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Abstract

Since the turn of the century record temperatures have been observed in at least

20 different countries across Europe. Isolated hot days are not often an issue; most

devastation occurs when hot temperatures persist over many days. For example, the

2003 heatwave over Europe caused 40,000 deaths over a four week period at a cost of

e 13.1 million to the agriculture sector. It is clear that accurate models for the risks

associated with heatwaves are important to decision makers and planners who wish

to reduce the number of people affected by these extreme events.

Extreme value theory provides a statistical framework for modelling extreme events.

Extreme value models for temperature data tend to focus solely on the intensity, over-

looking how long periods of hot weather will last and what the spatial extent of the

event will be. For heatwaves, it is vital to explicitly model extremal dependence in

time and space.

An aim of this thesis is to develop extreme value methods that can accurately capture

the temporal evolution of heatwaves. Specifically, this is the first to use a broad class of

asymptotically motivated dependence structures that can provide accurate inferences

for different types of extremal dependence and over different orders of lagged depen-

dence. This flexibility ensures that these models are less likely to dramatically under-

or over-estimate the risks of heatwave events. Climate change is now widely regarded

as a driving force behind increased global temperatures. Extending the extreme value
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heatwave models to include covariate structure permits answers to critical questions

such as: How will a 1oC warming in the global temperature increase the chance of a

2003 style event?

The 2009 heatwave over Australia highlighted issues posed when multiple cities are

affected simultaneously. Both Adelaide and Melbourne observed record temperatures

during the same event which led to 374 deaths and 2000 people being treated for heat

related illness. It is not enough for heatwave models to account for temporal depen-

dence, they also need to explicitly model spatial dependence. Large-scale climatic

phenomena such as the El Niño-Southern Oscillation are known to affect the tem-

peratures across Australia. This thesis develops new spatial extreme value methods

that account for covariates, which are shown to model the 2009 event well. A novel

suite of spatial and temporal risk measures is designed to better understand whether

these covariates have an effect on the spatial extent and duration of heatwaves. This

provides important information for decision makers that is not available using current

methodology.
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Chapter 1

Introduction

1.1 Climate modelling

The modelling of weather and climate phenomena has been a very important area of

research over the last 60 years and continues to generate many interesting modelling

challenges. Progress in the field of climate modelling has occurred in many areas,

broadly summarised in Figure 1.1.1. To accurately model the climate system ad-

vances in each of these areas have been required. To start with accurate observations

of the climate system are needed to inform the behaviour of climate models. The rise

of technology has made it easier to collect accurate and more comprehensive obser-

vational records. These observations inform the design of climate models based upon

in depth knowledge about the physics of the climate. Increased computational power

has also permitted the creation of more complicated climate models that attempt

to accurately model the behaviour of observed climatic phenomena. These climate

observations and models can be combined with a risk assessment model to estimate

the risk posed by certain climatic conditions. This information is of vital importance

for changing policy and mitigation regarding climatic phenomena.

One recently developing area concerns the use of statistical models to provide ad-

1
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Observed system Climate models

Statistical modelling

Risk assessment modelling

Figure 1.1.1: The main steps of climate modelling. Accurate modelling of the climate system

requires development of all areas here. During this thesis we focus on developing new approaches

within the class of statistical modelling.

ditional insight when modelling the climate system. These models provide mathe-

matically motivated approaches to estimate the inherent uncertainty in the climate

system. With the rapid increase in the amount of available data, statistical methods

for big data provide an opportunity to obtain more information. In particular here,

statistical models for data obtained from observations and climate models are used to

estimate the probability of the occurrence of different climatic phenomena of interest.

These estimates can then be used to assess the risk posed by certain important cli-

matic events, using specific models of how climatic phenomena impact upon people

discussed previously. Statistical modelling can also be used to provide insight into

the reliability of climate models; a process called verification. This area of research is

especially important within the climate community since climate models are required

to assess potential changes that occur due to climate change.

In this thesis we concentrate on the statistical modelling of particular weather phe-

nomena. In particular we are interested in the behaviour of a group of rare and

potentially destructive phenomena called natural hazards. Understanding the risk
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posed by natural hazards is especially important for risk assessors since these events

lead to higher death tolls and larger economic losses. The statistical modelling of

natural hazards is important for a number of different specialists within the field of

climate science. Most obviously, decision makers would like to know how likely certain

types of natural hazards are to permit better preparation and mitigation. Statistics

can also provide additional insight for climate modellers. Currently, extremes of cli-

matic phenomena are often poorly represented by climate models. This revelation

is especially troubling when policy decisions regarding future climate change need to

be made based upon results coming from climate models. The information obtained

from statistical models could be used to improve the representation of extreme values

in climate models and inform governmental policy.

The statistical modelling of any type of rare event represents a challenge for statis-

ticians since by definition rare events do not occur often within the observational

record. As such approaches are required that can be applied in situations where data

are sparse. We would also like to be able to estimate events that are larger than have

been observed previously. Models that permit extrapolation to very extreme levels

are thus required. One well researched statistical approach for modelling rare events

is extreme value theory. At the most basic level values that are extreme, usually

defined as either the maximum of some block of time or as exceedances of some crit-

ical level, are modelled and used to estimate the behaviour of extreme values. Many

different types of natural hazard can be modelled by extreme value theory. These

can range from hazards like tornadoes that occur on a short timescale to droughts

and heatwaves that result from the persistence of certain conditions over long time

scales. Throughout the thesis we focus on developing extreme value models that can

be used on a wide class of natural hazards. It is noted that in many situations weather

generators could be used to model the risks associated with natural hazards. Such

approaches will be useful when interest is in moderately extreme events, but are not
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so useful when extrapolating to very extreme events. For the interested reader, a

modern review of weather generators is given in Maraun et al. (2010).

1.2 Heatwave modelling

Throughout the thesis we restrict our attention to heatwaves as the natural hazard

of interest. IPCC (2012) provide a general definition of a heatwave event:

A set of hot days and/or nights that are associated with a marked short-

term increase in mortality.

This definition is very general but highlights the most important point that any defi-

nition of a heatwave is constructed in terms of a critical level and a set of temperature

values (often consecutive) that exceed this level. A temperature observed above the

critical level, often chosen as a sufficiently high quantile, is said to be extreme; the

choice of this level is discussed further in later chapters. However, singular hot days

do not often cause many deaths or economic damage. During a heatwave most ca-

sualties are caused by heat exhaustion where core body temperature exceeds healthy

levels (37-39oC). This is often caused by multiple consecutive hot days without respite,

which does not allow the body to recover. As such, the duration of a heatwave is of

great importance and motivates the need for novel statistical approaches that account

for this aspect. Figure 1.2.1 shows important heatwave quantities that are referred to

throughout the thesis.

It is also important to consider the location and spatial extent of heatwave events. A

heatwave event that occurs over an urbanised region is likely to pose different risks

than one that occurs over a sparsely populated agricultural region. Estimating the

risk of a heatwave event occurring at multiple locations at the same time is also nec-

essary. Heatwaves can often stretch the capabilities of medical services. Estimates of

the probability of having a heatwave striking multiple locations could provide vital
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Peak Value

Severity

Duration

Threshold

Figure 1.2.1: Definition of heatwave terminology for example event at a single location.

information to mitigate for the potential increase in hospital admissions.

One especially important consideration concerns how heatwave events might change

under climate change and other important climatic phenomena. Climate change is

now widely regarded as contributing to recent increases in global temperatures. Many

papers within the field of climate science have investigated changes in global mean

temperatures and shown a warming climate in the future. However, the behaviour

of extreme events is less well studied and many results in this area are subject to

great uncertainty. As mentioned previously, there is also debate about how well cli-

mate models reproduce climatic extremes. For heatwaves, we are most interested in

whether heatwaves will occur more frequently or will last longer under climate change.

Figure 1.2.2 shows potential changes that could occur: events that become more fre-

quent (right top), events that last longer (right center) and the combination of more

frequent and longer heatwave events (right bottom). Each of these situations would

require different mitigation and therefore it is important to be able to accurately cap-

ture all such changes.
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35oC 35oC

Peak Value

Severity

Duration

35oC

35oC

1 in 30 year event

1 in 10 year event

1 in 30 year event

1 in 10 year event

Figure 1.2.2: How the behaviour of heatwave events at a single location could change with future

climate change for a example event occurring above a critical level of 35oC. A change in the frequency

of heatwaves (right top), a change in the duration of heatwaves (right centre) and a change in the

frequency and duration of heatwaves (right bottom).
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1.3 Thesis outline

The aim of the thesis is to provide statistical methodology, based upon extreme value

theory, to model the behaviour of heatwave events. To do this we shall extend basic

extreme value techniques to account for the spatial and temporal nature of heatwaves.

The thesis is split into different chapters that investigate different aspects of modelling

heatwaves using extreme value theory.

Chapter 2 gives an introduction to univariate extreme value theory and sets out

important notation in the area. We also review current approaches within the field

of multivariate extreme value theory, focusing on the important concept of extremal

dependence. This chapter ends with three extensions to current approaches for mod-

elling extremal dependence. One extension aims to take advantage of information not

currently used in the estimation of extremal dependence for more efficient estimation

of parameters and extremal measures. The second extension provides an approach for

estimating important extremal quantities directly without the need of repeated sim-

ulation. Finally, if simulation is required, we provide an approach for more accurate

estimation of extremal measures in high dimensions.

In Chapter 3 an extreme value model for heatwaves at a single location is built

based upon a first-order Markov assumption. This assumption permits the use of

bivariate extreme value results and generally simplifies the modelling procedure. We

derive an approach for estimating the probability of specific heatwave events which

permits a broad set of dependence characteristics. This flexible approach is based

upon repeated simulation of heatwave events which can then be used to estimate any

measure of interest. This approach is compared against more restrictive pre-existing

techniques and then used to estimate the probability of an event being more extreme

than the 2003 heatwave event at a site in France. For this study we investigate daily

maximum temperature observations taken at Orleans in central France for the years
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1946-2012.

The first-order Markov assumption is restrictive and Chapter 4 introduces models

for deriving the probability of specific heatwave events at a single site that take ad-

vantage of higher-order structure. This approach is based upon a multivariate kernel

density estimation approach incorporated into the framework from Chapter 3. Specific

diagnostic tests are developed to estimate how much higher-order structure should be

included to capture specific heatwave behaviour while avoiding inefficient overparam-

eterisation. Finally the higher-order approach is also used to obtain estimates of the

probability of an event more extreme than the 2003 heatwave and these are compared

with the results in Chapter 3.

Up until this point of the thesis, the effect of climate change has been ignored. Chap-

ter 5 provides an approach, under the first-order Markov assumption for a single site,

for incorporating covariate structure into the approach outlined in Chapter 3. We

analyse the behaviour of daily maximum temperature values taken from an ensemble

of different general circulation models for the years 2006-2090 forced with the RCP8.5

climate scenario. We investigate the change in the behaviour of heatwaves with a 1oC

and 5oC increase in the mean global temperature, estimating whether heatwaves will

become more frequent or last longer.

Chapter 6 introduces spatial structure to investigate the spatial extent of hot events

over Australia. Here, we ignore the issues raised concerning temporal dependence

to focus on a spatial model. The nature of the problem motivates a new set of ex-

tremal measures for summarising the spatial extent of extreme temperature events.

Using this model we estimate the effect of the El Niño Southern Oscillation (ENSO),

a large-scale climatic phenomenon, on the spatial extent of heatwave events. In this

chapter, data are gridded daily maximum temperature observations across Australia
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for the years 1957-2011, along with a monthly measure of the strength of ENSO.

In Chapter 7 we bring together the models from the previous chapters to create a

full space-time model for assessing the risk of heatwave events. We also consider how

the methods outlined during the thesis could be applied to drought as opposed to

heatwaves. A discussion of the outcomes of the thesis is also included.

The thesis is structured as a set of papers and as such Chapters 3, 4, 5 and 6 can

be read as separate entities. As such some important sections outlining the extreme

value models used will be repeated in multiple chapters.



Chapter 2

Extreme value theory

2.1 Introduction

Extreme value theory is a field developed throughout the twentieth century starting

from asymptotic arguments derived by Fisher and Tippett (1928) and formalised into

statistical methods by Gumbel (1958). The area of extreme value theory is driven

by the desire to accurately model the probabilistic behaviour of events that are by

definition rare. Framing this problem in terms of the distribution function, the tails

of the distribution are of greatest concern. Most data are concentrated in the cen-

tre of the distribution, which means that estimates such as the mean and standard

deviation are typically driven by these central values. A fit to the body of the data

permits many different extrapolations to tail regions, a situation that reduces con-

fidence in estimates of high quantiles and other associated measures. Observations

in the tail of the distribution are scarce which makes inference hard via standard

methods that rely on having a large sample. There is often the desire to be able to

estimate levels that are beyond the range of the current data. Extreme value mod-

els provide an asymptotically justified approach for exactly this type of extrapolation.

Section 2.2 reviews existing theory and inference procedures for univariate extreme

10
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value approaches. In Section 2.3 we introduce multivariate extreme value theory and

in particular the concept of extremal dependence. Two different approaches for mod-

elling extremal dependence, the joint tail model (Ledford and Tawn, 1997) and the

conditional extremes model (Heffernan and Tawn, 2004), are discussed in Sections 2.5

and 5.3.2 respectively. Useful extensions to these approaches are derived and Sec-

tion 2.7 gives a brief simulation study to compare the two methods and assess the

utility of the different extensions.

2.2 Univariate Extreme Value Theory

2.2.1 Overview

In many situations we are interested in modelling the extremes of a particular variable

at a single location. For this purpose, univariate extreme value distributions exist

based upon asymptotically derived theory. Two types of modelling approach are

discussed below, modelling block maxima and exceedances of a high threshold.

2.2.2 Block maxima approach

Theory

Let X1, . . . , Xn be a sequence of independent and identically distributed (IID) random

variables with distribution function F . The maximum value is defined as

MX,n = max (X1, . . . , Xn) .

For example, the annual maxima MX,365 could be obtained from the daily values

X1, . . . , X365. Any distributional results that concern the minima can be derived from
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the results obtained for maxima since

mX,n = min(X1, . . . , Xn)

= −max(−X1, . . . ,−Xn)

= −M−X,n.

As such, only methods for the upper tail are presented in the thesis. The subscript

X is also dropped from MX,n for notational simplicity. The distribution of Mn can

be derived exactly as

P(Mn ≤ z) = P(X1 ≤ z, . . . , Xn ≤ z)

= P(X1 ≤ z) . . .P(Xn ≤ z)

= [F (z)]n .

This result is not immediately useful since F is unknown. Instead the behaviour of F n

can be studied as n → ∞. However as n → ∞, Mn tends to the upper end point of

F ; the asymptotic distribution of Mn is termed degenerate. If it is possible to define

sequences an > 0 and bn ∈ R such that as n→∞

P

(
Mn − bn
an

≤ z

)
→ G(z), (2.2.1)

where G is a non-degenerate distribution function, then G belongs to the family of

extreme value distributions. The Extremal Types Theorem (Leadbetter et al., 1983)

gives three different families of limit distribution that maximum values could take

(Gumbel, Fréchet and Negative Weibull). Up to type G is of the form of one of the

following distributions:

G(z) = exp{−exp(−z)} for ∞ < z <∞ (2.2.2)

G(z) =


0 z ≤ 0

exp(−z−α) z > 0, α > 0

(2.2.3)
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G(z) =


exp[−(−z)−α] z < 0, α > 0

1 z ≥ 0.

(2.2.4)

Equations (2.2.2), (2.2.3) and (2.2.4) are distributions from the Gumbel, Fréchet and

Negative Weibull families respectively. A detailed proof of the theorem is given in

Leadbetter et al. (1983). A distribution G is said to be max-stable if for every n > 0

there exist constants An > 0 and Bn such that

G(Anz +Bn) = {G(z)}n .

Max-stability is a property that is only satisfied by the Gumbel, Fréchet and Negative

Weibull families.

Since it is inconvenient to work with three distinct classes, a parameterisation which

unifies the distributions is commonly used. This Generalised Extreme Value (GEV)

distribution, often written as GEV(µ, σ, ξ), is defined as

G (z;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
+

}
, (2.2.5)

where −∞ < µ <∞, σ > 0, −∞ < ξ <∞ and x+ = max(x, 0). The density function

associated with equation (2.2.5) exists on the set {z : 1 + ξ(z − µ)/σ > 0}. The

parameters (µ, σ, ξ) are termed the location, scale and shape parameters respectively.

The value of the shape parameter ξ determines the tail behaviour and family of the

limit distribution, where

• ξ > 0 corresponds to the Fréchet distribution which has a heavy upper tail.

• ξ = 0 corresponds to the Gumbel distribution which has an exponential tail.

• ξ < 0 corresponds to the Negative Weibull distribution which has a tail with a

finite upper limit.
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The GEV distribution is used to model the distribution of block maxima. It is as-

sumed that the limit in equation (2.2.1) holds exactly for some finite value of n. The

assumption relies on the choice of values for n and k which split the data of length

nk into k blocks that each contain n data points. A trade-off is required since to

assume that limit form in equation (2.2.1) holds exactly for some finite value of n, it

is necessary to take the maximum of sufficiently many observations, i.e. set n as high

as possible. However to ensure as many independent maxima as possible we also wish

to set k as high as possible. In many practical applications the length of block n is

given by the context, i.e. in many environmental applications taking annual maxima

ensures stationarity of the resulting maxima. Methods, either likelihood based or

moment based, are then required to obtain estimates for the parameters (µ, σ, ξ).

Return levels

When considering extreme values, it is important to make inferences based upon the

time to or the severity of the next extreme event. For a stationary series this can be

expressed by return levels and return periods. The return period of level zp is the

expected waiting time until zp is next exceeded. This is related to the 1/p year return

level which is the level for which the expected waiting time between annual maxima

exceedances is 1/p years. Therefore, the 1/p year return level zp is the 1− p quantile

of the GEV distribution where 0 < p < 1. An estimate for the 1/p return level is thus

given as

ẑp =


µ̂− σ̂

ξ̂

[
1− {−log(1− p)}−ξ̂

]
if ξ̂ 6= 0

µ̂− σ̂log{−log(1− p)} if ξ̂ = 0,

where (µ̂, σ̂, ξ̂) are the maximum likelihood estimates of (µ, σ, ξ).
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2.2.3 Threshold exceedance approach

Motivation

Up until this point, we have modelled extreme values using the block maxima ap-

proach. However this can be a wasteful approach to modelling extreme values that

can lead to inefficient statistical procedures. If more than one large value occurs in a

block, only the biggest will be used even if these other events are large enough to be

called extreme. To see this, note that between the smallest and largest block maxima

in the data there are likely to be other observations that are not block maxima. In

block maxima approaches these tail values are being ignored despite the fact they

are more extreme than some of the block maxima. Figure 2.2.1 shows daily rainfall

accumulations from a location in South West England for 1952-1962. The solid dots

are the values that come above a threshold at 35mm. It is clear that some blocks con-

tain more than one value above the threshold. Using block maxima these data would

be discarded, whereas a threshold method uses this additional information. Methods

that do not organise the data into blocks can therefore provide a better alternative.
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Figure 2.2.1: Rainfall accumulations (mm) at a location in South West England 1952-1962.
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Theory

Let X1, . . . , Xn be a sequence of independent and identically distributed variables

with distribution function F . Under the assumptions of the asymptotic theory of

equations (2.2.1) and (2.2.5), construct a sequence of point processes P1, P2, . . . on

[0, 1]× R using Pn

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
; i = 1, . . . , n

}
,

and examine the limit process as n → ∞. This process is non-degenerate and nor-

malises small points to the same value (bl) whilst retaining all the large points of

the process in the limit process. A description of the limit process asymptotically

motivates a model for all large values. Under the definition of Pn above, the limiting

point process is defined on the set [0, 1]× (bl,∞)

Pn → P as n→∞, (2.2.6)

where P is a non-homogeneous Poisson process with intensity

λ(t, x) =
1

σ

{
1 + ξ

(
x− µ
σ

)}−1−1/ξ
+

,

for (t, x) ∈ [0, 1]× (bl,∞). The Poisson process limit result shows that the behaviour

of all large values can be determined asymptotically by the characteristics of an, bn

and ξ. Under the conditions for the limit in equation (2.2.6) to hold, Pickands (1975)

and Smith (1989) show that for x > 0 and X ∼ F

P(X > un + anx | X > un)→
[
1 + ξ

x

ψ

]−1/ξ
+

, (2.2.7)

as n → ∞, where un → xF as n → ∞ with xF being the upper endpoint of F and

ψ > 0 and ξ ∈ R. The distribution function

G(x) = 1−
[
1 + ξ

x

ψ

]−1/ξ
+

x > 0,

is known as the Generalised Pareto Distribution, denoted GPD(ψ, ξ), with scale pa-

rameter ψ > 0 and shape parameter ξ ∈ R. The limit in equation (2.2.7) shows that
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under weak conditions, in the limit as the threshold tends to the upper endpoint of

the distribution, the scaled exceedances of the threshold tend to a GPD(ψ, ξ).

If we assume that the limit in equation (2.2.7) holds exactly for a sufficiently large

threshold un, this gives

P(X > x | X > u) =

(
1 + ξ

x− u
σu

)−1/ξ
+

, (2.2.8)

for x > u with u = un, i.e.

X − u | X > u ∼ GPD(σu, ξ). (2.2.9)

Note that the absorption of the scaling an into the scale parameter of the limiting

GPD gives a scale parameter

ψan = ψag(un) =: σun = σu,

where g(un) = n. The GPD has the threshold stability property which states that if

X − u is distributed as in equation (2.2.9), for any higher threshold v > u

X − v | X > v ∼ GPD(σu + ξ(v − u), ξ). (2.2.10)

As such ξ is constant with threshold, once a GPD is appropriate, but the scale param-

eter σv = σu+ξ(v−u) is not (Davison and Smith, 1990). The shape parameter of the

GPD is equal to the shape parameter of the corresponding GEV distribution defined

in equation (2.2.5). This property means that the shape parameter determines the

behaviour in the same way as for the GEV distribution.

Return levels

Return levels are calculated using a similar process to the block maxima approach,

however since the data are conditional upon having exceeded a sufficiently high thresh-

old u we must undo this conditioning by multiplying by the rate of exceedance
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λu = P(X > u) such that

P(X > x) = P(X > u)P(X > x | X > u)

= λu

[
1 + ξ

(
x− u
σu

)]−1/ξ
+

, (2.2.11)

for x > u. The unconditional probability distribution function given in equation (2.2.11)

can be inverted to give the return value that is exceeded once every m observations

xm =


u+ σu/ξ

[
(mλu)

ξ − 1
]

for ξ 6= 0

u+ σu log (mλu) for ξ = 0,

where m must be sufficiently large, i.e. m > λ−1u , to ensure that xm > u.

Threshold choice

When modelling data that come in the form of threshold exceedances, an important

issue concerns the choice of threshold u. The choice of the threshold u directly af-

fects the number of threshold exceedances nu and creates a bias-variance trade-off.

Setting a low threshold increases the amount of data that can be used, i.e. increases

nu, which makes the statistical inference more efficient by reducing uncertainty in the

estimation of the model parameters. However, the asymptotic arguments that moti-

vate the use of threshold approaches will break down if the threshold is set too low,

thus introducing bias. The choice of threshold needs to balance these two opposing

demands. Choice of threshold using diagnostics is an area of research that is of much

interest (Tancredi et al. (2006), Wadsworth and Tawn (2012a)). The application of

interest may motivate a sensible choice of threshold. However there are no specific

rules about choosing the best threshold, with threshold selection diagnostics available

to infer threshold choice. Two commonly used diagnostic plots are mean residual life

(MRL) plots and parameter stability plots.

In order to construct the MRL plot we assume that for a given set of threshold



CHAPTER 2. EXTREME VALUE THEORY 19

exceedances Xi | Xi > u, for i = 1, . . . , nu, that the Xi follow a generalised Pareto

distribution with scale parameter σu and shape parameter ξ. Then the expected value

of the threshold excesses X − u is given as

E [X − u | X > u] =
σu

1− ξ
,

if ξ < 1. By considering a higher threshold v > u, we also derive the expectation

E [X − v | X > v] =
σu + ξ(v − u)

1− ξ
, (2.2.12)

if ξ < 1. In order for the threshold to be suitable for modelling data points above,

the mean excesses given in equation (2.2.12) should be linear in v for all v > u if u is

large enough.

Another method that is used to select the threshold is the parameter stability plot. If

X follows a generalised Pareto distribution above the threshold u as in equation (2.2.9)

then for any higher threshold v ≥ u, the X above the higher threshold v has a GPD

distribution as in equation (2.2.10). From equation (2.2.10) the shape parameter is

found to be constant for the higher threshold but the scale parameter is threshold

variant. So that we are able to assess parameter stability we work with the modi-

fied scale σ∗ for the higher threshold v, where the modified scale σ∗ = σv − ξv, this

reparameterisation results in the modified scale being threshold invariant. The choice

of the threshold from the parameter stability is determined by the selecting the low-

est possible value of u for which both the estimates of the modified scale and shape

parameter remains constant (excluding sampling variability) above this level.

2.3 Multivariate extreme value theory

2.3.1 Motivation

In previous sections it has been assumed that a set of observations have been obtained

from an IID set of random variables. However for many types of data this assumption
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is not realistic. For example, if certain weather conditions have occurred on a given

day it is likely that the conditions on the following day will be closely related to

the conditions on the current day. To model these situations more realistically there

exists methodology to deal with multivariate extremes that is outlined in the rest

of the section. Two types of modelling approach are discussed below, modelling

using componentwise maxima of multiple variables, a natural extension of the block

maxima framework, and multivariate threshold approaches, an extension of univariate

threshold approaches. In Section 2.3.2 both approaches are outlined; throughout the

rest of the thesis we focus on multivariate threshold approaches since these are more

efficient in their use of data, permit a broader class of dependence structures and

enable estimation of any joint tail feature unlike with componentwise maxima.

2.3.2 Theory

Componentwise maxima

Let (Xj,1, . . . , Xj,d), where j = 1, . . . , n, be a collection of d-dimensional vectors which

for each j has the joint distribution function G and is independent over j. We define

componentwise maxima Mnk = max {X1,k, . . . , Xn,k} for k = 1, . . . , d. If there exist

normalising constants an,k > 0 and bn,k for k = 1, . . . , d such that

P

(
Mn,1 − bn,1

an,1
≤ z1, . . . ,

Mn,d − bn,d
an,d

≤ zd

)
→ F (z1, . . . , zd),

as n → ∞ where F is a distribution with all non-degenerate marginals then F is a

multivariate extreme value distribution of dimension d. Each marginal

Zk = lim
n→∞

Mn,k − bn,k
an,k

k = 1, . . . , d,

follows a GEV distribution with parameters (µk, σk, ξk). To focus on the dependence

structure it is assumed that each margin follows a standard Fréchet distribution, i.e.

GEV(1,1,1), such that

P(Z1 ≤ ∞, . . . , Zk ≤ zk, . . . , Zd ≤ ∞) = exp(−1/zk),
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for zk > 0. To simplify notation we now consider a pair of random variables Z1,

Z2 with common Fréchet marginal distributions. The multivariate extreme value

distribution function F is written as

F (z1, z2) = exp {−V (z1, z2)} for z1 > 0, z2 > 0, (2.3.1)

where the exponent measure V is defined as

V (z1, z2) =

∫ 1

0

max

(
w

z1
,
1− w
z2

)
2dH(w), (2.3.2)

with H an arbitrary distribution function on [0, 1] satisfying the moment constraint∫ 1

0

wdH(w) = 1/2.

An important property of this distribution is that the quantity

V (1, 1) =

∫ 1

0

max (w, 1− w) 2dH(w),

is bounded on the range [1, 2], with the lower bound occurring when H({1/2}) = 1

and the upper bound occurring when H({0}) = H({1}) = 1/2. It is noted here

that in standard extreme value notation H is often taken as a measure as well as a

distribution function. One common bivariate extreme value distribution has a logistic

dependence structure (here often shortened to BEVL), parameterised by γ (Tawn,

1990). This can be written in terms of the exponent measure as

V (z1, z2) =
(
z
−1/γ
1 + z

−1/γ
2

)γ
, (2.3.3)

where γ ∈ (0, 1], z1 > 0, z2 > 0 and where the distribution function H, from equa-

tion (2.3.2), is given as

H(w) =
1

2

[{
w(1−γ)/γ − (1− w)(1−γ)/γ

}{
w1/γ + (1− w)1/γ

}γ−1
+ 1
]
.

Thus by equation (2.3.1) the joint distribution function F is given as

F (z1, z2) = exp
{
−
(
z
−1/γ
1 + z

−1/γ
2

)γ}
. (2.3.4)
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Independent variables correspond to γ = 1 which reduces equation (2.3.4) to

F (z1, z2) = exp
{
−
(
z−11 + z−12

)}
,

where H now consists of half-unit mass atoms at {0} and {1}, i.e. H({0}) = H({1}) =

1/2. Perfectly dependent variables are given as γ → 0 and equation (2.3.4) becomes

F (z1, z2) = exp
{
−max

(
z−11 , z−12

)}
,

where H is a unit mass atom at {1/2}, i.e. H({1/2}) = 1.

Multivariate threshold approaches

When analysing data from a multivariate extreme value distribution the extremal

dependence structure is important. Taking a pair of variables (X1, X2) with common

marginal distribution, we are interested in the extremal dependence structure of the

pair which are not necessarily componentwise maxima. The joint tail model of Ledford

and Tawn (1997) models the asymptotic form of the joint survivor function F̄ directly.

As a result we explicitly model only the points for both variables that fall above a

high level v = vp, often defined as the (1− p)th quantile i.e.

P(X1 > vp) = p. (2.3.5)

The form of the joint tail is given in Ledford and Tawn (1996) on Fréchet margins,

but more generally is given as

P (X1 > vp, X2 > vp) ∼ L (1/p) p1/η, (2.3.6)

as p→ 0, where L is a slowly varying function at infinity and η is named the coefficient

of tail dependence; defined over the range η ∈ (0, 1]. In equation (2.3.6), the slowly

varying function L satisfies

L(t/p)

L(1/p)
→ 1 as p→ 0, (2.3.7)
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for all fixed t > 0. The value of the coefficient of tail dependence η gives the level

of extremal dependence between the marginal variables where 0 < η < 1/2 implies

negative association, η = 1/2 implies independence and 1/2 < η ≤ 1 implies positive

association. If η = 1 and L(1/p) 6→ 0 as p → 0 the pair of variables (X1, X2) are

asymptotically dependent. Any values of η < 1 imply asymptotic independence. Defi-

nitions of asymptotic dependence and asymptotic independence follow in Section 2.3.3.

The difference between asymptotically dependent and independent distributions will

be of great importance later; see Section 2.3.3 for more details. As such, we define

another important bivariate distribution, which is asymptotically independent. It is

found by looking at the lower tail of the distribution given in equation (2.3.4). The

distribution function for this inverted bivariate extreme value distribution (IBEV) is

F (z1, z2) = F1(z1) + F2(z2)− 1 + exp
{
−V

([
−logF̄1(z1)

]−1
,
[
−logF̄2(z2)

]−1)}
,

(2.3.8)

where Fi, i = 1, 2, are univariate marginal distribution functions and F̄i(zi) = 1 −

Fi(zi) for i = 1, 2. Under the logistic dependence structure (IBEVL) given in equa-

tion (2.3.3), equation (2.3.8) becomes

F (z1, z2) = exp{−1/z1}+ exp{−1/z2} − 1

+ exp
{
−
(

[−log(1− exp{−1/z1})]1/γ + [−log(1− exp{−1/z2})]1/γ
)γ}

.

(2.3.9)

2.3.3 Extremal dependence measures

If two variables (X1, X2) are asymptotically dependent it means that if X1 is large it

is possible for X2 to be simultaneously extreme. Asymptotic independence is broadly

the opposite case where the extreme values of variables X1 and X2 are unlikely to

occur simultaneously. One common measure of the level of extremal dependence is

given by the threshold dependent extremal dependence measure χ(x) (Coles et al.,
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1999). The measure is defined as

χ(x) = P(X2 > x | X1 > x), (2.3.10)

if X1 and X2 are on common margins, its limiting form χ is

χ = lim
x→x∗

χ(x), (2.3.11)

with x∗ being the upper limit of the support of the common marginal distribution.

Dependence structures can be broadly split into those with asymptotic dependence

and those with asymptotic independence (Sibuya (1960), Ledford and Tawn (1996))

determined by the value of χ in equation (2.3.11). In the case when χ = 0 the

variables (X1, X2) are said to be asymptotically independent and χ > 0 corresponds to

asymptotic dependence. From equation (2.3.6) it is possible to construct the extremal

dependence measure equation (2.3.10) as

χ(vp) = P (X2 > vp | X1 > vp) ∼ L(1/p)p1/η−1, as p→ 0,

with vp defined by condition (2.3.5). As outlined in Section 2.3.2, if η = 1 and

L(1/p) → c as p → 0 then X1 and X2 are asymptotically dependent with χ = c. If

η < 1 or η = 1 and L(1/p)→ 0 then X1 and X2 are asymptotically independent.

The extremal dependence measure in equation (2.3.11) gives the level of dependence

within the asymptotic dependence class, but is not informative under asymptotic

independence. A different measure of extremal dependence within the asymptotic

independence class is available (Coles et al., 1999) in terms of η, i.e.

χ̄ = 2η − 1. (2.3.12)

Since η ∈ (0, 1] it follows that −1 < χ̄ ≤ 1. Different values of χ̄ determine the level
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of asymptotic independence. We have

χ̄ =



1 if asymptotically dependent

(0, 1) if asymptotically independent with positive association

0 if independent

(−1, 0) if asymptotically independent with negative association.

Furthermore, if χ̄ = 1 and L(1/p) 6→ 0 the variables are asymptotically dependent

and if χ̄ < 1 the variables are asymptotically independent. All bivariate extreme

value distributions either exhibit asymptotic dependence or independence. For the

bivariate extreme value distribution, the exponent measure in equation (2.3.2) links

to χ from equation (2.3.11) by

χ = 2− V (1, 1), (2.3.13)

and thus χ > 0 unless H puts all mass at {0} or {1}, i.e. the case of independence from

Section 2.3.2. The BEVL given in equation (2.3.4), can only account for asymptotic

dependence, except in the case of perfect independence when γ = 1. The logistic de-

pendence parameter links to the extremal dependence measure via equation (2.3.13)

and since for this distribution V (1, 1) = 2γ it is found that χ = 2− 2γ. Under asymp-

totic dependence the coefficient of tail dependence is given as η = 1 and as such by

equation (2.3.12) χ̄ = 1.

For the asymptotically independent inverted bivariate extreme value distribution the

same extremal measures can be calculated. Unless the variables are perfectly depen-

dent, i.e. if V (1, 1) 6= 1, we have that χ = 0 and χ̄ = 2/V (1, 1)−1, since η = 1/V (1, 1).

Therefore, under the logistic dependence structure the strength of the subasymptotic

dependence is given as χ̄ = 21−γ − 1.
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2.3.4 Copulas

In previous sections the behaviour of the dependence structure has been investigated

for Fréchet margins. One more general way to express the dependence structure be-

tween random variables is via copulas. The copula is a joint distribution function with

the property that every marginal distribution is uniform on the interval [0, 1]. Take

a joint distribution F for a set of random variables X1, . . . , Xd each with univariate

marginal distributions F1(x1), . . . , Fd(xd) and with corresponding quantile functions

F−11 , . . . , F−1d . The copula C can be expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2.3.14)

The copula in equation (2.3.14) can also be expressed as

C(u1, . . . , ud) = F (F−11 (u1), . . . , F
−1
d (ud)),

where 0 ≤ ui ≤ 1 for i = 1, . . . , d. Many different copulas are available, comprehen-

sive reviews are given in Joe (1997) and Nelson (2007). One simple example is the

independence copula which occurs when all marginals are independent

Cind(u1, . . . , ud) =
d∏
i=1

ui.

The multivariate extreme value distribution with logistic dependence structure, given

in equation (2.3.4) for the bivariate case, can be written in terms of the copula as

C log(u1, . . . , ud) = exp

{
−

[
d∑
i=1

(−log ui)
1/γ

]γ}
, (2.3.15)

where 0 < γ ≤ 1 is the logistic dependence parameter. The lower tail of the multi-

variate extreme value distribution with logistic dependence structure is asymptotically

independent and this motivates an inverted multivariate extreme value distribution

with logistic dependence structure, given in equation (2.3.9) for the bivariate case.

The copula is given most easily in terms of the survival copula

C̄ilog(u1, . . . , ud) = exp

{
−

[
d∑
i=1

(−log (1− ui))1/γ
]γ}

, (2.3.16)
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where C̄(u1, . . . , ud) = P (F1(x1) > u1, . . . , Fd(xd) > ud).

The threshold dependent extremal measure in equation (2.3.10) can now be defined

via the copula as

χ(q) =
C̄(q, q)

1− q
,

where q ∈ [0, 1]. In the limit

χ = lim
q→1

χ(q).

Expressions for χ(q) for the two extreme value distributions of interest follow from the

copulas given in equations (2.3.15) and (2.3.16). The extremal dependence measure

for the BEVL is

χ(q) =
1− 2q + q2

γ

1− q
. (2.3.17)

The measure is obtained for the IBEVL as

χ(q) = (1− q)2γ−1. (2.3.18)

In Section 2.7, equations (2.3.17) and (2.3.18) will provide ‘true’ values for χ(q) for

the bivariate extreme value distributions outlined in Section 2.3.4 which can be used

to measure the performance of approaches for modelling the joint extreme tails; these

approaches are given in Sections 2.5 and 2.6, one is the joint tail approach of Ledford

and Tawn (1997) and the other is the conditional extremes approach of Heffernan and

Tawn (2004).

2.4 Marginal transformations

Estimation of extremal tail properties using any multivariate dependence approach

requires a model for the marginal characteristics of the data prior to modelling the

dependence structure on common margins. Different marginal choices are necessary
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for different methods outlined later so a general framework for marginal transforma-

tion is required.

Consider a set of n pairs of random variables (X11, X21),. . . ,(X1n, X2n) that oc-

cur simultaneously such that the first value of each pair has corresponding marginal

distribution F1 and the second value has distribution F2. A high threshold ui, i = 1, 2,

is chosen and points falling below this threshold are modelled using the empirical cu-

mulative distribution function. Any points that lie above the threshold are modelled

using the GPD, as outlined in Section 2.2.3, thus Fi is given by

Fi(x) =


1− λui

(
1 + ξi

x−ui
σui

)−1/ξi
+

, x ≥ ui

F̃i(x), x < ui,

(2.4.1)

for the marginal threshold ui, where λui = 1 − Fi(ui) and F̃i(x) is the empirical cu-

mulative distribution function of {Xi}. A transformation onto an appropriate margin

Yi is made such that

Yi = T−1{Fi(Xi)},

for i = 1, 2, where the inverse distribution function T−1 transforms to the appropriate

marginal distribution. At different points in the thesis, we require Fréchet, Pareto,

Gumbel and Laplace margins to be defined. When necessary the appropriate margins

are defined in later sections.

2.5 Parametric joint tail approach

The joint tail model of Ledford and Tawn (1997) has already been introduced in

Section 2.3.2 as a model for the distribution for the extremes of a pair of random

variables that can account for asymptotic dependence and asymptotic independence.

In this section inference for this approach is discussed with different techniques for
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deriving uncertainty bounds. An extension to the original model that incorporates

more information about values that are extreme in only one variable is proposed.

2.5.1 Inference

The modelling assumption L(1/p) → c as p → 0 is made, where c ∈ (0, 1] and

L(1/p) is a slowly varying function that satisfies equation (2.3.7). In the limit this

assumption could introduce a small amount of bias, but at the subasymptotic levels

we are interested in we shall take the slowly varying function as a constant. As such,

our model may be mis-specified but this can be investigated by goodness-of-fit tests.

Under the above assumption, the problem of calculating extremal dependence comes

down to the estimation of parameters (c, η) which fully explain the dependence in the

joint tail. Define Y = min(Y1, Y2) and let (Y1, Y2) have Pareto margins, i.e.

Yi = [1− Fi(Xi)]
−1 ,

for i = 1, 2 and thus Yi > 1. For large v, Fréchet and Pareto margins are equivalent

up to first order in the limit since

exp{−1/v} = 1− 1

v
+O(v−2)

Under Pareto margins we have that p = v−1, see equation (2.3.5), and under the

assumption that the limit form in equation (2.3.6) holds above some sufficiently high

threshold u we write

P (Y > v) = cv−1/η for v > u. (2.5.1)

Equation (2.5.1) is used to construct the likelihood in terms of the parameters θ =

(c, η)

L(θ) = P(Y < u)n−nu
nu∏
i=1

(
c

ηy
1/η+1
i

)
, (2.5.2)

where nu is the number of Y exceeding the threshold u, y1, . . . , ynu are data points

of Y that exceed the threshold u and n is the length of the data. The likelihood
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contribution for each data point that falls below one of the marginal thresholds is

given as P(Y < u). The maximum likelihood estimates θ̂ = (ĉ, η̂) are

η̂ = min

(
1

nu

nu∑
i=1

log
(yi
u

)
, 1

)
(2.5.3)

ĉ =
nu
n
uη̂. (2.5.4)

The derivations of equations (2.5.3) and (2.5.4) follow in a similar manner to those

derived in Appendix A. If the variables are asymptotically dependent, i.e. η = 1,

and since η = 1 is a boundary value, with probability 1/2 we have η̂ = 1 (Self and

Liang, 1987) and the level of asymptotic dependence is given by ĉ = unu/n; related

to χ(u) via ĉ = uχ̃(u), where χ̃(u) is an empirical version of χ(u). An estimate of

the threshold dependent extremal dependence measure at a threshold v > u can be

obtained as

χ̂(v) = ĉv1−1/η̂ v > u. (2.5.5)

Estimates of the uncertainty in χ̂(v) can be obtained by deriving confidence intervals,

either based upon estimates of the standard error or via the profile likelihood. For

notational simplicity the dependence measure χ(v) is rewritten as φ, which is still

dependent on the threshold v. A (1− α)100% confidence interval for φ̂ is given by(
φ̂l, φ̂u

)
=
(
φ̂− z1−α/2var(φ̂)1/2, φ̂+ z1−α/2var(φ̂)1/2

)
,

where z1−α/2 is the 1− α/2 quantile of the normal distribution and the variance of φ̂

is given by

var(φ̂) = ∇g(θ)T I(θ)−1∇g(θ)
∣∣
θ=θ̂

,

where φ = g(θ) = cv1−1/η, the inverse information matrix I(θ)−1 is obtained in

practice as the inverse of the Hessian matrix and the vector derivatives ∇g(θ) can be

calculated using finite differencing. Although easy to calculate, one drawback of this

type of confidence interval is that some values within the range are not attainable
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by the parameter. In this situation we have φ ∈ [0, 1], so negative values of the

parameter do not make sense. Approaches based upon profile likelihood avoid this

problem and could provide more accurate estimates of the uncertainty as a result. Let

`(θ) = `(c, η) be the log-likelihood derived from equation (2.5.2) and invert equation

(2.5.5) such that

c = φv1/η−1.

Define the profile log-likelihood for φ as

P`(φ) = max
η
`φ(φ, η),

where `φ is the log-likelihood re-parameterised in terms of the pair (φ,η) as opposed

to (c, η). The profile deviance function is thus defined as

D∗(φ) = 2(`φ(φ̂, η̂)− P`(φ)).

The profile deviance function has an approximate χ2
1 distribution under the null hy-

pothesis that φ = φ0, if φ0 is the true value of φ, which can be used to form the

basis of confidence interval construction. Uncertainty estimates obtained using both

approaches are compared via a simulation study in Section 2.7.2.

2.5.2 Extension

We propose an extension to the joint tail model that incorporates more information

about values that are extreme in one variable but not the other. When constructing

the likelihood in equation (2.5.2) the nu points that fall in the extreme quadrant in

the top right are modelled explicitly and all other values are simply modelled as not

being in the extreme quadrant. In this way values that exceed only one of the marginal

thresholds are treated in the same way as values that are small in both margins. To

overcome this, define the four different quadrants as

R00 = {Y1 ≤ u, Y2 ≤ u} R01 = {Y1 ≤ u, Y2 > u}

R10 = {Y1 > u, Y2 ≤ u} R11 = {Y1 > u, Y2 > u},
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such that the whole bivariate space is partitioned into R00, R01, R10 and R11. The

probability of falling in R11 under the joint tail model is given directly by equa-

tion (2.5.1). The probability of falling inR00 is derived through simple inclusion/exclusion

arguments, i.e.

P(Y1 ≤ u, Y2 ≤ u) = 1− P(Y1 ≤ u)− P(Y2 ≤ u) + P(Y1 > u, Y2 > u)

= 1− 2/u+ cu−1/η,

and the regions R01 and R10 follow by similar arguments. With probabilities of falling

in all regions we can now construct the likelihood function. Let n00 = #{R00},

n01 = #{R01}, n10 = #{R10} and nu = #{R11} and therefore n = n00+n01+n10+nu.

The likelihood given in equation (2.5.2) can be re-written as

L(c, η) =

(
1− 2

u
+ cu−1/η

)n00
(

1

u
− cu−1/η

)n01
(

1

u
− cu−1/η

)n10 nu∏
i=1

(
c

ηy
1/η+1
i

)
.

Obtaining the log-likelihood and calculating derivatives leads to an analytical expres-

sion for η̂ given by

η̂ = min

(
1

nu

nu∑
i=1

log
(yi
u

)
, 1

)
, (2.5.6)

which is the same as η̂ for the original joint tail model in equation (2.5.3); we have

min(·, 1) to ensure that η cannot be greater than 1. We also obtain an analytical

expression for ĉ

ĉ =
−ω ±

√
ω2 − 4ρκ

2ρ
, (2.5.7)

where

ρ = nu−2/η̂

ω = (n01 + n10)
(
u−1/η̂ − 2u−1/η̂−1

)
− n00u

−1/η̂−1 − nu
(
3u−1/η̂−1 − u−1/η̂

)
κ = −nu

(
1

u
− 2

u2

)
.
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From the terms above we note that κρ < 0 and we have the constraint that c ∈ (0, 1]

and as such we need to take the positive root of equation (2.5.7). From equa-

tions (2.5.7) and (2.5.6) we observe that any differences in the values of χ̂(v) between

the two estimation methods will be driven by changes in the value of ĉ rather than η̂.

Derivations of the estimates in equations (2.5.7) and (2.5.6) are given in Appendix A.

A simulation study testing whether the new approach provides efficiency gains is

undertaken in Section 2.7.1.

2.6 Semi-parametric conditional extremes approach

The conditional extremes approach was proposed by Heffernan and Tawn (2004) as a

separate method for modelling extremal dependence which avoided the limiting argu-

ments of the joint tail methods in which all variables must become large at the same

rate. Standard copula based methods, as discussed in Section 2.3.4, can typically only

handle one form of extremal dependence, either asymptotic dependence or asymptotic

independence. As such the form of the dependence structure has to be chosen in ad-

vance before the model is fitted. The conditional extremes approach estimates the

form of the extremal dependence structure as part of the fitting procedure so removes

the need to choose the form of the dependence structure in advance. The conditional

extremes approach can also be used to model high-dimensional data with greater ease

than for copula based methods, although all theory in this section is given for the

bivariate case.

This section is split into four parts. Firstly the conditional extremes model is pre-

sented in the bivariate case. Then inferential considerations are outlined as well as

approaches for generating simulated data sets from the fitted model. Finally two

different extensions to the approach are proposed. One extension aims to generate

accurate estimates of extremal dependence measures without simulation. The second
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extension aims to generate more realistic simulated data sets in high dimensions.

2.6.1 Theory

To estimate the dependence structure of (X1, X2) using the conditional extremes

approach both variables must be transformed onto common marginal distributions;

see Section 2.4. The classical representation from Heffernan and Tawn (2004) is given

on Gumbel margins, i.e.

Yi = −log[−log{Fi(Xi)}] for i = 1, 2

where Fi is the marginal distribution function for Xi, i = 1, 2. The transformation

to Gumbel margins means that P(Yi ≤ y) = exp{− exp(−y)}, and that as y → ∞,

P(Yi > y) ∼ exp(−y) for i = 1, 2. Therefore, both random variables (Y1, Y2) now have

an approximately exponential upper tail, which is of importance when we consider the

convergence of the conditional distribution in equation (2.6.1). A different formulation

is given by Keef et al. (2013) on Laplace margins, i.e.

Yi =


log {2F (Xi)} if Xi < F−1i (0.5)

−log {2 [1− F (Xi)]} if Xi ≥ F−1i (0.5),

for i = 1, 2. Again both variables have an exponential upper tail, but under this

marginal choice both variables also have an exponential lower tail. As such negative

extremal dependence can be characterised as well as positive extremal dependence.

In later sections the transformation to Laplace margins is preferred for simplicity, but

for completeness here the dependence model is provided for both marginal choices.

Having made the marginal transformation, the desire is to model (Y1, Y2) using the

distribution of Y2 given that Y1 is large (defined as exceeding a high threshold). A re-

quirement for modelling the conditional distribution P {Y2 ≤ y2 | Y1 = y1} is that this

distribution should be non-degenerate as y1 → y∗, where y∗ is the upper endpoint of



CHAPTER 2. EXTREME VALUE THEORY 35

the common marginal distribution. As such the conditional extremes approach aims

to identify normalizing functions a : R+ → R and b : R+ → R+ that are defined such

that for y > 0

P

(
Y2 − a [Y1]

b [Y1]
≤ z, Y1 − u > y | Y1 > u

)
→ exp(−y)G(z), (2.6.1)

as u → ∞, where G(z) is a non-degenerate distribution function. The first term of

the limit in equation (2.6.1) arises from the fact that Yi for i = 1, 2 now both have

an exponential upper tail. The second term in the limit characterises the behaviour

of Y2 | Y1 > u in terms of the limiting distribution G(z) along with location and

scale norming functions a(Y1) and b(Y1) respectively. From equation (2.6.1), G(z) is

defined to be the limiting conditional distribution of

Z =
Y2 − a(Y1)

b(Y1)
, (2.6.2)

given Y1 > u as u→∞. One result that follows from equations (2.6.1) and (2.6.2) is

that Z and Y1 are independent in the limit as u→∞ given that Y1 > u.

Equation (2.6.2) defines the limiting distribution G but to fully characterise the sec-

ond term in the limit of equation (2.6.1) normalising functions a(Y1) and b(Y1) > 0

must be defined. Heffernan and Tawn (2004) work on Gumbel margins and, for a

broad class of copula families, in this situation the normalising functions are found to

be special cases of the parametric family, i.e.

a(y) = αy + Iα=0,β<0{c− dlog(y)}

b(y) = yβ,

where α ∈ [−1, 1], β ∈ (−∞, 1), c ∈ (−∞,∞) and d ∈ [0, 1]. The specification

of Laplace margins ensures that the upper and lower tails are both modelled by a

symmetric distribution with exponential tails and permits the definition of a single

unified class of normalising functions

a(y) = αy and b(y) = yβ, (2.6.3)
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where α ∈ [−1, 1] and β ∈ (−∞, 1). This form of the normalising functions does

not affect the limiting dependence model in Heffernan and Tawn (2004) and sim-

plifies the inference for variables which are either negatively or weakly associated.

For the rest of the thesis data are transformed onto Laplace margins before mod-

elling extremal dependence using the conditional extremes approach. This permits

easier interpretation of extremal dependence using the parameters in equation (2.6.3).

Different values of α and β characterise different forms of tail dependence. In the

case where α = 1 and β = 0, variables (Y1, Y2) exhibit asymptotic positive depen-

dence. Due to the exponential lower tail specified by the Laplace margins, the case of

asymptotic negative dependence is given when α = −1 and β = 0. If α = β = 0 and

G(z) is the Laplace distribution function the variables are independent. Dependence

parameters can also be estimated for the distributions outlined in Section 2.3.2. Since

the BEVL is asymptotically dependent, the conditional extremes dependence param-

eters are α = 1 and β = 0. For the IBEV, α = 0 and 0 < β < 1 with the value of β

determined by the tail features of of the spectral measure of the multivariate extreme

value distribution; for the IBEVL β = 1− γ. Keef et al. (2013) give the form of the

dependence parameters for other distributions.

2.6.2 Inference

Modelling using the conditional extremes approach requires the assumption that the

limiting form of equation (2.6.1) holds exactly for all values of Y1 > u given that u is

a sufficiently high threshold. Given this assumption it is possible to write the form of

Y2 given that Y1 > u as

Y2 = αY1 + Y β
1 Z, (2.6.4)

where Z is a random variable with distribution function G, as defined in equa-

tion (2.6.2), and is independent of Y1. As G does not take any simple parametric
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form, a false working assumption is made in Keef et al. (2013) that Z ∼ N(µ, σ2) and

as such

Y2 | {Y1 = y} ∼ N
(
αy + µyβ, σ2y2β

)
for y > u.

The working assumption permits the estimation of the set of parameters (α, β, µ, σ)

via standard likelihood approaches. At this stage the estimates for (µ, σ) are discarded

and a non-parametric distribution for Z is formed by inverting equation (2.6.4) to give

estimated values of Z. Specifically, let yi,k be the kth data value for variable i and

k1, . . . , knu be the indices of k = 1, . . . , n where y1,k > u then

ẑj =
y2,kj − α̂y1,kj

(y1,kj)
β̂

, (2.6.5)

for j = 1, . . . , nu, where nu is the number data points exceeding the threshold u. In

this way a non-parametric estimate Ĝ to the distribution function G is formed using

ẑj, j = 1, . . . , nu.

In many situations throughout the thesis the likelihood ratio test is used to assess

different aspects about the fitted conditional model; for example, whether we can

assume asymptotic dependence (α = 1, β = 0) holds or not. This approach is a

standard way in statistics of testing whether a certain model provides a significantly

better fit than another and as such more detail is not provided. However, it is noted

that the test of the model will be made under the false working assumption given

above and as such the model will be misspecified. A consequence of the misspecifi-

cation of the model is that standard asymptotic arguments do not hold and instead

of a χ2 distribution on q degrees of freedom say, the limiting distribution is that of a

weighted sum of q independent χ2
1 variables. Our incorrect use of the standard limit

distribution may induce inefficiency, i.e. this may cause us to make the wrong decision

when performing a likelihood ratio test, but evidence suggests the loss of efficiency

can be slight; see Chandler and Bate (2007).
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2.6.3 Simulation

The motivation behind fitting a model for the joint extremes is to understand the

dependence between variables at extreme levels, especially levels beyond previously

observed levels. Section 2.3.3 presented measures such as χ(v) for summarising ex-

tremal dependence and being able to estimate such measures from our conditional

extremes model provides important information. For this reason, the conditional ex-

tremes approach can be used to generate simulated data sets from the fitted extremal

dependence model. Here we provide an equivalent simulation scheme to Heffernan

and Tawn (2004) and Keef et al. (2013):

1. Pick critical level v and simulate an exceedance Y ∗1 from an Exponential distri-

bution with rate 1.

2. Sample Z∗ from ẑj, j = 1, . . . , nu independently of Y ∗1 .

3. Obtain Y ∗2 = α̂Y ∗1 + (Y ∗1 )β̂ Z∗.

By repeating the steps above m times we obtain a sample of pairs of size m, denoted

(Y ∗∗1 , Y ∗∗2 ) which has the desired conditional distribution Y2 | Y1 > u. The simulated

sample can be used to estimate the threshold dependent extremal dependence measure

χ(v) given in equation (2.3.10) as

χ̂(v) =
#{Y ∗∗2 > v}

m
.

2.6.4 Bootstrapping

Throughout the thesis, estimates of the uncertainty in the dependence parameters

and other extremal quantities will be derived by bootstrapping. In the most simple

case, a bootstrap sample can be constructed by resampling pairs of data from (Y1, Y2)

with replacement until a sample of the same length as the original data set has been

constructed. Then the dependence parameters and residuals can be estimated using

the approaches in Section 2.6.2 and we can simulate from this fitted model using the
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method outlined in Section 2.6.3.

In many situations later in the thesis we shall be explicitly modelling the temporal

dependence of a single variable Yt and as such it will be necessary to have a different

bootstrap approach. In this situation we shall construct bootstrap samples by splitting

the original sample into periods of exceedances and periods of non-exceedances. We

then consequently pick randomly from the sets of non-exceedances and exceedances

until we have constructed a new dataset of the same length as the original sample.

This new sample retains the temporal dependence features of the original data and

as such is valid for our purposes. The marginal and dependence characteristics of

the bootstrap sample can then be assessed using the approaches outlined above and

multiple replications can be used to build up uncertainty estimates.

2.6.5 Extensions

In most situations the simulation scheme proposed above can generate a simulated

sample from the desired conditional distribution with little computational expense.

However situations may arise where computational power is at a premium and two

tricks can be used to obtain more accurate estimates of extremal quantities. The

first approach completely removes the need to simulate in the bivariate case for a

broad class of extremal dependence measures, in particular we focus on the threshold

dependent extremal dependence measure χ(v). Then we use kernel density estimation

to provide a more flexible simulation approach in two or more dimensions.

Direct estimation of extremal quantities

Firstly we propose an approach that can be used to obtain an estimate of the extremal

dependence measure χ(v) without the need to simulate. Equation (2.6.4) gives the

form of Y2 given that Y1 > u, which can be directly used to obtain the threshold

dependent extremal measure χ(v) for any v > u. Due to the decomposition of terms
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in equation (2.6.1), χ(v) can be estimated as

χ(v) = P(Y2 > v | Y1 > v)

= P(αY1 + Y β
1 Z > v | Y1 > v). (2.6.6)

As outlined in Section 2.6.2, during inference the distribution of the random variable

Z is estimated by the empirical distribution of the sample ẑj for j = 1, . . . , nu as in

equation (2.6.5). From step 2 of the simulation algorithm in Section 2.6.3 we know

that random draws are taken from ẑj, j = 1, . . . , nu to construct the simulated sample,

i.e. each ẑj has a probability of n−1u of being picked. Let ẑ(j) be the ordered values of

the sample (ẑ1, . . . , ẑnu), given by equation (2.6.5), such that ẑ(1) ≥ ẑ(2) ≥ · · · ≥ ẑ(nu).

For sufficiently large v we may rewrite equation (2.6.6) as

χ(v) =
nu∑
j=1

P(αY1 + Y β
1 Z > v | Y1 > v,Z = z(j))P(Z = z(j))

=
1

nu

nu∑
j=1

P(αY1 + Y β
1 z(j) > v | Y1 > v)

=


1
nu

∑nu
j=1 P(Y1 > ỹj | Y1 > v) for α > 0

1
nu

∑nu
j=1 P(Y1 < ỹj | Y1 > v) for α < 0,

(2.6.7)

where ỹj ≥ v > 0 is the root of the equation

αỹj + (ỹ1)
β z(j) − v = 0,

for j = 1, . . . , nu. Note that if αβ < 0 and z(j) > 0 then the terms αY1 and Y β
1 z(j)

change in opposite directions as Y1 increases. Unless v is large enough, the final step

of equation (2.6.7) does not hold. Figure 2.6.1 provides motivation for the distinction

depending on the sign of α in equation (2.6.7). When α > 0 each z(j) for j = 1, . . . , nu

defines a ray that increases with Y1 and as such any Y1 > ỹj contributes to the value

of χ(v) for that particular z(j). The opposite is true when α < 0. Since Y1 is on
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Laplace margins equation (2.6.7) simplifies, for large v, to

χ(v) =


1
nu

∑nu
j=1 exp {− (ỹj − v)} for α > 0

1
nu

∑nu
j=1 1− exp {− (ỹj − v)} for α < 0.
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Figure 2.6.1: Diagram of how to directly simulate χ(v) for random variables (Y1, Y2) without the

need for repeated simulation for α > 0 (left) and α < 0 (right) with β = 0. Red segments highlight

areas for each value z(j) for j = 1, . . . , nu which fall within the extremal region of interest.

A simulation study designed to investigate the efficiency of the direct estimation

approach for estimating the threshold dependent extremal measure is given in Sec-

tion 2.7.3.

Using kernel smoothing in extremal simulation

As a different extension we propose an improvement to step 2 of the conditional sim-

ulation scheme given in Section 2.6.3. We note that sampling from a kernel smoothed

version of Ĝ instead of directly from the original sample could lead to more accurate

simulations and therefore more accurate estimates of extremal measures. We envision

two situations in which this approach will have benefits over the standard simulation

approach outlined in Section 2.6.3. Firstly, in the situation where nu is small, simple

sampling can lead to misleading extremal simulations and kernel smoothing could lead
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to a more realistic simulated sample; see Figure 2.6.2. Secondly, in high-dimensional

problems sampling directly from the equivalent multivariate version of Ĝ could lead

to simulations that provide poor coverage of the whole multivariate space. This cov-

erage could be improved by a kernel density approach. For the rest of this section

we concentrate on the first use as this can be outlined using bivariate results derived

in the chapter so far. Kernel smoothing for multivariate extreme value problems are

covered in more detail in Chapter 4.

It was highlighted in Section 2.2.3 there is a bias-variance trade-off when selecting

the threshold at which to model marginal extremes. A similar trade-off exists when

modelling the dependence structure using the conditional extremes approach. Setting

a higher modelling threshold will provide a more accurate representation of the tail

but at the cost of having little data to model. When simulating from the conditional

extremes model this manifests itself as a small nu which will restrict the size of the

set ẑj upon which to generate replications. The left plot of Figure 2.6.2 illustrates

the potential problem. A simulated sample, on Gumbel margins, generated from a

conditional extremes model fitted at a high modelling threshold (black solid line) is

plotted. The simulated data (black circles) tend to line up along rays which could

lead to inaccurate estimates of χ(v) as the simulated values may not adequately cover

the bivariate space.

We propose to use a kernel smoothed version of the distribution Ĝ during the sim-

ulation procedure outlined in Section 2.6.3. Specifically instead of sampling directly

from ẑj we sample from a kernel density estimate

ĝh(z) =
1

nuh

nu∑
i=1

K

(
z − ẑi
h

)
, (2.6.8)

where h is the bandwidth and K is the kernel function. There exist many choices for
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Figure 2.6.2: A simulated sample generated on Gumbel margins using current conditional extremes

method (left) and with additional Gaussian noise and shrinkage steps (right), fitted at the modelling

threshold (solid line). Notice the exceedances on the left tend to group along rays emanating from

the critical level (dotted line) which is remedied with the additional steps.

the kernel K, here we take K to be a standard Normal kernel, i.e.

ĝh(z) =
1

nuh

nu∑
i=1

1√
2π

exp

{
−(z − ẑi)2

2h2

}
.

The choice of bandwidth to use is not trivial and an important area of research within

the field of kernel density estimation (Silverman (1986), Jones et al. (1996)). Setting

h high increases the amount of smoothing and leads to a smoother f̂h(z); setting h

smaller leads to a noisier density function. A standard choice of bandwidth is the

default in R (Scott, 1992), i.e.

h =

(
4σ5

z

3n

)1/5

,

where σz is the standard deviation of the sample ẑj. When increasing the value of h

we must be careful to not artificially inflate the variance of the original sample. For

extremal quantities such as χ(v), inflating the variance of our sample could lead to

misleading estimates. Liu and West (2001) introduced an approach for shrinking the
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variance of a kernel smoothed version of a sample that we use here. Let µz and σz be

the mean and variance of ẑj respectively. We can obtain a new kernel density function

similar to equation (2.6.8) with kernel shrinkage (Liu and West, 2001)

g̃h(z) =
1

nuh

nu∑
i=1

K

(
z − aẑj − (1− a)µz

h

)
,

where a =
√

1− h2.

2.7 Simulation studies

In this section simulation studies are provided to investigate the extensions to the joint

tail approach and conditional extreme approach proposed in Sections 2.5 and 2.6. We

also compare the performance of the two approaches against one another on simulated

data. In all studies we use bivariate extreme value distributions with logistic depen-

dence structure (BEVL) and the inverted version of this distribution (IBEVL) to

investigate performance under distributions with asymptotic dependence and asymp-

totic independence respectively. By default we shall follow the setting of the sim-

ulation study in Heffernan and Tawn (2004). Unless stated we shall simulate 200

replicate data sets each containing 5000 data points from the relevant distribution

with γ = 0.5 and a critical level set at the 90th quantile, such that 10% of data points

exceed the threshold.

2.7.1 Testing the effect of marginal information on the joint

tail approach

In Section 2.5 an extension to the joint tail approach of Ledford and Tawn (1997) was

suggested in which we could incorporate additional information about points that

are extreme in at least one variable. We saw that this led to a new estimate for

the parameter c which changed from the form in equation (2.5.4) to the form given

in equation (2.5.7). The estimate for the parameter η stayed consistent across both
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approaches. Via a simulation study we aim to observe whether this change in the es-

timate of c leads to more accurate and efficient estimates of the extremal dependence

measure χ(v).

The simulation study has the standard form outlined above. True values for χ(v)

(denoted χtrue(v)) for the extreme value distributions of interest are given by equa-

tions (2.3.17) and (2.3.18). These are used to obtain estimates of the root mean

squared error (RMSE), i.e.

RMSE [χ(v)] =
√
E
{

[χ̂(v)− χtrue(v)]2
}
.

Figure 2.7.1 shows estimates of the RMSE for the two different approaches with data

simulated from the BEVL and the IBEVL for a selection of γ values. The joint tail

model is fitted at the modelling threshold u, here set at the 90th quantile. Results

are given at two different critical levels, the 90th quantile and the 99th quantile. We

observe that the approach that includes the additional marginal information reduces

the RMSE for both distributions, at all values of γ and at both critical levels. The

most noticeable difference occurs for the BEVL with γ close to zero. In this situation

we have a very strong positive association and as such η̂ → 1. Equation (2.5.5) implies

we have χ̂(v)→ ĉ and therefore any improvements in the estimation of c are directly

reflected in more accurate estimates of the extremal measure χ(v).

Theoretically, since the BEVL is asymptotically dependent we should have η = 1

at all values of γ < 1. On the left side of Figure 2.7.1 estimates of χ(v) are given with

η fixed at 1. This highlights discrepancies between the estimate η̂ and the limit value.

Let ĉη be the estimate of c obtained with η fixed at 1. The estimate ĉη is obtained

at the modelling threshold u and by definition χ̂(v) = ĉη for any higher v. Therefore,

when the critical level v is set at the 90th quantile, such that v = u, the estimates of

χ̂(v) overlap. However at the 99th quantile the different estimates show very different

behaviour. Here, when γ is closer to zero the simulated data are highly dependent
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and therefore assuming the asymptotic limit form can lead to reduced RMSE of χ̂(v).

However, as γ → 1 the data become less dependent and as such imposing the asymp-

totically dependent limit form leads to a large value of the RMSE for χ̂(v).
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Figure 2.7.1: Estimates of the RMSE of χ̂(v) for the joint tail approach (black) and the joint

tail approach with additional marginal information (grey). Estimates given for data simulated from

extreme value distributions with logistic dependence structure (left) and inverted logistic dependence

structure (right) at critical level set at 90th quantile (top) and 99th quantile (bottom) for a selection

of different values for the logistic dependence parameter γ; see Section 2.3.2. Dotted lines (shown

on the left hand plot for the logistic dependence structure) show RMSE with coefficient of tail

dependence η fixed at 1, i.e. assuming the limit behaviour (asymptotic dependence) for all values of

γ.

A similar pattern is obtained for the data simulated from the IBEVL at the given



CHAPTER 2. EXTREME VALUE THEORY 47

BEVL IBEVL

γ 0.5 0.75 0.5 0.75

χ(v) 0.616 0.376 0.385 0.208

χ̂(v) JT 0.616 0.374 0.388 0.208

χ̂(v) CE 0.624 0.384 0.389 0.210

95% SE CI (0.548, 0.683) (0.321, 0.427) (0.333, 0.442) (0.167, 0.250)

95% PL CI (0.552, 0.685) (0.324, 0.429) (0.336, 0.443) (0.171, 0.250)

95% BT CI (0.587, 0.671) (0.337, 0.436) (0.341, 0.442) (0.166, 0.251)

Table 2.7.1: Simulation results for the estimation of χ(v) under the BEVL and IBEVL with

logistic dependence parameters γ = 0.5 and γ = 0.75. The critical level v is fixed at the 90th

quantile. Estimates of χ(v) for joint tail (JT) and conditional extremes (CE) models evaluated as

the mean over 200 replicate data sets of 5000 points. Standard error (SE) and profile likelihood

(PL) confidence intervals are given for the joint tail approach and bootstrapped (BT) confidence

intervals are given for the conditional extremes approach. All confidence intervals are obtained as

the averaged endpoints from the different samples.

threshold level. We observe that the RMSE is improved at all levels by the approach

with additional marginal information, although any benefit is diluted at higher critical

levels when the effect of ĉ on χ̂(v) is balanced by changes in the other terms of

equation (2.5.5).

2.7.2 Comparing different approaches to modelling extremal

dependence

We now compare directly the joint tail approach and conditional extremes approach

through a simulation study with the standard settings. The aim is to assess whether

one approach provides significantly more accurate or reliable results when estimating

the extremal dependence measure χ(v).
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BEVL IBEVL

γ 0.5 0.75 0.5 0.75

χ(v) 0.589 0.324 0.148 0.043

χ̂(v) JT 0.562 0.303 0.150 0.046

χ̂(v) CE 0.561 0.276 0.144 0.042

95% SE CI (0.495, 0.629) (0.251, 0.357) (0.095, 0.205) (0.005, 0.087)

95% PL CI (0.428, 0.671) (0.206, 0.403) (0.091, 0.237) (0.021, 0.093)

95% BT CI (0.485, 0.634) (0.187, 0.341) (0.084, 0.219) (0.014, 0.083)

Table 2.7.2: Same as Table 2.7.1 but with critical level v set at the 99th quantile.

Results for data simulated from an extreme value distribution with logistic depen-

dence structure are summarised in Tables 2.7.1 and 2.7.2. The average estimate of

χ(v) from the 200 replicate data sets is close to the true value for both the joint tail

and conditional extremes models; although in most situations the joint tail approach

provides a slightly more accurate estimate. The true value is contained within both

types of 95% confidence interval for the former method and the bootstrapped confi-

dence intervals for the latter method. Confidence intervals based upon the standard

error seem to coincide the profile likelihood intervals for the joint tail method at the

lower critical level. The width of the boostrapped confidence intervals are also very

similar for the conditional extremes approach. At the higher critical level the profile

likelihood confidence intervals appear to be wider than the standard error confidence

intervals for the joint tail, with boostrapped intervals for the conditional extreme ap-

proach in general being wider than the standard error intervals but narrower than the

profile likelihood intervals.

The conclusions drawn from the simulation study are that both the joint tail and

conditional extremes methods outlined in this chapter model bivariate dependence
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well in the joint tail region. Investigations into behaviour for a much richer class of

distributions can be found in papers by Ledford and Tawn (1996) and Wadsworth and

Tawn (2013). As outlined in Section 2.6, the conditional extremes method has greater

flexibility. In the bivariate setting the conditional extremes approach gives accurate

estimates of a wider class of extremal dependence measures, especially in cases where

we might be interested in different joint exceedance regions than {X1 > u,X2 > u};

see Heffernan and Tawn (2004) for an example. The conditional extremes approach

can also be extended into a multivariate setting more easily. The similarity of the

estimates obtained from the different methods coupled with the benefits of the con-

ditional extremes approach will motivate the use of the conditional extremes method

in later chapters.

2.7.3 Direct estimation of extremal dependence using condi-

tional extremes approach without simulation

We now investigate an extension of the conditional extremes approach outlined in Sec-

tion 2.6 that allows for accurate estimation of extremal dependence measures without

the need to simulate. This extension is useful in situations where computational power

is at a premium. For this study we take the standard settings and vary the number of

simulated exceedances generated from the conditional extremes approach to estimate

χ(v). The reliability of this estimate is then compared against direct calculation of

χ(v) from the conditional extremes approach without simulating.

Figure 2.7.2 shows estimates for the RMSE of χ(v) for the two different approaches

with data simulated from the BEVL. We observe that for small numbers of simulated

exceedances the RMSE is much larger than for direct estimation. As the number

of simulated exceedances is increased the method based upon simulations becomes

slightly more reliable. The result for data simulated from the IBEVL is similar and

is omitted.
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Figure 2.7.2: Estimates of the RMSE for χ(v) for data simulated from extreme value distri-

bution with logistic dependence structure using the conditional extremes approach with simulated

exceedance data sets of different sizes (black, on log scale) and via direct estimation (grey).

We have shown that estimating extremal measures using simulation introduces un-

necessary variability which can be controlled by simulating a large number of values.

In most practical situations it is not computationally expensive to simulate many ex-

ceedances and as such in applications this approach may not have much use. But it is

clear that in situations where computational simulations come at a cost, then direct

estimation can provide a more reliable alternative.



Chapter 3

Modelling heatwaves in central

France: a case study in extremal

dependence

3.1 Introduction

When modelling heatwaves decision makers are most interested in mitigating for dis-

ruption and fatalities. The heatwave across Europe in 2003 that caused around 40,000

heat related deaths (Fischer and Schär, 2010) and cost the farming industry around

e 13.1 billion highlights the potential large scale effects of such an event. High tem-

peratures reduce the capacity of the human body for heat loss and are likely to cause

core body temperature to exceed healthy limits (37-39oC). Most casualties in a heat-

wave are caused by heat exhaustion which leads to heat stroke. Heat exhaustion

increases the blood pressure and leads to cardiovascular stress, which if not relieved

results in cellular damage and an increased risk of mortality (Donaldson et al., 2003).

Young and old people are particularly vulnerable during heatwave events. A day of

strong heat could disrupt certain services for a couple of days but is unlikely to cause

many fatalities. Conversely, a long sustained period of moderate to high heat may

51



CHAPTER 3. EXTREME VALUE MODELLING OF HEATWAVES 52

not disrupt services but can lead to many fatalities.

A heatwave is defined as a set of hot days and/or nights that are associated with

a marked short-term increase in mortality. To make this definition precise we need

to clarify what is meant by a hot day and a set of days. A hot day is when the tem-

perature, or a related variable, exceeds a critical threshold level for health. Koppe

et al. (2004) proposed threshold definitions based upon air temperature or indices

based upon air temperature and relative humidity. Clearly health impacts increase

with both the extent of the temperature excess over the critical threshold and the

number of days that such an event lasts for. One way to measure the severity of the

heatwave is to count the total number of days that the temperature series exceeds

the critical level during a meteorological event, which we refer to as the duration of

the heatwave event. During an extreme event, a set of days with temperatures below

the critical level could allow respite from heat exhaustion and dramatically change

the impact of the event so the duration of the heatwave is an insufficient measure for

assessing some health implications. In these cases metrics such as the maximum con-

secutive sequence of exceedances or aggregated temperatures over the event are more

appropriate. Abaurrea et al. (2007), Stefanon et al. (2012) and Fischer and Schär

(2010) all define a heatwave using a critical temperature threshold corresponding a

fixed percentile of daily maximum summer temperatures (in the range 90%-95%) and

a specified minimum duration (in the range 1-6 days). Relative critical levels are typi-

cally preferred to absolute levels when defining a heatwave since temperature can vary

by geographical location and humans are able to adapt to local climate (Nitschke et al.,

2011). Although heatwave definitions vary, all correspond to different but well-defined

functionals of a meteorological event having temperatures which exceed a critical level.

To estimate the probability of a heatwave we propose a framework based upon extreme

value theory. The framework relies on asymptotically justified models for describing
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the properties of the time series during an extreme temperature event. A broader and

more flexible model with stronger asymptotic justification is proposed here than in

previous studies. The model is used to simulate replicate extreme events that exceed

a critical level permitting the evaluation of the distribution of any functional of the

extreme event and hence the probability of a heatwave with specific characteristics.

This approach ensures that this methodology applies to any form of heatwave defi-

nition of interest to experts from wide-ranging fields, such as heat-health researchers

or those studying economic damage linked to heatwaves. Critically it enables the

estimation of the probability of heatwaves occurring in a future period that are more

extreme in any functional of interest than any of the observed events.

We apply these generic methods to the modelling of observed daily maximum temper-

atures to estimate the distribution of heatwaves at Orleans in central France, an area

that was affected by the 2003 heatwave event. The hottest observed daily maximum

temperature in 2003 for Orleans was 39.9oC. The summer daily maximum tempera-

ture one year return level, defined as the level exceeded on average once every summer,

for Orleans is estimated as 35oC using standard extreme value methods (Coles, 2001).

What made the 2003 event so severe for Orleans was that two heatwaves with 2 and

11 consecutive exceedances of the one year level occurred within a four week period.

Pascal et al. (2013) quantified the relationship between temperatures and excess mor-

tality over France, finding that if the average of three consecutive daily maximum

temperatures exceeds 34oC (34oC, 35oC) excess mortality is 47% (17%, 33%) in Paris

(Limoges, Lyon) respectively. Orleans is situated between these three cities and we

focus on 35oC as the critical level for defining heatwaves. We note that the excess mor-

tality from observing such a level is high but can vary between locations. Under the

assumption that the summer daily maximum temperature at Orleans, denoted {Xt}

on day t, is a stationary process we will estimate multiple quantities. These quantities

include the joint probability of having an event that lasts at least as long and has
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peak value at least as severe as the 2003 event and that the average of three consec-

utive daily maximum temperatures exceeds 35oC. Pascal et al. (2013) also assessed

the impact of high daily minimum temperatures coupled with high daily maximum

temperatures on excess mortality. Under our framework we are also able to model the

joint characteristics of temperature maxima and minima, over any time-scale, during

the extreme event. We do not give specific estimates for that case, but in Section 3.6

we outline the modifications to our approach for modelling daily maxima that are

required to address this broader concern.

Using empirical methods to estimate probabilities for the extreme heatwave events of

interest to us is not possible so models are required. Here we need models for both

the intensity and extremal dependence structure that determine properties of events.

The intensity of heatwave events can be modelled by fitting an extreme value model

to exceedances of a high modelling threshold u. The most common approach, which

applies under weak conditions, is to fit a generalized Pareto distribution (GPD) to

threshold excesses, i.e.

P(Xt − u > x | Xt > u) =

(
1 +

ξx

σu

)−1/ξ
+

for x ≥ 0, (3.1.1)

where c+ = max(c, 0), σu > 0 and ξ are the scale and shape parameters of the GPD

respectively (Coles, 2001).

A time-series of temperature data can be split into independent clusters where within

each cluster groups of dependent exceedances occur. In the literature of extreme value

theory these clusters are defined using different methods; the most popular technique

is the runs method (Smith and Weissman, 1994). Under this method a cluster is

ended by a sequence of m consecutive non-exceedances of u and a new cluster is com-

menced with the next exceedance of u. The run length m can be chosen subjectively;

although Ferro and Segers (2003) outline an automated method. Therefore from a

time-series it is possible to obtain the number of independent clusters and the values
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in each cluster. The number of clusters is Poisson distributed (Davison and Smith,

1990) so it remains to model the values within a cluster.

Standard asymptotic measures of cluster features are independent of the critical

level. Examples include the distribution of the number of exceedances in a clus-

ter, {π(i), i ≥ 1}, associated mean cluster size θ−1, where θ ∈ [0, 1] is the extremal

index (Leadbetter et al., 1983), and other cluster functionals outlined in Smith et al.

(1997) and Segers (2003). The focus on heatwaves highlights the need to not only

account for the number of exceedances in a cluster, but also the full profile of the event

to enable estimation of features such as the distribution of the number of consecutive

exceedances or the average of three consecutive values. The application motivates the

study of a new distribution πC(i) of the longest set of consecutive exceedances within

a cluster along with the associated consecutive extremal index θC .

Under a stationary Markov process assumption, the extremal behaviour of {Xt} can

be modelled by focusing on the joint distribution of (Xt, Xt+1); more discussion of

these assumptions will be given in Section 3.5. Multivariate extreme value theory

leads to models for the joint tail through using separate marginal and dependence

structures and can be used to assess dependence between (Xt, Xt+1). Dependence

structures can be broadly split into those with asymptotic dependence and those with

asymptotic independence (Sibuya (1960), Ledford and Tawn (1996)) determined by

the value of χ where

χ = lim
x→x∗

P(Xt+1 > x | Xt > x), (3.1.2)

with x∗ being the upper limit of the support of the common marginal distribution.

In the case when χ = 0 the variables (Xt, Xt+1) are said to be asymptotically in-

dependent and χ > 0 corresponds to asymptotic dependence. The assumption of a

dependence structure that is asymptotically dependent leads to the duration distribu-

tion being approximately independent of the critical level. Smith (1992), Coles et al.
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(1994), Smith et al. (1997), Perfekt (1997) and Yun (1998) use a parametric Markov

model for estimating extremal quantities when χ > 0. In contrast if the process is an

asymptotically independent Markov chain then clusters in the limit reduce to single

exceedances and θ = 1 (Bortot and Tawn, 1998). However, if sub-asymptotic thresh-

olds are considered P(Xt+1 > u | Xt > u) > 0, for u as in equation (3.1.1), even when

χ = 0 and models are required that can capture this dependence as well. In these

cases the duration and level of events are not independent.

The semi-parametric conditional extremes approach of Heffernan and Tawn (2004)

offers a more flexible way of estimating extremal quantities of Markov chains than

existing methods. This is due to a richer class of extremal dependence properties are

permitted than those of Smith et al. (1997). These properties also hold over a much

broader tail region than the parametric approach of Bortot and Tawn (1998). The

approach of Bortot and Tawn (1998) provided models with asymptotic justification

for (Xt, . . . , Xt+m) only in the region with Xi > u for all i = t, . . . , t+m and u a high

threshold whereas we need models that hold for this vector subject only to Xt > u.

The inclusion of dependence structures that also exhibit asymptotic independence

permits the distribution of duration of events to change with critical level. Asymp-

totic dependence is a special case in the conditional extremes approach that does not

require the evaluation of a parametric model; see Section 3.3.4 for more details. The

non-parametric method of estimating extremal quantities of Markov chains, outlined

in Section 3.3.4, can be compared to previous studies that assume a parametric de-

pendence structure with asymptotic dependence.

In Section 3.2 the definition of a cluster and distributions of exceedances are for-

malised. Different approaches to model extremal dependence are outlined in Sec-

tion 3.3. Section 3.4 discusses techniques for summarising the behaviour of clusters

and compares the values of θ and θC . Section 3.5 presents the temperature data for
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Orleans, model fit diagnostics and results concerning the probability of observing the

events of interest identified above. We focus on applying the conditional extremes ap-

proach and demonstrate how results differ from other approaches and show diagnostics

that support our approach. Discussion and conclusions are presented in Section 3.6.

3.2 Cluster features

To understand clustering of time-series extremes it is necessary to formalise the asymp-

totic definition of a cluster and to provide a range of summaries. For a series {Xt, t =

1, . . . , n} specify a threshold level un and a block of length mn such that as n→∞,

un → x∗, with x∗ as defined for equation (3.1.2), such that nP(Xt > un)→ τ > 0 as

n→∞ and mn = o(n). Under suitable long-range mixing conditions the normalised

process of times of exceedances of un, i.e.{
t

n+ 1
; t = 1, . . . , n,Xt > un

}
,

converges to a compound Poisson process (Hsing, 1988). Since the assumption of

stationarity has been made the cluster of interest can always be moved to the start of

the time-series and such we can look at values such that X1 > un. A cluster in block

{1, . . . ,mn} of this process is a set of exceedances of un by Xt for t = 1, . . . ,mn. The

number of such exceedances is

N(un,mn) = #{Xi > un for i = 1, . . . ,mn},

and hence a cluster occurs when N(un,mn) ≥ 1. By this definition, clusters do not

need to constitute consecutive exceedances, the exceedances only need to be close in

time. The cluster size distribution π(i, un) is defined as

π(i, un) = P(N(un,mn) = i | N(un,mn) ≥ 1) for i = 1, . . . ,mn.

Using this definition, it can be seen that π(i, un) is the probability of obtaining i

exceedances of threshold un in a block of mn values given that there is at least one
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exceedance (i.e. there is a cluster). From this

π(i) = lim
n→∞

π(i, un) for i = 1, 2, . . . , (3.2.1)

is the limiting probability of a cluster of size i. A widely discussed dependence measure

is the extremal index. This measure is the reciprocal of the mean of the cluster

size distribution of the extremes in a time-series (Leadbetter, 1983). In terms of

equation (3.2.1) the extremal index θ can be written as

θ−1 =
∞∑
i=1

iπ(i).

An alternate form for the extremal index is characterised in O’Brien (1987) in the

form of θ = limn→∞ θ(un,mn) where

θ(un,mn) = P (X2 ≤ un, . . . , Xmn ≤ un | X1 > un) , (3.2.2)

which links to the runs estimator, discussed in Section 3.1, with run length mn. The

distribution π(i) can be defined (Rootzén, 1988) as

π(i) =
θ(i) − θ(i+1)

θ(1)
for i = 1, 2, . . . , (3.2.3)

where

θ(i)(un,mn) = P(N(un,mn) = i | X1 > un) for i = 1, . . . ,mn, (3.2.4)

defines the probability of viewing i exceedances of a threshold in a block of values

given that the first value (X1) exceeded the threshold and

θ(i) = lim
n→∞

θ(i)(un,mn) for i = 1, 2, . . . . (3.2.5)

This alternative approach to evaluating π(i) is beneficial as it requires the evaluation of

the process conditional on X1 > un, in contrast to the evaluation of N(un,mn) which

starts from an arbitrary X1, and hence it is more efficient for computational purposes.

For heatwaves it is also important to model the number of consecutive exceedances.
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This can be accomplished using the distribution πC(i) stated in Section 3.1. Specifi-

cally, let C(i)(un,mn) be the event

C(i)(un,mn) = {X1 > un, . . . , Xi > un, Xi+1 < un ∩ @t = 2, . . . ,mn : Xt > un, . . . , Xt+i−1 > un},

i.e. that at time 1 there is a run of i consecutive exceedances but at no later time in

the cluster does a run of this length or more occur. This leads to a measure that is

analogous to equations (3.2.4) and (3.2.5), namely

θ
(i)
C (un,mn) = P(C(i)(un,mn) | X1 > un) for i = 1, . . . ,mn,

with

θ
(i)
C = lim

n→∞
θ
(i)
C (un,mn) for i = 1, 2, . . . .

Note that both θ
(1)
C and θ(1) are equal to θ by equation (3.2.2) since, in both situations,

the event of interest is {X2 < un, . . . , Xmn < un | X1 > un}. The distribution of the

maximum number of consecutive exceedances within a cluster πC(i) is defined as

πC(i) =
θ
(i)
C − θ

(i+1)
C

θ
(1)
C

for i = 1, 2, . . . .

The average length of the longest set of consecutive exceedances in a cluster is given

by the reciprocal of the consecutive extremal index θC , defined as

θ−1C =
∞∑
i=1

iπC(i).

An event that has one exceedance in a cluster directly implies a maximum of one con-

secutive exceedance whereas the counter implication is not true, and hence πC(1) ≥

π(1). As a consequence πC(i) experiences a sharper decline than π(i) as i is increased.

It should be noted that πC is not geometric as the Markov process applies to the level

as opposed to only whether the exceedance is above or below the threshold.

Smith et al. (1997) investigate the behaviour of the extremal index θ against the

parameters in an underlying Markov chain model. Here interest is in θC and so using
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the methodology outlined in Section 3.4 for evaluating cluster functions, Figure 3.2.1

compares the inverted extremal index θ−1 and the inverted consecutive extremal in-

dex θ−1C for a Markov chain with bivariate extreme value distribution with logistic

dependence (Tawn, 1988) between consecutive values. Here a range of parameter val-

ues for the logistic dependence parameter are used, γ ∈ (0, 1]. A near perfect linear

relationship is observed which shows that θ−1C ≈ 0.7θ−1. This shows that groups of

consecutive exceedances are on average 30% shorter than the average cluster size for

this dependence model.
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Figure 3.2.1: Relationship between inverted extremal index θ−1 and inverted consecutive extremal

index θ−1C ; both are functions of logistic dependence parameter γ, for a Markov chain with bivariate

extreme value distribution with γ from 0.05 to 1.

3.3 Modelling temporal dependence

3.3.1 Markov modelling

To obtain estimates for π(i) and πC(i) and their sub-asymptotic equivalents it is

necessary to develop a model for the evolution of the temperature data through time.
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Many types of parametric and non-parametric models could be constructed. Here,

supported by exploratory data analysis, an assumption that the time series follows a

first order Markov process is made. By the Markov property the distribution at each

time step is only affected by the state of the system at the previous time-step with

the resulting joint density of (X1, . . . , Xn) given by

f(x1)
n−1∏
t=1

f(xt+1|xt). (3.3.1)

The assumption greatly simplifies the modelling process since to model the extremes of

a time series X1, . . . , Xn it is only necessary to model the extremes of pairs (Xt, Xt+1)

for t = 1, . . . , n− 1, which have joint distribution function F (xt, xt+1).

The likelihood from equation (3.3.1) can be further simplified for our modelling ap-

proach. Specifically, we shall assume a parametric model for the marginals when the

variables are above a threshold u and a parametric model for the conditional density

f(y | x) for x > u. We denote the marginal parameters by φ and the extra conditional

(dependence) parameters by θ. Our approach is to first estimate the marginal pa-

rameters and then estimate the dependence parameters. For the latter the likelihood

simplifies to

L(θ) ∝
nu−1∏
i=1

f(xti+1 | xti) (3.3.2)

where nu us the number of {xt} exceeding u and t1, . . . , tnu are the time indices of

these exceedances. The otehr likelihood terms from equation (3.3.1) disappear into

the constant of proportionality as they provide no information on θ under our model.

The model for the marginal exceedances of the threshold u is given in Section 3.3.2.

Our main method for modelling dependence is presented in Section 3.3.3 and connec-

tions with other models are discussed in Section 3.3.4. Our method is based upon the

conditional approach outlined in Heffernan and Tawn (2004). That model allows for a
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rich class of dependence structures and most importantly allows for asymptotic inde-

pendence which models the interaction between the duration distribution of an event

and a critical level. Asymptotic dependence is a special case within the conditional

approach, which motivates a new non-parametric approach and enables comparisons

with the methods of Smith et al. (1997).

3.3.2 Marginal modelling

Following the assumption of stationarity of {Xt} the marginal distributions of F are

identically distributed. The assumption (3.1.1) for a GPD for the marginal excesses

of u leads to the model for the common marginal distribution

F (x) =


1− λu

(
1 + ξ x−u

σu

)−1/ξ
+

, x ≥ u

F̃ (x), x < u,

(3.3.3)

where λu = 1 − F (u) and F̃ (x) is the empirical cumulative distribution function of

{Xt}nt=1. Marginal parameters are estimated using a censored likelihood approach;

see Davison and Smith (1990). For modelling extremal dependence we need to select

an appropriate margin to transform onto. In copula methods (Nelson, 2007) it is

common to model dependence with uniform margins, but for extremes simplifications

in model form arise when focusing on a different marginal choice. Heffernan and Tawn

(2004) model dependence for Gumbel margins. Keef et al. (2013) showed that a more

comprehensive approach arises for Laplace margins. Following Keef et al. (2013) we

transform Xt, t = 1, . . . , n onto Laplace margins as follows

T (Xt) =


log {2F (Xt)} if Xt < F−1(0.5)

−log {2 [1− F (Xt)]} if Xt ≥ F−1(0.5).

3.3.3 Semi-parametric conditional extremes approach

The conditional extremes method of Heffernan and Tawn (2004) and Heffernan and

Resnick (2007) can be used to motivate a modelling framework for which χ, defined
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by equation (3.1.2), can be either positive or zero. The desire is to model the joint dis-

tribution [T (Xt), T (Xt+1)] using the distribution of T (Xt+1) given that T (Xt) is large

(defined as exceeding a high threshold). A requirement for modelling the conditional

distribution P {T (Xt+1) ≤ T (xt+1) | T (Xt) = T (xt)} is that this distribution should

be non-degenerate as xt → x∗. As such the Heffernan and Tawn (2004) approach

aims to identify normalizing functions a : R+ → R and b : R+ → R+ that are defined

such that for x > 0

P

(
T (Xt+1)− a [T (Xt)]

b [T (Xt)]
≤ z,

Xt − u
σu

> x | Xt > u

)
→ G(z) (1 + ξx)−1/ξ+ , (3.3.4)

as u → x∗, where G is a non-degenerate distribution function and σu is as in equa-

tion (3.1.1). The specification of Laplace margins ensures that the upper and lower

tails are symmetric and exponential which permits the definition of a single parsimo-

nious class of choices for the normalising functions of

a(y) = αy and b(y) = yβ,

where α ∈ [−1, 1] and β ∈ (−∞, 1). This form of the normalising functions does not

affect the limiting dependence model in Heffernan and Tawn (2004) and simplifies

the inference for variables which are either negatively or weakly associated. If the

variables are independent, α = β = 0 and G(z) is the Laplace distribution function

whereas α = 1 and β = 0 corresponds to the situation of asymptotic dependence

(given by χ > 0 in equation (3.1.2)) and −1 ≤ α ≤ 0 to negative dependence.

Modelling using the conditional extremes approach requires the assumption that the

limiting form of equation (3.3.4) holds exactly for all values of Xt > u given that u is

a sufficiently high threshold, i.e. λu is small. Given this assumption it is possible to

write the form of Xt+1 given that Xt > u as

T (Xt+1) = αT (Xt) + T (Xt)
βZt+1, (3.3.5)

where Zt+1 is a random variable with distribution function G. We also have that Zt+1

is independent of Xt and, following the stationary Markov process assumption, the
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sequence of {Zt} are independent and identically distributed. As G does not take any

simple parametric form, to estimate α and β a false working assumption is made, as

in Keef et al. (2013), that Zt+1 ∼ N(µ, σ2) and as such

T (Xt+1) | {T (Xt) = y} ∼ N
(
αy + µyβ, σ2y2β

)
for y > T (u). (3.3.6)

The working assumption permits the estimation of the set of parameters (α, β, µ, σ)

by standard likelihood approaches. Specifically, the likelihood in equation (3.3.2) is

maximised with the conditional density given by equation (3.3.6) and parameters

(α, β, µ, σ2). At this stage the estimates for (µ, σ) are discarded and a non-parametric

estimate of the distribution for Z is formed by inverting equation (3.3.5) to give

estimated values of Zt+1. Specifically, let t1, . . . , tnu be the indices of t = 1, . . . , n

where xt > u and where nu is the number of data points exceeding the threshold u.

Then let

ẑj =
T (xtj+1)− α̂T (xtj)

T (xtj)
β̂

, (3.3.7)

for j = 1, . . . , nu. In this way a non-parametric estimate Ĝ to the distribution func-

tion G is formed using ẑj, j = 1, . . . , nu.

Note that under asymptotic dependence, i.e. a(y) = y and b(y) = 1, the transi-

tion probability (3.3.4), when expressed in terms of the original variable Xt, is given

by

P
(
Xt+1 ≤ Xt + z [σu + ξ(Xt − u)]+ | Xt > u

)
→ G(z). (3.3.8)

Furthermore, we can rewrite σu = σ0 + ξu and substitute into equation (3.3.8) which

gives

P
(
Xt+1 ≤ Xt + z [σ0 + ξXt]+ | Xt > u

)
→ G(z),

which shows that the probability is well defined as u → ∞. Under an asymptotic

dependence assumption in the semi-parametric conditional approach it is known that



CHAPTER 3. EXTREME VALUE MODELLING OF HEATWAVES 65

α = 1 and β = 0. In this situation G is estimated by the empirical distribution

of the differences in the original data on the Laplace scale (later referred to as the

non-parametric approach), i.e. using the sample j = 1, . . . , nu of

ẑj = T (xtj+1)− T (xtj), for xtj > u. (3.3.9)

3.3.4 Connections with alternative approaches

Smith et al. (1997) propose a parametric Markov model for the joint distribution of

consecutive values of the time series which limits the dependence structure to asymp-

totic dependence or exact independence. Here we show the connections between that

modelling approach and the conditional approach outlined in Section 3.3.3. This en-

ables us to show the benefits for modelling the data of relaxing the strong assumptions

of asymptotic dependence and a parametric model.

Based on an asymptotic approximation for a high threshold u, Smith et al. (1997)

propose a bivariate extreme value distribution copula with GPD marginal tails for the

joint distribution function F (x1, x2) of (Xt, Xt+1). This joint distribution is given as

F (x1, x2) = exp

{
−
∫ 1

0

max

(
w

z1
,
1− w
z2

)
2dH(w)

}
for x1 > u, x2 > u,

where

zj = −1/ log

[
1− λu

(
1 + ξ

x− u
σu

)−1/ξ
+

]
for j = 1, 2,

and H is an arbitrary distribution function on [0, 1] satisfying the moment constraint∫ 1

0

wdH(w) = 1/2.

The corresponding transition probability for extreme Xt is given by

P
(
Xt+1 ≤ xt + z [σu + ξ(xt − u)]+ | Xt = xt

)
→ 2

∫ 1

[
1+(1+ξz)

1/ξ
+

]−1
wdH(w), (3.3.10)
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as xt → x∗. Following results in Heffernan and Resnick (2007) and Wadsworth

et al. (2016), equations (3.3.8) and (3.3.10) are equivalent expressions, under cer-

tain smoothness assumptions, despite having slightly different conditioning and limit

setups. This gives a formulation for G in this case but also shows that the semi-

parametric conditional approach directly extends the approach of Smith et al. (1997).

Smith et al. (1997) make the additional assumption of a parametric model for H,

exploring a range of models; see Kotz and Nadarajah (2000) for more models. We

follow Smith (1992) and assume the logistic dependence structure with parameter γ.

This gives the joint distribution to be

F (x1, x2) = exp
{
−
(
z
−1/γ
1 + z

−1/γ
2

)γ}
,

where γ ∈ (0, 1]. Independent variables correspond to γ = 1 and perfectly dependent

variables are given as γ → 0. For intermediate values of γ there is asymptotic depen-

dence with χ = 2 − 2γ. Inference for this parametric family is through the censored

likelihood approach of Smith et al. (1997). For this parametric model it follows that

G(z) = [1 + exp (−z/γ)]γ−1. In contrast to this parametric form for G the empiri-

cal distribution of the sample given by expression (3.3.9) offers greater flexibility for

the semi-parametric conditional approach even under an assumption of asymptotic

dependence. For more information about non-parametric approaches for multivariate

extremes under asymptotic dependence see de Haan and Ferreira (2006).

3.4 Cluster behaviour estimation

When analysing the behaviour of heatwaves we can look at within cluster and over

cluster results. The work in the previous sections has concentrated on within-cluster

behaviour since the definition of the distributions in Section 3.2 are conditional upon

a cluster occurring. It is more relevant for applications to have the probability of

observing a cluster with specific characteristics in a certain time period. Here we first
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discuss within cluster behaviour and then discuss how this is extended to over cluster

results.

Our approach to deriving the properties of clusters of a Markov chain is the repeated

simulation of a segment of the chain in periods with exceedances of a critical level

v, i.e. when the process exceeds v, with v ≥ u, where u is our modelling threshold.

There are two different strategies for the generation of the chain in its tail state,

known as the tail chain. Smith et al. (1997) suggest simulating the cluster maximum

M > v and then simulating forwards and backwards from this. A different method

(Rootzén, 1988) involves the simulation of an exceedance of v, i.e. X1 > v, and only

requires forward simulation. Cluster properties such as θ(v,m) and π(v,m) can be

estimated empirically from repeated simulations of clusters. For example, θ(v,m) is

estimated as either the reciprocal of the average cluster length using the Smith et al.

(1997) approach or as the probability θ(1)(v,m) in equation (3.2.4) using the Rootzén

(1988) approach. For general functionals the Smith et al. (1997) approach can always

be used. The Rootzén (1988) approach is easiest to implement but in practice re-

quires additional steps to ensure non-negativity of the distributions π and πC ; since

a Monte-Carlo approach can lead to θ(i) < θ(i+1) (occasionally for large i) which by

equation (3.2.3) could lead to π(i, v) < 0. We use the pool adjacent violators (PAV)

algorithm to account for this; for more information see Appendix C. For notational

simplicity we define N as the number of exceedances above the critical level v in a

cluster and NC as the maximum number of consecutive exceedances in a cluster. For

the rest of this section construction of one simulated chain will be discussed; π, πC

and other useful cluster features are evaluated using repeated simulation (2 million

tail chains in Section 3.5). Importance sampling of the initial simulated exceedance

is useful to obtain accurate estimates of π(i, v) and πC(i, v) for large i in practice but

omitted from the discussion below.



CHAPTER 3. EXTREME VALUE MODELLING OF HEATWAVES 68

The semi-parametric conditional extremes approach is used to generate realisations of

a tail chain. Details of the algorithm are given in Appendix B. We require a starting

exceedance of v ≥ u to be generated from a GPD(σv, ξ), where σv = σu+ξ(v−u), and

step forward until a chain of length k is simulated. For sufficiently high thresholds

the GPD is an appropriate distribution for simulating cluster maxima; at lower levels

it may be necessary to simulate cluster maxima using the distribution in Eastoe and

Tawn (2012), which for high thresholds converges to the GPD. This length k is chosen

large enough to ensure a negligible probability of simulating any more exceedances of

v (k = 40 is found sufficient in Section 3.5). As we are specifying a model that is valid

in the tail it is most appropriate to use the approach when Xt > u. For Xt < u we con-

tinue to use the algorithm as it should still provide a reasonable approximation unless

Xt � u. In this case the probability of the chain coming above u again is negligi-

ble within a reasonable time horizon, as the tail chain we are using has a negative drift.

It may be of interest to work out how long a heatwave event might last given that

the peak value of the cluster, M , is known to be greater than or equal to η with

η ≥ v. Such a question cannot be evaluated efficiently using the forward tail chain

methods described above. We use forward and backward tail chains starting from the

peak value M . A simulation scheme for the conditional extremes approach to evaluate

P (N = i |M = η) is outlined in Appendix B. The probability P (NC = i |M = η) for

the number of consecutive exceedances NC above v given the maximum is η can sim-

ilarly be evaluated. The distribution of the number of exceedances given a maximum

greater than η, where η ≥ v, is given by the integral

P (N = i |M ≥ η) =

∫ ∞
η

P (N = i |M = s)
1

σv

[
1 + ξ

s− v
σv

]−1/ξ−1
+

ds,

which is evaluated in practice using a Monte Carlo approximation. Similar simulation

schemes can be produced for the parametric (Smith et al., 1997) and non-parametric

approaches for asymptotically dependent tail chains; more details are given in Ap-

pendix B.
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Extending within cluster results to over cluster results requires the assumption that

clusters of the modelling threshold u occur as a Poisson process (Hsing, 1988). The

mean number of clusters in period T is given by

τu = θ(u,m)λunT ,

where θ(u,m) is the sub-asymptotic extremal index at u for run length m given by

expression (3.2.2), λu is the threshold exceedance probability from equation (3.3.3)

and nT is the number of observations within period T . For example, with daily data

if the rate of clusters within a summer (92 day period from June to August) is desired

then nT = 92. At a higher level v > u the mean number of clusters in period T is

τv = θ(v,m)λunT

[
1 + ξ

(
v − u
σu

)]−1/ξ
+

= τu
θ(v,m)

θ(u,m)

[
1 + ξ

(
v − u
σu

)]−1/ξ
+

,

where the change from θ(u,m) to θ(v,m) takes the change in mean cluster size at

each level into account and the final term adjusts for the marginal rarity.

It is interesting to know the probability ψv(κ, η) of observing at least one cluster

in a period T with a desired extremal property. One example is an event that lasts

at least κ days above level v and attains a peak value of at least η. For this example

ψv(κ, η) =
∞∑
j=0

{
1−

[
1− Π̄v(κ, η)

]j} τ jv exp (−τv)
j!

= 1− exp
[
−τvΠ̄v(κ, η)

]
, (3.4.1)

where the summation is taken over the number of clusters of the level v and

Π̄v(κ, η) = P (N ≥ κ,M ≥ η |M > v) .

Similar results can be derived with the number of consecutive exceedances NC as the

quantity of interest. Such measures are required when evaluating the probability of

observing events at least as severe as the 2003 heatwave.
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3.5 Heatwave application

3.5.1 Data

Daily temperature observations were taken at Orleans, in central France, for the pe-

riod 1946-2012. Four missing values exist in the time-series and are omitted; none

occur during the 2003 event. Heatwaves are most likely to occur in summer months,

here defined as the 92 day period of June-August, so summer season and yearly return

levels are equivalent. These three month periods are extracted from each year to form

an approximately stationary time-series for the temperature. Sample auto-correlation

and partial auto-correlation functions support the assumption of a first-order Markov

chain; see Figure 3.5.1 for the latter. Since the partial auto-correlation function is

affected by heavy tails, we evaluated this function with the data transformed onto

Gaussian margins but found no significant change. As such a first-order Markov

model is adopted within each summer period and each summer period is treated as

independent of others. Figure 3.5.1 shows consecutive pairs of the temperature data

illustrating strong inter-day dependence.

In Figure 3.5.2 we provide a boxplot of the daily maximum temperatures to assess the

validity of the assumption that the data are stationary within each year. It can be

seen that the data exhibit some non-stationarity with higher temperatures at the end

of July and start of August, however here for modelling simplicity we still make the

assumption that the data are stationary within season. However it is noted that this

unmodelled seasonal variation may be contributing to the choice of first-order Markov

structure given by the PACF in Figure 3.5.1; see Chapter 4 for more information.

3.5.2 Problem and strategy

We want to estimate the probability of observing events such as a heatwave that is

more extreme than the 2003 event or that exceeded a specified level of increased mor-
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Figure 3.5.1: Diagnostic plots for June, July and August temperature data (oC) for Orleans:

partial autocorrelation (top left), scatter of consecutive pairs (top right), parameter stability plot for

GPD shape parameter ξ (bottom left) and QQ-plot of GPD fit with 95% tolerance bounds indicated

by the dotted lines (bottom right).

tality. We use the empirical runs estimator with a run length of 3 days to correspond

to the typical propagation of weather systems. Under this method a cluster is ended

by a sequence of 3 consecutive non-exceedances of the chosen critical level and a new
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Figure 3.5.2: Boxplot of temperatures for summer days (June-August) for daily maximum tem-

perature data (oC) at Orleans from 1946-2012; see Section 3.5.1 for more information about the data

used.

cluster is commenced with the next exceedance of the critical level. A larger choice

for the run length in practice will make little difference. Using the runs method with a

run length of 3 and a critical level equal to the one year return level (denoted v1, tak-

ing the value 35oC), two independent clusters with 2 and 11 consecutive exceedances

respectively are identified within a four week period in 2003. It is expected that the

daily maximum temperature series exceeds the 1 year return level on average once a

summer. It is highly unlikely to observe 13 exceedances in a year, in particular in

Section 3.5.3 we show that, using the runs method with the run length and critical

level given above, on average we would expect to see only two exceedances for each

cluster that exceed such a level.

Empirical estimates of cluster features based upon the runs method are affected by

the choice of run length and cannot be used to estimate the required probabilities

since they are higher levels than have been observed. We use models from Section 3.3
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to provide estimates of the required extremal quantities. In this study the methods

outlined in Section 3.3.3 are named the conditional and non-parametric approaches re-

spectively and the method outlined in Section 3.3.4 is named the parametric approach.

A comparison between the three approaches and the empirical estimate obtained via

the runs method is used for model diagnostic purposes and is given in Section 3.5.3.

Results regarding the probability of observing heatwaves with the characteristics of

interest are given in Section 3.5.4.

Confidence intervals for all four approaches are generated by bootstrap methods.

Runs method declustering defines nc clusters of varying length and by alternately

sampling clusters of exceedances and clusters of non-exceedances from this observed

set we generate a bootstrapped sample. This procedure is repeated to generate 1000

replicate data sets to which the models of Section 3.3 are fitted. Repeated simulation

is used to obtain estimates of cluster functionals such as π(i) and πC(i) as discussed

in Section 3.4. Bootstrapped 95% confidence intervals for π and πC are derived by

taking the 2.5 and 97.5 percentiles of the estimates obtained from the replicate data

sets.

3.5.3 Diagnostics

First, a GPD is fitted to exceedances of the modelling threshold u, with u chosen

using standard diagnostics (Coles, 2001). In particular, we use a parameter stabil-

ity plot for ξ (Figure 3.5.1) and check that estimates of the shape parameter stay

consistent above the chosen threshold. Each approach is evaluated using the mod-

elling threshold u, set at the 90th percentile such that 10% of days fall above the

threshold (taking the value 29.7oC). Higher levels v for which results are reported

will be defined for each different analysis. The rate parameter λu is estimated as

0.099 (0.007), where the standard error is given in the parentheses. The GPD scale

parameter is estimated as σ̂u = 3.002 (0.225) and the shape parameter ξ̂ = −0.215
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(0.033). A QQ-plot evaluated with the modelling threshold at the 90th percentile is

provided in Figure 3.5.1 and indicates that the GPD is a reasonable fit at this thresh-

old. Deviations from the diagonal are observed at higher thresholds but are contained

within 95% tolerance intervals. Parameter stability plots at higher thresholds (not

shown) do not indicate any statistically significant change in the parameter estimates.

Fitting the conditional extremes approach leads to an estimate for the dependence

parameters of α̂ = 0.713 (0.072) and β̂ = 0.524 (0.094). Parameter stability plots for

the conditional extremes dependence parameters are given in Figure 3.5.3 and support

that the choice of u is valid. A likelihood ratio test confirms that these parameter

values are significantly different from α = 1 and β = 0 and that the data do not

exhibit asymptotic dependence. Under the parametric model the logistic dependence

parameter is estimated as γ̂ = 0.578 (0.026) with χ̂ = 0.508 (0.027). As asymptotic

dependence is the only form of dependence allowed in this model, χ̂ > 0 despite the

evidence from the conditional approach that suggests χ = 0. When using peak value

tail chain estimation the dependence parameters for the backward chain are also re-

quired and here α̂b = 0.816 (0.061) and β̂b = 0.512 (0.096).

Figure 3.5.4 shows estimates of θ(v,m) and θC(v,m) under all approaches for return

periods between 0.1 and 1 years, with m set as 3 days. At these levels estimates given

by the runs method are reasonably accurate and are used to assess which approach pro-

vides the best fit. The empirical estimate of θ(v,m) shows a broadly increasing pattern

at lower return periods before levelling out and tailing off at higher levels, where less

data are available for estimates. The estimate of θ(v,m) for the conditional extremes

approach matches the behaviour of the empirical estimate the best. It is contained

within the 95% confidence intervals of the empirical estimate at all levels. In contrast,

both the asymptotically dependent parametric and non-parametric approaches give

estimates of θ(v,m) and θC(v,m) that vary little over v. As these estimators only
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Figure 3.5.3: Parameter stability plots for conditional extremes dependence parameters α (left)

and β (right). Vertical bars show 95% confidence intervals obtained via bootstrapping.

give good estimates of the runs estimator at the threshold, it shows that they are

highly sensitive to the threshold choice. Figure 3.5.4 illustrates that the conditional

approach has a reduced sensitivity to the choice of modelling threshold u compared

to the asymptotically dependent parametric and non-parametric approaches as esti-

mates of θ(v,m) can vary from θ(u,m) for v > u. The parametric approach is often

contained within the confidence intervals, but at lower return periods it overestimates

the size of the extremal index. It also fails to pick up the increase of the empirical

estimate of the extremal index at lower return levels. The non-parametric approach

cannot pick up this behaviour either and usually underestimates the extremal index.

Similar patterns are observed for the consecutive extremal index θC(v,m) except that

estimates are slightly higher. This pattern is similar for N and NC and so whilst as-

sessing fit we shall concentrate on estimating functions of N with passing comments

only made on NC .

Estimates of the probability mass function π(i, v) for all four approaches are given in
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Figure 3.5.4: Estimated extremal index θ(v,m) (left) and consecutive extremal index θC(v,m)

(right) obtained with the runs method (dashed, diamonds), parametric approach (grey dots), con-

ditional extremes approach (black dots) and non-parametric approach (light grey dots). Confidence

intervals are at the 95% level and are obtained by bootstrapping procedures for all approaches. The

interval is given for runs method (light grey shading) at all return periods; for other approaches at

0.1 and 1 year return period (staggered) for visual clarity, where the return level v corresponds to

the return period given on the horizontal axis and m is fixed at 3 days.

Figure 3.5.5 (left) for a range of i for which the estimated distributions differ non-

negligibly from zero. The critical level is set as v = v1. All distributions are decreasing

with i; there are only slight increases due to sampling noise for longer cluster lengths

where results become sparse. The empirical estimate based upon the runs method

shows the greatest amount of variability and all other approaches have narrower con-

fidence intervals. The results obtained from the parametric and conditional extremes

approaches tend to coincide but show some varying behaviour. At most values of i

the confidence intervals for the parametric and conditional extremes approaches are

contained within those of the runs estimator. The result suggests that both methods

are adequately modelling the data at this critical level. The non-parametric approach
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gives estimates that seem to generally coincide with the empirical runs estimate and

there is general agreement with the other approaches, though the estimate of π(1, v1)

is lower.
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Figure 3.5.5: Left: Estimated distribution of π(i, v1) obtained with runs method (far left values),

parametric approach (centre left), conditional extremes approach (centre right) and non-parametric

approach (far right). Right: The effect of varying the return period (threshold) on π(1, v) for

parametric approach (grey, middle), conditional extremes approach (black, top) and non-parametric

approach (light grey, bottom) plotted against v on a log return period scale. In both plots confidence

intervals are at the 95% level and are obtained by bootstrapping procedures for all approaches.

The effect of changing critical level v on π(1, v) is presented in Figure 3.5.5 (right). The

runs estimator has been omitted from the plot since at these high levels the estimates

obtained in this way become unreliable with wide confidence bands. Figure 3.5.5

(right) confirms that for the parametric and non-parametric approaches the value of

π(1, v) remains constant at all levels whereas for the conditional extremes approach

π(1, v) increases as the critical level is increased. The same pattern can be observed

for πC(1, v) (not shown). This occurs since the parametric and non-parametric ap-

proaches are restricted to asymptotic dependence which does not allow for interaction



CHAPTER 3. EXTREME VALUE MODELLING OF HEATWAVES 78

2 4 6 8 10
0.

0
0.

1
0.

2
0.

3
0.

4

i

P
(N

=
i|M

=
η)

Figure 3.5.6: The effect of different cluster maximum sizes on distributions P (N = i |M = η) at

critical level v = v1 when estimated using the conditional extremes approach. Cluster maxima η at

level that would occur on average once in 5 years (black), once in 50 years (grey) and once in 1000

years (light grey). Confidence intervals are given at the 95% level, constructed from 100 replicate

data sets with 10000 forward/backward simulated chains and presented at only three durations for

visual clarity.

between duration distribution and critical level. The conditional extremes method

can allow for the asymptotically independent behaviour of the series and therefore

can have interaction between duration distribution and critical level. The parametric

and non-parametric approaches average the dependence over observed levels which

leads to the constant behaviour. The confidence intervals of these solely asymptoti-

cally dependent methods tend to overlap.

It may also be of interest to know the duration distribution of a cluster given that

the peak value was recorded at a specific level. The conditional extremes approach

has highlighted that the behaviour of clusters changes with the critical level used to

define them. Peak value chain simulation for the conditional extremes approach can

be used as outlined in Section 3.4. Setting v = v1 it is possible to analyse cluster
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characteristics of events that have a larger peak value. The plot of P (N = i |M = η)

for different peak values η is given in Figure 3.5.6. The shape of the distribution is

positively skewed for lower peak values. This result is anticipated since a peak value

nearer to the critical level will typically yield a cluster with fewer exceedances of the

critical level than for clusters with a larger peak value.

3.5.4 Results

Empirical analysis in Section 3.5.2 identified events of length 2 and 11 above the

critical level, corresponding to the one year return level. Tools from Section 3.4 al-

low us to estimate how likely each event was. In what follows we present estimated

probabilities and in parentheses the associated bootstrapped 95% confidence intervals.

The probability of observing at least one event in a year that lasts at least 2 days is

0.208 (0.200, 0.216) for the conditional extremes approach, 0.193 (0.183, 0.199) for

the parametric approach and 0.175 (0.172, 0.188) for the non-parametric approach.

Similarly, the probability of observing at least one event that lasts at least 11 days in

a year is 0.001 (1× 10−4, 0.004) for the conditional extremes approach, 0.005 (0.002,

0.009) for the parametric approach and 0.012 (0.007, 0.013) for the non-parametric

approach. The asymptotically dependent parametric and non-parametric approaches

give a much higher probability of observing a long event than the asymptotically in-

dependent conditional extremes approach. The same analysis can be completed for

the probability of observing at least one event in a year that lasts longer than 11

consecutive days. For the conditional extremes approach the probability is 6 × 10−4

(4 × 10−5, 0.002), for the parametric approach 0.004 (0.002, 0.006) and for the non-

parametric approach this increases to 0.007 (0.004, 0.009).

In Section 3.1 we noted that periods of 3 days with an average daily maximum tem-

perature above 35oC could lead to an excess mortality which varies over local cities

between 17-47%. Using all approaches we can estimate the probability of observing



CHAPTER 3. EXTREME VALUE MODELLING OF HEATWAVES 80

at least one such event in a year. For the conditional extremes approach the proba-

bility is given as 0.199 (0.181, 0.226), equivalent to an event that happens on average

once every five years. The same probability is given as 0.174 (0.161, 0.180) for the

parametric approach and 0.169 (0.157, 0.183) for the non-parametric approach. For

the remainder of the analysis we focus on the conditional extremes approach.

The maximum temperature in Orleans in 2003 was recorded at 39.9oC which corre-

sponds to a 1 in 50 year event. The peak value chain estimation method in Section 3.4

is used to assess the joint probability of an event with a hotter maximum temperature

and longer duration than the 2003 heatwave event. The probability of observing a

cluster with at least 11 exceedances conditional on a peak value greater than the 2003

temperature is 0.06 (0.008, 0.23). The joint probability for the cluster functionals can

be obtained by multiplying the conditional probability by the probability of observing

a peak value greater than the 2003 temperature and is estimated as 0.001 (7× 10−5,

0.013). Application of equation (3.4.1) allows the derivation of over cluster results

from the within cluster results given above. As such the probability of observing at

least one event in a year that both lasts longer than 11 days and has a peak value

greater than 39.9oC is 6× 10−4 (4× 10−5, 6× 10−3), approximately equivalent to the

1650 year return period. The equivalent probability for 11 consecutive exceedances is

4× 10−4 (3× 10−5, 5× 10−3) for the conditional extremes approach.

3.6 Discussion and conclusion

The results given in Section 3.5 show that the interaction between the duration distri-

bution of heatwave events and a critical level is only modelled realistically by methods

that account for asymptotic independence. At high critical levels this leads to a reduc-

tion in the probability of observing longer events when using the conditional approach

over other approaches that can account only for asymptotic dependence. Model se-
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lection diagnostics indicate that these lower estimates of the probability of observing

longer events at high critical levels reflect the characteristics of the data better. If a

user is especially averse to the risk of longer heatwave events then they could be willing

to mitigate for such an event using one of the asymptotically dependent approaches.

However, our analysis shows that this can considerably inflate the estimated risk. If

such a conservative approach is to be taken we have found that two different asymp-

totically dependent modelling approaches, parametric and non-parametric, give very

similar risk estimates. It is noted that there are some asymptotically dependent mod-

els that can account for further weakening of dependence above the selected critical

level of interest; see Wadsworth and Tawn (2012b) and Wadsworth et al. (2016) for

more details.

The assumption that the temperature time-series follows a first order Markov pro-

cess has been made to permit the modelling process outlined in the paper. Such an

assumption was supported by an exploratory data analysis but might be an unrealistic

assumption in other applications or for such extreme events as in 2003. Specifically,

our approach gives the return period of an event rarer than in 2003 as 1650 years;

either this really was an exceptional event or there are subtleties in higher order de-

pendence for the extreme temperature process that are not captured by our Markov

model. Making an assumption of higher order Markov processes has not been con-

sidered in this chapter, but is investigated further in Chapter 4. Alternatively no

Markov structure assumptions could be made, e.g. as in Eastoe and Tawn (2012), but

this comes at the cost of large numbers of parameters and a high dimensional non-

parametric distribution G to estimate which is likely to lead to very poor estimates

of events more extreme than the event observed in 2003.

Our approach has focused on daily maximum temperatures. As outlined in Sec-

tion 3.1, Pascal et al. (2013) point out that extremely hot night time temperatures
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during a heatwave can also be important in raising mortality. Thus we may be inter-

ested in extremes of the series Xt, Yt, Xt+1, Yt+1, . . . where Xt is the daily maximum

temperature and Yt is the daily minimum temperature on day t. A Markov model

is likely to be appropriate for the series. Although the series is non-stationary its

components Xt and Yt may be individually stationary with marginal distributions

FX and FY . Applying the marginal methods of Section 3.3 we can transform the Xt

and Yt series to have an identical marginal Laplace distributions. We can then model

the dependence structure for the transitions between the series using the conditional

extremes approach. These transitions may have parameters that vary between the

pairs (Xt, Yt) and (Yt, Xt+1) but otherwise the methodology developed in the paper

can be extended easily to this more general situation. Our approach has also focused

on heatwaves at a single site whereas the spatial nature of an event is also critical

for the economy and health. Davison and Gholamrezaee (2012) look at the heatwave

problem from a spatial perspective, focusing on asymptotically dependent models only

and ignoring temporal aspects. Therefore a future open line of research is to draw

together our approach with theirs, requiring a fully space-time model for extremes.

The first approaches to space-time extremes models are Huser and Davison (2014)

and Davis et al. (2013), but these are restricted to asymptotic dependence in both

space and time.

The underlying effect of climate change has been ignored during this paper and is

an important future extension for each approach. Stott et al. (2004) have investi-

gated the human contribution to the European heatwave of 2003. They suggest that

it is very likely that anthropogenic climate change has at least doubled the risk of a

heatwave as intense as the event in 2003 in comparison to pre-industrial times. In

Chapter 5 we apply the approaches in this chapter to assess the affect of human in-

duced climate change which can affect both marginal and dependence characteristics

of the process.



Chapter 4

kth-order Markov extremal models

for assessing heatwave risks

4.1 Introduction

Many devastating natural hazards are caused by events that are extreme and rare.

Extreme value theory provides a general framework for modelling extreme values. In

many situations a singular extreme observation does not have a great effect, whereas

combinations and runs of extreme values can cause widespread devastation. For exam-

ple when estimating risks attributed to heatwaves, one hot day may not cause a large

increase in excess mortality whereas a run of consecutive hot days is far more damag-

ing. Therefore any extreme value model utilised must be able to reliably capture such

behaviour. In the terminology of extreme value theory this requires a model that can

explicitly capture the extremal temporal dependence structure alongside marginal tail

characteristics.

Methods for modelling multivariate extreme events are often separated between the

two aforementioned components, the margins and dependence structure. Let {Yt}

be a stationary time-series, during this paper taken to be a series of maximum daily

83
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temperature values at a single site. The most common approach to model the extreme

values of the margins is to fit a generalized Pareto distribution (GPD) to exceedances

of a high modelling threshold uY , i.e.

P(Yt − uY > y | Yt > uY ) =

(
1 +

ξy

σuY

)−1/ξ
+

for y ≥ 0,

where c+ = max(c, 0), σuY > 0 and ξ are the scale and shape parameters of the GPD

respectively (Coles, 2001), with the scale parameter being threshold dependent.

A heatwave is defined as a set of consecutive days and/or nights that lead to an

increase in mortality. As such, an important quantity to model is the number of

exceedances of a critical level during a block of time. It is also necessary to be

able to estimate other important extremal quantities, here named cluster functionals.

Empirical methods exist to split a time-series of temperature data into independent

clusters of exceedances of the threshold uY where within each cluster groups of de-

pendent exceedances occur; the most popular technique is the runs method (Smith

and Weissman, 1994). As such from a time-series we can obtain the number of inde-

pendent clusters and the values in each cluster. The number of clusters are Poisson

distributed (Davison and Smith, 1990); here we wish to accurately model the values

within a cluster, i.e. the local time-series during an extreme event.

Different approaches exist for modelling the dependence structure, which broadly split

into methods that attempt to model the joint tail of multivariate extremes and meth-

ods that condition upon one extreme variable. The former group include Ledford and

Tawn (1997) and Smith et al. (1997) and are the classical models for modelling joint

extremes. However these models can be hard to implement in a high-dimensional

setting and are often restricted to the case of asymptotic dependence, i.e. for two

random variables (Yt, Yt+τ ) the extremal dependence measure

χτ = lim
y→y∗

P(Yt+τ > y | Yt > y),
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is strictly greater than zero, where y∗ is the upper endpoint of the common distribu-

tion function and τ is a time lag. The conditional extremes approach of Heffernan

and Tawn (2004) provides a more flexible approach that permits both asymptotic

dependence (χτ > 0) and asymptotic independence (χτ = 0). The approach can also

more easily be generalised to higher-dimensional problems.

A range of temporal dependence structure models have been proposed, some specific to

heatwave applications. Smith et al. (1997) provide a framework for modelling thresh-

old exceedances using first-order Markov chain approaches, but are restricted to the

situation of asymptotic dependence. Yun (2000) outline an approach to analyse the

distribution of cluster functionals of extreme events in an asymptotically dependent

kth-order Markov chain. More recently, Reich et al. (2014) formulate an asymptoti-

cally dependent max-stable process using random effects within a Bayesian framework,

incorporating dependence within 10 day windows. Bortot and Tawn (1998) use theory

from Ledford and Tawn (1997) to derive a class of models for first-order Markov chains

that permits asymptotic independence. An asymptotically independent Gaussian cop-

ula model is proposed in Dupuis (2012), who considers a pre-processing approach for

the margins and an AR model with lags up to lag-8 for the temporal dependence

structure.

In Chapter 3 we built a first-order Markov approach based upon the conditional

extremes approach of Heffernan and Tawn (2004) that can account for both asymp-

totic dependence and asymptotic independence. For the daily maximum temperature

data analysed in Chapter 3, it was found that standard diagnostics, e.g. PACF and

comparison of observed and modelled cluster functionals, suggest that the first-order

Markov assumption was reasonable. However, the physical mechanisms of heatwaves

suggest that this is perhaps an oversimplification that could lead to underestimation

of the risk of a heatwave event. This paper seeks to take advantage of the higher-order
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structure to give a kth-order Markov model and to provide more accurate estimates

of the risk of a heatwave event.

We also seek to develop diagnostic tests to choose an appropriate order Markov process

to fit to extreme events. Standard time-series diagnostics for choosing an appropri-

ate Markov process are often misleading when considering the behaviour of extremes.

In some situations the extremal structure is less complicated than in the body and

standard diagnostics suggest using a more complicated model than is required. When

there is more complicated structure in the extremes than in the body, models that are

too simple are selected by standard techniques. Ledford and Tawn (2003) developed

diagnostic tools to test long and short range dependence assumptions within extreme

events of both asymptotically dependent and asymptotically independent processes.

However, these methods were unable to detect the order of the process. Here, we

seek to extend the tools of Ledford and Tawn (2003) under the conditional extremes

framework to provide greater insight into our modelling of heatwaves, without be-

ing restricted to the assumption of a first-order Markov process. Our work naturally

extends Papastathopoulos and Tawn (2013) to give the first formal methods for test-

ing for conditional independence in extreme values when the variables can be either

asymptotically dependent or asymptotically independent.

Section 4.2 sets out theory for modelling the extremes of Markov chains by mod-

elling the margins and dependence structure separately using a threshold exceedance

approach for the former and the conditional extremes approach for the latter. Infer-

ence for the dependence structure of the conditional extremes model and extensions

to account for higher-order structure are presented in Section 4.3 along with a discus-

sion of diagnostic methods for order choice. Simulation of cluster features is discussed

in Section 4.4 along with an extension to the algorithm for generating replicate tail

chains set out in Appendix B. Section 4.5 gives results for a temperature data set over
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central France and compares to the results in Chapter 3. Discussion and conclusions

are presented in Section 4.6.

4.2 Modelling temporal dependence

4.2.1 Markov modelling

Throughout this paper we develop an approach that uses kth-order Markov chains

to model the behaviour of the temperature series during heatwave events. Under

the assumption that a time-series {Yt} follows a kth-order Markov process, the joint

density function fn of (Y1, . . . , Yn) can be written as

fn(y1, . . . , yn) = fk(y1, . . . , yk)
n−k∏
t=1

f(yt+k | yt+k−1, . . . , yt),

where f(· | ·) is the conditional density function associated with fk. This assumption

permits us to model the extremes of the whole joint distribution by analysing the

extremes of (Yt, . . . , Yt+k) for t = 1, . . . , n−k and studying the conditional distribution

of Yt+k | (Yt, . . . , Yt+k−1). The model for the marginal exceedances of the threshold

uY is given in Section 4.2.2. Our main method for modelling extremal dependence

is presented in Section 4.2.3 and is based upon the conditional approach outlined

in Heffernan and Tawn (2004). In Section 4.2.4 we propose an extension to the

conditional extremes approach for time-series.

4.2.2 Marginal modelling

Here, we take {Yt} to be a stationary series and as such the marginal distributions F

are identical. The marginal excesses of uY are assumed to follow a GPD which leads

to the model for the common marginal distribution

F (y) =


1− λuY

(
1 + ξ y−uY

σuY

)−1/ξ
+

, y ≥ uY

F̃ (y), y < uY ,
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where λuY = 1− F̃ (uY ) and F̃ (y) is the empirical cumulative distribution function of

{Yt}nt=1. Standard censored likelihood approaches are used to estimate the marginal

parameters. Having estimated the marginal structure, a choice of transformation

onto common margins is required prior to modelling extremal dependence. Different

marginal choices exist for the conditional extremes approach. Heffernan and Tawn

(2004) model dependence for Gumbel margins, but Keef et al. (2013) showed that a

more comprehensive approach arises for Laplace margins. Following Keef et al. (2013)

we transform Yt, t = 1, . . . , n into Laplace margins as follows

Xt =


log {2F (Yt)} if F (Yt) < 1/2

−log {2 [1− F (Yt)]} if F (Yt) ≥ 1/2,

and subsequently model dependence on {Xt} which can be easily translated back to

{Yt}.

4.2.3 Conditional extremes approach for multivariate con-

text

Heffernan and Tawn (2004) motivate an approach to modelling the extremes of a

vector Xt:t+τ = (Xt, . . . , Xt+τ ) = (Xt,X−t) for t = 1, . . . , n − τ and for fixed τ ,

with Xt large and where X−t are all components of the vector Xt:t+τ without Xt,

i.e. (Xt+1, . . . , Xt+τ ). This approach is called the conditional extremes method. The

desire is to model the joint behaviour of Xt:t+τ using the distribution of X−t given

that Xt exceeds some high threshold u. A requirement for modelling the conditional

distribution P {X−t ≤ x−t | Xt = x} is that this distribution should be non-degenerate

as x → ∞, hence x−t needs to be a function of x. Below, all vector calculations

are to be interpreted componentwise. Following a characterisation in Heffernan and

Resnick (2007) and results in Heffernan and Tawn (2004), under weak assumptions

on Xt:t+τ and the specification of Laplace margins, there exist dependence parameters
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α1:τ = (α1, . . . , ατ ) ∈ [−1, 1]τ and β1:τ = (β1, . . . , βτ ) ∈ (−∞, 1)τ such that for x > 0

P

(
X−t −α1:τXt

Xβ1:τ
t

≤ z, Xt − u > x

∣∣∣∣∣Xt > u

)
→ G1:τ (z) exp(−x), (4.2.1)

as u → ∞, where G1:τ is non-degenerate in each margin, i.e. for j = 1, . . . , τ the

jth margin Gj of G1:τ is non-degenerate, with z = (z1, . . . , zτ ) ∈ Rτ . Different types

of dependence lead to different values of the aforementioned dependence parameters.

If the variables (Xt, Xt+j) are independent then αj = βj = 0 and Gj is the Laplace

distribution function, for j ≤ τ whereas αj = 1 and βj = 0 corresponds to the situation

of asymptotic dependence, −1 ≤ αj ≤ 0 to negative dependence and 0 < αj < 1 or

αj = 0 and βj > 0 corresponds to asymptotic independence with positive dependence.

For more information see Keef et al. (2013).

4.2.4 Conditional extremes approach for time-series

We propose an extension to the statistical implementation of this approach that takes

into account the value of intermediary values of the time-series, where interest is in the

conditional distribution of the process given the past, taken here as Xt+τ | Xt:t+τ−1

for large Xt. As such we are interested in an analogous expression to equation (4.2.1)

given as

limδz1→0,...,δzτ→0 limu→∞ P

(
Xt+τ−ατXt

Xβτ
t

≤ z,Xt − u > x

∣∣∣∣∣ Xt+1:t+τ−1−α1:τ−1Xt

X
β1:τ−1
t

∈ δz1:τ−1, Xt > u

)

= Gτ |1:τ−1(z | z1:τ−1) exp(−x),

(4.2.2)

for x > 0, where Xt+1:t+τ−1 = (Xt+1, . . . , Xt+τ−1) and δz1:τ−1 = (z1, z1 + δz1)× · · · ×

(zτ−1, zτ−1 + δzτ−1). By undoing the conditioning, the limit on the left hand side of

equation (4.2.2) can be rewritten as

limδz1→0,...,δzτ→0 limu→∞

P
(
Xt+τ−ατXt

X
βτ
t

≤z,Xt+1:t+τ−1−α1:τ−1Xt

X
β1:τ−1
t

∈δz1:τ−1,Xt−u>x

∣∣∣Xt>u)
P
(

Xt+1:t+τ−1−α1:τ−1Xt

X
β1:τ−1
t

∈δz1:τ−1

∣∣∣Xt>u) .

(4.2.3)
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Under the assumption that the non-limit form on the left hand side of equation (4.2.1)

is τ -times differentiable in z, we have that equation (4.2.3) can now be represented as

lim
δz1→0,...,δzτ→0

lim
u→∞

∫ z
−∞

∫ z1+δz1
z1

. . .
∫ zτ−1+δzτ−1

zτ−1
ḡ1:τ (s1:τ−1, s;u) exp(−x)ds1 . . . dsτ−1ds∫ z1+δz1

z1
. . .
∫ zτ−1+δzτ−1

zτ−1
ḡ1:τ−1(s1:τ−1;u)ds1 . . . dsτ−1

,

(4.2.4)

where ḡ1:τ (·;u) is the joint density function of (X−t −α1:τXt) /X
β1:τ
t | Xt > u. Under

the assumption of exchangeability of limits and integrals, equation (4.2.4) is given as

lim
δz1→0,...,δzτ→0

∫ z
−∞

∫ z1+δz1
z1

. . .
∫ zτ−1+δzτ−1

zτ−1
g1:τ (s1:τ−1, s) exp(−x)ds1 . . . dsτ−1ds∫ z1+δz1

z1
. . .
∫ zτ−1+δzτ−1

zτ−1
g1:τ−1(s1:τ−1)ds1 . . . dsτ−1

, (4.2.5)

where g1:τ is the joint density function of G1:τ in equation (4.2.1). By repeated

application of L’Hôpital’s rule equation (4.2.5) can be rewritten as

exp(−x)

∫ z
−∞ g1:τ (z1:τ−1, s)ds

g1:τ−1(z1:τ−1)
= exp(−x)

∫ z

−∞
gτ |1:τ−1(s | z1:τ−1)ds, (4.2.6)

and therefore from equation (4.2.2) we have that

Gτ |1:τ−1(z | z1:τ−1) =

∫ z

−∞
gτ |1:τ−1(s | z1:τ−1)ds,

where gτ |1:τ−1(s | z1:τ−1) is the conditional density function from G1:τ . We also note

that if τ > k, where k is the order of the Markov process used, any terms of z1:τ−1

separated by greater than lag k will be redundant and thus can be ignored. Our

approach to estimating the distribution function Gτ |1:τ−1 is to obtain an estimate of

the joint density function g1:τ and use this to derive the conditional distribution. For

this purpose we propose an approach based upon kernel density estimation which is

given in Section 4.3.1. It is noted at this stage that such an approach, if used in very

high dimensions, can be affected by the curse of dimensionality. We do not directly

deal with this problem here, since our estimates of important extremal quantities in

Section 4.5 seem sensible compared to the first-order estimates given in Chapter 3.
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4.3 Inference for dependence structure

4.3.1 Estimation of extremal quantities

Modelling using the conditional extremes approach requires the assumption that the

limiting form of equation (4.2.1) holds exactly for all values of Xt > u given that u is

a sufficiently high threshold. We write the form of Xt+1:t+τ given that Xt > u as

Xt+1:t+τ = α1:τXt +Xβ1:τ
t Z1:τ , (4.3.1)

where Z1:τ = (Z1, . . . , Zτ ) is a dependent random variable, independent of Xt, with

distribution function G1:τ as in equation (4.2.1). Dependence parameters αj and βj,

for j = 1, . . . , τ , are estimated using pairwise data on (Xt, Xt+j) via standard likeli-

hood approaches. Constraints on the parameters caused by stationarity assumption

are given in Heffernan and Tawn (2004). Since Gj does not take any simple paramet-

ric form, in order to fit αj and βj, for j = 1, . . . , τ , we make a temporary working

assumption that Zj ∼ N(µj, σj) (Keef et al., 2013) and as such

Xt+j | {Xt = x} ∼ N
(
αjx+ µjx

βj , σ2
jx

2βj
)

for x > u,

where j = 1, . . . , τ . In this way we estimate the set of parameters (αj, βj, µj, γj) by

standard likelihood approaches. At this stage the Gaussian assumption is discarded

and a non-parametric estimate of the distribution G1:τ is formed by inverting equa-

tion (4.3.1). Specifically, let t1, . . . , tnu be the indices of t = 1, . . . , n where xt > u

then let

ẑ
(i)
j =

(xti+j − α̂jxti − µ̂jx
β̂j
ti )

σ̂jx
β̂j
ti

, (4.3.2)

for i = 1, . . . , nu and j = 1, . . . , τ , where nu is the number data points exceeding

the threshold u. The sample in equation (4.3.2) have been normalised using (µj,

σj) to ensure all values have mean 0 and variance 1 through time. Here, similar

to Papastathopoulos and Tawn (2013), we estimate the density g1:τ of G1:τ using a
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multivariate kernel density based on data ẑ(i) =
(
ẑ
(i)
1 , . . . , ẑ

(i)
τ

)
, i = 1, . . . , nu, to

obtain the final estimate g̃1:τ , i.e.

g̃1:τ (z) =
1

nu

nu∑
i=1

KH

(
z− ẑ(i)

)
,

where KH is the multivariate kernel function, H is a symmetric and positive definite

bandwidth matrix such that KH(x) = |H|−1/2K(H1/2x). A common choice of the

kernel function is the standard independent Normal multivariate kernel such that

K(x) = (2π)−τ/2 exp

{
−xᵀx

2

}
,

and H is taken to be diagonal. As such the joint density g̃1:τ has the form

g̃1:τ (z) = g̃(z1, . . . , zτ ) =
1

nu

nu∑
i=1

τ∏
j=1

1

hj
φ

(
zj − ẑ(i)j
hj

)
,

where ẑ
(i)
j , j = 1, . . . , τ and i = 1, . . . , nu, are the values given by equation (4.3.2),

φ(·) is the standard Normal density function and hj for j = 1, . . . , τ are associated

bandwidths. Under the assumption that the limit form in equation (4.2.2) holds for a

sufficiently high value of threshold u, using equation (4.2.6), the distribution function

Gτ |1:τ−1 is

Ĝτ |1:τ−1(z | z1:τ−1) =
nu∑
i=1

wiΦ

(
z − ẑ(i)τ
hτ

)
,

where weights wi, 0 ≤ wi ≤ 1 and
∑nu

i=1wi = 1, are given as

wi =
τ−1∏
j=1

φ

(
zj − ẑ(i)j
hj

)/
nu∑
r=1

τ−1∏
j=1

φ

(
zj − ẑ(r)j
hj

)
i = 1, . . . , nu (4.3.3)

In this way the weights are given as the density of standardised differences of zτ−1

from the observed values z
(i)
τ−1, for each observation i with Xti > u.

4.3.2 Selection of the order of Markov process

We have motivated an approach that takes into account higher-order Markov struc-

ture when simulating clusters of extreme events. Ideally we wish to test whether the
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incorporation of higher-order structure provides any significant improvement over a

lower-order Markov model. As we incorporate higher-order information beyond the

true order of the Markov process in the extremes additional parameters and distribu-

tional assumptions are introduced and as such we would like not to select too large an

order to avoid inefficiency and potentially decreasing the precision of estimates. If the

order selected is too small, we may not adequately capture the extremal dependence

structure which leads to inaccurate inferences.

Based upon simulations from our fitted model, we outline two diagnostics that can be

used to pick a suitable order. Both diagnostics are motivated by standard univariate

threshold selection diagnostics (Coles, 2001); essentially these diagnostics are equiv-

alent to threshold stability plots. Neither diagnostic provides a specific value for the

order k but will suggest a set of sensible values. Such an approach also allows the

order to be tailored to the type of extremal quantity that we want to estimate. The

first diagnostic tests whether there is any significant difference between the threshold

dependent extremal dependence measure χj(v), i.e.

χj(v) = P(Xt+j > v | Xt > v) for j ≥ k, (4.3.4)

estimated empirically and with the kth-order conditional extremes model, denoted

by χ̃j(v) and χ̂
(k)
j (v) respectively. It explores how the differences in these estimates

changes with k. The kth-order Markov model that provides the best fit for a range

of j ≥ k is the one that lies closest to the empirical estimate for a range of critical

levels.

A different diagnostic for the order of Markov chain aims to identify an order above

which estimates of important extremal quantities are stable other than sampling vari-

ability. Here, important extremal quantities are defined as the extremal index, see

Section 4.4, and short, medium and long runs of exceedances of a high level, see Sec-

tion 4.5 for a more precise definition. For threshold selection we wish to pick the
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lowest threshold for which parameter estimates are stable at higher levels. Here, if

the estimates of extremal quantities do not change above a certain order, it is not

necessary to incorporate higher-order structure above the defined order.

We also propose an approach that compares whether a kth-order model provides

a significant advantage over a first-order model using a hypothesis test. Reich et al.

(2014) perform such a test to check differences between their higher-order model and

a first-order Markov model; to take a similar approach in our setting we exploit limit

results for first-order Markov chains in Papastathopoulos et al. (2015). The test of a

first-order model against a second-order model is outlined below. Under the assump-

tion of a first-order Markov process we have that

Xt+1 = α1Xt +Xβ1
t Z1|0,

for Xt > u, where {Zi+1|i} are independent and identically distributed over i with the

same distribution as Z1 in equation (4.3.1), and as such when Xt+1 > u and α1 > 0

we have that

Xt+2 = α1Xt+1 +Xβ1
t+1Z2|1

= α1

(
α1Xt +Xβ1

t Z1|0

)
+
(
α1Xt +Xβ1

t Z1|0

)β1
Z2|1

= α2
1Xt + α1X

β1
t Z1|0 +

(
α1Xt +Xβ1

t Z1|0

)β1
Z2|1

= α2
1Xt + α1X

β1
t Z1|0 + αβ11 X

β1
t Z2|1 +Op

(
X2β1−1
t

)
.

As such, under the first-order Markov assumption, for x > 0

P

(
Xt+2 − α2

1Xt

Xβ1
t

≤ z,Xt > u+ x | Xt > u

)
→ G2(z) exp(−x), (4.3.5)

as u → ∞ where G2 is the distribution of Z2|0 = α1Z1|0 + αβ11 Z2|1. The result is

extended for lag τ in Papastathopoulos and Tawn (2013) and Papastathopoulos et al.

(2015) such that a similar test can be constructed by fixing ατ = ατ1 and βτ = β1. In

the situation where ατ = 1 and βτ = 0, i.e. asymptotic dependence, this expression is
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equivalent to the random walk given in Smith (1992). When α1 = 0, we have that

P

(
Xt+τ

X
βτ1
t

≤ z,Xt > u+ x | Xt > u

)
→ Gτ (z) exp(−x), (4.3.6)

as u→∞, where Gτ is the distribution of Zτ |0 =
∏τ

i=1 Z
βτ−i1

i|i−1. Under the assumption

that the limit form in equations (4.3.5) and (4.3.6) hold exactly at some high threshold,

a comparison of the suitability of the first- and kth-order approaches is constructed

via a likelihood ratio test by testing a model with fixed parameters αk = αk1 and

βk = β1 against a model where αk and βk are allowed to vary. For completeness the

model where αk = 0 and βk = βk1 must also be tested. If the kth-order approach

is found to obtain a significantly better fit than the first-order approach, a natural

next step is to ask whether the kth-order result is a better fit than the jth-order

result for all j = 2, . . . , k − 1. Such a set of nested tests exists when modelling time-

series using AR models (Brockwell and Davis, 2006), but has not been previously

investigated within the framework here. It is difficult to derive theoretical results

that are as interpretable as testing against the first-order approach and are only

considered briefly in Section 4.6.

4.4 Cluster simulation

We simulate chains with the desired extremal properties to derive the required prop-

erties of the chain using Monte Carlo methods. Common approaches for defining

clusters have already been mentioned in Section 4.1; here we focus on within cluster

behaviour. Two main strategies exist for the generation of the Markov chain in its

tail, known as the tail chain. We can either simulate forwards and backwards from a

cluster maximum M > v (Smith et al., 1997) or simulate an initial exceedance of v

and simulate forwards only (Rootzén, 1988). The choice of approach is informed by

the properties of the tail chain that we wish to estimate. In Section 4.3.2 the sub-

asymptotic extremal dependence measure χj(v) was introduced in equation (4.3.4)
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as a useful summary of the level of dependence in the tail. However, we are also

interested in estimating other quantities, often an important quantity is the number

of exceedances of a critical level, i.e.

Dv =
∑
t∈C

I (Xt − v)+ ,

where I(.) is the indicator function and C is a set of values constituting a cluster. In

Chapter 3 we introduced an important quantity denoted the duration distribution

π(i, v) = P(Dv = i |M > v), (4.4.1)

where M is a random variable denoting the cluster maximum. A common measure

that follows from equation (4.4.1) is the subasymptotic extremal index θ(v) (Lead-

better et al., 1983), with θ(v) ∈ [0, 1]. The reciprocal of the subasymptotic extremal

index gives the mean of the cluster size distribution of the extremes in a time-series

at a level v, i.e.

θ(v)−1 =
∞∑
i=1

iπ(i, v),

To estimate the above cluster functionals it is sufficient to use the forwards simula-

tion scheme of Rootzén (1988). This approach is easier to implement since it only

requires forward simulation and does not require the initial simulation to be the clus-

ter maximum. For the kth-order approach outlined here this is the more efficient

computationally.

The simulation approach to apply the model in Sections 4.2 and 4.3 to generate

realisations of a tail chain with kth-order structure is as follows. To commence simu-

lating the tail chain, we simulate a starting exceedance, X∗0 , of v > u to be generated

as X∗0 = v +E0 where E0 is from an Exponential distribution with rate parameter 1.

For all time-steps 0 < j ≤ k the tail-chain is stepped forward using the appropriate

jth order scheme by setting

X∗j = αjX
∗
0 + (X∗0 )βj Z∗j|0:j−1, (4.4.2)
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where Z∗j|0:j−1 is sampled from Ĝj|1:j−1 with weights wi, for i = 1, . . . , nu, and Ĝ1|0 =

Ĝ1. At all subsequent time-steps k < j < m the kth-order scheme is used to complete

the simulation of the tail chain, i.e.

X∗j = αkX
∗
j−k +

(
X∗j−k

)βk Z∗j|j−k+1:j−1, (4.4.3)

where Z∗j|j−k+1:j−1 is sampled from Ĝk|1:k−1 with weights wi, for i = 1, . . . , nu. The

tail chain length m needs to be chosen large enough to ensure a negligible probability

of obtaining a chain with X∗m > v | X∗1 > v (in Section 4.5, m = 40 is found to

be sufficient); see Section 3.4 for a similar discussion of the tail chain. A complete

algorithm for the forward simulation approach with higher-order structure is given

in Appendix D. The asymptotic justification for the algorithm is satisfied only when

X∗j > u, for 0 ≤ j ≤ m − k. For X∗j < u the algorithm is used as it should still

provide a reasonable approximation unless X∗j � u. In this case the probability of

the tail chain coming above u again is negligible and thus the chain can be terminated.

When reporting results it is more instructive to give estimates of the probability

of a particular event occurring within a given time period (often taken to be a year).

In Chapter 3 we outlined an approach for deriving over cluster results from within

cluster quantities based upon the assumption that clusters of the modelling threshold

u occur as a Poisson process (Hsing, 1988). The probability of observing at least one

cluster in time period T with at least i days above the critical level v is given by

ψv(i) = 1− exp {−τvπ̄(i, v)} ,

where π̄(i, v) = P(Dv ≥ i |M > v) and

τv = θ(v)λunT

[
1 + ξ

(
v − u
σu

)]−1/ξ
+

,

with nT the number of observations in a time period of interest.
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4.5 Data analysis

Daily temperature observations are taken at Orleans, in central France, for the period

1946-2012. Four missing values exist in the time-series and are omitted, none occur

during the 2003 heatwave event that we focus aspects of our analysis on. Heatwaves

are most likely to occur in summer months, here defined as the 92 day period of June-

August, so summer season and yearly return levels are equivalent. These three month

periods are extracted from each year to form an approximately stationary time-series

for the temperature.

First, a GPD is fitted to exceedances of the modelling threshold uY , set at 29.7oC,

chosen using standard diagnostics (Coles, 2001). Diagnostic plots for this data set and

justification of the GPD model and threshold choice are given in Chapter 3. The rate

parameter λu is estimated as 0.099 (0.007), the GPD scale parameter is estimated as

σ̂u = 3.002 (0.225) and the shape parameter ξ̂ = −0.215 (0.033); the standard errors

are given in the parentheses.

Estimates for the conditional extremes dependence parameters (αj,βj) and depen-

dence measure χj(v1) are given in Table 4.5.1 for j = 1, . . . , 10. The estimates of

χj(v) are obtained from the pairwise conditional model for Xt+j | Xt and are denoted

by χ̂j(v). Throughout this section, when not stated otherwise the critical level is set

at the one-year return level, denoted v1 and taking the value 35oC. Here, estimates

of χj(v1) are obtained using the standard conditional extremes approach for a bivari-

ate vector from Section 4.2.3. We observe that χ̂j(v1) decreases as j is increased,

showing a reduction in the level of extremal dependence with lag. Such a pattern is

confirmed by the value of α̂j which moves further from 1 as j is increased. We note

that estimates of χj(v1) decrease monotonically with lag whereas this is not the case

for the conditional extremes dependence parameters. This highlights that αj and βj

are correlated and as such there is often a trade-off between the two parameters.
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j α̂j β̂j χ̂j(v1)

1 0.713 (0.072) 0.524 (0.094) 0.508 (0.027)

2 0.576 (0.080) 0.538 (0.126) 0.276 (0.042)

3 0.440 (0.084) 0.514 (0.163) 0.186 (0.041)

4 0.342 (0.083) 0.400 (0.182) 0.144 (0.037)

5 0.395 (0.082) 0.301 (0.201) 0.117 (0.031)

6 0.288 (0.077) 0.286 (0.226) 0.095 (0.026)

7 0.313 (0.069) 0.253 (0.210) 0.076 (0.018)

8 0.259 (0.053) 0.280 (0.193) 0.067 (0.016)

9 0.198 (0.040) 0.091 (0.158) 0.036 (0.011)

10 0.162 (0.037) -0.061 (0.143) 0.019 (0.008)

Table 4.5.1: Estimates for the extremal dependence parameters (αj ,βj) and extremal dependence

measure χj(v1) for a set of different lag values j = 1, . . . , 10 given at the one year return level v1.

The estimates of χj(v) are obtained from the pairwise model for Xt+j | Xt and are denoted by χ̂j(v).

Standard errors are given in parentheses.

A standard approach to estimate the order of a Markov chain is to identify the largest

lag at which the partial auto-correlation function (PACF) is deemed to be significantly

different from zero (Chatfield, 2003), since this function gives the strength of the de-

pendence between (Xt, Xt+j) | Xt+1:t+j−1, for j = 1, . . . , τ , for some maximum lag of

interest τ . In Figure 4.5.1 the auto-correlation function and PACF are plotted for

the Orleans daily maximum temperature data. The auto-correlation shows a decay

of dependence, which is near exponential. There is a large spike in the PACF at lag

1 with smaller values at all larger lags. This motivated the first-order Markov model

used in Chapter 3. However, there are some values that lie outside the confidence

intervals up to lag 6 which suggest that a first-order Markov model might omit some

important higher-order structure.
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Figure 4.5.1: Auto-correlation and partial auto-correlation functions for Orleans daily maximum

temperature data. Dashed intervals represent a 95% confidence interval.

In Section 4.3 we provided a set of different diagnostics to estimate the order Markov

chain when focusing on the extreme values. Figure 4.5.2 gives estimates of χj(v) em-

pirically (denoted χ̃j(v)) and for j ≥ k for different kth-order Markov models (denoted

χ̂
(k)
j (v)) at two different values of the critical level v. If the process is kth-order then

we should find that χ̂
(k)
j (v) is close to χ̃j(v) for all j ≥ k. With v corresponding to

the 90% quantile, it appears that the third-order scheme comes closest to the pattern

observed in the empirical estimates. First and second order schemes seem to underes-

timate the strength of the dependence whereas higher order estimates seem to lead to

an overestimation. The performance of the different order Markov schemes is similar

when the threshold is set at the 95% quantile, although the higher-order schemes

seem to be contained within the empirical confidence bands for higher values of j.

When the critical level is increased to the 99% quantile (not shown) there are little

data available for the empirical approach and as such the 95% confidence intervals are

wide and do not provide much information. In this situation, χ̂
(k)
j (v) was compared
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against the unstructured estimate χ̂j(v) to provide a more reliable diagnostic. From

the diagnostic in Figure 4.5.2 we conclude that the third-order scheme seems to pro-

vide the most reliable estimates of χj(v) at all levels. The very high order approaches

(6 ≤ k ≤ 14) seem to be greatly overestimating the dependence.

Figure 4.5.3 shows estimates of different extremal quantities related the duration of

heatwave events for different order Markov models. We aim to identify the lowest

order for which these extremal quantities remain consistent for all higher orders. Al-

though the estimates suggest that the average number of exceedances within a cluster

is larger when a higher-order Markov chain is used, the estimates of the subasymp-

totic extremal index θ(v1) in Figure 4.5.3 seem to provide little information about

order choice. The uncertainty bounds in Figure 4.5.3 are obtained via a modified

bootstrap, used since the higher-order algorithm outlined in Appendix D is computa-

tionally intensive it is not feasible to run many bootstrap replications (i.e. 1000). We

run a reduced number of replications (here 20) to approximate the standard error for

the measure of interest and then construct symmetric confidence intervals around the

point estimate using this standard error. If the computational cost of the algorithm

could be reduced, more bootstrapped replications could be used and the diagnostic

might have more power. The use of conditional kernels here is the cause of this inef-

ficiency. We do not specifically seek to improve the efficiency of the code here, but it

is noted that this is an important direction for future work.

Along with this measure, the probability of a cluster with 2, 6 and 11 exceedances

of v1 is estimated. These estimates give probabilities for short, medium and long

events respectively and we aim to ensure that an order is chosen that can capture

each type of event sufficiently. The short and long event types coincide with the ob-

served duration of the 2003 European heatwave; two separate events of 2 and 11 days

that were observed within a four week period at Orleans in the summer of 2003. The
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Figure 4.5.2: Estimates of the threshold dependent extremal measure χj(v) using empirical ap-

proach (black) and different order Markov chains (rainbow) with v set at 90% (left) and 95% (right)

quantiles respectively. Grey shaded region corresponds to 95% confidence interval for empirical

obtained via a block bootstrap approach.
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Figure 4.5.3: Estimates of within cluster extremal quantities for different higher-order schemes

with v set at the one-year return level v1. Modified bootstrapping approach used to obtain 95%

confidence intervals (dotted). Estimates have been smoothed using loess method for clarity.
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selected quantities are estimated for the kth-order scheme where k = 1 . . . , 14. For

probabilities associated with shorter events, e.g. P(Dv1 ≥ 2 |M > v1), our diagnostic

in Figure 4.5.3 suggests that we need k ≥ 3, since a horizontal line drawn from the

central estimate at k = 3 would not intersect with the confidence intervals for higher

k. For longer events the diagnostic suggests that lower order schemes (k ≥ 1) could

be used. However, very long events are rarely observed and the behaviour of these

measures is highly uncertain for all orders.

To support the visual diagnostics in Figures 4.5.2 and 4.5.3, a hypothesis test is

constructed to test whether a kth-order dependence structure provides a significantly

better fit than a first-order approach. Under a first-order model (αj, βj) are con-

strained as αj = αj1 and βj = β1 whereas both parameters are allowed to vary for the

kth-order model. To counteract any problems associated with multiple testing, the

Bonferroni correction is used (Dunn, 1961). Tests are constructed for j = 2, . . . , 10

and as such the significance level is set at 0.05/9. All tests for which j ≥ 7 are found

to be significant at the 5% significance level. Such a test only suggests that the true

order is k ≥ 2.

Taking into account the diagnostic plots and hypothesis test we take the 3rd- and

7th-order schemes and estimate further extremal quantities for a Markov model of

these orders. In Chapter 3 we estimated the probability of an event that lasts longer

than the heatwave event in 2003 using a first-order Markov chain approach. In the

2003 event there were two events, of length 2 and 11, above the critical level v1 during

a four week period. In Chapter 3 we estimated the probability of observing at least

one event in a year that lasts at least 2 days as 0.208 (0.200, 0.216), where the 95%

confidence interval is given in parentheses; for 11 days the equivalent probability is

0.001 (1× 10−4, 0.004), equivalent to the 1000 year return level. Using the 3rd-order

Markov model yields the estimated probabilities of observing at least one event in
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a year that lasts at least 2 and 11 days as 0.196 (0.171, 0.221) and 0.002 (0, 0.004)

respectively. The equivalent probabilities for the 7th-order Markov model are 0.201

(0.179, 0.224) and 0.003 (0, 0.007) respectively. Thus it appears that the inclusion

of higher order structure does not greatly affect the probability of smaller events but

can lead to a 3-fold increase in the point estimates of the probability of very long

duration extreme events. Uncertainty estimates are again wider for the higher-order

approaches. This increase may be partially due to the use of the modified bootstrap

but also reflects the increased number of parameters to be estimated.

4.6 Discussion and conclusion

This paper provides a new framework for incorporating higher-order Markov models

for temporal dependence when modelling extreme events. Such an approach is moti-

vated by the application to heatwave events, since models under a first-order Markov

assumption do not adequately capture the prevailing conditions. For this purpose we

have developed a kth-order Markov model framework for incorporating higher-order

information using the conditional extremes approach. The new framework has ne-

cessitated new diagnostics for choosing the ‘best’ order scheme to use for extreme

events from an efficiency perspective. Our results show that using standard time se-

ries diagnostics can lead to the identification of an order Markov process that does

not adequately capture extremal features; e.g. for the extreme temperature data over

Orleans, a PACF suggests a first-order process is adequate whereas our diagnostics

suggest that a third-order process may be more appropriate. Specifically, standard

time-series diagnostics ignore more complex structure in the extremes, which if not

captured leads to an underestimation in the probability of longer and potentially dev-

astating heatwave events. One area for further work is to formalise and unify our

range of visual diagnostic methods for estimating the order of the extremal Markov

process in order to provide one best approach that could be used by decision makers
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and practitioners when faced with a similar problem.

As in Chapter 3, daily maximum temperatures have been analysed instead of looking

at the joint distribution of daily maximum and minimum temperatures. A Markov

model would still be appropriate in such a situation but a different order scheme might

be required. The effect of climate change and other large scale climatic phenomena

have not been incorporated into this paper. In Chapter 5 we illustrate how the tail

chain simulation approach with first-order dependence structure can be altered to

take into account the effect of covariates. A similar extension could be applied to the

method outlined here.



Chapter 5

Detecting changing behaviour of

heatwaves with climate change

5.1 Introduction

Heatwaves are events that are characterised by a set of hot days and nights which are

associated with a marked increase in the mortality rate (IPCC, 2012). High tempera-

tures reduce the capacity of the human body for heat loss and are likely to cause core

body temperature to exceed healthy limits (37-39oC). Most casualties in a heatwave

are caused by heat exhaustion which leads to heat stroke. Heat exhaustion increases

the blood pressure and leads to cardiovascular stress, which if not relieved results

in heat stroke, cellular damage and an increased risk of mortality (Donaldson et al.,

2003). Young and old people are particularly vulnerable during heatwave events.

Food security is also adversely affected by climatic extremes such as heatwaves (Fal-

loon and Betts, 2010). For instance the 2003 heatwave in Europe was estimated to

reduce maize yields by up to 36% in Italy (Stott et al., 2004) while the 2012 heatwave

in the USA reduced maize production by 13% in 2012 compared to the reported 2011

production (USDA, 2013). Determining future food security impacts will therefore re-

quire an understanding of how the intensity and duration characteristics of heatwaves

106
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might change. Critical thresholds (Falloon et al., 2014) are crop dependent and may

vary regionally even for the same crop (Wheeler et al. (2000), Koehler et al. (2013),

Asseng et al. (2013)).

The importance of understanding how climate change will affect heatwaves is high-

lighted by the number of papers that investigate this issue, especially detection and

attribution of factors that lead to an increased risk of extreme events. Stott et al.

(2004) give an attribution study that suggests that the 2003 European heatwave was

2-4 times more likely when including anthropogenic climate forcings as opposed to

just considering natural climate forcings. A similar study by Christidis (2005) detects

significant human influence on extremely warm nights but not for extremely warm

days. Changes in the behaviour of heatwaves can manifest themselves in different

ways; this paper focuses on how changes in the behaviour of heatwaves can be mod-

elled using extreme value theory. Within this framework climate change could cause

an increase in critical levels (such as a return level), or could affect the duration and

severity characteristics of events. If the duration and severity of heatwaves increase,

this will have an effect on mortality rates and there would be a need to mitigate for

these effects.

For this study we have daily maximum temperature values from a single grid-box

over Orleans, in central France, from 13 state of the art general circulation mod-

els (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5)

database (Taylor et al., 2012). Each of the models is forced with the RCP8.5 ‘busi-

ness as usual’ high emissions scenario for the period 2006-2090. GCMs are complex

computer simulations designed to replicate observed climate variables. Many differ-

ent climate forcings can be included (e.g. greenhouse gas emissions, cloud cover) in

a climate model run and each model will have different behaviour. Our ensemble

of GCMs is selected using available GCMs of similar resolution that give a reliable
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estimate of the variability in the climate system. We aim to detect any change in the

behaviour of heatwaves over central France for one member of this ensemble, the Met

Office’s HadGEM2-ES GCM (Martin, 2011), and then use the whole ensemble to test

whether these changes are consistent across GCMs.

Operational definitions of heatwaves are generally split into three different categories

(Koppe et al., 2004) based upon: (i) an air temperature threshold; (ii) an air temper-

ature threshold and minimum duration; (iii) indices based upon air temperature and

relative humidity; in this paper we focus on cases (i) and (ii). Abaurrea et al. (2007)

use values that exceed the 95th percentile of June-August daily maximum tempera-

tures from 1971-2000. The same critical level is used in Stefanon et al. (2012), but a

minimum duration of 4 days is introduced. Fischer and Schär (2010) use a local 90th

percentile with a minimum duration of at least 6 consecutive days. In each approach

only the exceedances of a threshold are used during the modelling process. Relative

thresholds are preferred to absolute thresholds when defining a heatwave since tem-

perature can vary by geographical location and humans are able to adapt to local

climate (Nitschke et al., 2011). Although heatwave definitions vary the importance

of estimating the duration and severity of events accurately is universally recognised.

Let {Yt} denote the time-series of daily maximum temperatures over the summer

period. The intensity of a heatwave can be modelled by fitting an extreme value

model to exceedances by a stationary series {Yt} of a high modelling threshold uY .

The most common method is to fit a generalized Pareto distribution (GPD)

P
(
Yt − uY > y | Yt > uY

)
=
(

1 + ξ̃y/σ̃uY
)−1/ξ̃
+

for y ≥ 0,

where c+ = max(c, 0) and σ̃uY > 0 and ξ̃ are the scale and shape parameters of the

GPD respectively (Coles, 2001). However under climate change {Yt} is non-stationary,

so approaches that model exceedances above a constant threshold uY can be problem-

atic since the sample of exceedances will be dominated by values from certain points
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in the time-series (for example there are likely to be more exceedances in future years

under climate change). Pre-processing (Eastoe and Tawn, 2009) can be used to obtain

a standardised time-series {Y s
t } from the original series {Yt} which is approximately

marginally stationary over all {Y s
t }. A GPD is fitted to the exceedance by {Y s

t } of

a high threshold us to obtain the scale and shape parameters (σus , ξ). Davison and

Smith (1990) explain how to incorporate covariates into an extreme value framework

by allowing the parameters of the GPD to vary as a function of covariates. As is

common in extreme value studies the standardised series is then transformed onto a

common scale, here Laplace, to give the series {Xt}.

It is important to stress the difference between marginal non-stationarity and non-

stationarity in the extremal dependence structure. Pre-processing will remove non-

stationarity in the marginal distribution, however it does not account for non-stationarity

between consecutive time points. In the framework of Markov chains, incorporating

covariates into the conditional distribution of Xt+1 | Xt will allow assessment of how

the dependence between values on successive days changes with a covariate. A pre-

vious study of the effect of covariates on dependence structure appears in Jonathan

et al. (2013) for estimating wave heights in the North Sea as a function of the wave

direction. In the heatwave problem, a change in the marginal characteristics leads to

a change in the overall strength of a heatwave whereas a change in the dependence

characteristics leads to a change in the persistence of events. Both of these factors

are important when mitigating for heatwave events.

The main aim of this paper is to provide a coherent extreme value framework for

investigating the effect that climate change will have on the behaviour of heatwave

events. Reich et al. (2014) have previously modelled heatwaves using a GPD to cap-

ture marginal characteristics and a max-stable process to model dependence in a

Bayesian hierarchical framework. Many other previous studies have focused on the
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occurrence of singular hot days and how this might vary with climate change while

ignoring changes in the persistence of events. Our approach incorporates analysis of

the former through pre-processing of the margins while providing a framework for

testing for significant changes in the latter through the conditional extremal depen-

dence approach. The pre-processing approach of Eastoe and Tawn (2009) provides a

natural framework for modelling temperature series where a constant threshold ap-

proach cannot be applied; the conditional extremal dependence approach offers a more

flexible way of estimating extremal dependence properties of Markov chains than pre-

vious methods since it covers all types of extremal dependence. In comparison, Smith

(1992) applies only for a restricted special case and the approach Bortot and Tawn

(1998) only holds over a much narrower tail region. In practice, this means that the

duration and severity of a heatwave event is permitted to change with critical level

(i.e. a heatwave exceeding the 1 year return level will have different dependence char-

acteristics than a heatwave exceeding the 50 year return level).

Section 5.2 introduces the temperature data set from the HadGEM2-ES GCM and

the pre-processing technique used to obtain a marginally stationary series. The con-

ditional extremal dependence approach is outlined and extended to include covariates

in Section 5.3. Methods for simulating clusters of extreme values to derive heatwave

properties are briefly mentioned in Section 5.4. Results for the HadGEM2-ES GCM

are given in Section 5.5 and results over the rest of the GCM ensemble are given in

Section 5.6. Discussion and conclusions are provided in Section 5.7.

5.2 Heatwave application

5.2.1 HadGEM2-ES Data

General circulation models are large scale computer simulations that aim to repli-

cate the known physical processes of the climate system. Here, we have daily maxi-
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mum temperature values for a single grid-box over Orleans, in central France, for 13

GCMs over the period 2006-2090. Since heatwaves are most likely to occur in summer

months, here defined as the 90 day period of June-August (the HadGEM2 climate

models are built upon months consisting of 30 days), these three month periods are

extracted from each year and as such summer season and yearly return levels are

equivalent. The top left plot of Figure 5.2.1 shows the HadGEM2-ES GCM tempera-

ture data represented as a time series which clearly shows marginal non-stationarity,

but within each year (summer period) values of the time-series are approximately

marginally stationary. Since data are taken from a GCM the problem of missing val-

ues is avoided for this analysis. We are going to use global mean temperature (gt), as

produced by the GCM, as a covariate through this study to capture non-stationarity

in the margins and dependence structure. The bottom right plot of Figure 5.2.1

shows the time-series of global mean temperature from HadGEM2-ES. A full analysis

is undertaken for this series in Section 5.5.

5.2.2 Pre-processing

Figure 5.2.1 shows that the data are non-stationary which poses problems when trying

to use threshold methods with a constant modelling threshold. Eastoe and Tawn

(2009) give a framework for transforming marginally non-stationary data such that

constant threshold approaches can be used. Specifically, taking the original non-

stationary time-series {Yt} the transformation

[Y
κ(gt)
t − 1]/κ(gt) = ψ(gt) + τ(gt)Y

s
t ,

yields the approximately stationary standardised sequence {Y s
t }, where (ψ(gt), τ(gt))

are location-scale parameters, κ(gt) is the Box-Cox parameter and gt is the global

mean temperature. In this paper all covariates are included in a linear manner, i.e.

κ(gt) = κ0 + κ1gt ψ(gt) = ψ0 + ψ1gt log τ(gt) = τ0 + τ1gt.
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Figure 5.2.1: Original June, July and August daily temperature data (oC) from HadGEM2-ES

GCM represented as a time-series (top left), same data on Laplace margins after pre-processing to

ensure marginal stationarity (top right), pre-processed data as a set of consecutive pairs (bottom

left) and global mean temperature taken as covariate (bottom right). Data from separate years have

been concatenated for the time-series plot to show only relevant data. As such continuity of data

from year to year is induced but not considered during modelling procedure.

Higher-order covariate relationships are possible but not investigated here. In prac-

tice the Box-Cox location-scale model may not completely capture all of the non-

stationarity in the extremes and a GPD model is fitted to the upper tail of the
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margins of the standardised series {Y s
t } such that

FY st (y) =


1− λus(gt) [1 + ξ(gt) (y − us) /σus(gt)]−1/ξ(gt)+ if y ≥ us

F̃ (y) if y < us,

(5.2.1)

where us is the modelling threshold on the part pre-processed margins (i.e. margins

that have undergone the location-scale transform but not the GPD part of the trans-

form), (σus(gt), ξ(gt)) are scale and shape parameters that depend on the covariate

such that log σus(gt) = σ0 + σ1gt (where σ0 and σ1 depend on the threshold us but

subscript is dropped for notational simplicity) and ξ(gt) = ξ, λus(gt) = 1− F̃ (us) and

F̃ (y) is the empirical cumulative distribution function of {Y s
t }nt=1. It is assumed that

non-stationarity in the body of the distribution is accounted for using the original

location-scale transform and as such the stationary empirical distribution function

is appropriate for values that fall below or equal to the modelling threshold us. To

study the extremal dependence structure it is common to transform the marginal to

a standard form. We transform Y s
t , t = 1, . . . , n onto Laplace margins as follows

Xt =


log
{

2FY st (Y s
t )
}

if Y s
t < F−1Y st

(0.5)

−log
{

2
[
1− FY st (Y s

t )
]}

if Y s
t ≥ F−1Y st

(0.5),

(5.2.2)

where FY st is given in equation (5.2.1). The top right plot in Figure 5.2.1 shows a

plot of the transformed data on Laplace margins showing an assumption of marginal

stationarity to be appropriate for {Xt}. Estimates of all the parameters for our data

set are given in Section 5.5.

5.3 Modelling temporal dependence

5.3.1 Markov modelling

To obtain estimates for the duration and severity of heatwave events it is necessary to

develop a model for the evolution of the temperature time-series. Here, supported by
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data analysis, an assumption that the time series follows a first order Markov process

is made. By the Markov property the distribution at each time step is only affected

by the state of the system at the time-step before. As such to model the extremes of

the transformed stationary time series X1, . . . , Xn it is only necessary to model the

extremes of pairs (Xt, Xt+1) for t = 1, . . . , n− 1.

As mentioned in Section 5.1, different methods for modelling bivariate data have been

presented. Broadly these methods are split into two categories depending on whether

heatwave characteristics change with the critical level. The category is determined by

the value of χ where

χ = lim
x→∞

P(Xt+1 > x | Xt > x).

When χ = 0 the variables (Xt, Xt+1) are said to be asymptotically independent and

χ > 0 defines asymptotic dependence. The assumption of a dependence structure that

is asymptotically dependent leads to heatwave characteristics that are independent of

the critical level. The joint tail approach outlined in Smith et al. (1997) uses a bivari-

ate extreme value distribution with a parametric dependence structure to model the

extremal dependence of (Xt, Xt+1). That approach assumes that an asymptotically

dependent dependence structure holds which can be restrictive in many applications.

The semi-parametric conditional extremal dependence approach outlined in Heffer-

nan and Tawn (2004) allows for a richer class of dependence structures and most

importantly allows for both asymptotic dependence and asymptotic independence,

see Chapter 3 for details of how these two methods differ. The additional flexibility

of the conditional extremal dependence approach is useful for our application and as

such is used through the rest of this paper.



CHAPTER 5. EFFECTS OF CLIMATE CHANGE ON HEATWAVES 115

5.3.2 Semi-parametric stationary conditional extremal depen-

dence approach

The conditional extremal dependence approach of Heffernan and Tawn (2004) and

Heffernan and Resnick (2007) can be used to model the extremes of pairs (Xt, Xt+1)

for t = 1, . . . , n− 1. Heffernan and Tawn (2004) gave their representation for Gumbel

margins, but Keef et al. (2013) showed that a more comprehensive approach arises

for Laplace margins (equation (5.2.2)). The desire is to model (Xt, Xt+1) using the

distribution of Xt+1 given that Xt is large (defined as exceeding a high threshold).

A requirement for modelling the conditional distribution P {Xt+1 ≤ xt+1 | Xt = xt} is

that this distribution should be non-degenerate as xt → ∞ and hence xt+1 needs to

change appropriately with xt. The specification of Laplace margins ensures that the

upper and lower tails are both modelled by a symmetric distribution with exponential

tails and permits the definition of a single unified class of normalising functions such

that the conditional distribution from Heffernan and Tawn (2004) is given as

P
(

[Xt+1 − αXt]/X
β
t ≤ z,Xt − uX > x | Xt > uX

)
→ G(z) exp(−x), (5.3.1)

as uX → ∞, where uX is the modelling threshold on Laplace margins, G is a non-

degenerate distribution function, α ∈ [−1, 1] and β ∈ (−∞, 1). This form of the

normalising functions does not affect the limiting dependence model in Heffernan and

Tawn (2004) and simplifies the inference for variables which are either negatively or

weakly associated. If the variables are independent then α = β = 0 and G(z) is the

Laplace distribution function whereas α = 1 and β = 0 corresponds to the situation of

asymptotic dependence, −1 ≤ α ≤ 0 to negative extremal dependence and 0 < α < 1

or α = 0 and β > 0 corresponds to asymptotic independence with positive extremal

dependence. Thus unless α = 1 and β = 0 this representation extends the asymptotic

dependence class of Smith et al. (1997).

Modelling using the conditional extremal dependence approach requires the assump-
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tion that the limiting form of equation (5.3.1) holds exactly for all values of Xt > uX

given that uX is a sufficiently high threshold. Given this assumption it is possible to

write the form of Xt+1 given that Xt > uX as

Xt+1 = αXt +Xβ
t Zt+1,

where Zt+1 is a random variable with distribution function G and is independent of

Xt. As G does not take any simple parametric form, a false working assumption is

made as in Keef et al. (2013) that Zt+1 ∼ N(µ, γ2) and as such

Xt+1 | {Xt = x} ∼ N
(
αx+ µxβ, γ2x2β

)
for x > uX .

The working assumption permits the estimation of the set of parameters (α, β, µ, γ) by

standard likelihood approaches. At this stage the Gaussian assumption is discarded

and a non-parametric estimate of the distribution for Z is formed. Specifically, let

t1, . . . , tn
uX

be the indices of t = 1, . . . , n where xt > uX then let

ẑj = (xtj+1 − α̂xtj − µ̂x
β̂
tj)/γ̂x

β̂
tj , (5.3.2)

for j = 1, . . . , nuX , where nuX is the number data points exceeding the threshold uX .

In this way a non-parametric estimate Ĝ to the distribution function G is formed

using ẑj, j = 1, . . . , nuX .

5.3.3 Incorporating covariates

The process of incorporating covariates into the marginal parameters was highlighted

in Section 5.2.2. However for a more complete analysis of the extremal behaviour it is

necessary to ascertain whether the global temperature covariate has an effect on the

level of extremal dependence by testing if the covariate has a significant effect on the

dependence parameters. As in Jonathan et al. (2013) covariates are introduced into

the set of parameters (α, β, µ, γ) such that

tanh−1 [α(gt)] = α0 + α1gt tanh−1 [β(gt)] = β0 + β1gt

µ(gt) = µ0 + µ1gt log γ(gt) = γ0 + γ1gt.
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An inverse tanh link function is used for β(gt) as well as α(gt) in this situation since in

practice it is very unlikely that β(gt) < −1 as this corresponds to Xt+1−α(gt)Xt tend-

ing rapidly to zero for large Xt, i.e. Xt+1 is essentially deterministic given Xt. The

impact of the covariate on the dependence structure is assessed using a likelihood

ratio test. A non-parametric estimate of the distribution G is formed using equa-

tion (5.3.2) with the covariate dependent set of parameters (α(gt), β(gt), µ(gt), γ(gt))

and the resulting {Zt} are assumed to be independent and identically distributed.

5.4 Cluster behaviour estimation

With a marginally stationary time-series obtained by pre-processing techniques we

wish to estimate whether heatwave events become longer and more severe with cli-

mate change. We define a critical level, vY on original margins and vX on Laplace

margins, as some level of interest above which events are extreme. Such a level will

often be related to the T year return level and denoted vYT or vXT depending on the

margin of interest, with vYT time dependent. A cluster is defined as a set of points

which exceed the critical level vX , preceded and followed by a set amount of non-

exceedances (Smith and Weissman, 1994). The common measure linked to clusters

is the threshold dependent extremal index θ(vX) (Leadbetter, 1983), defined as the

reciprocal of the average number of exceedances of vX in a cluster (the duration of

events above vX). Since we assume stationarity within years the value of θ(vX) and

θ(vY ) will be approximately equivalent. For the rest of the paper D will relate to the

duration of a heatwave event in days and S the severity in degrees Celsius (oC). There

are varying definitions of the severity of any type of extreme event (e.g. Mishra and

Singh (2010)). In this paper we shall refer to the severity of an event as the sum of

all excesses of a critical level within an event on the original temperature scale, i.e.

S =
∑
t∈C

(
Yt − vY

)
+
,
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where C is a set of values comprising a cluster. The duration of an event is defined

as the number of days above the critical level within an event, i.e.

D =
∑
t∈C

I
(
Yt − vY

)
+
,

where I(.) is the indicator function. In this study we look to estimate P(D > d |M >

η) and P(S > s | M > η); given a peak value of a cluster M is greater than some

critical value η with η ≥ vY these represent the probability of an event that has more

than d exceedances of vY or has a severity greater than s respectively.

Our approach to deriving the properties of clusters of a Markov chain is repeated

simulation of the chain in periods with exceedances of a critical value, i.e. when the

process exceeds vY , with vY ≥ uY . We adopt the approach outlined in Chapter 3,

an extension of Smith et al. (1997), called peak value chain estimation, by simulating

the cluster maximum M > vY and then simulating forwards and backwards from this

peak value using the conditional model. Estimation of the forward chain is implicit in

the approach in Section 5.3.2, estimation of the backward chain requires dependence

parameters (αb, βb, µb, γb) for Xt | Xt+1 > uX to be estimated similarly. The ap-

proach behind peak value chain estimation allows full extreme events to be simulated

permitting easy estimation of severity and duration characteristics. From the peak

value tail chain estimation approach, we obtain estimates of P(D > d | M > η) and

P(S > s | M > η) where η is some cluster maximum of interest and d and s are

critical values of duration and severity respectively. The joint probability of an event

exceeding a given duration and severity will also be evaluated.

5.5 HadGEM2-ES Results

We fit the pre-processing method and test whether the global mean temperature

covariate has a significant effect on the Box-Cox parameter and the location-scale

parameters. The log-link function is used to ensure the non-negativity of the scale
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parameter τ(gt). At each stage of the pre-processing likelihood ratio tests at the 5%

significance level are used to assess whether the covariate effect is significant. We

find that the covariate has a significant effect on the Box-Cox parameter and the

location-scale parameters. The estimates of the Box-Cox parameters are κ̂0 = 0.992

(0.040) and κ̂1 = −0.018 (6 × 10−4), where standard errors are given in parenthe-

ses. Estimates for the location-scale parameters are given as ψ̂0 = 12.512 (0.292) and

ψ̂1 = 0.037 (0.016) and τ̂0 = 2.596 (0.241) and τ̂1 = −0.082 (0.013) respectively. A

GPD(σus(gt), ξ) is fitted to the upper tail of the standardised data to assess whether

there is still any residual marginal non-stationarity in the extremes. Throughout this

study the modelling threshold us is set at the 90th percentile. The global tempera-

ture covariate does not seem to have an effect on the estimate of the rate parameter

λ̂us = 0.10 (0.007) or the shape parameter with ξ̂ = −0.250 (0.020), the effect has

been removed by the first stage of the pre-processing, but does have an effect on

the scale parameter. Estimates of the scale parameters are σ̂0 = 0.397 (0.379) and

σ̂1 = −0.071 (0.021). The estimates above from the full pre-processing method are

used to transform the non-stationary series in the top left of Figure 5.2.1 into the

transformed marginally stationary series given in the top right of Figure 5.2.1.

The marginally non-stationary nature of the time-series means that the value of a

T -level return level varies with the value of the covariate. Below, the 95% confidence

intervals given in parentheses have been obtained by bootstrapping. The critical level

associated with the 1 year return period (denoted vY1 ) is 39.5oC (38.9, 40.5) for the

global mean temperature in 2006, a value that increases by 1.8oC (1.5, 2.1) or 11.7oC

(9.7, 13.6) with an increase in the global mean temperature of 1oC or 5oC respectively.

The maximum value of the 2003 heatwave event over this region for observed values

was 39.9oC, equivalent to the 50 year return level for the observed series which shows

that the HadGEM2-ES GCM is significantly hotter than the observed series. Return

levels are obtained for the 50-year return period that increase from 43.5oC (41.4, 45.1)
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by 1.7oC (1.1, 2.1) or 11.3oC (8.6, 13.4) under the same change in the covariate, which

highlights that extreme levels change at a different rate to mean levels.

Estimates are now provided for the extremal dependence between consecutive days

using the conditional extremal dependence approach. Each approach is evaluated us-

ing the modelling threshold uX , set at the 90th percentile. We use a likelihood ratio

test to determine whether the global mean temperature covariate has a significant

effect on the key dependence parameters α and β. It is found that the data do not

exhibit any change in the dependence structure with the covariate and as such the

stationary model from Chapter 3 is used to analyse extremal dependence. Estimates

of the dependence parameters α and β are given as 0.168 (−0.503, 0.532) and 0.680

(0.496, 0.810) respectively, with bootstrapped 95% confidence intervals in parenthe-

ses. Parameter values for the backward chain are given as αb = 0.681 (0.529, 0.855)

and βb = 0.445 (0.023, 0.677) and since different pattern is detected in the dependence

parameters than for the forward chain this suggests non time-reversibility. A likeli-

hood ratio test confirms that the parameter values for both the forward and backward

chain are significantly different from (α = 1, β = 0) an (αb = 1, βb = 0) respectively,

the situation of asymptotic dependence, and as such the data exhibit asymptotic in-

dependence.

Since mean global temperature does not appear to have a significant effect on the

extremal dependence of consecutive days we estimate the probability of observing an

event with a specific duration using the stationary dependence parameters. As in

Chapter 3 we estimate three quantities: the extremal index to give an estimate of the

average behaviour of a cluster; the probability of an event whose 3 day average exceeds

the one year return level; the probability of observing an event longer than the 2003

heatwave event, i.e. where there is an event of 11 days above the 1-year return level.

We feel this triple provides information about the average heatwave event expected
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as well as giving probabilities for very severe and potentially devastating events. To

estimate all quantities described above we use the methods from Section 5.4. The

extremal index θ(vX) is given as 0.467 (0.410, 0.565) and suggests an average of just

over 2 exceedances in a cluster. An event with a 3 day average that exceeds vY1 is

given as an important quantity in terms of mortality (Pascal et al., 2013), suggesting

a potential excess mortality of up to 50% and triggering heat health warnings. The

estimate of the probability of such event happening in a year is given as 0.178 (0.175,

0.241), equivalent to an event that happens on average once every 5.6 years. Finally,

we estimate the probability of an event that lasts longer than the 2003 heatwave event

in a given year as 0.001 (2×10−4, 0.002), an event that happens on average once every

1000 years.

One extension on Chapter 3 is to consider the severity of a heatwave alongside the

duration since the non-linear nature of the marginal transformation means that the

severity of an event could increase despite there being no difference in the duration of

an event. We estimate quantiles of the distribution S |M > vY1 to see if there is any

change in the severity with an increase in the global mean temperature. At the 2006

global mean temperature level, the median of the distribution S |M > vY1 is given as

2.2oC (1.5, 3.2). An increase of 1oC in the covariate leads to a change in the median

severity of −0.1oC (−0.5, 0.2) and a 5oC increase leads to a change in the median

severity of −0.3oC (−1.7, 1.1). The respective values for the 99th quantile are 6.0oC

(4.0, 8.9) with a change of −0.2oC (−1.3, 0.6) and −0.7oC (−4.6, 3.1). The results

show that the severity of heatwaves decreases at different high quantiles, however the

confidence intervals suggest that the pattern is not certain with zero contained within

all intervals for a change in severity with climate change. It must be stressed that

since we are using a stationary extremal dependence model all these variations are

coming from the effect of the covariate on marginal parameters. Previously we ob-

served that vY1 increases by 1.84oC for a 1oC increase in the global mean temperature



CHAPTER 5. EFFECTS OF CLIMATE CHANGE ON HEATWAVES 122

which swamps any estimated change of the severity distribution relative to this level;

it is clear that marginal changes in return levels are more important than any change

induced in the severity.

5.6 Results across GCM ensemble

5.6.1 Marginal results

Time-series for the collection of 12 additional GCMs to be analysed alongside HadGEM2-

ES (Figure 5.2.1) are given in Figure 5.6.1. These particular GCMs have been chosen

for their similarity to HadGEM2-ES in terms of spatial resolution. One runs per

GCM has been used for simplicity to assess the methodology. Each GCM data set is

taken through the pre-processing steps outlined in Section 5.2.2. Global mean tem-

peratures are available for each of the GCMs and the respective values will be used

as the covariate gt. For each GCM the most general form of covariate dependence is

assumed for each of the pre-processing parameters, except for the shape parameter

ξ which is assumed to remain constant over covariates but differs over GCMs. This

ensures consistency across the models and any change in marginal parameters is di-

rectly comparable.

The change in the global mean temperatures for the period 2006-2090 range from

1-5oC across the GCMs and as such it is sensible to give results in terms of the change

in behaviour for a 1oC and 5oC increase in the global mean temperature from the

2006 level. As the global mean temperature for each GCM varies over time, pre-

senting results for a 1oC and 5oC increase is more consistent than giving values for

particular years. It is noted that not all GCMs exhibit a 5oC increase in their global

mean temperature and any results presented at this level will be extrapolations and

wider confidence bands are expected.
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Figure 5.6.1: Temperature series (oC ) for the period 2006-2090 for 12 different GCM models for

a grid box containing Orleans in central France..
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Table 5.6.1 shows the average marginal parameters for the 13 GCMs along with the

range of different values estimated from the different series. For each parameter we

also show the number of series that are identified to have a significant change with

mean global temperature and the number of series that show a positive trend. The

Box-Cox parameter κ shows the clearest trend of all the parameters with the covari-

ate being significant and negative for all GCMs. The location parameter shows an

expected increase with the covariate, a pattern that was expected due to the up-

ward trend in temperature values seen in Figure 5.6.1, although this pattern is not

replicated for all series. The scale parameter τ and the scale parameter of the GPD,

σus , both exhibit a slight decrease with an increase in the covariate and are broadly

significant, which suggests that the spread of standardised temperature values is de-

creasing. The shape parameter is negative as expected when looking at the upper tail

of temperature values.

Estimate (GCM range) Estimate (GCM range) # Sig # Pos

κ0 0.649 (−0.110, 1.001) κ1 −0.017 (−0.027, −0.009) 13 0

ψ0 7.681 (2.143, 13.201) ψ1 0.020 (−0.017, 0.146) 6 11

τ0 0.195 (−4.667, 3.479) τ1 −0.069 (−0.120, 0.007) 11 1

σ0 0.450 (−2.294, 2.935) σ1 −0.069 (−0.213, 0.106) 10 3

ξ −0.278 (−0.381, −0.182)

Table 5.6.1: Average marginal parameter estimates given across all 13 GCMs, range over models

are given in parentheses. Penultimate column shows the number of series that show a significant

change in the gradient of respective parameter with the covariate. Final column shows how many

series show a positive change in respective parameter with the covariate.

The results in Table 5.6.1 are not conclusive across GCMs, with some series showing

different behaviour to others. This result occurs for two main reasons. Firstly, each

of the GCMs exhibit different increases in the temperature over time as well as a dif-
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ferent amount of variability. As such different GCMs have a different behaviour with

the covariate. Secondly, the marginal parameters are non-orthogonal and therefore re-

porting the separate parameter values does not give the whole picture. In Table 5.6.2

we report the behaviour of certain return levels under a change in the global mean

temperature. An increase in the one and fifty year return levels can be observed for

all GCMs in the ensemble with an increase in the covariate. It is interesting to note

that a 1oC and 5oC increase in the global mean temperature can lead to a varied

increase at different return levels, confirming that an analysis of the extremes is es-

sential alongside any analysis of the average behaviour. It also seems that higher

critical levels increase at a faster rate.

g g2006 + 1 g2006 + 5

vY1 (g)− vY1 (g2006) 2.0 13.8

(1.3, 2.6) (8.0, 18.8)

vY50(g)− vY50(g2006) 2.0 14.3

(1.2, 3.6) (8.0, 26.0)

Table 5.6.2: Change in the one year (vY1 ) and 50 year (vY50) return levels from vY1 (g2006) = 39.5oC

and vY50(g2006) = 43.5oC respectively after a 1oC increase and a 5oC increase from the 2006 global

mean temperature. Results given for the average for the ensemble of GCMs with range given across

all 13 GCMs in parentheses.

5.6.2 Dependence results

Having noted the significant increase in the magnitude of return levels, we explore

whether there is any difference in the duration and severity characteristics of heatwave

events. In Section 5.5 a likelihood ratio test showed that the global temperature co-

variate had no effect on the dependence parameters for the HadGEM2-ES series and
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this pattern is observed across all GCMs within our ensemble. We repeat the analysis

of the dependence between the temperature on consecutive days from Section 5.5 for

the 13 GCMs after standardising each series to an approximately marginally station-

ary time-series. Below, average estimates for the GCM ensemble are reported with the

range over all 13 GCMs given in parentheses. The extremal dependence parameters

take the values α = 0.400 (0.168, 0.775) and β = 0.580 (0.387, 0.743). The respective

values for the backward chain dependence parameters are given as αb = 0.624 (0.472,

0.735) and βb = 0.408 (0.126, 0.590).

5.6.3 Duration and severity results

We estimate the three measures of the duration outlined in Section 5.5 for each of the

GCMs from our ensemble. We find the average extremal index to be 0.481 (0.406,

0.579), where the range across the 13 GCMs is given in parentheses. The probability

of observing at least one event in a year where the 3 day average exceeds the one year

return level is estimated as 0.177 (0.159, 0.189). The probability of at least one event

in a year lasting for 11 days above the one year level is given as 0.001 (1×10−4, 0.002).

As in Section 5.5 we also estimate whether heatwave events will become more se-

vere with an increase in global mean temperature. We generate a distribution of the

severities, S | M > v1, and quantiles of this distribution can be estimated. Below,

average estimates for the GCM ensemble are reported again with the range given in

parentheses. At the 2006 global mean temperature level, the median of the distribu-

tion S |M > v1 is given as 2.2oC (1.4, 2.8). An increase of 1oC in the covariate leads

to a change in the median severity of 0oC (−0.3, 0.5) and a 5oC increase leads to a

change in the median severity of 0.3oC (−1.1, 4.2). The respective values for the 99th

quantile are 5.9oC (3.7, 7.7) with a change of 0oC (−0.9, 1.4) and 0.8oC (−3.1, 11.4).

It is noted that 7 of the 13 members of our ensemble show a decrease in severity with

an increase in the mean global temperature, the average across the ensemble is skewed
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by the CCSM4 GCM that shows a very large increase in severity.

5.7 Discussion and Conclusion

The results in Sections 5.5 and 5.6 show that an increase in the global mean tem-

perature due to climate change is likely to change the behaviour of heatwaves. This

change has manifested itself in a significant increase in marginal quantities such as

the return level as opposed to increases in the severity and duration that are driven

by the dependence structure. One explanation behind this pattern could lie with the

data used. Each GCM used has been forced with forcings equivalent to the RCP8.5

future emissions scenario, a scenario that is based upon ‘business as usual’ with slow

development of renewable energy and increased use of fossil fuels. Figure 5.6.1 shows

that each GCM has a distinct upward trend, borne out by the increase in return levels

with increased global mean temperature. With such a large increase, any changes in

the dependence structure might be getting hidden. Also, the use of GCM data might

be a barrier to obtaining any significant results for what might be subtle changes in

the dependence structure. For further work it would be interesting to investigate data

for different climate scenarios and on different spatial scales to see if changes in the

dependence structure become more important.

The assumption that the temperature time-series follows a first order Markov process

has been made to permit the modelling process outlined in the paper. In Chapter 3

we suggested that using such a model might ignore subtleties in higher order depen-

dence for the extreme temperature process. Making an assumption of higher order

Markov processes has not been considered in this paper, but the extension to higher

order Markov processes is given in Chapter 4 and this could be extended to incor-

porate covariate structure. Alternatively no Markov structure assumptions could be

made, e.g. as in Eastoe and Tawn (2012), but this comes at the cost of large num-
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bers of parameters and a high dimensional non-parametric distribution G to estimate.

In this paper global mean temperature has been used as a covariate that indicates

a change in the climate; a choice that is often used in reports such as IPCC (2000).

Victor and Kennel (2014) suggest that the global mean temperature alone might not

be the best way of measuring the level of climate change and put forward a set of

measures that include greenhouse gas concentrations and ocean heat content. We note

here that the framework developed in the paper could be extended to incorporate any

such covariates of interest.



Chapter 6

Modelling the effect of ENSO on

extreme temperatures over

Australia

6.1 Introduction

The 2009 heatwave event was one of the most extreme to hit south-eastern Australia.

Melbourne recorded its highest temperature, since records began in 1859, at 46.4oC

and Adelaide its third highest temperature over the same observational period at

45.7oC. In total there were 374 heat related deaths with over 2,000 people treated

for heat related illness. A particular challenge when modelling any environmental

process across Australia is the spatial distribution of the population and agricultural

activity across the country. Four of the five largest cities are located on the coast

in the south-eastern region and most agriculture occurs in the south-eastern region.

A hot event occurring over this region will lead to increased mortality and potential

economic losses. As such, for mitigation purposes, it is necessary to be able to give

accurate estimates of the risk posed by high temperatures over specific regions of inter-

est. Extreme value theory provides a statistical framework for modelling rare events.

129
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To model this problem sufficiently using extreme value statistics we require not only

a univariate extreme value model that focuses on very high temperatures, but also a

flexible model that accurately captures the spatial dependence between different sites.

There is much interest in how certain large-scale climatic phenomena will affect ex-

treme events; both currently and under future climate change. One particular phe-

nomenon known to affect the climate of Australia is the El Niño-Southern Oscillation

(ENSO). It is a large-scale naturally occurring fluctuation in sea surface tempera-

tures (SSTs) in the equatorial Pacific. Two limiting cases, corresponding to higher

and lower SSTs in the equatorial Pacific Ocean, are called El Niño and La Niña re-

spectively. During El Niño conditions, weaker easterly trade winds blowing across

the Pacific can cause warm surface water to flow eastwards. This leads to increased

convection in the central Pacific and reduces the amount of precipitation over Aus-

tralia and other countries in southern Asia. In contrast, during La Niña conditions

stronger trade winds blow warmer surface water to the west Pacific and cooler SSTs

are observed in central and eastern Pacific regions (Wang and Picaut, 2004).

There is a clear consensus that large-scale climatic modes have an effect on the tem-

peratures observed over Australia (Kenyon and Hegerl, 2008). El Niño conditions will

lead to increased temperatures over eastern and northern regions of Australia whereas

during La Niña conditions the opposite will be true. Strong El Niño conditions do

not guarantee higher temperatures and patterns are not uniform across space. The

2009 heatwave event over south-eastern Australia occurred during a moderate La

Niña event. The event covered a large area and as such had a great impact leading

to record temperatures in certain places; this was not a uniform pattern across the

whole of Australia with some regions affected by only moderate heat.

Many studies have attempted to quantify the effect of ENSO and other large scale
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climatic modes of variability on temperatures and precipitation. The effect of ENSO

on mean global temperatures has been well studied, see Kenyon and Hegerl (2008).

The impact of ENSO on temperature extremes is less well studied. From a global per-

spective, Kenyon and Hegerl (2008) and Alexander et al. (2009) show that ENSO has

a significant effect on temperature extremes around the Pacific Rim and over the US

and also note that many other large climatic nodes (e.g. Pacific Decadal Oscillation

and Northern Atlantic Oscillation) have a significant effect on extreme temperatures

in different parts of the globe. However, no explicit modelling using statistical extreme

value methods is undertaken, with most results being empirical and only related to

observed levels.

Looking at Australia specifically, Perkins and Alexander (2013) review the occur-

rence of heatwaves for a selection of different heatwave indices. Min et al. (2013) use

extreme value theory to estimate the effects of ENSO, the Indian Ocean Dipole and

the Southern Annular Mode on seasonal temperatures over Australia. They use a

GEV distribution with covariates in the location and scale parameters. Alexander

and Arblaster (2009) analyse the change in different climatic extremes over Australia,

including extreme temperatures, alluding to the potential effect that ENSO could

have on these climatic extremes. None of these papers explicitly model spatial depen-

dence, deriving spatial patterns by mapping univariate results obtained at multiple

sites. Therefore, these approaches cannot be used to estimate the probability of heat-

wave events occurring at multiple sites over space.

The aim of this study is to develop a better understanding of whether ENSO has

an effect on extreme temperatures over Australia. As such we analyse the effect of

ENSO not only on temperatures at singular sites but also on the spatial extent of

extreme temperature events. To investigate this we have gridded daily maximum

temperatures for the years 1957-2011. Heatwave events are most commonly charac-
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terised in terms of hot temperatures that impact a certain area and last for many days.

Figure 6.1.1 shows spatial cross-correlation functions for Australia when conditioning

on the grid square that contains Melbourne. On the left the cross-correlation between

Melbourne and all other grid boxes at time lag 0 is given and on the right we show

the difference in the cross-correlation at the time lag at which the maximum cross-

correlation is obtained and the cross-correlation at time lag 0. Figure 6.1.1 shows

little difference between the spatial structure over south-eastern Australia when con-

sidering lags other than lag 0. For simplicity, during this analysis we ignore the effect

of temporal dependence to focus on the impact of ENSO on spatial dependence. It

is noted that this may lead to confidence intervals that are too tight and significant

hypothesis tests may not be completely correct. To correct for this we could use

sandwich estimators or use a block bootstrap procedure taking the whole spatial grid

for blocks of time; see Chapter 7 for initial work on building a full space-time model.

We have found no studies that consider the effect of ENSO on the spatial extent of

extreme temperatures, using a statistical framework based upon extreme value the-

ory. Many statistical approaches explicitly analyse the spatial extent of environmental

processes. The broad area of geostatistics provides the most basic approaches for spa-

tial modelling, but these tend to focus on the main body of data and as such can

lead to misleading results when analysing rare events such as extreme temperatures.

From the area of extreme value theory the most popular approach to spatial mod-

elling is to fit a max-stable process. A max-stable process arises as a limiting process

derived by taking componentwise maxima pointwise over independent and identically

distributed replicates. Early examples of these are given in Smith (1990), Coles (1993)

and Schlather (2002); a thorough review of such techniques is given in Davison et al.

(2012). Max-stable models are widely used since they are a flexible class of mod-

els which can be fitted at multiple sites and used to estimate values at other sites

across a spatial field. However max-stable models are often computationally intensive
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Figure 6.1.1: Conditioning on grid square that contains Melbourne: the lag 0 spatial cross-

correlation function (left) and the difference between the maximum value of the cross-correlation

function taking into account a 20 day window and value of the lag 0 cross-correlation function

(right). Data are daily maximum temperatures across Australia for the years 1957-2011. Numbers

in squares represent the lag value at which the maximum cross-correlation occurs; a blank square

represents lag 0.

to fit (Davison et al., 2012) and difficult to conditionally simulate from (Wang and

Stoev (2011); Dombry et al. (2013)).

One important concept in extreme value theory concerns the measure,

χ = lim
p→1

P(F2(Y2) > p | F1(Y1) > p), (6.1.1)

where Y1 and Y2 are random variables with distribution functions F1 and F2 respec-

tively. In the situation where χ > 0, Y1 and Y2 are asymptotically dependent, i.e.

the conditional probability of concurrent extremes in Y1 and Y2 has some non-zero

probability in the limit. The variables Y1 and Y2 are asymptotically independent when

χ = 0. Max-stable processes are restricted to the case of asymptotic dependence, a

restriction that can lead to incorrect inferences if the data exhibit asymptotic inde-

pendence. Max-stable approaches model the behaviour of componentwise maxima

across a space. Since they are often used to model annual maxima, it is possible that



CHAPTER 6. EFFECT OF ENSO ON EXTREME TEMPERATURES 134

when modelling using a max-stable approach the spatial pattern could be driven by

separate events occurring within a given block of time (e.g. a year).

To accurately model extremal dependence we build a flexible multivariate model based

upon the conditional extremes approach (Heffernan and Tawn, 2004), that fully takes

into account spatial dependence on a lattice within the framework of extreme value

theory. The conditional extremes model leads to a class of multivariate distributions

that allow for asymptotic dependence and asymptotic independence. Since asymp-

totically independent forms are permitted, the conditional extremes approach covers

the class of Gaussian processes (Ledford and Tawn, 1996); this is not the case for

max-stable processes. The estimation of the dependence structure is driven by the

observed data and does not require the more restrictive asymptotic dependence class

to be chosen in advance. Most importantly the conditional extremes framework per-

mits the estimation of not only extremes at singular sites, but also how ENSO affects

the spatial extent of a hot event.

To analyse the effect of ENSO on extreme temperatures we shall estimate not only

the change in return levels and other marginal quantities at singular sites, but also

introduce a collection of new spatial risk measures. At singular sites many measures

exist to quantify the effect of heat on mortality and other factors; see Alexander and

Arblaster (2009) and Chapter 3. Let Y = (Y1, . . . , Yl) be the daily maximum temper-

atures at l sites, often we denote this as belonging to the set of all sites S such that

|S| = l. A commonly used measure is the extremal dependence measure (Coles et al.,

1999), the sub-asymptotic form of equation (6.1.1), which is given as

χs′|s(p) = P (Fs′(Ys′) > p | Fs(Ys) > p) , (6.1.2)

where s and s′ are two different sites from the set S and p is some high critical level,

i.e. p is close to one, often taken to be the non-exceedance probability associated to

a critical return level. This measure only describes the dependence between pairs of
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sites and does not represent an adequate measure of the spatial risk. We find that

a summary measure, often used in the analysis of droughts, called the severity-area-

frequency (SAF) curve (Henriques and Santos, 1999) provides a more informative

measure for spatial risk. To construct a SAF curve over the region S, elements of

(F1(Y1), . . . , Fl(Yl)) are ordered from largest to smallest. Defining a set of ordered

random variables
(
F(1)

(
Y(1)
)
, . . . , F(l)

(
Y(l)
))

where F(1)

(
Y(1)
)
≥ · · · ≥ F(l)

(
Y(l)
)
, the

SAF curve {j, γj; j = 1, . . . , l} is given by

γj =
1

j

j∑
i=1

[
1− F(i)

(
Y(i)
)]−1

. (6.1.3)

The measure permits spatial information to be compressed into a single curve that

is easily interpretable by climate scientists. Broadly, γj gives the average marginal

return period of an event at the j worst affected sites. Figure 6.1.2 shows these curves

for the day with the most extreme temperature during the 2009 heatwave event, with

marginal and dependence structures both fixed and changing with ENSO. By fixing

the maximum value at the observed value we have simulated replicate days under the

conditional extremes model and a model that is restricted to asymptotic dependence,

showing the mean and 95% confidence intervals for γj; for details of these models see

Section 6.3. The model that allows for asymptotic independence provides a better

fit to the observed curve, especially when using a non-stationary model to account

for the effect of ENSO; for more details see Section 6.6. This highlights the need to

account for asymptotic independence and ENSO in the spatial dependence structure.

Measures closely linked to equation (6.1.2) are also introduced to better understand

other features of spatial dependence. One important measure is the expected number

of concurrently extreme sites, i.e. the expected number of sites in a region, R ⊆ S,

affected by an extreme event given that at least one site in the region R is extreme.

This type of measure does not require the definition of a particular conditioning site

and as such is not as restrictive as equation (6.1.2).
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Figure 6.1.2: Severity-area-frequency (SAF) curves for hot day during the 2009 heatwave event on

a log scale; observed empirical curve (black), E(γj) under conditional extremes model (blue solid)

and E(γj) under asymptotically dependent model (red solid) using stationary model (left) and for

the non-stationary model with covariate fixed at level observed on the given day (right). Dotted

lines are 95% confidence intervals obtained from 10000 repeated simulations from each respective

model.

By analysing this suite of measures we aim to explore the spatial extent of tem-

perature extremes across Australia and see how the measures alter under a change

in ENSO conditions. We also aim to test the validity of our approach by comparing

observations from the record breaking heatwave event in 2009 to simulations of hot

days generated by our model, thus demonstrating that our model can capture these

events accurately. We then illustrate how our approach can be used to estimate ex-

tremal features for rarer events than have been previously observed.

In Section 6.2 we introduce the gridded daily maximum temperature data set we are

going to use along with the ENSO covariate. Section 6.3 presents the models for the

margins and dependence structure. A selection of measures for assessing spatial risk

are developed in Section 6.4. In Section 6.5 an approach for simulating spatial fields
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using the conditional extremes model is given. Results regarding the marginal and

dependence parameters are provided in Section 6.6 along with estimates of important

extremal measures. Finally, discussion and conclusions are given in Section 6.7.

6.2 Data

Daily maximum near-surface air temperatures for Australia are taken from HadGHCND,

a global gridded dataset (http://hadobs.metoffice.com/hadghcnd/) of quality-

controlled station observations compiled by the U.S. National Climatic Data Cen-

ter (Caesar et al., 2006). An angular distance weighting technique is used to inter-

polate observed anomalies onto a 2.5o latitude by 3.75o longitude grid which results

in 72 boxes covering Australia and spanning 1957-2011. Whilst this is a relatively

coarse resolution heatwaves are large meteorological phenomena and surface air tem-

peratures have long correlation length scales, for which Caesar et al. (2006) found

values of between 700km and 1400km for the 0oS to 30oS latitude band. Avila et al.

(2015) find for Austraian surface air temperatures their extremal characteristics and

their correlations with ENSO are preserved across a range of gridding resolutions from

0.25o to 2.5o. The use of such global datasets also facilitates any future comparison

with other regions. Hot days are most likely to occur in summer months, here defined

as the 90 day period from December to February (91 day period for a leap year);

these three month periods are extracted from each year. No missing data values exist

within the summer months of the years for which the data are provided.

To measure the effect of ENSO the Niño3.4 index is used. This is a measurement

of the monthly SST anomaly, with respect to the average SST for 1981-2010, in a

region bounded by 5oN to 5oS and 170oW to 120oW. Other ways of measuring ENSO

variability are available; for example the Southern Oscillation Index which is based on

atmospheric changes as opposed to changes in SSTs (Jones and Trewin, 2000). How-

http://hadobs.metoffice.com/hadghcnd/
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ever, Niño3.4 is commonly used to characterise ENSO (Kenyon and Hegerl, 2008).

Large positive values of this index indicate El Niño events, whereas large negative

values correspond to La Niña events. In this paper values of +1oC and −1oC are

used to define El Niño and La Niña events respectively. Our framework permits esti-

mates for any value of Niño3.4 that is of interest. It is noted that ENSO is a coupled

atmosphere-ocean phenomenon which has a timescale of 10-12 months; this behaviour

is well captured by a monthly index.

6.3 Modelling extreme values

Our strategy for modelling the probabilistic behaviour of extreme temperatures is

two-fold. Firstly, we model the marginal structure using a threshold based approach

at each site separately. Different approaches are available to model the effect of

a covariate on tail behaviour (Davison and Smith (1990); Northrop and Jonathan

(2011)). Here pre-processing (Eastoe and Tawn, 2009) is used to model the effect

of the ENSO covariate gt, which varies with time but not space, on temperatures

at each separate site. The pre-processing step removes covariate effects from the

body of the distribution and then residual influences of the covariates on the tails are

accounted for using the methods of Davison and Smith (1990). This approach has

close parallels with Northrop and Jonathan (2011) since the threshold for the extreme

value modelling is derived to be covariate dependent. Once the marginal structure

has been modelled, we transform the data from each site onto common margins and

model the extremal dependence structure using the conditional extremes approach.

It is noted that greater precision could be achieved by using the spatial structure at

this stage as opposed to modelling each site separately, but we do not investigate this

here.
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6.3.1 Marginal modelling

To understand the effect that ENSO phase is having on margins we use pre-processing.

Specifically, we choose to fit the location-scale model in the margins, i.e. for daily

maximum temperature Ys,t at location s and time t we have

Ys,t = ψs(gt) + τs(gt)Y
†
s,t,

for t = 1, . . . , n and s ∈ S, where (ψs(gt), τs(gt)) are the location-scale parameters,

gt is a time-varying covariate and Y †s,t is the residual. In this paper all covariates are

included linearly with an appropriate link function such that

ψs(gt) = 0ψs + 1ψsgt log τs(gt) = 0τs + 1τsgt,

with parameters 0ψs, 1ψs, 0τs and 1τs each in R. In practice the location-scale model

may not completely capture all the non-stationarity in the extremes and such a GPD

tail model is fitted, above a high threshold u†s, to the margins of the residuals Y †s,t such

that

Fs(y) =


1− λs,u†s

[
1 + ξs(gt)

(
y − u†s

)
/σs,u†s(gt)

]−1/ξs(gt)
+

if y ≥ u†s

F̃s(y) if y < u†s,

(6.3.1)

where (σs,u†s(gt), ξs(gt)) are scale and shape parameters that depend on the covariate,

λs,u†s = 1 − F̃s(u
†
s) and F̃s(y) is the empirical cumulative distribution function of

{Y †s,t}nt=1 at site s. In this paper the covariate is included into the GPD scale parameter

but the shape parameter is assumed to be constant such that

log σs,u†s(gt) = 0σs,u†s + 1σs,u†sgt ξs(gt) = ξs,

with parameters 0σs,u†s , 1σs,u†s and ξs each in R. It is assumed that temporal non-

stationarity in the body of the distribution is accounted for by the original location-

scale transform and as such the stationary empirical distribution function is appro-

priate for values that fall below the modelling threshold u†s.
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6.3.2 Dependence modelling

The conditional extremes method of Heffernan and Tawn (2004) is used here to model

extremal dependence. Using the methods outlined in Section 6.3.1 data are trans-

formed onto common margins. The transformation onto common margins simplifies

the estimation of extremal dependence quantities. This is especially important in the

spatial problems encountered here since we are interested whether different sites have

rare values simultaneously irrespective of the value of these rare values on the original

temperature scale. Modelling using the conditional extremes approach is simplified if

the choice of common margin is assumed to be Laplace distributed (Keef et al., 2013),

i.e.

Xs,t =


log
{

2Fs(Y
†
s,t)
}

if Fs(Y
†
s,t) < 1/2

−log
{

2
[
1− Fs(Y †s,t)

]}
if Fs(Y

†
s,t) ≥ 1/2,

where Fs is given in equation (6.3.1), as the margins have exponential upper and lower

tails which ensures models for positive and negative dependence are symmetric.

Let Xt = (X1,t, . . . , Xl,t), where l is the number of sites in the region S, and de-

fine X−s,t as all the components of the vector Xt without Xs,t, i.e. Xs,t = (Xs,t,X−s,t)

and in what follows all vector calculations are to be interpreted as componentwise.

The aim is to model the distribution of X−s,t given that Xs,t exceeds some high thresh-

old u. It is necessary that the conditional distribution P {X−s,t ≤ x−s,t | Xs,t = xs,t}

is non-degenerate as xs,t → ∞ and hence normalising sequences are required to

ensure x−s,t changes appropriately with xs,t. Heffernan and Tawn (2004), Heffer-

nan and Resnick (2007) and Keef et al. (2013) show that under broad conditions

there exists α−s,t = (α1|s,t, . . . , αs−1|s,t, αs+1|s,t, . . . , αl|s,t) ∈ [−1, 1]l−1 and β−s,t =

(β1|s,t, . . . , βs−1|s,t, βs+1|s,t, . . . , βl|s,t) ∈ (−∞, 1)l−1 such that for z ∈ Rl−1 and x > 0

P

(
X−s,t −α−s,tXs,t

X
β−s,t
s,t

≤ z, Xs,t − u > x | Xs,t > u

)
→ G−s,t(z) exp(−x), (6.3.2)
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as u → ∞ where G−s,t is a time-varying (l − 1)-dimensional distribution function,

non-degenerate in each margin, i.e. for j ∈ S\{s} the jth margin G
(j)
−s,t of G−s,t is

non-degenerate. Different values of the dependence parameters α−s,t and β−s,t arise

for different types of tail dependence. If the variables (Xs,t, Xj,t) are independent,

αj|s,t = βj|s,t = 0 and G
(j)
−s,t is the Laplace distribution function, for j ∈ S\{s}. On the

other hand for (Xs,t, Xj,t), αj|s,t = 1 and βj|s,t = 0, for j ∈ S\{s}, corresponds to the

situation of asymptotic dependence, −1 ≤ αj|s,t ≤ 0 to negative extremal dependence

and 0 < αj|s,t < 1 or αj|s,t = 0 and βj|s,t > 0 corresponds to asymptotic independence

with positive extremal dependence. Here, a time-varying covariate gt is introduced

into the dependence parameters such that

tanh−1 [α−s,t] = 0α−s + 1α−sgt tanh−1 [β−s,t] = 0β−s + 1β−sgt, (6.3.3)

with parameters 0α−s, 1α−s, 0β−s and 1β−s each in Rl−1. The inverse tanh link

function is used to ensure the parameters α−s,t and β−s,t are restricted to the range

[−1, 1]l−1. The restriction on β−s,t is satisfactory since in practice it is very unlikely

that βj|s,t < −1, for j ∈ S\{s}, as this corresponds to X−s,t−α−s,tXs,t tending rapidly

to zero for large Xs,t, i.e. X−s,t is essentially deterministic given large Xs,t.

Modelling using the conditional extremes approach requires the assumption that the

limiting form of equation (6.3.2) holds exactly for all values of Xs,t > u given that

u is a sufficiently high threshold, from now on called the modelling threshold. From

equation (6.3.2) we have our model for Xs,t > u that

X−s,t = α−s,tXs,t +X
β−s,t
s,t Z−s,t,

where Z−s,t = (Z1|s,t, . . . , Zs−1|s,t, Zs+1|s,t, . . . , Zl|s,t) is a random variable with distri-

bution function G−s,t that is independent of Xs,t.

The multivariate distribution G−s,t does not take any simple parametric form, which

motivates the inclusion of a false working assumption of Gaussianity as in Keef et al.
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(2013) solely for the estimation of αj|s,t and βj|s,t with j 6= s. That is Zj|s,t ∼

N(µj|s,t, θ
2
j|s,t) and as such for each j ∈ S\{s}

Xj,t | {Xs,t = x} ∼ N
(
αj|s,tx+ µj|s,tx

βj|s,t , θ2j|s,tx
2βj|s,t

)
for x > u.

The working assumption permits the estimation of parameters (αj|s,t, βj|s,t, µj|s,t, θj|s,t)

by standard likelihood approaches. Each element of α−s,t and β−s,t is estimated

pairwise for a particular s ∈ S. When considering covariate effects, covariates will be

included in the nuisance parameters such that

µ−s,t = 0µ−s + 1µ−sgt log θ−s,t = 0θ−s + 1θ−sgt, (6.3.4)

where

µ−s,t = (µ1|s,t, . . . , µs−1|s,t, µs+1|s,t, . . . , µl|s,t)

θ−s,t = (θ1|s,t, . . . , θs−1|s,t, θs+1|s,t, . . . , θl|s,t),

with parameters 0µ−s, 1µ−s, 0θ−s and 1θ−s each in Rl−1. At this stage the Gaussian

assumption is discarded and a non-parametric estimate of the distribution for Z−s,t

is formed. To ensure stationarity we define a new non time-varying multivariate

distribution G−s defined as

G−s(z) = G−s,t

(
z− µ−s,t
θ−s,t

)
.

Specifically, where nu is the number data points exceeding the threshold u, let t1, . . . , tnu

be the indices of t = 1, . . . , n where xs,t > u then let

ẑ−s,i =
x−s,ti − α̂−s,tixs,ti − µ̂−s,ti (xs,ti)

β̂−s,ti

θ̂−s,ti (xs,ti)
β̂−s,ti

, (6.3.5)

for i = 1, . . . , nu. In this way the empirical distribution of sample ẑ−s,i provides a

non-parametric estimate, G̃−s, to the distribution function G−s for conditioning site

s.
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6.4 Summarising spatial dependence

To analyse the spatial behaviour of hot events, we require measures that can ade-

quately capture spatial characteristics. In this section we set up the measures that

are used for the rest of this chapter, most of which have not previously been used.

By using a selection of different measures, we aim to fully characterise extremal de-

pendence and any changes in spatial structure that may occur due to a change in

ENSO. A common measure of extremal dependence is the sub-asymptotic extremal

dependence measure χs′|s(p), given by equation (6.1.2), for two sites s and s′ at a

critical level p. If s = s′ then χs′|s(p) = 1. In a spatial context, this measure is used

by fixing s at a conditioning site and estimating the quantity in equation (6.1.2) for

all other sites s′ ∈ S.

One issue with using χs′|s(p) is that the measure only estimates bivariate dependence

and therefore does not give information about the occurrence of concurrent extremes

at more than two sites at a time. To overcome this we propose a new measure of the

expected number of grid boxes that exceed a critical level given that Ys exceeds the

same critical level. Since we are only modelling spatial dependence the subscript t is

dropped from our notation from now on. Define the distribution function F P
j , for the

jth margin, that incorporates all steps of the pre-processing outlined in Section 6.3.1.

Let the region of interest be denoted R, R ⊆ S and NR(p) = #
{
j ∈ R : F P

j (Yj) > p
}

gives the number of variables that concurrently exceed the probability level p, where

p is a critical level. We are interested in the distribution NR(p) | F P
s (Ys) > p for some

conditioning site s. A convenient summary measure of this conditional distribution

is given by the expected number of sites in the region R that exceed p given that

F P
s (Ys) > p, i.e.

φR|s(p) = E(NR(p) | F P
s (Ys) > p). (6.4.1)

The measure defined in equation (6.4.1) better takes into account the spatial structure
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of extreme temperature events than χs′|s(p). However, such a measure still requires

a particular conditioning site to be defined prior to estimation. In practice assuming

that a hot event must strike a particular site is restrictive. We propose a new measure

of the probability of an exceedance of a critical level in a region R
′

given that there

is an exceedance somewhere within a critical region R, i.e.

ωR′ |R(p) = P(NR′ (p) ≥ 1 | NR(p) ≥ 1),

for some region R
′ ⊆ S. Commonly we are interested in sets of the form R

′ ⊂ R;

but other forms such as R
′ ∩ R = ∅ can be considered if these are of interest. A

special case of this measure occurs where R
′

= {s} which gives the probability of an

exceedance at site s given that there is an exceedance somewhere in the region R.

We propose a different set of new measures that are based upon severity-area-frequency

(SAF) curves (Henriques and Santos, 1999). These curves originate from hydrology

and are used to compress complicated spatial information into a curve that can be

used to estimate the expected severity of an event covering a particular spatial extent.

In the hydrology context, SAF curves are given on the probability scale, i.e. F P
s (Ys),

and a slightly modified version of this approach is used here. The SAF curve γj,

given by equation (6.1.3), is the average return period of an event over the j worst

affected sites within S. Similar curves can be constructed on the original temperature

margins, i.e. for Ys, but these are not used here. SAF curves can be used for model

checking and as a validation tool. Here, we look to extend their usage by introducing

a new measure

ρj = P
(
γj > γobs

j

)
,

for j = 1, . . . , l, where γobs
j is the SAF curve derived for an observed event such

as 2009 heatwave event. This measure gives the probability of the average return

period for the j largest values being higher than for an observed event. This measure
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provides vital information about the probability of observing an extreme temperature

event more severe than previous damaging observed events.

6.5 Simulating spatial fields

To estimate the measures of spatial dependence introduced in Section 6.4 we need

to be able to simulate spatial gridded fields from our fitted model outlined in Sec-

tion 6.3. Heffernan and Tawn (2004) and Keef et al. (2013) give simulation schemes

for the conditional extremes approach conditional upon an exceedance in the condi-

tioning variable (site). These schemes are adequate to obtain estimates of χs′|s(p) and

φR|s(p) and they form the basis of the simulation scheme outlined here. Estimation of

measures that condition upon an exceedance within a region require a more involved

algorithm for generating simulated spatial gridded fields. The use of SAF curves for

model validation also requires conditions on the value that the peak value of an event

takes.

The simplest method for simulating spatial fields is used when estimating χs′|s(p)

and φR|s(p). When estimating these measures we fix a site of interest s. To simulate

a spatial field, for a particular covariate of interest gt and site s being the maximum,

we follow the following steps:

1. Sample z̃∗−s from G̃−s, i.e. the empirical distribution of the sample in equa-

tion (6.3.5).

2. Obtain z∗−s = µ∗−s + θ∗−sz̃
∗
−s where µ∗−s = µ−s,t and θ∗−s = θ−s,t from equa-

tion (6.3.4).

3. Simulate exceedance X∗s > v as the sum of v and a unit Exponential random

variable.
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4. Obtain spatial field X∗−s = α∗−sX
∗
s + (X∗s )β

∗
−s z∗−s, where α∗−s = α−s,t and β∗−s =

β−s,t from equation (6.3.3).

5. If max
(
X∗−s

)
> X∗s reject spatial field X∗−s and repeat steps 1-4 for the selected

s until the simulated field is not rejected.

To estimate extremal measures of interest, steps 1-4 are repeated m times to obtain

m spatial fields with the desired extremal dependence characteristics, X∗1, . . . ,X
∗
m,

where X∗i = (X i
1, . . . , X

i
l ) for i = 1, . . . ,m, and all fields have Xs > v. For a site of

interest s′ ∈ S we have

χ̂s′|s(p) =
1

m

m∑
i=1

I
(
X i
s′
> vp

)
,

where I(·) is the indicator function and vp = − log{2(1 − p)} is the critical level on

Laplace scale associated to the non-exceedance probability p. The measure φR|s(p)

can also be estimated for a region R by

φ̂R|s(p) =
1

m

m∑
i=1

∑
j∈R

I
(
X i
j > vp

)
. (6.5.1)

To estimate ωR′ |R(p) extensions to the simulation scheme outlined above are required

since we are interested in events that are hot for at least one site over a region R,

rather than just at a fixed site. Figure 6.5.1 illustrates an issue if we repeat the fixed

site simulation scheme at each site separately; we tend to simulate too many points

in the joint tail.

Our strategy for this simulation is as follows. We require an exceedance of vp by

at least one site in R, i.e. NR(p) ≥ 1. We select a site that exceeds vp by picking it

to be the largest value, i.e. Xj = maxi∈R(Xi). The probability that site j is largest

over R, given NR(p) > vp, varies with j due to the changing dependence structure;

we denote this probability by qj, with

qj = P

(
Xj = max

i∈R
(Xi) | NR(p) ≥ 1

)
. (6.5.2)
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Once this site has been selected, we then generate X−j such that Xj = maxi∈R(Xi).

Then we assess whether maxi∈R′(Xi) > vp. Repeated simulation enables us to derive

a Monte Carlo estimate of ωR′|R(p).

To estimate qj we could simply use an empirical estimate of equation (6.5.2). How-

ever, if p is small this approach fails. A better approach is to use our fitted conditional

model. Under the conditional extremes model we simulate mR exceedances of vp, X
i
j

for i = 1 . . . ,mR with X i
j > vp, then use steps 1-4 to calculate the proportion of times,

q̂j, that Xj = maxi∈R(Xi), i.e.

q̂j =
1

mR

mR∑
i=1

I
(
X i
j > max

(
Xi
−j
))

for j ∈ R,

where Xi
−j = (X i

1, . . . , X
i
j−1, X

i
j+1, . . . , X

i
l ). To simulate the ith replicate event with

the required structure, site si ∈ R is selected with probability q̂j and steps 1-5 above

are applied with s = si. By repeating this simulation approach m times to obtain

X∗1, . . . ,X
∗
m, where X∗i = (X i

1, . . . , X
i
l ) for i = 1, . . . ,m, the measure ωR′ |R(p) is

estimated in the same way as φR|s(p) in equation (6.5.1), i.e.

ω̂R′ |R(p) =
1

m

m∑
i=1

∑
j∈R

I
(
X i
j > vp

)
.

To use SAF curves for validation, we wish to simulate replicate events that have sim-

ilar characteristics to a particular event of interest (e.g. the 2009 heatwave event). To

do this we fix the maximum at the peak value observed during the event and fix the

corresponding site that the maxima occurred and see whether out model can replicate

similar behaviour to the observed event. The simulation scheme under a fixed maxi-

mum value and site follows steps 1-5 from the algorithm above but step 3 changes to

X∗s = η, where η is the peak value of an event. This procedure is repeated m times to

generate multiple realisations of the spatial field which give m different SAF curves

(γ1j , . . . , γ
m
j ) for j = 1, . . . , l.
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Figure 6.5.1: Bivariate data simulated using the conditional extremes approach without rejection

step (left) and with rejection step (right) included to ensure that the joint extremal region is not

over-sampled. Simulated data from conditional extremes method fitted to X2 | X1 > u (black circles)

and to X1 | X2 > u (blue crosses), with critical levels at the 95th quantile (red lines).

When it comes to assessing the risk of an extreme temperature event it is neces-

sary to generalise the restriction on the location and peak value of an event. For

example, we may want to know about an event where the maximum takes a certain

critical value but could occur at different sites across a region. We may also wish to

analyse events that have a larger maximum value than a specified level. To address

such issues we simulate the location of the maxima MR over R given MR = η with

probability

νi(η) =
P(X−i < η | Xi = η)P(Xi = η)∑
j∈R P(X−j < η | Xj = η)P(Xj = η)

=
P(X−i < η | Xi = η)∑
j∈R P(X−j < η | Xj = η)

,

for i ∈ R. Steps 1-5 are then followed with s = i. Estimates for νi(η), for i ∈ R,

follow directly from the conditional extremes approach. In many situations, it might

be more interesting to estimate the probability of an event with a maximum larger

than a particular value η. Instead of fixing the maxima at η we can simulate a
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maximum as the sum of η and an Exponential random variable with rate parameter

1.

6.6 Results

The extreme value framework built in Section 6.3 is now combined with the summary

measures defined in Section 6.4 to evaluate the characteristics of hot days over Aus-

tralia for the gridded observations introduced in Section 6.2. Firstly, pre-processing

is applied to the original data to model the marginal structure and transform values

onto consistent margins. Then the choice of the conditional extremes approach is

validated by comparing against other extreme value approaches that do not account

for asymptotic independence. Finally, the measures in Section 6.4 are estimated and

variability between the spatial extent of hot events under El Niño and La Niña condi-

tions is estimated. This culminates in estimating whether the framework can replicate

similar events to the 2009 heatwave event over Australia and whether this event was

more likely under the observed phase of ENSO.

6.6.1 Marginal structure

In Section 6.3.1 we outlined the pre-processing approach which is now used to esti-

mate whether SSTs over the eastern tropical Pacific Ocean have an effect on marginal

quantities such as the return level of an extreme event. The covariate used to sum-

marise the effect of SST on temperatures is Niño3.4 as introduced in Section 6.2. At

each separate site the effect of ENSO on all parameters within the pre-processing ap-

proach is assessed using likelihood ratio tests. The desire is to use the simplest model

that we can whilst not ignoring any potential covariate effects. The pre-processing

scheme takes the form of a location-scale transformation and then an adjustment of

the extremes using a threshold exceedance model. Figure 6.6.1 gives plots of the

pre-processing parameters, with shaded boxes indicating sites where the particular
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parameter of interest does not exhibit any significant change with the ENSO covari-

ate (at the 5% significance level). On the right hand plots of Figure 6.6.1 red boxes

show an increase in parameter values with an increase in Niño3.4 from -1oC to +1oC.

The top row gives estimates of the location parameters (0ψs, 1ψs); warmer tempera-

tures are observed as expected in northern and central regions of Australia with cooler

coastal areas. An increase in Niño3.4 (i.e. moving towards El Niño conditions) causes

an increase in the location parameter over the most of Australia, with the largest

increases in eastern and western regions. For the scale parameter τs(gt), the largest

changes seem to be over western regions where El Niño conditions reduce temperature

variability.

For each parameter we investigate for how many grid boxes the covariate is significant

using likelihood ratio tests for each site at the 5% significance level. A decision is then

made as to whether the covariate effect is included in the final model. Figure 6.6.1

shows that out of a total of 72 grid boxes, 64 show a significant change in the location

parameter with the ENSO covariate. This clear signal is not fully repeated by the

scale parameter τs(gt) which shows a significant change in 29 grid boxes out of 72.

Although the result of the scale parameter is less significant we keep both covariate

effects for all grid squares as we desire to have the same covariate structure incorpo-

rated in each parameter for all grid boxes.

Estimates of the GPD scale and shape parameters are given in the bottom row of

Figures 6.6.1 and 6.6.2 respectively. Standard diagnostics (Coles, 2001) are run at

each site separately which suggest the 90% quantile at each site is an appropriate

threshold choice. As outlined in Section 6.3.1, the aim of this step is to take the ap-

proximately stationary time-series and ensure that the extremes are fully stationary.

As observed in Figure 6.6.1, the previous pre-processing steps have taken account

of location-scale non-stationarity in the body of the distribution at most grid boxes.
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Figure 6.6.1: Estimates of pre-processing location and scale parameters (0ψs, 1ψs) (top) and

(0τs, 1τs) (middle) and GPD scale parameters (0σs,u†s , 1σs,u†s) (bottom). Shaded squares correspond

to boxes where the change with covariate is not significant at the 95% confidence level, tested using

a likelihood ratio test.
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However there are some grid-boxes on the coast that show a decrease in the dispersion

of extreme values with an increase in the ENSO covariate. Since we are interested in

modelling the extremes of temperature it is also important to keep this part of the pre-

processing included. As such, we use the most general form of pre-processing outlined

in Section 6.3.1. The estimates for 1τs and 1σs,u†s show some possibility of offsetting

one another in the south-east corner. To check this we fixed the value of τs(gt) = 0τs at

all sites and re-estimate 1σs,u†s and found that the significant changes in the south-east

are still present. The changes are not brought about by an offsetting of 1τs and 1σs,u†s

and as such covariate structure should be incorporated in both parameters. The shape

parameter of the GPD is taken to be constant over time and is found to be negative at

all sites over Australia, indicating a finite upper bound to the distribution at each site.

−0.4

−0.3

−0.2

−0.1

0.0

Figure 6.6.2: Estimates of the stationary GPD shape parameter ξs.

The clearest picture of the effect of the covariate can be seen when examining return

levels after transforming onto the original scale. Figure 6.6.3 gives the one-year and

fifty-year return levels on the original margins during an El Niño event (i.e. the value

of Niño3.4 is +1oC) along with the change relative to a La Niña event (i.e. the value

of Niño3.4 is −1oC). It is observed that the central regions of Australia are hotter
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than coastal regions as expected. In terms of the change in the return levels with

a change in the phase of ENSO, at certain sites there could be a increase of up to

1oC in the one year return level between an El Niño event and a La Niña event.

From a spatial perspective, the largest increases in the temperature occur in western

and mid-eastern regions. The change in the 50-year return level is broadly similar,

however southern and some northern areas show a larger decrease in temperatures

with an increase in Niño3.4. This pattern is observed due to the covariate effect on

the GPD scale parameter shown in Figure 6.6.1.

6.6.2 Spatial dependence

We now model the spatial dependence of the transformed data and see if ENSO has

a significant effect. Throughout this analysis, where applicable the conditioning site

(denoted s∗) is chosen to be the grid-box that contains Melbourne. A similar analysis

could be followed through for other sites.

In Section 6.3.2 the conditional extremes model was outlined as the approach being

used to estimate extremal dependence quantities. We provide justification for using

this approach as opposed to other methods that can account only for asymptotic de-

pendence. Figure 6.6.4 shows estimates of the extremal dependence measure χs|s∗(v)

calculated empirically from the observed data (top), using the stationary conditional

extremes approach (centre) and using a spatial version of the non-parametric asymp-

totically dependent estimator derived in Chapter 3 (bottom), i.e. where αs|s∗ = 1 and

βs|s∗ = 0 for all s ∈ S. With v set at the 90% quantile both approaches appear to be

capturing the spatial dependence well. However at higher levels, such as the one-year

return level, the asymptotically dependent approach is overestimating the amount

of dependence across the field, especially at sites further from the conditioning site.

The conditional extremes approach permits asymptotic independence and as such can

more accurately capture the dependence observed in this data set. Figure 6.6.4 also
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Figure 6.6.3: One-year (left) and 50-year (right) return levels plotted on original margins during

El Niño conditions with SST temperature anomaly of +1oC (top) and change between return levels

for El Niño and La Niña conditions under temperature anomaly of +1oC and −1oC respectively

(bottom).

shows the decay of extremal dependence is not directly proportional to distance or

invariant to direction. This highlights that standard geostatistical approaches and

max-stable processes that are defined in terms of a consistent distance measure over

space would not be reliable here; although it is noted that anisotropic dependence

structures within geostatistics could be used in this situation.

Figure 6.6.5 gives estimates of the extremal dependence parameters α−s∗,t and β−s∗,t.
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Figure 6.6.4: Values of χs|s∗(v) with v set at 90th quantile (left) and one year return level (right)

for empirical approach (top), conditional extremes approach (centre) and non-parametric approach

that assumes asymptotic dependence (bottom). Here, the conditioning site s∗ is taken as the grid-

box that contains Melbourne. Stationary model without covariate effect has been fitted here for

dependence model assessment.
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We observe that the value of 0α̂s|s∗ is higher for sites s that are located closer to

the conditioning grid square, which is expected since sites close together are likely

to be more dependent than sites that are far apart. The change in α−s∗,t with the

covariate is shown by the estimate 1α̂s|s∗ which demonstrates an increase in extremal

dependence, as gt increases, over northern regions with a slight decrease in the east.

The estimates of 1β̂s|s∗ seem to be consistently negative across northern region. These

parameter estimates suggest that extreme temperature events that are occurring over

Melbourne are more likely to extend over northern regions of Australia during El Niño

conditions.

Drawing conclusions from the dependence parameters alone is difficult, especially

since they can trade-off against one another. It is often easier to understand how

the dependence parameters combine by estimating the extremal dependence measure

χs|s∗(v) given in equation (6.1.2). Here we set the critical level to be v = v1, where v1

is the one-year return level given a particular value of the covariate gt. In Figure 6.6.6

a map of χ̂s|s∗(v1) is given for an El Niño event along with a map of the difference in

χ̂s|s∗(v1) between El Niño and La Niña conditions. The model output suggests that

during an El Niño event, conditioning on a hot event occurring over Melbourne, the

spatial extent for a hot day over the south-east is likely to to increase over southern

coastal regions, including Adelaide, but not cover as much of the south-eastern region.

The pattern observed in Figures 6.6.5 and 6.6.6 is dependent on the choice of con-

ditioning site. To understand whether this pattern is consistent across all sites we

estimate the new quantities defined in Section 6.4. Firstly, we estimate φR|s for all

sites in Australia; results are given in Figure 6.6.7 for El Niño conditions and the

change between El Niño and La Niña conditions. Here, R is taken to be the set of

all 72 grid-boxes over Australia. It is observed that events occurring in the middle

and east of Australia seem to have a greater spatial extent than for the west side



CHAPTER 6. EFFECT OF ENSO ON EXTREME TEMPERATURES 157

0.0

0.5

1.0

se
q(

−
47

.5
, −

7.
5,

 le
ng

th
.o

ut
 =

 y
.le

ng
th

)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.4

−0.2

0.0

0.2

0.4

se
q(

−
47

.5
, −

7.
5,

 le
ng

th
.o

ut
 =

 y
.le

ng
th

)

−0.4

−0.2

0.0

0.2

0.4

Figure 6.6.5: Conditional extremes dependence parameters 0α̂s|s∗ (top left), 1α̂s|s∗ (top right),

0β̂s|s∗ (bottom left) and 1β̂s|s∗ (bottom right), conditioning on site s∗ in south-eastern region (black

hashed).

during an El Niño event. The change in φR|s between an El Niño event and a La Niña

event suggests that El Niño conditions lead to a reduction in the spatial extent of hot

days across most of Australia, i.e. La Niña conditions will lead to more widespread

hot events. Figure 6.6.7 suggests that during La Niña conditions the difference in the

spatial extent of hot days between the east and west will become more pronounced.

We also observe that results obtained conditioning upon Melbourne are typical of

coastal grid boxes in the south-eastern region.
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Figure 6.6.6: Extremal dependence measure χs′|s(v) for control site over Melbourne under El Niño

conditions gt = +1 (left) and difference between extremal dependence measures during El Niño and

La Niña (gt = −1) years (right).
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Figure 6.6.7: Estimates of φR|s across Australia under El Niño conditions (left) and the change in

estimates of φR|s between an El Niño and La Niña year.

All the measures estimated in this section so far have been conditional upon an ex-

treme temperature at a particular conditioning site. In Section 6.4 we derived the

measure ωR′ |R which gave the probability of a hot event occurring over a region R
′

conditional upon there being an exceedance over a specific region R. Here, we are

interested in estimating the probability of a hot event occurring over Melbourne (de-
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noted s∗ such that R
′

= {s∗}) given that an extreme temperature is observed some-

where over a critical region R of Australia, here defined as a set of 14 sites in the

south-eastern region. Under El Niño (La Niña) conditions we have that ω̂s∗|R = 0.20

(0.19) respectively. This result suggests that analysis based upon a single conditioning

site can give significant results that average out when multiple conditioning sites are

considered. As such it is important to be able to estimate both types of quantity for

a complete analysis.

We also estimate ρj for a critical region R∗, here taken to be 14 grid boxes in south-

eastern Australia, to give an idea of how rare an event like the 2009 heatwave event

would be under different ENSO conditions. Figure 6.6.8 shows estimates of ρj under

the observed La Niña (gt = −0.7) and El Niño (gt = 1) conditions. As mentioned

previously, 2009 was a La Niña year; the estimation of the measure for the same event

under El Niño conditions attempts to show hypothetically whether such an event

would have been likely under El Niño conditions. In the left plot, the maximum value

is taken to be greater than v1 whereas in the right plot we have fixed the rarity of the

peak value of all simulated events to coincide with the 2009 event; in both plots we

have allowed the location at which the event occurs to vary across R∗. The left plot

shows that at low j (1 ≤ j ≤ 5) under El Niño conditions the observed event would

be rarer than under La Niña conditions. As j is increased there seems to be little

difference between the different ENSO conditions. It is noted that irrespective of the

ENSO conditions, the observed event was very rare. The right plot shows the rarity

of the observed event given that the maximum is fixed at the peak of the observed

event. In this situation, at all values of j there is a difference between ENSO phases,

with the observed event much less rare if it was to occur under El Niño conditions

than for La Niña conditions.
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Figure 6.6.8: Estimates of ρj conditional upon a maximum value greater than v1 (left) and

conditional upon a maximum value fixed as the maximum obtained during the 2009 heatwave event

(right) occurring somewhere within a region of interest R∗ for observed La Niña conditions (black)

and El Niño conditions (grey). In right plot, conditioning upon fixed maximum j = 1 is omitted

since ρj = 0 for both methods.

6.7 Discussion and Conclusion

In this paper we have modelled the spatial extent of extreme temperature events over

Australia and motivated an approach for modelling gridded spatial data using the

conditional extremes approach. Within this framework we have included the ability

to account for covariates within the margins and the dependence structure which has

allowed us to understand the effect of ENSO on extreme temperatures. Our approach

has confirmed that El Niño conditions lead to higher temperatures across most of

Australia and that the increase in temperature might not be uniform at all return

levels, i.e. the effect of ENSO does not just cause a shift in the distribution of tem-

peratures.

Results regarding the change in the spatial extent of heatwaves with ENSO value

are more subtle than the changes in marginal structure and vary for different sites.
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We have shown that during La Niña conditions, a hot event over Melbourne is likely

to cover more of the south-eastern region. However, this pattern is not uniform with

Adelaide more likely to be concurrently hot under El Niño conditions. We have also es-

timated quantities that are not dependent on the choice of conditioning square, which

are vital for practical use of the presented approach. These measures have highlighted

drawbacks in current measures, particularly allowing us to identify asymptotic depen-

dence and independence, and as such need to be considered in future spatial analyses.

In particular, SAF curves, explored here for the first time within this context, are

shown to be useful for succinctly presenting complex space-time information. They

are shown to be useful for model checking and are already widely used by practition-

ers so should allow for easier dissemination of our findings. We have also used the

observations from the 2009 heatwave event to estimate whether the event would have

been more likely under El Niño or La Niña conditions. The quantities presented here

are just a subset of potential measures that could be estimated, we have outlined

a general approach for simulating spatial extreme temperature events that could be

used to generate any quantity of interest for decision makers.

The impact of climate change on the spatial distribution of extreme temperature

events has not been dealt with in this paper. This is clearly an important issue that

could be included into our framework as another covariate, see Chapter 5 for a tem-

poral framework at a single site. One problem concerns the uncertainty regarding

the effect of climate change on ENSO which is currently not well known and would

preclude a comprehensive study of the joint effects of ENSO and climate change on

extreme temperatures.

Finally, it is also noted that from a mortality perspective runs of hot temperatures

are more important than particular hot days. In Chapter 3 we show how replicate

heatwave events can be simulated using the conditional extremes framework for a sin-
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gle site and suggest some relevant measures of interest to estimate. The next step will

be to combine these temporal approaches with the spatial approaches outlined in this

paper to generate full space-time simulations on a lattice which incorporate asymp-

totic independence as well as asymptotic dependence, hence expanding on max-stable

spatio-temporal models of Davis et al. (2013) and Huser and Davison (2014).



Chapter 7

Further work and outcomes

In this chapter, we present a broad summary of concepts for two extensions to the main

body of work given in Chapters 3-6 and discuss outcomes from the thesis. The first

extension connects the purely temporal and spatial work from the previous chapters

into a coherent space-time model that can be used to model heatwave events where the

data are given on a lattice. This work can be seen as the natural ending point of the

thesis, with all models expounded up until this point special cases of this most general

model. The second extension shows how the methods outlined in the thesis could be

applied to model risks associated with droughts. Droughts occur when there is a

deficit of precipitation over a period of time; in a statistical sense the problem set-up

for droughts is very similar than for heatwaves. We explain where the methods work

well and difficulties that arise when considering droughts as opposed to heatwaves.

7.1 Space-time modelling of heatwaves

In this chapter, basic extreme value theory for the margins and dependence structure

is not repeated; for information on these models refer to previous chapters. Here,

the aim is to outline extensions to the previous modelling framework required for

a full space-time model of heatwaves on a lattice. The most important concept is

163
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the extension of the Markov assumption over space and time. To create realisations

with the desired extremal properties over space and time we need to incorporate

information from all sites at previous time-steps. This requires a higher-dimensional

dependence model than in previous sections which is discussed in Section 7.1.1. In

Section 7.1.2 extensions to the simulation approach are outlined. Many extremal

measures developed so far are unable to capture both space and time characteristics.

In Section 7.1.3 we present a discussion of how to modify these extremal measures.

Finally, we present some results from a preliminary analysis.

7.1.1 Dependence modelling and inference

Take data {XS,t} at a set of locations S that have been transformed onto Laplace mar-

gins from the original time-series {Ys,t} using the marginal transformations outlined

in previous chapters. Here, for simplicity we assume that the dependence structure is

stationary through time. When fitting the conditional extremes approach we are now

interested in the behaviour of XS,t+τ given that an extreme event has been observed

at Xs,t, where s ∈ S and τ is a time-lag. When τ = 0 the problem reduces to a purely

spatial problem, as in Chapter 6, and as such the limit form given in equation (6.3.2)

holds. For any higher time-lag τ = 1, . . . , k, the assumption is made that there exists

a single class of normalising functions such that the limiting relationship between a

site s ∈ S and all other sites in S at time-lag τ is given by

P

(
X−s,t+τ −α−s,τXs,t

X
β−s,τ
s,t

≤ z, Xs,t − u > x

∣∣∣∣∣ XS,t+1:t+τ−1 −αS|s,1:τ−1Xs,t

X
βS|s,1:τ−1

s,t

= zS,1:τ−1,

X−s,t −α−s,0Xs,t

X
β−s,0
s,t

= z−s,0, Xs,t > u

)
→ G−s,τ |S,0:τ−1(z | z−s,0, zS,1:τ−1) exp(−x),

as u → ∞ and for x > 0, where XS,t = (X−s,t, Xs,t) = (X1,t, . . . , X|S|,t) and

XS,t+1:t+τ−1 = (XS,t+1, . . . ,XS,t+τ−1), with zS,τ = (z−s,τ , zs,τ ) = (z1,τ , . . . , z|S|,τ ) and
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zS,1:τ−1 = (zS,1, . . . , zS,τ−1). Dependence parameters are given as

αS|s,1:τ−1 = (αS|s,1, . . . ,αS|s,τ−1)

βS|s,1:τ−1 = (βS|s,1, . . . ,βS|s,τ−1),

where

αS|s,τ = (α−s,τ , αs,τ ) = (α1,τ , . . . , α|S|,τ )

βS|s,τ = (β−s,τ , βs,τ ) = (β1,τ , . . . , β|S|,τ ).

Ranges and limiting cases for the dependence parameters are consistent with previous

chapters.

The approach taken to estimate the distribution function G−s,τ |S,0:τ−1 is consistent

with the approach outlined in Chapter 4 and requires an estimate of the joint density

function gS,1:τ obtained via kernel density estimation. All dependence parameters

are estimated pairwise using standard likelihood approaches, for all pairs of sites and

time-lags.

Selection of the order of Markov process to use is complicated by the space-time

nature of the problem. In univariate series, standard approaches to estimate the or-

der of the Markov process are the ACF and PACF. For multivariate problems the

cross-correlation function (CCF) is an analogue for the ACF; an analogue of the

PACF is less well defined. In Chapter 4 we outlined a suite of diagnostics to more

accurately choose the order Markov process when we are interested in tail behaviour.

In theory these approaches could be extended, however the increase in dimension of

the problem, to account for space and time, would increase the computational burden

of these diagnostics and exacerbate problems with wide uncertainty bounds caused by

having to estimate many parameters. Measures such as the sub-asymptotic extremal

dependence measure χ(v) are also less well defined over space and time; a drawback

we expand on in Section 7.1.3.
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7.1.2 Simulating heatwave events

The simulation of heatwave events using a space-time model builds upon the peak

value simulation approach set out in Chapter 3 with extensions required to take into

account temporal and spatial structures. The simulation approach for including tem-

poral structure was outlined in Chapter 4 and a similar approach for including spatial

structure was outlined in Chapter 6. First, we choose a location at which the peak

value of an event occurs, denoted s, and simulate an exceedance of critical level v > u

from a unit Exponential distribution. The location s can either be chosen in line

with observed heatwave events or simulated at random from the joint distribution of

a maxima occurring at a specific site over S. A spatial field can be simulated using

the algorithm developed in Chapter 6 and then stepped forward and backward using

a similar algorithm to Appendix D with additional dimensions added to account for

spatial structure.

The additional dimensional complexity of the problem could lead to difficulties when

simulating heatwave events. A higher-order model will often be required since events

are more likely to stay within the system longer, i.e. a meteorological event could stay

over Australia for many days longer than for a specific site within Australia. This

effect, combined with the additional spatial dimensions, will require a more compli-

cated conditional density to be estimated. The chain length m for any algorithm will

also need to be run longer to ensure a negligible probability of simulating a chain with

an exceedance at greater than lag m.

7.1.3 Extremal measures

In previous chapters we have defined measures that summarise temporal and spatial

dependence separately. To do a full space-time analysis it is necessary to obtain mea-

sures that combine both temporal and spatial information. However, these measures

are often difficult to represent and hard to visualise. Here, we give some suggestions
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on how previous measures could be extended to provide useful information.

In both temporal and spatial contexts one important and flexible measure has been

the threshold dependent extremal dependence measure. Naturally, this measure can

be easily extended in the space-time context for processes stationary in time, given as

χs′|s,τ (v) = P(Xs′,t+τ > v | Xs,t > v),

where v is the critical level on Laplace margins, τ is some time-lag and s and s′ are

two sites of interest. In Section 7.1.4 some preliminary results are given using the

measure above within the space-time context.

In Chapter 3 we outlined measures of the duration and severity of a heatwave event.

Similar measures can be defined for each site s ∈ S, given as

Dv(s) =
∑
t∈C

I(Xs,t − v),

where I(·) is the indicator function and C is a set of values constituting a cluster. This

measure of the duration can be calculated at each location separately across S and

mapped to give an idea of the duration of an event across S. An analogous measure

of the severity of an event at a particular locations is given as

Rv(s) =
∑
t∈C

(Xs,t − v)+.

Such measures do not take into account spatial structure and as such are poor for

estimating whether multiple locations are being affected by the same heatwave event

simultaneously. The suite of measures for summarising spatial dependence outlined in

Chapter 6 could also be extended to better understand the spatio-temporal behaviour

of heatwave events.
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7.1.4 Results

Figure 7.1.1 gives an illustrative result from a space-time analysis of temperatures

across Australia. The data are the gridded daily maximum temperature values that

were introduced in Chapter 6. Using the pairwise model for Xs,t+τ | Xs∗,t the extremal

dependence measure χs|s∗,τ is estimated for all s ∈ S with τ = 0, 1, 2, under El Niño

conditions (left) and the difference between El Niño and La Niña conditions (right).

The conditioning site s∗ is taken as the grid-box containing Melbourne. The plots

on the top line are the same as those given in Figure 6.6.6, i.e. where τ = 0. Under

El Niño conditions the plots at τ = 1 and τ = 2 show an expected reduction in

the level of χs|s∗,τ , since as we move further away from the original exceedance in

time we would expect extremal dependence to reduce. More interesting results are

provided by the difference between El Niño and La Niña conditions. At lag 1 La Niña

conditions seem to lead to an increase in the level of extremal dependence and suggest

that heatwave events will be more likely to persist in the south-east under La Niña

conditions. This pattern is also observed for lag 2, but for later lags (not shown) there

is little significant difference between the two ENSO phases. These results indicate

that there is interesting behaviour that can only be captured by a full space-time

model and future work in this area would be informative.

7.2 Modelling droughts

During the thesis we have focused on heatwaves as our natural hazard of choice.

One strongly linked phenomenon is drought, which results from sustained periods of

dry weather. Modelling droughts using extreme value theory can produce interesting

modelling challenges since droughts are combination hazards that result from a lack of

precipitation and dry ground conditions. Here, we introduce drought, discuss some of

the complications that arise when trying to model droughts as opposed to heatwaves

and suggest how work from the thesis could provide useful insight.
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Figure 7.1.1: Estimates of χS|s∗,τ (v1) under El Niño conditions (left) and difference in χS|s∗,τ (v1)

between El Niño and La Niña conditions (right) for τ = 0 (top), τ = 1 (middle) and τ = 2 (bottom).

Conditioning site s∗ taken to be grid-box containing Melbourne.
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7.2.1 Introduction

The IPCC (2012) special report into extremes defines drought as:

A period of abnormally dry weather long enough to cause a serious hydro-

logical imbalance.

Drought is a phenomenon that has numerous and wide-ranging consequences that

result from the problem of hydrological imbalance. Large scale water shortages can

often cause famine which in turn has economic consequences and causes fatalities.

In less well developed countries, humanitarian aid may be required to help people

affected by crop failure which is a drain on the budgets of other countries. Droughts

need not be so severe to be of interest to planners and management. Long-scale

drought in the UK has affected the levels of reservoirs which has led to the hose-pipe

bans in the South East of the country in recent years.

Droughts can be characterized in many different ways depending on the perspec-

tive. In scientific literature three different types of drought are emphasised (IPCC,

2012):

• Meteorological drought: occurs when there is a deficit of precipitation.

• Soil moisture drought: a lack of soil moisture that can affect agriculture and

ecosystems.

• Hydrological drought: negative anomalies in streamflow, lakes and groundwater.

Periods of drought are driven by a combination of the three factors above. Climate

variability most strongly affects the amount of precipitation and as such changing

climate behaviour will manifest itself through changes in the level of meteorological

drought. Natural changes in soil moisture drought are usually driven by precipitation

levels, however under strong drought conditions soil moisture levels limit the amount
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of evapo-transpiration which in turn further limits soil moisture drought. Human

activity such as overgrazing and deforestation can affect the capacity of soil to ab-

sorb precipitation which can lead to human-induced drought events. The memory

and water storage capacity of a system also affect measures of hydrological and soil

moisture drought. Lower precipitation levels year on year can have a severe impact

on soil moisture and increase the likelihood of further drought.

The onset, duration and cessation of drought periods are complex to predict as they

rely on both the amount of precipitation falling at a given time and the current state

of the system. Once dry conditions have begun a positive feedback loop can set in.

The dry conditions reduce the moisture in the upper soil layers, which in turn reduces

the evapo-transpiration rate. This reduces the relative atmospheric humidity which

makes rainfall less likely from clouds in the region. The conditions are only broken

when disturbances from outside the region with enough moisture produce precipita-

tion to stop the drought. Large-scale climatic phenomena such as ENSO and the

North Atlantic Oscillation (NAO) can lead to blocking which can cause conditions to

persist for longer than would be expected (Tallaksen and Lanen, 2004).

Droughts are an example of a creeping phenomenon (Mishra and Singh, 2010); i.e.

it is difficult to determine when persistent dry weather becomes a drought and the

impacts of drought can still be felt many years after a drought event has passed.

When compared to other natural hazards such as hurricanes, tornadoes and volca-

noes, drought provides some unique challenges. More people are affected by drought

which makes provision for relief harder. A lack of agreed definition of drought can

harm response times to large drought events. Since drought can be caused by human

activities, in many situations natural factors alone cannot be used to predict it.
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7.2.2 Drought indices

Several different indices have been developed as measures of drought. Each index

attempts to model one or more of the three main types of drought whilst using avail-

able precipitation and evapo-transpiration data. Due to the relative reliability of the

respective data, measures of drought tend to focus on precipitation levels while indi-

rectly considering the effects of evapo-transpiration. As such, here we outline common

drought indices for meteorological drought.

Standardised Precipitation Index

The Standard Precipitation Index (SPI) (Mckee et al., 1993) is the most commonly

used drought index. It is obtained by fitting a probability distribution to a series of

precipitation values and then transforming these values onto a Normal margin. The

most common choice of probability distribution is the Gamma distribution (Mckee

et al., 1993) since this often fits the body of the distribution well; see Mishra and

Singh (2010) for an overview of other distributions used. However, at a practical level

an empirical cumulative distribution function is often used to transform the data onto

uniform margins (Wheatley, 2010). Negative values of SPI correspond to droughts,

with increasing severity as the SPI becomes more negative. A surplus of rain corre-

sponds to positive values of the SPI.

The major benefit of SPI is that it can be used to compare droughts over different

accumulation time-scales. This is important since droughts over different time-scales

can lead to different problems, e.g. soil moisture for agriculture is affected by droughts

on a short time-scale whereas long time-scale droughts can affect the level of reser-

voirs and groundwater. However, there are limitations to the use of SPI as an index of

drought. Fitting different distributions can lead to varying SPI estimates, especially

in the tails. The use of empirical cumulative distribution functions does not permit

estimation of the SPI for stronger events than have been observed previously. Finally,



CHAPTER 7. FURTHER WORK AND OUTCOMES 173

in very dry climates a proliferation of zero values can cause inferential problems;

although this is a common issue across all indices.

Consecutive dry days index

The Consecutive Dry Days (CDD) index (Frich et al., 2002) considers the maximum

number of consecutive dry days in a given period. The level taken as corresponding

to a dry day is subjective and can be altered by the user (the common amount is

1mm in a day). The measure is based on precipitation and only indirectly takes into

account evapo-transpiration. This index most closely links to the measures presented

in previous chapters for heatwaves.

Palmer drought severity index

The Palmer Drought Severity Index (PDSI) (Palmer, 1965) incorporates precipita-

tion and temperature to estimate the departure of the moisture balance from normal

conditions. The underlying model includes a two-layer soil model with a simple water

balance model. The additional information incorporated is an advantage, however

there are some severe limitations to using such an index. PDSI works optimally on

short time-scales, making it more accurate when identifying short-term agricultural

drought than long-term hydrological drought. The effects of snow fall are ignored

which affects the index during winter months and at high elevation. The PDSI can

also be very sensitive to changes in rainfall and temperature at different times of the

year. In the winter months, rainfall dominates since evaporation is minimal whereas

temperature has a greater effect in warmer months.

7.2.3 SPI with extreme tails

One concern with current approaches to estimating SPI is highlighted by the left plot

of Figure 7.2.1. All accumulation lengths that are not a multiple of 12 months will

be subjected to some form of seasonality. One approach to overcome this is to fit a
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Figure 7.2.1: Comparison of model rainfall (mm/day) against SPI (left) and scatter plot of two sets

of data given by SPI method (right). Data are monthly rainfall accumulations from GCM for two

sites in Southern Africa. Both figures show problems with discontinuity for extreme values caused

by having few values in the tail.

separate empirical cumulative distribution function to each set of months (i.e. one for

January, February and so on). For a given data set each month of interest will have

the same number of data points and as such we observe discontinuity in the tail when

the empirical cumulative distribution function is applied. The problem is that there

are few values in the tail of the distribution and so extreme rainfall values are often

recorded as the same value on the SPI scale.

This issue becomes a greater problem when comparing rainfall from different sites on

the SPI scale. If we are interested in estimating the level of extremal dependence,

discontinuity in the upper tails of the plot on the right of Figure 7.2.1 suggests that

we shall obtain poor estimates of the tail behaviour if we use estimates of SPI that is

based upon the empirical cumulative distribution function.

We can produce more accurate values of the SPI by fitting a GPD to the upper

tail of the rainfall data with the empirical cumulative distribution fitted to the body
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of the data. For a time-series of precipitation values for a given month {Xi} for

i = 1, . . . , 12 we can use equation (2.4.1), i.e.

Fi(x) =


1− λui

(
1 + ξi

x−ui
σui

)−1/ξi
+

, x ≥ ui

F̃i(x), x < ui,

(7.2.1)

where λui = 1− F̃i(ui) and ui is some high threshold, with parameters (σi, ξi) defined

in the usual way for the GPD, to transform onto the original series onto uniform

margins. The same approach can be repeated for the lower tail. In the situation

where a rainfall accumulation that is a multiple of 12 months is taken equation (7.2.1)

can be replaced by equation (2.4.1) since the accumulation length removes any annual

cycle. By fitting the GPD above (below) a certain high (low) threshold it is possible to

avoid the problem of discontinuity in the tails and also has the benefit of allowing back

transformation onto the original margins for values greater than the largest observed

values.

7.2.4 Comparison with modelling heatwaves

A natural question to pose is whether the extreme value techniques developed in pre-

vious chapters can be applied to the drought problem. As seen in Section 7.2.1, the

most basic definition of drought refers to some abnormally dry weather that persists

over a long enough time period to lead to hydrological imbalance. This definition

closely resembles the equivalent definition of a heatwave event given in Section 1.2

and as such motivates the use of similar approaches as have been outlined throughout

the thesis.

However, many complications can arise when modelling droughts as opposed to heat-

waves. Primarily the occurrence of drought conditions is not only affected by the

amount of precipitation, but also the amount of groundwater in the system along

with other characteristics such as the run-off. Therefore, modelling the number of
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consecutive dry days is important but needs to be embedded within a larger frame-

work modelling interactions with other environmental factors. This can be accom-

plished by the methods proposed in the thesis since the joint extremal behaviour of

precipitation and any other variable can be modelled using the extremal dependence

approaches outlined previously. However, the best way to do this is not clear and

would benefit from direct discussion with experts in hydrology.

When investigating the spatial structure of droughts additional complications ex-

ist. Many rainfall events occur on a small spatial scale and climate models can often

miss the occurrence of these kinds of events. To capture these events we require pre-

cipitation data on a finer resolution. This would increase the computational costs

associated with running the techniques previously outlined during the thesis, espe-

cially if simulating full space-time events. For a full analysis of the risk associated with

droughts it is also necessary to take into account the spatial structure of river basins

along with the simple Euclidean distance between locations. Asadi et al. (2015) give

an approach to include this within an extreme value analysis, but incorporating this

structure within our framework is not straightforward and would require further work.

Even when focusing on drought at a particular location while ignoring the effect

of groundwater and run-off there are other problems. When modelling dry weather

we are specifically analysing the lower tail of precipitation values. On many days

within a year there is no precipitation and as such there are a proliferation of zero

values within any precipitation data set. Associated problems are two-fold. Firstly,

if there are many zero values, choosing a modelling threshold as a low quantile can

lead to a threshold set at zero. Secondly, many climate models are not able to repro-

duce days without precipitation completely correctly and underestimate the amount

of such days.
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Two solutions exist for the problem of zero precipitation values within the data.

One is to censor values that fall below a certain low precipitation value, an approach

that could be incorporated into an extreme value analysis. The other approach is to

analyse a precipitation accumulation instead of the precipitation values on the original

time-scale. As outlined in 7.2.1 different aspects of drought behaviour can be captured

by looking at different time-scales. Here the accumulation reduces the occurrence of

zero values and permits the use of threshold based extreme value approaches. Precip-

itation accumulations are usually created using a sliding window of a certain length,

often taken to be 12 months to remove the effect of seasonality. As such taking an

accumulation introduces serial correlation into the precipitation values which affects

estimates of the temporal dependence. It is not clear how this effects interpretation

of temporal dependence results and as such these should be treated with caution.

A final consideration concerns the cessation of a drought event. When modelling

heatwaves it is clear that when a temperature falls below a critical level the event has

ended. However, when considering droughts, if precipitation rises above a critical level

it is not clear that the drought event has finished since groundwater levels may have

not been replenished to ‘normal’ levels. As such a model with two critical levels might

be required; this will be a more complicated model but should be feasible within the

framework outlined during the thesis.

7.3 Outcomes of thesis

The aim of the thesis, outlined in Section 1.3, was to provide extreme value methodol-

ogy to model the behaviour of heatwaves. In this section, we outline the main findings

contained within each chapter and how these contribute to achieving the main aims

of the thesis.
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When modelling heatwave events using extreme value methods the most important

aspect has been developing models that can account for temporal structure. It is

clear that most casualties caused during a heatwave event occur due to sustained

high temperatures as opposed to singular hot days. As such univariate extreme value

approaches, such as the fitting GEV and GPD models, are inadequate for our pur-

poses. The desire to model temporal dependence has motivated the use of extremal

dependence models to obtain more accurate estimates of the persistence of heatwave

events. In Chapter 2, two approaches for modelling extremal dependence were com-

pared and found to perform equally well for bivariate problems. However, the added

flexibility of the conditional extremes approach suggested this as a suitable model for

extremal dependence in later chapters.

Chapter 3 introduced a method for estimating the probability of heatwave events

under a first-order Markov assumption. This assumption permitted the use of bivari-

ate extreme value results and a set of different models were tested to model extreme

values. One important concept was the difference between asymptotic dependence

and asymptotic independence. Models that cannot account for both types of de-

pendence structure risk producing misleading inferences in the tails. Our study of

daily maximum temperatures over Orleans found asymptotic independence between

temperatures on consecutive days. As such, our model based upon the conditional

extremes approach produced more realistic simulations than other approaches that

can only account for asymptotic dependence. Using results based upon asymptoti-

cally dependent models can still be justified if we are especially risk averse; in this

situation we also found that the choice of parametric model for asymptotic depen-

dence structure can bias results when compared to a non-parametric asymptotically

dependent approach.

As part of this study we derived a set of different cluster functionals that we believe
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are important when investigating heatwave events. No set definition of heatwaves

exists and this can lead to many different indices presented in different papers. One

important benefit of our approach is that the properties of most heatwave measures

of choice can be obtained from our model, since we simulate replicate heatwave events

from our model. In the work we decided to present estimates for the probability of

the occurrence of an event more extreme than the 2003 European heatwave event. We

found that the annual probability of observing a heatwave event lasting at least 11

days was 0.001, i.e. we would expect this to happen once in every 1000 years. Output

of this type is important as it allows decision makers to understand better how often

these devastating events will happen and what preparation measures need to be taken.

One drawback alluded to in Chapter 3 was that a first-order Markov assumption was

made. Such an assumption does not capture the prevailing conditions of the weather

system, i.e. whether previous days have seen an increase or decrease in tempera-

tures. It was possible that, by making the first-order assumption, we were simplifying

higher-order structure in the extremes. This could lead to misleading estimates of

important extremal quantities, such as the 1-in-1000 year 2003 event. Chapter 4 in-

troduced a kth-order Markov model for assessing heatwave risks. The most important

consideration was to choose an appropriate higher-order model. Standard diagnostic

approaches based upon the body of the data can often lead to misleading choices for

the order. We developed a suite of different diagnostics to help infer an appropriate

order Markov chain for modelling the extremal structure accurately. With these diag-

nostics, it was found that our estimates of the probability of exceeding the 2003 event

were too low, with the observed event up to three times more likely than estimated

in Chapter 3.

An important consideration when modelling any environmental process is anthro-

pogenic climate change. This is especially true for heatwaves, where climate change
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could lead to longer and more severe heatwaves in the future. Chapter 5 investigated

the effect of climate change on heatwaves by proposing an extension to the model in

Chapter 3 to permit the inclusion of covariate structure in the margins and depen-

dence structure. Daily maximum temperature data were obtained from an ensemble

of strongly forced general circulation models and the global mean temperature was

used as a covariate for climate change. We found evidence that under an increase

in the global mean temperature of 1oC, the one-year return level would increase by

2oC. This result shows that under future climate change heatwave events are likely to

become more frequent. However, there was little evidence to support any change in

the duration of heatwave events with future climate change.

Up until this point, we had only modelled temporal dependence at a single loca-

tion. To fully understand the risks associated with heatwaves it is also important to

estimate the number of sites that are experiencing hot conditions concurrently. In

Chapter 6 we built a model to model the spatial structure of extreme temperature

events. For this study, the effects of temporal dependence were ignored. Covariate

structure was also included in the model with the aim to understand the effects of

ENSO on extreme temperatures. To this end, we developed a suite of spatial risk

measures to give a complete spatial characterisation of extreme temperature events.

We found that El Niño conditions led to an increase in temperatures across the whole

of Australia. However, if an extreme temperature event occurs during a La Niña year

it had the potential to cover a greater spatial extent.

A natural extension of the methods used to model the spatial and temporal structures

of extreme temperatures is to combine both into a more general space-time framework.

Ideas about how to formalise this framework were outlined in Chapter 7. Preliminary

results suggest that taking full spatio-temporal structure into account can provide

interesting and informative insight into the heatwave problem.
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The modelling of heatwaves has provided a very interesting application area that

has motivated all the work throughout the thesis. However, as an applied statistician

it is important that methods are not only built to answer a specific class of problems,

but also have the flexibility to be used on a wider class of problems. As such, in Chap-

ter 7 we also introduced drought and have considered how the methods developed in

this thesis could be used to model this natural hazard. This points to ways in which

the approaches from this thesis could be used more generally in the future across a

wide class of problems associated with natural hazards.



Appendix A

Parametric joint tail approach with

additional marginal information

The log-likelihood associated with the likelihood in equation (2.5.2) is given by
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An analytical expression for ĉ can be obtained by differentiating the log-likelihood

with respect to c
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and setting the derivative equal to zero. With some rearrangement
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− ĉu−1/η̂

)
− (n01 + n10)ĉu
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which can be expanded to give
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and by collection of like terms
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Now using the quadratic formula it is possible to compute a closed form expression

for ĉ in terms of η̂
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Now to obtain an analytical value for η̂ we differentiate the log-likelihood with respect

to η
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from which we can obtain the MLE by setting the above equal to zero such that
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At this stage it is possible to substitute a rearranged version of equation (A.0.1) such
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(

1− 2

u
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and yields the final result
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This value of η̂ is the same as for the Ledford and Tawn (1997) joint tail model as

given in equation (2.5.3).
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Tail chain estimation algorithms

Algorithm 1 gives the tail chain generation method for asymptotically independent

Markov chains. An exceedance of v is generated from a GPD(σv, ξ) and the chain is

stepped forward using equation (3.3.5) by sampling from the non-parametric estimate

of Ĝ given in equation (3.3.7). Particular care must be taken since negative values of

the transformed tail chain, i.e. T (Xt) < 0, can lead to problems (since β ∈ (−∞, 1)).

Since the margins follow a Laplace distribution negative values correspond to values

below the median and hence outside the tail region, so following a negative value all

further chain values are set to zero and do not affect the cluster properties for the

high levels of interest.

A non-parametric tail chain simulation scheme based upon the conditional extremes

approach provides an alternate method to generate tail chains with asymptotic de-

pendence. As outlined in Section 3.3.3 this method is a special case of the conditional

extremes method with α = 1 and β = 0. It has been shown in equation (3.3.9) that

the non-parametric estimate of the distribution G is given as the empirical distribu-

tion function of the set of differences between the transformed chain at times t and

t + 1 given Xt > u. The chain is stepped forward by sampling a value from the set

of differences with replacement and adding the value to the current value of the chain.
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Algorithm 1: Simulation scheme to generate tail chain using conditional ex-

tremes approach

Input: Dependence parameters (α, β) and non-parametric distribution Ĝ

1 Set threshold v and simulate exceedance using GPD(σv, ξ) distribution;

2 Set exceedance as X∗1 ;

3 for i in 1 : k − 1 do

4 Make draw Z∗i with replacement from Ĝ;

5 Set X∗i+1 = T−1
(
αT (X∗i ) + T (X∗i )β Z∗i

)
;

6 end

Output: Tail chain X∗1 , . . . , X
∗
k with dependence structure given by (α, β)

The parametric tail chain simulation scheme has a similar form to Algorithm 1. We

start with dependence parameter γ instead of (α = 1, β = 0) and instead of simulating

from Ĝ in step 4 we simulate Ui from Uniform(0,1) distribution, set

Z∗i = − γ

σu
log
(
U

1/(γ−1)
i − 1

)
,

and replace step 5 with X∗i+1 = X∗i + Z∗i [σu + ξ (X∗i − u)]+.

For a forward and backward simulation strategy it is necessary to know the peak

value of a cluster, here denoted M = η where η > v. By setting X∗0 = η a tail

chain of length k can be simulated forwards using (α̂f , β̂f ), the estimates of the con-

ditional extremes dependence parameters for the forward chain, and the conditional

extremes tail chain simulation scheme outlined above. One difference requires that a

chain X∗0 , . . . , X
∗
k be discarded if X∗j > η for any j = 1, . . . , k. An additional fit of the

conditional extremes model must be made for Xt | Xt+1 > u before the backward sim-

ulation step to obtain (α̂b, β̂b), the estimates of the conditional extremes dependence

parameters for the backward chain. If the Markov chain is time-reversible αb = αf and

βb = βf . For the backward simulation a tail chain is constructed using (α̂b, β̂b) with
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the same rejection criteria if η is exceeded. By combining the forward and backward

simulated tail chains a cluster with peak value η is generated; see Algorithm 2.

Algorithm 2: Simulation scheme to generate realisation of cluster with peak

value η using conditional extremes approach

Input: Dependence parameters (αf , βf , αb, βb) and non-parametric

distributions Ĝf and Ĝb

1 Set the peak value η of a cluster as X∗0 ;

2 for i in 1 : k do

3 Make draw Z∗f with replacement from Ĝf ;

4 Set X∗i = T−1
(
αT
(
X∗i−1

)
+ T

(
X∗i−1

)β
Z∗f

)
;

5 if X∗i > X∗0 then

6 Discard current forward chain and return to step 2 ;

7 end

8 end

9 for i in 1 : k do

10 Make draw Z∗b with replacement from Ĝb;

11 Set X∗−i = T−1
(
αbT

(
X∗−(i−1)

)
+ T

(
X∗−(i−1)

)βb
Z∗b

)
;

12 if X∗−i > X∗0 then

13 Discard current backward chain and return to step 9;

14 end

15 end

16 Generate a cluster replicate X∗ = (X∗−k, . . . , X
∗
0 , . . . , X

∗
k);

Output: One realisation of a cluster X∗ with maximum η and dependence

structure given by (αf , βf , αb, βb)
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Pool adjacent violators algorithm

Using differencing formulas, as in equation (3.2.3), with inputs evaluated by Monte

Carlo methods from tail chains can result in negative estimates of π(i) for certain

values of i. Although θ(i) ≥ θ(i+1) for all i, as only a finite number of chains can be

simulated by Monte Carlo, Algorithms from Appendix B provide estimates θ̃(i) and

θ̃(i+1) which do not necessarily satisfy this constraint. Thus π̃(i) < 0 if θ̃(i) < θ̃(i+1).

The problem is more prevalent for large values of i since the tail chain simulation

scheme generates very few chains with such a large number of exceedances and hence

the Monte Carlo variation is large relative to the difference between θ(i) and θ(i+1). A

solution to this problem, to ensure that estimates π̃(i) of π(i) satisfy π̃(i) ≥ 0 is to

use the pool adjacent violators (PAV) algorithm (Robertson et al., 1988). The PAV

algorithm generates a monotonically decreasing estimate of θ(i) and in turn gives non-

negative estimates for π and πC . This is achieved by checking whether θ̃(i+1) ≤ θ̃(i)

for all i = 1, . . . , n, if not these values are averaged, i.e.

θ(i)∗ = θ(i+1)
∗ = (θ̃(i+1) + θ̃(i))/2,

and we check whether θ̃(i−1) ≥ θ
(i)
∗ . If not pooling is continued until decreasing

monotonicity is satisfied. The algorithm can lead to ties in consecutive estimated θ(i)

values resulting in π̃(i) = 0 but avoids the situation where π̃(i) < 0.
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kth-order tail chain estimation

algorithm

Algorithm 3 gives the tail chain generation method for asymptotically independent

Markov chains with kth-order dependence structure. An exceedance of v is generated

from a Exp(1) and the chain is stepped forward using equations (4.4.2) and (4.4.3)

by sampling from the conditional distribution Gk|1:k−1 given in equation (4.2.2) where

the joint distribution G1:k is taken to have the form in equation (4.2.1). Particular

care must be taken since negative values of the transformed tail chain, i.e. X∗j < 0 for

j = 1, . . . ,m, can lead to problems (since βk ∈ (−∞, 1)). Since the margins follow

a Laplace distribution negative values correspond to values below the median, hence

outside the tail region, so following a negative value all further chain values are set to

zero and do not effect the cluster properties for the high levels of interest.
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Algorithm 3: Simulation scheme to generate tail chain of length m with kth-

order temporal dependence structure using conditional extremes approach

Input: Dependence parameters (αj, βj) for j = 1, . . . , k and non-parametric

estimate Ĝ1:k to distribution G1:k.

1 Set threshold v, simulate exceedance using Exp(1) distribution;

2 Set exceedance as X∗0 ;

3 Make draw Z∗1|0 from kernel density estimate of ẑ
(i)
1 , i.e. Ĝ1;

4 Set X∗1 = α1X
∗
0 + (X∗0 )β1 Z∗1|0;

5 for j in 2 : m− 1 do

6 if j ≤ k then

7 Calculate weights wi using equation (4.3.3) and use to make draw

Z∗j|0:j−1 from Ĝj|1:j−1;

8 Set X∗j = αjX
∗
0 + (X∗0 )βj Z∗j|0:j−1;

9 end

10 else

11 Calculate weights wi using equation (4.3.3) and use to make draw

Z∗j|j−k+1:j−1 from Ĝk|1:k−1;

12 Set X∗j = αkX
∗
j−k +

(
X∗j−k

)βk Z∗j|j−k+1:j−1;

13 end

14 end

Output: Tail chain X∗0 , . . . , X
∗
m−1 on Laplace margins with kth-order temporal

dependence structure
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