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Coexistence of synchronization and
anti-synchronization in chaotic systems

LING REN, RONGWEI GUO and UCHECHUKWU E. VINCENT

The coexistence of anti-synchronization and synchronization in chaotic systems is investi-
gated. A novel algorithm is proposed to determine the variables of the master system that should
anti-synchronize with corresponding variables of the slave system. Control strategies that guar-
antee the coexistence of synchronization and anti-synchronization in the unified chaotic system
are presented; while numerical simulations are employed to validate and illustrate the effective-
ness of the proposed method.
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1. Introduction

Chaos synchronization was first observed by Pecora and Carroll [1] in 1990. From
then on, increasing interest has been devoted to the study of chaos synchronization due to
several potential applications. Recently, several typical synchronization phenomena have
been identified, such as complete synchronization (CS), phase synchronization (PS),
lag synchronization (LS), generalized synchronization (GS), anti-phase synchronization
(AS), projective synchronization (PS), etc. A variety of works have been devoted to how
to realize them (see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and the references therein). It is well
known that the synchronization between the master (or drive) and the slave system (or
response) is equivalent to the globally asymptotically stable (GAS) of the error dynamics
e (the difference of the master system and slave system). Similarly, the synchronization
between the master system and the slave system is equivalent to the GAS of the error
dynamic system E (the sum of the master system and slave system) is GAS.

L. Ren and R. Guo are with School of Science, Qilu University of Technology, Jinan 250353, China.
U.E. Vincent, the corresponding author is with the Department of Physical Sciences, Redeemer’s University,
PMB 3005 Redemption City, Nigeria and Department of Physics, Lancaster University, Lancaster LA14YB,
United Kingdom, e-mail: ue vincent@yahoo.com

This work was supported by National Natural Science Foundation of China [61304133, 61305130,
61374074], Natural Science Foundation of Shandong Province [ZR2012AQ013, ZR2013FQ003], China
Postdoctoral Science Foundation funded project [2013M541915, 2013M541912] and the Scientific Re-
search Foundation of Shandong province Outstanding Young Scientist Award [BS2013SF023].

Received 06.10.2015.

Brought to you by | Lancaster University Library
Authenticated

Download Date | 5/4/16 3:47 PM



70 L. REN, R. GUO, U.E. VINCENT

In order to design a simple and practically realizable controller from the control
theory perspective, it is necessary that the origins of e and E are equilibrium points of
the error systems ė = F(y)−F(x), and Ė = F(y)+F(x), respectively, where e = y− x
and E = y+ x). Obviously, e = 0, i.e., y = x, is an equilibrium point of the error system
ė = F(y)−F(x). Whereas, E = 0, i.e., y =−x is an equilibrium point of the error system
Ė = F(y)+F(x) if and only if F(−x) =−F(x). Thus, realizing anti-synchronization is
more complex and challenging than complete synchronization. In fact, this necessary
condition is not considered in the most of the existing works on anti-synchronization of
chaotic systems (See for instance Refs. [8, 9, 10, 11, 12, 13]). Moreover, the controllers
obtained for achieving anti-synchronization of chaotic systems are structurally complex,
i.e., some terms in those controllers are needed to counteract the redundant terms, such
that E is not the equilibrium point of the error system Ė = F(y)+F(x). For example, in
Ref. [11], the x2z2 + x1z1 term in u2 of the equation (14) counteracts the redundant term
−x2z2 − x1z1 in the error system (13), while the −x1y1 − x2y2 in u3 term of the equation
(14) also does same.

In addition, existing works on synchronization are mostly focus on investigating the
same kind synchronization phenomenon in a given chaotic system, i.e., all the state vari-
ables of the slave (or response) system synchronize identically with the corresponding
states of the master (or drive) system. For instance, if two systems achieve synchroniza-
tion (or anti-synchronization, or lag-synchronization, or any other form of synchroniza-
tion) with each other, it implies that each pair of the state variables between the inter-
active systems is completely synchronous (or anti-synchronous, or lag-synchronized, or
etc). In [14, 15, 16] and a few other works, it has been pointed out that synchroniza-
tion and anti-synchronization could coexist in chaotic systems. Since there are several
possible variables that could synchronize or anti-synchronize in a typical chaotic sys-
tem, selecting appropriate synchronizing variables of the master to anti-synchronize the
corresponding variables in slave chaotic system is of great significance in investigating
the coexistence of anti-synchronization and synchronization in the same chaotic system.
However, there are no results to the best of our knowledge that gives the conditions or
algorithms for selecting or determining the variables of the master chaotic system that
should synchronize or anti-synchronize the corresponding variables of the slave chaotic
systems.

Motivated by the above discussion, we undertake a further investigation in this paper
the coexistence of synchronization and anti-synchronization, in which one part of the
state space of the interactive systems is in anti-phase synchronous state, while the other
parts are in complete synchronous state; using the unified chaotic system as an example.
Specifically, we propose here a novel algorithm which can be used to select the variables
of the master system that should anti-synchronize the corresponding variables of the
slave system. Then, we give some control strategies that guarantees the global asymptotic
stability for the coexistence of synchronization and anti-synchronization in the unified
chaotic system. Finally, the results are validated using numerical simulations.
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2. Preliminaries

In this section, we first give some definitions and results. Consider the following
chaotic system:

ẋ = F(x), (1)

where x ∈ Rn is the state, F(x) = (F1(x),F2(x), · · · ,Fn(x))T is a continuous vector func-
tion, and F(0) = 0.

Let system (1) be the master system. The corresponding slave system is given as

ẏ = F(y)+u, (2)

where y ∈ Rn is the state variable and u is the controller to be designed.
First, let the synchronization error state be defined as e = y− x, so that the error

dynamics is given as follows

ė = F(y)−F(x)+u, (3)

where e ∈ Rn is the error state space variable.

Definition 1 The master system (1) synchronizes the slave system (2) if and only if the
following condition

lim
t→∞

∥e(t)∥= 0

is satisfied.
Secondly, let the anti-synchronization error be defined by E = y+x, so that the error

dynamics is given as follows

Ė = F(y)+F(x)+u, (4)

where E ∈ Rn is the error state variable and u is the controller to be designed.

Definition 2 The master system (1) anti-synchronizes the slave system (2) if and only if
the following condition

lim
t→∞

∥E(t)∥= 0

is satisfied.
In the following, we present an algorithm to determine variables of the master

system that should anti-synchronize the corresponding variables of slave system.

Algorithm 1.
Step 1: Without loss of generality, we first select the variable x1. If F1(x) =
F11(x1)+F12(x2, · · · ,xn) is an odd function, or F11(x1) = α1x1, we can set E1 = x1 + y1,
where α1 is a real number.
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Step 2: If F12(x2, · · · ,xn) = α2x2 +F13(x3, · · · ,xn), we should set E2 = x2 + y2, where
α2 is a real number. Else, if F2(x) = F21(x2)+F22(x1,x3, · · · ,xn) is an odd function, or
F21(x2) = α3x2, we can set E2 = x2 +y2, where α3 is a real number. Then, we determine
whether E2 = x2 + y2 is suitable or not according to the condition that origin is an
equilibrium point of the error system.
Step 3: When i ¬ n, we can set Ei = yi + xi or ei = yi − xi by the similar procedure in
Step 2.

Remark 1 If F(x) is an odd vector function, we can simultaneously synchronize and
anti-synchronize two identical chaotic or hyper-chaotic systems using same controller.
In Ref. [15], we have simultaneously synchronized and anti-synchronized two identical
new 4D chaotic systems.

3. Main results

In this section, we use the unified chaotic system as an example of a typical chaotic
systems to illustrate how the coexistence of synchronization and anti-synchronization
in chaotic systems can be achieved using the algorithm described above. According to
[17, 18, 19, 20], the unified chaotic system is given as

ẋ1 = (25θ+10)(x2 − x1)

ẋ2 = (28−35θ)x1 +(29θ−1)x2 − x1x3 (5)

ẋ3 = x1x2 −
8+θ

3
x3

where θ ∈ [0,1]. System (5) is called the general Lorenz system when θ ∈ [0,0.8). When
θ ∈ (0.8,1], system (5) is a general Chen system, while the Lü system is a special case
of system (5) with θ = 0.8.

According to Algorithm 1, we can set E1 = y1+x1 since f1(x) = (25θ+10)(x2−x1),
and then we should set E2 = y2 + x2. If we set E3 = y3 + x3, then

Ė3 = −8+θ
3

E3 + x1x2 + y1y2

= −8+θ
3

E3 + x1x2 +(E1 − x1)(E2 − x2) (6)

= −8+θ
3

E3 +E1E2 − x1E2 − x2E1 +2x1x2

It is clear that E = 0 is not an equilibrium point of the error system (6). In fact, the left
hand side of the error system (6) equals zero. However, the right hand side of the error
system (6) is not equals zero, but equals 2x1x2. Therefore, we should set e3 = y3 − x3,
and obtain the error system given as (8).
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Next, let system (5) be the master system, the corresponding slave system without
controller is as follows

ẏ1 = (25θ+10)(y2 − y1)

ẏ2 = (28−35θ)y1 +(29θ−1)y2 − y1y3 (7)

ẏ3 = y1y2 −
8+θ

3
y3

Then, let Ei = yi + xi(i = 1, 2), and e3 = y3 − x3, so that the error system is obtained as

Ė1 = f1(x,y,e3,E) = (25θ+10)(E2 −E1)

Ė2 = f2(x,y,e3,E) = (28−35θ)E1 −E1e3 − x3E1 + x1e3 +(29θ−1)E2

ė3 = f3(x,y,e3,E) = E1E2 − x2E1 − x1E2 −
8+θ

3
e3 (8)

where E = (E1,E2)
T .

Remark 2 Since system (5) is chaotic, for the uncontrolled error system (8), there exist
λi > 0(i = 1,2,3), which satisfies

Ei fi(x,y,e3,E)¬ λiE2
i , i = 1,2, e3 f3(x,y,e3,E)¬ λ3e2

3. (9)

Note that if E2 = 0, the following subsystem of system (8)

Ė1 = −(25θ+10)E1 (10)

ė3 = −x2E1 −
8+θ

3
e3

is GAS regardless of the value of θ.
Therefore, we can add the controller u = (0,k1E2,0)T to the slave system (7) and the

controlled error system the becomes as

Ė1 = (25θ+10)(E2 −E1),

Ė2 = (28−35θ)E1 −E1e3 − x3E1 + x1e3 +(29θ−1)E2 + k1E2, (11)

ė3 = E1E2 − x2E1 − x1E2 −
8+θ

3
e3,

where the feedback gain k1 is adapted according to the following update law

k̇1 =−γE2
2 , (12)

and γ > 0 is an arbitrary number.
Next, we shall prove that the coexistence of synchronization and anti-

synchronization in the unified chaotic systems is realized by the above controller u =
(0,k1E2,0)T , where x1,x2 anti-synchronizes y1,y2; while x3 synchronizes y3.
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In order to facilitate the analysis, we refer to system (11) and (12) as the augment
systems, and introduce the following positive definite Lyapunov function

V (E,e3,k1) =
1
2
(e2

3 +ET E)+
1
2γ

(k1 +L1)
2 (13)

where

L1 > M sup
E2 ̸=0

e2
3 +ET E

E2
2

, M =
3

max
i=1

λi. (14)

Then, we give the following main result.

Theorem 13 Starting from any initial values of the controlled error system (11), the
orbits (E(t),e(t))T converge to origin as t → ∞, i.e., the coexistence of synchronization
and anti-synchronization in the unified chaotic systems is realized by the controller
u = (0,k1E2,0)T .

Proof Differentiating the Lyapunov function V along the trajectories of the augment
system, we obtain

V̇ = E1Ė1 +E2Ė2 + e3ė3 +
1
γ (k1 +L1)k̇1

= E1 f1(x,y,e3,E)+E2( f2(x,y,e3,E)+ k1E2)+ e3 f3(x,y,e3,E)− (k1 +L1)E2
2

= E1 f1(x,y,e3,E)+E2 f2(x,y,e3,E)+ e3 f3(x,y,e3,E)−L1E2
2

¬M(E2
1 +E2

2 + e2
3)−L1E2

2 < 0,

According to the Lyapunov stability theory, the equilibrium point of the error system
(8) is GAS. This completes the proof.

To validate the above theoretical results, we carry out numerical simulations with
the following choice of initial conditions: x1(0) = −2,x2(0) = 3,x3(0) = 4, y1(0) =
4,y2(0) = −1,y3(0) = −2, θ = 0.75 and k1(0) = −1. Figure 1 shows the dynamics
of the error systems (E1,E2,e3), illustrating global stabilization, which implies that the
coexistence of synchronization and anti-synchronization in the unified chaotic systems
is realized by the above controller. In Figure 2, the state variables are plotted. Clearly,
we find that that x1,x2 anti-synchronizes y1,y2 while x3 synchronizes y3, respectively.

Next, we illustrate the coexistence of synchronization and anti-synchronization in the
unified chaotic system when θ = 0. Proceeding as before, let system (5) be the master
system, and the corresponding slave system without controller given as (7). Let Ei =
yi + xi(i = 1, 2), e3 = y3 − x3, the obtained error system is as follows

Ė1 = 10(E2 −E1)
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Figure 1. Error dynamics when the controller has been activated, showing that (E1,E2,e3) are stabilized,
implying that the coexistence of synchronization and anti-synchronization in the unified chaotic system
is realized. θ = 0.75 and k1(0) = −1, while the initial conditions are x1(0) = −2,x2(0) = 3,x3(0) = 4,
y1(0) = 4,y2(0) =−1,y3(0) =−2.
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Figure 2. Dynamics of the state variables when controller has been activated. x1,x2 anti-synchronizes y1,y2
while x3 synchronizes y3. θ = 0.75 and k1(0) = −1, while the initial conditions are x1(0) = −2,x2(0) =
3,x3(0) = 4, y1(0) = 4,y2(0) =−1,y3(0) =−2.
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Ė2 = 28E1 −E1e3 − x3E1 + x1e3 −E2 (15)

ė3 = E1E2 − x2E1 − x1E2 −
8
3

e3

Obviously, if E1 = 0, the following subsystem of the system (15)

Ė2 = x1e3 −E2

ė3 = −x1E2 −
8
3

e3 (16)

is GAS.
Thus, we can add the controller u = (k2E1,0,0)T to the slave system (7) and the

controlled error system becomes

Ė1 = 10(E2 −E1)+ k2E1,

Ė2 = 28E1 −E1e3 − x3E1 + x1e3 −E2, (17)

ė3 = E1E2 − x2E1 − x1E2 −
8
3

e3,

where the feedback gain k2 is adapted according to the following update law

k̇2 =−γE2
1 (18)

and γ > 0 is an arbitrary number.
Next, we shall give the following corollary that proves that the coexistence of syn-

chronization and anti-synchronization in the unified chaotic systems is realized by the
above controller u = (k2E1,0,0)T , where x1,x2 anti-synchronizes y1,y2 while x3 syn-
chronizes y3, respectively.

Corollary 1 Starting from any initial values of the controlled error system (17), the
orbits (E(t),e(t))T converge to origin as t → ∞, implying that the coexistence of syn-
chronization and anti-synchronization in the unified chaotic systems is realized by the
controller u = (k2E1,0,0)T .

Remark 3 The proof procedure is similar to the proof of Theorem 13; and therefore
omitted here for brevity.

To illustrate the validity of the above result, we carry out numerical simulation re-
sult with the following choices of initial conditions: x1(0) = −2,x2(0) = 3,x3(0) = 4,
y1(0) = 4,y2(0) = −1,y3(0) = −2 and k2(0) = −1. Figure 3 shows that the error
system is stabilized, which implies that the coexistence of synchronization and anti-
synchronization in the unified chaotic systems is realized by the above controller. Fur-
thermore, in Figure 4 the state variables are plotted; in which it is clearly shown that
x1,x2 anti-synchronizes y1,y2 while x3 synchronizes y3.
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Figure 3. Error dynamics when the controller has been activated, showing that (E1,E2,e3) are stabilized,
implying that the coexistence of synchronization and anti-synchronization in the unified chaotic system is
realized. θ = 0 and k2(0) = −1, while the initial conditions are x1(0) = −2,x2(0) = 3,x3(0) = 4, y1(0) =
4,y2(0) =−1,y3(0) =−2.
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Figure 4. Dynamics of the state variables when controller has been activated. x1,x2 anti-synchronizes y1,y2
while x3 synchronizes y3. θ = 0 and k2(0) = −1, while the initial conditions are x1(0) = −2,x2(0) =
3,x3(0) = 4, y1(0) = 4,y2(0) =−1,y3(0) =−2.
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4. Conclusion

In conclusion, we have realized synchronization and anti-synchronization simulta-
neously in the unified chaotic systems. To achieve this, a novel algorithm has been pro-
posed to determine the variables of the master system that should anti-synchronize the
corresponding variables of the slave system. Two different control strategies for the uni-
form chaotic systems has been presented to guarantee coexistence of synchronization
and anti-synchronization. In all, numerical simulations have been employed to validate
the proposed methods and to show the effectiveness of their. Finally, the method pro-
posed in this paper can be used for other chaotic and hyperchaotic systems.
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