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Abstract: This paper proposes a solution to monitor the 

degradation of a multifunctional MEMS sensor (MFS) and to 

recalibrate the sensor output accordingly. The solution is able to 

predict the remaining useful life based on the recalibration history. 

The MFS used is a dual pressure-humidity hybrid sensor where 

model data has been used to demonstrate the applicability and the 

performance of the proposed method for diagnosis, self-correction 

and prognosis. 

 
Index Terms—MEMS, Prognostics, Self-Test, Diagnostics, 

Reconfiguration, Fault Tolerance, Pressure, Humidity, HUMS 

I. INTRODUCTION 

he integration of Health and Usage Monitoring Systems 

(HUMS) in engineering structures, equipment and devices 

is of great interest to deliver the required monitoring functions 

needed for high reliability, availability and safety. Existing 

applications include safety critical systems including surface 

terrain vehicles, aviation vehicles, submarines, ships and 

complex structures [1, 2]. 

The growth in the use HUMS has been a key driver for the 

sensor market [3]. Recent advances in the complexity, 

reliability, power efficiency and low development costs of 

MEMS sensors are of great interest to the HUMS community 

[4-6]. 

Sensors are considered to be the single most important 

component of HUMS, regardless of the usage requirements or 

application scope [7] as they are key to the monitoring 

capability of the HUMS framework. The specifications for 

these health and usage monitoring sensors is however 

challenging as sensor malfunction or failure can result in 

situations where the HUMS would not outlast the principle 

device it is supposed to monitor [8].  

Two of the most prevalent sensing capabilities that the vast 

majority of HUMS require are humidity and pressure sensing. 

Humidity and pressure are often used in similar environments 

and even in paired configurations [5, 9, 10]. Considering this, 

the design of a multifunctional sensor (MFS) that integrates the 

sensing of these two parameters has significant market 

potential. 

Prognostics delivers the capacity to predict the future health 

and the remaining useful life (RUL) of a system however, 

embedded prognostics does not feature in today’s commercial 

MEMS devices. Solutions to deliver this capability are of 

interest as the integrity of the data generated by MEMS based 

devices is critical in many applications, especially HUMS. This 

is the gap this research is seeking to bridge. 

This research presented in this paper aims to realize a low 
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cost prognostics solution for a MEMS based MFS able to 

measure pressure and humidity concurrently. The design is 

based on the architecture described in [11]. The work 

demonstrates that it is feasible to integrate a “lightweight” 

module with conservative prognostics capabilities in firmware 

or hardware into this HUMS based sensor with a very low 

energy footprint. 

II. MULTIFUNCTIONAL SENSOR (MFS) 

 
Fig.1: Top view and cross section of the MFS Schematic [11] 
 

The MFS structure consists of: 

 A thin silicon membrane with a very large surface area 

relative to its thickness. 

 Three humidity sensitive polymer beams deposited on 

the membrane, covering 40% of the membrane surface. 

 Piezoresistors (PZR) embedded into the membrane 

towards the edges. 

An overview of the sensor design is presented in Fig 1. 

The membrane is exposed to two sources of mechanical load: 

 Load due to atmospheric pressure. 

 Load due to humidity induced expansion (and 

contraction) in the polymer beams.  

The strain associated with the mechanical load is most 

extreme at the periphery [12, 13] and hence the piezoresistors 

[14] are placed in these locations as their resistivity changes 
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significantly when exposed to high levels of stress at the 

borders of the membrane [15-17]. Consequently, the physical 

phenomena most interesting for this research are: 

 Piezoresistivity.  

 Stress due to Hygroscopic strain (humidity induced 

strain). 

A. Piezoresistivity 

Four piezoresistors are embedded perpendicular and parallel 

to the edge of the thin film. These resistors are connected in a 

full bridge configuration where the bridge voltage output is 

given by (1).  

𝑉0  = −
𝜋44

2
. 𝜎𝑝. 𝑉𝑖 

(1) 

Where  Vi is the operating supply voltage to the Wheatstone 

bridge, π44 denotes the piezoresistive coefficient of (100) <100> 

oriented silicon & 𝜎𝑝  is the uniaxial stress (in this case, due to 

pressure). The output of the Wheatstone bridge is a function of 

one of three piezoresistive coefficients (𝜋11,𝜋12 𝑎𝑛𝑑 𝜋44). 

These coefficients are functions of doping concentration, type 

of dopant and temperature [18, 19]. Of these, π44 is the most 

suitable for its ability to mitigate various second order effects 

The stress induced on the membrane, in this case due to 

applied pressure can be expressed by Hooke’s Law (2): 

𝜎𝑝  = 𝜖. 𝐸 (2) 

Where ϵ is the induced strain and E is the Young’s Modulus 

also known as the modulus of elasticity. Equation (2) can be 

substituted in (1) to get expression 3 as follows: 

𝑉0  = −
𝜋44

2
. 𝜖. 𝐸. 𝑉𝑖 

(3) 

Equation (1) and (3) can be used to calculate the potential 

difference across the bridge. In the case of the MFS the 

compressive stress is of interest, where 𝜎𝑝 is pressure induced 

stress applied to the sensor. 

B. Hygroscopic Strain and the Cumulative Effect 

Due to their sensitivity to humidity, polymer beams are often 

used as the sensing elements in humidity sensors [20]. 

Humidity induces changes in volume of a polymer structure due 

to absorbed moisture [21, 22]. The reversible hygrometric 

volume expansion due to humidity can be expressed by (4) [22] 

for a constant temperature: 

𝜖𝐻𝑦𝑔 = 𝛼𝐻𝑦𝑔. 𝑅𝐻 (4) 

 

Where RH is the relative humidity, 𝛼Hyg is the linear 

coefficient of humidity and 𝜖𝐻𝑦𝑔 is the hygroscopic strain on 

the polymer beam. There are three polymer beams deposited on 

top of the MFS membrane. Absorbed moisture due to humidity 

exerts mechanical stress [23] σRH That can be  expressed as (5). 

σRH  = (αHyg. RH). E (5) 

And consequently (2) & (5) can be used to express the 

induced strain strain due to relative humidity as shown in (6): 

𝜖𝑅𝐻 = (𝛼𝐻𝑦𝑔. 𝑅𝐻)  

 

(6) 

If there is a piezo resistor embedded in the periphery of the 

membrane (region of maximum stress), the induced stress 

would result in a change in potential difference across the full 

Wheatstone bridge. By applying (6) and (3) for hygroscopic 

strain, we will arrive to (7): 

𝑉0  = −
𝜋44

2
𝛼𝐻𝑦𝑔. 𝐸. 𝑉𝑖 . 𝑅𝐻 (7) 

Equation (1) can be reconstituted to accommodate both 

forms of stress that would affect the voltage across the resistor.  

𝑉0  = −
𝜋44

2
. 𝑉𝑖 . (𝜎𝑝 + 𝜎𝑅𝐻) (8) 

Where the stress due to relative humidity can be replaced 

with a term consisting of the relative humidity, Young’s 

modulus and the Coefficient of Moisture Expansion (of the 

polymer beam) as expressed in (9): 

𝑉0  = −
𝜋44

2
. 𝑉𝑖 . (𝜎𝑝 + 𝛼𝐻𝑦𝑔𝐸. 𝑅𝐻) (9) 

This is a reasonable expression to present the output of a 

system as a change in potential difference, where it is a function 

of the stress due to pressure as well as the humidity itself. This 

will be used a frame of reference for the validation of the 

simulation results. 

In [10], pressure on the silicon membrane has been directly 

equated to stress due to pressure. Equation (9) can be used in 

that context. However, the mathematical representation needs 

further refinement where there are restrictive boundaries to the 

transduction of the stress. In such a case, stress cannot be 

equated to the pressure. A simplified function to derive stress 

due to pressure in such a situation can be expressed as in [10] 

in equation (10): 

𝜎𝑝 =  𝛽.
𝑝𝑏2

ℎ2
 

(10) 

Where 𝑝 is the pressure applied on the silicon membrane, ℎ 

is the thickness of the thin film membrane, 𝛽 is the dimensional 

coefficient of due to a/b (Table 1), b is the length of the membrane 

and a is the breadth of the membrane. The stress is presented as a 

function of not only the pressure but also the structural 

dimensions of the membrane i.e. the length, breadth and 

thickness. 
TABLE 1 

Coefficients for maximum stress due to pressure [10] 
a/
b 

1 1.2 1.4 1.6 1.8 2 ∞ 

β 0.307
8 

0.383
4 

0.435

6 

0.46

8 

0.487

2 

0.497

4 

0.5000

  
 

 

The resulting expression to calculate the output of a sensor 

consolidating both the pressure and humidity for a fixed 

temperature can be expressed as follows: 

𝑉0  = −
𝜋44

2
𝑉𝑖 . (𝛽

𝑝𝑏2

ℎ2
+ 𝛼𝐻𝑦𝑔𝐸. 𝑅𝐻) 

(11) 

This expression can be further generalized as follows [24]: 

𝑉0  = (−
𝜋44

2
. 𝑉𝑖 . (𝛽.

𝑝𝑏2

ℎ2
+ 𝛼𝐻𝑦𝑔. 𝐸. 𝑅𝐻)) .

𝑛

4
 

(12) 

Where 𝑛 represents the number of active gauges in the 

Wheatstone bridge i.e. 𝑛 = 1, 2 𝑜𝑟 4 for quarter, half and full 

bridge respectively.  
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C. Characterization of the MFS Piezoresistive Grid 

Temperature and doping levels in piezoresistors cause the 

most significant drift in the output characteristics of pressure 

sensors [25]. Considering the models available [26-28], the 

Kanda Model [29] has been selected due to the ease with which 

a good estimate of the piezoresistance coefficient can be 

computed [15, 28]. This coefficient is dependent on 

temperature with respect to doping concentrations of the 

piezoresistors.  

1) The Piezoresistive Coefficient 

According to Kanda [29, 30], the piezoresistive coefficient is 

characterized as: 

𝜋(𝑁, 𝑇) =  𝜋(𝑁0, 300𝐾)𝑃(𝑁, 𝑇) (13) 

Where 𝜋(𝑁0, 300𝐾) is the value of the piezoresistive 

coefficient for a low doped p-type resistor, N is the doping 

value, T is the absolute (K) temperature, and 𝑃(𝑁, 𝑇) is the 

piezoresistance factor given by: 

𝑃(𝑁, 𝑇) =  
300

𝑇
.
1

𝛿
 

(14) 

where 𝛿 = [1 + 𝑒𝑥𝑝 [−
𝐸𝑓

𝐾𝑏𝑇
]] 𝑙𝑛 [1 + 𝑒𝑥𝑝 [−

𝐸𝑓

𝐾𝑏𝑇
]] with 𝐸𝑓 

being the Fermi Energy in the doped p-type Silicon and 𝐾𝑏 

Boltzmann’s constant,  The coefficient 𝜋44 used in the 

mathematical model of the MFS was derived using (13) and 

(14). Studies have revealed that: 

 Increasing doping concentration and/or temperatures 

respectively cause a lowering in piezoresistive 

sensitivity [25] and; 

 The estimation of the coefficient by Kanda’s method 

is best for doping levels up to 5x1019 atoms/cm3. 

a) Temperature Effect on piezoresistive response 

The effect of the temperature on the bridge output voltage 

under a uniform load can be determined using the following 

relationship [15, 25, 26, 28]: 

 

∆V

Va
=

π44(N, T). P

2
. (

a

h
)

2

. (σxx − σyy) 
(15) 

Where 𝑉𝑎 is the supply voltage to the bridge, h is the 

thickness of the membrane, a  is the surface area of the 

membrane and P is the uniform pressure applied on the 

membrane. A decrease in bridge output voltage is observed 

with increase in temperature. However, quite importantly, this 

sensor output response is linear within the operational 

temperature range.  

b) Piezoresistive  sensitivity 

The doping concentration of the piezoresistors is the primary 

variable that affects the sensitivity of piezoresistive sensors. 

The relationship between doping concentration and sensitivity 

can be expressed as follows [25, 28]: 

 

S(T, N) =
π44(N, T)

2
(

a

h
)

2

(σxx − σyy) 
(16) 

 

It has been observed that both an increase in the thickness of 

the membrane and increase in doping levels reduces the 

pressure sensitivity of the piezoresistive elements [25]. It has 

been found that doping concentration should not exceed 1019 

atoms/cm3. 

III. SENSOR MODELING 

The first objective in the development of FEM (finite element 

model) of the MFS model was to validate its behavior. The 

second objective was to utilise the model to generate a sizeable 

data set to characterise system behavior and hence develop the 

prognostics methodology. The final objective was to test the 

prognostics module by introducing various failures in the model 

and validate its accuracy and performance. 

A. FEM Model 

The Finite Element Analysis (FEA) method has been used to 

model and measure key parameters of the Multi-functional 

Sensor (MFS). The MFS was modeled and simulated using 

COMSOL Multiphysics® 4.4. Details of the FEM model are 

shown in Table 2. Structural parameters are as follows: 

 Piezoresistors: 10μm × 50μm × 1μm each 

 Silicon Membrane: 500μm × 500μm × 10μm and 

 Polymer Beams: 1 × central 400μm × 100μm × 5μm and 

2 × adjacent 400μm × 50μm × 5μm 
TABLE 2 

 Parameters of the FEM model used in the simulation 
 

Structure Modelling Element Properties 

Polymer Beams Isotropic 

Sorption Mechanical 

Transduction   (study) 

Free Triangular Mesh 

Minimum Element Size 

0.5μm 

Young’s Modulus = 7.5 

GPa 

Density = 1×10-15kgμm-3 

Poisson’s Ratio = 0.35 

Humidity Expansion 

Coefficient=1×10-4/%RH 

Silicon 

Membrane 

Isotropic, 

Surface Stress-Strain 

(study), 

Free Triangular Mesh 

Minimum Element Size 

0.5μm 

Young’s Modulus = 1381 

GPa 

Density = 2.33×10-15 kg. 

μm-3 

Poisson’s Ratio = 0.278 

Piezoresistors 

(p-type) 

(Polycrystalline 

Crystal) 

Anisotropic 

Piezoresistivity Boundary 

Currents (study), 

Free Triangular Mesh 

Minimum Element Size 

0.1μm 

Resistivity = 7.8Ωcm 

Resistance (under 0 

stress) = 390 kΩ 

 

The piezoresistors are composed of silicon with doping levels 

defined by the piezoresistive coefficient π44. Piezoresistors 

parallel and perpendicular to the stress respectively are paired 

together (as a half bridge). This is the best configuration of the 

piezoresistors [28] offering highly desirable low thermal 

sensitivity [28].  

The Physics Models employed in COMSOL were “Structural 

Mechanics → Piezoresistivity & Boundary Currents” and 

“Structural Mechanics → Joule Heating & Thermal 

Expansion”. Both studies were Stationary. The “Joule Heating 

& Thermal Expansion” was used to emulate the deformation of 

the polymer beams due to moisture absorption, as well as the 

resulting strain on the membrane. “Piezoresistivity & Boundary 

Currents” was used to apply pressure on the membrane surface 
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and measure the boundary currents for a fixed potential 

difference across the 4 individual piezoresistors. All three major 

physical components were meshed as free triangular elements, 

with element size varying between 0.5 μm and 0.1 μm. 

Parametric sweep was used for the static analysis of multiple 

combinations of applied pressure and humidity within a 

specified range and intervals to measure the current across the 

resistors for a fixed voltage (to enable the calculation of the 

resistance). 

  

 

Fig 2: left: The MFS at maximum humidity induced mechanical stress 

under no pressure and right: under zero percent humidity (i.e. no 

mechanical stress due to polymer beams) 
 

The sensor was studied for all combinations of pressure: 

ranging from 0 to 0.2 MPa (2 atmospheres) at intervals of 0.02 

MPa and humidity: ranging from 1 to 100% at 1% intervals. Fig 

2 shows the sensor at no pressure with maximum humidity and 

0% humidity at maximum pressure respectively. 

B. Post FEM Processing 

The two pairs of piezoresistors are realized as two Half 

Wheatstone Bridges with their voltage outputs Vx  and Vy 

respectively (Fig 4) with an input of 5 volts each. Increasing 

load decreases Ry1 and Rx1 resistances while increasing Rx2 and 

Ry2.  

 

 
 Fig 4: Two Half-Wheatstone bridges 

 

The Vx and Vy sensor outputs are processed further within 

MATLAB to compute the pressure and humidity measurements 

based on the expression shown in equations (17) & (18).  

𝑝 =
𝛼𝜑𝑦. 𝑉𝑥 − 𝛼𝜑𝑥. 𝑉𝑦

𝛼𝜑𝑦. 𝛼𝑝𝑥 − 𝛼𝑝𝑦. 𝛼𝜑𝑥
 

(17) 

𝜑 =
𝛼𝑝𝑥. 𝑉𝑦 − 𝛼𝑝𝑦. 𝑉𝑥

𝛼𝜑𝑦. 𝛼𝑝𝑥 − 𝛼𝑝𝑦. 𝛼𝜑𝑥
 

(18) 

 Where: 𝑉𝑥 & 𝑉𝑦 are the output voltages (from COMSOL 

forming an input to Spice), 𝑝 is the pressure, 𝜑 is humidity, 

𝛼𝜑𝑦 & 𝛼𝜑𝑥 are the coefficients of Humidity and 𝛼𝑝𝑦 & 𝛼𝑝𝑥 are 

the coefficients of Pressure. 

For an open chamber paradigm, the starting coefficients of 

pressure and humidity were recalibrated to the values presented 

in Table 3: 

 

TABLE 3 

Initial Values of the Humidity and Pressure Coefficients 

𝜶𝒑𝒙 𝜶𝒑𝒚 𝜶𝝋𝒙 𝜶𝝋𝒚 
-975 volts/Pa -2368.75 volts/Pa -0.975 volts/%RH -2.256 volts/%RH 

 

 

 
Fig 5: The mean sensitivity slope of the MFS as a function of applied pressure 

at 0% humidity. The unit of pressure is MPa 

 
Fig 6: The mean sensitivity slope of the MFS as a function of humidity at 0MPa 

pressure 

Fig 5 and 6 show the average sensitivity of the Multi-

functional Sensor (MFS) as a function of pressure (at 0% RH) 

and as a function of humidity (at 0 MPa pressure) respectively. 

This behavior is consistent for all combinations of pressure and 

humidity.  

 
Fig 7: The output Vout (11) in red dots compared to the average slope of (Vy-

Vx) in blue where the x-axis is the relative humidity (%) and the y-axis is the 

voltage (mV) 

C. Validation 

Consistent correlation was identified between the output 

of the MFS and the mathematical model, where a 

relationship between the average slope of Vy-Vx and Vout as 

expressed in equation 11 was characterised (Fig 7).  
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IV. FAULT DETECTION AND PROGNOSTICS 

The MFS model has been used to simulate normal and faulty 

modes of operation of the sensor. The resulting data (for faulty 

sensors) has been used to test and validate the performance of 

the fault correction and prognostics algorithms  

A. Failure Mechanism Simulation 

The most vulnerable part of sensors similar to the MFS is the 

thin membrane. The standard failure mechanisms associated 

with such a membrane based structure are due to media 

incompatibility (stress due to direct interaction with 

environmental agents), thermal stress and mechanical stress. 

The main effect of these sources of stress is a change in the 

elasticity of the membrane.  This has been simulated in 

COMSOL by varying the elasticity of both the silicon 

membrane and the polymer beams. This has been achieved 

parametrically by changing the modulus of both the membrane 

and beams.  

B. Operational Overview 

The final sensor is constructed of 4 redundant MFSs 

fabricated and packaged together on a single substrate. The 

architecture utilizes this redundancy to facilitate a series of self-

tests. Consequently, the system has two modes of operation, a 

Normal Mode of Operation (NMO) and a Test Mode (TMO). 

The (TMO) provides for additional layers of reliability by 

supporting: 

 Detection of faulty sensors. 

 Calibration and alignment of the faulty sensors. 

 Health prognostics for each of the individual sensors & 

 An early failure detection window. 

C. Normal Mode of Operation (NMO) 

In normal mode, the raw outputs from the four sensors are 

digitized and subjected to pre-processing. After pre-processing, 

the Pressure and Humidity measurements are calculated for 

each sensor based on their respective coefficients. Any sensor 

output with an anomalous value for either pressure or humidity 

is ignored. After data fusion, the system outputs a reading for 

Pressure and Humidity that are the averages of the valid 

pressure and humidity outputs produced by the individual 

sensors, respectively.  

D. Test Mode of Operation (TMO) 

This system has two test modes. The first test mode uses 

Built-In Self-Test (BIST) for system validation. In case the 

BIST detects an anomaly in any one of the sensors, auto 

calibration for self-correction is performed. The second mode 

performs a prognostic analysis on the system and predicts the 

remaining useful life (RUL) of the individual sensors as well as 

the overall system. This provides a high degree of fault 

tolerance and excellent health management capabilities.  

V. ERROR DETECTION AND FAULT CALIBRATION (FC) 

Fig 8 illustrates the algorithm for the real time calibration of 

faulty sensors to maintain a correct output. This section will 

discuss the algorithm in detail.  

 
Fig 8: Error Detection and Self Calibration flow chart – The sensor outputs 

are compared and modify sensors’ coefficients for any anomalous sensor that 

is detected. The values of all coefficients are logged, irrespective of whether 

they have been changed or not. This forms the input to the prognostics module 

 

The aim of the first program is to detect and isolate faulty 

sensors and then recalibrate their coefficients to introduce a 

correcting bias to the output. This program runs a built in self-

test at regular periodic intervals. For the purposes of our 

experiments, the self-test and calibration was run every 10 

seconds.  

As indicated in the flow chart, at the time of the initiation, 

the current time stamp is recorded. The testing module then 

uploads the current values of the coefficients for each sensor. 

The system maintains 4 reference coefficients for each sensor 

with initial values as described in Table 3.  

The pressure and humidity output of all 4 sensors are 

compared, as long as they are similar to one another within a 

configurable level of tolerance. If an anomalous sensor is 

detected over the course of the self-test, the algorithm updates 

the coefficients of that sensor to re-calibrate the output. The 

recalibration is based on the following criterion:  

1. The threshold of deviation is determined by a 

configurable percentage relative to the correct output 

derived from the reference sensors, as long as there are 

at least two sensors that are reasonably consistent 

(±0.01%). If the deviation of the faulty sensor(s) is 

beyond that threshold, the unit is declared faulty. 

2. If at any point, no two sensors outputs are mutually 

consistent, the unit is declared faulty.  

The coefficients due to pressure are calibrated using 

equations (19) and (20) with the faulty Vx output while 

equations  (21) and (22) use the faulty Vy output to recalibrate 

the humidity coefficients, where “n” is the test iteration (n being 

the current and n-1 being the previous and so on): 

All the coefficients are saved in memory along with the current 

time stamp. In the case of faulty sensors, the re-calibrated 

values of the coefficients are stored.  

Several hundred tests were conducted to validate the 
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performance of this algorithm.  

 
Fig 9 (a) shows the changes in the Vx and Vy outputs of the faulty sensor 

over time (b) and (c) show the correction in the pressure coefficients while 

(d) and (e) show the correction in the humidity coefficients for a faulty 

sensor at 0.02MPa pressure and 4% relative humidity.  

 

Fig 9 illustrates one of these tests. The system updates the 

coefficients following detection of an inconsistent output.  

VI. PROGNOSTICS 

The prognostics algorithm uses data generated by the re-

calibration algorithm discussed in the previous section. 

Changes in the pressure and humidity coefficients form the 

input to the prognostics algorithm. A set of test conditions 

(Table 4) have been applied with Fig’s 10 and 11 recording the 

voltage output (Vx & Vy) of healthy and faulty sensors 

respectively.  

 

 

 

 

TABLE 4 

Changing input Humidity and Pressure 

Applied Pressure 

(MPa) 

Applied Humidity 

(%RH) 

Exposure 

Time (sec) 

0.2 100 5 

0.2 92 6 

0.18 89 15 

0.16 89 13 

0.12 94 5 

0.12 89 11 

0.12 81 14 

0.1 75 6 

0.1 69 25 
 

 

 
  Fig 10: Vx and Vy for the healthy sensor 

 

 
 Fig 11: Vx and Vy for the faulty sensor for the same input  

 

The functional flow of the prognostics algorithm is illustrated 

in Fig 12. This module is dependent on the data generated by 

the Fault Calibration (FC) module discussed in section V. 

During operation of the Fault Calibration, pressure and 

humidity coefficients are modified when a fault is detected in a 

sensor. The values of these coefficients are logged. The changes 

in the values of these coefficients relative to their initial values 

𝛼𝑝𝑥𝑛
=  

𝑉𝑥𝑓𝑎𝑢𝑙𝑡𝑦
. 𝛼𝑝𝑥𝑛−1

𝑃. 𝛼𝑝𝑥𝑛−1
+ 𝐻. 𝛼𝜑𝑥𝑛−1

 
(19) 

𝛼𝜑𝑥𝑛
=  

𝑉𝑥𝑓𝑎𝑢𝑙𝑡𝑦
. 𝛼𝜑𝑥𝑛−1

𝑃. 𝛼𝑝𝑥𝑛−1
+ 𝐻. 𝛼𝜑𝑥𝑛−1

 
(20) 

𝛼𝑝𝑦𝑛
=  

𝑉𝑦𝑓𝑎𝑢𝑙𝑡𝑦
. 𝛼𝑝𝑦𝑛−1

𝑃. 𝛼𝑝𝑦𝑛−1
+ 𝐻. 𝛼𝜑𝑦𝑛−1

 
(21) 

𝛼𝜑𝑦𝑛
=  

𝑉𝑦𝑓𝑎𝑢𝑙𝑡𝑦
. 𝛼𝜑𝑦𝑛−1

𝑃. 𝛼𝑝𝑦𝑛−1
+ 𝐻. 𝛼𝜑𝑦𝑛−1

 
(22) 
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form a metric for the health of the system within the Prognostics 

Module. Logging these coefficients  coefficients is used to 

predict end of life (EOL) of the system by measuring the rate of 

decay. The variables used to calculate the decay can be 

understood with reference to Fig 13. 

This algorithm outputs a projection of the time to failure. It 

also raises a flag when the system moves past a preliminary 

threshold. This can be used as an early warning system when 

the sensors are close to total failure. In its current form, it is not 

equipped to preempt sudden system failures. However, it is 

suited to the detection of aging or gradual degradation with a 

good degree of confidence.  

 

 
Fig 12: Prognostics Flow Chart. The 4 coefficients of Humidity and 

Pressure ( 𝜶𝝋𝒚 𝜶𝝋𝒙 𝜶𝒑𝒚 𝜶𝒑𝒙 ) are adjusted as they deteriorate. The 

prognostics algorithm predicts the RUL based on the (rate of) change in the 

coefficients approaching a complete failure threshold defined for each 

coefficient individually  

 
Fig 13: A generic diagram showing the operation of the prognostics system 

over time. It illustrates observations at fixed intervals and the failure 

threshold (maximum deviation) the faulty sensor is approaching. The 

mandate of the Prognostic System requires the determination of RUL 

(Remaining Useful Life) based on a set of recent observations. 

 

As discussed, the deviation of coefficients from their initial 

values is used to estimate the deterioration of system health. 

The RUL value decreases as the system health deteriorates, 

hence, the net change in recalibrated coefficients relative to 

their initial values is inversely proportional to the RUL as 

expressed in (23) & (24): 

𝑅𝑈𝐿 ∝  
1

𝜕𝛼
  

(23) 

𝑅𝑈𝐿 ∝  (
1

𝜕𝛼𝑛 − 𝜕𝛼𝑛−1

𝜕𝑡

) 

(24) 

Where ∂𝛼𝑛 is the change in a coefficient relative to an initial 

value for a healthy sensor at the time of observation n, ∂𝛼𝑛−1 is 

the change in coefficient relative to the initial value in the 

previous observation. 𝜕𝑡 is the time between observations. 

Equation (24) can be modified to incorporate observations from 

any number of previous iterations for increased reliability. The 

RUL based on the entire length of operation of the sensor can 

be expressed as (25).  

 

𝑅𝑈𝐿 ∝  
1

𝜕𝛼𝑛

∑ 𝜕𝑡𝑛
1

   
(25) 

Equation (24) & (25) can be combined as follows to 

incorporate both short and long term trends: 

 

𝑅𝑈𝐿 ∝  
1

𝜕𝛼𝑛
.

1

𝑘1
𝜕𝛼𝑛

∑ 𝜕𝑡𝑛
1

+ 𝑘2
𝜕𝛼𝑛 − 𝜕𝛼𝑛−1

𝜕𝑡

 
(26) 

Where 𝑘1 is the (constant) weight for the short term relative 

trend and 𝑘2 is the constant for the long term trend where k1 and 

k2 can be adjusted as long as 𝒌𝟏 + 𝒌𝟐 = 𝟏 

The remaining useful life is directly proportional to the 

breadth of the threshold available. The smaller the acceptable 

window of operation, the shorter the RUL is. 

𝑅𝑈𝐿 ∝  𝛼𝑒𝑜𝑙 (27) 

Equation (26) & (27) have been combined to form (28) and 

forms the basis of the prognostics algorithm. For the purposes 

of the experiment documented in this paper, k1 and k2 are 0.5 

each.  

𝑅𝑈𝐿

= 𝐾. 𝛼𝑒𝑜𝑙 .
1

𝜕𝛼𝑛
.

1

0.5.
𝜕𝛼𝑛

∑ 𝜕𝑡𝑛
1

+ 0.5.
𝜕𝛼𝑛 − 𝜕𝛼𝑛−1

𝜕𝑡

 

(28) 

Where,  𝐾 is a dynamic constant that is a function of the initial 

value of the coefficient as well as the previous value of RUL. 

A. Tests and results 

We have presented the example of a rapidly deteriorating 

MFS. The prognostic algorithm has been tested on that 

particular sensor and the results demonstrate the performance 

of the prognostics module. It stands to be noted that for the tests 

presented here, the rate of degradation of the coefficients are 

abnormally high and serves to demonstrate how the system 

predicts failure over a short horizon with a tight threshold.  

For the purposes of this validation experiment, only one of 

the humidity coefficients (αϕx) has been used. The experiment 

has concluded that two of the coefficients are more sensitive to 

failure in humidity sensing, while the other two are more 

sensitive to failures in pressure transduction. However, as the 

net mechanical load on the piezoresistors due to pressure is 

lower than that due to hygroscopic expansion of the polymer 

beams, only one humidity coefficient was deemed sufficient to 
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prognose EOL. 

The values of αϕx stored by the FC were observed every 

second. The prognostics module runs in 10 second intervals. 

The failure threshold for αϕx has been set at -25 volts/%RH. It 

should be noted that while short intervals have been used to 

demonstrate the modules function, in practice longer intervals 

(with a relatively higher failure threshold) will be used.  

Figure 14 shows observed values of αϕx (blue line). The 

prognostics module predicts the RUL every 10 seconds. 4 (out 

of 7) RUL predictions are presented in Table 5 and in Fig 14 

(green lines). As can be seen, the system eventually fails at 

around the 87 seconds mark. 

 
TABLE 5 

predicted RUL calculated by the Prognostics Module over 20 second 

iterations 

Time Predicted RUL 

20 seconds 728 seconds 

40 seconds 180.03 seconds 

60 seconds 54.18 seconds 

80 seconds 12.72 seconds 
 

 

For this experiment, both the short and long term trends have 

been configured for equal weight (k1=k2=0.5). The RULs 

calculated at times 20 and 40 seconds are indicative of the fairly 

stable state the coefficient is in. At the 60 second mark, the 

program takes into account the rapid drop in the coefficient 

value and gives a fairly pessimistic prediction about the EOL of 

the system. A sudden stabilization of the coefficient can be 

observed around the 75 and 80 seconds mark. However, the 

prognostics algorithm takes into account the K derived from the 

previous predicted RUL value (at the 70 second mark) and 

predicts a system failure in 12.72 seconds (at 92.72 seconds). 

The system actually fails at about the 82 second mark.  

 

This algorithm becomes more precise the longer it runs. Real 

life deterioration is not expected to be as rapid as demonstrated 

in this proof of concept. The algorithm was tested over a 

hundred times for close to a thousand cycles of prognosis per 

test for very gradual deterioration compared to the example 

cited. In these tests, the system is able to predict the failure at a 

long horizon with an average 93% accuracy. An average 

accuracy of about 78% was achieved when the horizon was 

shortened to 50 cycles prior to failure. Based on these studies, 

the accuracy becomes better with time and is capable to deliver 

very good predictions for slow gradual failures over a long 

period of time.  

 

VII. 7.   CONCLUSIONS 

This paper presents a mechanism to detect performance 

degradation in a multifunctional sensor, to calibrate it and to use 

the data generated by the calibration process in a prognostic 

algorithm to provide meaningful lifetime estimates for the 

sensor. The prognostic algorithm is unique in the way it uses 

changes in behavioral coefficients initiated by the corrective 

biasing process instead of physical parameters directly from the 

system under study. This work introduces the novel concept of 

a low-level prognostics module that can be embedded within a 

MEMS sensing device with very low processing and memory 

overhead. The solution has been shown to deliver 

unprecedented predictive performance for gradually aging 

systems.  

The diagnostic-prognostic module presented in this case 

study presented a dependable and fault tolerant multi-functional 

sensor systems well suited to environments requiring high 

reliability. A prognostic module was developed and it was able 

to predict the RUL of the multifunctional sensor with 

approximately 93% within its defined mandate.   
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