

with DNase I (Promega; Madison, WI, USA) for 30 min at 37 oC. RNA samples were evaluated for quality 

by running on a 0.7% agarose gel and quantified by a NanoDrop ND-1000 spectrophotometer (Thermo 

Fisher Scientific; Waltham, MA, USA). First-strand cDNAs were synthesized from 2 µg total RNA using 

M-MLV reverse transcriptase (Promega; Madison, WI, USA) according to the manufacturer's 

recommendation. Real-time qPCR was performed on an iCycler Real-Time system (Bio-Rad; Hercules, CA, 

USA). Each reaction was conducted in a final volume of 20 µl containing 10 µl of iTag Universal SYBR 

Green (Bio-Rad; Hercules, CA, USA), 2.0 µl of cDNA sample, and 200 nM gene-specific primers. The qPCR 

conditions were as follows: the amplification cycles were composed of 95 oC for 30 s followed by 40 
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cycles of 95 oC for 15 s, 55 oC for 30 s and 72 oC for 30 s and a final extension cycle of 72 oC for 10 min. At 

the end of the 40 cycles, a melting curve was generated to analyze the specificity of the reactions. Each 

cDNA sample was PCR amplified in three replications. The ELF1B transcript level was used as the 

endogenous control. The relative expression level was calculated as 2–ΔΔCT (ΔCT = CT, gene of interest − CT, 

ELF1B. ΔΔCT = ΔCT, treatment − ΔCT, 21% relative humidity control). Fig. 5 shows relative expression of 

the soybean defense GmPR1 gene in the roots of etiolated soybean seedlings either treated with water 

or infected with P. sojae under different humidity conditions. It is expected that in a typical susceptible 

host response, the GmPR1 levels will be at minimal level. On the other hand, the GmPR1 level will be at 

maximum level in a typical resistant response governed by recognition of an Rps gene product by its 

corresponding Avr effector protein encoded by an Avr gene. The result of the humidity assay shown in 

Fig. 5 indicates that at 63% relative humidity, the GmPR1 transcripts are at the minimal level in the 

infected roots of the susceptible line, Williams, and at the maximal level in the infected roots of the 

resistant line, Williams 82. Therefore, this study indicates that for a successful soybean-P. sojae 

interaction, the relative humidity should be around 63%. We also, however, observed that at low relative 

humidity (e.g., 44%, Fig. 5a) the susceptible line Williams showed enhanced expression of the GmPR1 

gene because under low humidity condition the pathogen fails to infect the host normally and host gets 

the upper-hand to fight back by inducing defense pathway and induction of HR response (Fig. 4), 

presumably triggered by pathogen-associated molecular patterns (PAMPs). 
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FIG 5. Relative expression of soybean defense GmPR1 gene in infected roots of etiolated soybean seedlings with P. 

sojae under different humidity conditions as compared to that in the control. (a) Phenotypes of the susceptible and 

resistant host responses of Williams and Williams 82, respectively, to P. sojae isolate CC5C. (a) Expression of the 

defense gene GmPR1 in Williams. Control, seedlings treated with water; Williams & P. sojae, compatible interaction 

or susceptible host response following infection of Williams with P. sojae. (b) Expression of the defense gene 

GmPR1 in Williams 82. Control, seedlings treated with water; Williams 82 and P. sojae, incompatible interaction or 

resistant host response following infection of Williams 82 with P. sojae. Histograms show the mean of three 

biological replications and bars indicate standard errors calculated from standard deviations of three independent 

biological replications. 

 

Temperature, size scaling & other configurations 

While the utility of the U-shaped device for determining humidity requirements of the soybean-P. 

sojae interaction has been demonstrated, it is also worth studying the effects of environmental 

temperature and dimensional and geometrical parameters on the device performance in order to 

further explore other possible applications in the future.  

We first studied how environmental temperature influences the formation of discrete humidity 

gradient within the I-shaped and U-shaped devices. In this experiment, each device was placed on a 
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digital hotplate and a temperature and humidity sensor was inserted into well #6 of the device (Fig. 1a 

and d). The result shows that as the temperature increases from 22 oC to 50 oC, the steady-state 

humidity of the well decreased from ~52% to ~28% (Fig. 6a and c). Note that relative humidity is defined 

as the ratio of the partial pressure of water vapour to the equilibrium vapour pressure of water at a 

temperature. The equilibrium vapour pressure of water vapour increased fast as temperature rose, while 

the partial pressure of water vapour was little influenced by temperature. As a result, the steady-state 

humidity decreased with increasing temperature (Fig. 6b and d). 

 

FIG 6. Temperature effect on humidity generation process in a well of the I-shaped (a) and U-shaped (c) device. 

Steady-state relative humidity as a function of temperature for in all wells of the I-shaped and U-shaped devices 

are given in (b) and (d), respectively. 
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To accommodate for smaller seeds (e.g., Arabidopsis, rice, etc.) for future research, we also studied 

the effect of device size on humidity generation of the device. We applied different scaling factors (SF = 

1.0, 0.7, 0.5, 0.25, 0.125, 0.1, and 0.05) to the original dimensions of the U-shaped device (Fig. 1d, 1e). 

The simulation result shows that the time required to reach a stable humidity level reduced with 

decreasing device size (Fig. 7a). We then manufactured a smaller U-shaped device with the dimensions 

of 77 mm × 58.1 mm × 17.5 mm (SF = 0.7) to house 24 wells with each being 11.2 mm diameter and 10.5 

mm deep. A humidity generation and measurement experiment was also taken on the device, where 

one end was set as the water source and the other was set as the drying agent source. A thin layer (~1 

mm thick) of desiccant powders was laid at the bottom of each well to indicate humidity difference 

between the wells. At low humidity levels, the color of the desiccant powders was yellow. As the 

humidity increased, the desiccant powders became slightly blue. Fig. 7b indicates that a stable discrete 

humidity gradient was established within 6.5 min, almost matching the simulated result (green curve in 

Fig. 7a). We also made a smaller I-shaped device with the dimensions of 44 mm × 32 mm × 6 mm (see 

the lower panel in Fig. 7b). The color change of the desiccant powders indicates that the downscaled 

I-shaped device had a shorter establishment time of ~1 min (Fig. 7b). Furthermore, it should be noted 

that as long as water and drying agents in the reservoirs are adequate to consume, the boundary 

conditions of the aforementioned convection-diffusion equation governing the process of forming 

humidity gradient will not change with different reservoir sizes. Thus, the stabilized humidity gradient 

will not be influenced by the dimensions of the reservoirs. In addition, the gradient stabilization time is 

mainly determined by the distance between the water and desiccant reservoirs, not by the dimensions 
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of the reservoirs either. Therefore, the present method of generating discrete humidity is not limited to 

the specific dimensions shown above but rather common in different dimensional settings. 

 

FIG 7. (a) Influence of device size on dynamic humidity generation process of U-shaped device. Inset shows the 

stabilization time as a function of scaling factor. (b, c) Color change of a thin layer of desiccant powders laid at the 

bottom of the wells due to different humidity levels of the wells of the downscaled devices. 

 

Furthermore, by setting up the water and desiccant drying agent sources at different wells of the 

device, it was possible to flexibly manipulate spatial distributions of discrete humidity within the device. 

For example, when two desiccant sources located at two extreme ends and one water source located in 

the middle of the I-shaped device, a terrace-step like distribution of humidity were obtained with the 

highest level in the middle and the lowest (highest) one at the ends (Fig. 8a). In addition, arranging two 

sets of water and desiccant sources in the I-shaped device as shown in Fig. 8c led to a triangular 

wave-like distribution of humidity superimposed with a step-like modulation. Furthermore, by placing 

the water and desiccant sources in the center, edge, and/or corner of the device without any partition 

T = 0s T = 60s 

T = 0s T = 60s 
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walls, the humidity distribution within the device could be well defined and predictable. Fig. 8d-f shows 

the discrete humidity gradients generated in three different cases, including (i) that water was loaded in 

the two wells near the center and the desiccant particles were loaded to the wells in four corners, (ii) 

that the water and desiccant particles were respectively loaded to the wells near the two short-length 

edges of the device, and (iii) that the water and desiccant particles located at the wells in the two 

diagonal corners. In addition, Fig. 8g shows that by setting up three partition walls in the top layer of the 

U-type device, a serpentine top freeway channel was formed, along which a discrete humidity gradient 

could be established. 

 

FIG 8. Spatial manipulation of humidity distributions by setting up water and desiccant sources and partition walls 

at different locations in the I-shaped and U-shaped devices. The letters “D” and “W” represent desiccant and water 
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sources, respectively. In (a)-(c), the plots in the lower row track humidity along the red and black lines in the top 

and bottom layers, respectively. In (d)-(f), the lower row show distributions of humidity in the two planes (A-A’ in 

the top layer and B-B’ in the bottom layer) labelled on each device. 

 

Conclusions 

We have demonstrated a simple and effective new method to obtain a controlled discrete humidity 

gradient in miniature multi-plate like devices. The device was composed of a freeway channel in the top 

layer, multiple compartmented wells in the bottom layer, a water source, and a desiccant source. A 

stable discrete humidity gradient was generated within up to a few minutes and maintained via the 

combinatory effects of evaporation, convection and diffusion of water vapors inside the device. We have 

also demonstrated the workability of the device in studying the soybean-P.sojae interaction at various 

humidity conditions. Based on the visible and molecular phenotypes of soybean in responses to P. sojae, 

we came to the conclusion that 63% relative humidity is the most suitable for generating compatible and 

incompatible interactions in this plant-pathogen interaction.  

The present humidity generation method provides sufficient flexibility in manipulating spatial 

distribution of stable discrete humidity gradient inside a miniature device. This approach can be readily 

translated into smaller scale devices to accommodate smaller plant species, such as Arabidopsis 

thaliana.33 By considering the low cost and ease of fabrication, use, and modification of the device, this 

method represents a valuable platform for air humidity assay of plant seed germination and 

development, pathogen growth, and plant-pathogen interaction. In addition, the present device should 

be useful for many other biological processes where relatively rapid generation and long-term 

stabilization of discrete air humidity gradient are needed. We believe that the present technology will 
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benefit many research areas including plant science, plant pathology, plant-microbe interaction, and 

agronomy in general.  

Future work includes introduction of additional economic control mechanisms for adjusting other 

environmental parameters such as light and temperature in the present device.34,35 Such a modified 

humidity device will be a very powerful platform to conduct biological assays for determining role of 

various environmental factors in plant-pathogen, plant-microbe interactions and also in studying seed 

germination and plant development. 
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