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Abstract— Understanding of the anomalous transport1

attributed to short-scale length microturbulence through2

collective scattering diagnostics is key to the development of3

nuclear fusion energy. Signals in the subterahertz (THz) range4

(0.1–0.8 THz) with adequate power are required to map wider5

wavenumber regions. The progress of a joint international effort6

devoted to the design and realization of novel backward-wave7

oscillators at 0.346 THz and above with output power in the 1 W8

range is reported herein. The novel sources possess desirable9

characteristics to replace the bulky, high maintenance, optically10

pumped far-infrared lasers so far utilized in this plasma11

collective scattering diagnostic. The formidable fabrication12

challenges are described. The future availability of the THz13

source here reported will have a significant impact in the field of14

THz applications both for scientific and industrial applications,15

to provide the output power at THz so far not available.
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Index Terms— Backward-wave oscillator (BWO), double-17

corrugated waveguide (DCW), double-staggered grating (DSG),18

plasma diagnostic, terahertz (THz).19

I. INTRODUCTION20

TERAHERTZ (THz) vacuum electron devices are gaining21

significant consideration when the generation of rela-22

tively high power in the frequency range below 1 THz is23
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needed [1]–[9]. In particular, the backward-wave oscilla- 24

tor (BWO) is an effective solution to produce relatively high 25

power and stable monochromatic THz signals. BWOs can 26

be electronically tuned over a wide frequency range around 27

the operating frequency and have high stability in frequency 28

(up to 10−7 to 10−8 by phase locking). However, the only 29

available BWOs are based on old technologies. No compact, 30

affordable, and long-life THz BWOs is currently available. 31

Recently, the introduction of new high aspect-ratio fab- 32

rication processes derived from the MEMS technologies as AQ:433

the lithography, electroplating, and molding (LIGA) [5], [7] 34

and advanced mechanical microfabrication as nano-CNC 35

milling [10] provides an accuracy at the submicrometer level, 36

which satisfies the demanding specifications of interaction 37

structures or slow-wave structures (SWSs) to support the THz 38

operation frequencies. Furthermore, the progress on simulation 39

tools based on accurate 3-D electromagnetic and particle-in- 40

cell (PIC) solvers permits now a reliable prediction of the THz 41

vacuum source performance, to ease the fabrication phase. The 42

development of innovative cathode materials [10] is leading to 43

a novel generation of electron guns, with high current density 44

and long lifetime, fundamental for the overall device mean 45

time between failures and high-frequency stability. Neverthe- 46

less, the main challenges are to achieve a surface roughness 47

below the skin depth (66 nm at 1 THz) for minimizing the 48

ohmic losses and the assembly and alignment of the beam 49

with tolerance in the order of tens of micrometers. 50

Nuclear fusion is one of the fields, where the availability 51

of THz BWOs will have a relevant impact on improving 52

the understanding of a critical phenomenon as the anomalous 53

transport of the plasma. It still remains a fundamental area of 54

investigation, which is essential for the development of fusion 55

energy. The measurement technique is based on the collective 56

Thomson scattering at THz frequency [12]–[15]. The plasma 57

is illuminated by a THz beam that is scattered by the charged 58

particles. The scattered beams due to the electron density 59

fluctuations are detected by a receiver array and thereby map 60

out the location, wavenumber spectrum, and strength of the 61

turbulence. 62

In the recent upgrade of the high-k scattering system at 63

NSTX experiment at Princeton, the wavenumber kθ coverages, 64

and it has been increased to target electron temperature 65

gradient modes by increasing the probe frequency from 66

0.280 to 0.693 THz. The availability of solid-state sources is 67

limited to about 0.3 THz and 30 mW, while about 100 mW 68

are needed at 0.693 THz to excite a detectable scattering. 69
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Fig. 1. SWS for 0.346-THz operation. (a) DSG. (b) DCW. The gray area
in (a) and the dashed circle in (b) represent the sheet and cylindrical beam
for the DSG and the DCW, respectively.

Presently, the only THz source to deliver ∼100 mW at70

0.693 THz needed to provide the minimum scattered signal71

level to be detected by the receiver array is a bulky optically72

pumped far infrared. A second high-frequency source is73

needed to provide local oscillator (LO) power for the74

receiver array. The use of a second laser is not feasible.75

It has been chosen to use an array based on sensitive room76

temperature subharmonic mixers working roughly at half of77

the illumination source frequency, namely, 0.346 THz. It is78

required 3 to 5 mW of LO power per mixer.79

This paper describes an international joint effort of three80

leading institutions in China, the U.K., and the U.S. to design81

and construct a novel family of BWOs, operating at the82

frequency of 0.346 THz, to satisfy the quest for LO power for83

the matrix array for the NSTX-U plasma diagnostic and other84

future plasma diagnostic systems [16]. The design target is to85

achieve an output power in the range of hundreds of milliwatt86

by lightweight, compact, affordable, low-operating cost BWOs87

to enable a wide matrix of receivers.88

This paper is organized as follows. The properties of two89

different SWSs suitable for THz BWO fabrication are reported90

in Section II. Section III describes the design aspects and91

the cold parameters. Section IV details the hot simulations92

and performance of the two BWOs. Challenges involved93

with microfabrication technologies of the proposed BWOs are94

discussed in Section V. Section VI reports on the gun and the95

window.96

II. TERAHERTZ SLOW-WAVE STRUCTURES97

At microwave frequencies, helices are the most common98

SWSs, but as the frequency increases toward the millimeter-99

wave range, their dimensions are too small for fabrication, and100

new geometries must be adopted. The simple structure of the101

rectangular corrugated waveguide inspired different structures102

that can be realized by the available fabrication processes with103

the dimensions to support THz frequencies.104

In particular, the double-staggered grating (DSG) [17]105

[Fig. 1(a)] and the double-corrugated waveguide (DCW) [18]106

[Fig. 1(b)] are the two SWSs that have been successfully107

proposed for operation at THz frequencies and overcome the 108

fabrication issues of the conventional structures. 109

The DSG is conceived to support an elliptical sheet electron 110

beam. The advantage of the sheet electron beam is the large 111

cross section that permits to deliver a high beam current using 112

a relatively beam current density. The sheet beam requires a 113

careful design of the magnetic focusing system, but it is very 114

promising to realize high-power vacuum electron devices by 115

using low cathode loading guns. 116

The DCW is conceived to support a cylindrical electron 117

beam. The DCW is of easy fabrication and assembly. The 118

advantage of a cylindrical electron beam is that it is generated 119

by the well-established Pierce gun technology and focused by 120

the use of a conventional magnetic focusing system. 121

Both the SWSs are very promising to realize THz BWOs 122

with a wide range of characteristics in terms of fabrication, 123

output power, and cost. 124

III. BWO DESIGN 125

The approach of using two different SWSs, the DSG and 126

the DCW, to design a family of THz BWO is a breakthrough 127

for tailored power generation at THz frequencies. Two BWOs 128

based on the DSG and the DCW will be the first two devices 129

for a new family of THz sources to cover a wide range of 130

applications. 131

The main design targets are given in the following: 132

1) low cost; 133

2) easy assembly for high yield; 134

3) compact dimensions (200–300 cm3); 135

4) wide range of performance to potentially cover the 136

sub-THz spectrum (0.1–1 THz); 137

5) tunable (at least 5%); 138

6) low beam voltage and compact power supply. 139

A 0.346-THz operating frequency is considered in the 140

following for application in the plasma diagnostic in nuclear 141

fusion, as described in Section I. The first design parameter 142

defined was the beam voltage that determines the length of 143

the period of the SWSs. A low beam voltage in the range 144

of 12–18 kV favors to use of a compact and low-cost power 145

supply. The resulting period was estimated to be in the range 146

of the fabrication process. 147

Due to the different structures, different beam voltages were 148

adopted. The DSG was designed to operate with 17-kV beam 149

voltage, while the DCW was to support about 13 kV. The 150

dimensions of the two SWSs are shown in Table I. It is notable 151

that a period shorter than 200 µm is required. In Fig. 2, the 152

dispersion curve of the DCW with superimposed beam line at 153

12.8 kV is shown. The interaction impedance is typically low 154

in the backward-wave mode. 155

1) Couplers: A detailed study based on 3-D electromagnetic 156

simulation [18] on the coupler to transform the mode in the 157

SWS in the TE10 at the flange at the output port was carried 158

out to maximize power transfer. The conductivity of copper 159

considered in simulation is σcu = 3.9 × 107 S/m [7]. The 160

coupler is a three-port network; one port is connected to 161

the SWS, a second port is the beam tunnel to connect the 162

gun, and the third port is the output port connected to the 163

flange. 164
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TABLE I

Fig. 2. DCW dispersion curve (brown curve), interaction impedance
(orange curve), and beam line at 12.8 kV (blue line).

Fig. 3. DSG coupler S-parameters.

The coupler for the DSG is particularly challenging due to165

the wide beam tunnel needed for the sheet beam. Having a166

low cutoff frequency in the same range of the SWS, a ridge167

is added to the bend (Fig. 3) to perturb the matching between168

the SWS and the beam tunnel. The resulting S11 is better than169

−25 dB over a wide frequency range around 0.346 THz.

AQ:5

170

A study of the coupler for the DCW was performed by171

considering a back-to-back structure. First, a simple structure172

including a tapered transition between a waveguide with173

the same cross section of the DWG and the flanges is174

designed, as shown in Fig. 4(a), to evaluate the effect of the175

Fig. 4. DCW coupler. (a) Waveguide without DCW. (b) S-parameter
structure. (c) Waveguide with DCW. (d) S-parameters.

waveguide tapering. Fig. 4(b) shows the obtained S11 better 176

than −25 dB in the operation range. Next, a second structure 177

with similar topology, including three sections of pillars (two 178

tapered sections and one short section with a nominal height), 179

is designed for the best matching, as shown in Fig. 4(c). 180

Results show that S11 in this case is better than −35 dB in 181

the region around the operating frequency [Fig. 4(d)].

AQ:6

182

Both the couplers’ performance ensures the efficient prop- 183

agation of the RF signal from the interaction structure to the 184

flanges. 185

IV. LARGE SIGNAL SIMULATIONS 186

The design of the two BWOs is based on the definition 187

of the critical length for oscillations to set a proper number 188

of periods within the SWS. Results from this optimization 189

process are shown in Table II. 190

Next, the 3-D PIC simulations performed to evaluate the 191

electrical behavior of the BWOs. The DSG BWO supports an 192
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TABLE II

Fig. 5. PIC simulation setup for the DSG BWO.

Fig. 6. PIC simulation setup for the DCW PIC simulations. (a) Top view.
(b) Coupler detail.

elliptical electron beam with the cross section of 400×50 µm2
193

and the current of 14 mA (the aspect ratio of 5.4:1). The DWC194

BWO supports a cylindrical electron beam of 50-µm radius195

and 10-mA current. Due to the different beam parameters196

used, the overall device performance is different for the two197

BWOs and should be evaluated in the context of the different198

technological challenges required and the different application199

needs. The DSG BWO is modeled by CST Particle Studio [19]200

(simulation setup in Fig. 5) and the DCW BWO is modeled201

by MAGIC3D [20] (simulation setup in Fig. 6).202

The results of output power for the two devices are shown203

in Fig. 7. The DSG BWO [Fig. 7(a)] provides about 1 W204

and the DCW BWO about 0.4 W [Fig. 7(b)]. The electron205

energy distribution along the longitudinal direction for both206

the BWOs is shown in Fig. 8. The spectral response at the207

output port of the DCW BWO is shown in Fig. 9, showing the208

highly monochromatic generation of signal at the frequency of209

interest.210

In order to demonstrate the tunability of the BWO designs,211

the tuning range for the DSG and the DCW is shown212

in Fig. 10(a) and (b), respectively. It can be noted that a213

Fig. 7. Average output power for (a) DSG and (b) DCW BWOs.

Fig. 8. Electron energy. (a) DSG BWO. (b) DCW BWO.

variation of beam voltage in the range of 15.8–17.8 kV permits 214

a variation in frequency of 12 GHz for the DSG and that the 215

same relative change in the nominal beam voltage allows a 216

tuning of 14 GHz for the DCW. 217

The BWO performances so far presented are at the state of 218

the art. The high power level and tuning features, not achiev- 219

able by any other technology today, represent a breakthrough 220

in the field. 221

V. BWO MICROFABRICATION 222

The main challenge in the THz frequency range is the fab- 223

rication of SWSs with the expected electromagnetic behavior 224

while establishing a reliable and repeatable process. For the 225

DSG circuit, vane height is the most sensitive dimension which 226

determines the bandwidth of the device. The period of the 227

structure affects the central operating frequency, whereas the 228

width of the DSG controls the dispersion curve. The DCW 229

structure is more sensitive to the h and p values driving the 230
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Fig. 9. Spectrum of (a) DSG and (b) DCW BWOs.

Fig. 10. Instantaneous power and tuning range of (a) DSG and (b) DCW
BWOs for the beam voltage 15.8–17.8 and 11.75–13.3 kV, respectively.

dispersion curve. Machining tolerances are expected to be231

±1 µm, which is sufficient to achieve the desired performance.232

Photolithographic techniques, such as UV-LIGA, are233

demonstrated suitable for the dimension accuracy required234

for the two SWSs considered. However, especially for a235

small number of pieces, the fabrication of the mold and236

the electroforming process is not convenient. Furthermore,237

a relevant effort to achieve a level of surface roughness better238

than the skin depth (about 110 nm at 0.346 THz) to reduce239

ohmic losses is required. CNC milling offers high flexibility240

and possibility of patterning the third dimension. The state-241

of-the-art prototype nano-CNC milling machine, developed242

by DTL, a subsidiary of DMG-Mori-Seki, permits one to243

achieve performance at the state of the art, with reduced244

cost and high repeatability for dimensions suitable for THz245

regime structures [10]. The high accuracy of the nanomilling246

machine was proved to obtain levels of surface roughness247

down to 40 nm, well below the skin depth at 0.346 THz. The248

NN1000 nano/micromilling machine has a maximum spindle249

speed of 50 000 r/min; the chip load is kept below 0.001-mm250

feed per tool flute rpm. The proper setting of the machining251

parameters is fundamental in achieving excellent surface finish252

and tool lifetime.253

In the case of the DSG and the DGW at 0.346 THz,254

the dimensions shown in Table I represent a formidable255

fabrication challenge. A test of feasibility for the fabrication256

was performed realizing the DSG and the DCW in aluminum257

Fig. 11. SEM images of the SWSs fabricated by nano-CNC milling.
(a) and (b) DSG. (c) and (d) DCW.

with the dimensions shown in Table I. Four different SEM 258

views of the DSG and the DCW realized by nano-CNC 259

milling are shown in Fig. 11. The high level of accuracy 260

for the very small dimensions is readily observed. The high 261

definition of the pillars is notable. Due to the characteristics 262

of aluminum, the surface roughness achieved was higher than 263

expected. The fabricated samples were primarily built to test 264

the microfabrication process in terms of dimensions achieved. 265

However, the measurements of the S-parameters were carried 266

out. The setup for the DSG measurement is shown in Fig. 12. 267

It consists of two halves assembled together by a system of 268

alignment pins. The setup for the DCW is similar to a lid 269

to close the waveguide that does not require a very accurate 270

alignment procedure. 271
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Fig. 12. Full DSG assembly with alignment pins and flanges.

Fig. 13. Measurements of the S-parameters of (a) DCW and (b) DSG in the
low range of the band.

The S-parameters of the fabricated structures were mea-272

sured. The S11 and S21 for the fabricated DSG and DCW are273

shown in Fig. 13(a) and (b), respectively. The measurements274

are limited to the range of frequency below 0.34 THz due to275

the available frequency range of the vector network analyzer.276

The relatively high value of the transmission losses (S21) is277

due to the difficulty to machining aluminum in this initial278

fabrication test. An improved surface will be obtained by279

the use of a different tooling and replacing aluminum with280

copper. The transmission parameter of the DSG circuit is281

lower than what was predicted in simulation models, and282

this is due to poor surface roughness. The first DSG grating283

circuit has surface roughness with Ra (arithmetic mean surface284

roughness) of about 500 nm, and it is expected that this can285

be improved to well below 100 nm by implementing diamond286

tooling. However, the fabricated samples demonstrated the287

CNC milling as a suitable process for SWS in the sub-THz288

range.289

VI. GUN AND WINDOW290

The design of the electron gun for the cylindrical beam291

is based on a conventional Pierce gun and does not present292

Fig. 14. Electron gun schematic.

Fig. 15. 0.346-THz window. (a) Simulated S-parameter (S21). (b) Schematic.
(c) Prototype.

specific novelty. On the contrary, the sheet beam requires an 293

accurate design of the gun and the magnetic focusing system. 294

A planar cathode is considered to generate the cylindrical 295

electron beam. A preliminary simulation and test was per- 296

formed, where a beam voltage of 17.4 kV and a current of 297

14 mA have been obtained. The elliptical electron beam has 298

a ratio 5.4:1 with a current density of 94 A/cm2 and a 50% 299

fill factor [6]. The schematic for the gun is shown in Fig. 14. 300

Different solutions of magnetic focusing systems based 301

on solenoidal structures are under investigation to obtain up 302

to 1.3 T for the full length of the DSG BWO. Based on 303

PIC analysis performed in CST, 98.5% beam transmission 304

efficiency is expected. The solenoid magnet structure has a 305

radial component of magnetic field of 1.3 T and a longitudinal 306

component of 0.35 T. External dimensions of the magnetic 307

structure are 62 × 32 × 35.4 mm3. Engineering estimates 308

predict that the weight of the full system, including magnets, 309

will be under 10 pounds. 310

A window, suitable for both the DSG and DWG BWOs, 311

was designed and simulated using CST MWS [Fig. 15(a)] 312

and tested in the frequency range 327–347 GHz. The window 313

is a pillbox-type with MPCVD diamond as the disk. The 314

MVCVP diamond dielectric constant is 5.6 with the loss 315

tangent of 0.003 in the simulation. The thickness of the disk is 316

0.3 mm, the diameter is 2 mm, and the depth and the diameter 317

of the circular waveguides are 0.7 and 1.2 mm, respectively. 318

The flange connecting the internal SWS and the outer load 319

is WR2.8 rectangular waveguide. Further refinements are 320
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in progress. Fig. 15(b) and (c) shows the schematic and a321

first prototype of the window, respectively.322

VII. CONCLUSION323

An international collaboration of leading institutions in324

vacuum electronics in China, the U.K., and the U.S. is working325

on building a new family of THz vacuum electron devices for326

medium power generation. The availability of these sources327

will permit to enable a new high-k plasma diagnostic to328

improve the understanding of plasma turbulence in nuclear329

fusion reactor and many other applications in the THz range.330

Two different topologies of SWSs have been adopted to design331

the 0.346-THz BWOs. The DSG and the DCW have been332

demonstrated to be suitable interaction structures to provide333

a wide range of performance, with a tailored design. The334

fabrication of the SWS is a formidable challenge. The samples335

realized by CNC milling have proved the high accuracy of the336

process.337

The fabrication of all the parts for the final assembly of the338

BWOs is in progress.339
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THz Backward-Wave Oscillators for
Plasma Diagnostic in Nuclear Fusion
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Abstract— Understanding of the anomalous transport1

attributed to short-scale length microturbulence through2

collective scattering diagnostics is key to the development of3

nuclear fusion energy. Signals in the subterahertz (THz) range4

(0.1–0.8 THz) with adequate power are required to map wider5

wavenumber regions. The progress of a joint international effort6

devoted to the design and realization of novel backward-wave7

oscillators at 0.346 THz and above with output power in the 1 W8

range is reported herein. The novel sources possess desirable9

characteristics to replace the bulky, high maintenance, optically10

pumped far-infrared lasers so far utilized in this plasma11

collective scattering diagnostic. The formidable fabrication12

challenges are described. The future availability of the THz13

source here reported will have a significant impact in the field of14

THz applications both for scientific and industrial applications,15

to provide the output power at THz so far not available.

AQ:1

AQ:2

AQ:3

16

Index Terms— Backward-wave oscillator (BWO), double-17

corrugated waveguide (DCW), double-staggered grating (DSG),18

plasma diagnostic, terahertz (THz).19

I. INTRODUCTION20

TERAHERTZ (THz) vacuum electron devices are gaining21

significant consideration when the generation of rela-22

tively high power in the frequency range below 1 THz is23
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needed [1]–[9]. In particular, the backward-wave oscilla- 24

tor (BWO) is an effective solution to produce relatively high 25

power and stable monochromatic THz signals. BWOs can 26

be electronically tuned over a wide frequency range around 27

the operating frequency and have high stability in frequency 28

(up to 10−7 to 10−8 by phase locking). However, the only 29

available BWOs are based on old technologies. No compact, 30

affordable, and long-life THz BWOs is currently available. 31

Recently, the introduction of new high aspect-ratio fab- 32

rication processes derived from the MEMS technologies as AQ:433

the lithography, electroplating, and molding (LIGA) [5], [7] 34

and advanced mechanical microfabrication as nano-CNC 35

milling [10] provides an accuracy at the submicrometer level, 36

which satisfies the demanding specifications of interaction 37

structures or slow-wave structures (SWSs) to support the THz 38

operation frequencies. Furthermore, the progress on simulation 39

tools based on accurate 3-D electromagnetic and particle-in- 40

cell (PIC) solvers permits now a reliable prediction of the THz 41

vacuum source performance, to ease the fabrication phase. The 42

development of innovative cathode materials [10] is leading to 43

a novel generation of electron guns, with high current density 44

and long lifetime, fundamental for the overall device mean 45

time between failures and high-frequency stability. Neverthe- 46

less, the main challenges are to achieve a surface roughness 47

below the skin depth (66 nm at 1 THz) for minimizing the 48

ohmic losses and the assembly and alignment of the beam 49

with tolerance in the order of tens of micrometers. 50

Nuclear fusion is one of the fields, where the availability 51

of THz BWOs will have a relevant impact on improving 52

the understanding of a critical phenomenon as the anomalous 53

transport of the plasma. It still remains a fundamental area of 54

investigation, which is essential for the development of fusion 55

energy. The measurement technique is based on the collective 56

Thomson scattering at THz frequency [12]–[15]. The plasma 57

is illuminated by a THz beam that is scattered by the charged 58

particles. The scattered beams due to the electron density 59

fluctuations are detected by a receiver array and thereby map 60

out the location, wavenumber spectrum, and strength of the 61

turbulence. 62

In the recent upgrade of the high-k scattering system at 63

NSTX experiment at Princeton, the wavenumber kθ coverages, 64

and it has been increased to target electron temperature 65

gradient modes by increasing the probe frequency from 66

0.280 to 0.693 THz. The availability of solid-state sources is 67

limited to about 0.3 THz and 30 mW, while about 100 mW 68

are needed at 0.693 THz to excite a detectable scattering. 69

0093-3813 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. SWS for 0.346-THz operation. (a) DSG. (b) DCW. The gray area
in (a) and the dashed circle in (b) represent the sheet and cylindrical beam
for the DSG and the DCW, respectively.

Presently, the only THz source to deliver ∼100 mW at70

0.693 THz needed to provide the minimum scattered signal71

level to be detected by the receiver array is a bulky optically72

pumped far infrared. A second high-frequency source is73

needed to provide local oscillator (LO) power for the74

receiver array. The use of a second laser is not feasible.75

It has been chosen to use an array based on sensitive room76

temperature subharmonic mixers working roughly at half of77

the illumination source frequency, namely, 0.346 THz. It is78

required 3 to 5 mW of LO power per mixer.79

This paper describes an international joint effort of three80

leading institutions in China, the U.K., and the U.S. to design81

and construct a novel family of BWOs, operating at the82

frequency of 0.346 THz, to satisfy the quest for LO power for83

the matrix array for the NSTX-U plasma diagnostic and other84

future plasma diagnostic systems [16]. The design target is to85

achieve an output power in the range of hundreds of milliwatt86

by lightweight, compact, affordable, low-operating cost BWOs87

to enable a wide matrix of receivers.88

This paper is organized as follows. The properties of two89

different SWSs suitable for THz BWO fabrication are reported90

in Section II. Section III describes the design aspects and91

the cold parameters. Section IV details the hot simulations92

and performance of the two BWOs. Challenges involved93

with microfabrication technologies of the proposed BWOs are94

discussed in Section V. Section VI reports on the gun and the95

window.96

II. TERAHERTZ SLOW-WAVE STRUCTURES97

At microwave frequencies, helices are the most common98

SWSs, but as the frequency increases toward the millimeter-99

wave range, their dimensions are too small for fabrication, and100

new geometries must be adopted. The simple structure of the101

rectangular corrugated waveguide inspired different structures102

that can be realized by the available fabrication processes with103

the dimensions to support THz frequencies.104

In particular, the double-staggered grating (DSG) [17]105

[Fig. 1(a)] and the double-corrugated waveguide (DCW) [18]106

[Fig. 1(b)] are the two SWSs that have been successfully107

proposed for operation at THz frequencies and overcome the 108

fabrication issues of the conventional structures. 109

The DSG is conceived to support an elliptical sheet electron 110

beam. The advantage of the sheet electron beam is the large 111

cross section that permits to deliver a high beam current using 112

a relatively beam current density. The sheet beam requires a 113

careful design of the magnetic focusing system, but it is very 114

promising to realize high-power vacuum electron devices by 115

using low cathode loading guns. 116

The DCW is conceived to support a cylindrical electron 117

beam. The DCW is of easy fabrication and assembly. The 118

advantage of a cylindrical electron beam is that it is generated 119

by the well-established Pierce gun technology and focused by 120

the use of a conventional magnetic focusing system. 121

Both the SWSs are very promising to realize THz BWOs 122

with a wide range of characteristics in terms of fabrication, 123

output power, and cost. 124

III. BWO DESIGN 125

The approach of using two different SWSs, the DSG and 126

the DCW, to design a family of THz BWO is a breakthrough 127

for tailored power generation at THz frequencies. Two BWOs 128

based on the DSG and the DCW will be the first two devices 129

for a new family of THz sources to cover a wide range of 130

applications. 131

The main design targets are given in the following: 132

1) low cost; 133

2) easy assembly for high yield; 134

3) compact dimensions (200–300 cm3); 135

4) wide range of performance to potentially cover the 136

sub-THz spectrum (0.1–1 THz); 137

5) tunable (at least 5%); 138

6) low beam voltage and compact power supply. 139

A 0.346-THz operating frequency is considered in the 140

following for application in the plasma diagnostic in nuclear 141

fusion, as described in Section I. The first design parameter 142

defined was the beam voltage that determines the length of 143

the period of the SWSs. A low beam voltage in the range 144

of 12–18 kV favors to use of a compact and low-cost power 145

supply. The resulting period was estimated to be in the range 146

of the fabrication process. 147

Due to the different structures, different beam voltages were 148

adopted. The DSG was designed to operate with 17-kV beam 149

voltage, while the DCW was to support about 13 kV. The 150

dimensions of the two SWSs are shown in Table I. It is notable 151

that a period shorter than 200 µm is required. In Fig. 2, the 152

dispersion curve of the DCW with superimposed beam line at 153

12.8 kV is shown. The interaction impedance is typically low 154

in the backward-wave mode. 155

1) Couplers: A detailed study based on 3-D electromagnetic 156

simulation [18] on the coupler to transform the mode in the 157

SWS in the TE10 at the flange at the output port was carried 158

out to maximize power transfer. The conductivity of copper 159

considered in simulation is σcu = 3.9 × 107 S/m [7]. The 160

coupler is a three-port network; one port is connected to 161

the SWS, a second port is the beam tunnel to connect the 162

gun, and the third port is the output port connected to the 163

flange. 164
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TABLE I

Fig. 2. DCW dispersion curve (brown curve), interaction impedance
(orange curve), and beam line at 12.8 kV (blue line).

Fig. 3. DSG coupler S-parameters.

The coupler for the DSG is particularly challenging due to165

the wide beam tunnel needed for the sheet beam. Having a166

low cutoff frequency in the same range of the SWS, a ridge167

is added to the bend (Fig. 3) to perturb the matching between168

the SWS and the beam tunnel. The resulting S11 is better than169

−25 dB over a wide frequency range around 0.346 THz.

AQ:5

170

A study of the coupler for the DCW was performed by171

considering a back-to-back structure. First, a simple structure172

including a tapered transition between a waveguide with173

the same cross section of the DWG and the flanges is174

designed, as shown in Fig. 4(a), to evaluate the effect of the175

Fig. 4. DCW coupler. (a) Waveguide without DCW. (b) S-parameter
structure. (c) Waveguide with DCW. (d) S-parameters.

waveguide tapering. Fig. 4(b) shows the obtained S11 better 176

than −25 dB in the operation range. Next, a second structure 177

with similar topology, including three sections of pillars (two 178

tapered sections and one short section with a nominal height), 179

is designed for the best matching, as shown in Fig. 4(c). 180

Results show that S11 in this case is better than −35 dB in 181

the region around the operating frequency [Fig. 4(d)].

AQ:6

182

Both the couplers’ performance ensures the efficient prop- 183

agation of the RF signal from the interaction structure to the 184

flanges. 185

IV. LARGE SIGNAL SIMULATIONS 186

The design of the two BWOs is based on the definition 187

of the critical length for oscillations to set a proper number 188

of periods within the SWS. Results from this optimization 189

process are shown in Table II. 190

Next, the 3-D PIC simulations performed to evaluate the 191

electrical behavior of the BWOs. The DSG BWO supports an 192

Claudio
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TABLE II

Fig. 5. PIC simulation setup for the DSG BWO.

Fig. 6. PIC simulation setup for the DCW PIC simulations. (a) Top view.
(b) Coupler detail.

elliptical electron beam with the cross section of 400×50 µm2
193

and the current of 14 mA (the aspect ratio of 5.4:1). The DWC194

BWO supports a cylindrical electron beam of 50-µm radius195

and 10-mA current. Due to the different beam parameters196

used, the overall device performance is different for the two197

BWOs and should be evaluated in the context of the different198

technological challenges required and the different application199

needs. The DSG BWO is modeled by CST Particle Studio [19]200

(simulation setup in Fig. 5) and the DCW BWO is modeled201

by MAGIC3D [20] (simulation setup in Fig. 6).202

The results of output power for the two devices are shown203

in Fig. 7. The DSG BWO [Fig. 7(a)] provides about 1 W204

and the DCW BWO about 0.4 W [Fig. 7(b)]. The electron205

energy distribution along the longitudinal direction for both206

the BWOs is shown in Fig. 8. The spectral response at the207

output port of the DCW BWO is shown in Fig. 9, showing the208

highly monochromatic generation of signal at the frequency of209

interest.210

In order to demonstrate the tunability of the BWO designs,211

the tuning range for the DSG and the DCW is shown212

in Fig. 10(a) and (b), respectively. It can be noted that a213

Fig. 7. Average output power for (a) DSG and (b) DCW BWOs.

Fig. 8. Electron energy. (a) DSG BWO. (b) DCW BWO.

variation of beam voltage in the range of 15.8–17.8 kV permits 214

a variation in frequency of 12 GHz for the DSG and that the 215

same relative change in the nominal beam voltage allows a 216

tuning of 14 GHz for the DCW. 217

The BWO performances so far presented are at the state of 218

the art. The high power level and tuning features, not achiev- 219

able by any other technology today, represent a breakthrough 220

in the field. 221

V. BWO MICROFABRICATION 222

The main challenge in the THz frequency range is the fab- 223

rication of SWSs with the expected electromagnetic behavior 224

while establishing a reliable and repeatable process. For the 225

DSG circuit, vane height is the most sensitive dimension which 226

determines the bandwidth of the device. The period of the 227

structure affects the central operating frequency, whereas the 228

width of the DSG controls the dispersion curve. The DCW 229

structure is more sensitive to the h and p values driving the 230

Claudio
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Fig. 9. Spectrum of (a) DSG and (b) DCW BWOs.

Fig. 10. Instantaneous power and tuning range of (a) DSG and (b) DCW
BWOs for the beam voltage 15.8–17.8 and 11.75–13.3 kV, respectively.

dispersion curve. Machining tolerances are expected to be231

±1 µm, which is sufficient to achieve the desired performance.232

Photolithographic techniques, such as UV-LIGA, are233

demonstrated suitable for the dimension accuracy required234

for the two SWSs considered. However, especially for a235

small number of pieces, the fabrication of the mold and236

the electroforming process is not convenient. Furthermore,237

a relevant effort to achieve a level of surface roughness better238

than the skin depth (about 110 nm at 0.346 THz) to reduce239

ohmic losses is required. CNC milling offers high flexibility240

and possibility of patterning the third dimension. The state-241

of-the-art prototype nano-CNC milling machine, developed242

by DTL, a subsidiary of DMG-Mori-Seki, permits one to243

achieve performance at the state of the art, with reduced244

cost and high repeatability for dimensions suitable for THz245

regime structures [10]. The high accuracy of the nanomilling246

machine was proved to obtain levels of surface roughness247

down to 40 nm, well below the skin depth at 0.346 THz. The248

NN1000 nano/micromilling machine has a maximum spindle249

speed of 50 000 r/min; the chip load is kept below 0.001-mm250

feed per tool flute rpm. The proper setting of the machining251

parameters is fundamental in achieving excellent surface finish252

and tool lifetime.253

In the case of the DSG and the DGW at 0.346 THz,254

the dimensions shown in Table I represent a formidable255

fabrication challenge. A test of feasibility for the fabrication256

was performed realizing the DSG and the DCW in aluminum257

Fig. 11. SEM images of the SWSs fabricated by nano-CNC milling.
(a) and (b) DSG. (c) and (d) DCW.

with the dimensions shown in Table I. Four different SEM 258

views of the DSG and the DCW realized by nano-CNC 259

milling are shown in Fig. 11. The high level of accuracy 260

for the very small dimensions is readily observed. The high 261

definition of the pillars is notable. Due to the characteristics 262

of aluminum, the surface roughness achieved was higher than 263

expected. The fabricated samples were primarily built to test 264

the microfabrication process in terms of dimensions achieved. 265

However, the measurements of the S-parameters were carried 266

out. The setup for the DSG measurement is shown in Fig. 12. 267

It consists of two halves assembled together by a system of 268

alignment pins. The setup for the DCW is similar to a lid 269

to close the waveguide that does not require a very accurate 270

alignment procedure. 271

Claudio
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Fig. 12. Full DSG assembly with alignment pins and flanges.

Fig. 13. Measurements of the S-parameters of (a) DCW and (b) DSG in the
low range of the band.

The S-parameters of the fabricated structures were mea-272

sured. The S11 and S21 for the fabricated DSG and DCW are273

shown in Fig. 13(a) and (b), respectively. The measurements274

are limited to the range of frequency below 0.34 THz due to275

the available frequency range of the vector network analyzer.276

The relatively high value of the transmission losses (S21) is277

due to the difficulty to machining aluminum in this initial278

fabrication test. An improved surface will be obtained by279

the use of a different tooling and replacing aluminum with280

copper. The transmission parameter of the DSG circuit is281

lower than what was predicted in simulation models, and282

this is due to poor surface roughness. The first DSG grating283

circuit has surface roughness with Ra (arithmetic mean surface284

roughness) of about 500 nm, and it is expected that this can285

be improved to well below 100 nm by implementing diamond286

tooling. However, the fabricated samples demonstrated the287

CNC milling as a suitable process for SWS in the sub-THz288

range.289

VI. GUN AND WINDOW290

The design of the electron gun for the cylindrical beam291

is based on a conventional Pierce gun and does not present292

Fig. 14. Electron gun schematic.

Fig. 15. 0.346-THz window. (a) Simulated S-parameter (S21). (b) Schematic.
(c) Prototype.

specific novelty. On the contrary, the sheet beam requires an 293

accurate design of the gun and the magnetic focusing system. 294

A planar cathode is considered to generate the cylindrical 295

electron beam. A preliminary simulation and test was per- 296

formed, where a beam voltage of 17.4 kV and a current of 297

14 mA have been obtained. The elliptical electron beam has 298

a ratio 5.4:1 with a current density of 94 A/cm2 and a 50% 299

fill factor [6]. The schematic for the gun is shown in Fig. 14. 300

Different solutions of magnetic focusing systems based 301

on solenoidal structures are under investigation to obtain up 302

to 1.3 T for the full length of the DSG BWO. Based on 303

PIC analysis performed in CST, 98.5% beam transmission 304

efficiency is expected. The solenoid magnet structure has a 305

radial component of magnetic field of 1.3 T and a longitudinal 306

component of 0.35 T. External dimensions of the magnetic 307

structure are 62 × 32 × 35.4 mm3. Engineering estimates 308

predict that the weight of the full system, including magnets, 309

will be under 10 pounds. 310

A window, suitable for both the DSG and DWG BWOs, 311

was designed and simulated using CST MWS [Fig. 15(a)] 312

and tested in the frequency range 327–347 GHz. The window 313

is a pillbox-type with MPCVD diamond as the disk. The 314

MVCVP diamond dielectric constant is 5.6 with the loss 315

tangent of 0.003 in the simulation. The thickness of the disk is 316

0.3 mm, the diameter is 2 mm, and the depth and the diameter 317

of the circular waveguides are 0.7 and 1.2 mm, respectively. 318

The flange connecting the internal SWS and the outer load 319

is WR2.8 rectangular waveguide. Further refinements are 320
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in progress. Fig. 15(b) and (c) shows the schematic and a321

first prototype of the window, respectively.322

VII. CONCLUSION323

An international collaboration of leading institutions in324

vacuum electronics in China, the U.K., and the U.S. is working325

on building a new family of THz vacuum electron devices for326

medium power generation. The availability of these sources327

will permit to enable a new high-k plasma diagnostic to328

improve the understanding of plasma turbulence in nuclear329

fusion reactor and many other applications in the THz range.330

Two different topologies of SWSs have been adopted to design331

the 0.346-THz BWOs. The DSG and the DCW have been332

demonstrated to be suitable interaction structures to provide333

a wide range of performance, with a tailored design. The334

fabrication of the SWS is a formidable challenge. The samples335

realized by CNC milling have proved the high accuracy of the336

process.337

The fabrication of all the parts for the final assembly of the338

BWOs is in progress.339
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