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Abstract

We employ Amortizing Participation Mortgage (APM) to offer a novel ex post renegoti-

ation method of a foreclosure. APM belongs to the family of home loan credit facilities

advocated in the Dodd-Frank Wall Street Reform and Consumer Protection Act 2010. In our

framework, APMs reduce the endemic agency costs of debt by improving affordability.

These benefits increase the demand for real estate in bust times and reduce fragility of

the financial system thereby preventing foreclosures. We evaluate APMs in a stochas-

tic control framework and provide solutions for an optimal amortization schedule. We

generalize our approach to partially amortizing and commercial mortgages which en-

compass balloon payments. Finally, we provide concrete numerical examples of home

loan modifications. We also offer detailed sensitivity analysis to market parameters such

as house price volatility and interest rates.

Keywords: Dodd-Frank Act, Foreclosure, Home loan modifications, Prepayment, De-

fault, Partial amortization, Commercial mortgage, Residential mortgage, Shared income

mortgage, Indexation.
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“Mathematical finance does show a way towards reducing risks and [...] help

prevent [...] crisis.”

Robert Shiller, London School of Economics, 20 May 2009

1 Introduction

Problems in the mortgage lending sector of the mid 2000’s resulted in individual bor-

rower’s defaults, liquidity issues, runs on banks, capital adequacy measures and, because

of the securitization, were felt in places located a long way from the US. The ensuing cri-

sis of confidence, going down all the way from banks to individual customers, amplified

in Autumn 2008. In 2010 the Dodd-Frank Wall Street Reform and Consumer Protection Act

called for a “widespread use of shared appreciation mortgages (SAMs) to strengthen local hous-

ing markets, provide new opportunities for affordable homeownership, and enable homeowners at

risk of foreclosure to refinance or modify their mortgages.”1 The alternative mortgage scheme

we structure in this paper, called Amortizing Participation Mortgage (APM), is an exam-

ple of such innovative facility. It belongs in fact to the same product family as the SAMs

advocated by Dodd-Frank.

The purpose of this paper is to illustrate how the APM can serve as a workout loan in

the aftermath of a default. An APM is an extension of the Participation Mortgage (PM)

facility with the added feature of amortization to lessen the agency issues. We extend the

approach initiated in Ebrahim, Shackleton, and Wojakowski (2011)2 to value APMs with

help of profit caps closed-form formulae of Shackleton and Wojakowski (2007).

Our first contribution in this paper is to illustrate that unlike interest bearing mort-

gages, the optimal structure of Participation Mortgages (PMs) requires managing a stochas-

1Dodd-Frank Wall Street Reform and Consumer Protection Act (2010), Title XIV: Mortgage Reform and
Anti-Predatory Lending Act, Sec. 1406 Study of shared appreciation mortgages.

2See also Shiller, Wojakowski, Ebrahim, and Shackleton (2013).
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tic amortization schedule. Indeed, because a PMs’ repayment flow is composed of two,

deterministic and stochastic flows, optimal participation ratios are a solution to a class

of intertemporal optimal control problems.3 We illustrate this specificity of participat-

ing mortgages by formulating an optimal stochastic control problem. We then provide the

corresponding Hamilton-Jacobi-Bellman equation and discuss the implications of the op-

timal control, which we obtain in closed form. We show that the participating variants of

repayment mortgages reduce agency costs leading to an increase in the value of property.

The second contribution of this paper is to recommend the employment of the Amor-

tizing Participation Mortgages and its various offshoots in the form of ASAMs (Amortiz-

ing Shared Appreciation Mortgages) and Amortizing Shared Income Mortgages (ASIMs)

to revive the real sector of the economy in the aftermath of the subprime meltdown. This

is consistent with the Dodd-Frank Wall Street Reform and Consumer Protection Act of

2010. We follow this up by conducting comparative statics.

Our assertions are corroborated by Shiller (2014), who states that a “one-size fit all

solution” provided by the standard Fixed Rate Mortgage (FRM) is not the optimal solu-

tion. He questions why housing finance is still stuck in this primitive state. As roughly

10.7% of mortgage loans encompassing $345.1 billion in homes are in negative equity at

the second quarter of 2014 (see CoreLogic, 2014), his views are substantiated by empir-

ical data. A similar view is affirmed by Real Capital Analytics, a New York real estate

research firm for commercial mortgages. They point out that more than $160 billion of

commercial properties are either in default, foreclosed or bankrupt (see Real Capital An-

alytics, 2014). A hike in interest rates during the economic recovery is expected to put

pressure on valuations, complicate refinancing, and hinder debt servicing. This would

cause further dislocations in real estate markets.

3Stochastic optimal control techniques were originally introduced in finance by Merton (1969) and Mer-
ton (1971) in the context of optimal consumption and portfolio problems. For an application to optimal
mortgage refinancing see Lee and Rosenfield (2005).
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Designing an innovative financial product is not easy. Since the benefits of innova-

tions, in due course, become public goods available to other mortgage originators, it may

not pay innovators to bear the costs of creating. The only option available is for academics

to serve as drivers for their advancement.

Our paper is organized as follows. In the next section we discuss the participating

mortgage literature. In the following sections we introduce assumptions of our partic-

ipating mortgage valuation model and we price the APMs and its variants in the form

of ASAMs and ASIMs. We focus on the problem of optimally controlling repayment of

various amortizing participating mortgages. We then conduct comparative statics along

with illustrative examples and extensions. The final section concludes.

2 Participation Mortgages

Shared Appreciation Mortgages (SAMs) advocated in the Dodd-Frank are in fact only

one of the many Participation Mortgages (PMs), which also include shared income and

shared ownership mortgages. A PM4 allows a financier to get a fraction of cash flows

generated by the underlying collateral (i.e., the property). If the facility is of commercial

type, possibilities include taking a portion of the operating income, keeping a fraction

of cash flows after senior debt service and/or sharing with the borrower (and owner)

the profits from selling off the property. The borrower benefits from a higher loan to

value ratio and/or has the contract interest rate lowered. PMs improve valuation and

sharing rules in the real estate sector. These products allow mortgage borrowers to remain

property owners of their homes by sharing ownership, appreciation or rental income of

their property with the lender.

A PM can be employed to resolve the classic mortgage tilt problem. Where high infla-

4See Ebrahim (1996) and Ebrahim and Hussain (2010) for discussions of: a) Pareto-superiority of PMs and,
b) adequacy of PMs and convertible securities for a developed financial market economy, respectively.
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tion rates embedded in the mortgage financing rates impact affordability, an APM helps

to revitalize the economy and offers borrowers better alternatives to interest-based prod-

ucts. An APM: (i) improves affordability; and (ii) reduces the endemic agency costs of

debt. Resolving these twin issues simultaneously: (i) increases the demand for real estate;

while (ii) reducing the fragility of the financial intermediation system. The end result is

an improvement in the value of real assets via reduction in deadweight costs of foreclo-

sure, in conjunction with a resilient financial architecture promoting economic growth, as

described in our results.

Assets such as undeveloped land or properties, which possess growth options, may

yield low or negligible income in the initial stage of their life cycle (see Titman, 1985). The

negligible initial yield is due to the huge front end costs of constructing roads, utilities,

sidewalks etc. while the generation of cash flows is deferred to later in life cycle stages. In

such a context, PMs help reconcile diverging interests of lenders and investors. Lenders

are included by sharing the upside potential of a project. Borrowers obtain financing they

would otherwise not obtain, because of initially very low level of generated cash flows.

Shiller (2014) states that Participation Mortgages were adopted in a limited way in the

form of Shared Appreciation Mortgages (SAMs) for residential real estate in the 1990s by

the Bank of Scotland and Bear Stearns in the United Kingdom (see again Shiller, 2014).

The character of SAMs was tarnished when home-owners, who borrowed against homes,

lost out to the financial intermediary the bulk of the appreciation. Some found they were

“locked” in their property and could not downsize after prices moved up without giving

up large gains to the mortgage provider. The gains conveyed to lenders were too high but

the residents (who were near retirement age), would not have lost financially had they not

wanted to sell their homes 5-10 years after the (zero coupon) mortgage had its conversion

strike and sharing price fixed. This incensed homeowners and the media, leading to a

class action suit against the issuers. The law suit was eventually settled out of court for
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an undisclosed sum but the reputational damage of the facility was permanent.

2.1 The original model of a non-amortizing PM: Assumptions

We assume the existence of a complete market, reliable economic environment where

mortgage contracts can be priced via risk-neutral methods. In particular, if real estate is

to serve as collateral, it requires the presence of foreclosure procedures, property rights

and reliable valuation methods (see Levine, Loayza, and Beck, 2000). This assumes that

information costs for underwriting mortgages are not binding for the following reasons:

1. Mortgage underwriters (as principals in a debt contract) can costlessly decipher any

proprietary (i.e., ex-ante) information held by the prospective real estate owners (the

agents in the debt contract) for the following reasons. First, the funds are not directly

transferred to the borrower. It is rather transferred to the seller of the property after

a very elaborate due diligence method, where the title of the property is confirmed

in the escrow process,5,6 its structural soundness is verified by an engineer, and its

value estimated through an appraisal process. Second, a financier can evaluate the

ex-ante probability distribution of payoffs of a property from its ex-post risk and

return information. This is accomplished by trading financial claims over a multi-

period horizon (see Hosios and Peters, 1989).

2. Underwriters can also deter moral hazard, ensuing from ex-post change in borrower

behavior, by undertaking the following preventive measures. First, since the un-

5An escrow process is a contractual (or monitoring) arrangement whereby a third party receives documen-
tation and funds on behalf of transacting parties and assists in the transfer of title and the disbursement
of the funds for closing the transaction. The presence of a non-related third party to verify the title of the
property (or asset) and to facilitate its exchange for an agreed upon fee helps mitigate adverse selection.
This is because the third party ensures that the asset (or property) that the buyer has offered to buy is
exactly the same and that the amount agreed upon is transferred to the legal owner of the asset.

6An escrow also includes a trust account held in the borrower’s name to pay his/her obligations such as
property taxes and insurance premiums. This alleviates moral hazard. This is because the presence of the
third party (or monitoring agent) reduces the risk of the financier.
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derlying collateral is immobile (i.e., fixed), the borrower cannot run away with it.

Second, the borrower cannot easily dispose of the assets without paying off the loan

against it as the title of the property has a lien of the bank against it. Third, financier

can add iron-clad covenants to the mortgage contract to preserve the value of the

underlying collateral (Smith, Jr. and Warner, 1979). These include: (i) adequate

maintenance of the property; (ii) payment of taxes; and (iii) minimum insurance

coverage.7

In what follows we assume that:

1. Implicitly, any monitoring costs are added ex-ante into the loan contract (along with

any mandatory property maintenance, tax payments, and insurance coverage, etc.)

and are borne by the borrower.

2. Financing the business activity (prerequisite for generating the profit flow, which

we assume is present at the valuation time t = 0) has already been sorted out, e.g.

by issuing shares, and does not interfere with financing the building (e.g. an office

or a warehouse) via mortgage.

2.2 Mortgage loans’ identity

In a mortgage financing situation, a business or a prospective homeowner needs to bor-

row an amount Q0 to acquire a property valued at H0 (where subscripts denote initial

time t = 0). Typically, the lender imposes a maximum loan to value ratio Q0/H0 lower

than 100% and the difference is made up by the buyer’s deposit. The mortgage loan

7We are grateful to an anonymous referee, who asked us to contrast real estate mortgages with consumer
loans generally made to an individual on a non-secured basis for personal, family or household purposes.
These unsecured facilities have a high chance of misappropriation due to both adverse selection as well
as moral hazard. This is because there may not be any escrow process and the funds may be transferred
directly to the borrower. The facility may also not be backed by real (or durable) assets making it easier to
deceive the lender ex-post. The costs here are higher because of high default rates due to their unsecured
nature of the facility.
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contract then defines the time to maturity T (also known as tenure) as well as a coupon

schedule {xt : t ∈ [0, T]}. Depending on the type of contract, future coupons xt may not

be known at the time of origination. Their computation often requires information which

will become known in the future. The contract must nevertheless specify rules as to how

time-dependent coupons xt should be computed. A Fixed Rate Mortgage (FRM), for ex-

ample, will assume fixed coupons xt = x; an Adjustable Rate Mortgage (ARM) will spec-

ify a premium π to be added to the riskless interest rate8 rt to compute the interest due

(π + rt) Qt, where Qt is the balance outstanding at time t. In case of amortizing loans a

fraction of xt systematically repays9 a portion of initial capital, reducing default risk over

time.

In arbitrage-free complete financial markets, there exists a secondary market for coupons

xt, for example in the form of securitized mortgage pools. Finance theory then tells us that

the relationship between present values and future cash flows takes the following form

Q0 = E
[∫ T

0
e−rtxt dt + e−rTQT

]
, (1)

where QT is the final balloon payment and E [·] is the risk-neutral expectation taken at

time t = 0 under the unique equivalent martingale measure10 Q i.e. E [z] = EQ [z| F0].

This identity is a very general expression. Note that we assumed a continuous time and

continuous coupon structure, where the infinitesimal coupon amount paid during time dt

is xtdt, i.e. the coupon flow rate (per unit of time) is xt. To keep things simple and focus

on shared income features of APMs, which are the topic of this paper, we assume a flat

8During the lifetime of the contract the risk premium π will not change much, compared to the short term
interest rate rt. Therefore, as a first approximation, it can be assumed constant.

9NB: this paper works in continuous time, e.g. r = ln (1 + R), etc. where r, R are continuously and discretely
compounded interest rates, respectively.

10For expectations taken at general time t ≥ 0 we use the notation Et [x] = EQ [ x| Ft], where Ft is informa-
tion available at time t.
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(constant) term structure at r. At this stage it can be seen, that under absence of other

risks (e.g. default risk) a non-amortizing mortgage with contractually constant coupons

will have them set at x = rQ0 and the contractual balloon payment will be QT = Q0. This

is a consequence of assumed risk-neutrality. In reality, the presence of risks will command

an additional risk premium π, resulting in x = iQ0 where i = r + π.

2.3 Non-amortizing participating mortgages and the Dodd-Frank Act

Specific forms of non-amortizing participating mortgages have been discussed in detail

by Ebrahim et al. (2011). As an introduction to the more interesting, amortizing form, we

therefore provide here only a brief re-cap of pertinent features and most illustrative re-

sults. We start with definitions needed in analyzing any form of participating mortgages,

including the amortizing ones.

Assuming as before that trading in underlying assets is possible11 so that hedging is

possible, the incoming cash flow process Pt can be written as e.g. in He (2009)

dPt = (r− δ) Ptdt + σPtdZt , (2)

where Zt is the corresponding Brownian motion under the risk-neutral measure Q and r

is the risk-free interest rate. The cash yield δ is typical to the given type of business activity

or employment type and is analogous to the dividend rate of a stock. Incoming cash flow

dynamics, i.e. the geometric Brownian motion (2), is adequate to describe, for example,

the operating profit of a commercial property. In case of income flow from employment,

11Our assumption is analogous to that underlying the literature on real options which also requires com-
plete and arbitrage-free markets. The lender offering the borrower to effectively exchange part of its
obligation for a share in profits effectively sells a call option on the borrower’s income. In order to delta-
hedge, the lender will have to partially sell some quantity of traded claims on borrower’s income in a
sufficiently liquid market. This de facto assumes existence of such “macro markets,” e.g. real estate fu-
tures, on macroeconomic variables (individual income indexes, real estate indexes, etc.) as stipulated e.g.
in Shiller (1993).
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e.g. wages or salary, δ can be interpreted as cash outflow summarizing various profes-

sional costs which must be covered to manage the asset. Note also that the total current

value of risky profit flow can be computed as a discounted risk-neutral expectation and

is given by A0 =
∫ ∞

0 e−rtE [Pt] dt = P0/δ. In particular, the total current value A is driven

by the same dynamics as P i.e. (2). Furthermore, because P0 = δA0, the current profit cash

flow P0 can be represented as a constant proportion δ (“dividend” or cash flow yield) of

it’s present value.12

A commercial property usually represents an asset in its own right, even without host-

ing a business. We therefore assume that real estate prices H are well described by the

following risk-neutral dynamics

dHt = (r− δH) Htdt + σH HtdZH
t , (3)

where δH is the “rental rate” or “service flow” (see e.g. Kau, Keenan, Muller, and Epper-

son, 1992). Parameter σH is the real estate volatility and ZH
t is the standard Brownian

motion driving real estate values. For simplicity, we assume zero correlation of house

price returns with profit cash flows, i.e. ρ = 0. Consequently, the risk-neutral expectation

of dZtdZH
t = ρdt also equals zero.13

A general Participation Mortgage (PM) can now be characterized by further specifying

12If cash flows are zero in some periods known in advance our model can be split into finite sub-periods
and our pricing methods applied within those sub-periods where cash flows are positive. The resulting
present value would then be the sum of sub-period’s present values.

13See also footnote 17.
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the condition (1) to

Q0 = E
[∫ T

0
e−rtxtdt + e−rTQT

]
(4)

where (5)

xt = itQt︸︷︷︸
interest flow

+ θP,t (Pt − K)+︸ ︷︷ ︸
share in income flow

(6)

QT = θH,T (HT − H0)
+︸ ︷︷ ︸

share in appreciation

+ QT,θ︸︷︷︸
balloon payment

. (7)

The first (second) term within the square brackets in expression (4) is the present value of

intermediate (terminal) payments, where K is a fixed profit threshold above which income

participation is payable and z+ = max {z, 0} is the positive part function, equal to z if

z > 0 and equal to zero otherwise. The appreciation threshold need not be set to the initial

real estate value H0. However, it is typically expected (but cannot be guaranteed) that

property will appreciate until maturity, so that HT > H0. In contrast, participation in the

income flow starts from time t = 0, so K would typically be set below P0. A contract then

further characterizes a PM by specifying the three remaining parameters {it, θP,t, θH,T} i.e.

the contract rate schedule it, the income participation schedule θP,t and the appreciation

proportion θH,T. In practice, this should be the result of negotiating between borrower

and lender at the onset of the contract. In principle, these three quantities can be defined

so as to depend on current time t, tenure T or be indexed on some economic indicator

such as a central bank base rate or a consumer price index. In (7) notation QT,θ has been

used to reflect dependence of the terminal payment on participation θH,T. Note also that,

for a given Q0, the terminal balloon QT,θ is implicitly dependent on the choice of the

income participation policy {θP,t : t ∈ [0, T]} as well as on other parameters of the model.

For what follows, however, we will focus on the simple time-homogeneous case where

parameters are all contractually set at origination and do not change in time (i.e. no tenure

10



  

effects, etc.). Consequently, we drop irrelevant subscripts in our notation. For example we

will now use notation θP and θH for income and appreciation participation parameters,

respectively.

More importantly, for the equality to hold in (4), it is impossible to set i, θP and θH

independently. This feature has been exploited by mortgage originators to big advantage

and extent to create new types of mortgages. We enumerate several particular cases of

interest below.

Case 1 If the income participation is set to zero (θP = 0), the property appreciation participation

ratio can be increased away from zero (θH > 0) and, simultaneously, the contract rate i can be

reduced. This is the well established Shared Appreciation Mortgage (SAM), which has recently

been advocated in the Dodd-Frank act to deal with foreclosure threat ex ante.

Case 2 If the property appreciation participation ratio is set to zero (θH = 0), a positive income

participation fraction θP > 0 can be agreed and the required interest rate i can be reduced. This is

the Shared Income Mortgage (SIM) discussed in the present paper.

2.4 Relationship to FRMs, ARMs, PLAMs and DIMs

When both θP, θH are set to zero we obtain the particular case of a standard mortgage,

either FRM or ARM. In the case of ARMs, i is indexed on some benchmark interest rate.

Price Level Adjusted Mortgages (PLAMs) are obtained if the contractual interest flow

iQ is indexed (via Q) on a consumer price index (see Modigliani, 1974 and Lessard and

Modigliani, 1975). Dual Indexed Mortgages (DIMs), advocated by World Bank14 and de-

ployed in 1990’s to stimulate house ownership in developing economies such as Mexico,

14See Chiquier (1998), Chiquier and Lea (2009), Buckley, Lipman, and Persaud (1989) and Buckley, Lipman,
and Persaud (1993). The outstanding balance, Q, increases as the CPI increases, while the repayment rate,
i, increases if a wage index increases.
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Hungary and Poland, are indexed to both (1) a consumer price index (via Q), as PLAMs,

and to (2) a wage index (via i).15

PLAMs have increased risk of default and DIMs try to counterbalance this effect if

the revenues or, in the case of a residential mortgage, future wages go down. In such

case DIMs then lower the monthly payment but increase the outstanding balance. This

makes negative amortization possible increasing foreclosure risk. Consequently, maturity

T becomes random and can increase as well. Such feature makes DIMs somehow similar

to Amortizing Shared Appreciation Mortgages (ASAMs) we discuss in the present paper.

The problem with DIMs is that they have maturity risk, i.e. maturity can become infinite

and the loan will never be repaid. In contrast we control for this risk in ASAMs.

2.5 Summary of key results for non-amortizing SIMs

SAMs and non amortizing SIMs have extensively been discussed in Ebrahim et al. (2011).

We therefore only succinctly summarise here the key result which matters for the analysis

of ASIMs that follows. If interest i and participation parameters θP, θH are constant in time

and if the contract is non-amortizing,16 then the budget constraint (4) gives17

Q0 = i Q0
1
r

(
1− e−rT

)
︸ ︷︷ ︸

annuity with r,T

+ θPE
[∫ T

0
e−rt (Pt − K)+ dt

]
︸ ︷︷ ︸

profit cap C(P0,K,T)

+ θHE
[
e−rT (HT − H0)

+
]

︸ ︷︷ ︸
call option c(H0,H0,T)

+ e−rTQ0︸ ︷︷ ︸
PV balloon

(8)

15For creation of occupational income indexes see Shiller (1993).
16For amortizing contracts appropriate incentives can be created to encourage borrowers to follow opti-

mized, endogenous time-profiles of it and/or θP,t (see Section 4.4).
17For positive income-house price correlation ρ > 0 this formula corroborates pro-cyclicality effect of busi-

ness cycles on both the house prices and incomes. In the perfectly (ρ = +1) correlated case, in our
two-GBMs setup, both the P and the H would be driven by the same Brownian motion. This indicates
that when the profit cap (second term) is small, the call option (third term) must decrease too. Therefore
(for positive correlations), at the peak of house prices H there is less need to substitute FRM with SIMs or
ASIMs. Conversely, at the through, while there is need to save underwater FRMs, there is less resources
to share via conversion to SIMs or ASIMs. We leave for further research the estimation of these business
cycle effects.
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where (Pt − K)+ is the payoff of an infinitesimal caplet. We call the function C the profit

cap and c is the call option function. Both functions are discussed in the Appendix A and

can be computed explicitly (see Ebrahim et al., 2011).18 Condition (8) tells us that the

present value of the loan must be equal to the sum of:

• Interest fraction i of annuity with interest r and maturity T

• Participation fraction θP in the income from operations (profit cap struck at K)

• Participation fraction θH in the appreciation of property value (call option struck at

H0)

• Present value of the balloon payment (equal to initial principal Q0) at maturity.

It is easy to express i as a function of the other two parameters θP, θH of the model to

see that for positive participation ratios θP > 0 and θH > 0 the interest i must be reduced19

below r

i = r
[

1− θPC (P0, K, T) + θHc (H0, H0, T)
Q0 (1− e−rT)

]
< r, (9)

as both the cap C and the call c take positive values. In the next sections we introduce the

amortization feature and establish its applicability to a SIM.

3 Integrating the amortization feature into PMs

The amortization feature has been successfully implemented in FRMs which were intro-

duced in the US in the 1930’s to heal the mortgage market post Great Depression. A

standard, fully amortizing loan allows the whole balance to be fully repaid at maturity,

so that QT = 0. Absence of balloon payments reduces the risk of default inherent in

18Note that C also depends on r, δ and σ which we omitted here for simplicity.
19See Ebrahim et al. (2011).

13



  

non-amortizing loans discussed in the previous section. However, we will show that im-

plementing the amortization feature in a SIM is more challenging. This is because the

“sharing” feature introduces additional degrees of complexity which must be tackled.

In the simplest case of absence of default or prepayment risk it is possible to set a

constant coupon rate xt → x in a FRM, so that the loan is fully repaid at T

x =
rQ0

1− e−rT =
rQt

1− e−r(T−t)
. (10)

It is then easily seen that if we increase the maturity T, the annual payment x will decrease

but will always be greater than the accrued interest rQt

x ≥ x
(

1− e−r(T−t)
)

= rQt , (11)

For T → ∞ the initial balance Q0 is never repaid and, as expected, must be equal to the

present value of the perpetuity x
r . For finite maturities the amount owed to the lender

Qt =
x
r

(
1− e−r(T−t)

)
(12)

is the solution to a boundary value problem involving the ordinary differential equation

dQt

dt
= rQt − x (13)

with terminal condition QT = 0. Equation (13) tells us that in order to progressively repay

the principal Q0, infinitesimal changes to intermediate balances Qt must be negative. That

is, because x ≥ rQt for dt > 0 (see (11) above), we must have dQt < 0. This ensures

convergent solutions and requires both sides of the equality (13) to be negative. This

also results from (11). This is to say, again, that repayment is possible if the coupon flow
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x is greater than the interest flow on principal rQt. As t → T, equation (12) implies the

remaining balance Qt and interest flow rQt both converge to zero. At the same time,

the annual amortization flow, i.e. the annual payment net of the annual interest x− rQt,

exponentially increases to reach x at maturity

x− rQt = −dQt

dt
= xe−r(T−t) = xe−rTert (14)

lim
t→T

(x− rQt) = x (15)

4 Interaction of amortization and shared income features

4.1 Debt restructuring: The case of salvaging an underwater FRM

Perhaps the best way to introduce a SIM in an amortization context is to understand how

a SIM can be employed to restructure an underwater (negative equity), amortizing FRM.

Assume such FRM is currently underwater i.e. at time t = 0 the outstanding balance is Q0

but such that Q0 > H0, where H0 is the value of the property. This FRM currently requires

an annual outflow of funds equal to x. The lender offers to reduce the annual payments

to y in such a way that y < x. The outflow y would correspond to a second fixed rate

mortgage FRM?, with the same maturity T as the original FRM but commanding a lower

outstanding balance Q?
0 , lower than the property value H0

Q?
0 = Q0 − C < H0 < Q0 , (16)

where the borrower traded in a cap C with fixed maturity T. The cap C is the participating

component and is based on the forthcoming income flow of the household, net of a cash

flow safety threshold K. The latter can be interpreted as e.g. a minimal subsistence level

for a household.
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To summarize, after restructuring the debt, the lender now fully (θP = 1) participates

in the income cap C. Thanks to this transformation the loan has a reduced balance out-

standing and is no longer underwater. This new, lower balance is now again collateralized

by the real estate asset (Q?
0 < H0). The borrower pays less in regular interest/repayments.

However, the future income prospects are now reduced. The following expression sum-

marizes how the repayment of original balance Q0 has been rescheduled

FRM: Q0 =
x
r

(
1− e−rT

)
︸ ︷︷ ︸

original annuity with r,T,Q0

(17)

⇓

APM: Q0 =
y
r

(
1− e−rT

)
︸ ︷︷ ︸

modified annuity with r,T,Q?
0

+ θPE
[∫ T

0
e−rt (Pt − K)+ dt

]
︸ ︷︷ ︸

profit cap C

. (18)

where y < x so that reduction in annual payment is achieved. The new annual payment,

y, is based on the new (renegotiated) balance

Q?
0 = Q0 − C , (19)

where C is the cap function discussed earlier.

A numerical example for full participation θP = 1 has been constructed in Table 1

and illustrated on Figure 1. The profit cap C = C (P0, K, T, r, δ, σ) has been computed

using a formula discussed in the Appendix A. We notice in particular that, alternatively

to reducing annual payments from x to y, the repayment velocity can be kept at x and the

maturity of the modified annuity only shortened to T?
x < T as follows

Q0 =
x
r

(
1− e−rT?

x
)

+ C (20)
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As a result, the modified loan eliminates default and allows mortgage to be considered as

fully amortized at maturity T, upon expiry of the profit cap portion C.

Alternatively to committing the entire portion (θP = 100%) of the cap C, the partici-

pation ratio θP can be negotiated to reflect the actual proportion of negative equity to be

compensated by a portion of C. This has been illustrated in Figure 2. The new income

sharing fraction is

θ?
P =

Q0 − H0

C
=

500 000− 300 000
332 251

≈ 60.2% . (21)

As is now very clear from this example the possibility of quickly and precisely estimating

the value of the cap C = $ 332 251 via the closed-form formula is very handy for such

a debt restructuring task. The moderator can instantly assess the exact portion θ?
P of the

income flow P to be committed in order to completely eliminate the negative equity. It is

then straightforward to compute the new coupon rate y? or new maturity T?
x as

y? =
rH0

1− e−rT =
0.05× 300000

1− exp (−0.05× 25)
≈ $ p.a. 21023 (22)

T?
x =

ln
(

x
x−H0r

)
r

=
ln
( 35 039

35 039−300000×0.05

)
0.05

≈ 11.18 years (23)

Numerical values for both examples have been collected in Table 1.

The base case (y1) corresponds to {y, 1}, i.e. the annual payment x is reduced to y < x

while participation θP is left at 100%. The optimal case (y?
θ ) corresponds to {y?, θ?

P}, i.e.

the optimal participation θ?
P < 100% is first solved for and then the annual payment is

adjusted to y? such that y < y? < x.
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  Description of variable Notation Base case (y1) Optimal case (y?
θ )

Balance Q0 $ 500 000
House value H0 $ 300 000
Initial wage per year P0 $ p.a. 100 000
Riskless rate r 5% p.a.
Cash yield δ 3% p.a.
Expected income growth r− δ 2% p.a.
Volatility of income σ 2% p.a.
Maturity remaining T 25 years
Initial annual payment x $ p.a. 35 039
Modified annual payment y, y? $ p.a. 11 755 $ p.a. 21023
Annual payment reduction y− x, y? − x −$ p.a. 23 284 −$ p.a. 14016.
Alternative maturity T?

x < T 5.4723 years 11.1757 years
Safety threshold K $ p.a. 100 000
Value of the cap C $332251
Income participation θP, θ?

P = H0−Q0
C 100% 60.2%

New (reduced) balance Q?
0 = Q0 − C $ 167 749

Table 1: Numerical Example: The base case (y1) corresponds to {y, 1}, i.e. the annual
payment x is reduced to y < x while participation θP is left at 100%. The optimal case (y∗θ )
corresponds to {y∗, θ∗P}, i.e. the optimal participation θ∗P < 100% is first solved for and
then the annual payment is adjusted to y∗ such that y < y? < x.
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Figure 1: Home loan modification with a SIM: Full participation and over-adjustment.
This figure presents home loan modification with full income participation θP = 100%.
The value of entire income cap C is committed to eliminate negative equity Q0− H0. This
means that any accruing income surplus above threshold K will immediately be used to
repay the mortgage balance and interest. The speed of repayment is adjusted down from
x to y to maintain maturity at T. Without such adjustment the maturity is shortened to
T∗a .
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Figure 2: Home loan modification with a SIM: Optimal adjustment.
This figure presents home loan modification income participation θP optimally adjusted
to match the negative equity θP = (Q0 − H0)/C. The value of a fraction θP < 100% of the
income cap C is committed to eliminate negative equity Q0−H0. The speed of repayment
can be adjusted down from x to y∗ to maintain maturity at T. Without such adjustment
the maturity is shortened to T∗x .
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4.2 Debt restructuring when the underlying income flow is discontinuous

Large, sudden declines in income flow are consistent with the majority of (residential)

mortgage defaults post 2008 crisis, at least in the U.S. Whether the income level will take a

relatively long time to be restored will primarily depend on the parameters of the income

process which are already present in our analysis, i.e. the growth rate (equal to the riskless

rate r under the pricing measure) and the income volatility σ.

However, our approach can be augmented to incorporate another source of uncer-

tainty to capture income discontinuity, i.e. jumps, to represent the large, sudden decline

in income flow. One possible approach is to use the sum of a Brownian motion diffusion

process (2) and a Poisson jump process, as in Merton (1976) (with a risk-neutral jump

compensator λ).

Default can be modelled using the reduced form (hazard rate) approach of Jarrow and

Turnbull (1995) to credit risk who extend Merton (1976) results to include unpredictable

and undiversifiable shocks. Such an approach seems more appropriate in our case as it

allows separating the occupational income fluctuations from individual circumstances.

For a specific “class” of occupational income such individual shocks can be diversified

away. This corresponds to a situation where the occupational risk is made tradable on

“macro markets,” as in Shiller (1993), with the moral hazard component removed.

We make no assumptions concerning why negative shocks occur. Rather, we specify

the dynamics of default via the default rate (or intensity) λ of the Poisson event triggering

personal ruin. The advantage in practice would be that the lender will be able to price the

credit sensitive, modified loan as if it were default-free, using the risk free rate adjusted

by the level of intensity estimated from historical data. In the simplest case this will only

require replacing the riskless interest rate parameter r by r + λ.

In the most simple case there would be just one such adverse event arriving with in-
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tensity λ over the life span [0, T]. The random default time τ is then a Poisson event

independent of state variables governing the diffusion processes for income and house

prices. To incorporate the risk of default into debt restructuring process we have to adjust

both the modified annuity and the profit cap components present in (18). This is to re-

flect the fact that upon occurrence of a sudden drop of personal income to zero, both the

fixed as well as the income-contingent flows will cease to be paid to the lender. Interest

payment interruption also triggers a default on the remaining balance. Consequently, the

valuation condition (18) becomes

Q0 =
∫ T

0
e−λtyλe−r(T−t)dt︸ ︷︷ ︸

modified annuity with r,T,Q?
0λ

+ θPE
[∫ T

0
e−λte−rt (Pt − K)+ dt

]
︸ ︷︷ ︸

profit cap Cλ

, (24)

where e−λt = Pr (t > τ) is the cumulative probability of the loan surviving beyond de-

fault time τ. As long as the default event does not occur early (t < τ), the lender receives

the contractual repayment yλ (incorporating both interest and partial principal repay-

ment) plus the participation fraction θP based on current income Pt above the threshold

K. When default hits before maturity, i.e. τ < T, both the fixed and contingent flows cease

immediately and the lender receives nothing.

In practice, the lender will follow the same procedure as before. In addition, the lender

will now estimate and incorporate the information about likelihood of default. First, the

portion corresponding to the profit cap can be computed as

Cλ = C (P0, K, T, r + λ, δ + λ, σ) , (25)

where C is the profit cap function (see Appendix A) with parameters r and δ adjusted for

jumps i.e. replaced by r + λ and δ + λ, respectively.20 This quantity then serves to com-

20Profit cap Cλ sums a continuum of infinitesimal caplets on revenue P struck at K over a continuum of ma-
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pute the reduced modified principal Q?
0λ = Q0 − θPCλ (if θP is imposed) or the sharing

fraction θPλ (if reduction of outstanding balance from Q0 to Q?
0 = Q0− θPλCλ is required).

Note that for λ > 0

Q?
0λ > Q?

0 or θPλ > θP (26)

because, with the possibility of default, the cap Cλ will in (25) be worth less than C in (18).

The “power” to achieve reduction in principal is lower here due to presence of additional

risk.21 Consequently, if the maturity is kept the same, a lower effective principal reduc-

tion will have the effect of increasing the fixed, regular portion payment, yλ or y?
λ, to be

determined in the next step from

yλ = Q?
0λ (r + λ)

[
1− e−(r+λ)T

]−1
or y?

λ = Q?
0 (r + λ)

[
1− e−(r+λ)T

]−1
(27)

In our numerical example from the previous section,22 we introduce a small income

loss risk λ = 1/100 = 0.01 (occurring once in 100 years). This reduces the income

cap capacity from C = $ 332 251 to Cλ = $ 285 973 i.e. by about 14%. As expected,

the debt restructuring capacity of the cap is very sensitive to the risk of sudden income

loss. This drawback should be accounted for by the lender when restructuring the loan.

Consequently, the borrower should participate more and θPλ = 69.9%, an increase from

θP = 60.2%. Finally, to further compensate for the risk of default, the repayment rate on

the fixed tranche increases to y?
λ = $ 23 170 from y? = $ 21 023 per annum.

turities t ∈ [0, T]. Each caplet is weighted by the probability e−λt of borrower’s income source “surviving”
at least until t.

21However, in our contract valuation model, the reduction would always be positive no matter how large
the jump risk, as measured by λ. Therefore, a rational borrower would always prefer such a reduction.

22See Table 1 for the base case parameter values.
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4.3 Improving affordability with Amortizing Shared Income Mortgages

Our analysis and numerical examples in the two previous sections can be directly rein-

terpreted as employing Amortizing Shared Income Mortgage to improve affordability. In

our setup by improving affordability we intend lowering cash flows in the early, hard to

repay years, from x per year to y per year, where y < x in our examples.23 Overall the

product has the same present value but lower future cash flows, thanks to the income cap.

Alternatively, improving affordability would be characterized by a relatively lower

interest rate i. See Ebrahim et al. (2011) who perform such analysis for non-amortizing

Shared Income Mortgages. It is straightforward to extend their analysis to Amortizing

SIMs. However it is beyond the scope of the present paper and we leave this avenue for

future research.

Finally, we note that the income stream volatility σ enters our formulas explicitly. So

does the probability of job loss, via a default intensity parameter λ. We anticipate that

those borrowers with more volatile income streams and higher risk of job loss will pre-

fer the APM. They should be required to pay a higher annual repayment amount and

the reduction of their principal should be lower. Such a built-in, negative feedback loop

(provided via parameters σ and λ, assuming both are observable by lenders and correctly

estimated ex ante), should provide appropriate prevention mechanisms against adverse

selection issues. Conversely, if either σ or λ is not measurable or not measured (e.g.

deliberately, complicitly or to reduce costs, etc.), lenders will be dealing with a pooled

equilibrium (volatile-and-risky mixed with smooth-and-safe income streams). To achieve

separation globally, regulation may therefore require lenders to offer certain products to

certain groups.

While the historical data (which a lender can gather from past borrower’s choices) will

23On the contrary, if these products were launched and were expensive, they would provide information
about (i.e. the market price of) the ex-ante costs of foreclosure.
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provide an estimate of the extra costs generated by moral hazard and adverse selection,

any lack of information ex-ante will always be a problem. As a second step, lenders

can structure a range of products which borrowers will self-select and in that way reveal

their “type” (their specific risk level of defaulting on mortgage payments, their likelihood

of moving house, their probability to prepay early, etc.), thus achieving the separating

equilibrium and reducing information asymmetry ex-ante. In the context of mortgage

loans the real estate literature hints how this can be achieved. Building on the seminal

insights of Rothschild and Stiglitz (1976) and Stiglitz and Weiss (1981) various screening

instruments have been advocated, in particular: the initial loan-to-value ratio (Brueckner,

2000), points (Brueckner, 1994; Chari and Jagannathan, 1989; LeRoy, 1996; Stanton and

Wallace, 1998), prepayment penalties (Chari and Jagannathan, 1989), the type (fixed or

variable) of the contract rate (Posey and Yavas, 2001), etc.24

4.4 Controlling amortization in an Amortizing Shared Income Mortgage (ASIM) op-

timally

In a SIM the borrower benefits from a lower amortization flow y such that y < x. This

reduction is financed via sharing with the lender a fraction θP of the income flow Pt net

of a threshold K. In our example in the previous section the arrangement had European

options only. Both the fixed rate amortized portion and the shared income portion had to

last until maturity T. However, this may not be always desirable.

For example, the customer may prefer committing a higher fraction θP to compensate

for the agreement to automatically terminate all payments exactly at the random instant25 τ

when the shared income portion repays the then outstanding balance Qτ. If the strength of the

24In contrast to these analyses which are set up in static frameworks, dynamic moral hazard environment
has been considered only recently, in a study of optimal mortgage design (see Piskorski and Tchistyi,
2010).

25In this section we assume λ = 0 i.e. there are no income terminating “Poisson events” here. Our analysis
can easily be extended to the case λ > 0.
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income flow P is high enough there is high probability for such early termination instant

τ to happen before maturity T. Because τ is random, this may or may not occur before

maturity T. This resembles an early exercise of an American option. However, this is

where the similarity ends. Termination is not at callers choice but imposed by a random

event.

In our case it is never too late to terminate the agreement once the cumulated income

πτ =
∫ τ

0
er(τ−t) (Pt − K)+ dt (28)

meets the remaining balance Qτ, as given by expression (12) for t = τ. This is because

the balance always decreases while the cumulated income is a non decreasing process.

The latter is a sum of call options (caplets) which provide a random but non-negative

payout flow. This is illustrated in Figure 3 representing the present values of accumulated

revenues. Three random possible shared income paths are drawn. Path26 π3 is the lowest

and has a long plateau so that it only meets the (present value of) remaining balance

e−rtQt very late, at about 21.5 years. Path π1 accumulates income very quickly while π2

has a “typical” behaviour. In our sample most of the paths (not represented on the graph

for the sake of esthetics) are like path π2 i.e. they lie close to the bold line Ct representing

the present value of the income cap. Line Ct represents in a sense the expected behaviour

of income to come. Most importantly, Ct can be calculated analytically using the cap

formula in Appendix A. It is assumed that P0 = K = $ 100 000, σ = 2%, r = 5%, T = 25

years and the initial balance is Q0 = $ 500 000. We can solve numerically for the expected

time τ̄ (about 14.31 years) when the income is expected to meet the remaining balance

(about $ 141 837) at point marked A on the Figure 3.

We also proceed with some comparative statics. Figure 3 also illustrates what will

26Note that in what follows we use subscripts to π’s to differentiate between three different time-dependent
evolutions of cumulated income πτ : τ ∈ [0, T] i.e. τ does not indicate a termination moment.
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happen if volatility of income increases from 2% to 50%. Then the point A will move

along the present value of the balance curve up to the point labelled Aσ. This is to be

expected because the income cap is a sum of call options and these appreciate with rising

volatility. In contrast, when the interest rate increases to r = 10% both curves move to

cross at the point labelled Ar. It is quite straightforward to understand why the present

value of the remaining balance has to become lower and has to remain anchored at initial

and terminal points {0, Q0} , {T, 0}. It thus becomes a more convex curve if interest rate

r rises. It is less intuitive to see why the location of the cap Ct rises with r. In fact, this is

because the Brownian motion which drives Ct appreciates more rapidly at the rate r− δ

and the income cap accumulates faster.

As a general rule, the expected termination time τ̄ decreases with increasing income

volatility and interest rate r. This is illustrated on Figure 4.

Figure 5 and Table 2 further illustrate the dependence of expected terminal balance Qτ̄

and expected termination time τ̄ on income volatility σ and discount rate r.

4.5 Incentivising borrowers to increase income participation

In our two introductory examples in the previous sections we established that by signif-

icantly increasing the participation ratio, θP, various features can be achieved. In par-

ticular, negative equity can be reduced or completely eliminated, the termination time τ

can be shortened (in expectation), the coupon rate of repayment can be reduced or the

maturity shortened as a result.

However, having restructured the mortgage with the help of the cap C (see previous

sections), the lender may wonder whether C will actually be repaid over time. This sec-

tion dealt with the problem of incentivising the borrower to repay the debt in such timely

manner. With given participation rate and annual payments {θP, y} timely repayment

of the principal amount Q0 > 0 in full cannot be guaranteed ex ante, because repayment
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Figure 3: Automatically terminating agreement: All payments cease exactly at the ran-
dom instant τ when the shared income portion repays the then outstanding balance Qτ.
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Figure 4: Termination: Expected termination time τ̄ as a function of the income volatility
σ and the riskless interest rate r. The higher the volatility σ and/or the higher the riskless
rate r, the lower the expected termination time τ̄.
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Figure 5: Expected terminal balance Qτ̄ and termination time τ̄: Dependence of the
present value of the expected termination balance Qτ̄ and the expected termination time
τ̄ on income volatility σ and discount rate r. When the volatility σ increases: 1) the
expected termination balance Qτ̄ increases; and 2) the expected termination time τ̄ de-
creases. When the discount rate r increases: 1) the expected termination balance Qτ̄

increases initially (wealth effect, C accumulates faster) and then decreases (discounting
effect) while 2) the expected termination time τ̄ decreases monotonically. The correspond-
ing values are computed in Table 2.

30



  

Panel A: Dependence of τ̄ on r and σ

r ↓ σ→ 0.001 0.1 0.2 0.3 0.4 0.5
1× 10−8 25.0 22.5 16.7 13.3 11.3 10.0
0.05 14.3 13.0 11.1 9.8 8.8 8.1
0.1 8.7 8.6 8.1 7.6 7.1 6.6
0.15 6.6 6.6 6.4 6.1 5.9 5.6
0.2 5.4 5.4 5.3 5.2 5.0 4.8
0.25 4.6 4.6 4.6 4.5 4.4 4.3
0.3 4.1 4.1 4.0 4.0 3.9 3.8
0.35 3.6 3.6 3.6 3.6 3.6 3.5
0.4 3.3 3.3 3.3 3.3 3.3 3.2
0.45 3.1 3.1 3.1 3.0 3.0 3.0
0.5 2.8 2.8 2.8 2.8 2.8 2.8

Panel B: Dependence of Qτ̄ on r and σ

r ↓ σ→ 0.001 0.1 0.2 0.3 0.4 0.5
1× 10−8 0. 50181. 165670. 233080. 273200. 299790.
0.05 141600. 165230. 201390. 229240. 250640. 267530.
0.1 183960. 186080. 197080. 210890. 224030. 235790.
0.15 178840. 179340. 183720. 191520. 200290. 208930.
0.2 167870. 168060. 170150. 174910. 181060. 187610.
0.25 157100. 157200. 158330. 161400. 165850. 170940.
0.3 147630. 147680. 148360. 150420. 153730. 157750.
0.35 139460. 139490. 139930. 141360. 143870. 147080.
0.4 132380. 132400. 132700. 133730. 135660. 138260.
0.45 126190. 126210. 126420. 127180. 128690. 130820.
0.5 120730. 120740. 120890. 121470. 122660. 124430.

Table 2: The present value of the expected terminal balance Qτ̄ and the expected ter-
mination time τ̄: Dependence of the expected terminal balance Qτ̄ and the expected
termination time τ̄ on income volatility σ and discount rate r. See caption in Figure 5 for
more explanations.
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cash flows are partly random by design. Such a loan cannot be made fully amortizing

for all scenarios. This is because of how the cap C is constructed. If the contract is not

adjusted en route, we shall expect the actual terminal amount QT to end up away from its

full repayment target Q̂T = 0, being underpaid or overpaid, with probability greater than

zero.

The lender and the borrower can, however, adjust at least one of the contract parame-

ters, y or θP or both, with repayment target in mind. For example, the lender will initially

offer a constant annual rate y such that 0 ≤ y < x, where x would guarantee full repay-

ment without participation. In order to collect the remaining portion of the debt debt,

the lender will then command a participation policy27 θt ∈ [0, 1], which28 minimizes the

squared29 distance from a set terminal target amount Q̂T

J = min
{θt :t∈[0,T]}

E
[(

QT − Q̂T
)2
]

. (29)

Note that J will be minimized by controlling participation θt over time t ∈ [0, T].

In what follows we will assume full repayment target, so we set Q̂T = 0. Note that then

the minimization program (29) will penalize terminal underpayments (QT > 0) as well

as overpayments (QT < 0). Furthermore, the minimization programme (29) is subject to

the following budget condition, derived from (4)

Q0 = e−rTE [QT] + i
∫ T

0
e−rtE [Qt] dt +

∫ T

0
e−rtE

[
θt (Pt − K)+

]
dt (30)

For this Shared Income Mortgage the required coupon rate i is reduced (below r) to

27To simplify notation, we dropped the subscript P form time-dependent participation ratio θP,t.
28By setting the upper admissible bound on θt equal to one, we explicitly assumed that the maximum

the lender can require from the borrower is full participation. Similarly, we constrained the lender from
further investing into the project (no negative participation ratios).

29Our choice is arbitrary. Other loss functions are possible.
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reward lender’s participation. The lender is compensated proportionally to the available

excess intermediate profit flow (Pt − K)+ i.e. via a cap on income in the good but not in

the bad states.

Note that E [QT] is not necessarily equal to Q̂T (zero if full repayment is sought) in

situations when the maturity repayment target amount is expected to be met with prob-

ability less than one. Such situations can occur if e.g. the lender offers a low repayment

rate i, and when the available earnings, Pt, are also low. This budget condition relies on

the full time-profile of the future participation policy θt, where t ∈ [0, T]. Furthermore, it

is straightforward to show that Qt is given by

Qt = e−r(T−t)Et [QT] + i
∫ T

t
e−r(s−t)Et [Qs] ds (31)

+
∫ T

t
e−r(s−t)Et

[
θs (Ps − K)+

]
ds ,

(see Appendix B) and define, as τ, the time at which the loan will be repaid

τ = inf {t : Qt = 0} . (32)

If τ < T the loan has been repaid before maturity and the optimal policy is to set θt to

zero for the remaining time segment t ∈ [τ, T]. Indeed, once Q hits zero at a stopping

time τ, only zero-participation policy (θt = 0) precludes the generation of subsequent

overpayment or underpayment at maturity (with probability one). This instantly mini-

mizes variance-like target (29) for all paths, as opposed to maintaining, after time τ, any

stochastic cash flows linked to debt and participation.

It is clear that full description of the state of the system at time t requires knowledge

of the current balance Qt as well as current earnings flow Pt, the two state variables. We

33



  

define the value function

Jt = J (Qt, Pt, t) = min
{θs :s∈[t,T]}

Et

[
Q2

T

]
. (33)

Standard steps (see Appendix C) give the Hamilton-Jacobi-Bellman (HJB) equation for

the value function J

min
θ

{
∂J
∂t

+
∂J
∂Q

[
(r− i) Q− θ (P− K)+

]
+

∂J
∂P

(r− δ) P +
∂2 J
∂P2

σ2P2

2

}
= 0 , (34)

where we dropped explicit time dependence (subscript t) from Qt, Pt and θt. Because the

control θ is constrained, the first-order condition for optimality need not be satisfied, i.e.

there may not be interior minimum for θ ∈ [0, 1]. However, the control θ appears only as a

coefficient in the second term. Thus, the Hamilton-Jacobi-Bellman equation is minimized

by choosing θ to minimize the second term. This term is clearly minimized by selecting

θ? =

 1 if ∂J
∂Q (P− K)+ > 0

0 otherwise
(35)

whenever this strategy is admissible. The choice of θ? = 0 is arbitrary because when e.g.

P ≤ K there is no excess flow to share and so any admissible control θ is allowed.

Typically, we expect ∂J
∂Q to be positive, because in the case of mortgage amortization

the starting balance Q0 is positive. Consequently, increasing the loan value Qt up from

zero necessarily makes the full repayment goal (Q̂T = 0) harder to reach. This in turn

increases the variance-like terminal objective function (33). As a result, the optimal re-

payment policy is full participation (θ?
t = 1), whenever the loan has not been repaid yet

(Qt > 0) and if there is positive excess cash flow available to share (Pt > K). We have

thus shown that the optimal policy is to set participation to maximum, so that the mort-
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gage will be repaid as soon as possible. If Q attains zero before maturity, at some τ such

that τ < T, participation should simply be “switched off” for the remaining time until

maturity T, because the loan has just been repaid in full early.

4.6 Commercial and partially amortizing mortgages

Commercial mortgages typically assume an amortization schedule of length Ta, which is

typically much longer than the term T : T < Ta of the loan. At maturity T a remaining

balloon payment Qa is then required to cover the unpaid balance. For a standard repayment

fixed rate mortgages (FRM) the annual payment rate is therefore calculated, using identity

(10), as if the mortgage had the maturity equal to Ta

xa =
rQ0

1− e−rTa
. (36)

Similarly, the balloon payment Qa is computed as the remaining balance, at time T, for a

mortgage with annual payment xa and “maturity” Ta

Qa =
xa

r

(
1− e−r(Ta−T)

)
= Q0

1− e−r(Ta−T)

1− e−rTa
: 0 < T < Ta . (37)

The balloon payment is a quantity which can be computed at time t = 0 when Ta and T

are known.

A commercial mortgage can also be restructured to incorporate a participation cap C

and reduce the annual repayment amount xa. Incentivising of the borrower can then be

achieved by setting the repayment target in equation (29) equal to the balloon amount Qa,

that is

Q̂T = Qa , (38)

where Qa can be computed using (37).
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The above observations are very important because they show we can easily general-

ize30 our earlier results to the intermediate situation (where the mortgage is neither fully

amortizing or non-amortizing) of partial amortization, as is the case of commercial mort-

gages (with balloon payments).

5 Suggestions for future research

Our results are particularly significant for properties such as pre-fabricated homes, in-

dustrial properties, shop houses, etc. with little appreciation potential (i.e., where the

underlying land is held on a leasehold basis). Properties such as mines, nuclear power

plants, etc. with depreciation potential are also good candidates for an ASIM.

Future research should also encompass other variants of APMs. Here, we only briefly

enumerate these possible variants, together with their corresponding property types. Sin-

gle family homes, which combine residence with investment (where the underlying land

is owned on a freehold basis) are a good candidate for a ASAM (Amortizing Shared Ap-

preciation Mortgages). Undeveloped land or underdeveloped property with endemic

growth options are good candidates for an ASEM (Amortizing Shared Equity Mortgages).

The last case constitutes a special case and has been the focus of Titman (1985).

Finally, experts in different fields of finance can learn from the example of APMs to

structure equivalent Amortizing Participation Bonds (APBs) for corporations where there

is no informational advantage to borrowers or managers of firms. Firms, like different

classes of real estate, operate in different sectors of the economy. This endows them with

complementary and diversifiable characteristics (see Fama and French (1998) and Daniel

and Titman, 1997). For instance, a pure value firm operates in a mature (or declining)

sector of the economy. In contrast, a pure growth firm is endowed with growth options.

In between these two extremes, we find firms with mixed value-growth or growth-value

30We thank one anonymous referee for pointing us towards this direction.

36



  

characteristics. An APB can be employed for a Value-Growth (or a Growth-Value) firm.

In contrast, a pure value firm is a prime candidate for an Amortizing Shared Income

Bond (ASIB) while a pure growth firm is a prime candidate for an Amortizing Shared

Equity Bond (ASEB). Unfortunately, there is no equivalent case of a firm, which is both

a consumption good as well as an investment like residential real estate. Therefore, in

the corporate sector, we may not be able to structure an equivalent Amortizing Shared

Appreciation Bond. Further study is also needed to adapt an APM to an already default

conventional mortgage (or loan) in a workout situation.

6 Policy implications

First, we recommend that policy makers should aim at developing Macro Markets (see

Shiller, 1993) for sectorial salary/income indices to facilitate monitoring, estimation of

earning capacity, etc. This helps provide the necessary information to estimating the pa-

rameters of the Shared Income mortgage and thus lowering the monitoring costs.

The second recommendation stemming from our study is to shift policymakers’s fo-

cus from initial stages to the final stages when designing and introducing mortgage con-

tracts whose explicit payoff depends on borrower’s income profile over time. This is

because, unlike the fixed rate mortgages, which policymakers are typically familiar with,

the Shared Income products we study in our paper need to have penalties imposed at ma-

turity in order to incentivize borrowers to perform repayment in timely manner.31

Finally, as an additional policy implication, we conclude that in the particular case of

Shared Income loans, the candidate screening instrument of choice (which our present

theoretical work uncovered) is the size of the repayment penalty to be applied at matu-

rity. This feature is novel and distinct in its scope from the well studied and understood

31In contrast, fixed rate mortgages have prepayment penalties imposed at the initial stages of their repay-
ment schedule.
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prepayment penalty discussed in the literature. Lenders will thus be able to offer a range

of contracts with various combinations of contract rates and more or less onerous end of

contract terminal penalty profiles. As a result they will be able to separate and possibly

ration credit to potentially problematic customers e.g. when observing preference for the

lowest contract rates combined with very high end term penalties.

7 Concluding remarks

This paper aims to mitigate financial fragility by focusing on Amortizing Participating

Mortgages. APMs belong to the same class of home loan credit facilities as advocated in

the Dodd-Frank Wall Street Reform and Consumer Protection Act 2010.

We first illustrate that unlike interest bearing fragile facilities, optimal structure of par-

ticipating mortgages necessitates a meticulous evaluation of their stochastic amortization

schedule. Since participating mortgages repayment flow comprises two components, i.e.,

deterministic and stochastic, flows, optimal participation ratios are a solution to a class of

optimal stochastic control problems. We illustrate this specificity of participating mort-

gages by formulating and solving such a problem. We then provide the corresponding

Hamilton-Jacobi-Bellman equation and discuss the implications of the optimal control,

which we obtain in closed form.

Second, our approach offers a method to obtain closed-form solutions to APMs. We

provide detailed numerical examples of employing these facilities as workout loans. We

argue that APMs reduce the endemic agency costs of debt by reducing deadweight costs.

These benefits increase the demand for real estate and reduce the fragility of the financial

system thereby forestalling foreclosures. This, in effect, improves the value of real assets

in conjunction with enhancing the resilience of the financial architecture and invigorating

economic growth. In this respect our approach offers a novel ex-ante renegotiation to

mitigate the foreclosure problem.
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A Appendix: Cap and call formulae

Caps C on flow s with strike flow level k for finite horizon T can be computed using the

following closed-form formula (see Shackleton and Wojakowski, 2007):

C (s0, k, T, r, δ, σ) = −Asa
0
(
1s0>k − N (da)

)
+

s0

δ

(
1s0>k − e−δT N (d1)

)
(39)

−k
r

(
1s0>k − e−rT N (d0)

)
+ Bsb

0
(
1s0>k − N (db)

)
.

where

1z =

 1 if z is true

0 if z is false
(40)

and

A =
k1−a

a− b

(
b
r
− b− 1

δ

)
, (41)

B =
k1−b

a− b

(
a
r
− a− 1

δ

)
,

and

a, b =
1
2
− r− δ

σ2 ±

√(
r− δ

σ2 −
1
2

)2

+
2r
σ2 , (42)

whereas the cumulative normal integrals N (·) are labelled with parameters dβ

dβ =
ln s0 − ln k +

(
r− δ +

(
β− 1

2

)
σ2
)

T

σ
√

T
(43)

(different to the standard textbook notation) for elasticity β which takes one of four values

β ∈ {a, b, 0, 1}.

Standard Black-Scholes Black and Scholes (1973) call on S with strike value of K can
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be computed using

c (S0, K, r, δ, σ, T) = S0e−δT N (d1)− Ke−rT N (d0) (44)

where d0 and d1 can be computed using formula (43) in which values S0 and K can (for-

mally) be used in place of flows s0 and k.

Both floor (39) and put (44) formulae assume that the underlying flow s or asset S

follows the stochastic differential equation

dst

st
=

dSt

St
= (r− δ) dt + σdZt (45)

with initial values s0 and S0, respectively. Clearly, (45) describes a geometric Brownian

motion under risk-neutral measure where Zt is the standard Brownian motion, σ is the

volatility, r is the riskless rate and δ is the payout flow rate.

B Appendix: Derivation of the expression for remaining balance

Consider

d
(
e−rsQs

)
= e−rsdQs − re−rsQsds (46)

where (see (59))

dQs =
[
(r− i) Qs − θs (Ps − K)+

]
ds (47)

Therefore

d
(
e−rsQs

)
= e−rs

[
(r− i) Qs − θs (Ps − K)+

]
ds− re−rsQsds (48)

= e−rs
[
−iQs − θs (Ps − K)+

]
ds (49)
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Integrating from t to T gives

∫ T

t
d
(
e−rsQs

)
=

∫ T

t
e−rs

[
−iQs − θs (Ps − K)+

]
ds (50)

e−rTQT − e−rtQt = −
∫ T

t
e−rs

[
iQs + θs (Ps − K)+

]
ds (51)

Rearranging terms gives

Qt = e−r(T−t)QT +
∫ T

t
e−r(s−t)

[
iQs + θs (Ps − K)+

]
ds (52)

Qt = e−r(T−t)QT +
∫ T

t
e−r(s−t)iQsds +

∫ T

t
e−r(s−t)θs (Ps − K)+ ds (53)

Finally, taking risk-neutral expectations conditional on information Ft gives

Qt = e−r(T−t)Et + [QT] i
∫ T

t
e−r(s−t)Et [Qs] ds +

∫ T

t
e−r(s−t)Et

[
θs (Ps − K)+

]
ds (54)

For t = 0 we recover the budget constraint (30)

Q0 = e−rTE [QT] + i
∫ T

0
e−rtE [Qt] dt +

∫ T

0
e−rtE

[
θt (Pt − K)+

]
dt (55)

C Appendix: Derivation of the HJB equation

For small h

Jt = min
θt

Et

[
min

{θs :s∈[t+h,T]}
Et+h

[
Q2

T

]]
= min

θt
Et [Jt+h] (56)

Rearranging terms and taking limit h→ 0 gives

lim
h→0

min
θt

Et [Jt+h − Jt] = min
θt

Et [dJt] = 0 (57)
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Itô’s lemma gives

dJt =
∂J
∂t

dt +
∂J
∂Q

dQt +
∂J
∂P

dPt +
1
2

∂2 J
∂P2 (dPt)2 (58)

Note that this particular form is due to dynamics of Qt. In fact, it is locally deterministic

and is inherited from ODE (13)

dQt = {rQt −
[
iQt + θt (Pt − K)+

]
︸ ︷︷ ︸

xt

}dt (59)

while Pt follows stochastic dynamics (2). From Itô’s Lemma (58), (59) and (2) we obtain

dJt =
∂J
∂t

dt +
∂J
∂Q

[
(r− i) Qt − θt (Pt − K)+

]
dt (60)

+
∂J
∂P

(r− δ) Ptdt +
∂J
∂P

σPtdZt +
1
2

∂2 J
∂Q2 σ2P2

t dt

where we used the fact that (dQt)2 = 0 and dQtdPt = 0, because the evolution of Qt is

deterministic. Inserting dJt into the optimality condition (57), taking the expectation and

dropping dt gives the HJB equation

min
θt

{
∂J
∂t

+
∂J
∂Q

[
(r− i) Qt − θt (Pt − K)+

]
+

∂J
∂P

(r− δ) Pt +
1
2

∂2 J
∂P2 σ2P2

t

}
= 0 (61)

The first order condition for interior minimum can, mechanically, be computed

− ∂J
∂Q

(Pt − K)+ = 0 (62)

but it is not useful because the HJB equation is linear in θt.32 Therefore, candidates for

minima should only be looked for at boundaries of the control domain, i.e. either at θt = 1

or θt = 0.

32Note that the second order “condition” (derivative) w.r.t. θ is identically zero implying no local minimum.
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