ON A MOLLIFIER OF THE PERTURBED RIEMANN ZETA-FUNCTION

PATRICK KUHN, NICOLAS ROBLES, AND DIRK ZEINDLER

ABSTRACT. The mollification ((s) + ¢’(s) put forward by Feng is computed by analytic methods
coming from the techniques of the ratios conjectures of L-functions. The current situation regarding
the percentage of non-trivial zeros of the Riemann zeta-function on the critical line is then clarified.

1. INTRODUCTION

1.1. Statement of the results. The Riemann zeta-function ((s) is defined by the Dirichlet series
C(s) =), ,n *for s=o0+it,c >1andteR. The functional equation of {(s) is given by

§(s) = €(1 —s),

where
£(s) = H(s)C(s) and H(s) = %s(s - 1)775/2I’<;>.

This allows us to perform a meromorphic continuation to the whole complex plane except at s = 1
where ((s) has a simple pole with residue equal to 1. The connection with number theory comes
from the Euler product
() =Ja-p)7",
p
for Re(s) > 1, and where the product is taken over all the primes p. It is well-known from Riemann
and from von Mangoldt that the non-trivial zeros p = 8 + i~y of ((s) are located inside the critical
strip 0 < 8 < 1. Moreover, if N(T') denotes the number of such zeros up to height 0 < v < T then

N(T)zgr(log;ﬂ—1> +;+S(T)+O<;>,

where
1 1
S(T) =— argC(Q + it) < logT,
T

as T — oo, see e.g. [13] [16] for properties of ((s). To state the results, we let Ny(T') denote the
number of non-trivial zeros up to height 7" > 0 such that § = 1/2. Similarly, let Nj(7') denote the
number such zeros which are also simple. We then define
e No(T) . N (T)

w=lpnt gy and A =lnintoes
The history behind the value of x can be found in [3, B, 14]. The main breakthroughs were as
follows. In 1942, Selberg [15] established that 0 < x < 1. Levinson later showed in 1974 that
k > .3474. This was improved by Conrey to x > .4088 in 1989 and later refined by Bui, Conrey
and Young [3] to k > .4105, and shortly afterward by Feng [8] to x > .4127. It should be noted
that both results are improvements of k£ > .4088 and are independent of each other.
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The second author, Roy and Zaharescu [14] as well as Bui [2] brought up a point regarding the
strength of Feng’s result. In [I4], it was explained that x > .4107, unconditionally, using Feng’s
mollifier. However, the computation of the mixed terms of the mollifiers of Conrey and of Feng was
not carried through explicitly.

It should also be remarked that Bui [2] suggests that the bound obtained in this paper can be
attained using the twisted second moment of the Riemann zeta-function due to Balasubramanien
et. al. [I] and that he also suggests an alternative argument that could lead to the bound x > .41098.

In this paper, we close this gap and we explain Feng’s brilliant choice in the context of the pow-
erful technology developed in [3, [I7]. These ideas come from the ratios conjectures of L-functions
due to Conrey, Farmer and Zirnbaeuer [6] as well as to Conrey and Snaith [7]. It should be noted
that Feng’s methodology to obtain the main terms of his theorem consisted on an ingenious combi-
nation of elementary methods, namely induction and Mertens’ formula, applied to Conrey’s result
[5]. On the other hand, this choice of methods blurred a bit the length the mollifier was allowed to
take. Other than choosing the same mollifier, our computations do not overlap and the methods
are quite different.

Lastly, the closing of this gap will clarify the situation of the percentage of non-trivial zeros on
the critical line when one attaches Feng’s second-piece mollifier to Conrey’s.

1.2. Choice of mollifiers. Let Q(z) be a real polynomial satisfying Q(0) =1, Q(z) + Q(1 —z) =
constant, and define

1d
1.1 = B
(11) Vi =0 - 1 )6
where for large T,
L =logT.

If ¢ (s) is a mollifier, then it is well-known from the work of Levinson [12] and of Conrey [5] that
Littlewood’s lemma [16, §9.9] followed by the arithmetic and geometric mean inequalities yields

T
(1.2) K> 1 %log (;/1 V(oo + z't)|2dt> +o(1),

where 0y = 1/2 — R/L, and R is a bounded positive real number to be chosen later. Following
Feng [8], we will choose a mollifier of the form

Y(s) = P1(s) + Pa(s),
where 1; is the mollifier considered by Conrey. Let P(z) = Zj ajxj be a certain polynomial
satisfying P1(0) = 0, Py(1) = 1, and let y; = T% where 0 < 6; < 4/7. We adopt the notation

Pifn] = P1<10g(3/1/")>

log 11
for 1 <n <y;. By convention, we set Pi[z] = 0 for z > y;. Then v (s) is given by

(1.3) =)

h<y

hdo 1/2
uh)h7 Py[n],

where p(n) is the Mobius function. For the second mollifier, we take

(1.4) Z“ 0 UQZ 3 w&[lz].

1
k<y2 =2 p1-pelk 08 Y2
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Here K > 2 is an integer of our choice and py,--- , p are distinct primes. Also we need P(0) =0
for £ =2,--- K. In this case yo = T% where 0 < 6 < 1/2.

Remark 1.1. It will become clear in the calculation of the crossterm integral between )7 and 9
that one needs 01 + 05 < 1 — e. Therefore, if 6, increases, then 65 decreases unless some difficult
work is done to push 63 back to its original (or higher) value. See the comments between Theorem
[[. I and Theorem for more details.

The reason behind this choice is that Feng wishes to mollify not only ((s) but also ¢(9) which

log T
is the second term coming from ([1.1). This is accomplished by looking at
1 11 ¢ L) L (©)
1.5) = - —5(s) + 5) — 8)+---
( @+izr ) 072 iogrr ¢ ) i ot )

When k is a square-free positive integer, then one has
(e A) (k) = (=1)'u(k) > logpi---logpy,
p1-pelk

where f % g denotes the Dirichlet convolution of arithmetic functions f and g. Here A* stands
for convolving the von Mangoldt function A(n) with itself exactly ¢ times. If k contains a square
divisor, then, as remarked by Feng [§], the coefficients a; resulting from contribute a lower
order to the mean value integrals 111, I12 and I3 related to k in (see below for exact definitions
of these I-integrals).

1.3. Numerical evaluations. We will prove the following.
Theorem 1.1. We obtain with 01 = 03 =1/2 — ¢

Kk >.369927 and k* > .359991,
unconditionally.

Using the work of Iwaniec and Deshouillers [10, [IT], Conrey [5] was able to push the size of the
mollifier ¢; to 6; < 4/7 — e. In the light of Lemma and below, we require #; 4+ 02 < 1 in
our argumentation. The points brought up in [2] and [14] show that some difficult work is needed
if one takes 61 + 65 > 1. Theorem utilizes 01,02 < 1/2 — . However, if we take 6 < 4/7 —¢
and 0y < 3/7 — ¢, then we get

Theorem 1.2. We obtain with 1 < 4/7 —¢ and 62 < 3/7 — ¢
Kk >.410725 and k¥ > .403211,
unconditionally.

It should therefore be stressed that Theorem is an improvement of the last theorem to ever
use 01 = 1/2 — ¢, namely the first corollary of [4], where it was shown that x > .3658.
The method sketched in [3| [14] to deal with multiple piece mollifiers carries through and our main
result is as follows.

Theorem 1.3. Suppose that 01 + 03 =1 — € with 61 < 4/7 and 02 < 1/2 and € > 0 small. Then

1 T
T/ |V11[}(O-O+Z.t)|2dt:C(P17PZ7Q7R501702)+0(1)3
1

where c(P1, Py, Q, R, 01,02) = c11 + 2c12 + co2 and the c¢;; are given by (1.6), (1.7) and (1.8).
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We use Mathematica to numerically evaluate c¢(Pi, Py, Q, R,1/2,1/2) with the following choices
of parameters. With K =3, R = 1.3,
Q(z) = .481936 + .632349(1 — 2z) — .144698(1 — 2z) 4 .0304136(1 — 2z)°,
Py(z) = x + .225339x(1 — z) — 1.01137x(1 — z)? + .174004x(1 — z)3 — .100235x(1 — z)4,
Py(z) = 1.05138z + .28420122,
P3(x) = .222032z — .132542,
we have xk > .369927. To get k* > .359991, we take K = 3, R = 1.2,
Q(x) = .476202 4 .523798(1 — 2x),

Pi(z) = x4 .0531913z(1 — z) — .594999z(1 — x)? — .00107597z(1 — x)® — .07619542(1 — z)*,
Py(z) = .896567 — 029746422,
Py(z) = .0699271x — .1089642>.

We also use Mathematica to numerically evaluate ¢(Py, Py, Q, R,4/7,3/7) with the following choices
of parameters. With K =3, R = 1.295,

Q(x) = .492203 + .621972(1 — 2z) — .148163(1 — 2z)3 + .033988(1 — 2z)°,
Pi(z) = x + .229117z(1 — z) — 2.932318z(1 — x)? + 4.856163z(1 — ) — 2.390999z(1 — z)*
Py(x) = —.072644z + 1.5594402>
Py(z) = 701568z — .55440322
we have xk > .410725. To get k* > 403211, we take K = 3, R = 1.109,
Q(x) = .485034 + .514966(1 — 2z),
Pi(z) =  + .0486916x(1 — x) — 2.02526x(1 — x)* + 3.43611z(1 — ) — 1.623552(1 — 2)%,
Py(z) = —.034431z + 1.0922322,
Ps(x) = 4792962 — 0.385868z.

An interesting question to ask is: what would have happened if Feng had published his mollifier
before Conrey’s increment of 67 from 1/2 to 4/7. Since this has not been remarked before in the
literature, we take the chance to answer it. If 91 and 1, are kept at 1/2 — e, then Feng’s piece adds
an additional 0.4127% to Conrey’s 36.58% as shown in the table below.

0 6y %
1/2 1/2 36.58% + 0.4127%
4)7 3/7 40.88% + 0.1925%

TABLE 1. % according to sizes of 6

Since 15 is the perturbation of 11, it behooves us to take 6, as large as possible (4/7) at the cost
of sacrificing 02 to 3/7 which only adds 0.1925%.

1.4. The smoothing argument. The idea of smoothing the mean value integrals was introduced
in [3| [I7] and it helps substantially in our calculations. Let w(t) be a smooth function satisfying
the following properties:

(a) 0 <w(t)<1forallteR,

(b) w has compact support in [1'/4, 277,

(c) w(t) <; A7I, for each j =0,1,2, -+ and where A = T/L.
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This allows us to re-write Theorem [L.3] as follows.
Theorem 1.4. Suppose that 01 =1/2 — ¢ and 63 =1/2 — ¢ for e > 0 small. For any w satisfying
conditions (a), (b) and (c¢) and o9 =1/2 — R/L,

| wolveton + i) = (P P Q. R0, 02)(0) + O(T) 1),

uniformly for R < 1, where c¢(P1, Py, Q, R, 61,02) = c11 + 2c12 + c22 and the ¢;j are given by (1.6]),
(1) and (LI).

How to deal with a two-piece mollifier was explained in [3, [§]. In [I4] a 4-piece mollifier was
studied. The idea is to open the square in the integrand to get

Jwee= [wap+ [vPos+ [WEme+ [ ver

= I + Lia + L1z + I.

We will compute these integrals in the next sections. The integral ;2 is asymptotically real, thus
121 follows from I12, i.e. 112 ~ 121.

1.5. The main terms. The main terms coming from integrals I11, I12 and I are now stated as
theorems.

Theorem 1.5 (Conrey). Suppose 61 < 4/7. Then
| wOW i+ )P ~ (P R00)D(0) + O(T/1)

uniformly for R < 1, where

2
(1.6) c11(P1, Q, R, 61) _1+/ / < Rf’rpl(x+u)Q(v+9x)|x_o> dudv.

Let () =4(f{ —1)-...- (£ —k+ 1) denote the Pochhammer symbol.
Theorem 1.6. Suppose 61 + 03 =1 — ¢ where 61 < 4/7 and 03 < 1/2. Then

/Oo w(t)V@Z)l%(O'o + ’it)dt ~ 012(P1, Pg, Q, R, 01, 92)11/5(0) + O(T/L)

—00

uniformly for R < 1, where

GV A
c12(P1, P, Q, R, 01,05) = ) =] /0 (1 —w)" " Pr(u)P(u)du

=2
01 — 0y o (—1) [ 0
_ 101 22(0) /O (1_u)€1p/1< (1—u)91>Pe( )du
=2 ’
1 a 2 (612+02y) U
?Z 7 dxdy[ +y// -y
(1.7) x Py <:1:—|—1 —(1 —u)zl> Py(y 4+ u)Q(O2y + v)Q(01x + v)dudv ]
rz=y=0

Theorem 1.7. Suppose 0 < 1/2. Then

/OO w(t)| Ve (oo + it)|2dt ~ c22(Py, Q, R, 02)W(0) + O(T/L)

—00
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uniformly for R < 1, where

K K min({1,02) 0
on(PoQRH) =353 (1 () e

l1=2 =2 =
2€1+£2 2k 1 01
X WM/ (1 — 'LL) 1tz P€1 (U)P(Q(u)du
K K min({1,02) g1+[2 oh £1 2514-(2—2]6 d2 Réa(a+y)
) 2(c
Z 2 Z <k>( i (0T 0] dudy [

Zl 2/03=2 =

(1.8) / / 280 (1 — )12 Py (2 4 u) Pry (y + w)Q(v + 622)Q(v + bay)dudy

x:y:0:|

Remark 1.2. Note that in [§], c11, c12 and cg9 are all mixed into one single theorem and it is not
immediately clear how to separate each individual c-term.

The smoothing argument is helpful because we can easily deduce Theorem from Theorem
and so on. By having chosen w(t) to satisfy conditions (a), (b) and (c) and in addition to
being an upper bound for the characteristic function of the interval [T'/2,T], and with support
[T/2 — A, T + A}, we get

T
/ ‘VQJZ)(O-O + Zt)|2dt < C(Plv Pf, Qa Ra 917 02)/&3(0) + O(T/L)
T/2

Note that w(0) = T/2+ O(T/L). We similarly get a lower bound. Summing over dyadic segments
gives the full result.

1.6. The shift parameters a and . Rather than working directly with V(s), we shall instead
consider the following three general shifted integrals

Ln(a, B) = / T w0+ o+ it)C(h + B — ity (oo + it)dt,

— 00

ha(a, B) = /OO w(t)C(3 + a+it)((5 + B — it)Pra(oo + it)dt,

I (e, B) = /OO w(t)((g +a+it)((5 + B — it)aipa(o0 + it)dt.

The computation is now reduced to proving the following three lemmas.

Lemma 1.1. We have
I = cui(a, B)w(0) + O(T/L),
uniformly for o, 3 < L™, where

1 d?
(1.9) cn(a, B) =1+ 0, dxdy{ e O‘y/ / T8 py( x+u)P1(y+u)dudv

Lemma 1.2. We have
Iz = c1a(e, B)w(0) + O(T'/ L),
uniformly for a, 5 < L_l, where

c12(a u)z_lPl (u) Py(u)du

= 2
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_ K e p1
Shy Y / <1—u>‘P{< “‘ng)f’f( )

(=2

K
1 (_1)8 &? |:,8£E —oy

+7Z Yo

o, 0 drdy |

(1.10) / / T+8)(1 —w)' P (x +1-(1- u)z > Py + u)dudv

Lemma 1.3. We have
Iy = ex(a, B)w(0) + O(T'/L),
uniformly for o, 3 < L™, where

K min(41,02)

/
ez Z Z Z 1)ftees 2k<,§>(€2)kz
(1=202=2 =
2(1-{-(2 2k

1
; /0 (1 = w1, (1) Py (u)d

X N
(fl +405—1
K K min({1,62) _
LY X (fl)<@>k<_1>fl+fz%W ;
2 ) =20y=2 k (61 + £2)!
d a—ay (@B) (1 — y)1+
1.11 v vl 1+ p P dud .

To get Theorems and [L.7] we use the following technique. Let I, denote either of the
integrals in questions, and note that

1 d 1 d
Y G AR VY UL PP

Since (o, ) and c. (e, 5) are holomorphic with respect to a, 8 small, the derivatives appearing
in the equation above can be obtained as integrals of radii < L~! around the points —R/L, using
Cauchy’s integral formula. Since the error terms hold uniformly on these contours, the same error
terms that hold for I, (a, ) also hold for I,. That the above differential operator on ¢, («, ) does

indeed give ¢, follows from
-1 d __ log X'\ ., _
—X %) = X
Q(logTda > Q(logT)

Note that from the above equation we get

-1 d -1 d\ _gs —aym log yyT" logytT\ 82 —aurm
w T, oy v(a+8) _ 2 1 Bz oy v(a+p)
@ <logT da> @ <logT dﬁ) R AT A T L

a:ﬁ:fR/L'

= Q(fay + v)Q(O1z + v)yy Pyy VTt

as well as

ii -1 d —Br—ay v(at+B8) _ logygTU TV« M @\ — 3
Q(logTda>Q(logTdﬁ>y T =@ Togr ) @I ) 1B T)

= Q(O2y +v)Q(fax + v)yy VT VD),
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Hence using the differential operators Q((—1/log T)d/da) and Q((—1/logT)d/df3) on the last line
of c12(a, B) we get

d? Bxr —ay —v a+,8) D)
d:cdy[yl Yo // 1—u)P1(a:+1—(1—u)91>

Py(y + u)Q(O2y + v)Q (012 + v)dudv

:L‘:y:l):|

Theorem then follows by setting @ = 3 = —R/L and using T%/F = T%/1°8T = ¢ Similarly,
when we use the differential operators Q((—1/logT")d/da) and Q((—1/logT)d/dS) on the last line
of ¢o2(av, B) it becomes

xy0:| .

2
p [ Ro(a+) / / 2R0(1 ) Py (o + 1) Pay(y + w) Qv + 052)Q(v + Oay)dudv

The same substitutions yield Theorem

2. PRELIMINARY RESULTS

2.1. Results from complex analysis. The following results are needed throughout the paper.

Lemma 2.1. Suppose that w(t) satisfies conditions (a), (b) and (c) and that h, k are positive
integers with hk < T% with 6 < 1/2, and o, B < L™, Moreover, set

TGG+ats+it)(G(5+B8+s—it))

Ja,5(s,t) =7 Al +a+it)TEGE +8—it)
as well as
Koy = s LG =@ PG B+ i)
B, LG5 +a+it)L(E(3+8—1it))

Then one has

/OO w(t) (Z) ﬂ't{(% +a+it)((3 + B —it)dt =

— 00

hm=kn

+ Z .y 5n1/2 a/ Vg _a(mn, t) X, grw(t)dt + Oa(T™H),
hm=kn -

where
1 (a4 B)* — (25)?

Proof. See Lemma 5 of [I7]. They key point is that non-diagonal terms hm # kn can safely be
absorbed in the error terms. O

G(s)gaﬁ(s,t):n_sds, G(s):eszp(s) and p(s) =

Lemma 2.2. Suppose 0 < 6= L™', 3 < L™ and 8 < 6. For some v = (loglogy)~! we have

1 1 ¢’ Ty du
V=g [y casara 0 rem) ()

= (1o e () S o Qﬂ)w((;) LE>,

where y, > n > 0 and the contour is a circle of radius one enclosing the origin and —[3.
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Proof. This follows a similar procedure to Lemma 6.1 of [3] where the zero-free region of ¢ is used.
Let Y = o(T') be a large parameter to be chosen later. By Cauchy’s theorem, Y is equal to the sum
of residues at uw = 0 and u = —f plus integrals over the line segments v; = {s =it : t € R, |t| > Y},
v2a={s=0+xiY : —¢/logY <o <0}, and v3 = {s = —¢/logY + it : |[t| < Y}, where c is some
fixed positive positive constant such that ¢(1+ 5+ u) has no zeros in the region on the right-hand
side of the contour determined by the «;’s. Another requirement on c is that the estimate (see [16),

1Y

N
logY

(N
O

—iY

FIGURE 2.1. Curve 7 in the proof of Lemma

Theorem 3.11]) 1/¢(o + it) < log(2 + |t|) holds in this region and ('/{(o + it) < log(4 + [t|) (see
[13, Theorem 6.7]). Then, one has

oo log(t)l—f—ﬂ—r log(y)1+€—r
7 Y
since j > 3. Moreover, since n < y,

0 z 1 log(Y)é"
o0 () L g o B0
[YQ < /c/logY o&(¥) n/ Yitl v Y+t o

and finally
Y —c/logY '
< log(4 + |t Z*’"HM dt < log(Y)t—rti n)—c/logY
[ [ st i g de < o) T )

Appropriately choosing Y =< (logys,) gives an error of size O((loglog )" ") = O(logys). The
next step is to sum the residues. This sum can now be expressed as

1 1 ! Ty du
mféC(lJrﬂJru)(g(lJrﬁJru)) (Z> ui+l’

where the contour is now a small circle Q of radius < 1/L around the origin such that —3 € Q.
Since the radius of the circle is tending to zero, we can use the Laurent expansions

L—5— s—1)?) an C—/s:—i 5 —
oy =IO 1) and ) = g4+ Ols 1)),
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to finally obtain
1 1 ! Ty du
2m}£<(1+ﬁ+u><<(1+6+“)) (%) o
1 ~1 oy d
:mf(mwouﬁ)) (M+O(1)> (%) u%

Using the binomial theorem and a direct estimate gives, we get that the above is equal to

(_])Z—r!7{(6_+_u)1—€+w (%f)lLU?Z1 + O,

which is the desired main term of the lemma. OJ

This integral can be computed exactly. To do this, note that for any integer k > 1, one has

k

d
qu6+uk: eﬁyeyqu
8-+ 0" = e

y=0

Hence, one arrives at and where we temporarily set ¢ = y,/n

1 di—ttr du di—ttr 1 du
— (1) BY (oY 7\ — (1) By _— Y\ U
T=(1) 2mf{dy1”’“e ') T = ) e P @ o
(1) d 3 Yx\7
(2.1) = - ey(y+log—) ,
]! dy17€+r n =0

by Cauchy’s integral theorem.

2.2. Combinatorial results. When computing the crossterm of ¢, and w9 the following result
will be needed. This generalizes [8, Lemma 8] which is the particular case h; = hy = h.

Lemma 2.3. For hy and he square-free, we have

Ql1,6p) == > logpilogpy---logps, > logqiloggy---loggs,
P1P2°Pey M1 q1G2°+ Qe lh2
min{¢1,l2}

= > w()( >
k k
k=0 P1P2°Prq1q2 ey —kT1T2° ey —k|h1h2/ ged(h1,h2)
p1p2--pr| ged(hi,ha)
q1+qey —klha

r1Tey—klhe
k 01—k lo—k
X <Hlog2pf> ( H logqf> < H logrf>,
f=1 f=1 F=1
Here the p’s, the q’s and the r’s are all distinct primes.

Proof. We may write

Qb)) = > logpilogpy---logpy, > logqiloggy---loggy,
p1p2-Pey |ha q192°+Qeq |2
PaFPb qaFqp
=0l > logpilogpa---logp, > loggqiloggs--logar,
p1p2-pey b1 q192°*Qug [h2

P1<p2<---<pgy q1<q2<-<qq,
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min{¢1,0l2}

= (105! Z Z

k=0 pip2--prqiq2--qe, —kT172 - Toy—k|h1ha/ ged(h1,h2)
p1p2---pr|ged(hi,h2), q1-qey —k|h1, 7110y g |h2
P1<p2<-<Pk, 1<q2<-<qey —k, T1<T2<-<Tpy—k

x (log? py -+ -log® px) (log 1 - - - 1og qe, — ) (log 11 - - - log g, )
min{¢q,l2}

01105
= 2 110 — k) (ls — k)] 2.

k=0 P1P2°Prq1q2- ey — k7172 o —k|h1h2/ ged(h1,h2)
p1p2--prlged(hi,he), q1-qey —k|h1, 1m0y k|2

x (log?p1 - - -log? pi) (log g1 - - 1og g, —) (log 71 - - - log ¢, ).
Using the definition of the binomial coefficient completes the proof. O

2.3. Generalized von Mangoldt functions and Euler-MacLaurin summations. Recall that
for a positive integer k, the generalized von Mangoldt function Ag(n) is defined [9] by the Dirichlet
convolution

Ax(n) = (u * log")(n),
so that Aj(n) = A(n). The generating series is

— A(n) rCW

= (—1)kF>—
I ]
for Re(s) > 1 and here ¢ (k) stands for the k-th derivative of ¢ with respect to s. By looking at
d C(k) C(kJrl) C/
(@)=

ds\ ¢ ¢ VT

n=1

for Re(s) > 1, we see that

Agt1(n) = Ag(n)log(n) + (A * Ay)(n),
and in particular for k =1
(2.2) As(n) = A(n)log(n) + (A x A)(n).

Lemma 2.4. We have for smooth functions F and G in the interval [0,1], 3 < z < z, and
|s| < (logz)~!

S A(Z)lﬁgnF <log(:c/n)> i <1og(Z/n)> _log?z /01(1 CWF <1 (- 10gz> H (u) 2% du

= log log 2z z8 log z

+ O(log z).
Proof. Start by setting

Vo) = 3 A(Z)lﬁgnF <log(x/n)> I <10g(z/n)> and Y(z) = 3 A(n).

log log 2z

n<z

n<z

By applying the Abel summation formula, one gets

‘1’<Z’w>=¢<z>i°1g+fF(l°?§§f) - g (e (Phe) 1 (5l )
= v (i (M) (M) s 0 e
/w = 1%2—+58)10guF (10?(5;;;?))]{(%) .
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oot () o .
b () (2 () s
_log”2(1+5) A) /01 BN (1~ D)F <1 (- b)ESi) H (b) 21D
10 <logz /1 ¢(u)u215du>
o () )
41 /jqp(u)fifF (k’g(x/“)) o (k’g(z/“)> du + O (log 2)

log 2z log log 2

log? 2(1 ! !
:0g<+> /0 Y1 b)F (1—(1_1))125;)}1@)2““’1db+0<logz>

log? ~ log =

1
s / ¢(z1_b)(1 —b)F <1 —(1-0b) ) H (b) Sbstb=1 7y
z 0

log

1
+0 <logz / Yz - b)zb8+b—1db> + 0O (log 2)
0

_ log*= /01(1 —b)F (1 —(1-1) logz> H (b) z"*db+ O (logz/ol(l - b)zbsdb> +0 (log 2)

z5 log

z$ log =

log’z (! 1
_ gz / (1-b)F (1 —(1-b) ng) H (b) 2°*db + O (log 2) ,
0
since ¢(x) = x + O(z exp(—cy/log z)) for ¢ > 1 by the prime number theorem with remainder, see
e.g. [16]. O

Lemma 2.5. We have for smooth functions F and G in the interval [0,1], 3 < z < z, and
|s| < (logz)~!

*[
Z(dk*A )F logx/n I logz/n
nlts log x log z

n<z

)k-l—l

_(Ing/l k-1 log 2 » il
(k-1 g - Flr-a u)log:n H(u)z"du + O((log 32) ),

where di(n) denotes the number of ways an integer n can be written as a product of k > 2 fized
factors. Note that di(n) =1 and da(n) = d(n), the number of divisors of n.

Proof. This can be proved by using induction over ¢ and Euler-Maclaurin summation. One starts
with ¢ = 0 and then uses [3, Lemma 4.4]. The exact details can be found in [I4, Lemma 3.6]. O

Lemma 2.6. We have for smooth functions F and G in the interval [0,1], 3 < z < z, and
|s] < (log )~

Z(1 A« Alog)(n) (log(az/n)) " <10g(z/n)>

et nlts log x log z
log®t®z [t log 2
= 1—w)*2F(1-(1— H “sd log®*2 2).
e [ a-w (1= w) 22 ) H () 2" du + O(log" 2

Proof. Same as in the beginning of the proof of Lemma but instead we use Lemma, [2.4] O
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Lemma 2.7. We have for smooth functions F and G in the interval [0,1], 3 < z < z, and
|s| < (logz)~!

Z(1 A AP () <log(w/n)> . (bg(z/n)>

—~ nlts log © log 2
log1+a+2b > 1 IOg Py
— 2b7 1— a+2bF 1—(1— H us 1 oldl a+2b )
(a + 2b)!2% /0 (I—w) ( u)logx (u) 2% du + O(log ?)
Proof. This follows by induction on b and by using Lemma combined with (2.2)). O

3. EVALUATION OF THE SHIFTED MEAN VALUE INTEGRALS I (a, ()

3.1. Proof of Lemma Although this was already explained in [I7], the mean value integral
Iz (e, B) builds up from I13(c, ) which in turn is a refinement of I11(«, 3). Therefore, careful
analysis will repay itself by going over the main points of the evaluation of I;;(«, ) briefly. For
our purposes, we shall illustrate this for ; < 1/2; however, in [5] it was shown that one could take
01 < 4/7. We start by inserting the definition of the mollifier ¢; in I1; so that

Ii(a, B) = /OO w(t)¢(§ +a+it)((5 + B — it)1i (oo + it)dt

—00

= /_Oo wt)C(3 +a+it)((5+ 8 —it)
-1/ o -1/ o
- u(hzlf; ! 2P1 <1 gyl/h> 3 u(klzljitl 2P1 (1 gyl/k> it

o) log y1 log y1

k<y1

_ p(h)u(k) logyi/h logy1 /k
- Z Z (hk)'/? Pl( log y1 >P1< log y1 >

h<y1 k<y1

X /oo w(t) (Z) ﬂ‘tc(% +a+it)((3 + B —it)dt.

— 00

According to Lemma [2.1], we write I11 (o, 8) = I (o, 8) + I{; (o, B), where I, is given by

/ p(h)p(k) , (logyi/h log y1/k
Tl@f =2 3 (hk)'/? P1< loglyl >P1< 10g;1 >

h<y1 k<y1

1 [e.o]

hm=kn

Notice that I{; (e, ) is obtained by replacing « with —f, # with —a and multiplying inside the
integrand by X, 5 = T~*%(1 + O(L™')). In other words,

In(a, B) = Iy (o, B) + T~ Iy (=B, —a) + O(T/L).

Let us then look at I{; more closely. Using the Mellin representations

Pi[h] = Loy ds g o =Sl Ly
1[ ] zﬁ: logzyl 2 (1) ( h ) gitl an 1[ ] zj: logjy1 2 ) ( k ) U,j+1,

we then get

I (am_/ww(t)zamajj! 1 3/ // stug () G
R S tog" Iy \2mi ) Sy oy Joy T

.3
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p(h)p(k) ds du

X g z -
ot h1/2+s1/24um1/2+atzp1/246+2 7 gitl g+l
Mm=Kn

dt.

We now evaluate the arithmetical sum S =, _, in the integrand. This is done p-adically as
follows. We denote by 1,(n) the number of times the prime number p appears in n, and without
risk of confusion we write n’ = v,(n). This means that

_ p(h)p(k)
S= hz:k h1/24s 1/ 24up 1 /24 atz1/2+8+2

=11 3 p@" ")
» h/+n/_m,+k, (ph/)1/2+s (pk/)1/2+u(pm/)1/2+a+z(pn/)1/2+5+Z

1 1 1 —24e
- H ( 1+s+u T pltstatz  pltutftz + pltatB+2z +O0(p )

B C(l+s+u)((1+a+5+22)
(I +sta+)(1+u+B+2)

Aa,ﬁ(sa u, Z)a

where the arithmetical factor A, g(s,u,2) is given by an absolutely convergent Euler product in
some product of half-planes containing the origin. It will be important to remark that when
a=L0=0and s =u =z we have

(3.2) Apo(z,2,2) = Z p(h)p(k) = Z _u(hulk) -1

1/24211/242,1/242,,1/2+2 1/24= )

for all z, by the Mébius inversion formula. Inserting this into I}, we get

- [0S Z Y [ [ [ e

CA+s+u)¢(l+a+pB+22) ds du
((1+s—|—a+z)g(1+U+B+Z>Aa,/3(s,u,z)dz : " dt.

gitl i+l
Now we deform the path of integration to Re(z) = —d+¢ where 6 > 0 small and Re(s) = Re(u) = 4.
By doing this, we pick up a simple pole coming from 1/z at z = 0 only, since G(z) vanishes at the
pole of {(14+a+ B+ 2z). The new path of integration with respect to z contributes an error of the
size

1 =2 o
Z — <1 + log yl) <1< L[HI72
n n
n<y1
Thus, we end up with

Iil(aaﬁ):/_(:w(t)zlzgﬁj] (2m> / / et g Zt)G()

C(1+s+u)(1+a+B+22) ds  du Z
AT tatal@rutfss sl mmd+ow™™)
= w(0)¢( +a+6)zggfjjh 1 +O(LH72),

Z‘?j

() s
=\ om @ J l—i-s—i-oz)C(l—i-u—i-B) BT T G T it

where
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Using the Dirichlet series representation for ((1 + s + u), we can separate the complex variables s
and u. The next step is to use the Laurent expansion
Aq p(s,u,0)

(Arstalrarp @ T 9E+u400(0,0,0)+ O(L™)

= (a+8)(B+u)+O(L?)

since Ag(z,2,2) = 1 for all z, in particular for z = 0. By the use of Lemma we can deform
the line integrals into contour integrals around circles of radius 1 around the origin. Thus,

> (o) f () lsede oy rdi s

These integrals can be computed by the use of (2.1)), so that

2 i ;
Ji1 = Z|1 | d;ldy iy Z (m + log %) (y + log %)J

n<y1

+O(LI2),

z=y=0

Let us note that

_log'yi d o, <x N log(yl/n)y
_o  logy dz”! log y1

d 1 i
—eax—(x—f—log @> .
dr™ n n/ |, 2=0

Now sum over i to get (the two ¢! cancel out)
lo n)\’
and similarly over j, so that
I (o, B) = w(0) (1 4+ a+p it
{1(a. ) = D(0)( Do
d? J
az+Py ( log yl/”)) < 10g(?/1/n)> ]
— Yyt — +0(T/L)
dfvdy [ gl log y1 log y1 z=y=0
_ @(0) d? |: az+By
(o + B)log?yy dwdy
1 log(y1/n) log(y1/n)
XZnP<x+logyl P y—i-m +O<T/L)
n<yy r=y=0
_ {E(O) d? l: az+By
(o + B)logyy dady
1
x / r P <x + 1°g(y1/r)> P <y + log(yl/r)> dr } +0(T/L)
1 log y1 log y1 r=y=0
@(0) d? ax+,3y/
= P( P d T/L).
(oz—i—ﬁ)logyldzdy[ (x +u) (y+u)uxy:0 +0(T/L)

In the second equality we made use of ((1+a+ ) = 1/(a+ )+ O(1), in the third equality we used
the Euler-MacLaurin formula, and the in the fourth equality we employed the change of variables
r = M'~". By adding and subtracting the same quantity we find that

(3-3) In(a, B) = Iy (@, B) + I1y (=8, —a)] + I}y (=8, —a)(T~*7 = 1) + O(T/L).
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For the term in square brackets we have

1
<a+ﬁl>logy1 /0 (P'(u) + aP(u) log 1) (P'(u) + P (u) log yn)du

1
- e, (P = AP oz i) (P(w) — aP () oz du

1
= / 2P (u)P(u)du = 1.
0
For the other term in (3.3) we have
T—a=8 _1 d?
(—B — a)log 1 dady™*
1-TF @ 5 0 [
B T P(r4u)P(y 4+ u)d
(a+ B)logy: dxdyyl /0 (x 4+ u)P(y + u)du
1 d2
91 dajdy

Ao, B) + (=8, —a) =

(=B, —a)(T™*F —1) = yy P “y/ P(x +u)P(y + u)du

r=y=0

z=y=0

y—ﬁx ay / / T—v OH'B)P(Q; + U)P(y + u)dudv

;
r=y=0

by the use of
1—T-°F 1!
3.4 — = / T+ gy,
34 (a+pB)logyr 61
The additional restriction that | + 8| > L~ is dealt with the holomorphy of I(«, 8) and c(«,

with o, 8 < L~! which implies that the error term is also holomorphic in this region. The maximum

modulus principle extends the error term to this enlarged domain. This proves Lemma

3.2. Proof of Lemma (1 This is the term involving Conrey’s and Feng’s mollifiers. To compute
this term, let us follow the same strategy as in I11(a, ). We first insert the definitions of ¢ and

19 into the mean value integral I;5 so that

La(a, B) = /OO wt)((5 + a+it)((5 + B — it)P1a(oo + it)dt

—00

= /Oo wt)C(3 +a+it)((5+ B8 —it)

logpy - - - log py
h1/2 zt Z k1/2+zt Z Z P[k]dt

h<y1 k<yo (=2 pypylk log” g
K
p(h)u(k) log pr - - - log pe
:Zzi(hk)lﬂ Py[h] Z T looles 1 Py[k]
=2 h,k p1--pelk 0g" Y2

X /OO wt) (3 +a+it) (3 + B —it) <z> _itdt.

—0o0

As for I11(a, B), we use at this point Lemmal[2.1]to write I1a(a, 8) = I}y(a, B) + 115 (e, B) + E(e, B),
where I{,(«, 3) and I5(a, 8) correspond to the two sums of Lemma and F(a, ) is the error

term. Specifically, one has

K
log p1 - - - log pe
Ta(oo) = SR R S BRI

lo
=2 hk p1--pelk g Y2
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hm=kn

and for reasons of symmetry, I15(a, §) can be obtained from I{,(«, ) by switching o and —f and

multiplying by
—a—B
() =7voun

2w
for ¢t < T. We thus see that it is enough to compute I1,(a, 8). The error term is given
_ w(h logp1 - - - log py
Bl an TS MR g 5 o hosne
=2 hk p1-pelk 08 Y2
—_A —A L
<Yy 20 1/2 RETEDY 2. 1/2 k)
é 2 h<y1 k<y2 p1- pg|k‘ f 2 h<y1 k<y2
1 _ _
—A —A 1/2—e 1/2—¢
<T Z h1/2 c Z /2= LTy oy,
h<y1 k<y2

— p—AT01(1/2-€)02(1/2—¢) _ p—A+(61+6¢)/2—¢

for any A > 2. We remark that the above computation works for 1 + 5 arbitrarily large but the
error term 7T~4 coming from Lemma is only valid for 6; + 03 < 1. The next step is to use the
Mellin integral representations of the polynomials P;

PR = 37 gy /) = Y0 L (M)

log'yy — log'yy 2mi J1)

and Pg
Pylk] = Z

and the definition of V,, g in Lemma to write

az‘bg i'j'
oo 5) = [ w33 st

= i log" y1 log?

p(h)p(k)
- Z (hk)Y/2ml/2+anl/2+p Z log p1 - - - log py
b= hn p1--pelk

= yi\* (12" a(2.t) G() | ds du
X <2m'> /(1) /(1) /(1) (h) <k> (mn)? 2 sziJrl udet.

We now have to compute the arithmetical sum )", _, . Further details on this procedure can be
found in [14]. Let us define

p(h) (k)
St = St,ap(s8,u,2) = Z (hk)12m1/2tatznl/2+B+= Z log p1 -~ log py.

log’y, 21

bg j' 1 Y2\ ¥ du
1 k ] — 7‘7' ; ’
o 108 (02/1) Z . (%) 5=

km=hn p1--pelk
We start by inverting the order of the sum so that
¢ . p(h)p(k) 1
Z log p1 log pe Z h1/2+5]}1/2+um1/2+o¢+zn1/2+5+z (pl .. .p£)1/2+u

p;#lfj hn:pl---pﬂcm
< (p1--pe,k)=1
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1 | .
(3.6) =(-1)f . PEPLTIOBPLG, | a(siu.z),

o 1/24u
rin; (p1---pe)
1<)

where k = l;:pl -+ pg and where we define the inner sum to be

& _ & _ p(h)u(k)
Se = Seap(s,u,z) = Z PV TS A Ty yes—y vl
h,k,m,n
hn:pln-logl;:m
(p1--pek)=1

Recall that v,(n) = n’ denotes the number of times the prime number p appears in n. We can
write the above as

S= ] 3 p(p")
el o} W1 (ph')1/2+s (pm')1/2+a+z (pn')1/2+B+2

< 11 3 p@")u@")
WYL/ 2+s (pk'\1/24u (pm/\1/2+a+z (pn' \1/2+B+2
pE{p1,--pe} B 4+n/=k'+m/ (") (") (™) (p™)

o Hl(aaﬁasvuaz)HB(a 5 S u Z)

(37) B H2(a76787u7 Z)

where we define

u(P" ) ()
Hl(a,ﬁ,s,u,z):H Z WNL/24s (N1 20 (i \ L) 2otz (o \ 1/ 24 Bt 2
o i (PPN (PR )12 ()12 otz (pn ) 1/2 5

1 1 1 1 e
- 1;[ (1 + pltstu - pltstots - pltutftz + pltatiizs +O(p 5)>,

as well as
h k
p(p™ )u(@™)
HZ(Q,B,S,’U,,Z): / 7 ’ /
pe{pg~ . h’+n§’+m’ (p)1/2+s (ph )1/ 2+u(pm/ Y1 /2 +ats (pn/ Y1/2+B+2
1 1 1 1 o
- H <1 + pltstu — pltstatz — plfutfiz + pltatitaz +O0(p E)>7
pe{p1,,pe}
and finally
h/
(")
Hg(a,B,S,U,Z): 7 7 7
H Z (ph )1/2+5(pm )1/2+a+z(pn )1/2+,B+z

pE{p1,,pe} B +n'=m'+1

_ 1 1 —24¢€
o H <p1/2+ﬁ+z  pl/2+s +0(p ))-

pe{p1,,pe}

Hence we arrive at the following expression for S;

N 1 1 1 1 oy

S = H <1 + pltstu — plfstatz — plfutfiz + plrathiz +O0(p E)>
p
Cl4+s+u)(l+a+ 5+ 22)

Tl tutpfraCltstart Z)Aa,ﬂ(svu, z),
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where the arithmetical factor A, g(s,u,z) is given by an absolutely convergent Euler product in
some product of half-planes containing the origin. Therefore, when we go back to the expression
for Sy in (3.6]), we obtain the following

Cl4+s+u)(l+a+ 5+ 22)

= - Z ..
S i rut Bl +start z)Aaﬂ(S’“’ 2)(=1) pép:_ log py - - log py
1<j
—2+e
(3.8) < I E(p) + O(p~**)

pE{p1,,pe} 1= p1+s}ﬁ-a+z + p1+aJ1r/3+2z — E(p) + O(p*2+€)’

- L 1 1 ! 1
(p) = p1/2+u o p1/2+s + p1/2+6+z - _p1+s+u + pltphtutz’
At this stage, we compare (3.8)) in its exact form (that is, with big-O terms replaced by their exact
expressions) against (3.6) and (3.7)) in its exact form, and we use the fact that for « = f = 0 and
s = u = z, the ratio of zeta functions
Cl+s+u)l(l+a+p+22)
C(I+u+p+2)((1+s+a+z2)
reduces to 1. In other words, reverting the p-adic analysis in
C1+s+u)(l+a+p+22)
Cl+u+B+2)((1+s+a+z)

Anp(s,u,2)

> p(@" ) (@)
i S (PIOL/EES (PR )2 () 1oz (pn) 122

we find that
C14+s+u)(l+a+ 5+ 22) (5,1, 2) = Z w(h)p(k)
(OtutBtaC(tstatz P &0 = 20 Jiargi/runl ety 3155
Following ({3.2]), we know that
_ p(h)p(k)
Avo(z,7,2) = kmz:hn (hkmn)1/2+2’
and thus, we find that
Ago(z,2,2) =1

for all z. Let us denote the last part of (3.8) by Hy, specifically

Hy = (_1)4 Z H (E(p) + O(p_2+€)) logp(l + E(p) + pl—&—si—a—&-z - p1+a-1i-5+2z + O(p—2+€))

pi7#p; pE{p1,~,pe}
1<)

=0 > I (E(p)logp+0<202g_f>>-

pi7#P; pE{p1,- ,pe}
1<J

We now employ the principle of inclusion-exclusion to write

He= (-1 ( X Blp)ogn+ o(ﬁ%ﬁ))e +3B),

where .
B(p) <a,8,5,u,2,e e

—e°
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To end the computation, we must identify the logarithms of the prime numbers with the signa-
ture of the von Mangoldt function A(n) and hence match the resulting expressions to logarithmic
derivatives of the Riemann zeta-function by the use of

> _ logp< 1 >1 log p <logp>
-y An)n™* =-— 1—— =— +0 ,
nzl ( ) ; s ps Z ps p25

p

for Re(s) > 1. With this in mind, H,; becomes

/ / l
Hy = (—1)f (§(1+s+u)—4(1+ﬁ+u+z)+0(1)> + D(a, B, 5,1, 2)

¢
_U)f + i UmBm(a')ﬁaS?u’ Z) + D(Oé,,B,S,’U,, Z)v

where D(a, 3, s,u, z) are terms of smaller order and where

¢’ ¢
U——Z( +5+u)+ C( +B+u+z).
We also have that 1
ogp
Bm(Oé, ﬁ? S, u, Z) <<0¢7/3757u72 Z pQg—s '

p
All of these terms are analytic in a larger region of the complex plane, thus we are only interested
in the term U*. Consequently, the end result of this is that

a;by ;17! ( > / / /
I 5J
i2( / ZZlog yrlog My \2mi ) Jy Jay Ja

=2 i,j
C(1+s+u)(1+a+B+22) ¢ ¢ ,
C(l+“+5+Z)C(1+s+a+z)A“75(S’“’Z)(g(1+3+U)—€(1+ﬂ+u+2)>

G(z) ds du
ga”B(Z, t)s’tﬁ uj+1 dt

x (—1)yiyy

The next step is to deform the path of integration to Re(z) = —J 4+ & where § > 0 is small, fixed
and ¢ < ¢ as well as Re(s) = Re(u) = . By doing this, we pick up the contribution of the residue
of the simple pole of 1/z at z = 0 only, since, as before in the I11(«, §) case, G(z) vanishes at the
pole of ((1 + a+ B+ 2z). The new path of integration with respect to z contributes

)
(3.9) < T+ <yljff2> <7<

by keeping 6, 4 62 = 1 — ¢ (since y; = T% and yo = T%). We now write

(e, B) = Iggla, B) + O(T71F9),
where I{,4(a, 8) corresponds to the residue at z = 0. Then

a;by, z‘j‘
it )= [ w35 A

= 7 log' 'y11og?

(o) fofy

X (—1)£<2(1+s+ u) —

C1+s+u)(l+a+ 5+ 22)
(I+s+a+2)(1+u+B8+2)

14
ds du
~(1+B8+u+ )) Sﬁﬁdt

gOt 5( )ylyZC Aaﬂ(s,u,z)

C/
¢
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K
—~ azb€ Z']'
(3.10) =w(0)¢(1 +a+B) DYDY —— Ty,
KZ:; Z log'y1log? Ty,
where
C(1+s+u)Aap(s,u,0) [ ¢ ¢ ds du
oo <2m> / /5) Cl+u+pB)C(1l+s+a) C(1+S+u) Z(1+B+u) YIYs o s 1

Let us now use the binomial theorem to write

1454 u)Aqp(s,u,0)

Jia(a, (2772) // CA+B8+u)(1+a+s)
, b—r / r d d
e R

) et e () (Gasen)”
(

( r=0
o
1xA*")(n) , , ds du
X Z plsta Y2 T

n=

_ i (f) L+ A7) (2;)

n<min(y1,y2) 7=

/ t—r . .
/5)/5)C1+ﬁiﬂusC(u 3-)04—1—8) (2(1+5+u)) (%) (%) ;jlucﬁp

where we have used the Dirichlet convolution of

o o0

C(s):Z% and — =
n=1 n=1

for Re(s) > 1. Here 1(n) = 1 for all n denotes the identity function. Next, we take § < L~! and

bound the integral trivially to get Jio < L*7~1. This means that we can use a Taylor series so

that A, (s, u,0) = Ag(0,0,0) + O(|s| + |u]) to write Ji2(a, B) = Jj5(cv, B) + O(L772), say. We

recall that we have shown earlier that A (2, z,2) = 1 for all z, in particular Ag(0,0,0) = 1. This

implies that the complex variables s and u are now separated as

Jio(a, B) = Z Z < )M)()L12,1L12,2,

n<min(y1,y2) r=0

—

where
1 1 y1\s ds
L = — 72 :
12,1 271 15) C(l +Oé+8) (n) SH—I’
and
1 1 ¢’ T g\ du
(31 bus= 5 [ civsTg (Fovsrn) (3) 5

The first of these two integrals was dealt with in the I1;(«, 8) case and its main term is

ds 1d Y1\’
L121—7{ < )s”l_z'daze <x+log;>

=0
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For the second integral we will need the following Lemma and equation (2.1). Hence, one gets

_ (1) 1—b+r “du (—1)£_r d=r By y2\J
Ligo = 9 (B +u) n) Wt Tl dyl_“‘?"e (y +log n)

y=0
This means that when we insert these results into Ji, we obtain
11 (1% A*")(n)
ol p) = 12T ()
"7 n<min(y1,y2) =0
d dl b az+ Y 7 7 o
“ 5y< 1 i) ( 1 &) 10 Lz-‘r]—? )
dedyl—“”e T+ g . Y+ g y:0+ ( )
By making the changes
and y — ,
log y1 log y2
we can write this in the more convenient form
l
log®tyilog? tys O\ (L% A*)(n)
Jia(, B) = — Yoo D ) ———
g1 4 r n
n<min(y1,y2) 7=0
d d'—tr lo n)\" lo n)\’ "
— yax 2,6’y <$ + g(yl/ )) (y + g(yQ/ )> + O(LH_J_z).
dz: dy log 11 2=0 log 12 =0
Telescoping back to (3.10) we obtain that
w(0) d? [ 3
I/ a, — (o7 )
120( 9) (a + B)log yi log yo dady |/ ¥
L 4
1 0\ dr*
<3 (1) 0 () g
;:; log"ys Z% r)dy*
1xA*)(n lo n lo n
n log y1 logyz /) |,—y—o

n<min(y1,y2)

where the sum over 7 has been identified to the polynomial P;, and the sum over j to the polynomials
P;,. We now perform the summation over n by using Lemma To do so, we now set y; > ya.
The lemma yields

3 (1 *A*’")(TL)P1 <x+ 10g(y1/n)> P, (y+ log(yz/n)>

n<y2 n1+3 log Y1 IOg Y2
1 r+1 1 0
= Ogyy?/ (1—u)P <a: 1 (1w ) Py(y + w)ydSdu + O(log(3y2)").
2 0 1
Therefore, the resulting expression for I{y is
w(0) d? [/1
Io(ar, B) =
120(. ) (a+B) log y1logyz dxdy | Jy
¢ r—{
am ﬁ b—r aw
-1 -
Z log Y2 ;J( ) <7“) dy"=*
log“'lyg . 9
X T(l—u) P, x—l—l—(l—u)a Py(y 4 u)du +O(T/L)
! 1 z=y=0
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Now we must go back to I15. We recall that I12(a, 3) was formed by adding I15(a, 8) and I75(«, 3),
where I7, is formed by taking I7,, switching o and —f3, and then multiplying by T —o=8_ Note that
r<d¢ and thus only the case r = £ contributes to the main term. Therefore

L

/ _ {0(0) . Kl d2 ax, By

« /01 (1— )P, <x+1—(1—u)zl> Py + w)du

} +0(T/L).
z=y=0

We now use
IIQ(au 6) = 112(047/8) + T_a_ﬁI:/lQ(_Bv —Oé) + O(T/L)
= (112(0476) =+ 112(_67 _a)) + (T_a_ﬂ - 1)112(_ﬁ7 —Oé) + O(T/L)
We first take a look at the first term in the brackets
r= y0:|

d By _ =B y ! ¢ 02
ax f fa 1— p 1—(1— P
dxdy [ <y1 Y2 — U Y2 ) /0 (1 —u) P <ac + (1—-w) 91> 0y + u)du

1
~ (Ao [ (-7 (1= (=0 ) Pl

1
ot Ao [ (1=0'F (10 -0 ) P

0
1 1
— G+ atogn [ a-w'pr (1= =02 ) Royu+ [ =P (1- 0= 0g) Ptan )
0 —0)10gT [ (1—w)'Pl(1- (1 -2 Py)au
(et o - otoeT [ (=R (1 0= 0 o
Since we had that P;(0) = P»(0) = 0 it follows that

1 1 /
0=(1—w)'P)Pu) = /O (1~ w)Prw) Py(w))

u=0
We can therefore write

e/ W) Py () Po(u)du :/01 (1—w)'P (1 (- Zf) Pl(u)du
+ /01 (1—u)'P (1 —(1—u) ZQ> Py(u)du.

1
Combining these observations, we see that

, : B e Y PR
Ta(0,8) + To(=B.—0) =0(0) 3 5=y [ (1= ) AL P

(=2

_ L o/ e p1
_@(0)9101922(2) /0 (1—u)'P] <1—(1—u)zl>Pg( )du.

(=2

For the expression (T2 — 1)I',(—f, —a), we use (3.4) to get

(177~ 1)1'{2(—67 —a)
L

@(O) (_1)€ ocy/ / (a+B) Y 0
= —v(e 1 — P 1—(1-— P, dud
5 ;:2 a0 dedy 7y WP (z+1-(1-u) 0 0(y + u)dudv

T= y:O:|



24 PATRICK KUHN, NICOLAS ROBLES, AND DIRK ZEINDLER

+O(T/L).

By using similar arguments for the holomorphy of the error terms as in the Section 3.1, we end the
proof of Lemma

3.3. Proof of Lemma This is the hardest case. Once again, we insert the definitions of the
Feng mollifiers ¢9 in the mean value integral Iso(a, 3) so that

n(,8) = [ wt)C(} +a+ it + 68— it)brirlon + it)d

—00

_ / w(t)C(E + a4 i) + B —it) :I%Lizt

- h1<y2 '“1

K
log p1 log p2 log De
x> > L Py, [h]

log!
01=2p1pa--pe, |h1 g"

p(h2) i log ¢ log gz - - -log q¢
1 2
E § Py, [ho)dt

1/2—it
ha<y2 "2 la= 2q1q2 “qoy |2 log
-y etk
h1,h2<y2 h1h2
log p1 log p2 - - -log py, log q1 log g2 - - - 1og qu,
x Z Z > > 0,

lo
£1=202=2 p1p2--pe; |h1 q1a2°-qe, [h2 & Y2

<PulmiPultal |~ wtc +arin+o-in () a

We already explained in the computation of I13(c, §) how to deal with this integral, namely write
Ing(a, B) = Lo(av, B) + I (v, B), where I, (e, ) can be obtained from I, by switching o and —f

and multiplying by
—a-3
<t> =T o).
27

We now use the Mellin integral representations of the polynomials

bzé bigd! 1 Y2\ du
Pel[hﬂzzl L (log(y2/h1))’ :Z A (hi L

0g'yo — log'ys 2mi J1)

o0

and

bty bjsg! 1 y2\" ds
Pulla = 3o ostn ol =35 o | (i) o7
J

This leaves us with

|
Inp(a, B) = / Z Z > Zzﬁy zﬁi

01=2102=2 1,j log Y2 IOg
< ) / / / s+uga 5 p t) G(Z) Z M(hl):u(hQ)
2mi 2 e Tony b Ry PO m ek /2464
du ds
x Yy > logpilogps - -logpy, log qilog gz - - -log g, dz— g —rdt

p1p2--Pey 1h1 q1q2--qealhe
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We now have to compute the arithmetical sum thl:nh2 with p-adic analysis. The first step is to

consolidate the two sums over primes into a single sum. This is accomplished by the use of Lemma
2.3l Let us define

Sey ok = Z p(h1)p(ho)

h1/2+uhé/2+5m1/2+a+zn1/2+6+z

mhi=nhso

(3.12)

2 2
X > log®py -+ -logpr log g1 - - - log qg, - - -log 1 - - log T4, .
P1PrqL - Gey —kT1 Ty —k|h1h2/ ged(hi,h2)
p1--pi| ged(ha,;h2)
q1°+qey —k|ha
T1Tey —k |2

The next step is to swap the order of the sums. For this, we making the changes
hi = hapi--pray- Qe —k,
hy = hopy -+ Pt - Ty
implying that
(h1, 1 prar - G —k) = 1,
(ho,pr- a1 Topk) = 1,
(q1 g ks 17 Teyk) = 1,
so that

log®p1 - - - log?px log qi - - -log g, —i log Ty - - - log re, i
Sty ek = (1) Y : ;

1/2 172
pipy  P1TDRQU Qe —k) P py ey ) P
474
TiFET;

PiFGFETi
Z M(ﬁl)ﬂ(iw)

0 1/2+u(~h2)1/2+5m1/2+a+zn1/2+f3+z'

X

mh1p1-prq1qe; —k=nhap1-prT1Toy k) (h1)
(h1,p1Prq1-qe; —1)=1,
(h2,p1-prr1Tey—k)=1

Here the p’s, the ¢’s and the r’s are all distinct primes. Let us define the inner sum to be S’Ehg%k
and let us recall that v,(n) = n’ is the number of times the prime p appears in n so that

Z M(ibl)ﬂ(ilz)

= 1/2%u > \1/2+s
- - 1/2+a+z.,1/248+%
mhip1-Prqi--qey —k=nh2p1--PET1-Toy—k, (hl) (h2) m n

(h1.,p1-Prq1qe; —k)=1
(h2,p1-prr1Tey—k)=1

S£1y€27k =

IS 1
(pm/ ) 1/2+a+z (pn/ ) 1/2+5+Z

pe{p1, - ,pr} n/=m/

;L/
n(q"™2)
< 1 > ;
7 1/2+s N1/24a+ N1/24B+

delan e, ik iy, (@75) T ()BT () R

« H Z /ﬁ(""ﬁll)

i 1/24u 1/2 1/2
re{ri ey k) R il 41 (Thll) (T‘m') / +a+z<rn/) [2+6+=2
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. I

pE{p1, ok tU{ar, g0y —kJU{r1 e~k }

. pu(p™) p(ph2)
7 1/24u, 5, 1/24s N1/2 N1/2
by, () (P () RO () 12
. Hl(a7/87$7u7 z)Hg(a,,B,S,u,z)Hg(a,B,s,u, Z)H4(Oé,,8,S,U,Z)
B H5<O[,B,S,’U,,Z)

Each product is evaluated to

M(aBsuz) =[] > (") p(p")

s 124w, 5, 1/24s L 1/94 a0 1/24 8+
P gy (1) () T () T (e

1 1 1 1 —2+e
- 1;[ (1 + pltstu — plistatz — pliuthiz + pltatptaz +O0(p ) )

then
1
H?(a7/678)u7 Z) — H Z m/ 1/2+O¢+Z n 1/2+,3+Z
pe{p1, - ,pr} n'=m’ (p ) (p )
1 —
(3.13) = H <1 —+ Im + O(p 2+€)),

pe{p1, pr}

followed by

P,
y(a,Bos,m2) = ] > u(a™)

g U/24s L 1/20 a4 N1/2+ B+
q€{q1, e, —k} m/+1=n/+h} (¢") (a™) [2re “(¢) [2Hot

1 1 —2+4¢
- H (_q1/2+s + /2 B+z +0(q )>’

qc{q1, ,qe, —k}

as well as
iL’
pu(r")
(e, B, 8,u,2) = H Z 1
1199 s /24w 124 etz 1/24 8+
relri gk} i (F8) (Y EEOTE (LI
1 1 —2+4¢
- H <_ r1/2+u + rl/2tatz +0(r ) )
re{r, oy k}
and finally
H5(C¥,/B,S,U, Z) = H
pE{p1, e YU{a1, ,qe, —k YU, ey 1}
© Y p(P")p(p")
i 1/24u, 7, 1/24s n1/24a+ N1/24+8+
iy, () (P ()RR () 12O

pE{p1, Pk YU{q, s qey —k YU{r1, 7oy i}

1 1 1 1 Cors
X <1 + pltstu  pltstatz  pltutfrz + plratBrzz +O0(p )|
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This leaves us with

~ 1 1 1 1 o
St ok = H <1 + pltstu — pltstatz — plfutfiz + pltatpitaz +O0(p €)>
)
1 1 2
_ (A+s+u)(l+a+B+2z) Aas(s,u,2),

(I+s+a+2)((1+u+p+=2)

where A is an arithmetical factor that is given by an absolutely convergent Euler product in some
product of half-planes containing the origin. From our previous analysis of the I15(«, §) case, we
know that Ago(z,2,2) =1 for all values of z. Therefore we end up with

C1+s+u)(l+a+ 5+ 22)
C(Q+s+a+2)1+u+p+=2

x (=1 3" Jog?py -+ -log?pi log g1 - - log g, log 71 - - -log g,

PiFD;
qi7q;
i
PiFqiFTi
E —2+¢
% H 1(p) + O(P )

1+ p1+s}ra+z + pl+u%k6+z - p1+a}rﬁ+2z + E1(p) + O(p=2*e)

551782716 - )Aaﬂ(s?u? Z)

pE{p1, Pk}
I Es(g) +O(¢~**)
1 + q1+s}|»cx+z - q1+a-]‘,-ﬂ+22 - EQ(Q) + O(q_2+6)

X

q€{q1,,qe, —k}
H Es(r) + 0(7“_2+€)

1+ 7‘1+u%k6+z - r1+a<1kﬁ+2z - Eg(?") =+ O(’l“_2+€)’

X

re{r1, oy —k )

where
1
Ei(p) = plrstu’

and

> 1 1 1 1 1
2(q) = qt/2tu \ gl/2+s - ql/2tB+z ) T gltstu - gl HBtutz’
and finally

P> 1 1 1 1 1
3(T) - r1/24s \ p1/24u - rl/2+a+tz T pldstu o rltatst+z’
We define Hy, 4, 1, to be the last part of Sy, ¢, ;. This means that

H£1,€2,k = (_1)€1+Z2 Z H (El (p) + O(p_2+6))10g2p
pi#p; pe{p1,,pr}

Qi 795
TiFET
PiFEGFT;
1 1 1 O —2+¢
X H 1- El(p) T plfstatz | pltutftz + 1+a+p+22 + (p )
b b b
pE{p1, 1}

N 1 1 s
% I[I  (B@)+0(™))logq (1 +E2(q) - glrstots T glro+B2z +0(¢7*" )>

q€{q1, 90, —k}

_ 1 1 _
X H (Es(r) +O(r ) logr <1 + E3(r) — T + AT L O(r 2+£)>

re{ry, - roy—k}
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o £ T (pomerro(32)

Pi#p; pe{p1,.pr}
qi74q;
n;é'r'j

DiFEGFET

< 11 <E()1ogq+o<q°g§>> I1 (E()logr+0<0g:>>

q€{q1, qe, —k} re{ri, oy i}

+ O(f(p_z—"_a? q_2+87 r_2+£))7

for some polynomial f. Applying the inclusion-exclusion principle we then have

k
lo
Hy, gy = (1)1 <ZE (p)log"p + O (pg—f>>

p

o bk
1
<ZE2 logq+0(q0gg>> <ZE3 logr+0<(;g:>> —I—ZB(p,q,r)

p’q"r'

where

1 1 1
B(p) q, T) <<C¥ﬂ,3,u73’5 f <p25 ’ q2*5 P p2—¢ ) ’

As in the previous crossterm, we now need to identify the logarithms of the primes with the signature
of the von Mangoldt functions A(n) and Ay(n). With this in mind, we first write

= _ logp< 1 >_1 logp <logp>
- An)n™° =— 1-— =— +0 ,
1; ( ) ; ps ps Z s p23

p

and

C” = log?p 1\ ! log?p log?p
ZAz nt=y 1-—) = —=+0(—% ),
p

S
p p > P p
for Re(s) > 1. This means that

" k , ,
Hyy 5 = (—1)0715 <CC (1+s+ u)> (_C(l +s+u)+ ‘

¢ ¢
><< C,( 1+s+ )+C,(1+a+s+z)>€2 + D(a, 5, s,u, 2)
C ( ) ) ) )

_ (_1)£1+€2(_Vl)k(_vz)&—k(_vg)fz—k

01—k
(1+5+u+z)>

k—1 —k— lo—k—1
+Z‘/1lAl(Oé,ﬁ,S,u,Z) Z VQmBm(avﬁvsauv Z) Z ‘@"Cn(a,,@,s,u,z),
1=0 m=0 n=0
where D(a, 3, s, u, z) are terms of smaller order and where
C// C/ C/ C/ C/
‘/'1:—?(1+s+u), Vo = C(1+s+u)—E(lJrBJrquz), V3 = C(1+s+u)—z(1+a+s+z)

Moreover, we also have that

log®p log p
Al(Oé,/B,S,u, Z) <<o¢,ﬁ,s,u,z,5 Z Fa Bm(a,ﬁ,s,u, Z)vcn(aaﬁ757u7 Z) <<a,ﬁ,s,u,z,5 Z .

2—¢
p p p
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All of these terms are analytic in a larger region of the complex plane, thus we are only interested
in the term (—V3)¥(—=V5)*=%(=V3)?2~%. Consequently, the end result of this computation is that

min(£41,62) 61 b'g il b. . j'
1y
O I W i S (3 (BN e

(=2 03=2 i,j log™ 15 log
G(z) (A+s+u)C(l+a+B+2z)
<2m) / / / T CQTstataC(rat s opleu?)
C K C/ C/ li—k
X (—1)[1+£2 (C(l —l—s—l—u)) <_<(1 +8+u) C(l +5+u+z)>
/ , A
X (—i(l—i-s—i-u)—i-i(l—l—a—i-s—i-z)) dz%%dt.

As in the calculation of I],, we now take the s, u, z contours of integration to 6 > 0 small and fixed
with § < &, and then move z to —d + &, crossing a simple pole at z = 0 only (since, yet again, G(z)
vanishes at the pole of ((14+a+ 3+ 2z)). The new line of integration with respect to z contributes

2\ 0
<<T”5(y1%> < T,

since 0y = 1/2 —e. Write I5y(a, B) = Ihoo(a, B) + O(T17¢), where I}yq(c, 3) corresponds to the
residue at z = 0, i.e.

0o K
520(, B) = / w( Z

K min(£41,62) . .
Z 1,£2 El (6 ) bi,fll! bj}gQJ!
k 2 klogi+j 01402

0(=20,=2 ij k=0 Y2 log™ "2y,
G(2) tu CA+s+u)C(l+a+ B+ 2z)
o t STU Aa : :
<2m> /(6)/(6 res——9 B(z,t)y5 COtstat)dtutBte) 8(s,u,2)

/ k / / li—k
f1+€2 Q ¢ ¢ )
c —I—s—i—u) ( C( +s+u)+ C( +B8+u+z)

¢! g’ * du ds
min(¢1,02) El b‘g il b. . j'
=w(0)¢(1 4+ a+ ¢ _1)a+e %‘1 .42 Joo,
o 7 ;:2;:22; > O

where

J22<27m)// " 1+s(+1;)zgi)u+ﬁ) a.8(8,4,0)

" k / / lh—k
(i(l—l—s—i—u)) (—i(l—i—s—i—u) i(l—l—ﬁ—i—u))
¢ ¢ 27k qu o ds

X (—C(1+s+u) C(l—i—a—l—s)) L

The next step is to employ the binomial theorem in the part of the integrand that involves (
functions. Calling this part Z, we then have

C(1+s+u) <C”

Z(s,u) = (A+sta)l+utp\¢

(1—|—s+u))k
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CI

¢ e C C

B C(1+s+u) <C”
(I +s+a)(I+u+B)\ ¢

L oeren) ()

(1—i—s+u)>k

r1=0
la—k ’ bo—k—ro / )
<X (%) (Garara) T (Gaean)
k L2 / lo — k o (1 *A*k *A*r1+r2)(n)
_Z:()Z:()(l )(27"2 )Z_:l 2n1+s+u
1 C/ 1 —k—r1 1 C, lo—k—r2
X<<1+ﬂ+u><c(”ﬁ+“)> c<1+s+a><<<1+““)> |
where we have used the Dirichlet convolution of
—1 — A(n) ¢" — Ag(n)
((s) = Zn T = —nzl e and () =; s

for Re(s) > 1. Now we take 6 < L~! and bound the integral trivially to get Jao < L“*7=1. This
means that we can use a Taylor series expansion so that A, g(s,u,0) = Ag,0(0,0,0)+O(|s|+ |u|) to
write Joo(av, B) = Jho (v, B) + O(L*772), say. We recall that earlier we proved that Ag(z,z,2) =1
for all z, and hence Ag(0,0,0) = 1. This has the effect of separating the complex variables s and

u as follows

kLo *k *71 41
l lo — kN (1 % AZF  A*1F72)(n
s XSS () (B LA

r
n<y2 r1=07r2=0 2

where
(3.14) L L (@Y; Cl+ats) e ds.
' 217 o @ sn/ ((I+s+a)\( sitl’
and

1 Yo\ 1 ¢! bk gy
Loz = zm-/@ (%) Y] (g“*““)) s

These two integrals are identical, up to the symmetries in s/u, ¢1/l2, o/ and r1/ry and they were

in fact treated in the I12(c, ) case. The end results for the main terms are

—1 lo—k+ro S d -1 lo—k+ro dl_z2+k+7-2 §
Loy = ()f{ (y2> (s+ayi-tovins 25 () e (a: +log @)
n

27 n gi+1 ]' dxl—t2tk+r2
and
_ l1—k — i
PR Gt L 7 R S T G e (y+1082)
22,2 = 271 n witl il dyl—ttk+r Y &

Next, we insert these results into Jos and we end up with
—kbo—

_ 01— K\ [lo — kY (1% A3F « A*1472) ()
/ Z +lo—2k+r1+7 1 2 2
LSS e (1) (22 0)

T n
n<y2 r1=07r2=0 2
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dl—fg—l—k—‘rTQ d1—41+k+7‘1

cOT+BY (x + log @)] L O(L2),
n

7
(y + log %>
n/ |,

X
dxl—fg-‘rk‘-i-—rz dyl—fl-‘rk’-i-rl 0

To make matters easier, we again employ the change of variables

and y — ,
log 2 log y2

and this produces

i+j —kla

Iz = = Zzlj =3 Z Z D (51 - k> (52 = ki) (1% AZF % A*11572) ()

T T n
n<yz r1=0re=0 1 2

lo n)\’
(1+ st
=0 1Og Y2
We are now ready to insert this into I}y, so that

~ min(¢1,02)
/ o w(O) 2 aac—i—ﬁy 61

—2 (=2 log

+ O(L172),

y=0

di—letktre  gl—litk+ry ax+By x‘i‘ilog(w/n) :
X Qe ikt dyl—t+k+r 72 log v

—k lo—

Y +( - k) <ez—k> <1*A;k*A*“+r2><n>

n<yg r1=0r2=0 " "
db—tatra gh—titn <x log(y2/n)>j <y +1°g(y2/”))i
=0 logyz y=0

x dxk_z2+7'2 dyk_el‘H"l log Y2
where we have used ((1+ a+ ) =1/(a+ 8) + O(1). We now sum over i and j, e.g.

log(y2/n log (y2/n)\’
P, by —_—
0 (x + 108 > Z i01 ( )

log y2

] +0(T/L),

thereby getting

I (Oé 6) _ {0(0) 2 |: az+Ly Z Z
20 (o + B)log?y, dzdy

l1=20>=2

min(4y,02)

o 2 (1)

k=0

log

—k lo—

.S Z Z +< . k) <@T2 k) (1*A;k*2*”+m><n>

n<yg r1=0r2=0
dk—tatrz gh—titr lo n lo n
3 <x+ 2(y2/ )> P, <y+ 2(ya/ ))
=0 log yo

X dajk_€2+7"2 dyk_£1+rl log y2

yzo] +O(T/L).

Lemma [277) gives us

S @At AT ) (o4 8t} (ol

n log y2 log y2

n<Y2
9ritra 10g1+2/€+7"1 +72

Y2 2k+r1+r2 2k+r14r
1 P, +u)P, + u)du + O(1 1
(147 + 19 + 2k)! /0 ( u) (5} (z+u) e, (Y + u)du (log Y2),

so that we we are left with

117(0) 2 5 min(¢41,62) fl
I = c+by i
P et ng% §(mm
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b b —k\ /¢ k\ dk—tetr2  gk—li+m
DIPNCIES .
1 ) dxk_ZQ‘i‘T'Q dyk_el‘i‘Tl

r1=07r9=0

2r1+r2 log1+r1+r2+2ky2 1 o
1— 7"1+7“2P P d
(14714 r2 + 2k)! /0 (1—u) (2 +u) P,y (y + u)du

Note that rq < /¢1 — k and ro < #5 — k. Thus only the cases r1 = £1 — k and r9 = £5 — k contribute
to the main term. We therefore have

I/ (04 5) — @(O) d2 |: 0427"!‘52/ Z zl{: mm(zel:’@ <€1> (f ) (—1)Z1+£2_2k
20875 (o + B) log yo dzdy E )k

01=20=2 k=0

] +O(T/L).

r=y=0

2[14»@272]6

<o, 070" P+ 0P+

} +O(T/L).

z=y=0
Recall that
I22(a7 B) = I/22(a7 ﬁ) + Tﬁaiﬁ[éQ(_ﬁ)? —Oé) + O(T/L)7
and that
/22(a7 6) = 1/220(047 6) + O(Tl_a)a
therefore
Ino(er, B) = I'hgg(ct, B) + T~ PIhy(—B, —a) + O(T/L)

= (I'hgo(ev, B) + Ihyo(—B, —a)) + (T~ P = 1) Ihy0(—B, —a) + O(T/L).

We first take a look at the first term in the brackets
m:y:0:|

d2 1
7 =) [ e P+
0
1 1
~ ot Ao [ (-0 P @ P+ [ (-0 WP ).

dxdy
Since Py, (0) = P, (0) = 0, we have also

1

1 /
0= (1—witep, (WP, w)| = /0 ((1 _u)itep, (u)]%(u)) du.

u=0
This implies

1
(61 + £3) /0 (1= w41 p, (u) By, (u)du
1 1
_ / (1 — w)* P}, (u) Pyy (u)du + / (1 — w2 By, (u) Pl (w)du.
0 0
Combining these observations gives

K K min(¢41,02) i
1
520(t; B) + I9o0(—f3 Z Z Z 1)t (k:) (€2)

01=20>=2 =

2514—52 2k 1 PR
X WA (]. - ’LL) 12 P[l (U)Pg2(u)du

For the expression (T~*8 — 1)I},(—3, —a), we again use (3.4) to get

‘€1 €1+£2 2k2£1+£2 2k

K K min(41,02) (

l1=2/02=2 k=0
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d2 CBra 1 1
« Ys B Y / / T—v(a-i-ﬁ)(l _ U)€1+€2P€1 (33‘ + U)PKQ (y + u)dudv
dxdy 0o Jo

By using similar arguments for the holomorphy of the error terms as in the Section 3.1, we end the
proof of Lemma[1.3

} +O(T/L).

z=y=0
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