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Abstract

Detecting and characterizing of anti-drug antibodies (ADA) against a protein therapeutic

are crucially important to monitor the unwanted immune response. Usually a multi-tiered

approach that initially rapidly screens for positive samples that are subsequently confirmed

in a separate assay is employed for testing of patient samples for ADA activity. In this

manuscript we evaluate the ability of different methods used to classify subject with screen-

ing and competition based confirmatory assays. We find that for the overall performance of

the multi-stage process the method used for confirmation is most important where a t-test

is best when differences are moderate to large. Moreover we find that, when differences

between positive and negative samples are not sufficiently large, using a competition based

confirmation step does yield poor classification of positive samples.

Keywords: Anti-drug antibody, confirmatory, cut point, immunoassay, immunogenicity,

screening, specificity

1. Introduction1

Detecting and characterizing of anti-drug antibodies (ADA) against a protein ther-2

apeutic are crucially important to monitor the unwanted immune response. Usually a3

multi-tiered approach that initially rapidly screens for positive samples that are subse-4

quently confirmed in a separate assay is employed for testing of patient samples for ADA5
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presence. Several regulatory guidelines [1, 2, 3] and white papers [4, 5, 6] describe the6

testing strategies, assay formats, validation requirements and performance expectations7

for such assays have been published.8

9

In order to use either screening or confirmatory assays, establishing cut points that10

are used to classify into negative and positive samples are paramount. An upper negative11

limit of 95% for the screening cut point is recommended [1, 2, 4, 6], resulting in a 5%12

false-positive rate. The subsequent confirmation assay used here aims to eliminate false13

positive samples based on competition assays. These competition assays are a tool to iden-14

tify possible signal contribution from unspecific antibody binding and additionally analyze15

all samples using a study-drug inhibited assay. This assay is basically set up identically16

to the uninhibited assay with the exception that all samples are pre-incubated with ex-17

cess amount of free specific protein antigen (“antigen competition”). Specific antibodies18

directed against the particular antigen are bound in the form of immune complexes in the19

liquid phase and subsequently removed during washing steps. Hence, the specificity of20

antibodies detected with the uninhibited assay can be confirmed by a reduction of signal21

in the inhibited assay. Recently various methods for finding cut points for screening assays22

[7, 8] and confirmatory assays [9] have been evaluated.23

24

One of the unexpected and striking findings when evaluating the performance of confir-25

matory assays [9] was that extremely large differences between uninhibited and inhibited26

samples are necessary to separate positive from negative samples. This surprising finding27

led us to investigate the capability of the multi-tier approach to separate positive and neg-28

ative samples. In this manuscript we will evaluate the ability of the multi-tier approach29

for classifying samples in both simulations and real data evaluations.30

2. Classifying samples31

Previously a large number of different approaches for classifying screening [e.g. 6, 7] and32

confirmatory assays [e.g. 9] have been described. In this evaluation we consider 7 methods33

to be used in screening assays and three approaches for confirmatory assays yielding 21 dif-34

ferent combination of approaches. We have attempted to be as comprehensive as possible35

2
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in the methods investigated, yet the sheer number of approaches currently in the literature36

disallowed a full evaluation. The most notable ideas that have not been considered here37

is the simplified decision tree in [10] and the fixed percent inhibition method [6, 9]. The38

former was excluded as initial evaluations revealed an undistinguishable performance to39

the decision tree in [6] while the latters subjective choice of what percentage ought to be40

used was prohibitive.41

42

In this section we will describe the different methods for classifying samples. The43

principle idea of each approach for confirmatory assays is to determine if the change in assay44

signal with and without pre-incubation of a sample with high amounts of the therapeutic45

drug is large enough to be a relevant indicator to distinguish between true positive and false46

positive samples. We will therefore consider the situation where measurements without47

pre-incubation for each sample are available (the screening data) and that measurements48

with and without preincubation are available for confirmation. For the latter we also49

assume pre-incubation is successful and truly leads to inhibition. Moreover, we assume that50

multiple runs (analyses) per sample are undertaken and that measurements are corrected51

for run noise. As in [9] we will use an average of the runs per sample (e.g. mean per52

subject across runs) to utilize multiple runs recognizing that more involved methods may53

be necessary depending on the underlying experimental design [e.g. 11]. Measurements with54

pre-incubation of the therapeutic drug will be referred to as “inhibited measurements” and55

without incubation as “uninhibited measurements”.56

2.1. Methods for classification: Screening assays57

Method S1: 95th percentile58

59

The cut point is found as the 95th percentile of the uninhibited observations.60

61

Method S2: Parametric method62

63

The cut-off value is calculated as X̄+z0.95*SD, where X̄ and SD are the mean and stan-64

dard deviation of the uninhibited measurements respectively and z0.95 is the 95% percentile65

3
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of the standard normal distribution (approximately 1.645).66

67

Method S3: Robust parametric method68

69

The cut point is found as X̃+z0.95*1.483*MAD, where X̃ and MAD are the median70

and median absolute deviation of the uninhibited measurements respectively and z0.95 is71

the 95% percentile of the standard normal distribution as before.72

73

Method S4: Decision tree74

75

The following decision tree, as described in [6], is used to find the cut-point.76

1. Perform a Shapiro-Wilks test [12] to assess normality of the uninhibited data. If the77

p-value is < 0.05 the data are log-transformated.78

2. Calculate the 25% and 75% percentile, X0.25 and X0.75, of the (transformed) data.79

Eliminate all data points outside the interval [X0.25 - 1.5*(X0.75 - X0.25); X0.75 +80

1.5*(X0.75 - X0.25)]. This corresponds to eliminating data that are classed as outliers81

in a box-whisker plot [e.g. 13].82

3. Perform the Shapiro-Wilks test [12] to assess normality using the remaining data. If83

the p-value is < 0.05, use the 95% percentile to calculate the intermediate cut point,84

otherwise the parametric method is used.85

4. If data were log-transformed take the anti-logarithm of the intermediate cut point as86

final cut point otherwise the intermediate cut point is the final cut point.87

Note, that in general it is not recommended to test every data set for normality and use88

the result to decide between parametric and nonparametric statistical tests [e.g. 14, 15].89

This procedure has, however, been proposed as a compromise between statistical rigour90

and practicality.91

92

Method S5: Mixture model93

94

This method, which has been proposed in [7], aims to identify if samples are negative95

or positive and then only uses the negative samples to find the cut point. The approach96

4
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uses (regression) mixture models [e.g. 16, 17, 18] that allow different populations (in this97

application postive and negative subjects) to follow different probability distributions.98

99

The approach is to firstly identify, using the Bayesian Information Criterion (BIC)100

if there is more than one population in the screening data. If there is more than one101

population, then only samples belonging to the larger population, which is assumed to102

be corresponding to negative samples, will be used for cut point determination while all103

screening data are used otherwise. The cut point is then found as the 95th percentile of104

the observations. A formal description and details on the specific implementation of this105

method are provided in the supplementary materials.106

107

Method S6: Prediction intervals108

109

This approach is advocated in [8] and is based on obtaining intervals for future ob-110

servations based on m historical observations. In particular the cut-point is found as111

X̄+t0.95,m−1*SD*
√

1 + 1/m, where X̄ and SD are the mean and standard deviation of112

the uninhibited measurements respectively and t0.95,m−1 is the 95% percentile of a t-113

distribution with m− 1 degrees of freedom.114

115

Method S7: Experimental approach116

117

The experimental approach, which utilizes screening and confirmatory assay data to-118

gether obtains the cut point through the following steps:119

1. Find a preliminary cut point for the inhibited samples based on the 95% percentile120

method;121

2. Use the preliminary cut point to classify uninhibited values into positive and negative122

samples;123

3. Create a new dataset containing all screening samples below the preliminary cut point124

and all screening samples larger than the preliminary cut-off value provided that the125

confirmatory value is larger than the screening value. The second set of samples is126

included as such observations correspond to an nonspecific signal (false positives);127

5
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4. Use the 95% percentile method with the new dataset to get the final cut-point.128

2.2. Methods for classification: Confirmatory assays129

Method C1: Parametric difference130

131

Find the difference between uninhibited and inhibited measurement for each sample132

D = uninhibited measurement− inhibited measurement.

The cut point is found as cD = D̄ + z0.999 ∗σD where D̄ is the average difference across133

all samples, σD is the corresponding standard deviation and z0.999 is the 99.9% percentile134

of the standard normal distribution (approximately 3.09).135

136

Method C2: Parametric % inhibition137

138

For each sample find the percent change in inhibition as139

I = 100 ∗
(

1− inhibited measurement
uninhibited measurement

)

The inhibition based cut point is found as cI = Ī + z0.999 ∗ σI where Ī is the average140

percent change in inhibition across all samples, σI is the corresponding standard deviation141

and z0.999 is the 99.9% percentile of the standard normal distribution as before.142

143

Method C3: t-test144

145

Perform a one-sided 2-sample t-test of all runs of the log-transformed study drug inhib-146

ited values against the log-transformed uninhibited values for each sample. If the resulting147

p-value is less than 0.01 the sample is classed positive.148

3. Simulation of multi-tiered approach149

We begin by considering simulations of the 2-stage classification approach in this sec-150

tion. This has the advantage that it is exactly known whether a specific value is positive151

or negative, allowing for an informed comparison of the different approaches. For a more152

6
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in-depth evaluation we will consider samples to be either truly positive, false positive or153

truly negative. For simulation, true positive samples show high measurements when un-154

inhibited, but low values under inhibition, false positives have high measurements when155

uninhibited and inhibited while true negative samples have low measurements under both156

conditions.157

158

We will generate data for this evaluation in two parts. In the first part, data that159

are used to determine the cut-points are simulated from a population that only contains160

negative samples. Both inhibited and uninhibited samples will be generated and we will161

use 160 samples in the first part of the evaluation as previous work [7, 9] suggests limited162

impact of sample size. The second part of the data are used to evaluate the performance163

of the classification methods and cut-points found based on the first set of data. The data164

are generated to contain 85% true negative samples, 10% of the data are truly positive165

and 5% are false positive samples. To ensure accurate estimation of the classification rates166

we will simulate 1,000 samples and estimate the classification rates based on these data.167

Both normal and log-normally distributions are evaluated and 1,000 simulation runs are168

performed. Three runs will be used for establishing cut points and evaluating classification.169

Table 1 in the supplementary materials shows the exact parameters used to generate the170

data. Note that, while only a limited set of evaluations are presented here, many more171

simulations have been run. As the conclusions from these were qualitatively the same as172

the once presented, we have omitted them here for brevity.173

174

To evaluate the performance of the classifications we will look at the proportion of175

correctly classified true positive, true negative and false positive samples averaged over176

1,000 simulation runs. We begin, however, by considering the number of samples that177

are selected for confirmation as this number has direct implications for the practicability178

of the classification method. Note, that we expect around 200 observations to be classed179

as positive at this stage, as 10% of the 1000 observations are truly positive, 5% are false180

positive and the cut-points are found so that 5% error in classing negative samples are al-181

lowed. Figure 1 shows the distribution of the number of samples that are classed as positive182

based on the screening data for the seven different methods. The first notable observation183

7
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is that the experimental approach classes almost twice as many observations as positive184

than the other approaches. Consequently the risk of missing a positive signal at this stage185

is lower for that approach while at the same time the risk of including large numbers of186

truly negative samples in the confirmation step is also increased. Secondly, the difference in187

number of samples classed positive is (on average) quite similar for all the other approaches188

although more variability is observed in the mixture approach. It is however notable that189

for the situation with a small difference between positive and negative samples, only about190

100 samples are considered positive and hence a high risk of false negatives exists, while191

the larger differences between positive and negative samples yield numbers quite close to192

the expected 200 samples. Additional evaluations (not shown) suggest, that the number of193

positive samples is very stable once the difference between positive and negative samples194

is sufficiently large. For normally distributed data, for example, this difference needs to be195

around 2.5 standard deviations.196

197

∼∼ Figure 1 about here ∼∼198

Next we evaluate the ability of the various approaches to classify correctly. The objec-199

tive of this evaluation is two-fold. Firstly we wish to see how well commonly used clas-200

sification approaches for immunogenicity assays work in realistic situations and secondly201

determine which approach (that is which combination of methods for cutpoint calculation202

for screening assay and confirmation assay) is best. We begin by focusing on the overall203

classification rates, when the robust parametric approach, which in [7] is found to be one204

of the best performing methods, is used for the screening assays. Figure 2 shows a clear205

separation between the methods for classification for confirmatory assays investigated. The206

% inhibition methods performs far worse than the other two approaches in classifying true207

positive samples, when the robust parametric method is used for the screening assays. The208

difference between the parametric difference and the t-test is more nuanced, however. The209

t-test performs best classifying true positive samples - only for large difference between210

positive and negative samples the parametric difference is marginally better. When look-211

ing at the classification performance of the different approaches of samples that are truly212

negative, the parametric difference is slightly better, although the t-test also results in a213

8
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large proportion of correct classifications. This small difference is expected, however, as214

the number of correct classifications is dominated by the method used for the screening215

data. The parametric difference is clearly superior to the t-test in classifying false positives216

which only achieves about 80% correct classifications. It also shows a peculiar dip in the217

proportion of correct classifications for medium differences between positive and negative218

samples.219

∼∼ Figure 2 about here ∼∼220

The evaluation shown in Figure 2 focuses on the situation, where the robust paramet-221

ric difference is used for the screening assays. Although the classification rates do differ222

slightly, when using other methods during the screening phase, the relative patterns de-223

scribed above are the same. It is notable, that the difference between positive and negative224

samples needs to be quite large in order to see good classification of true positive samples,225

while the classification of true negatives and false positives is much less effected by that226

difference. To investigate the combination of methods further, we now look at the different227

methods for classifying screening assay data. Figure 3 show the overall classification rates228

for each screening classification method when the confirmation uses the t-test. The para-229

metric and the robust parametric method result in the best classification rates for truly230

positive samples while all methods appear to give good classification of negative samples.231

The mixture model approach and the prediction interval are best in determining false pos-232

itive samples. Overall, the percentile approach and the parametric methods appear to233

provide best results. As the difference between methods is most pronounced for small dif-234

ferences between the positive and negative samples, the graph displays a 1 and 1.2 standard235

deviation difference for normal and log-normal data, respectively. The overall patterns are236

the same as this difference increases, however. It is worth noting that the methods become237

almost indistinguishable for differences that classify an adequate proportion of subjects238

correctly.239

∼∼ Figure 3 about here ∼∼240

The evaluations so far clearly indicate that the method used for screening has little241

bearing on the overall ability to classify correctly when using a 2-tier approach while242

9
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the method used for confirmation is of high importance. A simple t-test performs best243

in classifying true positive samples but does not do so well in classifying false positives.244

In contrast a simple difference approach has good classification for false positives, yet245

only results in adequate classification rates if the difference between positive and negative246

samples are very large. This raises the immediate question whether a confirmatory assay247

should be used at all. To investigate this further we contrast the classification rates after248

screening only and after screening and confirmation. The robust parametric method is249

used for the screening assays while the parametric difference is used for confirmation.250

∼∼ Figure 4 about here ∼∼251

Figure 4 shows that using a confirmatory assay has an notable effect on the ability to252

classify positive sample correctly for small to moderate differences between positive and253

negative samples. At the same time the confirmatory assays do result in a much improved254

false positive rate. When using the % inhibition approach the results are even worse in255

terms of classifying positive samples. The results for the t-test are closer to the ones ob-256

tained by using screening alone but result in much worse classification for false positive257

samples (see Figure 2).258

259

4. Differences in methods for a specific example260

The previous evaluations were based on simulated data but suggest that it may not be261

beneficial for classifying ADA positive and ADA negative samples to use a confirmation262

assay. In this section we consider a real dataset (illustrated in Figure 5 and full dataset263

provided in Table 2 of the supplementary materials) to highlight where the different ap-264

proaches lead to distinct conclusions.265

266

The data set was generated by means of a direct-binding enzyme-linked immunosorbent267

assay (ELISA). The ELISA was designed to detect total Ig antibodies (i.e. isotypes IgG,268

IgM and IgA) specifically directed against a particular protein antigen. Plasma samples269

from 160 clinically healthy plasma donors were analyzed, each using three runs with and270

without inhibition. For the uninhibited runs, micro-titer plates (Nunc/ThermoScientific,271

10
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Denmark) were coated with the particular protein antigen. Human plasma samples from272

healthy plasma donors (Baxter AG, Austria) were incubated on the plate at a dilution of273

1:20. Antibodies directed against the antigen that were present in the samples bound to the274

antigen. After several washing steps, the antigen-antibody complexes was detected using a275

horseradish peroxidase (HRP)-coupled secondary antibody (goat anti-human Ig antibody;276

AbD Serotec, Germany). The amount of bound secondary antibody was measured by an277

HRP enzyme-dependent color-change reaction using TMB (3,3’,5,5’- tetramethylbenzidine278

solution, AbD Serotec, Germany) as substrate. The color reaction is directly proportional279

to the amount of bound antibodies. The micro-titer plates were subsequently read with280

a plate photometer (ELISA reader Synergy HT; Bio-Tek, USA) in a dual mode at 450nm281

measuring wavelength and 630nm reference wavelength. The dual mode allows the elimi-282

nation of measurement errors due to scratches or dirt on the micro-titer plates. Delta-OD283

(=optical density at 450nm minus optical density at 630nm) corrected by the blank value284

is taken into account as optical density (OD) for evaluation. Each sample was analyzed in285

independent triplicates by two different analysts on different days.286

287

As a tool to identify possible signal contribution from unspecific antibody binding,288

all samples were additionally analyzed using a study-drug inhibited assay (i.e. confirma-289

tory assay). This assay is basically set up identically to the uninhibited assay with the290

exception that all samples are pre-incubated with excess amount of free specific protein291

antigen (antigen competition). Specific antibodies directed against the particular antigen292

are bound in the form of immune complexes in the liquid phase and subsequently removed293

during washing steps. Hence, the specificity of antibodies detected with the uninhibited294

assay can be confirmed by a reduction of OD signal in the inhibited assay.295

296

Close examination of the data shows that a large variability both between subjects and297

between runs exists in this dataset. Similarly one can observe that the responses increase298

after the addition of the antigen for a number of subjects. This is somewhat surprising as299

it is not consistent with the inhibition model and suggests some other confounding factor.300

In such a situation a more advanced modeling approach that accounts for this confounding301

factor may be called for. For the purpose of illustration, however, we will keep with the302

11
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basic approaches and illustrate the difference in final classification resulting from different303

combinations of methods.304

∼∼ Figure 5 about here ∼∼305

Figure 6 shows the number of samples that are classed as positive for the different stages306

and methods. It can be seen that the different methods for screening classify between 8307

and 19 observations as positive. Looking at the methods for confirmation within each of308

the screening results it is firstly notable that the inhibition based method classes the most309

samples as positive while the difference based method does not class any as positive. More310

interestingly, however, is the fact that, despite substantially different numbers of samples311

being classed possitive during screening, the confirmation step does yield very consistent312

results. The t-test and the difference based method class exactly one and none sample,313

respectively, as positive, irrespective of the screening method used. This underlines once314

more how large the impact of the confirmation step is in comparison to the screening step.315

∼∼ Figure 6 about here ∼∼316

5. Discussion317

In this paper we have evaluated the ability of the multi-tier approach to classify positive318

and negative samples. We find that, irrespective of the specific methods used for deter-319

mining cutpoints for screening and competition assay the approach is able to correctly320

identify truly negative samples as such. Similarly there is high confidence in the correct321

classification of false positive samples. Unfortunately, however, we also find that in gen-322

eral the two-tier approach only identifies positive samples correctly if very large differences323

between positive and negative samples are present. For small differences between positive324

and negative samples positive samples are frequently misclassified. We also find that this325

performance at small differences between inhibited and uninhibited samples is due to a326

lack of sensitivity of the methods of classification for the competition based confirmatory327

assay used in this study. As a consequence, samples with a low signal in the screening328

assay should not be applied to the competition based confirmatory assay because of the329

low confidence of a correct true positive evaluation. Instead, a lower limit for confirmed330

12
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positive samples should be introduced in addition to the lower limit of detection of any331

antibody in the screening assay [20]. For moderate and small differences using the com-332

petition based confirmatory approach decreases the number of correctly classified positive333

samples drastically.334

335

In our evaluation we have focused on simple methods for classification (a summary of336

the preformance for all combinations of methods is given in Table 3 of the supplementary337

materials) and have not considered more complex methods such as [11]. We have done so338

as the simulated conditions we have considered meant that these simple approaches were339

appropriate. It is clear, however, that more complex real life settings and experimental340

designs will require more complex methods for analysis. Similarly we have focused on sce-341

narios that did not provide any particular additional challenges such as positive samples342

when establishing the screening cut point. It is clear that the findings still have general343

applicability even if more challenging scenarios are considered.344
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Figure 1: Boxplots of the number of samples exceeding the screening cut-point for the different methods.

Panels (a) and (b) display normally distributed data with 1 and 5 standard deviation difference between

positive and negative samples, respectively. Panels (c) and (d) display log-normally distributed data with

1.2 and 4 standard deviations difference between positive and negative samples, respectively.
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tFigure 2: Classification rates across the two stages when the robust parametrics method is used for the

screening assays and different approaches are utilized for the confirmation. A range of differences between

positive and negative samples is investigated.
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different approaches are utilized for the screening assays. A difference of 1 and 1.2 standard deviations

between positive and negative samples for normal and log-normal data, respectively are used.
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difference is used for the confirmatory assays. A range of differences between positive and negative samples

is investigated.
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Figure 6: Histogram of number of samples classified as positive after screening (big boxes) and after

confirmation for the different methods.
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Table 1: Parameters used to generate data for simulations. Between run correlation was 0.7 and correlation

between uninhibited and inhibited samples 0.3.

Uninhibited samples Inhibited samples prop prop

Distribution Stage µn µtp = µfp µn µtp µfp σ tp fp

Normal
1 0.3 NA 0.2 NA NA 0.2 0.00 0.00

2 0.3 0.5, 0.6, . . . 2.0 0.2 0.2 0.4, 0.5, . . . 1.9 0.2 0.10 0.05

Log-Normal
1 0.3 NA 0.2 NA NA 0.2 0.00 0.00

2 0.3 0.5, 0.6, . . . 2.0 0.2 0.2 0.4, 0.5, . . . 1.9 0.2 0.10 0.05

µ is mean and σ is standard deviation parameters of distribution. n. . . negative, tp . . . true positive, fp . . . false positive,

prop tp . . . proportion of truly positive samples per stage, prop fp . . . proportion of false positive samples per stage
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Table 2: Measurements with and with-out study drug inhibition of 160 healthy volunteers with 3 runs each used in the example

provided.
uninhibited samples inhibited samples uninhibited samples inhibited samples

# run 1 run 2 run 3 run 1 run 2 run 3 # run 1 run 2 run 3 run 1 run 2 run 3

1 0.284 0.212 0.200 0.310 0.270 0.278 81 0.132 0.131 0.183 0.188 0.246 0.208

2 0.215 0.302 0.149 0.225 0.318 0.278 82 0.162 0.186 0.202 0.239 0.308 0.363

3 0.085 0.138 0.094 0.103 0.137 0.114 83 0.119 0.127 0.151 0.194 0.219 0.241

4 0.161 0.218 0.135 0.153 0.243 0.154 84 0.080 0.092 0.093 0.133 0.180 0.179

5 0.219 0.290 0.185 0.276 0.334 0.270 85 0.103 0.119 0.126 0.116 0.160 0.184

6 0.353 0.463 0.205 0.244 0.393 0.279 86 0.127 0.150 0.137 0.187 0.231 0.223

7 0.185 0.243 0.158 0.211 0.321 0.311 87 0.136 0.113 0.151 0.149 0.140 0.163

8 0.155 0.309 0.111 0.206 0.341 0.142 88 0.090 0.126 0.115 0.164 0.245 0.234

9 0.093 0.089 0.097 0.217 0.192 0.145 89 0.232 0.460 0.261 0.259 0.620 0.317

10 0.079 0.152 0.084 0.133 0.178 0.165 90 0.096 0.122 0.143 0.110 0.193 0.137

11 0.166 0.245 0.127 0.153 0.222 0.247 91 0.220 0.245 0.278 0.296 0.275 0.341

12 0.062 0.118 0.065 0.110 0.160 0.161 92 0.206 0.268 0.286 0.229 0.261 0.350

13 0.148 0.210 0.113 0.205 0.186 0.178 93 0.120 0.122 0.143 0.224 0.290 0.247

14 0.137 0.161 0.091 0.176 0.177 0.175 94 0.421 0.566 0.508 0.444 0.534 0.414

15 0.165 0.223 0.131 0.209 0.251 0.179 95 0.100 0.123 0.128 0.188 0.228 0.194

16 0.245 0.551 0.133 0.345 0.786 0.136 96 0.178 0.129 0.165 0.212 0.192 0.179

17 0.164 0.156 0.118 0.178 0.198 0.114 97 0.110 0.160 0.146 0.163 0.308 0.216

18 0.207 0.387 0.218 0.207 0.273 0.277 98 0.093 0.135 0.133 0.151 0.224 0.259

19 0.147 0.257 0.153 0.222 0.309 0.247 99 0.233 0.313 0.341 0.277 0.365 0.448

20 0.151 0.274 0.133 0.165 0.209 0.166 100 0.077 0.105 0.117 0.175 0.193 0.199

21 0.091 0.163 0.080 0.172 0.286 0.192 101 0.541 0.600 0.497 0.258 0.333 0.354

22 0.075 0.178 0.069 0.101 0.227 0.114 102 0.220 0.262 0.200 0.274 0.309 0.278

23 0.143 0.216 0.110 0.227 0.298 0.159 103 0.177 0.225 0.265 0.261 0.325 0.504

24 0.101 0.352 0.077 0.218 0.519 0.149 104 0.101 0.157 0.087 0.146 0.219 0.160

25 0.092 0.091 0.085 0.176 0.162 0.129 105 0.196 0.259 0.260 0.196 0.319 0.263

26 0.075 0.100 0.121 0.157 0.155 0.159 106 0.115 0.169 0.183 0.179 0.231 0.227

27 0.057 0.082 0.062 0.130 0.179 0.137 107 0.268 0.415 0.475 0.279 0.391 0.423

28 0.126 0.117 0.116 0.189 0.232 0.221 108 0.750 0.936 1.005 0.711 0.899 1.155

29 0.116 0.155 0.089 0.204 0.269 0.169 109 0.448 0.693 0.515 0.303 0.438 0.417

30 0.117 0.147 0.097 0.158 0.186 0.103 110 0.190 0.180 0.224 0.249 0.311 0.362

31 0.255 0.377 0.111 0.242 0.398 0.114 111 0.115 0.116 0.126 0.155 0.181 0.174

32 0.074 0.150 0.085 0.140 0.204 0.136 112 0.209 0.238 0.267 0.243 0.290 0.253

33 0.146 0.202 0.017 0.192 0.305 0.178 113 0.133 0.167 0.148 0.201 0.372 0.302

34 0.177 0.246 0.257 0.242 0.293 0.338 114 0.177 0.204 0.231 0.223 0.282 0.354

35 0.167 0.212 0.200 0.203 0.240 0.279 115 0.234 0.306 0.201 0.272 0.352 0.317

36 0.086 0.100 0.123 0.144 0.147 0.165 116 0.199 0.214 0.213 0.236 0.273 0.349

37 0.990 1.212 1.066 0.310 0.351 0.371 117 0.422 0.560 0.482 0.314 0.436 0.470

38 0.099 0.108 0.073 0.190 0.249 0.223 118 0.116 0.165 0.149 0.175 0.271 0.235

39 0.224 0.298 0.213 0.258 0.294 0.265 119 0.172 0.208 0.202 0.226 0.336 0.289

40 0.100 0.184 0.087 0.118 0.212 0.107 120 0.157 0.168 0.143 0.219 0.211 0.228

41 0.159 0.250 0.236 0.334 0.344 0.427 121 0.135 0.311 0.189 0.140 0.332 0.196

42 0.139 0.148 0.211 0.193 0.264 0.316 122 0.160 0.233 0.274 0.259 0.387 0.341

43 0.069 0.063 0.096 0.110 0.121 0.151 123 0.079 0.091 0.113 0.136 0.209 0.193

44 0.074 0.085 0.094 0.121 0.140 0.144 124 0.092 0.125 0.133 0.182 0.258 0.237

45 0.282 0.319 0.304 0.392 0.432 0.516 125 0.217 0.250 0.252 0.286 0.374 0.330

46 0.135 0.195 0.186 0.291 0.438 0.475 126 0.068 0.070 0.077 0.133 0.183 0.161

47 0.167 0.240 0.201 0.278 0.402 0.342 127 0.099 0.092 0.111 0.170 0.223 0.138

48 0.140 0.278 0.151 0.219 0.366 0.285 128 0.197 0.138 0.238 0.298 0.284 0.282

49 0.132 0.183 0.145 0.184 0.251 0.194 129 0.166 0.134 0.079 0.202 0.173 0.183

50 0.156 0.169 0.215 0.149 0.179 0.222 130 0.114 0.081 0.161 0.188 0.219 0.273

51 0.073 0.080 0.099 0.124 0.171 0.149 131 0.137 0.129 0.189 0.207 0.225 0.294

52 0.080 0.120 0.124 0.162 0.239 0.179 132 0.094 0.086 0.106 0.133 0.159 0.178

53 0.135 0.121 0.216 0.164 0.286 0.288 133 0.264 0.180 0.302 0.321 0.345 0.434

54 0.102 0.118 0.126 0.146 0.200 0.174 134 0.175 0.148 0.156 0.216 0.253 0.257

55 0.265 0.295 0.260 0.251 0.289 0.275 135 0.171 0.170 0.246 0.198 0.243 0.315

56 0.115 0.233 0.228 0.208 0.293 0.190 136 0.183 0.200 0.166 0.212 0.294 0.269

57 0.124 0.172 0.172 0.213 0.227 0.193 137 0.274 0.281 0.187 0.277 0.378 0.292

58 0.080 0.097 0.140 0.155 0.201 0.215 138 0.323 0.341 0.437 0.286 0.247 0.364

59 0.186 0.217 0.247 0.286 0.457 0.363 139 0.195 0.205 0.181 0.196 0.242 0.264

60 0.058 0.079 0.093 0.094 0.140 0.086 140 0.198 0.171 0.244 0.179 0.185 0.238

61 0.144 0.192 0.159 0.171 0.222 0.212 141 0.165 0.157 0.175 0.226 0.246 0.344

62 0.111 0.140 0.148 0.213 0.304 0.267 142 0.099 0.128 0.093 0.125 0.168 0.170

63 0.173 0.194 0.195 0.163 0.257 0.176 143 0.187 0.230 0.260 0.197 0.209 0.258

64 0.120 0.125 0.110 0.140 0.204 0.099 144 0.345 0.434 0.401 0.456 0.571 0.556

65 0.202 0.184 0.292 0.294 0.370 0.553 145 0.606 0.275 0.304 0.373 0.426 0.483

66 0.111 0.103 0.127 0.171 0.194 0.221 146 0.191 0.219 0.235 0.230 0.285 0.368

67 0.274 0.238 0.336 0.254 0.284 0.313 147 0.173 0.238 0.268 0.224 0.273 0.337

68 0.124 0.112 0.141 0.135 0.167 0.179 148 0.162 0.204 0.316 0.256 0.303 0.384

69 0.423 0.579 0.660 0.414 0.723 0.936 149 0.095 0.070 0.063 0.085 0.133 0.141

70 0.133 0.153 0.137 0.219 0.298 0.258 150 0.139 0.116 0.122 0.131 0.223 0.178

71 0.479 0.498 0.449 0.374 0.491 0.427 151 0.180 0.225 0.288 0.196 0.335 0.341

72 0.143 0.298 0.144 0.187 0.409 0.296 152 0.210 0.258 0.265 0.227 0.286 0.301

73 0.148 0.186 0.123 0.210 0.253 0.257 153 0.276 0.292 0.342 0.271 0.291 0.260

74 0.106 0.119 0.153 0.143 0.163 0.206 154 0.156 0.262 0.387 0.271 0.277 0.310

75 0.152 0.161 0.153 0.228 0.298 0.288 155 0.224 0.266 0.301 0.277 0.318 0.436

76 0.501 0.635 0.571 0.231 0.292 0.370 156 0.252 0.296 0.352 0.273 0.398 0.466

77 0.142 0.184 0.206 0.194 0.223 0.302 157 0.114 0.129 0.119 0.117 0.155 0.226

78 0.152 0.175 0.155 0.197 0.228 0.206 158 0.115 0.146 0.144 0.118 0.164 0.202

79 0.109 0.136 0.139 0.198 0.237 0.245 159 0.290 0.323 0.341 0.308 0.377 0.449

80 0.122 0.222 0.116 0.169 0.325 0.230 160 0.274 0.413 0.380 0.254 0.479 0.325
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Table 3: Summary conclusions for performance of multi-tier approach across all combinations of methods.

Method Overall

Screening Confirmation performance

95th percentile

Parametric difference

Good

Parametric method Good

Robust parametric method Moderate

Decision tree Poor

Mixture model Poor

Prediction intervals Poor

Experimental approach Poor

95th percentile

Parametric % inhibition

Poor

Parametric method Poor

Robust parametric method Poor

Decision tree Poor

Mixture model Poor

Prediction intervals Poor

Experimental approach Poor

95th percentile

t-test

Good

Parametric method Good

Robust parametric method Moderate

Decision tree Moderate

Mixture model Moderate

Prediction intervals Moderate

Experimental approach Poor

415
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Highlights

• The multi-tier approach for classification of immunoassays is evaluated
• The methods are illustrated on a real dataset
• The methods are compared via simulation
• We find that the overall performance of the multi-stage process is dominated by the method 

used for confirmation
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