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Abstract. Next-generation systems, such as the big data cloud, have to
cope with several challenges, e.g., move of excessive amount of data at a
dictated speed, and thus, require the investigation of concepts additional
to security in order to ensure their orderly function. Resilience is such
a concept, which when ensured by systems or networks they are able to
provide and maintain an acceptable level of service in the face of various
faults and challenges. In this paper, we investigate the multi-commodity
flows problem, as a task within our D? R?+ DR resilience strategy, and in
the context of big data cloud systems. Specifically, proximal gradient op-
timization is proposed for determining optimal computation flows since
such algorithms are highly attractive for solving big data problems. Many
such problems can be formulated as the global consensus optimization
ones, and can be solved in a distributed manner by the alternating direc-
tion method of multipliers (ADMM) algorithm. Numerical evaluation of
the proposed model is carried out in the context of specific deployments
of a situation-aware information infrastructure.
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1 Introduction

Cloud computing delivers computing services from large, highly virtualized net-
work environments to many independent users, using shared applications and
pooled resources. One may distinguish amongst Software-as-a-Service (SaaS)
where software is offered on-demand through the internet by the provider and
it is parametrized remotely (e.g., on-line word processors, spreadsheets, Google
Docs and others); Platform-as-a-Service (PaaS) where customers are allowed
to create new applications that are remotely managed and parametrized, and
offer tools for development and computer interface restructuring (e.g., Force,
Google App Engine and Microsoft Azure), and Infrastructure-as-a-Service (IaaS)
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where virtual machines, computers and operating systems may be controlled and
parametrized remotely (e.g., Amazon EC2 and S3, Terremark Enterprise Cloud,
Windows Live Skydrive, Rackspace Cloud, GoGrid, Joyent, AppNexus, etc.).
The aforementioned service models of the cloud can be offered in three differ-
ence deployment models, i.e., public, private and hybrid. In public cloud systems,
everyone may register and use the services. Private ones are accessible through
a private network. Lastly, hybrid clouds refer to a combination of the previous
two and usually used in the case where sensitive data is required to be kept in
the private network and non-core applications are deployed in the public. The
key functionality of the private deployment model is the ability to use and re-
lease resources from public clouds as and when required. This is used to handle
sudden demand surges ('flash crowds’) and is known as ’cloud-bursting’.

Cloud computing is an on-demand service whose size depends upon users
needs and should feature scale flexibility. It is built upon such network ele-
ments as switches supporting novel communication protocols, specific servers
based on Virtual Machine (VM) technology and dynamic resource management
as well as Network-Attached-Storage (NAS). Specific software platforms may be
used for service orchestration in cloud environments (e.g., OpenStack). Several
next-generation implementations require widespread connectivity, security and a
successful combination with machine-to-machine M2M applications® and cloud
computing. Integration platforms are important facilitating the convergence of
IoT%, cloud computing, analytic, and big data. They support links among cloud
applications and they tie together the distributed devices at one end of a net-
work pipe with enterprise applications and analytic at the other end. Integration
platforms shorten the development cycle for connecting devices to the cloud or
enterprise systems. Other applications of cloud computing may be seen in the
area of critical infrastructures. An example of that is the use of cloud computing
services to perform analysis of the data conveyed between the various compo-
nents of a Supervisory Control and Data Acquisition (SCADA) network [14].

Cloud systems and services can be applicable in a wide range of applications,
as described above. Therefore, this further motivates us towards the investiga-
tion of concepts additional to security in order to ensure their orderly function.
Resilience is such a concept that can ensure that a network or system can pro-
vide and maintain an acceptable level of service in the face of various faults and
challenges to normal operations [20]. In order to accomplish the previous require-

3 A typical M2M architecture includes an application domain, a network domain, an
M2M device domain and one or more direct connections or gateways from the M2M
area network to the network domain. M2M device area networks can use a variety
of communication technologies (RFID, ZigBee, M-BUS, IEEE 802.15, 6LoWPAN),
thus a gateway layer becomes important. The solutions for communication between
the gateway and M2M applications include LTE, WiMAX, xDSL, and WLAN. In
the application domain, clients will often include dashboards for data virtualization,
status monitoring, reconfiguration and other functions.

Among the consortia working on standards for IoT are AllSeen Alliance, HyperCat

Consortium, and Industrial Internet Consortium. There are also initiatives such as
the Eclipse M2M Industry Working Group and ITU-T Focus Group M2M initiative
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ment we have proposed a resilience strategy entitled D?R? 4+ DR, i.e., Defend,
Detect, Remediate, Recover, and Diagnose and Refine [20]. The first four consist
processes of an internal loop process and the latter two of an off-line outer loop.
In more detail, it is: Defend against challenges and threats to normal operation;
Detect when an adverse event or condition has occurred; Remediate the effects
of the adverse event or condition; Recover to original and normal operations;
Diagnose the fault that was the root cause; and Refine behaviour for the future
based on past D?R? 4+ DR cycles. Based on our resiliency strategy, we further
developed an architectural framework for resilience, which is able to operate in
the context of cloud systems and used for diagnosing anomalies [18].

In this paper, we further investigate the multi-commodity network flow in
the context of our resilience strategy and towards ensuring network resilience
in cloud services. Multi-commodity network flow models provide the tools for
optimal network design and dimensioning in telecommunications given a list
of traffic nodes (sources or sinks) [17]. The basic mathematical models used
to formulate and solve optimal network design problems make use of graph-
theoretic and/or linear programming-based models (see e.g., [4],[13],[2]). The
set of all possible topologies for the network to be constructed will typically be
described by means of a given (undirected) graph G = [V, E| where:

— the node set V represents the various traffic sources/sinks to be intercon-
nected;

— the edge set E corresponds to the various pairs of nodes, which may be
physically connected by installing transmission links.

A single-commodity flow between a source and a sink is a M vector, ¢ =
(p1,92, ..., o) such that |@,| represents the amount of transmission resource
used on edge e = (4,j). The aforementioned commodity model is adopted to
accommodate cloud computing and in-network processing [11],[9]. A walk-based
as well as an edge based formulation is adopted. Applying such models in the
context of distributed and parallel computing in the cloud is challenging. The
sheer volume of data in next generation implementations requires advanced an-
alytic capable of exploiting the big data and the computing power of the cloud.
Scaling up to 50 and 200-billion connected devices requires innovative security
solutions. Hybrid architectures focus on security at endpoints and when data is
in transit: device security, cloud security, and network security. Virtualization
must be done with resilient virtual machines (VM), resilient single-tenant and
multi-tenant servers, and resilient software defined networks (SDN).

The structure of the remainder of this paper is: Section 2 elaborate on dis-
tributed proximal algorithms and on ADMM in cloud networks. A commodity
network model for maximizing information processing in the cloud is presented
in Section 3. An evaluation of the model is provide via simulations in Section 4.
Conclusions are presented in Section 5.



4 A Multi-Commodity Network Flow Model for Cloud Service Environments

2 Parallel Algorithms for Optimizing Big Data

2.1 Big Data Analytics and Distributed Proximal Algorithms

The information explosion propelled by the advent of online social media, Inter-
net and global-scale communications has rendered big data analytics as well as
data-driven statistical learning increasingly important [19]. Dealing with large-
scale data sets poses formidable challenges. The sheer volume and dimensionality
of data make it impossible to run analytics and traditional inference methods us-
ing standalone processors [3],[16]. Decentralized learning with parallelized multi
cores is preferred [5],[12], while the data themselves are stored in the cloud
or distributed file systems as in MapReduce/Hadoop [10]. Distributed signal
processing can be used within the context of sensor networks as well (see for
example [1]). Optimizing large scale data may be expressed as:

F**" = min{F(2) == f(z) + g(z) : = € R?} (1)
xr

where f and g are convex functions. Efficient numerical methods to obtain z in

the context of large scale problems arising in big data applications are, namely,

first order methods, randomization as well as parallel and distributed comput-

ing [8].

— First-order methods: First-order methods obtain low- or medium- accuracy
numerical solutions by using only first-order oracle information from the
objective, such as gradient estimates. They handle important non smooth
variants of Eq. 1by making use of the proximal mapping principle. They
feature nearly dimension-independent convergence rates, they are theoreti-
cally robust to the approximations of their oracles, and they typically rely
on computational primitives that are ideal for distributed and parallel com-
putation.

— Randomization: Randomization approaches stand out among many other
approximation techniques since they enhance the scalability of first order
methods. We can control their expected behaviour. Key ideas include ran-
dom partial updates of optimization variables, replacing the deterministic
gradient as well as proximal calculations with cheap statistical estimators,
and speeding up basic linear algebra routines via randomization.

— Parallel and distributed computation: First-order methods naturally provide
a flexible framework to distributive optimization tasks and perform compu-
tations in parallel. Surprisingly, one can further augment these methods with
approximations to enormously scalable asynchronous algorithms with decen-
tralized communications.

The three aforementioned classes of algorithms complement each other and
offer surprising scalability benefits for big data optimization. For closed proper
convex functions, one may define the proximal operator of the scaled function
Af, where A > 0, as:

prozas(w) < argmin (f(X) ~lx-u ||§) @
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This is also called the proximal operator of f with respect to A. The parameter A
controls the extent to which the proximal operator maps towards the minimum
of f, with larger values of A associated with mapped points near the minimum,
and smaller values giving smaller movement towards the minimum. A proximal
algorithm is an algorithm for solving a convex optimization problem that uses
proximal operators of the objective terms. Proximal algorithms have been used
for multi-commodity network flow optimization [15].

Algorithm 1 Synchronous ADMM (sync-ADMM): Pro-

cessing 'b}{ the master. Algorithm 2 Synchronous ADMM (sync-ADMM): Pro-
1: initialize: k = 0. cessing by worker <.
if repeat I: initialize: k = 0, A% = 0.
: repeat 2: repeat
4 wait; 3 update
5:  until receive updates from all N workers; 4 send M ;’md 251 (6 the master:
6:  update ¥+ 5: 'rcpcat’ ' '
7: broadcast z**! to all the workers; 6 wait:
8 ke k +1 7:  until receive the updated 2"+ from the master;
9: until termination; 8:  update AF*1
10: output z*. 9: until termination.
(a) (b)

Algorithm 3 Asynchronous ADMM (async-ADMM): Pro-
cessing by the master.

1; initialize: k = 0,8; = (),j\,‘ =0,i=1,2,...,N.

2: repeat
3:  repeat
& wait - e Algorithm 4 Asynchronous ADMM (async-ADMM): Pro-
5:  until receive a minimum of S updates from the . .

workers and max(ry,7a,...,7n) < 73 cessing by worker 4.
6 for worker i € ®F do oo O .
o A I: initialize: A} = 0,k; = 0.
8: @7 <--newly received ; from worker ; 2 rcpeat bl
9 Ai < newly received \; from worker i; 3: update z; '
i0:  end for k ki1

4 S ;' and he master;
il for worker i ¢ & do send A" a N to the master;
12 memtl 5:  repeat
13:  end for 6: wait;
. SRl . . -~

14 update 2 . 7:  until receive %; from the master;
15:  broadcast 2! 1o all the workers in ®; 38 d /\k,b +1
16 kek+1 update A;
17: wntil termination; 9: ki <~ ki +1;
18: output z*. 10: until termination.

(c) (d)

Fig.1: Synchronous and asynchronous processing from master and workers for
ADMM

2.2 Synchronous and Asynchronous Consensus ADMM in Cloud
Information Networks

Many machine learning problems can be formulated as the global consensus
optimization problem, which can then be solved in a distributed manner by
the alternating direction method of multipliers (ADMM) algorithm. The global
variance consensus optimization problem [6],[5] in the context of minimization
f(z) reads:
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N
min f(x)Jrg(z):Zfi(xi):xizz,izl,Z,...,N (3)
L1y...yTN,Z i1
where z is the so-called consensus variable, and x; is node 7 local copy of the
parameter to be learned. The aforementioned problem may be reformulated as
augmented Lagrangian optimization:

al 3
L}, 2) = 9(2) + 3 filwa) + Qa2 = 2) + 5 @i — 2 | (4)

where ); are the Lagrangian multipliers, 5 > 0 is the penalty parameter,
and (,) denotes the inner product. At the k-th iteration, the values of z; and
z denoted (xf and z*) are updated by minimizing L with respect to z; and z.
Unlike the methods of multipliers, these are minimized in an alternating manner,
which allows the problem to be more easily decomposed:

. 153 2
e = aaguin £(@) + (A 2) £ )| 2 — 2 P = prozya(E - X (5)
N 5 ,
= argming(z)—f—z —(\E )+ §H gt kT = proxg/ﬁ(xk"‘l +2%) (6)
# i=1
AL = NP B (2 — 2P (7)

The updates can be easily implemented in a distributed system with one master
and N workers [21]. Each worker ¢ is responsible for updating (z; , A;) using
the above equations. The updated aci-”l are then sent to the master, which
is responsible for updating the consensus variable z as well as distributing its
updated value back to the workers. Updating may be performed in a synchronous

or an asynchronous manner (see algorithms in Fig. 1).

3 A Commodity Network Model for Maximizing
Information Processing in Cloud Implementations

One may adopt the proximal-point method in order to optimize network flows
in a cloud environment in an iterative fashion:

1 T

2" = argmin | f(2) + (v — 2%)" (x — 2%) | = prowys (") (8)
Xes 27

where S is a convex set, f(z) is a convex function and 1/2\ is a constant.

One may assume N clusters featuring a distributed processing power given by

= (71, m2,... ,7rN)T. Vector x consists of network flows & = [zs1, 52, Ts3, - - - |
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Initialization

Primal variables

Dual variables

Gradient
Iteration

repeat

terminate

New parameters
Proximal-
-point
Iteration

repeat

END

Fig. 2: Block diagram of the dual gradient algorithm.

where subscript s runs over all network edges s € {a,b,c...}. The constraint
optimization problem for one proximal-point iteration reads:

CFclustersx + B((E - Z)T(:E - Z) + QST(CFSx - S'Ln)

r— min || 2

Toxes AT A Ay
+ AT (x = BW) 4+ \," (CF.x — P))

()

where z is the approximation at the previous iteration step and CF .y sters 1S
the incidence matrix for cloud clusters such that CF .y sters, gives the incident
flows at all cloud processing nodes. Flow (CF cjystersT) j is processed by processor
m; within time T} ~ (1/7;)(CF ¢iysters) ;. Cluster processing utilization is analo-
gous to processing time. It is assumed that processing cost per site is proportional
to CP utilization, i.e. the term [c1/A1,ca/Aa, ..., cn/AN|CF cpusters® is equal to
the total processing cost to be minimized according to Eq. 9. Dual variable 6
accounts for flow incidence conditions at sensor nodes, i.e., CF cnsors® = Sin
whereas dual variables A, and A, account for upper edge bandwidth limits
Tedge; < BWegge,,l = 1,..., L and cluster processing capabilities. According
to Slaters conditions (see for example [7]) strong duality holds for the optimiza-
tion problem (i.e. the optimal values of the dual and the primal problem are
equal. We carry out successive optimization over primal and dual and variables
according to the block diagram in Fig. 2. Primal variables as well as dual vari-
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ables are estimated iteratively several times during the execution cycle of an
iteration step. Current estimation of z* is used as the proximal point z for the
next estimation 2**! (see Eq. 8). As an alternative approach, one may use dis-
tributed processing and synchronous ADMM and solve Eq. 9 using Eqs. 5 6
and 7 according to algorithms (a) and (b) in Fig. 1. Dual variables are estimated
a number of times during each iteration step after the estimation of the primal
variables z and z;. Global parameter z is updated by the master so that flow
incidence conditions at sensor nodes are satisfied, CF s¢p50rs2 = Sin and, finally,

N
2 =3

4 Numerical Simulations

Computing time 7} is assumed to be normalized to CP utilization at cluster
node j. Total computing cost is assumed to be analogous to total processing
time, i.e.,c1T1 + coT5 + c3T3 + c4T o total processing cost. Two distinct cases
of assigning processor costs are investigated. Case 1 assumes that ¢; = co =
c3 = ¢4 = 100units whereas Case 2 assumes that ¢y = 80units, co = 60units, c3 =
100units and ¢4 = 90units. Convergence behaviour of the proposed proximal

Table 1: Terminal devices nominal source flows (Mbps)

s1=1  |sa=1 [s3=2 [sa=3 [s5=0.5 [s6=0.5 |s7=4 [ss=3
s9=2 [510=2[s11=2[s12=1]513=1.5]514=5 [515=2 [s16=1
517=2 [518=1[s19=1[$20=2[s21=4 [522=2.5[523=3.5[s24=2
$25=2.5[526=1[527=1[528=2[$29=3.5]550=5 [s31=1 [s32=1

INTERNET-OF -THINGS TERMINAL DEVICES

CLUSTER PROCESSING SITES

Fig. 3: Cloud interconnections

algorithm for z equal to x; is depicted in Figs. 4. Fig. 4a depicts total cost,
Fig. 4b depicts flow equilibrium conditions at sensor nodes during the execution
of the algorithm for Case 1 and Fig. 4c¢ depicts processor utilization per cluster
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for Case 1. Similar results are illustrated for Case 2 in Figs. 4d, 4e and 4f.
Similar results of solving Eq. 9 for Case 1 and Case 2 using distributed processing
and synchronized ADMM are depicted in Figs. 5. Figs. 5d and 5h present the
difference of 2% — Z?zl xf over 1,000 iterations. Both approaches give similar
total cost values for Case 1 and Case 2.

500 5
as0 4 a5 4
400 4 4 4

Error at sensor nodes

Total processing cost (case 1)

100 200 %0 400 50 60 700 80 900 1000 100 200 %0 400 50 600 700 80 900 1000
Iteration Iteration
T T T T T T T T T 500 . . . . . . . . .
12 B
450 B
15
i
5. =
IRe S ] S
08 'i(\;“'ﬁ" o 8
o 1%y <
& = g
& 8
M 1 2
a i 2
13} it g
Y g
' g
04 1 s
2
02 1
|
ol . . . . . . . . . o . . . . . . . . .
100 20 30 400 500 600 700 800 %0 1000 100 20 30 400 500 600 700 800 %0 1000
Iteration tteration
5107
s R
4H 1
35 H B
€ 3H 4
5
Gos B
g o1 1
g
o
15 H B
2 1
02 B
051 B
. ! ) " . o . . . . . . . . .
100 20 300 400 50 600 700 80 90 1000 100 20 300 400 50 600 700 80 90 1000
tteration tteration

Fig. 4: Iterative solution of Eq. 9 in the proximity of the previous approximation,
ie,z = xi_1 (total processing cost for four processing clusters in (a) and (d),
total error at sensor nodes in (b) and (e) and CP utilization for each of the four
processing sites in (c) and (f))
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cessing cost for four processing clusters in (a) and (e), total error at sensor nodes
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Numerical simulations are carried out for artificial data for four (4) processing
sites (clusters) and a total of thirty-two (32) terminal devices (sensors) connected
to cloud nodes. Each terminal device (sensor) is connected to a main processing
cluster and two backup processing clusters. Link capacities vary from 0.5 Mbps
to 5 Mbps. Each terminal device produces original source flows featuring values
ranging from 0.5 Mbps to 5 Mbps (see Table 1). It is assumed that each flow
may be diverted totally or partly from one processing site to the other. Each of
the four (4) computing sites is capable of processing a total sum of flows, i.e.
m = 20 Mbps for CP1,m; = 10 Mbps for CP2,m3 = 30 Mbps for CP3 and
w4 = 25 Mbps for CP4). Cloud interconnections are illustrated in Fig 3.

5 Conclusions

An iterative proximal-point method is presented for optimizing commodity flows
in the context of cloud computing. A novel approach that combines distributed
sync ADMM and minimization over primal and dual variables split into two
groups is proposed. Illustrative cases for four (4) processing sites and thirty-two
(32) terminal devices are presented. The methods may be scaled to thousands
of terminal devices and multiple cloud processing sites. Each terminal device
is connected to a subset of processing clusters and may split data flows from
one connected processor site to another according to available bandwidth. The
proposed algorithm is directly generalized to accommodate variable network con-
ditions as well. Optimization over processing and transmission costs is possible
within the context of the proposed approach. Convergence time depends upon
the updating method (synchronous or asynchronous ADMM).
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