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Abstract 

An extensive array of chemicals are used in industry and commerce, many produced in large 

volumes, but their fate in the environment and corresponding exposure to organisms (including 

humans) has only been measured for a limited number of substances. Modelling tools have been 

demonstrated to be an economical alternative to measurement data for the assessment of 

chemical fate and exposure. Therefore, many fate and bioaccumulation models have been 

developed in Western countries while progress on the development of tools and legislation are 

relatively far behind in China. In this thesis, the application of modelling tools in environmental 

fate and exposure assessment of organic pollutants has been explored in China. The first aspect 

of this research was the adaptability of Western dietary exposure models to the Chinese 

population. In Paper I, three established Western-based exposure models were used for China 

using specific Chinese dietary scenarios and modified human characteristics to explore their 

potential adaptability to be used for the Chinese population. The second aspect was to explore 

the possibility of extending existing bioaccumulation models to a wider range of organic 

pollutants by incorporation of newly developed poly-parameter linear free energy relationships 

(pp-LFERs) for individual biological phases in Paper II. Compared to traditional single-

parameter (sp) KOW-based (sp-LFERs) methods, the pp-LFERs only indicated limited 

advantages when evaluated with measurements, implying that the choice of approach should be 

based on other factors beyond methodology of calculating partitioning coefficients (e.g., 

accuracy of input data and uncertainty from biotransformation). The studies described in Paper 

III and Paper IV took polychlorinated biphenyls (PCBs) as a case study, to comprehensively 

evaluate and demonstrate the ability of a global dynamic fate model （BETR-Global） linked 

to a bioaccumulation model (ACC-HUMAN) in the reconstruction of historical trends and 

predicting future of emission trends and exposure profiles for the Chinese population. 

Meanwhile, controlling sources of intentional and unintentional emissions were thoroughly 

explored within China in Paper III. Paper IV more focused on human exposure under the 

combined effect of emission trends and dietary transition for the Chinese population. The 

delayed peak time of the human body burden of PCBs has mainly been caused by rapid dietary 

shifts and on-going emissions from sources, such as imported e-waste in China. The Large 

uncertainty in the prediction of human body burdens suggests that the choice of model system 

could be relevant for exposure assessment and that the model should be tailored to the system of 

interest. Finally, preliminary suggestions to conduct effective controlling measures were also 

made for the policy makers.   
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1 Background 

1.1 Chemicals in the environment 

There are more than 100 million unique chemical substances registered in the CAS database 

until November 2015 (http://www.cas.org/). A new chemical substance is being added to a large 

amount of already registered chemicals every second (Hendriks, 2013). In Europe, more than 

100,000 chemicals are on the market and compiled in the European Inventory of Existing 

Commercial Chemical Substances (EINECS) during 1970-1982 and are awaiting assessment. 

The vast majority of the 30,000 substances in wide commercial use (>1 t y-1) are not measured 

in the environment. Their emission, fate and exposure to biota are still unknown (Muir and 

Howard, 2006). The situation is similar in China with more than 45,000 chemicals registered 

under the Inventory of Existing Chemical Substances Produced or Imported in China updated in 

2013 (IECSC). This inventory only covers the chemicals produced or imported during 1992-

2003 within mainland China, which does not account for substances manufactured out of this 

period.  

Chemical substances can be emitted into the physical environment through a wide range of 

pathways during each stage of their life cycle, e.g., the production or transportation of goods. 

Later on, they could harm human health via multiple exposure pathways (e.g., dietary intake, 

inhalation and dermal contact), possibly causing disorders, cancers and reproductive issues 

(Grandjean and Landrigan, 2006; Janjua et al., 2007; Jobling et al., 1995). Most of these 

chemicals have not been measured and evaluated in the environment, and limited information is 

known about their emission, environmental fate and exposure. Therefore, human exposure to 

numerous potential hazardous chemicals is unknown. Considering the huge number of 

commercially used chemicals and the high cost of environmental monitoring, modelling tools 

are becoming important approaches used in chemical risk assessment as well as screening and 

identifying emerging new contaminants. Also, models are particularly useful to integrate current 

knowledge and identify the corresponding gaps on the transfer of chemicals from different 

sources, through the environment and food web to the organisms (e.g. the source-receptor 

relationship).   

1.2 Regulatory progress 

The need to establish legally binding frameworks for the control of chemicals was recognized 

and started in the 1960’s in Europe and the US, evolving from hazard identification to safety 

risk assessment (Christensen et al., 2011; van Leeuwen and Vermeire, 2007). The legislation 

addressing industrial chemicals in Europe began with the Dangerous Substances Directive 

67/548/EEC (DSD) in 1967, which specified the management requirements for the 

http://www.cas.org/
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classification, packing and identification of hazardous chemicals (Commission of the European 

Communities, 1967). Subsequently, in order to further improve risk assessment of industrial 

chemicals produced in or imported into Europe, the chemical legislation of REACH 

(Registration, Evaluation and Authorisation of Chemicals (EC) No 1907/2006) was adopted in 

December 2006 and came into force on 1 June 2007 (Parliament and Union, 2006). Under EU 

REACH, chemical substances and mixtures produced or imported in more than one tonne per 

year are required to undergo a registration process. In the United States, the “Toxic Substances 

Control Act” (TSCA) was issued in 1976 (Congress US, 1976), which specified a systematic 

review process for the evaluation of new chemicals before they enter the market as well as an 

array of tools for estimating potential risk from existing chemicals.  

In China, chemical-related legislation was not initiated until 1994 (Wang et al., 2012). The 

“Measures on Environmental Managements of New Chemical Substances” was issued by State 

Environmental Protection Administration (SEPA) in 2003 and revised in 2010 (MEP China, 

2010), which is known as China REACH due to its similarity to EU REACH. Different from 

EU REACH, it is only applicable to new chemicals. Meanwhile, the “Guidelines for the Hazard 

Evaluation of New chemical substances” (HJ/T154/2004), “Guidelines for the Testing of 

Chemicals” (HJ/T153-2004), and “Guidelines for Chemical Testing Good Laboratory Practices” 

(HJ/T155-2004) were also successively issued by SEPA to promote the application of hazard 

assessments, related test methods and laboratory management. Despite the regulatory progress 

made in China, its technical development is behind methodologies in developed countries 

(Wang et al., 2012). For example, the technical guidance for chemical assessment is still lacking 

so far, and no specified modelling tools to conduct hazard and exposure assessment are 

available. Although the well-developed assessment frameworks, modelling approaches and 

exposure scenarios by developed countries could offer insightful references for Chinese cases, 

the application and adaption of the methodologies would vary case by case in China and should 

be used with caution. This is a result of China being such a large country with multiple 

environmental conditions,  chemical industry processes, the design and operation of sewage 

treatment plants and many other essential influential factors (Wang et al., 2012). 

1.3 Exposure assessment 

Driven by the increasing pollution issues and rapid legislation processes, chemical risk 

assessment plays a crucial part in various directives and regulations. For example, it is 

mandatory for the notification of new chemicals under EU REACH regulations (TGD EU, 

2003). Chemicals risk assessment means determining and quantifying any risk stemming from 

exposure to a certain substance, including identifying a relationship between a dose and its 

effect as well as target populations. As one of the core steps in the risk assessment of chemicals, 

exposure assessment (illustrated in  
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Figure 1) is defined as the “determination of the emissions, pathways, and rates of movements 

of a substance and its transformation or degradation, in order to estimate the 

concentrations/dose to which human population or environmental compartments are exposed” 

(van Leeuwen and Vermeire, 2007). The endpoint in the exposure assessment could have 

different departure points. The exposure to humans could be calculated from measured 

concentration in indirect exposure vectors (e.g., food items and air), or from the predicting 

concentrations in environmental media and then modelling their transfer to biotic media.  

The fate models are often combined with human exposure models to predict the chemical 

concentrations in the environment and hence the human body. The exposure considered in this 

work is environmental exposure, excluding the exposure under special scenarios (e.g., 

occupational exposure). Figure 1 provides a general conceptual overview for the indirect far-

field chemical exposure to humans. Firstly, chemicals are emitted to the physical environment 

(e.g., air, water, soil and sediment). Then, these chemicals are subject to environmental fate and 

transport processes (e.g., intermedia transport and distribution). Subsequently, these chemicals 

could accumulate in aquatic and terrestrial food chains, reaching various human food sources 

(e.g., vegetation and cow). Eventually, humans are exposed to chemicals via different contact 

routes (e.g., ingestion and inhalation) from multiple environmental media (e.g., air, water, meat 

and vegetables). 

 
 

Figure 1. A conceptual model of indirect far-field human exposures to chemicals released to the 

environment (from source to receptor). 
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1.4 Aim and outline of this thesis 

The top-level objective of this research is to provide a general overview of the potential 

adaption of Western-based fate and bioaccumulation models to predict human exposure in 

China. The main exposure pathway focussed on the dietary intake pathway (including 

inhalation). Therefore, the aims of this thesis were to: 

1) Systematically review the applicability of established Western-based multimedia fate 

and bioaccumulation models for the Chinese population and define any research gaps 

for model adaption (Paper I); 

2) Based on the identified research gaps in existing bioaccumulation models, develop 

traditional octanol-water partition coefficient (KOW)-driven bioaccumulation models to 

extend their applicability domain to more polar and complex chemicals by 

incorporating newly developed poly-parameter free energy relationships (pp-LFER), 

using the fish model as a starting point (Paper II);  

3) Demonstrate that multimedia fate models coupled with bioaccumulation food web 

models are helpful tools for understanding the source-receptor relationship and offer 

guidance on setting effective control measures in China ( Paper III and IV); 

4) Investigate the impact of different emission sources on a chemical’s fate in the physical 

environment and its bioaccumulation potential along the food chain, with humans as the 

end receptor (Paper III and IV); 

5) Examine the impact of dietary pattern and change in dietary composition and habits on 

the human exposure for Chinese population (Paper I and IV). 

 

A tiered approach was used to achieve the above aims. Firstly, Paper I selected three well-

established multimedia fate and bioaccumulation models developed by Western countries, 

to systematically explore the applicability of these models in China. This included 

identification of predominant exposure pathways and making suggestions to improve their 

performance in China. In addition, research gaps were identified for traditional KOW -driven 

bioaccumulation models, including their limited applicability domain caused by directly 

treating lipid solubility as equal to octanol solubility. Consequently, Paper II describes a 

novel approach to the incorporation of poly-parameter relationships to address the limited 

applicability domain of existing empirical equations used in traditional KOW-driven 

bioaccumulation models. It is also an attempt to understand how these newly developed 

approaches could offer insights on partitioning between biota and the physical environment 

as well as the interpretation of biomonitoring results. Finally, Papers III and IV utilize an 

advanced unsteady-state fate model linked to a bioaccumulation food chain model, in order 

to thoroughly investigate chemical source-receptor relationships and to aid the development 
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of successful control measures. PCBs were selected as a case study due to their well-studied 

profile of chemical properties, emission trends and available measured data. Finally, 

preliminary suggestions on how to conduct effective controlling measures are made for 

consideration by policy makers. 
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2 Introduction to Modelling Tools  

The ultimate goals of environmental modelling are to understand the relevant processes and to 

make predictions regarding the impact of human activities on the environment (Schwarzenbach 

et al., 2005). In addition, in order to understand the environmental fate and transport, 

bioaccumulation and exposure of chemicals to biota, the lack of monitoring data for most 

chemicals of commerce also necessitates the use of modelling tools (Arnot et al., 2006). As a 

result, numerous mathematical models have been developed from simple box models (Brandes 

et al., 1996) to complex spatially-resolved models combined with geographic information 

systems (MacLeod et al., 2011). In this thesis, coupled multimedia fate models and 

bioaccumulation models used to estimate human exposure are described in the following 

sections. Several models have been developed for the prediction of environmental fate and 

bioaccumulation along the food web based on different temporal and spatial solutions, e.g., the 

regional scale steady-state models SimpleBox (Brandes et al., 1996; Van de Meent, 1993), the 

dynamic CozMoPOP (Wania et al., 2006) and the dynamic model Globo-POP (Wania and 

Mackay, 1995). 

2.1 Multimedia fate model  

Chemical fate models are an essential tool for risk management and chemical regulation. In 

addition, accurate quantification of a chemical’s fate in environmental compartments is the 

premise for understanding their exposure to biota. Typically, the environment is divided into 

bulk compartments representative of the atmosphere, water, sediment and soil. Other 

compartments like vegetation can be added when necessary.  

2.1.1 Fugacity concept  

The fugacity concept was firstly introduced as a criterion of equilibrium by Gilbert N. Lewis in 

1901 (Lewis, 1901) and introduced to environmental modelling by Don Mackay in 1979 

(Mackay, 1979). Fugacity is often described as the “escaping” tendency of a chemical in a given 

phase whereas the fugacity capacity presents the partitioning capacity of the phases. It is based 

on the understanding that chemical present in a system with different phases (e.g. water, air, and 

soil) will tend to be distributed at equilibrium, and thus the chemical potential is equal in all 

phases. Whereas chemical potential is logarithmically related to concentration, fugacity is 

logarithmically related to chemical potential and thus linearly (or near linearly) related to the 

concentration at low concentration. Consequently, fugacity is a more practical parameter to 

model contaminant behaviour in the environment. In addition, it can also indicate the 

equilibrium status of a system (when fugacities are equal), which cannot be achieved by 

concentration alone. The fugacity is estimated as: 
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 fi= Ci/Zi 

where f is the fugacity (Pa) of a chemical in phase i, Ci is the concentration (mol m-3) of a 

chemical in phase i and Zi is the fugacity capacity (mol m-3 Pa-1). The net diffusive flux between 

phases will always be from phases with higher fugacity to phases with lower fugacity. A phase 

with higher fugacity capacity will also reach a higher concentration than a phase with low 

fugacity capacity under the same fugacity (C=Z×f). This equation does not necessarily imply 

that concentration and fugacity are always linearly related. As a rule of thumb, the linearity 

assumption may be considered valid for concentrations less than 10% of saturation. 

Nonlinearity at higher concentrations can be accommodated by allowing Z to vary as a function 

of concentration and fugacity.  

Multimedia environmental models based on the fugacity approach have been developed by 

Professor Donald Mackay since 1979 at the University of Toronto and Trent University, Canada. 

In multimedia fate models, the total environment is represented by a set of spatially 

homogeneous boxes. Fugacity box models typically divide the environmental medium as bulk 

compartments of air, water, soil and sediment. Chemicals are assumed evenly distributed in 

each box. More compartments could be added when it is necessary, e.g., vegetation and biota. 

At equilibrium, fugacities are equal when a system achieves the minimal Gibbs free energy. As 

a result, two individual compartments (e.g., water, air and soil) will have the same fugacity 

when reaching equilibrium, though they may have different concentrations. 

The complexity of the model depends on the application, geographical size, target chemicals, 

the number of phases and connectivity, the number of subdivisions included in each phase and 

spatial resolution. Mackay divided multimedia fate models into four levels based on different 

complexity (Mackay, 2001) as detailed in Table 1, each with different assumptions of 

thermodynamic equilibrium, steady/unsteady state and intermedia mass transfer. Mass transfer 

is modelled by advective transport, such as deposition. These multimedia models could offer 

insights into the dynamics of environmental transport and transformation of organic substances. 

Therefore, they are an essential part of the risk assessment of new and existing chemicals. Level 

I model calculates equilibrium partitioning of a given mass of chemical in a closed system 

without degradation or advection processes. In a Level II model, the system is open and in 

thermodynamic equilibrium, considering inflows and outflows of chemicals and processes of 

advection and degradation. At Level III, the system is open and not in thermodynamic 

equilibrium, depending on the rate of transport and transformation. Under such conditions, the 

mode of emission (e.g. to water, air or soil) will have an impact on the predicted results. The 

model with the highest complexity is a Level IV model, which is an unsteady-state (dynamic) 
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model, allowing a given mass of a chemical in a compartment to change over time. Therefore, 

the output is expressed as a function of time.  

Table 1. Levels of multimedia fate models with corresponding required information and model 

outputs (Mackay et al., 1996; van Leeuwen and Vermeire, 2007).  

Model level Conditions Required inputs Outputs 

Level I Equilibrium 

partitioning under 

steady state 

Physiochemical 

properties; 

environmental 

parameters; amount 

of chemical  

Chemical 

distribution between 

the compartments  

Level II Level I plus 

transport and 

degradation 

Level I plus overall 

emission; advection 

and transformation 

rates 

Chemical 

distribution; 

residence time; 

dominant loss 

mechanisms 

Level III Steady-state and 

nonequilibrium 

Level II plus 

emission to each 

compartment; 

intermedia transfer 

rates 

Level II plus 

dominant transport 

process 

Level IV Unsteady-state and 

nonequilibrium 

As Level III Level III plus time-

course 

concentration; time 

to reach steady-state; 

recovery time  

 

2.1.2 Steady-state model 

Under the condition of steady-state emission and assuming all properties are independent of 

time, a given mass of a chemical would partition between various phases considered within the 

model. Its relatively simplified structure and low data requirements, make it easy to apply. 

However, such models have several limitations. Firstly, they are difficult to validate, since the 

assumption of steady state is not always true in the real environment. They may introduce errors 

when complex dynamic processes significantly affect the chemical transport, accumulation and 

elimination processes. Furthermore, they are not able to provide the required time to achieve 

steady state, nor do they describe the time course of recovery after emission reduction or 

cessation (Sweetman et al., 2002). Therefore, steady-state models may not be suitable for 

compartments that are slow to respond, e.g., concentrations in sediments located in remote 

environments would be overestimated by steady-state models. Paper I presents examples of 

three Level III multimedia models, using the steady-state assumption.  

2.1.3 Dynamic model 

The dynamic (unsteady-state model) can be used to predict chemical concentrations changing 

over time, which is more realistic, compared to steady-state models. However, it requires more 
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detailed information on parameterisation and input data, leading to relatively longer simulation 

times than steady-state models. The mass of a chemical released into the environments could be 

varied with time, so such models are able to predict the past and future trends when the 

emission inventory is available. In addition, they could evaluate the effectiveness of banning a 

chemical from use and offer guidance for policy maker on setting controlling strategies. Paper 

III used a dynamic Level IV model (BETR-Global) to predict the chemical fate and identify 

control sources in China, with PCBs as a case study. 

Unsteady-state models would be most useful when the rate of chemical input does not equal the 

output rate, which can be shown as (Mackay, 2001): 

d (chemical mass)/dt = total input rate-total output rate 

where the input rate means the chemical entering into the model system and the output rate 

refers to chemical loss through a range of pathways, e.g., advection, degradation and reaction.  

2.2 Food chain bioaccumulation model 

2.2.1 Why model bioaccumulation? 

After xenobiotics are released into the environment, aquatic and terrestrial organisms can be 

exposed to these chemicals. Chemicals may accumulate in organisms through multiple 

mechanisms (e.g., from air, water and soil). Bioaccumulation describes processes by which 

chemicals are taken up and retained by the organism from their environment and/or diet 

(Mackay and Fraser, 2000). It causes an increased chemical concentration in an organism 

compared to that in its ambient environment through all exposure routes. The bioaccumulative 

potential of a chemical depends on several factors, including  physicochemical properties, (e.g., 

hydrophobicity (Kelly et al., 2008) and volatility (Kömp and McLachlan, 1997) ), the tendency 

of a chemical to become associated with tissue components (Li et al., 2003), and the 

degradability by various metabolic pathways (Klecka et al., 2000). Most persistent organic 

pollutants generally pose very high bioaccumulation potential. e.g., PCBs and PBDEs (Kelly et 

al., 2007). 

The bioaccumulative potential of an organic chemical in an organism of interest is normally 

measured by a range of empirical bioaccumulation matrices. They are mainly expressed by the 

concentration ratio of a chemical in a target organism relative to the chemical concentration in a 

given environmental media or foodstuff. Widely used metrics include the bioconcentration 

factor (BCF: Cwater/Corganisms measured in the laboratory), the bioaccumulation factor (BAF: 

Cwater/Corganism measured in field including dietary intake), biota/sediment accumulating factor 

(BASF, Corganism/Csediment) and biomagnification factor (BMF, Corganism/Cintake food). The expression 

of the test chemical concentration units would greatly affect the way of interpretation relative 
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bioaccumulation metric. For instance, using wet weight or dry weight would result in difficult 

bioaccumulative level (Burkhard et al., 2012). These values could be obtained by measuring or 

modelling. Due to growing public concern over the ethical considerations of animal testing, cost 

of testing (both financial and time) and legislation requirements, modelling can provide a 

valuable approach for the prediction of bioaccumulation (Cronin, 2004; Guillen et al., 2012). 

Bioaccumulation food chain models involve a range of necessary simplifications to understand 

the complex processes that result in chemical exposure. The key differences of exposure models 

include how they are parameterized (e.g. human dietary intake rates) and the treatment of food 

web bioaccumulation. There are two general approaches to quantifying bioaccumulation, which 

are empirical and mechanistic models both for aquatic and terrestrial food chains. The empirical 

approach involved the calculation of BCFs or BAFs by deduction from concentration in the 

organisms of interest (e.g., fish) and concentration in their prey and an environmental 

compartment (e.g. water and/or sediment). These values are necessarily subject to errors, in the 

case of field samples and biological variabilities. In order to better characterize underlying 

processes, mechanistic bioaccumulation models treat chemical distribution as a function of 

trophic level in the ecosystem, which could help to interpret bioaccumulation related to 

contaminant dynamics with possible changes in the environment (e.g., temperature, trophic 

conditions and prey contamination levels). For instance, the sensitivity or uncertainty could be 

tested on environmental input parameters. 

2.2.2 Aquatic food chain model 

Due to direct emission and transport processes of a chemical, the aquatic environment is often 

the final sink of many organic pollutants. Building the relationship between concentrations in 

the aquatic environment and organisms of interest could help to interpret chemical and 

biological effects in biota. A number of useful aquatic bioaccumulation models (empirical and 

mechanistic) have been proposed and we briefly introduced below.  

2.2.2.1 Empirical aquatic model 

Much effort has been made to predict bioconcentration in aquatic organisms using molecular 

structure or measured properties since the 1970s. The most commonly used approach is to 

establish an empirical relationship with KOW. Neely et al. (1974) reported the first linear 

relationship between KOW and BCFs for fish (Neely et al., 1974). This approach was then 

extended to more chemicals by Veith. Several non-linear KOW-BCF relationships have also been 

suggested, e.g., bilinear (Bintein et al., 1993) and polynomial (Connell and Hawker, 1988). 

These equations should be used with caution when applying to compounds out of the domain of 

the training dataset. Since bioconcentration reflects the net flux of lipid-water partition and 

other biological processes, such Kow-based models may not work well for chemicals subject to 
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specific interaction processes (Hermens et al., 2013). Empirical models are normally preferred 

for initial screening, since they often only require simple physicochemical properties as inputs. 

2.2.2.2 Mechanistic aquatic models 

Mechanistic food chain models can treat chemicals with the potential for increasing in 

concentration along trophic levels. Concentrations in organisms are calculated sequentially up 

the food web, e.g., those calculated for benthos are used as food for fish. Therefore, they are 

able to treat a large number of organisms and developed a comprehensive method for assessing 

contaminant migration into and within a complex ecosystem (Mackay and Fraser, 2000). A 

number of mass balance mechanistic models have been developed and applied to quantify 

chemical flux in (by dietary intake and gill uptake) and out (by gill elimination, growth dilution, 

biotransformation and faecal egestion) of fish as illustrated in Figure 2 (Arnot and Gobas, 2004; 

Barber et al., 1991; Erickson and Mckim, 1990; Gobas, 1993; Gobas et al., 1988; Kelly et al., 

2004; Nichols et al., 1990). It is preferable to simple regression-based bioconcentration or 

biotransfer parameterization of bioaccumulation, especially for very hydrophobic chemicals 

(Arnot et al., 2010; Birak et al., 2001). There are one-compartment and multi-compartment fish 

models. One-compartment models assume a chemical is homogeneous within the whole fish 

body, while multi-compartment models treat the target organism as a set of connected organs or 

tissue groups and chemicals are transferred by blood. Paper II used a one-compartment fish 

model and a multi-compartment fish model to explore whether the newly developed poly-

parameter relationships (pp-LFERs) for partition coefficients of biological phases could 

improve predictions of BCFs.  

 

 
 
Figure 2. The conceptual diagrams of the one-compartment fish model (adapted from (Arnot 

and Gobas, 2004) ) and multi-compartment PBTK fish model. The arrows represent the major 

routes of uptake, elimination and transport processes in a fish. k1 means gill uptake rate constant; 

k2 means gill elimination rate constant; kD means the dietary uptake rate constant; kM means 

metabolic transformation rate constant; kE means the fecal egestion rate constant; kG means the 

growth dilution rate constant.  
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Physiologically-based one-compartment models quantify chemical-specific differences in 

absorption, biomagnification, biotransformation (metabolism) and elimination processes leading 

to more refined chemical-specific estimates of exposure and internal concentrations in target 

receptors (e.g., fish and shrimp) as illustrated in Figure 2-(a). A widely used mechanistic steady-

state fish model was developed by Gobas on 1993 (Gobas, 1993) and further improved by Arnot 

and Gobas on 2004 (Arnot and Gobas, 2004). Using chemical concentrations in water and 

sediment, the trophic transfer of hydrophobic organic chemicals to organisms (e.g., fish and 

benthos) was examined. This relatively simple approach has the advantage of enabling feeding 

interactions to be accounted for in the bioaccumulation process.  

When the elimination rates differ in two or more stages or the organ-specific concentration is 

needed, a one-compartment model is not sufficient to describe the bioaccumulative behaviour. 

The simplest form of a multi-compartment model is a two-compartment model. Its rationale is 

that one compartment undergoes fast release of xenobiotics while the second compartment only 

slowly releases the chemical to the first compartment (van Leeuwen and Vermeire, 2007). A 

more complicated example of modelling tool is the multi-compartment physiologically based 

pharmacokinetic (PBPK) models as illustrated in Figure 2- (b), particularly well-suited to 

calculate tissue doses of chemicals and their metabolites over a wide range of exposure 

conditions in different species (Leung, 1991; Nichols et al., 1990). It is based on three groups of 

parameters: physiological information (e.g., blood flow), partition coefficients and metabolism. 

Each considered compartment corresponds to discrete tissues or organs with appropriate 

parameterized volume, blood flow rates and pathways of metabolism to the target chemicals. A 

mass-balance differential equation is used to describe each compartment and equations are 

solved by numerical integration to predict time-course concentration (Andersen, 2003).  

2.2.3 Terrestrial food chain model 

The bioaccumulation of chemicals in terrestrial food chains is a process in which pollutants are 

transferred from contaminated sources (e.g., ambient air and soil to agricultural systems -

including crops and dairy products) then to humans as the endpoint. Modelling and simulation 

techniques for bioaccumulation and biotransformation processes have been developed for both 

general and specific vegetables with large consumption volumes (e.g., apples, potatoes and 

lettuce) (Juraske et al., 2011; Trapp, 2007; Trapp, 2015). These submodels have also been 

incorporated into regulatory exposure assessment tool in Europe and North America, e.g. 

EUSES (European Commision, 2004) and RAIDAR (Arnot et al., 2006). These two models 

were used as references for model adaptations to China in Paper I. 

The terrestrial food web can be divided into agricultural and wildlife food webs. The 

agricultural food web includes chemical transfer from air and soil to plants, from plants to 
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herbivores (e.g., cow and livestock), from cow to milk and beef, then taken up by humans 

(McLachlan, 1996). The wildlife food web examines the chemical bioaccumulation in wildlife 

species (e.g., deer and shrew) (Armitage and Gobas, 2007), with less relevance to general 

human exposure. Therefore, only agricultural food webs were further explored in this thesis.  

2.2.3.1 Plant model 

Fruit and vegetables constitute a considerable fraction of the Chinese diet. Organic chemicals 

are taken up by plants from both air and soil (Collins et al., 2005). Vegetation is then consumed 

by herbivores, resulting in the transfer of contaminants along the terrestrial food chain and 

eventually reaching humans (McLachlan, 1994). Therefore, uptake into edible plants is an 

important process for assessing the exposure of humans to toxic organic chemicals. This 

indirect exposure makes vegetation the important source of human exposure to some organic 

pollutants, such as pesticides (McLachlan, 1996). 

During the last few decades, a range of plant uptake models has been constructed and used in a 

wide range of applications (e.g., chemical safety assessment laid down in Technical Guidance 

Documents (TGD EU, 2003)). The uptake of organic chemicals by plants occurs via several 

pathways as illustrated in Figure 3. Organic chemicals can directly become in contact with plant 

tissues (e.g., leaf) through vapour and particle deposition or via below ground tissues (e.g., roots) 

uptake (Collins et al., 2011). Most plant models assess uptake from the air (McLachlan, 2010) 

or soil (Travis and Arms, 1988) while several models have been developed for both pathways 

(Collins and Finnegan, 2010; Trapp, 2015; Trapp and Legind, 2011). Recently, models were 

also developed to estimate specifically the foliar uptake and translocation of chemicals 

intentionally applied to crops (e.g., pesticides and herbicides) (Fantke et al., 2011; Fantke et al., 

2012). However, models with specific direct chemical usage patterns are out of the scope of this 

thesis. Both empirical and mechanistic models have been developed to treat chemical 

bioaccumulation in plants.  
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Figure 3. Main pathways for plant uptake of organic chemicals (Collins et al., 2006). 

 

2.2.3.1.1 Empirical plant model 

Empirical models describe chemical uptake by plant roots expressed as the ratio of chemical 

concentration in plant compartments (e.g., leafs and roots) to that in corresponding measured 

exposure media (e.g., soil and air) when samples are collected (Collins et al., 2011). These 

ratios are generally referred to as bioconcentration ratios, but they cannot reflect steady-state or 

equilibrium status. Travis and Arms (1988) developed one of the earliest and most widely used 

empirical plant models using the relationship between BCF and chemical properties derived as 

(Travis and Arms, 1988): 

log BCF= 1.588-0.578 log KOW  

where BCF is the ratio of chemical concentration in aboveground plant parts (mg kg-1 dry plant) 

to the concentration in the soil (mg kg-1 dry soil). This type of plant model is easy to use with 

very simple inputs needed (only KOW needed in this case). However, empirical relationships 

strongly depend on a limited number of data points and do not say much about the uptake 

mechanisms. As a result, special caution should be taken when applying the empirical model to 

the chemical out of the applicable property domain. 

2.2.3.1.2 Mechanistic plant model 

Mechanistic mass balance plant models normally include one or more compartments with rates 

of input, output, and accumulation describing partitioning, degradation, flow or diffusion rates 

to estimate plant tissue concentrations from chemical exposure (Paterson et al., 1991; Paterson 
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et al., 1994; Paterson et al., 1990; Rein et al., 2011; Ryan et al., 1988; Topp et al., 1986; Trapp, 

2000; Trapp, 2002; Trapp, 2004; Trapp, 2007; Trapp and Matthies, 1995). The main processes 

involved include: diffusion and bulk flow of chemicals between soil and root; transport within 

the plant in the phloem; transpiration streams between root, stem and foliage; exchange between 

air-soil and leaf-air; metabolism and growth. Mechanistic models need more parameters than 

empirical models, which include the physicochemical properties of a target chemical (e.g. KOW, 

KAW and KOC), plant properties (e.g., masses and volumes of considered compartments, growth 

and transpiration rates) and environmental properties (e.g., temperature, organic carbon content 

and air composition). These three types of inputs contribute variability to plant uptake 

modelling (Trapp, 2015). However, the model performance was not positively related to the 

model complexity. The lack of experimental plant uptake data greatly limits model development 

and evaluation (Mckone and Maddalena, 2007). 

2.2.3.2 Mammalian model 

Higher trophic organisms such as mammals tend to be subject to adverse effects caused by 

increasingly accumulated chemical concentrations. Humans are at the top of the food web and 

can be particularly sensitive to exposure. Animal-origin foodstuffs account for the majority 

dietary exposure to a wide range of persistent organic chemicals in humans, e.g., PCBs (Wang 

et al., 2010). Therefore, bioaccumulation in mammalian models is essential to understand the 

biotransfer of chemicals through food webs to humans, as the endpoint. 

2.2.3.2.1 Empirical mammalian model  

Several KOW-based empirical relationships have been developed based on empirical data from 

animal feeding studies (Garten and Trabalka, 1983; Kenaga, 1980; Mclachlan et al., 1990; 

Stephens et al., 1995; van Asselt et al., 2013). Many factors will influence these relationships, 

e.g., different biotransformation abilities (Ronis and Walker, 1985; Wallace, 1989). A good 

example is that Travis and Arms (1988) proposed simple regressions between KOW and 

biotransfer factor (BTF) for milk and beef from experimental data (Travis and Arms, 1988). 

This model has been extensively used and has been incorporated by international regulatory 

authorities into chemical exposure assessment tools to protect human health (Takaki et al., 

2015). However, it has been criticized, due to the limited range of investigated chemicals, most 

of which are persistent within a narrow KOW range (3<log KOW<7). Subsequently, new KOW–

based empirical models using more experimental data have been proposed (MacLachlan and 

Bhula, 2008). However, the metabolism of a chemical was demonstrated to have more 

significant impact on BTFs than the chemical hydrophobicity (Hendriks et al., 2007). So the 

KOW-based model may be limited by lacking a solid theoretical basis.  
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2.2.3.2.2 Mechanistic mammalian model 

Mechanistic mammalian models are based on a mass balance of chemicals between inputs (e.g., 

ingestion and inhalation) and outputs (e.g., excretion with milk, faeces/urine and metabolism), 

which could provide a quantitative description of the absorption, distribution, metabolism and 

excretion process of chemicals in biotas. They have been developed for several species, such as 

cows (Rosenbaum et al., 2009) and humans (Czub and McLachlan, 2004; Mackay and Fraser, 

2000; McLachlan, 1996). Much effort has been devoted to the development of physiological 

parameters (e.g., cardiac output, blood flows, ventilation rates, organ volumes and composition 

of tissues/organ) (Krishnan and Peyret, 2009). In addition, partitioning coefficients to 

organs/tissues, absorption rates and biotransformation rates are also required. The model 

reliability strongly depends on the accuracy of physiological parameters, partitioning 

coefficients and biotransformation rates. Experimental data and Quantitative structure–activity 

relationship (QSAR) submodels for estimating the dietary assimilation efficacy in mammals are 

limited (Gobas et al., 2015). So far, terrestrial bioaccumulation models use relationships with 

octanol (Kelly et al., 2004) or assume a constant value (e.g., 90%) for bioavailability (Gobas et 

al., 2003).  

The largest uncertainties originate from the biotransformation rates due to extremely limited 

measurements and estimation approaches, particularly for mammalian species. Due to the data 

gaps, screening-level bioaccumulation and exposure assessments often assume that 

biotransformation rate can be neglected as the worst-case assumption. This would result in 

overestimation of bioaccumulation and exposure for chemicals subject to biotransformation 

(Arnot et al., 2010). Also, when examining human bioaccumulation and exposure from a 

multimedia perspective, the biotransformation indicated greater importance than a chemical’s 

partitioning properties (McLachlan et al., 2011). Arnot et al. (2014) developed a screening-level 

QSAR model to estimate biotransformation half-lives in mammals (Arnot et al., 2014). In 

addition, in vitro-in vivo extrapolation (IVIVE) methods are used to estimate biotransformation 

half-lives for high throughput exposure and risk assessment (Nichols et al., 2007; Nichols et al., 

2006; Rotroff et al., 2010), which was used in Paper II. 
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3 Used Models 

In this thesis, both steady state models and dynamic models were used to achieve different aims 

in each chapter/paper. Most model approaches were the combination of fate models and 

bioaccumulation food chain models, except for the BETR-Global model. This model only 

considers the vegetation and does not cover the bioaccumulation food chain. These models were 

selected mainly due to their widespread and established use in chemical regulation. EUSES, 

RAIDAR and ACC-HUMANsteady models are widely used in Europe and North America and 

thus they were chosen in Paper I to study the impact of different dietary pathways on chemical 

exposure. The fish submodel extracted from RAIDAR was used as a reference for a one-

compartment fish model in Paper II, since it is one of the most widely used fish models in risk 

assessment. BETR-Global model was selected for use in Paper III and IV, since it can provide 

a long-term time-course prediction of concentrations in environmental compartments under 

dynamic (Level IV) calculations. All models used are introduced below. 

3.1 EUSES 

Since the early 1980s, the EU initiated projects to develop a systematic approach towards the 

hazard and risk assessment of substances, along with the enforcement of European legislation 

for new chemicals. Therefore, USES 1.0, an integrated risk assessment tools for new and 

existing substances was developed (Jager, 1995; Jager et al., 1994a; Jager et al., 1994b; Linders 

and Luttik, 1995; Van der Poel, 1994; Vermeire et al., 1997; Vermeire et al., 2005; Vermeire et 

al., 1994). Subsequently, it was updated to evolve into the European Union System for the 

Evaluation of Substance (EUSES), which implements the methods described in the Technical 

Guidance Document (TGD) (TGD EU, 2003). Therefore, EUSES is selected as a typical 

regulatory-based risk assessment tool developed by Europe in Paper I. 

EUSES offers three model spatial scales, which are local, regional and global. Its structure and 

main considered processes of chemical distribution and transport are presented in Figure 4. It 

consists of several models with a great number of elements, including SimpleBox and 

SimpleTreat. SimpleBox is a core part of the model, which predicts chemical fate in 

compartmental environments (Brandes et al., 1996; Van de Meent, 1993). SimpleTreat is a sub-

model used to predict the distribution and elimination of chemicals through sewage treatment 

plants (Franco et al., 2013; Struijs, 1996). The EUSES model divides the environment into air, 

soil (natural/agricultural/industrial soil), water (freshwater and seawater and sediment 

(freshwater/seawater sediment). It uses empirical equations to simply predict chemical 

concentrations in biota relevant to human diet (e.g., meat, fish and vegetables). The main 

outputs of EUSES are local and regional risk characterisation ratios (RCR) in considered 

environmental compartments. The required inputs mainly include physicochemical properties, 
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emission rate and use pattern. The RCR is the ratio of the predicted environmental concentration 

(PEC) and the predicted no-effect concentration (PNEC, defined as the environmental 

concentration of a chemical below which there is no predicted effect). A chemical would be 

flagged as a concern if its RCR calculated greater than 1.  

 

 
 

Figure 4. The principal processes of chemical distribution, transportation and degradation in the 

EUSES model (European Commision, 2004).  

 

3.2 RAIDAR 

Paper I selected another established screening level multimedia model, the Risk Assessment, 

IDentification, And Ranking (RAIDAR) model (Arnot et al., 2006). This model is designed to 

assess and prioritize chemicals by estimating environmental fate, transport, bioaccumulation 

and exposure to humans and wildlife for a unit emission rate. The RAIDAR model uses a ‘back-

tracking’ or reverses modelling approach to avoid highly uncertain emission rate data as model 

input, in contrast to traditional risk assessment models like EUSES which use the risk quotient 

(RQ, ratio of estimated and measured concentration) as an endpoint. The model can be 

especially useful when actual emission rates are difficult to obtain for a particular region. It 

provides fate calculations of simple Level II and more complex Level III. It also defines an 
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evaluative region in which all chemicals can be assessed without the use of real regional 

descriptions.  

In order to quantitatively evaluate human exposure to chemical substances through multimedia 

exposure pathways, the RAIDAR model also incorporates a bioaccumulation food chain model 

linked to the fate model (Arnot et al., 2006). Its treatment of key processes in bioaccumulation 

is different from the EUSES model (Arnot et al., 2010). EUSES uses empirical equations to 

identify bioaccumulation in food chains while RAIDAR includes mechanistic mass balance 

models to address the organism bioaccumulation process. For instance, the BCF in EUSES is 

derived from regressions with KOW whilst the one-compartment fish in RAIDAR provides 

insights into the multiple exposure pathways of chemical uptake and elimination in an aquatic 

organism (Arnot and Gobas, 2004). 

3.3 ACC-HUMAN & ACC-HUMANsteady 

ACC-HUMAN is a fugacity-based, non-steady state mechanistic model. It is designed to 

describe the bioaccumulation of lipophilic organic pollutants from air, water, soil to humans 

(Czub and McLachlan, 2004). The physical environment is linked through a marine and 

agricultural bioaccumulation food chain to humans as the end receptor. The default model is 

parametrized for southern Sweden. The uptake pathways of contaminants considered were 

mainly from the dietary intake of animal-origin food, namely fish and dairy products. Also, 

uptake by inhalation and water consumption were also considered to include partitioning for 

less hydrophobic chemical substances. More recently, an unsteady-state model of 

bioaccumulation in plants was incorporated including uptake and elimination processes and 

time to reach steady-state (Undeman et al., 2009). ACC-HUMAN was used in Paper IV to 

predict the long-term time trends for contaminant bioaccumulation in human body burdens for 

the Chinese population. 

ACC-HUMANsteady is a steady-state version of ACC-HUMAN. It is a nested Level I fate 

model (steady-state, equilibrium, no in- or out-flows or degradation reactions) linked to a 

steady-state bioaccumulation model, which calculates equilibrium concentrations. This model 

was selected in Paper I as a standard model used in European-based exposure models. 

3.4 BETR-Global 

The BETR-Global multimedia contaminant fate model was introduced in 2005, as a global-scale 

mass-balance model (Macleod et al., 2005). This model was used to predict the fate and 

exposure of PCBs in Paper III and IV under dynamic Level IV conditions. The BETR-Global 

model describes the global environment with a spatial resolution of 15° latitude ×15° longitude 

and 288 multimedia regions linked by flows of air and water illustrated in Figure 5 (Macleod et 

al., 2005; MacLeod et al., 2001). It has been evaluated and applied successfully for a range of 
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organic contaminants and can provide fate simulations both for Level III and Level IV 

(Armitage et al., 2009; Macleod et al., 2005; MacLeod et al., 2011). Within each multimedia 

region, the model calculates the distribution of chemicals, the exchange between seven bulk 

environmental compartments, which include sea water, fresh water, planetary boundary layer 

(PBL), free atmosphere, soil, freshwater sediments and vegetation (MacLeod et al., 2001). The 

model accounts for advective transport between regions by air/water and inter-compartmental 

transport processes, such as dry and wet deposition and reversible partitioning.   

 

 

Figure 5. The regional segmentation of the BETR-Global model showing numbers used to 

identify different regions/cells (Macleod et al., 2005). 
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4 Studied Chemicals 

A wide range of chemical substances was selected to test the model approaches or used as a 

case study in this thesis, including real chemicals and hypothetical chemicals. These chemicals 

were selected due to their potential exposure hazard for humans, their potential ability to reach 

in remote regions (e.g., Arctic), wide usage/large production volumes, well-documented 

emission estimations and extensive data sets for model evaluation. Meanwhile, the hypothetical 

chemicals were defined to thoroughly understand the behaviours of a whole range of 

environment-related chemicals with possible combination of properties. 

4.1 Hypothetical chemicals 

In order to comprehensively investigate the sensitivity and uncertainty of model outputs, 

hypothetical chemicals were defined with a wide range of combined partitioning properties 

(KOA, KAW and KOW) covering those of environmentally relevant chemicals. All the hypothetical 

chemicals are presented in a partitioning map (Meyer et al., 2005). Its advantage is allowing 

comprehensive investigation of model sensitivity and uncertainty for all defined hypothetical 

chemicals at the same time. This approach has been demonstrated to be useful when a large set 

of diverse chemicals are modelled with a fixed environmental scenario offering insights for real 

chemicals with unknown properties (Undeman and McLachlan, 2011). In addition, it could help 

to mechanistically understand a model’s behaviour, with regard to how model outputs change 

with different partitioning properties. This approach was employed in Paper I to visualize the 

uncertainty and sensitivity of dietary pattern on the different dominant exposure pathways for 

three selected multimedia models. 

4.2 Emerging contaminants 

Recently, pharmaceuticals and personal care product ingredients (PPCPs) have received 

increasing attention from the scientific, regulatory and business communities, as emerging 

contaminants with possible threats to the aquatic environment and human health (Boxall et al., 

2012; Daughton and Ternes, 1999; Liu and Wong, 2013). They are widely used in high 

quantities throughout the world and have been frequently detected in range different 

environments (Carballa et al., 2004; Kasprzyk-Hordern et al., 2009; Lishman et al., 2006).  

In Paper I, several typical PPCPs were selected to study their dietary exposure to the Chinese 

population. One important category is the cyclic volatile methyl siloxanes (cVMS), such as 

octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and 

dodecamethylcyclohexasiloxane (D6), which are hydrophobic silicone fluids. They are used 

either as precursors in the synthesis of high-molecular-weight silicone polymers, or as 

ingredients in the formulation of personal care products (Alleni et al., 1997). They have unique 



22 

 

partitioning properties with high KAW and low KOA  Consequently, much concern has been 

raised about their potential for environmental persistence and bioaccumulation (Whelan and 

Breivik, 2013). 

Parabens are a class of preservatives widely used in cosmetics and food products and selected in 

Paper I for evaluation (Rastogi et al., 1995; Zhang et al., 2005). Another selected chemical is 

triclosan, which is an antimicrobial compound widely used in household and personal health 

care products (Rodricks et al., 2010). They enter the natural environment through effluent 

discharges and bio-solids produced by municipal and industrial wastewater treatment plants. 

Although a high proportion of these chemicals are biodegraded during wastewater treatment, the 

remainder can be adsorbed to sludge, which may ultimately be applied to land as biosolids and 

cause adverse effects on ecological receptors (Fuchsman et al., 2010). 

The perfluoroalkyl acids (PFAA) and their salts are chemicals with extensive consumer and 

industrial applications, including protective coatings for fabrics and carpets, paper coatings, 

insecticides, paints, cosmetics, and fire-fighting foams. In recent years, a number of studies 

have reported the ubiquitous distribution of perfluorinated compounds (PFCs) in humans and 

wildlife (Calafat et al., 2006; Wang et al., 2013; Wu et al., 2012b). In addition, they are 

extremely persistent, bioaccumulative and of toxicological concern (Fuentes et al., 2007; Shin et 

al., 2014). Perfluorooctanoate (PFOA) was selected as one of the most extensively studied 

chemicals in Paper I.  

4.3 PCBs 

Polychlorinated biphenyls (PCBs) are a class of chemicals consisting of 209 congeners 

containing a varying number of chlorine atoms substituted onto a biphenyl molecule (see Figure 

6). About 130 PCB congeners have been observed in commercial mixtures and released into the 

environment. They were produced commercially in 1929 for the first time and identified as one 

of twelve original persistent organic pollutants (POPs) under Stockholm Convention (UNEP, 

2001). Although their production ceased in the 1970s globally, they are still widely being 

detected in the environment and biota (Bjerregaard et al., 2013; Diefenbacher et al., 2015; 

Jaward et al., 2005; Schuster et al., 2010; Tato et al., 2011). The manufacturing history of PCBs 

is relatively short in China (1965-1974), compared to other developed countries. During this 

period, approximately 10,000 tonnes of PCBs were produced, including 9000 tonnes of tri-CBs 

and 1000 tonnes of penta-CBs, accounting for less than 1% among the global production. 

Nevertheless, PCBs are also frequently detected in the environment and organisms in China 

(Wang et al., 2010; Wu et al., 2012a; Zhang et al., 2013a; Zhang et al., 2013b; Zheng et al., 

2014). Once they are released into the environment, they are very slow to degrade and can 

undergo long-range transport among various environmental compartments. Due to their high 
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lipid solubility, PCBs readily bind to the lipid in fat tissue and accumulate in biota along food 

chains. Consequently, the ingestion of contaminated foods represents the most important 

exposure pathway for most POPs including PCBs. 

 

 

Figure 6. The general structure of PCBs. 

 

In China, two kinds of commercial PCBs (#1 PCB and #2 PCB) were produced and which were 

mainly used in transformers and other electrical products. #1 PCB contained 42% chlorine, 

which was similar to Aroclor 1242, and #2 PCB contained 53% chlorine, similar to Aroclor 

1254 (Jiang et al., 1997). Around 90% of accumulative tonnage was utilized in the electrical 

supply and distribution industry (e.g. as dielectric fluid in capacitors and transformers) and 

mostly made up of tri-PCBs. The remainder was used as additives for paint with penta-CBs 

being the dominant homologue. Assuming that these two technical mixtures (#1 PCB and #2 

PCB) were produced in the ratio of 9:1, congener production in China was estimated using 

congeners composition of Aroclor 1242 for #1 PCB and Aroclor 1254 for #2 PCB (Ren et al., 

2007). As a result, the major congeners produced and used in China were tri-CBs, followed by 

tetra-PCBs. Although the major congener profile for global PCBs production was also tri-CBs 

followed by tetra-CBs (Breivik et al., 2002), the compositions of these two congeners are higher 

in Chinese products than in global products (40.4–25.2% for tri-PCB, and 31.1–24.7% for tetra-

PCB) (Ren et al., 2007). 

PCBs were used in Paper III and Paper IV as substances for a case study. Since they are 

classical legacy POPs with very well-studied emission profiles and rich data availability, they 

could facilitate model evaluation and aid in one identification of potential model improvements. 

In addition, they could offer a good reference for other similar types of chemicals for the 

identification of effective regulatory control measures. As a result, these two studies modelled 

the temporal trends of PCB concentrations in the physical environment (Paper III) and the 

human body (Paper IV). Seven indicator PCB congeners spanning a wide range of physical-

chemical properties were used. This study successfully demonstrated that a dynamic fate model 
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coupled with a bioaccumulation food chain model could help to reconstruct the chemical 

historical profile of emission and compartment trends along with human exposure.  
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5 General Discussion 

5.1 Impact of diet pattern on human exposure 

The typical dietary pattern of the Chinese population is significantly different to that for most 

Western populations, with a much higher consumption rate of vegetables and cereals and much 

less animal-origin food products. Consequently, Paper I examined the impact of dietary pattern 

on determining the predominant dietary exposure pathways using three established multimedia 

fate and bioaccumulation models for the Chinese population, which are EUSES, RAIDAR and 

ACC-HUMANsteady. The predicted dietary exposure pathways were compared using scenarios 

with a range of hypothetical and current emerging contaminants. Model predictions indicated 

that dietary preference could have a significant impact on human exposure, with the relatively 

high consumption of vegetables and cereals, resulting in higher exposure via plants-based 

foodstuffs under Chinese consumption patterns compared to Western diets, although the 

differences across inherent model structures were greater than those between dietary scenarios. 

Paper IV also investigated regional dietary exposure using a reference year 2002, which 

assumed that people only eat locally produced food in defined regions. However, the difference 

was relatively small among different regions in China, with a factor of three between the highest 

and lowest values of human body burden. The highest body burden was observed for 

populations living in a contaminated region, which had a high preference for consumption of 

animal-origin food, especially fish. In reality, there is a high uncertainty in quantifying the 

dietary pattern for a population of interest, particularly for China having such a large population 

with varying dietary habits. Although the Total Diet Study offered a good database to support 

the examination of biomonitoring studies, participants may tend to underreport their dietary 

intake (Livingstone et al., 1990), which could potentially cause the underestimation of human 

dietary exposure. 

5.2 Applicability of Western exposure models to the Chinese population 

Paper I systematically demonstrated that the selected models had a good ability to identify key 

dietary exposure pathways, which can be used for screening purposes and evaluative risk 

assessment. However, more assessment of the performance of exposure models with several 

potential adaptations is required before they can be applied to China with confidence. Since 

China has a very large population with varying regional dietary habits, the comprehensive 

evaluation of sensitivity and uncertainty of dietary preference is required for the future study. 

The fish model, which has been developed so far based on wild seafood products, needs to be 

expanded to consider different bioaccumulation models for the freshwater food chain covering 

farmed fish, which could be significantly more contaminated by some chemicals such as PCBs 
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(Carlson and Hites, 2005; Hites et al., 2004). Furthermore, despite the importance of 

consumption of vegetables, especially cereals in China, there is currently no specific model for 

organic chemical uptake into cereals that we are aware of (Legind and Trapp, 2009). Therefore, 

the development of a more specialized crop model (like wheat and grains) should be explored. 

In summary, some model adaptations will be required to cover a number of important Chinese 

exposure pathways, e.g., freshwater farmed fish, grains and pork. 

5.3 pp-LFERs vs. pp-LFERs 

In an attempt to examine the possibility of the extended application of bioaccumulation models, 

Paper II evaluated the influence of implementing newly developed pp-LFERs approaches into 

a one-compartment fish model and a multi-compartment physiologically-based toxicokinetic 

(PBTK) model. The BCFs of fish were used as the evaluation metric to compare the predictions 

with compiled measurements. Overall, preliminary results indicated that pp-LFERs incorporated 

models (R2=0.75) slightly outperformed those using the sp-LFERs in a one-compartmental fish 

model (R2=0.72). In addition, pronounced enhancement was achieved for compounds with log 

KOW between 4 and 5 with R2 increasing from 0.52 to 0.71. Furthermore, the greatest 

improvement was observed using a multi-compartment PBTK models with consideration of 

metabolism. Using the pp-LFERs, all predictions fell within a factor of 10 of the measured 

BCFs. 

In theory, the pp-LFERs should have a better ability to predict bioconcentration with less 

deviation from the measurements, since they describe the partitioning behaviour according to 

the individual sorptive capacity of each involved biological phase (e.g., neutral lipid, 

phospholipid, protein and water). The traditional KOW-driven bioaccumulation model using sp-

LFERs approach simplifies the sorptive phases (e.g. lipid and non-lipid organic matter) using 

empirical equations with log KOW. The underlying explanation for the limited improvement of 

the one-compartment model could be that the sp-LFERs tend to underestimate partitioning to 

protein and overestimate that to lipid. As a result, the underestimation and overestimation could 

cancel out resulting in no pronounced improvement in terms of the predicted BCFs values. For 

screening purposes, the KOW-based (sp-LFERs) approach should be sufficient to quantify the 

main partitioning characteristics. On the other hand, the case for using pp-LFERs is more 

positive for multi-compartment PBTK models, with obvious improvement across the whole set 

of evaluated chemicals. This could be attributed to the fact that more pp-LFERs for different 

biological phases were incorporated in the multi-compartment PBTK models than in the one-

compartment models. Improved quantification of each considered tissues/organ would 

cumulatively result in better prediction of the total body concentration of fish. 



27 

 

However, though the limited improvement was identified for this replacement, it still could 

provide new perspectives on understanding and interpretation of biomonitoring studies. The 

PBTK model is designed to predict the site-specific burden in fish or other target organisms. 

Better prediction of contaminant concentrations in specific organs could facilitate a more 

detailed toxicity assessment. For example, the concentration specifically in the phospholipid 

(main composition for membrane) would help to understand membrane toxicity (Endo et al., 

2013). In addition, for some chemicals such as bisphenol A, which are prone to binding with 

phospholipid instead of neutral lipid (fat lipid), which would result in large discrepancies.  

The quantification of biotransformation rates in biota is the most difficult aspect of predicting 

the bioaccumulation of chemicals susceptible to degradation. The extrapolation of 

biotransformation rates from the total degradation rates could potentially result in large errors. 

In vitro-in vivo extrapolation is a common way of using the hepatic metabolism to calculate the 

whole body biotransformation rate. Since directly measured metabolism rates are too limited to 

conduct the systematic evaluation, Paper II used measured/predicted biotransformation rates of 

the whole fish body to back-calculate hepatic metabolism rates. This is just a first 

approximation to consistently compare the influence of biotransformation on BCFs and large 

errors could potentially be incurred. In addition, it is important that ionization of chemicals 

should be included, since the partitioning properties of ionic species would be considerably 

different from neutral species. Further developments are required for the consideration of 

ionization and more accurate quantification of biotransformation in biota. 

5.4 PCB case study in China 

Paper III and Paper IV investigated and demonstrated the benefits gained from combined use 

of multimedia fate and bioaccumulation models to understanding source-receptor relationships. 

PCBs were used to conduct this case study, due to their well-studied profile. Similar studies 

could be transferred to other chemicals when necessary data become available.  

5.4.1 Primary emission vs. secondary emission 

PCBs can be emitted from both primary and secondary sources. Primary sources are predicted 

to account for the main direct release of PCBs to the environment from their major use 

categories, while secondary sources represent re-emission from environmental reservoirs (e.g., 

soils and vegetation). Several studies suggest that the main contribution to PCB emission will 

move from primary to secondary sources as production and use of PCBs declines (Cousins et al., 

1999; Harner et al., 1995). In order to study the current role of primary and secondary emission 

in China, Paper III studied the contribution of these sources by applying multiple emission 

scenarios. When China started to produce PCBs in 1964, primary sources became increasingly 

important and provided a constant contribution of approximately 70% until 2030. After 2030, 
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PCB-28 and PCB-153 were predicted to have different behaviours with PCB-28 being mainly 

dominated by regional primary emission and PCB-153 being mostly controlled by secondary 

sources. This could be because PCB-28 was mainly supplied by ongoing and increasingly 

important unintentionally produced sources. Whilst the primary sources for PCB-153 will 

gradually cease within China, it is likely that secondary emission will gradually replace the role 

of primary emission. This type of result is difficult to confirm with observations. However, 

several pilot studies could indirectly support this. For instance, Li et al. (2010) investigated the 

soil-air equilibrium status using fugacity ratios and suggested that the soils may be secondary 

sources to the very volatile PCBs and likely continue to be sinks for heavier PCBs. 

Understanding the existing role and future trend of primary and secondary emissions of PCBs, 

would provide insights for policy makers on making effective controlling measures. An 

overestimate of the relative importance of primary emission could lead to costly and 

unnecessary measures to reduce future environmental exposure, whereas an underestimation of 

the importance of secondary emissions could lead to an over-optimistic assessment of reducing 

environmental and human exposure to PCBs (Breivik et al., 2004). For instance, Paper III 

observed PCB-28 and PCB-153 would have congener-specific rates for transfer from 

controlling by primary emission to secondary emission. As a result, the corresponding 

regulatory measures should also be substance-specific.  

5.4.2 Role of UP-PCBs 

There are two types of primary PCB emissions into the atmosphere, intentionally produced (IP-

PCB) and unintentionally produced PCBs (UP-PCBs) (Cui et al., 2015; Cui et al., 2013). The 

relative importance of these two types of emissions on a chemical’s fate in the environment and 

its bioaccumulative potential in the human body for the Chinese population was investigated in 

Paper III and IV. Paper III focuses on the reconstruction and prediction of the long-term 

emission trend of intentionally produced seven indicator PCBs with additional consideration of 

the unintentional emissions (from the manufacture of steel, cement and sinter iron) during 1930-

2100. In general, the total concentration of seven indicator PCBs was mainly controlled by 

intentionally produced PCBs during 1930-2040. After 2040, UP-PCBs were predicted to be the 

dominant contributor to the total concentration of seven indicator PCBs. Due to the different 

congener profiles in UP-PCBs, the unintentional emission has a congener-specific impact on its 

environmental fate. PCB-28 is the predominant congener in the unintentional sources and thus a 

good indicator to stand for the environmental behaviour of seven indicator PCBs from UP 

sources.  

Paper IV also examined the contribution of UP-PCBs on the human body burden of PCBs for 

the Chinese population. The results suggested that the UP-PCBs did not dominate (<5%) the 

total human body burden for seven indicator congeners. The underlying explanation could be 
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that the dominant congener PCB-28 in UP-PCBs has a relative low bioaccumulation potential 

compared to other heavier PCBs (e.g., PCB138/153). However, the calculation of the future 

significance of the sources of UP-PCBs involves large uncertainties, and could be improved 

significantly with further domestic measurements of emission factors for a wider range of 

emission sources, which would enable better determination of emission trends. 

In addition, Paper III also pointed out the difficulty in making a clear distinction between UP-

PCBs and IP-PCBs in reality. During these considered thermal processes, particularly for the 

cement manufacturer, which is often utilized to deal with hazardous waste, PCBs could also be 

present in the raw material. If this applies, the measured so-called UP-PCBs from the waste 

stream could also contain the IP-PCBs. Although several preliminary calculations of the mass 

balance indicated that the PCBs in the waste stream should be mainly formed during the 

incineration process (Liu et al., 2015a), the precise quantification is very challenging. 

5.4.3 Role of imported e-waste  

The transport of e-waste from developed countries to developing regions and the primitive 

recycling or disposal of e-waste in these regions have received increased attention (Breivik et al., 

2014). As one of the world’s largest importers of e-waste and manufacturer of electrical and 

electronic equipment, China plays a key role in the production and recycling of e-waste 

worldwide. Paper III used an emission inventory to consider the worldwide transport of e-

waste transport (Breivik et al., 2015), to quantify the contribution of imported e-waste on 

chemical concentrations in China. Subsequently, Paper IV further examined its impact on 

human body burden for humans living in regions near e-waste cycling sites (polluted regions) 

and far away from that (background regions).  

The accumulative emissions from imported e-waste contributed 30% to the total emissions for 

seven indicator congeners during 1930-2100 while PCB-180 received the highest percentage 

(45%) from imported e-waste. The influence of e-waste on air concentrations could be 

potentially be shifted from a regional scale to a national level in the future. In terms of the 

cumulative atmospheric concentrations in different study regions, the contribution from 

imported e-waste was largest for the heavily polluted e-waste regions, accounting for more than 

30% of all congeners. During 1930-1990, the contribution from imported-e-waste on human 

body burdens was negligible. This was because China did not start to import e-waste until 1980. 

Since 2000, imported e-waste started to increase its contribution (46%) to the total human body 

burden (ng g-1 lipid) in e-waste heavily polluted region, and was predicted to peak at 2040, 

responsible for more than 90% of seven indicator PCBs. On the contrary, remote regions far 

away from recycling sites of e-waste received a negligible contribution to environmental 

concentration and human body burden from imported e-waste.   
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If the exposure from imported e-waste was excluded, the peak of human body burden in the 

polluted region would occur in the year 2000, but it was predicted to occur in 2020 with 

inclusion of imported e-waste. Consequently, the on-going import of e-waste may also cause the 

time lag of peak burden occurred in human body up to 20 years. 

5.4.4 Is China a sink or source? 

In order to understand the role that China plays in terms of sink or source, Paper III divided the 

emission sources from the domestic region (China) or the extra-region (rest of the world 

excluding China) for two reference years (1980 and 2050). It appears that China could possibly 

move from a net sink with a net input of 800 kg year-1 during 1980 to a potential source to 

neighbouring regions with a net output of 444 kg year-1 by 2050. This result is particularly 

challenging to confirm with observations.  

5.4.5 Impact of diet transition on human body burden 

The Chinese population has been through rapid dietary transitions with increased daily 

consumption of animal-origin food products during the last decades, e.g., dairy product, meat 

and fish. Paper IV investigated the impact of this dietary transition combined changing 

emission trends on human body burdens in China. Under the combined effect of changing 

emission and cohort dietary transition, the body burden of a 30-year-old female cohort increased 

75 times over the last 70 years (1940-2010), despite a 4-fold reduction in Chinese 

environmental concentration driven by declining emission. As a result, the dietary transition 

could possibly result in an additional increase in human body burdens of over two orders of 

magnitude. Also, the peak time of human body burden occurred in 2010 for a 30-year-old 

female cohort of Chinese population while this occurred in 1980 for Western females. The 

combined effect of emission trends and dietary transition resulted in an approximate 30 years’ 

delay of peak human body burden between the Chinese and Europeans.  

This time lag could be attributed to two main reasons. One is the relatively fast diet transition 

from 1959-2100 with rapidly increased consumption of animal-origin food (milk, meat and fish) 

in China. For example, the contrast trend was observed for Arctic population by replacing 

locally traditional food (with high accumulative concentration of PCBs) with imported food, 

where Quinn et al. (2012) reported that the rapid diet transition could cause up to a 50-fold 

reduction over a 40 year period (Quinn et al., 2012). Another reason could be more intensive 

on-going emission sources compared to Western countries, though the manufacture of PCBs has 

been ceased around the world. For instance, China received more than 70% of the e-waste waste 

stream from the rest of the world. In addition, China is the largest industrial country in the world, 

with unintentionally emitted PCBs from various industrial thermal processes (e.g., production of 
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steel and cement) which may also provide an on-going contribution to human body burdens 

(Liu et al., 2015b). 

5.4.6 Comparison with measurements 

Comparing model predictions and experimental measurements is a direct way to understand the 

ability of modelling tools to predict a chemical’s fate behaviour and bioaccumulation potential 

applied to real scenarios. In addition, such comparison could help build confidence on model 

performance and identify further improvements. Therefore, Paper III and Paper IV provided a 

preliminary comparison of the modelled environmental concentrations and human body burdens 

with measured values in the literature. As the combination of BETR-Global model and ACC-

HUMAN model could not provide information on urban-rural gradients, model predictions were 

compared against observed general background concentrations in Paper III and Paper IV. The 

peak concentration is difficult to confirm with measurements, which happened around 1970 as 

predicted by modelling. However, several preliminary findings from dated sediment cores could 

potentially support the model estimation. The historical trend was shown to increase until the 

mid-1970s in a dated sediment core from Yangtze River Estuary adjacent to the East Sea region 

and Pearl River Delta (Mai et al., 2005; Yang et al., 2012).  

Atmospheric PCBs concentrations have been measured in China by several researchers over the 

last decade (Jaward et al., 2005; Xing et al., 2005). According to the comparison with 

observations over the period 2001 to 2008, the model generally captures the main trends during 

this period in the atmosphere. Most modelled concentrations are within a factor of three, 

compared to the limited observations in background air. Surveys providing PCB concentration 

data for background soils have been conducted in 2005 and 2013 (Ren et al., 2007; Zheng et al., 

2014). Measured surface soil concentrations from 2005 (Ren et al., 2007) and 2013 for forest 

soil (Zheng et al., 2014) were compared with model predictions and agreed well, within a factor 

of four except for tri-PCB, although the measured concentrations varied over a wide range. 

The task to evaluate the predictions on human body burden with biomonitoring studies is more 

challenging. Since most studies aimed at populations living in or near the heavily polluted 

regions, e.g., e-waste recycling sites (Song and Li, 2014; Wu et al., 2008; Zhao et al., 2009), 

which are unlikely to represent human body burdens of the general population. In addition, 

national biomonitoring studies were not initiated until the late 1980s, so the temporal trend 

before cessation cannot be confirmed by observations. Although there are many assumptions 

and uncertainties (e.g. the dietary consumption pattern, food origins, lipid content in food) in 

this modelling exercise, the modelled human body burden broadly corresponds to the varied 

biomonitoring data within a factor of two.  



32 

 

Developed countries, like Norway, observed substantially decreasing trends of POP serum 

concentrations in humans sampled between 1979 and 2007 (Nost et al., 2013). Relevant 

longitudinal biomonitoring studies on a single population are very limited in China. Sun et al. 

(2011) reported that the dioxin like-PCB concentrations increased from 2002 to 2007 in human 

milk in northern China with a positive correlation with age (Sun et al., 2011), which is 

consistent with the trend of human body burden predicted in this study.  
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6 Conclusions 

The papers presented in this thesis and the research undertaken have demonstrated the useful 

application of a series of modelling tools to assist in the understanding and evaluation of a 

chemical’s fate in the physical environment and bioaccumulative behaviours along food chains. 

In a broader context, this thesis has provided insights into how to appropriately apply models 

and how to handle model complexity in exposure assessment. Selection of system parameters 

(e.g. environmental and diet characteristics), emission estimation (e.g., UP-PCBs vs. IP-PCBs), 

approaches to predicting physical-chemical properties (e.g., partition coefficients), may be 

guided by the methodologies evaluated in Papers I-IV. The main conclusions drawn are 

highlighted as below: 

1) Dietary patterns greatly affect the human exposure, although the significance is less 

than uncertainties in model inherent structure and inputs. 

2) The established human dietary exposure models developed by Western countries are 

promising to adapt for the Chinese population. The main identified improvements 

include the further specialization of crop models and a farmed-fish model. 

3) The traditional KOW-driven one-compartmental bioaccumulation model is sufficient to 

be used for screening purposes and first-tier chemical risk assessment. Multi-

compartmental PBTK fish model can benefit from the incorporation of pp-LFERs due 

to a better quantification of the site-specific toxicity.  

4) The case study of PCBs successfully demonstrated the combined application of 

multimedia fate and bioaccumulation models for the reconstruction and prediction of a 

chemical’s fate in the physical environment and its bioaccumulative potential along 

food chains. This exercise also further demonstrated that Western-based 

bioaccumulation models could be adapted for Chinese populations and could be a 

valuable starting point for further model development in China.  

5) Various influential factors for predicting environmental concentration and human body 

burden were examined to thoroughly understand the source-receptor relationship for 

PCBs in China, including dietary transition and multiple emission sources. The rapid 

change in dietary patterns and imported e-waste were the main drivers for the delayed 

peak time of human body burdens for the Chinese population.  

6) Preliminary suggestions for the policy makers could include: developing substance-

specific (lighter PCBs vs heavier PCBs) and site-specific (e.g., background site vs e-

waste heavily polluted site) control measures instead of imposing a single solution; 
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building a biobank to facilitate human biomonitoring and constructing a comprehensive 

tracking system to record geographical information of food origins. 
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7 Recommendations and Future Work 

Currently, there are several bottlenecks in chemical exposure assessment in China, including 

difficulty with food categorisation, access to food origin information, and limited data on 

chemical concentrations in the environment and biota. Although a significant number of studies 

have been conducted in China, substantial data gaps still exist. Long-term monitoring studies 

are urgently needed to comprehensively confirm the output of this thesis and to assess the 

effectiveness of international programmes on cessation of POPs production (e.g., PCBs), such 

as the Stockholm Convention. National-scale monitoring campaigns should be initiated with a 

greater focus on background sites, where most people live instead of the heavily polluted sites, 

which are more relevant to the general chemical exposure in humans. In addition, developing 

the design of biomonitoring campaigns, particularly the study of a single population, instead of 

randomly selecting target populations over different time points, would be helpful. A biobank 

network would greatly facilitate data collection by storing the frozen biosamples of target 

populations. This is would be particularly useful to track back historical exposure and 

understand exposure mechanisms, if new pollutants were discovered in future. 

In addition, fate models with spatial resolution (such as BETR-Global) and nonspatial models 

(like RAIDAR) were used for multiple purposes in this thesis. A generic non-spatial fate model 

is essential for screening chemicals with simple input requirements. However, such models do 

not provide insights into the likely variations. Since human intake is closely associated with 

emission locations, particularly for chemicals that are not subject to significant dispersive 

transport at a regional scale, spatial models could provide more detailed information on human 

exposure with specific regional emission information. However, existing models are not good at 

capturing gradients between urban and rural areas and recognizing potential ‘hot spots’. 

Therefore, models are also needed to estimate the intake at a population level for emissions at 

specific locations, e.g., the residents living near an e-waste recycling sites.  

Furthermore, different exposure scenarios covering the wide variability found in China need to 

be developed and incorporated into current exposure models, with additional consideration of 

the variation in the Chinese diet. e.g., more specialized crop models and farmed-fish models due 

to their significance in the daily food consumption patterns for the Chinese population. Further 

assessment of the performance of exposure models with several potential adaptations is required 

before they can be applied to China with confidence. Since China has a very large population 

with varying regional dietary habits, the comprehensive evaluation of sensitivity and uncertainty 

of dietary preference is required for future studies. To expand the current work to other 

chemicals, high-quality emission profiles are required as the starting point of a systematic life 
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cycle analysis of a chemical. Large uncertainties exist in the current emission inventories, for 

example, the illicit trade of e-waste is difficult to track in the case of PCBs. 

In a broader context, not only for the Chinese population, some suggestions were made for the 

potential development of bioaccumulation food chain models. Firstly, more and more chemical 

used in industry and commerce are ionic in nature, but their environmental partitioning 

behaviour is still unclear. Most available models for risk assessment do not consider ionic 

chemicals in their applicability domain. Consequently,  model algorithms are required to assess 

the risks from ionic organic chemicals. For instance, how will they contribute to the 

environmental distribution? Can they be biodegraded? Which molecular descriptors are able to 

predict their biological effects? Another issue is the uncertainty from the biotransformation. It 

has been demonstrated that hydrophobic chemicals are particularly sensitive to 

biotransformation. Better quantifying biotransformation rates and dietary assimilation efficiency 

is important to improve the performance of bioaccumulation food chain model.  

At present, various sources of information are used for chemical assessment in multiple media 

represented using different units, e.g., in vitro, in vivo or in situ. Converting data to consistent 

units of chemical activity or fugacity would facilitate the interpretation and application of 

information for hazard and risk assessment (Arnot et al., 2015; Mackay et al., 2011). It allows 

data for different species and food webs to be intergraded into the same evaluation for 

comparison purposes. For instance, the chemical concentration in an organism or a tissue/organ 

is often normalized to lipid content. Paper II demonstrated this is not appropriate in some cases 

and different biological phases would have different partition properties; lipid-normalized 

concentrations should be replaced with activities or fugacities with additional consideration of 

sorptive capacities of individual sub-compartments (e.g. neutral lipid, phospholipid and protein). 

Direct measurements of fugacities by passive sampling methods would be useful to avoid 

normalization issues when calculating fugacities (Jahnke et al., 2011). 
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a b s t r a c t

A range of exposure models, which have been developed in Europe and North America, are playing an
increasingly important role in priority setting and the risk assessment of chemicals. However, the ap-
plicability of these tools, which are based on Western dietary exposure pathways, to estimate chemical
exposure to the Chinese population to support the development of a risk-based environment and ex-
posure assessment, is unclear. Three frequently used modelling tools, EUSES, RAIDAR and ACC-HU-
MANsteady, have been evaluated in terms of human dietary exposure estimation by application to a
range of chemicals with different physicochemical properties under both model default and Chinese
dietary scenarios. Hence, the modelling approaches were assessed by considering dietary pattern dif-
ferences only. The predicted dietary exposure pathways were compared under both scenarios using a
range of hypothetical and current emerging contaminants. Although the differences across models are
greater than those between dietary scenarios, model predictions indicated that dietary preference can
have a significant impact on human exposure, with the relatively high consumption of vegetables and
cereals resulting in higher exposure via plants-based foodstuffs under Chinese consumption patterns
compared to Western diets. The selected models demonstrated a good ability to identify key dietary
exposure pathways which can be used for screening purposes and an evaluative risk assessment.
However, some model adaptations will be required to cover a number of important Chinese exposure
pathways, such as freshwater farmed-fish, grains and pork.

& 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many chemicals are released into the environment which have
the potential to be taken up into organisms, where they may be
transferred through food chains and potentially threaten human
health. Human exposure to chemicals can occur via direct and
indirect exposure. Indirect human exposure via the environment
comprises intake through inhalation, drinking water and diet. The
evaluation and quantification of human exposure to chemicals
through multimedia exposure pathways is required for both
priority setting and risk assessment, and is becoming increasingly
important in the global assessment of chemicals (Undeman and
McLachlan, 2011). In many previous studies, diet has been high-
lighted as an important human exposure pathway for a wide range
of organic chemicals, such as polychlorinated dibenzo-p-dioxins,
polychlorinated dibenzo-furans (PCDD/F, dioxins) and

polychlorinated biphenyls (PCBs). For some chemicals, dietary
exposure has been demonstrated to account for more than 90% of
total human exposure (Domingo et al., 2012; Harrad et al., 2004;
Herzke et al., 2013; Kiviranta et al., 2004; Vestergren et al., 2012;
Xia et al., 2010; Zhou et al., 2012). However, owing to limited time
and resource, many existing chemicals still lack detailed in-
formation on human exposure via the consumption of food, which
makes risk assessment both difficult and incomplete. Therefore,
multimedia fate modelling approaches have been demonstrated to
be helpful to screen and prioritize chemical compounds of concern
for the environment and human health (Rodan et al., 1999).

A number of different models are currently used in Europe and
North America to assess human dietary exposure and risk. For
example, the European Union System for the Evaluation of Sub-
stances (EUSES), USEtox, CALTOX, ACC-HUMAN and the Risk As-
sessment Identification And Ranking (RAIDAR) models have been
used to estimate human exposure to chemicals via the environ-
ment (Arnot and Mackay, 2008; Czub and McLachlan, 2004;
McKone et al., 2007; Rosenbaum et al., 2008; Vermeire et al.,
2005). All these models represent the current state of science and
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have been developed to meet the needs of chemical risk assess-
ment for government regulators, industry and academia in de-
veloped countries (Fryer et al., 2006). The key differences between
the models are their parameterization of geographic and en-
vironmental conditions, human receptor characteristics, and
treatment of the food web (Arnot et al., 2010).

As a developing country China has become one of the most
important chemical manufacturing nations in the world, and there
are thousands of chemicals used in commerce daily. Under rapid
industrialization there are potential health risks associated with
chemical residues in food resources which may be significant in
China (L. Zhang et al., 2013). Unfortunately, prioritization schemes
and risk assessment procedures for these chemicals in China are
currently underdeveloped and national technical guidance for risk
assessment has not yet been established, nor have the modelling
tools required (Wang et al., 2012). As a result, there is an urgent
need for China to develop suitable approaches and modelling
tools.

The models and approaches currently being used in developed
countries could significantly help for both priority setting and risk
assessment for chemical management in China, and much effort
has been made to adapt Western-developed models to estimate
emission and fate of persistent organic chemicals (POPs) in China,
mainly by the revision of environmental parameters and emission
scenarios (Xu et al., 2013; Q.Q. Zhang et al., 2013; Zhang et al.,
2014). However, human exposure to organic pollutants has also
been shown to be highly variable in different regions of the world
(Undeman et al., 2010). Recent measurement campaigns have
found large variations of daily intake in the relative contributions
from different food groups among regions in China for a number of
POPs, which are different from Western countries (Shi et al., 2013;
Yu et al., 2013; L. Zhang et al., 2013). However, the uncertainty
from dietary patterns and its potential impact on human exposure
have not been explored for Chinese population. Therefore, this
study was designed to assess whether Western-based dietary
modelling tools could be directly applied to China or how they
could be reconfigured to investigate Chinese exposure scenarios to
support environmental and human risk-based assessments.

In order to model human dietary exposure to chemicals in
China, it is important to understand which models are potentially
suitable and how they can be adapted to the Chinese population,
or indeed need to be modified. Therefore, the aims of this study
are: (1) to compare three commonly used modelling approaches
and evaluate their performance in Europe and Canada to assess
dietary exposure routes; (2) to identify dominant dietary exposure
pathways both under Western and Chinese scenarios and explore
the impact of dietary preferences for a wide range of hypothetical
chemicals; (3) to explore the potential application of these models
to China. To pursue these objectives, firstly, the dominant dietary
exposure pathway was identified for a wide range of hypothetical
chemicals covering chemical partitioning space defined by their

octanol–water (KOW) and octanal–air (KOA) partition coefficients
for each of the three models. Secondly, the three models were
evaluated by applying them to a range of legacy and emerging
contaminants with different properties under both Western and
Chinese scenarios. Finally, this analysis was used to identify po-
tential adaptions to facilitate better risk assessment in China.

2. Methods

2.1. Model overview

RAIDAR 2.0, EUSES (spreadsheet version 1.24) and ACC-HU-
MANsteady (a steady-state version of ACC-HUMAN) were selected
to be assessed in this study. Each model was accessed from their
respective websites; namely the Canadian Centre for Environment
Modelling and Chemistry (http://www.trentu.ca/academic/
aminss/envmodel/models/RAIDAR100.html), Netherlands Centre
for Environmental Modelling (http://cem-nl.eu/eutgd.html) and
Department of Applied Environment Science, Stockholm Uni-
versity (http://www.itm.su.se/page.php?pid¼117). These models
are described in detail elsewhere (Arnot et al., 2006; Czub and
McLachlan, 2004; Vermeire et al., 1997).

In general, the three models are conceptually similar as they
are all based on the Mackay-type steady-state fugacity-based box
models as summarized in Table 1 (Mackay et al., 2009). EUSES is a
harmonized quantitative risk assessment tool, which is designed
to support decisions for regulators and industry to undertake
chemical risk assessments (Vermeire et al., 2005, 1997). Details are
given in the EU Technical Guidance Document (TGD) (European
Commision, 2003). Default values for food consumption rates are
representative of the highest country-average levels among the EU
member states. RAIDAR and ACC-HUMANsteady are research
models based on more recent research in exposure assessment
(Arnot et al., 2010; Czub and McLachlan, 2004; Undeman and
McLachlan, 2011). These models were chosen as they are widely
used in Europe, Canada and U.S. for screening purposes using as-
sumed ‘generic’ environment.

However, one significant difference among the three models is
the treatment of food web bioaccumulation and transfer and thus
their predictions for substances in various food groups vary (Arnot
et al., 2010). EUSES employs simple empirical regression models to
estimate concentrations in organisms from concentrations in en-
vironmental media, whilst RAIDAR and ACC-HUMANsteady use
mechanistic models to address the bioaccumulation processes.
Mechanistic bioaccumulation models incorporate chemical spe-
cific biomagnification and biotransformation processes, resulting
in more refined exposure estimation, provided additional input
requirements are available (Arnot et al., 2010). Different food
groups are considered according to locally applicable food chains.
Additionally, EUSES includes a spatial assessment of

Table 1
Comparison of three selected models.

Model EUSES RAIDAR ACC-HUMANsteady

Sponsor RIVM European Commission Environment Canada, Health Canada, Industry Baltic Sea Research Institute, Stockholm
University

Source distance Near field and far field Far field Far field
Human exposure
pathways

Inhalation, water, fish, meat, dairy and
vegetables (root, leaf)

Inhalation, water, fish, meat (poultry, beef and
pork), vegetables (root, leaf)

Inhalation, water, beef, dairy, fish,
vegetables (root, leaf, fruit and grain)

Exposure algorithm Empirical regression models to estimate concentra-
tions in organisms in equilibriumwith environmental
media

Combined fate and food web mass balance
models for estimating exposure and ranking

Steady-state, mechanistic-based fugacity
approach

Data input Physical–chemical data and chemical emission in-
formation for initial screening assessment

Physical–chemical data and degradation half-
life parameters from databases or QSARs

Physical–chemical data and environ-
mental concentration
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environmental distribution covering global, regional and local
scales whilst RAIDAR and ACC-HUMANsteady only consider re-
gional scales.

2.2. Parameterization of selected models

2.2.1. Environmental properties
ACC-HUMANsteady is a unit world model (steady state, equi-

librium, no in- or out-flows or degradation reactions) linked to a
bioaccumulation model which calculates the equilibrium con-
centrations in air (gaseous and aerosol bound), water (dissolved)
and soil (bulk soil and pore water). In RAIDAR and EUSES, the
model simulations are level III (steady state, non-equilibrium, in-
and out-flows and degradation reactions included) and require
information on chemical mode of entry to the environment, which
are considered to be equal for emissions to air, water and soil in
this study. An arbitrary unit chemical emission rate EU of 1 kg h"1

was used for the simulations in three models (Arnot et al., 2010).
The default regional compartment volumes of air, water, soil

and sediment for the three models are given in Table 2. ACC-HU-
MANsteady and EUSES have similar default dimensions of their
physical environments, whilst the regional scale of EUSES is about
40% of the RAIDAR evaluative environment. EUSES contains soil
sub-categorise (agricultural, natural and industrial soil type) and
water sub-categories (surface water and seawater), whereas RAI-
DAR and ACC-HUMANsteady do not sub-divide bulk soil and water
compartments. Therefore, chemical emissions to soil and water
were assumed to enter the agricultural soil and freshwater com-
partments in EUSES. When calculating mass distribution in EUSES,
the total amount of chemical in sub-categories of water and soil
are taken into account.

The differences of default parameterization of the physical
environments and fate prediction in three models will lead to a
divergence of the predictions of human dietary exposure. There-
fore, the mass distributions (mi, kg kg"1) in each compartment
were calculated as

m M M/ (1)i i T=

whereMi is the mass in an environmental medium i (kg), MT is the
chemical mass in the total system (kg). Thus the maximum per-
centage of mass distributed in the considered compartments can
be plotted on partitioning space diagrams, i.e. two-dimensional
chemical space as a function of log KOW (x-axis) and log KOA (y-
axis). Where, each point in this space corresponds to a hypothe-
tical chemical with specific combination values of log KOW and
log KOA (Meyer et al., 2005).

2.2.2. Dietary intake
Default daily food intake rates for the three models were as-

sumed to be typical dietary patterns for the corresponding regions

as shown in Table 3. Since EUSES considers a hypothetical worst
scenario by taking the maximum consumption for each food item
across EU countries, its total food intake rate is 2.5 fold higher than
ACC-HUMANsteady. These provide a reference for comparison
with Chinese dietary patterns to explore the impact of dietary
preference. Drinking water and inhalation were regarded as diet-
ary intake in this study. RAIDAR and ACC-HUMANsteady directly
use the predicted concentrations in water and air to calculate ex-
posure via drinking water without any treatment, while EUSES
employed two different surface water purification systems for
calculations (Rikken and Lijzen, 2004). Each of the three models
uses different food groups and parameters for the calculation of
intake. For example, ACC-HUMANsteady uses fruit (apple), leafy
vegetables (lettuce), grains, tubers (potato), and root
vegetables (carrot) to estimate exposure from plants, whilst EUSES
and RAIDAR simply classify a distinction between root (under-
ground) and leaf (above ground) vegetables. For meat, RAIDAR
divides intake via poultry, pork and beef in a separate calculation,
whilst EUSES only considers a general meat group and ACC-HU-
MANsteady only considers intake via consumption of beef. Dairy
intake in EUSES assumes the consumption of milk only, whereas
RAIDAR and ACC-HUMANsteady includes bulk dairy, which is a
weighted average of dairy products, with a further separate con-
sideration of milk. In order to facilitate the comparison between
models, the predicted concentrations in poultry, pork and beef
calculated in RAIDAR were combined into one meat category. In
ACC-HUMANsteady, fruit, lettuce and grain were classified into the
category of leaf vegetables, and potato and carrot are included in
the calculation of root vegetable. In ACC-HUMANsteady, ingestions
rates, body mass and lipid content are considered as a function of
age and a 30 years old woman is used as the model default.
However, in EUSES and RAIDAR, an average human individual is
assumed to have a body weight of 70 kg (Undeman and McLa-
chlan, 2011).

In order to adapt the three models to a Chinese population
scenario, parameters for human characteristics and daily dietary
intake rates were modified based on the measured survey data
from China. China has conducted four Chinese Nutrition and
Health Surveys, since 1959 organized by Chinese Centre for Dis-
ease Control and Prevention, namely in the years 1959, 1982, 1992
and 2002, covering 31 provinces within the mainland. The in-
formation of Chinese dietary pattern was extracted from the most
recent National Nutrition Survey in 2002 (Jin, 2008), however, as

Table 2
Defaults of media area volume in regional EUSES, RAIDAR and ACC-HUMANsteady.

Media volume Air, m3 Water, m3 Soil, m3 Sediment, m3

Regional scale in
EUSES

4.03#1013 Freshwater:
3.59#109

Agricultural
soil:
4.79#109

4.79#107

Seawater:
3.99#109

Natural soil:
5.39#108

Sum:
7.58#109

Industrial
soil: 2#108

Sum:
5.53#109

RAIDAR 1#1014 2#1011 1.8#1010 5#108

ACC-
HUMANsteady

4.03#1013 7.64#109 5.43#109 5#107

Table 3
Daily intake rates in model defaults and Chinese diet pattern.

Food group Units EUSES RAIDAR ACC-
HUMANsteady

Chinese
dieta

Drinking water L d"1 2 2 0.6 2.7a

Inhalation m3 d"1 20 20 15 19a

Fish gWW d"1 115 96 29 30
Leaf cropsb gWW d"1 1200 1077 319 676
Root cropsb gWW d"1 380 360 132 106
Meatc gWW d"1 300 360 75 79
Dairy products gWW d"1 560 455 351 27
Eggs gWW d"1 N/A 48 N/A 24
Total intake gWW d"1 2555 2396 904 941
Bodyweight kg 70 70 63 61

a Statistics related to diet pattern in China are extracted from Chinese Nutrition
and Health Survey (Jin, 2008). Drinking water and inhalation rate are from other
literatures (Xiaoli et al., 2010; Zongshuang et al., 2009).

b For ACC-HUMANsteady, intake rates of lettuce 37 gWW d"1, fruit
190 gWW d"1 and grain 92 gWW d"1 were classified into general categorization of
leaf crops; intake rates of carrot 21 gWW d"1 and potato 111 gWW d"1 were
regarded as root crops.

c RAIDAR separated meat group into poultry, pork and beef with 120 gWW d"1,
whilst ACC-HUMANsteady only considered beef.
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there was no individual classification data for leaf and root vege-
tables, it was assumed that 20% of total vegetable consumption
comes from root vegetables (Song et al., 2009). The selected food
consumption rates for the Chinese population are listed in Table 3.

The three models considered in the study all calculate total
daily dietary intake rate from environmental contamination of
foodstuffs. Thus daily intake rates were used as a metric to esti-
mate human exposure. The calculation of chemical daily intake
rate Ri (ng kg"1 d"1) on a bodyweight basis from exposure to
multimedia sources was carried out using

R G C /Bodyweight (2)i i i= ×

where the Ci values relate to concentration in the corresponding
media with units of (ng g"1) for food items, Gi represents the in-
gestion rates (gWW day"1) or air inhalation rates (m3 day"1) of
exposure media. The total daily chemical intake via diet or in-
halation (R) (ng kg"1 d") is therefore a sum of exposure from each
media (i), which is calculated on an individual body weight basis.

R R (3)i∑=

The fractional contribution Pi of the dominant exposure path-
way to total intake (Pi) was calculated by Eq. (4) and plotted as an
evaluated endpoint in Fig. 2.

P i R Rmax( )[ / ] (4)i i=

2.3. Hypothetical chemical test

2.3.1. Partitioning space map
To investigate the sensitivity of each model to chemicals with a

wide range of properties and to explore how this might affect their
ability to predict dietary exposure, a chemical partition space was
defined as a function of equilibrium partition coefficients between
air, water and octanol (Meyer et al., 2005). Each model was used to
predict both mass distribution and dietary exposure for a range of
combinations of log KOW and log KOA. Each point within these
space plots corresponds to a hypothetical chemical with a specific
combination of partitioning properties. For the purposes of these
calculations, log KOW was assumed to equal log KOAþ log KAW. The
boundaries of the investigated space are defined by log KOA from
4 to 12 and log KOW from "2 to 12 in steps of 0.5 log units, such
that most known chemicals fall within this range. It is important
to note that both RAIDAR and ACC-HUMANsteady were originally
designed for hydrophobic chemicals and the domain of applic-
ability common to all regression equations in EUSES is only from
log KOW 3–4.7 (Legind and Trapp, 2009). Caution should be taken
when applying these regressions to substances outside of these
ranges.

2.3.2. Physicochemical properties
Another assumption was that all hypothetical chemicals were

perfectly persistent in all compartments. This assumption provides
a conservative assessment for these hypothetical chemicals. Thus
for EUSES, “not biodegradable” was chosen for the biodegrad-
ability test results. For the calculation of organic carbon–water
partitioning in EUSES, the “predominantly hydrophobic” option
was selected for chemicals with log KOWZ2, and “non-hydro-
phobic” for chemicals with log KOWo2. Half-life values of
1#1011 h in all environmental media were assumed in RAIDAR,
which could be interpreted as having negligible reaction rates
(Mackay et al., 1996). The values of other parameters, like mole-
cular weight, heat transfer coefficients were assigned as shown in
Table 4 and used elsewhere (Undeman and McLachlan, 2011).

2.4. Selection of real chemical properties

The three models were also assessed for their ability to predict
the dietary exposure for a suite of emerging pollutants and che-
micals in current production. The physicochemical property data
required for each of the three models included molecular weight,
KOW, Henry's Law constant, water solubility, vapor pressure, and
estimated biodegradation half-lives in water, soil, sediment and in
biota. Biodegradation half-life data were collected and processed
using the regression equations derived from outputs of the Biowin
model (a submodel in EPISuite) (Arnot et al., 2010). Metabolism
within organisms was not considered in the calculations as the
metabolism rates for many chemicals are not available and thus
their inclusion would increase the uncertainty of output. This
conservative assumption is often considered acceptable practice
for chemical assessment and screening (Meyer et al., 2005; Un-
deman and McLachlan, 2011).

All temperature-dependent parameters were adjusted to a
temperature of 25 °C. The publicly accessible free tool EPISuite™
Version 4.11 (US EPA, 2012), which includes both QSA(P)R tools
and experimental databases was employed to provide property
estimates where measured data were unavailable. Table 5 contains
the physicochemical property data of fifteen selected organic
chemicals covering a wide range of property combinations. Tri-
closan, nonylphenol, pentachlorophenol are also ionizable, how-
ever, the correction for ionization is not included in three models.
Data from pharmaceutical studies suggests that ionized species are
absorbed by humans with 3–10% of the efficiency of the neutral
species, thus the effect of ionization was assumed to be minimal
compared to the neutral species and ignored in this study (Abra-
ham et al., 2002; Arnot and Mackay, 2007).

3. Results and discussion

3.1. Mass distribution linked to exposure

To explore the impact of the environmental distribution cal-
culated within the models, individual chemical burdens in differ-
ent environmental compartments were estimated using the de-
fault scenarios. The maximum mass distributions in the physical
compartments of three selected models were contoured onto the
partitioning space maps as shown in Fig. 1, using two-dimensional
chemical space as a function of log KOW (x-axis) and log KOA (y-
axis). Each point in this space corresponds to a hypothetical che-
mical with specific combination values of log KOW and log KOA

(Meyer et al., 2005). The solid lines in plots depict the border
between two compartments where the burden is equally shared.
Four representative hypothetical chemicals H1–H4 are also in-
cluded in Figs. 1 and 2 to provide reference points. They have been
chosen to represent persistent superhydrophobic (H1), hydro-
phobic (H2), volatile (H3) and soluble chemicals (H4).

The maximum mass distributions predicted by the three
models are similar for water and soil, where water is the pre-
dominant storage media for chemicals with log KOWr2 for ACC-
HUMANsteady and log KOWr3.5 for RAIDAR, soil being more
important for chemicals with log KOW42. For highly hydrophobic
chemicals (log KOW44 and 8 for RAIDAR and EUSES, respectively)
and the more volatile chemicals (log KOAo6 and 5 for RAIDAR and
EUSES, respectively), they were predicted to be found pre-
dominantly in sediment in RAIDAR and EUSES compared with air
in ACC-HUMANsteady. This disparity is mainly due to differences
in model structure. RAIDAR and EUSES are level III fate models
whilst ACC-HUMANsteady uses a simplified level I model, which
does not account for advective and intermedia exchange processes
(such as volatilization, deposition, precipitation and
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sedimentation). Additionally, different environmental properties
shown in Table 2 and/or the environmental scenarios, also lead to
the distinct mass distributions in three models, including the es-
timations of partition coefficients, area fractions of individual
compartments, fraction of organic carbon, mass transfer coeffi-
cients and so on (Meyer et al., 2005).

3.2. Multiple exposure pathways of hypothetical chemical

To investigate the most important pathways of human ex-
posure as a function of a chemical's partitioning profile, the
maximum dietary exposure pathway contribution has been plot-
ted in Fig. 2. This represents the largest percentage contribution to
total exposure among all considered food groups. For example, a
chemical with a log KOW¼7 and log KOA¼8, such as H2, would
appear in the upper-right red domain using outputs of ACC-HU-
MANsteady and RAIDAR (Fig. 2(a) and (c), respectively), and
identify fish as the primary source of total daily intake (490%).
Overall, differences across models are greater than differences in
diet patterns, and both are discussed in this study. In this study,
relative mass ratios were compared, and so the significance of
individual exposure routes was proportional to overall exposure.
Some exposure routes, however, may also present appreciable risk
to humans under high emission scenarios.

EUSES predicted that root crop consumption could be an im-
portant exposure pathway for a wide range of chemical partition
space, particularly in the domain with log KOW ranging from 4 to
12. RAIDAR and ACC-HUMANsteady, however, suggested that the
contribution from root vegetable consumption was minimal. The
consumption of leaf vegetables, however, was suggested to be
important using RAIDAR and ACC-HUMANsteady within a similar

domain for both high and low KOW values. EUSES indicated leaf
vegetable consumption was important only for chemicals with low
KOW values. For instance, hypothetical chemical H1 represents a
superhydrophobic chemical with a log KOW of 11 and a log KOA of
10. EUSES predicted for H1 that root vegetable consumption was
likely to be the main exposure pathway (Fig. 1e), whilst both
RAIDAR and ACC-HUMANsteady indicated leafy vegetable con-
sumption would be dominant. When linked to predictions of en-
vironmental distribution, as shown in Fig. 1, the three models
consistently suggested that bulk soil as the dominant sink for H1.
There are important differences between EUSES and RAIDAR
model predictions in terms of the uptake via leaf and root vege-
table consumption for chemicals with low volatility and high hy-
drophobicity (Mitchell et al., 2013). This may be due to the as-
sumption that root crops are in equilibrium with the surrounding
soil in EUSES which leads to a potential overestimation (Undeman
and McLachlan, 2011). The uptake of chemicals into roots occurs
mainly via the transpiration stream from soil pore water to xylem,
a process which is retarded for hydrophobic chemicals that are
strongly adsorbed to organic matter in soil. So, there may be in-
sufficient time to reach equilibrium between root and soil, which
was assumed in RAIDAR and ACC-HUMANsteady (Arnot and
Mackay, 2007; Undeman and McLachlan, 2011).

An important difference among RAIDAR, ACC-HUMANsteady
and EUSES is the calculation of the bioaccumulation in cattle and
fish. EUSES uses an empirical regression equation relating log KOW

and BAF/BCF to calculate chemical concentration in milk, meat and
fish with little mechanistic basis. In contrast, both RAIDAR and
ACC-HUMANsteady use mechanistically based mass balance
models of bioaccumulation (Arnot and Mackay, 2007; Undeman
and McLachlan, 2011). The empirical model structure in EUSES has
the advantage of requiring limited input data. However, such
models have limitations and often include limited or no me-
chanistic description of processes. They also contain a number of
empirical relationships with limited functionality. For example,
BAFs calculated within the model are derived using an empirical
relationship with a limited log KOW range of between 1.5 and 6.5.
As a result, calculated BAFs for compounds with log KOW values
outside of this range must therefore be used with caution (Rikken
and Lijzen, 2004). More complex mechanistic models provide a
more realistic assessment of chemical fate and behavior, especially
for food chain accumulation. However, they often require sig-
nificantly more chemical and biological input data. If measure-
ments of uptake and loss processes are available as model input, a
validated mechanistic model will provide valuable insights into
food chain accumulation and hence provide more realistic

Table 4
Assigned values of properties for the hypothetical chemicals in three selected
models.

Parameters Unit Values

Molecular weight g mol"1 300
∆UAW kJ mol"1 60a

∆UOW kJ mol"1 "20a

∆UOA kJ mol"1 80a

Henry's law constant Pa m3 mol"1 Kaw#R# Tb

a The heat of phase transfer was chosen based on the study of Undeman and
McLachlan (2011).

b R is the universal gas constant and T is the environmental temperature of
288 K.

Table 5
Physicochemical properties of studied chemicals.

CAS Compound Abbreviation Molar mass, g mol"1 log KOW log KOA Vapor pressure, Pa Watersolubility, mg L"1

95-50-1 1,2-Dichlorobenzene 1,2-D 147.00 3.38 4.54 196 155.8
1163-19-5 Decabromodiphenyl ether DecaBDE 959.17 9.45 15.76 4.63#10"6 1#10"4

335-67-1 Perfluorooctanoic acid PFOA 414.07 N/Aa 6.8 4.2 1.42#104

3380-34-5 Triclosan TCS 289.55 4.80 11.54 6.93#10"4 0.012
84-66-2 Diethyl phthalate DEP 222.24 2.24 7.02 0.22 988
87-68-3 Hexachlorobutadiene HCBD 260.76 4.90 5.16 20 3.2
81-15-2 Musk xylene MX 297.27 4.90 11.82 3#10"5 0.15
115-96-8 Tris (2-chloroethyl) phosphate TCEP 285.49 1.44 5.31 1.14#10"3 7.82#103

25154-52-3 Nonylphenol NP 220.36 4.48 8.62 0.3 6
87-86-5 Pentachlorophenol PCP 266.34 3.69 11.12 9.8#10"3 14
25637-99-4 Hexabromocyclododecane HBCD 641.70 5.63 11.89 6.27#10"5 2.09#10"5

99-76-3 Methylparaben MeP 152.15 1.96 8.79 0.114 2.50#103

556-67-2 Octamethylcyclotetrasiloxane D4 296.62 6.98 6.06 132 0.056
541-02-6 Decamethylcyclopentasiloxane D5D5 370.78 8.07 6.93 33.2 0.017
540-97-6 Dodecamethylcyclohexasiloxane D6 444.93 9.06 8.43 4.6 5.3#10"3

a For perfluorooctanoic acid (PFOA), KOW is not regarded as useful indicator of environmental partitioning, KOC value is used to describe the sediment–water and soil–
water partitioning, so the value of 3.53 for log KOC and "2.4 for log KAW were selected (Armitage et al., 2009).
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predictions. However, it is often the case that large uncertainties
exist for input data for biological processes and these data are
unavailable for many chemicals. In this study, although metabo-
lism is ignored, the assumption of perfect persistency makes it less
significant. These models also consider dairy and beef cattle se-
parately to predict milk and meat concentrations.

Amongst all of the considered products of animal-origin, fish
consumption is predicted to be one of the most important dietary
exposure pathways, since there is a high potential for bioaccu-
mulation of hydrophobic chemicals. As seen from Fig. 2, fish
consumption is predicted to be the major exposure pathway for
chemicals in the range of log KOW¼5–8 for EUSES, 3.5–10 for
RAIDAR and 4–12 for ACC-HUMANsteady. For EUSES, the domain
for high exposure from consumption of fish is much smaller than
those domains predicted by RAIDAR and ACC-HUMANsteady. Take
hypothetical chemical H2 for example, which represents a hy-
drophobic chemical. EUSES predicts the majority of exposure oc-
curs via consumption of root vegetables whilst RAIDAR and ACC-
HUMANsteady suggest that consumption of fish is more im-
portant. When considering the predicted environmental distribu-
tion shown in Fig. 1, the majority of H2 is predicted to be found in
soil by three models. There are several possible explanations for
this. One is that the mass distribution in water predicted by EUSES
is lower than that for other two models, which is demonstrated in
Fig. 1. Another explanation is that EUSES uses an empirical
KOW-based regression for the calculation of bioconcentration fac-
tors, which assumes fish reaches equilibrium with water and
adopts multiple treatments for different ranges of KOW, that is a
simple linear model for chemicals with a log KOW range of 1–6 and
a parabolic equation applied for chemical with a log KOW range 6–
10 (Connell and Hawker, 1988; Veith et al., 1979).

The ratios of chemical concentrations of fish and total water
were calculated and plotted in Fig. 3, which means BAFs in ACC-
HUMANsteady and RAIDAR and BCFs in EUSES. The BCF predicted
from EUSES is less than RAIDAR and ACC-HUMANsteady for a wide
range of chemicals (log KOWo10). It also neglects dietary uptake
and growth dilution, which can be important for substances with

log KOW45 (Undeman and McLachlan, 2011). So, as with many
studies discussed previously, EUSES often underestimates fish
concentrations (Rikken and Lijzen, 2004). Further, the over-
estimation of chemical concentration in roots, leads the exposure
via fish to be proportionally less dominant in EUSES. As a result,
this type of risk assessment as suggested by EUSES may not be
suitable for use in ‘non-standard’ populations. Besides, when
log KOW410, BAFs predicted by ACC-HUMANsteady decrease
gradually whilst those from RAIDAR drops rapidly, which results in
the fish domain extending to a wider range of log KOW in the
partitioning space of ACC-HUMANsteady. This is because RAIDAR
quantifies bioavailability and assumes only freely dissolved che-
mical is available to pass through fish gills (Arnot and Gobas,
2004). For the extremely hydrophobic compounds with high affi-
nity to organic matter, the fraction of freely dissolved chemical
concentration calculated by RAIDAR is low. However, the fish
model in RAIDAR is applicable for organic chemicals with log KOW

values from 1 to 9, thus anything beyond this should be treated
with caution (Arnot and Gobas, 2004).

Exposure via the consumption of meat and dairy products was
indicated to be less significant than exposure via the consumption
of vegetables and fish by all three models, as shown in Fig. 2.
RAIDAR and ACC-HUMANsteady, however, did suggest that the
intake of meat and dairy products as the dominant exposure
routes for chemicals with KOW values 2–4, although EUSES sug-
gested that neither represented an important exposure pathway.
For example, hypothetical chemical H3 represents a volatile and
moderately hydrophobic chemical, for which ACC-HUMANsteady
suggests human exposure occurs mainly via inhalation; whilst
RAIDAR suggests that exposure via the consumption of fish and
meat has a similar significance. EUSES predicted that exposure via
root vegetable consumption was likely to be dominant. These
predicted trends were unaltered under the Chinese dietary sce-
nario. When linked to the predicted environmental distribution, as
shown in Fig. 1, ACC-HUMANsteady predicted the maximum mass
distribution would occur in air, whilst RAIDAR and EUSES pre-
dicted soil would be dominant. As a result, the high mass

Fig. 1. Maximum mass distribution (kg kg"1) in water, air, soil and sediment compartment of (a) ACC-HUMANsteady, (b) RAIDAR and (c) EUSES.
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distribution in air results in high inhalation exposure using ACC-
HUMANsteady. Furthermore, RAIDAR additionally includes poul-
try, pig and beef as dietary pathways in the agricultural food chain,
thus the predicted proportion of exposure occurring via meat
consumption in RAIDAR was higher than ACC-HUMANsteady and
EUSES.

For chemicals with log KOWo2, EUSES and RAIDAR con-
sistently predicted that the consumption of both drinking water
and leafy vegetables are important contributors to total exposure,
while ACC-HUMANsteady suggests consumption of leafy vege-
tables as the most import contaminant exposure pathway. For
example, for the hypothetical chemical H4, the predictions from
both RAIDAR and EUSES suggested that the consumption of
drinking water was the predominant exposure pathway, whilst
ACC-HUMANsteady suggested that the consumption of leafy ve-
getables was the most important. When combined with the mass
distribution information in Fig. 1, ACC-HUMANsteady and RAIDAR
indicate water as the dominant compartment. However, EUSES
predicted that soil contained a greater mass burden than water.

Fig. 2. Maximum exposure contribution (ng kg"1 d"1/ng kg"1 d"1) to total dietary intake using default model settings and Chinese dietary scenarios for ACC-HUMAN-
steady, RAIDAR and EUSES. The solid lines indicate borders where one exposure pathway contributes to 50% of the total dietary intake (including inhalation and drinking
water). Four representative hypothetical chemicals H1–H4 are also included.

Fig. 3. The comparison of the logarithmic bioconcentration/bioaccmulation factor
used by RAIDAR, EUSES and ACC-HUMANsteady for the calculation of chemical
concentration in fish.
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The three models employ multiple assumptions to predict che-
mical uptake in leafy vegetables. EUSES utilizes a KOW-driven re-
gression equation to calculate a transpiration stream concentra-
tion factor (TSCF), whilst RAIDAR assumes that chemical uptake
into leaf occurs mainly from atmospheric deposition. KOA is used to
characterize the partitioning between the plant and gas phase of
air (Arnot and Mackay, 2007). However, ACC-HUMANsteady as-
sumes translocation from soil pore water to leaves via the tran-
spiration stream is the main uptake process for hydrophilic che-
micals, and the transpiration stream is in equilibrium with the soil
pore water. Therefore, higher uptake is predicted for hydrophilic
chemicals (log KOWo2) by ACC-HUAMNsteady than either RAI-
DAR or EUSES.

The EUSES model combined with the Chinese dietary scenario
suggests the importance of exposure via the consumption of
drinking water is increased as a result of the relatively higher
consumption of water in the Chinese scenario (Table 3). However,
the importance of exposure via root vegetable consumption was
reduced due to lower consumption rates in China compared to the
default settings in EUSES. For ACC-HUMANsteady, the most sig-
nificant change resulting from the Chinese dietary scenario is that
the consumption of dairy as the important contributor to overall
exposure under the default scenario was replaced by the con-
sumption of leafy vegetables. This is due to increased vegetable
consumption and decreased dairy product consumption as shown
in Table 3. Similar trends were observed using RAIDAR. As a result,
the increased consumption of leafy vegetables in Chinese diet
suggests that this exposure pathway requires further investigation.
A representative crop-specific plant model in China, such as for
Chinese leaf instead of lettuce as used in Europe would also need
to be considered (Legind and Trapp, 2009).

3.3. Predicted exposure pathways for real chemicals

To illustrate the output from the models for the study chemi-
cals using both Western and Chinese scenarios, the predicted
predominant exposure pathways from each model using default
values (for Western countries) and modified Chinese consumption
patterns are shown in Figs. 4–6. EUSES predicted that exposure via

consumption of root vegetables is the most important exposure
pathway for 10 of the 15 chemicals considered. This is also the case
for EUSES when changing the dietary input to the Chinese sce-
nario. RAIDAR predictions suggest that fish consumption was the
most important exposure pathway for 10 out of 15 chemicals.
However, these predictions changed for 1,2-dichlorobenzene, tris
(2-chloroethyl) phosphate (TCEP) and methylparaben (MeP) under
the Chinese dietary scenario using RAIDAR, as a result of the in-
creased inhalation rate and water consumption relative to total
consumption in the Chinese scenario compared to RAIDAR de-
faults (Table 3). In addition, predicted main exposure pathways for
PCP, MeP and PFOA changed from dairy to leafy vegetable con-
sumption using ACC-HUMANsteady under the Chinese dietary
scenario, as dairy product consumption in China is much lower
than that for Western diets. For remaining chemicals, ACC-HU-
MANsteady predicted similar primary exposure pathways for both
Western and Chinese dietary scenarios.

TCEP, diethyl phthalate (DEP) and MEP have relatively low KOW

values and high water solubilities. As a result, they are expected to
be mostly present in surface waters and show lower bioaccumu-
lation potential. Interestingly, however, there are no consistent
predictions from three models for these chemicals. For DEP, as an
example, RAIDAR and ACC-HUMANsteady suggested that the
consumption of leafy vegetables would be a dominant exposure
pathway, whilst EUSES estimated that consumption of drinking
water would be the predominant exposure route with consump-
tion of leafy vegetables ranking as the second most important
exposure pathway. Under the Chinese dietary scenario, the three
models predicted consistent dominant exposure pathways for DEP.
According to the UK Total Diet Study, the consumption of fish
provided the greatest contribution to human exposure for DEP,
although, drinking water was not considered in this study (Bradley
et al., 2013). A survey carried out in China suggested that the
consumption of beverages and cereals are the main exposure route
for DEP (Guo et al., 2012), which is consistent with the prediction
from EUSES. Another recent study carried out in New York State
indicated the highest mean concentration of DEP was present in
grain products (Schecter et al., 2013), which agrees with the pre-
dictions from the RAIDAR and ACC-HUMANsteady models. It

Fig. 4. The relative contribution of multiple food sources predicted by EUSES for real chemicals (ng kg"1 d"1/ng kg"1 d"1). The upper bars indicated the output with
defaults diet pattern and lower bars showed the output with Chinese diet pattern.
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appears, therefore, that EUSES may underestimate the level of
relative importance of plant uptake for hydrophilic chemicals
using default settings.

For chemicals with moderate KOW values and water solubilities,
such as PFOA, PCP and NP, RAIDAR predicts consumption of fish as
the major exposure pathway whilst EUSES estimates consumption
of root vegetables as the most important route. In contrast, ACC-
HUMANsteady suggested that consumption of dairy products may
be the most important exposure route for PFOA and PCP whilst the
fish consumption is the most important exposure route for NP.
Under the Chinese dietary scenario, ACC-HUMANsteady predicted
that the key exposure route for PFOA and PCP would be leafy ve-
getables rather than dairy. This may be due to the decreased dairy
consumption and increased leafy vegetable intake in the Chinese

diet as shown in Table 3. A modelling study showed that PCP
mainly partitions into soil, thus vegetable consumption accounts
for 99.9% of human exposure in U.S. and root uptake is the major
source for vegetation contamination (Hattemerfrey and Travis,
1989), which is consistent with predictions from EUSES.

Hydrophobic chemicals with low volatilities and water solubi-
lities, like hexabromocyclododecane (HBCD) and musk xylene
(MX), generally have a high potential to bioaccumulate in fish.
Predictions from the three models suggested that consumption of
fish would be the major exposure pathway for HBCD. The pre-
dicted main exposure pathway remained the same for each model
using the Chinese dietary scenarios. The concentration of HBCD in
food samples has been measured in both Europe and China. Ac-
cording to data from the UK Total Diet Study, the consumption of

Fig. 5. The relative contribution of multiple food sources predicted by RAIDAR for real chemicals (ng kg"1 d"1/ng kg"1 d"1). The upper bars indicated the output with
defaults and lower bars showed the output with Chinese diet pattern.

Fig. 6. The relative contribution of multiple food sources predicted by ACC-HUMANsteady for real chemicals (ng kg" d"1/ng kg"1 d"1). The upper bars indicated the output
with defaults and lower bars showed the output with Chinese diet pattern.
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green vegetables and foods from animal origins were found to be
the major source of dietary HBCD intake (Driffield et al., 2008). A
study performed on Swedish food samples suggested that fish was
a major source of dietary HBCD intake due to the high proportion
of fish in the Swedish diet and the relatively high HBCD levels in
fish (Remberger et al., 2004). In contrast, in China, meat and meat
products accounted for up to 52% of estimated total dietary intake,
with aquatic food groups accounting for a further 30%. This is may
be due to a comparatively high consumption rate of meat products
versus that of fish products in China (Shi et al., 2009).

D4, D5 and D6 have an unusual combination of physicochem-
ical properties exhibiting high vapor pressures and a low water
solubilities resulting in high air–water partition coefficients and
high KOW values. They also have long media-specific half-lives
resulting in high environmental persistence and bioaccumulation
potential (Whelan and Breivik, 2013). Exposure via fish con-
sumption was identified as important by both RAIDAR and ACC-
HUMANsteady for D4, D5 and D6, whilst fish consumption was
identified as being important for D4 and root vegetable con-
sumption an important pathway for D5 and D6 by EUSES. Pre-
dicted dominant exposure pathways remained the same under the
Chinese dietary scenario. The importance of root vegetable con-
sumption for D5 and D6 by EUSES may have occurred as a result of
the overestimation of root concentrations. Monitoring data for
cyclic volatile methyl siloxanes (cVMS) in foodstuffs is scarce and
concentrations are frequently below the limit of detection in many
biota samples. For example, total cVMS concentrations in fish
samples collected across Europe were found to be
o0.1 mg g"1 ww. This is possibly a result of high elimination rates
through metabolism (Wang et al., 2013), which are not considered
in this study. Since these models are initially designed for persis-
tent organic chemicals, the effect of ignoring internal metabolism
would be minimal. However, as stated before ignoring metabolism
may overestimate the chemical concentrations in biotic media.

3.4. Potential model adaptation for Chinese scenario

A stepwise or tiered approach in which the initial step relies on
conservative screening methods is commonly used to minimize
costs and focus resources on the most important issues and che-
micals for which there is a potential health concern. Therefore, the
simplicity of current models and accepted conservative modelling
results would be suitable for an initial Chinese priority setting and
risk assessment scheme. Currently, there are several bottlenecks in
chemical exposure assessment in China, including access to na-
tional food consumption data, difficulty with food categorization,
limited data on chemical residues in food, and so on. In addition,
the different exposure scenarios that are required to cover the
wide variability in China need to be developed and incorporated
into current models with consideration of the variation in the
Chinese diet.

3.4.1. High consumption of farmed aquatic foodstuffs
According to the Chinese Total Diet Survey, the average rate of

consumption of marine derived food products at the national level
was approximately 29.6 g d"1 (L. Zhang et al., 2013). However, in
many coastal cities, located on the east coast of China, the daily
fish consumption was 1057182 g for a healthy adult indicating a
4–5 times higher intake rate compared to the national average
(Jiang et al., 2005). Moreover, marine fish accounted for up to 98%
of total fish consumption in coastal regions like Zhoushan (Jiang
et al., 2005). Nevertheless, the average national picture suggests
that the production of freshwater and seawater products in China
is approximately equal. It is interesting to note that China pro-
duced approximately 62% of all farmed seafood in the world in
2010 (FAO Fisheries and Aquaculture Department, 2010).

In many regions of the world, wild fishery resources are de-
clining drastically (Melinda Meador et al., 2011). As a result,
farmed fish may become increasingly relevant as a source for
chemical exposure to people. Compared to wild fish, farmed fish
lives in a simpler food web with different feeding habits and has a
higher lipid content (Hites et al., 2004). It has been reported that
the concentration of organochlorine contaminants is significantly
higher in farmed salmon based on the analysis results of more
than two metric tons of salmon, possibly caused via their diet and
higher lipid fractions (Hites et al., 2004). Most exposure models,
do not consider farmed fish exposure via diet, which could po-
tentially result in the underestimation of residues in fish and fish
products (Leung et al., 2010).

The lipid content varies significantly between farmed and wild
fish, as well as freshwater fish and marine fish, which can result in
different levels of bioaccumulation (Cheung et al., 2007; Hamilton
et al., 2005). Whereas in models like ACC-HUMANsteady, only the
consumption of wild fish was considered, which may result in an
important underestimation for the dietary exposure via fish for the
Chinese population, especially for residents in inland cities. EUSES
assumes that fish exposure occurs via freshwater fish consumption
only which limits its applicability to marine fish (Rikken and Lij-
zen, 2004).

3.4.2. The crop model for China
One important difference between Chinese and Western diet-

ary patterns is the consumption rate of vegetables and cereals.
Cereals and vegetables play an important role in the daily diet of
the Chinese population, accounting for up to 46% and 32% of the
total intake (Jin, 2008). Chemical bioaccumulation in crops from
soil is more likely to occur with polar, non-volatile and persistent
chemicals (Trapp and Eggen, 2013). However, the previous re-
search has demonstrated that models may not predict the beha-
vior of polar chemicals particularly well (Dettenmaier et al., 2009).
A recent study detected the highest concentrations of parabens in
vegetables, followed by condiments (soy sauce, vinegar, cooking
wine, ketchup, bean paste, etc.) and cereals in China, although the
major sources remain unclear (Liao et al., 2013). The relevance of
dietary exposure to chemicals versus direct exposure to humans
via the actual use of products (e.g. home and personal care pro-
ducts) is also unclear.

3.4.3. Different agricultural food chains
The three models considered in this study were designed

mainly for the terrestrial food chain focussing on grass-cattle-beef/
dairy products, which is the typical farmland style in Western
countries. However, the Chinese situation is very different. In
RAIDAR and ACC-HUMANsteady, cattle are assumed to absorb
chemicals through respiration, ingesting soil and consumption of
water and vegetation (Arnot and Mackay, 2007; Undeman and
McLachlan, 2011). In Western countries, grass provides 70% of the
fodder for animals, whilst 70% animal fodder comes from grain in
China (FAO, 2002). Therefore feeding regimes in the agricultural
food chain are also likely to be different in China.

3.4.4. Drinking water model
RAIDAR and ACC-HUMANsteady account for exposure via

drinking water by assuming that chemical concentrations in
drinking water are the same as those in surface water. This
probably results in an overestimation of the risk from the con-
sumption of drinking water as no treatment is assumed. EUSES,
however, considers two surface water purification systems with
different storage types: system 1 includes storage in open re-
servoirs, while system 2 includes dune recharge. The question
arises if these two systems could be extrapolated for use in a risk
assessment in China, since the underlying data are based on
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limited measurements for the removal of organic compounds by
activated carbon adsorption and biological processes in the
Netherlands (Hrubec and Toet, 1992). System 2 (dune water re-
charge and slow sand filtration) is atypical in China, where con-
ventional drinking water purification processes include coagula-
tion, sedimentation, filtration and disinfection. It is also com-
monplace to boil tap water before consumption, which may lead
to lower concentration of volatile contaminates (Kim et al., 2004).
To date, Kim et al. have developed several model algorithms to
predict exposure to chemicals via consumption of drinking water,
which could be considered in future model developments for
more accurate predictions (Anderson et al., 2004; Kim et al., 2004).

4. Conclusions

There is no consensus on what is the best available metho-
dology for estimating exposure via dietary intake. The different
approaches used in EUSES, RAIDAR and ACC-HUMANsteady were
shown to present both their own advantages and disadvantages
for the estimations of dietary exposure under Western and Chi-
nese dietary patterns. The choice for the most appropriate ap-
proach largely depends on the purpose of the corresponding risk
assessment. For preliminary screening purposes, the simple em-
pirical EUSES model appears to be useful. However, its submodels
for exposure via fish and vegetable consumption were not suitable
for very hydrophobic compounds. However, RAIDAR and ACC-
HUMANsteady have the advantage of providing mechanistic ex-
planations of food chain bioaccumulation. They also indicated
consistent predictions for the estimation of predominant dietary
exposure pathways, and were more sensitive to the Chinese
dietary patterns as presented in Fig. 2. In addition, the food web
chain properties of mechanistic models are easier to re-para-
meterized for new/novel populations.

More assessment for the performance of exposure models with
several potential adaptations is required before they can be ap-
plied to China with confidence. Since China has a very large po-
pulation with varying regional dietary habits, the comprehensive
evaluation of sensitivity and uncertainty of dietary preference is
required for future studies. The fish model, which has been de-
veloped so far based on wild marine seafood products, needs to be
expanded to consider different bioaccumulation models for the
freshwater food chain including farmed-fish. Furthermore, despite
the importance of consumption of vegetables, especially cereals, in
China there is currently no specific model for organic chemical
uptake into cereals that the authors are aware of (Legind and
Trapp, 2009). Therefore, the development of a more specialized
crop model (like wheat) should be explored.
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 Abstract 17 

A wide range of studies has characterized different types of lipids, with regards to their 18 

interactions with chemicals. This has resulted in the development poly-parameter linear free 19 

energy relationships (pp-LFER) for the estimation of partitioning of neutral organic compounds 20 

to biological phases (e.g., storage lipids, phospholipids and serum albumins). The aims of this 21 

study were to explore and evaluate the influence of implementing pp-LFERs both into a one-22 

compartment fish model and a multi-compartment physiologically based toxicokinetic (PBTK) 23 

model and the associated implications for chemical risk assessment. For this purpose, fish were 24 

used as reference biota due to their important role in dietary exposure to humans and as a 25 

biosorbent for organic chemicals. The bioconcentration factor (BCF) was used as the evaluation 26 

metric. Overall, preliminary results indicate that models incorporating pp-LFERs (R2=0.75) 27 

slightly outperformed the single parameter (sp) LFERs approach in the one-compartmental fish 28 

model (R2=0.72). The pronounced enhancement was achieved for compounds with log KOW 29 

between 4 and 5 with R2 increased from 0.52 to 0.71. Meanwhile, greater improvement was 30 

observed for multi-compartmental PBTK models with consideration of metabolism, making all 31 

predictions fall within a factor of 10 compared the measurements. For screening purposes, the 32 

KOW-based (sp-LFERs) approach should be sufficient to quantify the main partitioning 33 

characteristics. Further developments are required for the consideration of ionization and more 34 

accurate quantification of biotransformation in biota. 35 

 36 

Highlights: 37 

• Implementation of pp-LFERs resulted in greater improvement compared to sp-LFERs in the 38 

PBTK model than in the one-compartment model. 39 

• Large uncertainties are caused by quantification of biotransformation and ionization. 40 

• sp-LFERs approach is sufficient for screening purposes. 41 

 42 

Keywords: 43 

Partition coefficients, pp- LFER, bioaccumulation, membrane, biotransformation 44 

 45 
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1 Introduction 46 

Bioaccumulation in aquatic species is a critical endpoint in the chemical assessment required by 47 

authorities such as the European Chemical Agency (ECHA) and the United States 48 

Environmental Protection Agency (Gobas et al., 2009). One widely used assessment metric is 49 

the bioconcentration factor (BCF), which assesses the bioaccumulative potential of a chemical 50 

to biota through constant aqueous exposure under well-controlled laboratory conditions 51 

(Mackay et al., 2013). One principle of the regulation is that testing of chemical on animals 52 

should be done as a last choice (Laue et al., 2014). Much effort has been devoted to developing 53 

predictive models to estimate BCFs if no in vivo data are available. For preliminary screening 54 

purposes, the great majority of substances are screened based on their octanol-water partitioning 55 

coefficient (KOW), which are widely used as an indicator of hydrophobicity and thus the 56 

portioning of a chemical from water to lipids and other organic phases (e.g., protein) (Debruyn 57 

and Gobas, 2007). 58 

Over several decades, equilibrium partition coefficients of organic chemicals from 59 

environmental compartments to a tissue/organism are typically estimated by the total lipid 60 

content in combination with the KOW (Mackay, 2001). So chemical concentrations in an 61 

organism/tissue are often normalized to the total lipid content, assuming that all lipids have 62 

identical sorption properties and the nonlipid fraction has a negligible sorption capacity (Endo et 63 

al., 2013). However, the suitability of this simplified approach has been questioned. It has been 64 

reported that the sorption capacity varies among different types of lipids (e.g., storage and 65 

membrane lipids) (Endo et al., 2011). Furthermore, the non-lipid components (e.g., proteins and 66 

serum) could also be a significant accumulation phase for organic compounds, especially for the 67 

H-bond donor compounds (Endo et al., 2012). More importantly, correlations with KOW were 68 

expected to be valid only for restricted chemical domains. As attention on contaminants in the 69 

environment with more complex structures, like hormones, pharmaceuticals and surfactants 70 

grows, the task to go beyond KOW and explore more refined approaches to mechanistically 71 

modelling bioaccumulation is urgently needed. 72 

Much effort has been made for the exploration and development of poly-parameter LFER (pp-73 

LFER), which could account the contribution of different specific and non-specific inter-74 

molecular interactions (Abraham et al., 1994; Abraham et al., 2015). Underman et al. (2011) 75 

estimated the total sorption capacity of human body directly using the composite tissue/organ 76 

pp-LFERs, showing limited benefit (Undeman et al., 2011). This could be attributed to 77 

inappropriately using of single pp-LFER for partitioning to composite tissue/organ (e.g., blood, 78 

liver and brain), since the specific pp-LFERs of composite tissue/organ may only work well for 79 

the calibrated chemical. If a very diverse set of studied chemicals out of the calibration domain 80 

was applied, large errors may occur. For instance, very polar compounds, which may 81 
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predominately partition into the aqueous phase, may not work well in a biological phase 82 

calibrated by compounds mainly partitioning to lipid (Geisler et al., 2011). Thus, if different 83 

chemicals have different preferred phases within a composite material (e.g., fat tissue is a 84 

composite material mainly made up by water, neutral lipid, phospholipid and protein), a pp-85 

LFER needs to be established for individual type phase instead of the whole bulk compartment. 86 

However, the individual pp-LFERs for a separate biological phase were not available at that 87 

time. 88 

Recently, considerable studies have characterized different types of lipids, with regards to their 89 

interaction with chemical (Endo et al., 2011). Meanwhile, pp-LFERs for estimation of 90 

partitioning of neutral organic compounds to the biological phase have also been calibrated, e.g., 91 

storage lipids (Geisler et al., 2012), phospholipids (Endo et al., 2011), serum albumins (Endo 92 

and Goss, 2011a) and muscle protein (Endo et al., 2012).In addition,  preliminary evaluation has 93 

been carried out to directly compare partition coefficients to tissues calculated by pp-LFERs 94 

model and KOW-based models, indicating an order-of-magnitude approximation (Endo et al., 95 

2013). However, pp-LFERs have not been tested for the estimation of partition coefficients for 96 

non-mammalian animals such as fish (Endo et al., 2013). Consequently, a further step to explore 97 

their benefit for the prediction of bioaccumulation potential and interpretation of biomonitoring 98 

results is desirable. 99 

The main objective of this study was to explore the influence of implementing pp-LFERs on the 100 

estimation of bioaccumulation potential in different types of fish model. Fish were used a 101 

reference biota due to their important role in daily human diet and the fact that they act as an 102 

essential biosorbent for organic chemicals. Additionally, enough data availability exists for 103 

model evaluation compared to other animals. In this study, two types of fish model: a one-104 

compartment fish model (Arnot and Gobas, 2004) and a multi-compartment physiologically 105 

based toxicokinetic (PBTK) model (Nichols et al., 1990) were set up with incorporated sp or pp-106 

approach. Differences between model outputs were evaluated, and predicted BCFs were used to 107 

be compared with measured BCFs. The modelling uncertainty and implications for research and 108 

regulatory practices with regard to chemical risk assessment are also discussed. 109 

2 Methods 110 

2.1 General approach 111 

Two types of mechanistic fish model were selected in this study, the one-compartment fish 112 

model (Arnot and Gobas, 2004), which assumes the chemical concentration is the same 113 

throughout the organism, and the multi-compartment PBTK model (Nichols et al., 1990), which 114 

considers chemical concentration may differ between various organs and tissues. Their selection 115 

in the chemical risk assessment depends on the question being addressed and the ease of data 116 
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collection under different scenarios (Landrum et al., 1992). The one-compartment model is 117 

suitable for preliminary risk assessment with simple inputs, while the multi-compartment model 118 

is preferred in higher-tier assessment to quantify organ-specific concentration. These two 119 

representative models were implemented under both traditional sp-LFER (traditional KOW -120 

driven) and newly-developed pp-LFERs to explore their performance in term of BCF prediction. 121 

The only difference between the two approaches is the way of calculating partition coefficients 122 

to tissues/organs. All other equations and parameterizations were identical in the two modelling 123 

approaches. Firstly, both models were run using a set of chemicals with measured descriptors. 124 

The potential error in the measurement of chemical descriptors could be eliminated by using the 125 

same chemical descriptors for both approaches. Then the compiled dataset with measured BCFs 126 

was used as the endpoint to compare with the model predictions. The ionization was not 127 

considered in this evaluation process. 128 

2.2 General fish model 129 

2.2.1 One-compartment model 130 

In the one-compartment model, fish was described as a well-mixed compartment and thus the 131 

target chemical is homogeneous in the whole fish body. In this type model, KOW was regarded as 132 

a surrogate of lipid to quantify partition process chemical concentration in fish (Cb, kg kg-1) 133 

could be modelled using following first-order equation: 134 

dCb/dt=kuCw-keCb    (1) 
  
where ku is the uptake rate constant via gill ventilation (L/kg d), Cw is the truly dissolved 135 

chemical concentration in the water column (kg L-1). ke is the total elimination rate constant (d-1), 136 

including respiratory exchange back to water (kw), fecal egestion (kf), biotransformation (km) and 137 

grow dilution (kg). In this study, the organism was assumed to be fed completely “clean” food 138 

during the entire exposure period. Thus dietary uptake was ignored. But fecal egestion was 139 

included to account for redistribution of the target compound between the organism and its gut. 140 

The detailed parameterization was illustrated in Table S1. The steady-state condition was 141 

assumed. So BCFs was used to compare the difference between predicted and observed values. 142 

Under steady state (dCb/dt=0), chemical concentrations in the organism and BCF could be 143 

calculated by: 144 

Cb=kuCw/ke  (2) and BCF=Cb/Cw=ku/ke (3) 145 

In all calculations, the diet was assumed to be 1.5% total lipid (1.2% neutral lipid, 0.3% 146 

phospholipid for pp-LFER calculation), 15% non-lipid organic matter (NLOM) and 83.5% 147 

water (Armitage et al., 2013). Mass-based tissue fractions were converted to volume-based 148 
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tissue fractions assuming densities of 0.9, 0.9, 1.0 and 1.0 L kg-1 for neutral lipid, phospholipid, 149 

NLOM and water, respectively. 150 

2.2.2 Multi-compartment PBTK model 151 

Chemical accumulation by fish can also be simulated by the physiologically based toxicokinetic 152 

(PBTK) fish model developed by Nichols and co-workers, which treats whole fish with 153 

individual compartments, like adipose, liver, kidney separately (Nichols et al., 1990). It is 154 

particularly useful to predict chemical concentration when a specific tissue/organ is the 155 

dominant site of action. The rainbow trout was used as a reference fish, due to it is used as a 156 

standard fish in many studies and has relatively abundant data. Detailed parameterizations were 157 

presented in Table S2 but are also presented elsewhere (Nichols et al., 2007). The amount of the 158 

chemical in each compartment is calculated: 159 

dAi/dt=Qi ×(Cart-Cv) 

 

(4) 

where Ai is the chemical amount in compartment i (µg), Qi is the arterial blood low to 160 

compartment i (L h-1), Cart is the chemical concentration in arterial blood (µg L-1), Cvi is the 161 

chemical concentration in venous blood after compartment i (g L-1). 162 

Cb=∑Ai/BW 

 

(5) 

where Cb is the average chemical concentration in the whole fish body (µg kg-1), ∑Ai is the 163 

chemical amount in all compartments (µg), BW is the body weight of fish (kg). 164 

In order to facilitate the comparison, the PBTK model employed several empirical relationships 165 

given by (Arnot and Gobas, 2004), including the calculation of Cwd (dissolved chemical 166 

concentration in water), Cd (chemical concentration in diet), Gv (total ventilation volume) and 167 

partition coefficient between fish and water (Kfish/water). The dietary pathway was ignored in both 168 

models with assuming only ingesting completely “clean” food. The considered compartment 169 

includes the liver, fat, kidney, richly perfused compartment and poorly perfused compartment 170 

for rainbow trout (Stadnicka et al., 2012).  171 

2.3 Biotransformation 172 

In general, models require metabolic biotransformation information to improve estimation for 173 

chemicals that are subject to biotransformation (Arnot et al., 2008). Even slow rates of 174 

biotransformation may significantly affect bioaccumulation in fish (Mackay et al., 2013). So the 175 

treatment of biotransformation was considered and described in detail as below for the two 176 

types of fish model. However, the measured data and available models for estimating 177 

biotransformation rates (both whole body and tissue-specific) are extremely limited. The 178 
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extrapolation approach described below is just a first approximation and should be used with 179 

caution due to the existence of high uncertainty. 180 

2.3.1 One – compartment model 181 

For the one-compartment model, the experimental biotransformation rate constant (km) was 182 

selected preferentially to predicted values from BCFBAF in EPISuite (US EPA, 2012), which 183 

was normalized to a 10 g fish at 15 ℃. These were converted to mass and temperature specific 184 

km,x value as: 185 

kM, X =kM (WX/ WN)-0.25×exp (0.01×(TX-TN)) 

 

(6) 

where Wx is the study-specific mass of the organism (kg), WN is the normalized mass of the 186 

organism (0.01 kg), Tx is the study-specific temperature, TN is the normalized water temperature 187 

(15 ℃). 188 

2.3.2 Multi-compartmental model (in vivo-in vitro exploration) 189 

For the PBTK model, the whole-body metabolism rate km was from the EPISuite database (US 190 

EPA, 2012) was used to back-calculate the metabolism rate. The experimental values were also 191 

preferred. Thus, the hepatic clearance (CLH, L h-1 kg-1) was expressed as below and was 192 

normalized to the weight of fish: 193 

CLH=Km×Vd,blood 

 

(7) 

where the Vd,blood (L kg-1) is the apparent volume of distribution, referenced to the chemical 194 

concentration in mixed blood. This could be regarded as the sorption capacity of the fish 195 

relative to that of blood, and can be approximated by dividing the Kfish-water by Kblood-water (Nichols 196 

et al., 2006). The rate of amount metabolized in the liver (RAMl, µg h-1) was calculated as the 197 

product of the chemical concentration in the artery (Cart, µg L-1) and the hepatic clearance (CLh, 198 

L h-1) (Haschek et al., 2013). If the rate of biotransformation is very high, then the CLH is rate-199 

limited by the total blood flow to the liver (Nichols et al., 1990). This is just a first 200 

approximation of extrapolation of biotransformation rates, since it will be affected by many 201 

factors, e.g., the extrahepatic metabolism and protein binding (Nichols et al., 2007). 202 

2.4 General pp-LFERs 203 

Poly-parameter linear free energy relationship (pp-LFERs) are multiple linear regression models 204 

that use several solute- or sorbate-specific descriptors as independent variables (Endo and Goss, 205 

2014a). There are three widely used forms of pp-LFERs expressed as:  206 

log K =c+sS+aA+bB+vV+eE     (8) 
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log K =c+eE+sS+aA+bB+lL (9) 

log K=c+sS+aA+bB+vV+lL (10) 
where K is the partition coefficient between two phases. Equation (8) is used for partitioning 207 

between a condensed phase and a gas phase, and Equation (9) is used for partitioning between 208 

two condensed phases. The capital letters stand for the chemical descriptors: S refers to 209 

dipolarity/polarizability, A and B are the hydrogen bond acidity and basicity, L is the logarithm 210 

of the partition coefficient between hexadecane and air, E is the excess molar refraction (cm3 211 

mol−1/10), and V refers to the McGowan volume (cm3 mol−1/100). The lower cases letters s, a, b, 212 

v, and l are regression coefficients, which indicate the complementary properties of the 213 

partitioning system. The Equation (10) uses V and L and has the advantage of wider application 214 

to organosilicons and highly fluorinated compounds (Endo and Goss, 2014b). It is therefore 215 

preferred to use. The selected pp-LFERs in this study were summarized in Table 1. It is 216 

generally expected that the extrapolation of a model beyond its calibrated domain may cause 217 

larger prediction errors than that would be expected for interpolation. Special caution should be 218 

taken for the serum albumin, whose fitting to data was not as good as other biological systems 219 

(Endo and Goss, 2011b). The ranges of individual descriptors used in each equation are 220 

summarized in Table S5 for each biological system in this study. 221 

Table 1. Selected pp-LFER system coefficients used for the calculation of partition coefficients 222 
(L/L), the partition coefficients between storage lipid /phospholipid and water were chosen the 223 
ones calibrated with Equation (10). 224 

Partition 

coefficients 

c e s a b v l n SD R2 T, 

℃ 

Ref 

Octanol-water 0.34 - -1.41 -0.18 -3.45 2.41 0.43 314 0.15 0.988 25 (Goss, 2005) 

Storage lipid-

water 

0.52 - -1.60 -1.92 -4.16 2.04 0.58 250 0.20 0.99 37 (Endo and 

Goss, 2014b) 

Muscle protein –

water 

-0.94 - -0.59 0.21 -3.17 2.13 0.33 46 0.23 0.94 37 (Endo et al., 

2012) 

Phospholipid-

water 

0.38 - -0.94 0.05 -4.10 2.00 0.49 134 0.31 0.97 37 (Endo and 

Goss, 2014b) 

Bovine serum 

albumin-water 

0.35 - -0.46 0.20 -3.23 

 

1.84 0.28 82 0.41 0.79 37 (Endo and 

Goss, 2011b) 

ΔUAW, kJ/mol 13.31 9.91 -2.84 32.01 41.82 - 6.35 368 3.68 0.96 - (Mintz et al., 

2007) 

ΔUOA, kJ/mol 6.49 1.04 -5.89 53.99 8.99 - 9.18 138 2.66 0.99 - (Mintz et al., 

2007) 

 225 
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2.5 Implementation of pp-LFERs 226 

2.5.1 Incorporating pp-LFERs in the one-compartment model 227 

In the one-compartment model, the partition coefficient between fish and water is quantified as 228 

(Arnot and Gobas, 2004): 229 

Kfish/water= ( flipid/ Dwater+ fNLOM×β/DNOLM) Kow+fwater 

 

(11) 

where flipid, fNLOM and fwater are the volume fractions of lipid, non-lipid organic matter (NLOM) 230 

and water, as quantified in Table S2; β is the proportionally constant of NLOM to octanol, Dwater 231 

and DNOLM are the density of lipid and non-lipid organic matter.  232 

Replacing the sp-LFERs by pp-LFERs, the partition coefficients are modified as: 233 

Kfish/water=(Kstorage lipid/water×fstorage lipid/Dlipid)+ (K phospholipid/water×fphospholipid/Dphospolipid)+  

(K protein/water×fprotein/Dprotein+ fwater/Dwater) 

 

(12) 

where fstorage lipid , fphospholipid and fprotein are the volume fractions of storage lipid, phospholipid and 234 

protein of fish defined in Table S3, K values indicate the individual partition coefficients 235 

between target biological medium and water, and D is the corresponding density of each tissue. 236 

The densities of storage (neutral) lipid, phospholipid, protein and water are assumed to be 0.93, 237 

1, 1.4 and 1 kg L-1 (Endo et al., 2013). A similar treatment was performed for the partition 238 

coefficient between gut and fish (Kgut-fish). 239 

2.5.2 Incorporating pp-LFERs into PBTK model 240 

In the PBTK model, the Kblood-water was derived as (Bertelsen et al., 1998): 241 

Kblood/water=100.72× log Kow +1.04 Log (αb)+γb 

 

(13) 

where the αb is the lipid content of blood tissue, γb is the water content of blood tissue and other 242 

partition coefficients Korgan/blood, including Kliver/blood, Kfat/blood, Kmuscle/blood and K kidney/blood, are 243 

calculated from Kblood/water as: 244 

Korgan/blood= (100.72×Log Kow +1.04 Log (αi)+0.86+γi)/ Kblood/water 

 

(14) 

Where the αi and γi are the lipid and water contents in the individual organ. The composition of 245 

each organ was as assumed to the defaults for rainbow trout in the original PBTK model. But in 246 

pp-LFER PBTK model, the Korgan/water was calculated based on the biological composition of 247 

each organ, mainly containing neutral lipid, phospholipid, protein and water. The specific 248 

composition of each biological compartment (e.g., blood, kidney and liver) is presented in Table 249 

S4. It was assumed here that total lipid only contains neutral lipid and phospholipid. The 250 

fraction of bovine serum albumin (BSA) was selected from a study based on mammals (Endo et 251 
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al., 2013). The treatment of fat content in lean tissues (all compartments exclude the fat) and the 252 

temperature dependence of partitioning is detailed in the supporting information. The bovine 253 

serum albumin was only considered to be present in the blood tissue, since its existence is fairly 254 

minimal and its variation may increase the model uncertainty. The Korgan/blood was calculated in 255 

the pp-LFERs approach as: 256 

Korgan/blood=K organ/water /K blood/water 

 
       

 

(15) 

 257 

2.6 Solute descriptors 258 

Experimentally measured solute descriptors are available for thousands of chemicals and have 259 

been compiled as a free-of-charge database (http://www.ufz.de/index.php?en=31698). The 260 

initial chemical dataset including 235 compounds (Brown and Wania, 2009), were selected 261 

from 1460 individual chemicals and considered to fall within the range environmentally 262 

relevant compounds. Several updated experimental values of descriptors were also added from 263 

the recently published literature to cover more polar and complex chemicals, including 264 

organosilicon compounds, highly polyfluorinated chemicals, flame retardants (e.g., 265 

polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl 266 

phosphates), pesticides, polychlorinated biphenyls (PCBs) and heterocyclic aromatic as well as 267 

nitroaromatics compounds (Geisler et al., 2011; Stenzel et al., 2013a; Stenzel et al., 2013b). 268 

Ionization was not taken into account in this study, as the pp-LFER approaches to ionic 269 

chemicals are still a subject of ongoing research. No successful application to environmental 270 

and biological processes has been reported so far (Endo and Goss, 2014a). Selected chemicals 271 

were categorized into different polarity according to the A and B values defined here: nonpolar 272 

(both A and B ≤ 0.2), monopolar (including H-bond acceptor (A >0.2 but B <0.2) or H-bond 273 

donor (A <0.2 but B>0.2)), and bipolar (either A or B 0>0.2) compounds. Their individual 274 

impact on pp-LFERs is characterized. 275 

Two subsets of compounds were added to the whole dataset. One is the chemicals with strong 276 

H-donor function (A>0.3), because substantial differences in the “aA” term have been observed 277 

for the pp-LFER equations for octanol and storage lipids for this type of chemical. Thus,  278 

partitioning to octanol and storage lipid are expected to be different, which contrasts with most 279 

typical assumptions that the octanol is a good surrogate for lipids. The other subset contained 280 

complex compounds with more than one polar functional group per molecule. The selected 281 

compounds cover hormones and hormone active compounds (e.g., estrone, bisphenol A, 282 

phthalate esters), fungicides, herbicides and mycotoxins. The representative functional groups 283 

include alcohol, amide, carbonyl, nitrite, ester, epoxide and phenyl groups. Ignorance of 284 

http://www.ufz.de/index.php?en=31698
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ionization could potentially generate uncertainty, since the partitioning behaviour of ionic 285 

species is different from neutral species (Abraham and Acree, 2010).  286 

2.7 Compilation of measured BCFs dataset 287 

The main source of observed BCF data was extracted from Arnot and Gobas. (2006). It contains 288 

multiple BCF measurements of chemicals in different fish species with varying physiological 289 

conditions, which reflect realistic variations in BCFs across different fish species and system 290 

conditions. The dataset mainly contained nonpolar compounds and was firstly used to test the 291 

model performance for the one-compartment model. The majority of data points are from 292 

studies using common carp (Cyprinus carpio), fathead minnow (Pimephales promelas), 293 

zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). 294 

Secondly,  chemicals with observed BCFs from studies in rainbow trout were extracted to a 295 

subset of 41 distinctive compounds and 355 data points, which was used to evaluate the PBTK 296 

model requiring specific physical fish information. In addition, other publicly available data 297 

were also compiled to cover additionally observed BCFs for complex polar chemicals. Finally, 298 

21 additional compounds were compiled from the Pesticide Property Database 299 

(http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm) and other available literature. 300 

It is ideal to have study-specific experimental information about water temperature, fish weight, 301 

and lipid content to predict individual BCF values. However, many studies did not record such 302 

information. Consequently, a value of 5% was used as a first approximation of whole body lipid 303 

content (Arnot and Gobas, 2006). All selected experimental BCF values were lipid normalized. 304 

2.8 Inter-comparison of models 305 

A difficult task is to systematically compare the results from pp-LFER and sp-LFER models. 306 

One approach is to compare the predicted results directly (Gotz et al., 2007). The another is to 307 

use space maps to present the variations in models outputs as a function of partition coefficients, 308 

like KAW, KOA and KOW (Brown and Wania, 2009). Firstly, the entire dataset was used to 309 

compare the predicted values of partition coefficients calculated by sp/pp-approach and the 310 

predicted concentration in fish. Individual contributions of different forms of intermolecular 311 

interaction to partitioning from organs/tissues to water can be compared to explore the dominant 312 

interactions. The statistical analysis was conducted using average model bias (MB) and average 313 

absolute model bias (AMB) to assess model performance as calculated below: 314 

𝑀𝑀𝑀𝑀 =
∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑀𝑀𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐸𝐸

)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

(16) 

http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm
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𝐴𝐴𝑀𝑀𝑀𝑀 =
∑ 𝐴𝐴𝑀𝑀𝐴𝐴 �𝑙𝑙𝑙𝑙𝑙𝑙 (𝑀𝑀𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐸𝐸

)�𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

(17) 

where BCFM is the modelled bioconcentration factor, BCFE is the measured bioconcentration 315 

factor, n is the number of observations, ABS means the absolute deviation. MB represents the 316 

average factor by which the model output deviates from the observation. It is useful to indicate 317 

the direction of any systematic bias. The root mean square error (RMSE) and the square of 318 

correlation coefficient (R2) were also used to characterize model performance. 319 

In this study, the only difference between model inputs is the replacement of octanol-based sp-320 

LFER with pp-LFERs. Therefore, any observed differences will be attributable to this 321 

difference. The experimental errors in measuring the partitioning coefficients were not 322 

considered in this study. In order to reduce the uncertainty from the measurement of KOW, KOW 323 

used in sp-LFERs was also derived from pp-LFERs instead of using measured KOW values. 324 

3 Results & Discussion 325 

3.1 Comparison of outputs by the sp/pp-approaches 326 

In order to identify the types of chemicals for which the implementation of pp-LFERs would 327 

make a significant difference, the predicted concentration of fish and partition coefficients were 328 

compared for chemicals possessing a wide range of partitioning properties using the solute 329 

descriptors. The results are presented in chemical partitioning plots as a function of chemicals’ 330 

octanol-air-water partitioning properties, described by KAW and KOA (Figure 1). In addition, the 331 

influence of the polarity is also illustrated in Figure 1 (a, b). The different categories of nonpolar, 332 

monopolar and bipolar compounds were defined based on the descriptor values of A and B 333 

defined in Section 2.6. 334 
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 335 

Figure 1. Comparison of calculated logarithmic fish-water partition coefficients (a) and blood-336 
water partition coefficients (b) by pp-LFERs and sp-LFERs values with different defined 337 
polarities. The multiple colours and symbols represented different polarities defined by A and B. 338 
For nonpolar compounds, both A and B ≤0.2 (N=156); for monopolar compounds, either A or B 339 
is >0.2 (N=224); for bipolar compounds, both A and B >0.2 (N=108). Chemical partitioning 340 
space plots indicated the ratios of partition coefficient between water and whole fish (c) also 341 
blood (d); concentrations in fish calculated using sp and pp approach in one-compartment model 342 
(e) and in multi-compartment PBTK models (f). Different colours indicated the magnitude of 343 
the quotient. The diagonal lines indicate the log KOW equal to 0, 4 and 7. 344 

 345 
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3.1.1 Comparison of Kfish-water by the sp/pp-approaches 346 

In general, the log Kfish/water was estimated consistently via both sp and pp approaches. 99% of 347 

selected substances the observed differences was less than 1 log unit. Compounds with different 348 

polarities indicated slightly different deviations. For all nonpolar compounds in the dataset, the 349 

Kfish/water calculated by pp-LFERs was larger than that calculated by sp-LFERs. However, the 350 

compounds with bipolar functional groups tended to show a larger difference between Kfish/water 351 

calculated by these two approaches. The largest difference of log Kfish-water was observed for 352 

bis(2-ethylhexyl) hydrogen phosphate, up to 1.5 log unit, with a strong H-bond donor/acceptor 353 

(A=0.96, B=1.12). Its log Klipid/water was less than log Kow by 2 log units, leading to the large 354 

deviation of calculated Kfish-water. For such compounds, there may be a chance to overestimate 355 

the bioaccumulation potential by directly using KOW.  356 

When looking at the dependency of deviation with the different range of log KOW (Figure 1-c), 357 

the discrepancy also gradually raised with increased hydrophobicity. For hydrophilic 358 

compounds (log KOW <0), both approaches agreed well with each other within about 10%. For 359 

chemicals with log Kow>4 and log KOA >8, the pp-approach generally predicted Kfish-water on 360 

average two times higher than that predicted by sp-approach. But the deviation did not 361 

consistently propagate to the predictions of concentration in fish. The differences between 362 

predicted concentrations by both approaches were indicated by a factor of 10 for all compounds 363 

in the partitioning map (Figure 1-e). Both approaches agreed reasonably well for hydrophilic 364 

(log Kow<0) and highly hydrophobic compounds (log Kow>7) with the quotient between 0.9-365 

1.1, while the deviation occurred on the calculation of Kfish-water was up to 35 times. The 366 

underlying explanation could be that Kfish-water has different extent of impact on the 367 

determination of BCFs, which is dependent on chemical hydrophobicity. For instance, Kfish-water 368 

was observed to have a greater contribution to the bioaccumulative potential for hydrophobic 369 

chemicals with a high tendency for bioaccumulation (Kuo and Di Toro, 2013b). While, 370 

partitioning to organic carbon (bioavailable portion) contributed more to the BCF values for 371 

highly hydrophobic compounds (Kuo and Di Toro, 2013b). 372 

3.1.2 Comparison of Kblood-water by sp/pp-approaches 373 

Greater differences were observed for the log Kblood/water calculated by the sp-LFER and pp-374 

LFERs approaches, indicating increased divergence with higher partition coefficients between 375 

blood and water for compounds with different polarities. 72% of selected substances fell within 376 

a difference of less than 1 log unit. In the total data set, the largest difference up to 2.5 log units 377 

was found for 1, 2, 3, 4, 5, 6, 7, 8-octachloronaphthalene in the category of nonpolar compounds. 378 

This compound has a extremely high L=12.88, leading to higher partition coefficients between 379 

biological tissue and water than that between octanol and water. 380 
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A different trend was observed for the relationship between hydrophobicity and the deviations 381 

of the predictions by sp-LFERs and pp-LFERs models than that for the Kfish/water. For 86% of the 382 

selected substances, the pp-LFERs model estimated higher blood-water partition coefficients 383 

than the sp-LFERs model. Larger deviations were observed for increasing hydrophobicity for all 384 

three types of compounds. Especially for nonpolar compounds, the deviation between the sp-385 

LFERs and pp-LFERs models indicated a positive relationship between the log KOW and a high 386 

correlation coefficient of R2=0.96 was observed between them (Figure S1-a). A higher deviation 387 

resulting from incorporating pp-LFERs were expected for polar compounds than for nonpolar 388 

compounds. The underlying reason for this could be caused by the inclusion of protein in the 389 

pp-approach, which has large deviation (1-2 log units) than Kstorage lipid-water for nonpolar 390 

compounds and the deviation increased with hydrophobicity (Endo et al., 2012). The absolute 391 

values of Ll+Vv terms, which describe van der Waals interactions, was plotted against 392 

hydrophobicity, since they have a fairly high cross-correlation. The sum of Ll and Vv 393 

consistently rose in all biological systems (illustrated in Figure S1). The divergences grew 394 

between the biological compositions and octanol with increased hydrophobicity. Therefore, the 395 

greater deviation probably occurs as a consequence of not properly capturing the behaviour of 396 

van der Waals' forces for chemicals with high values of L. The divergence between predicted 397 

concentrations in PBTK model is similar to that from the one-compartment model, since both 398 

models employed several identical empirical relationships, including the calculation of 399 

dissolved chemical concentration and chemical concentration in diet (Arnot and Gobas, 2004). 400 

 401 

 402 

Figure 2. Contribution to total partition capacity by different biological tissues with the full 403 
range of KOW: (a) individual contribution to the total Kfish/water; (b) individual contribution to the 404 
total Kblood/water. 405 

 406 
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3.2 Contribution to the total sorption capacity 407 

In order to explore the importance of neutral lipids, phospholipids (membrane), proteins, bovine 408 

serum albumin (BSA) and water as a sorptive matrix, the contribution of each biological phase 409 

calculated via sp-LFERs and pp-LFERs were plotted as a function of log KOW in Figure 2. 410 

Differences between these two approaches were due to the differences of the considered 411 

sorptive matrixes. The greatest disparity is caused by the tissue that makes the largest 412 

contribution to the total partitioning capacity. For the one-compartment fish model,  the sp-413 

LFERs model only considered neutral lipid, water and NLOM (a relative sorptive capacity 414 

proportional to lipid). Therefore, the contribution of each biological absorbent to the total 415 

partitioning capacity presented a continuous trend the change of chemical hydrophobicity 416 

(illustrated in Figure 2-a). However, the shifting trend was more complex for the pp-LFERs 417 

model, with additional consideration of protein and phospholipid without directly relating to 418 

octanol. It is obvious that the contributions of water and lipid were consistent for hydrophobic 419 

and hydrophilic chemicals for both models, since the water and lipid are the absolute 420 

predominant sorptive matrixes, respectively. For the chemical with moderate KOW values (2<log 421 

KOW<6), the phospholipid and protein made important contributions, up to 39% for protein and 422 

61% for phospholipid, respectively. This also helps to explain that the large deviation in 423 

calculated partitioning between fish/blood and water for a chemical with moderate 424 

hydrophobicity (Figure 1-c). 425 

For the PBTK models employing pp-LFERs, the individual contribution was also calculated 426 

between blood and water for the whole range of KOW in Figure 2-b. A similar trend was 427 

observed for predicted blood-water partitioning as the comparison for the Kfish/water, which 428 

continuously change with the varied KOW values. However, the pp-LFERs model predicted more 429 

dispersed values in the individual biological compartment. The protein and BSA also 430 

contributed to the total blood-water partitioning up to 72% and 41%, respectively Their 431 

individual contribution did not indicate a consistent shift with the increased log KOW, especially 432 

for protein, whose points were scattered on a wide range of log KOW between 2 and 9. This 433 

could be due to the fact that hydrophobicity is not a perfect indicator for absorption to protein. 434 

Take an example, eicosanoic acid is the most hydrophobic compound in the database with log 435 

Kow=9.47. However, protein contributes 32% to the total blood-water partition coefficients. 436 

BSAcontributed most in the moderate range of log KOW=1 ~ 5, based on the currently used 437 

chemical set. Phospholipids also contributed between 10~20% for compounds with Log KOW >1 438 

peaking at about log KOW=4~5. It is noteworthy that the regression relationship used for the 439 

calculation of blood-water partition coefficients, was only based on compounds with a limited 440 

log KOW range from 1.46 to 4.04. Thus, any compounds outside this range may cause potential 441 

errors and should be used with caution (Bertelsen et al., 1998; Nichols, 2002). This relationship 442 
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is still commonly used in PBTK modelling (Stadnicka et al., 2012). Evaluation of the regression 443 

equation to describe tissue/water partitioning is out of the scope of this study. 444 

From the comparison of the contribution to the total fish/blood-water partition coefficients 445 

above, it also could help to explain how the difference occurs. In the range of log KOW from 2 to 446 

6, protein models an important contribution to both partition coefficients. Using octanol as 447 

equivalent to lipid could overestimate the contribution of lipid, but the sp-LFER approach could 448 

also underestimate the contribution of protein. As a result, the total partition coefficient 449 

calculated by the sp and pp-approaches could be expected to be different within a reasonable 450 

range, since the underestimation and overestimation could proportionally cancel out with each 451 

other. The similar result was also observed in comparing the lipid-octanol model and pp-LFERs 452 

model to predicting partition coefficients of tissue-waster (Endo et al., 2013).  453 

3.3 Comparison with experimental data 454 

3.3.1 One-compartment model 455 

There are 835 data points from fish species chosen from the experimental database for 110 456 

distinct compounds (Arnot and Gobas, 2006). The chemicals covered the KOW range from -0.15 457 

to 8.67. However, most data points fell in the log KOW range between 3~5 as illustrated in 458 

Figure S3. In order to examine the magnitude of the deviation correlated by the hydrophobicity 459 

between predictions and measurements, the impact of applying pp-LFER equations to the 460 

individual ranges of log KOW and the whole dataset was explored and presented in Table 2. In 461 

general, the pp-LFER model performed slightly better in terms of predicting BCF, with 462 

increased coefficient of determination and absolute model bias for the whole dataset. The 463 

deviations between the sp and pp-LFERs models prediction, did not show a pronounced KOW 464 

dependency. For compounds with log KOW < 2, both models underestimated BCFs and the 465 

divergence increased with increased hydrophobicity. The underestimation is most severe for log 466 

KOW <1 with an average 2.9 log units for both approaches. The pp-LFERs model did generally 467 

improve the coefficient of determination, for compounds with log KOW <3. This is because the 468 

calculation of Kfish/water is predominantly contributed by water (illustrated in Figure 2). Thus the 469 

effect of replacing sp with pp-LFERs is minimal. Therefore, there is no clear advantage 470 

observed for using pp-LFERs model instead of sp-LFERs for compounds with log KOW < 2. For 471 

the middle range of log KOW from 4 to 5, the BCFs predicted by pp-LFERs were found to getter 472 

fit observed values compared the sp-LFERs model. This is due to a better quantification of 473 

partitioning behaviour of polar compounds such as phenols in this range,  by adding separate 474 

consideration of protein and phospholipid, which makes signification contribution in such case. 475 

For very hydrophobic compounds (7<log KOW <9), both models predicted the selected BCFs 476 

reasonably well(R2=0.80-0.96). This is because the lipid is the main sorbing matrix in this KOW 477 
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range. In addition, it has been demonstrated that depuration kinetics is more important for 478 

hydrophobic chemicals with higher bioaccumulation potentials while partitioning to dissolved/ 479 

particulate organic carbon (the bioavailable part) plays an important role for highly hydrophobic 480 

chemicals (Kuo and Di Toro, 2013b). Therefore, improved partition coefficients may not greatly 481 

influence the model performance using the pp-LFERs model in the high log KOW range (7~9). 482 

On the other hand, chemicals with low bioaccumulative potential (log BCF≤ 2) are generally 483 

mainly determined by fish-water partitioning coefficients (Kbw) and thus more pronounced 484 

improvement would be expected (Kuo and Di Toro, 2013b).  Consequently, the comparison 485 

should be made with caution for the very hydrophilic and super-hydrophobic compounds, due 486 

the limited data points. 487 

 488 

Table 2. Statistical analysis of comparisons between model predictions and observations for 489 
chemicals with classified Kow ranges. 490 

Log KOW 

range 

sp-LFER pp-LFER 

R2 RMSE MB AMB R2 RMSE MB AMB 

<1 0.65 2.91 -2.37 1.66 0.69 2.91 -2.37 1.65 

1-2 0.18 1.01 -0.88 1.01 0.39 1.09 -0.87 1.06 

2-3 0.09 0.13 0.00 0.44 0.28 0.28 -0.11 0.37 

3-4 0.63 0.11 -0.01 0.39 0.57 0.11 0.03 0.39 

4-5 0.52 0.12 -0.15 0.39 0.71 0.07 -0.01 0.30 

5-6 0.45 0.07 0.25 0.73 0.48 0.09 0.43 0.74 

6-7 0.44 0.17 0.28 0.44 0.45 0.16 0.27 0.43 

7-8 0.96 0.08 0.33 0.33 0.96 0.09 0.35 0.35 

8-9 0.80 0.09 -0.28 0.37 0.80 0.09 -0.27 0.37 

Total 

 

0.72 0.14 -0.04 0.40 0.75 0.13 0.05 0.37 

 491 

3.3.2 PBTK model 492 

In total, 41 distinct compounds with 355 data points with log KOW from 2.4 to 8.7 for rainbow 493 

trout were selected. Results of statistical analysis are presented in Table 3 and Figure 3. Most 494 

compounds have low polarity, with relative small Aa and Bb values. Greater improvement was 495 

observed when pp-LFERs models were used in the PBTK model compared that in the one-496 

compartment model. This could be attributable to more pp-LFERs equations incorporated in the 497 

model, not only for the blood-water system, but also covering kidney, liver, and fat and water 498 

partitioning composed by varied biological composition. In the one-compartment model, sp-499 

LFERs were only replaced with the partition coefficients between whole body and water. The 500 
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KOW -driven sp-LFERs PBTK model tended to underestimate BCFs for 96% of the selected 501 

measurements. One underlying explanation could be that the partitioning behaviour could not be 502 

well characterized by means of octanol-water partitioning. Particularly for highly hydrophobic 503 

nonpolar compounds, the divergence increased with the increasing hydrophobicity as discussed 504 

in Section 3.1.2. 505 

When metabolism was included, the pp-LFER model also performed better in all the statistical 506 

analysis. All deviations fell within a factor of 10. A paired t-test was conducted to indicate 507 

whether there is a statistical difference (p<0.05). All the compounds fell within 1 log unit via 508 

incorporation of pp-LFERs equations. The correlation of determination was improved from 0.67 509 

to 0.80 while the absolute model bias (AMB) decreased by half from 0.68 to 0.34. The largest 510 

deviation occurred for octachloronaphthalene predicted by the sp-LFERs model, which also had 511 

the largest divergence when comparing the blood-water partition in the whole dataset discussed 512 

previously. This further supports the fact that sp-LFERs underestimated the blood water 513 

partitioning and potentially also partitioning to other biological compartments (kidney, liver and 514 

fat). However, both models tended to underestimate the BCFs for the whole dataset. This could 515 

be due the parameterization uncertainty, mainly from hepatic biotransformation extrapolated 516 

from the whole-body metabolism rate. It has been demonstrated that biotransformation may 517 

have a greater impact on the PBTK model than that in the one-compartment model, which 518 

results from the different structure of both models (Nichols et al., 2007; Stadnicka et al., 2012). 519 

 520 

Table 3. Statistical analysis of the comparison between model predictions of BCFs from the 521 
PBTK model and observations. 522 

 With metabolism Without metabolism 

Approach sp-LFER pp-LFER sp-LFER pp-LFER 

R2 0.67 0.80 0.38 0.54 

RMSE 0.29 0.09 0.22 0.14 

MB -0.66 -0.25 -0.39 0.02 

AMB 0.69 0.34 0.58 0.38 

Factor_10 86.20% 100.00% 89.30% 94.93% 
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 523 

Figure 3. Comparison between measured log BCF_ob with predicted log BCF using sp/pp-524 
approaches in the multi-compartment PBTK model. The dashed lines represent a factor of 10 525 
between the predicted and measured BCFs. 526 

 527 

3.4 Practical implications 528 

pp-LFERs model can potentially give more insights about the prediction of potential 529 

bioaccumulation. The impacts of using pp-LFEs were different in the one-compartment fish 530 

model and PBTK fish model. For the one-compartment model, pp-LFERs improved model 531 

performance for chemicals with log KOW from 4 to 5, via better quantifying the 532 

protein/phospholipid-water partition coefficients. However, the differences between predictions 533 

via sp-LFERs and pp-LFERs model are relatively small for the whole range of KOW. This is 534 

because better quantification of individual partitioning processes does not guarantee significant 535 

improvement overall. Besides, elimination kinetics could be the most important parameters in 536 

the determination of BCFs for highly bioaccumulative substances (Kuo and Di Toro, 2013a). As 537 

a consequence, such simplified models are generally incorporated in multimedia fate models 538 

and are used for the chemical screening and risk assessment. The sp-LFERs incorporated in 539 

one-compartment fish models is, therefore, good enough for these purposes.  540 

This situation could be different for the PBTK fish model, which offers more detailed 541 

information on organ-specific concentrations and which is potentially more insightful for 542 

understanding potential dietary exposure routes for target fish organs. The advantage of PBTK 543 

models over one-compartment models is the calculation of organ-specific concentration. It is 544 

important to understand specific pathways to target sites and bioaccumulation along food chains, 545 

if predators preferentially consume certain body parts (Stadnicka et al., 2012). Therefore, the 546 
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pp-LFERs model would clearly benefit from a better description and characterization of 547 

biological composition and water partition coefficients. Although the flawed regression 548 

equations used in this study are limited in terms of their applicable domains, the lipid was still 549 

not suggested as a good indicator to predict partition coefficients under this case as discussed 550 

above, particularly for very hydrophobic and polar compounds. In addition, the pp-LFERs 551 

model also could help with the extrapolation of partition coefficients in PBTK model to another 552 

fish species, if the biological composition in individual organ/tissues could be accurately 553 

quantified. 554 

3.5 Limitations 555 

In this study, all the values for solute descriptors were based on experiments, which have been 556 

reported in the literature for more than 2000 compounds and freely at 557 

http://www.ufz.de/index.php?en=31698. However, this could hamper its wide application if the 558 

solute descriptor values are not available for target compounds (Stenzel et al., 2013b). For the 559 

purpose of fast chemical screening, predictive methods only require molecular structure as 560 

desirable. Prediction models, such as ABSOLV, a commercial QSAR model that predicts the 561 

pp-LFER solute descriptors for compounds with SMILES notations (Stenzel et al., 2014), may 562 

be useful. This works well for chemicals with relatively simple molecular structures, but further 563 

development is needed for H-donor compounds and chemical with complex structures (Geisler 564 

et al., 2015). 565 

Ionization was not taken into account in this study, as pp-LFERs approaches for ionic chemicals 566 

are still a subject of ongoing research. No successful applications to environmental and 567 

biological processes have been reported so far (Endo and Goss, 2014a). However, since many 568 

complex/ multifunction chemicals may ionize in biota, there is a strong need for the 569 

investigation of ionic chemicals (Bittermann et al., 2016; Endo and Goss, 2014a). Meanwhile, 570 

the development of one-compartment models for ionic compounds has been performed and 571 

evaluated. This indicated improved model performance via consideration of partitioning 572 

processes to phospholipids (Armitage et al., 2013). In our study, phospholipids also appeared to 573 

play an important role in distribution. 574 

3.6 Conclusions 575 

Overall, pp-LFERs slightly outperformed sp-LFERs for the whole dataset in a one-compartment 576 

model, especially for compounds in the log Kow range 4~5. Greater improvement was found 577 

when pp-LFERs were incorporated into a multi-compartment PBTK model. The impact of pp-578 

LFERs incorporation could be further evaluated by the organic-specific 579 

concentrations/bioaccumulative potential. Therefore, for screening purposes, the sp-LFERs 580 

http://www.ufz.de/index.php?en=31698
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approach is probably good enough to quantify the main partition characteristics in most cases. 581 

For more detailed study aimed to understand toxicity pathways to target sites, or dietary 582 

exposure for predators preferentially consuming certain organs/tissues, the pp-LFERs would be 583 

suggested to incorporate in the PBTK model to improve the accuracy of the description of 584 

partition processes. 585 
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Treatment of fat content in lean tissues 
The lipid content of lean tissue (all compartments exclude the fat) was assumed not to depend 

on the lipid content of whole body (Nichols et al., 1990). So, the lipid content of lean tissue 

(lipid_lean) was calculated based on lipid fraction on each lean tissue (liver, kidney, richly 

perfused and poorly perfused). The richly perfused compartments mainly contain the gut, 

gastrointestinal tract, spleen and gonads. The lipid content in the gut was used to be 

representative of the lipid content in the richly perfused tissues, which was calculated following 

the same method and assumed the same diet input as the one-compartment model. Based on 

measured total lipid content (lipid_total) in each study, the volume of fat compartment (Vf) was 

expressed as (Stadnicka et al., 2012): 

Vf=BW× (lipid_total-lipid_lean)/(lipid_fat-lipid_lean) 

Bovine serum albumin was only considered to be present in the blood tissue, since its existence 

is fairly minimal and its variation may increase the model uncertainty. 

Temperature dependence 
The partition coefficients are typically measured at 37℃ for mammals or around 25 ℃ for the 

experimental condition. For predicting bioaccumulation in fish, partition coefficients need to be 

adjusted to the corresponding environmental water temperature. As a result, log KAW and log 

KOA were adjusted to the environmental concentration based on the enthalpies of partitioning 

(∆Hi) based on the van’t Hoff equation as: 

∆Hi=-(log Ki(t1)-log Ki (t2))×R×2.303/(1/t1-1/t2) 

But the relationship was less rarely developed for other biological phases. Only one study found 

was about the fat (Geisler et al., 2012). The equation for enthalpies of partitioning was fitted 

based on the descriptor combination L, S, A, B and V, but it’s is less diverse than that for log 

Kstorage lipid-water. According to the extrapolation, the log Klipid-water was calculated at 281K, which 

is very close to that at 310K. In practice, the temperature dependence for many compounds is 

small (Geisler et al., 2012). So the temperature dependence of other partitioning coefficients 

between biological phases and water are assumed to be independent of temperature in the range 

of fish body temperature. 
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Table S 1. Table 1 Parameters/equations used in the one-compartment bioaccumulation model 
for fish. 

Parameters Units Value/Equation References 

Dissolved 
organic carbon 

kg L-1 2.9×10-6 (Nichols et al., 2007) 

Particulate 
  

kg L-1 0.5×10-6 (Nichols et al., 2007) 

Bioavailable 
solute fraction 

- Φ=1/(1+Cpoc*Dpoc*αpoc*Kow+C
doc*Ddoc* αdoc*Kow) 

(Arnot and Gobas, 2004) 

Lipid 
 

 

- 0.92 (Arnot and Gobas, 2004) 

NLOM 
 

 

- 0.60 (Arnot and Gobas, 2004) 

Water 
 

 

- 0.70 (Arnot and Gobas, 2004) 

Dissolved oxygen 
 

mg L-1 7.1 (Arnot and Gobas, 2006) 
 

Table S 2 The biological composition in fish, following (Armitage et al., 2013; Arnot and 
Gobas, 2004; Hendriks et al., 2005), and assumed the none-lipid organic matter was replaced by 
protein and phospholipid. 

Fish Neutral lipid,% Phospholipid, % Protein,% Water,% 

volume fraction, m3 m-

 

4 1 15 80 
 

Table S 3. Parameters used in the PBTK fish model, the scaled parameters were the same 
Nichols and his co-workers (Nichols et al., 1990). 

Parameters Values/Equations References 

Cardiac output (Qc, L h-1) Qc=(0.23×Twater-0.78) × 
(BW/500)0.1×BW0.75 

(Erickson and 
Mckim, 1990) 

Effective respiratory volume 
(Qw, L h-1) 

Qw=0.65*Gv (Nichols et al., 
2007) 

 

Table S 4 Composition of blood and other organs for the rainbow trout used in the PBTK model. 

Organ/tissue Total 
lipid,
% 

Neutral 
lipid,% 

Phospho
lipid,% 

Serum 
albumin,
% 

Protein,
% 

Water,
% 

References 

Blood 1.4 0.7 0.7 1.6 13.1 83.9 (Bertelsen et al., 
1998; Endo et al., 
2013) 

Fat 94.2 93.4 0.8 - 0.8 5.0 (Bertelsen et al., 
1998) 

Liver 4.5 1.8 2.7 - 20.9 74.6 (Bertelsen et al., 
1998) 

Kidney 5.2 3.7 1.5 - 15.9 78.9 (Bertelsen et al., 
1998) 
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Poorly 
perfused 
compartment 

3.0 2.2 0.8 - 20.1 76.9 (Bertelsen et al., 
1998) 

Richly 
perfused 
compartment 

0.38 0.31 0.08 - 19.2 80.4 Calculated from 
one-compartment 
model 

 
 

Table S 5. The range of each chemical descriptor in the calibration procedures for used 
biological systems. 

Biological 
system 

Range of each descriptor in the calibration chemical set 
S A B L V Ref 

Neutral lipid-
water 

0.3~1.72 0~0.76 0~0.97 -0.82~8.83 0.25~2.36 (Geisler et al., 
2015) 

Phospholipid-
water 

0~3.29 0~1.14 0~1.63 0.97~13.26 0.31~2.62 (Endo et al., 
2011) 

Muscle 
protein-waster 

0~1.59 -0.03~0.69 0~1.28 3~10.48 0.793~2.274 (Endo et al., 
2012) 

Serum 
albumin-water 

0 ~2.05 
 

0~0.99 0~1.38 1.75~13.26 0.715~2.281 (Endo and Goss, 
2011) 

 

Additional results 

 

Figure S 1. The dependency of predicted deviations on Kblood-water (Kbw) between pp-LFERs and 
sp-LFERs and the varied log Kow values for nonpolar compounds in the dataset (both A and B 
≤0.2, N=156) (a) and the absolute value of Ll+Vv terms in considered biological tissue and 
octanol-water (b). 
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Contributions of molecular interactions 

 

Figure S 2. Mean contribution of the absolute value of each descriptor in pp-LFERs to the sum 
of the absolute values of all terms for octanol-water, protein-water, phospholipid-water and 
neutral lipid-water for chemical with a) whole dataset (n=498) b) log Kow≤1 (n=44) c) log 
Kow≥4 (n=249) d) A≥0.5 (n=61). The error bars indicate the standard deviation. 

 

A quantitative assessment of the relative contribution of the different solute descriptors in the 

pp-LFERs for the partition coefficients between octanol/water, protein/water, phospholipid/ 

water and neutral lipid/water was carried out for the whole dataset and multiple sub-datasets.  

The inter-molecule interaction was captured mostly by Ll representing Van der Waals' force 

(see Figure S 2), except for the subset of hydrophilic compounds with log KOW <1 (Figure S 2-

b). Meanwhile, the H-bond acceptor (B) is significant for compounds with log KOW <1, which 

also explains the large deviation caused by chemicals with the strong H-bond acceptor. 

The descriptor Aa, which describes the H-bond donor, was not a dominant descriptor in the 

dataset and each subset. It accounted up to 3% in the total dataset, which is relatively minimal. 

Even in the subset of compounds with A≥0.5, its highest contribution was 13% for lipid-water 

partitioning as indicated in Figure S 2-d. Since a<0, Aa makes a negative contribution to total 

Klipid/water. Thus, the Kfish/water would be overestimated by using Kow for H-donor compounds 

with high A values (e.g., eicosanoic acid). According to the analysis of the contribution of each 

descriptor in terms of relative contribution, KOW could characterize the general contribution as 

the individual biological phases. However, it should be taken caution for compounds with H-

bond donor and acceptor. 
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Figure S 3. The distribution of the measured data points in different categories of log Kow 
values. 
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Abstract 19 

Polychlorinated biphenyls (PCBs) are industrial organic contaminants which have been 20 

identified as persistent, bioaccumulative, toxic (PBT) and subject to long-range transport (LRT) 21 

with global scale significance. They are regulated by the Stockholm Convention to protect 22 

environmental and human health with a global production of 1.3 million tons. Although total 23 

production and usage in China was relatively minor (<1%) compared to global rates, the 24 

potential risks from on-going sources cannot be ignored owing to their PBT properties. This 25 

study focuses on a reconstruction and prediction of the long-term emission trends of 26 

intentionally produced ∑7 PCBs with additional consideration of the potential importance of 27 

unintentionally produced PCBs (UP-PCBs from the manufacture of steel, cement and sinter iron) 28 

and re-emission from secondary sources (e.g., soils and vegetation), using a dynamic fate model 29 

(BETR-Global). Contemporary emission estimates combined with predictions from a 30 

multimedia fate model suggested that primary sources still dominate environmental burdens, 31 

PCB-28 produced by unintentional sources is predicted to become a main contributor by 2035. 32 

China could become a potential source to neighbouring regions with a net output of 444 kg year-33 
1 in the case of PCB-28 by 2050 without effective controlling measures. The influence of e-34 

waste could be potentially shifted from regional to a national level in future. Calculation of the 35 

future significance of the sources of UP-PCBs involves large uncertainties but could be 36 

improved significantly with further domestic measurements of emission factors, which would 37 

enable more accurate determination of emission trends. 38 

 39 

Highlights: 40 

• Long-term environmental emission trends were simulated for PCBs in China. 41 

• Unintentionally sources and secondary sources were explored for emissions of PCBs in 42 

China. 43 

• Primary sources still predominate for PCB-28 currently, and unintentional sources are 44 

predicted to dominate from 2040. 45 

• China could possibly change from being a net PCB receiver to a potential net source to 46 

neighbouring regions in future. 47 

 48 

Keywords: 49 

Polychlorinated biphenyls; primary emissions; secondary emissions; multimedia dynamic fate 50 

model; controlling sources  51 
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1 Introduction 52 

Polychlorinated biphenyls (PCBs) are industrial organic contaminants identified as persistent, 53 

bioaccumulative, toxic and subject to long-range transport (LRT) with global scale significance. 54 

They are among the twelve persistent organic pollutants (POPs) initially regulated by the 55 

Stockholm Convention (UNEP, 2001) in order to protect environmental and human health from 56 

these hazardous compounds. The cumulative global production of PCB was approximately 1.3 57 

million tonnes with 10 thousand tonnes produced in China (Breivik et al., 2002a). These 58 

chemicals were mainly emitted as a direct result of intentional historical production, consecutive 59 

use and disposal or accidental release of products containing PCBs (Breivik et al., 2002c). 60 

Though they have been banned for several decades, they are still of great concern because of its 61 

persistence in the environment, bioaccumulation in biota and potential toxicity (Jones and de 62 

Voogt, 1999; Nizzetto et al., 2010). 63 

PCBs can be emitted from both primary and secondary sources. Primary sources are considered 64 

to account for the main direct releases of PCBs to the environment from their major use 65 

categories while the secondary sources represent the re-emission from environmental reservoirs 66 

including soils, sediments and other environmental compartments contaminated in the past. 67 

Secondary sources can be viewed as “capacitors” that were charged with pollutants deposited 68 

from the atmosphere when emissions were higher and may now be net sources to the 69 

atmosphere (Nizzetto et al., 2010). Primary emissions of PCBs to the environment in 70 

industrialized countries were at their height during the main production phase, which peaked in 71 

the early 1970s and largely occurred through the leakage and losses from the PCB-containing 72 

products and systems. More recently secondary sources have been demonstrated to represent a 73 

significant fraction of the total source inventory, especially in some remote areas (Nizzetto et al., 74 

2010). Under such conditions, the reduction in primary emissions of PCBs may not be directly 75 

manifested in declines of atmospheric concentrations due to on-going releases from secondary 76 

sources. An understanding of both primary and secondary emissions is, therefore, important to 77 

provide guidance on the potential success of control measures. 78 

In China, although production volume of PCBs only accounts up to 1% of the global production, 79 

China could also additionally receive PCB from long-range atmospheric transport (LRAT)  or 80 

trans-boundary movement of e-waste products containing PCBs (Breivik et al., 2014). 81 

Therefore, the manner of PCBs released into the environment could be a combination of 82 

primary emission and re-volatilization from contaminated environmental compartments. There 83 

are several studies suggesting that contaminated soil could be a secondary source particularly 84 

contributing to low molecular weight PCBs by determining the equilibrium status between air 85 

and soil (Li et al., 2010; Wang et al., 2012a). These studies have demonstrated a diffusion 86 
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gradient from soil to air along with a wide temperature-driven seasonal variation (Wang et al., 87 

2012b). So the relative significance of primary emission and secondary emission is still under 88 

debate. On other hand,  studies carried out in remote regions of China, such as the Tibetan 89 

Plateau, have reported high proportions of tetra-PCBs in ambient air samples which could be 90 

being supplied from LRAT (Wang et al., 2010). The relative importance of on-going primary 91 

emissions from largely historical sources, from by-products of unintentional production and 92 

secondary sources in China, are still not fully understood.  93 

There are two types of primary PCB emissions into the atmosphere, intentionally-produced (IP-94 

PCB) and unintentionally produced PCBs (UP-PCBs) (Cui et al., 2015; Cui et al., 2013). 95 

Emissions of IP-PCBs, which have been predicted by on a global scale by Breivik and his co-96 

workers (Breivik et al., 2002a; Breivik et al., 2002b; Breivik et al., 2007), show a constantly 97 

decreasing trend since the middle of the 1970s when production was phased out. This emission 98 

inventory has been recently updated to include the contribution of e-waste. Since the ban on 99 

manufacture and use of commercial products containing PCBs, the UP-PCBs are likely to 100 

become relatively more important compared to going forward primary emissions from products 101 

containing intentionally produced PCBs (Liu et al., 2013). Hogarh et al. (2012) reported that 102 

ambient air concentrations in China have increased by one order of magnitude over the period 103 

2004 to 2008, which could be mainly related to widespread industrial combustion process 104 

(Hogarh et al., 2012). As the economy in China grows, there is an increasing demand for 105 

construction materials such as steel and concrete. China has contributed around 45% of global 106 

steel production and has become the world’s largest consumer of iron ore since 1993 (Feng, 107 

1994). Consequently, the temporal trends and historical/future contribution of UP-PCBs needs 108 

to be further explored. To understand which factors are controlling PCB burdens in 109 

environmental compartments in China, it is important to quantify the relative significance of 110 

primary emissions (controllable) versus secondary emission (uncontrollable). An overestimate 111 

of the relative importance of primary emission could lead to costly and unnecessary measures to 112 

reduce future environmental exposure, whereas an underestimation of the importance of 113 

secondary emissions could lead to an over-optimistic assessment of reducing environmental and 114 

human exposure to PCBs (Breivik et al., 2004). A further important question would be what are 115 

the most important primary sources, ‘intentional’ or ‘unintentional’? These questions are of key 116 

interest for policy makers since it will affect their perception of the potential need to reduce or 117 

eliminate primary emissions and the potential effectiveness of emission reduction strategies.   118 

The main aims of this study were 1) to explore the potential contribution of primary sources 119 

(imported e-waste and unintentionally produced emission) and secondary sources both from 120 

domestic sources and the importance of LRAT; 2) to evaluate modelling results using 121 

observations and discuss remaining uncertainties; 3) provide a assessment of study output for 122 
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policy makers on the potential for success of control measures. These objectives were achieved 123 

mainly by using BETR Global, a dynamic level IV fate and transport model, which has been 124 

evaluated and applied successfully for a range of organic contaminants, including PCBs (Lamon 125 

et al., 2009).  126 

2 Methods 127 

2.1 Emission data and selected PCBs 128 

In this study, the emission, fate and transport, covering both intentionally and unintentionally 129 

produced PCBs, were explored under several scenarios for ∑7 PCBs (PCB-28, 52, 101, 118, 130 

138,153, and 180). These were selected in this study due to their representative physicochemical 131 

properties and extensive use in China. The assembled usage and emission data were distributed 132 

into a 1°× 1° latitude/longitude grid system based on a global population density database (Li et 133 

al., 1996). The physical-chemical properties of selected congeners are presented in Table S1 134 

(Breivik et al., 2010; Schenker et al., 2005). 135 

2.1.1 IP-PCBs emission in China 136 

The recently revised global emission  inventory by Breivik and his co-workers was utilized in 137 

this study (Breivik et al., 2015) as they have pioneered work on global emission inventories for 138 

22intentionally produced  PCB congeners over the period  1930 to 2100 (Breivik et al., 2002a; 139 

Breivik et al., 2002c; Breivik et al., 2007). The revised global emission scenarios accounting for 140 

transport of e-waste were assumed to represent an improvement compared to the previous one 141 

produced in 2002 (Breivik et al., 2015; Breivik et al., 2002b). The global emissions of 22 142 

selected PCB congeners were estimated over the period 1930 to 2100.  143 

In China, about 10,000 tonnes of PCBs were produced from 1965 to 1974, mainly composed of 144 

tri-PCB and penta-PCB (Fu et al., 2003). Around 90% was utilized in the electrical supply and 145 

distribution industry (e.g. as dielectric fluid in capacitors and transformers), mostly made up of 146 

tri-PCB. The remaining function was used as additives for paint with penta-PCB being the 147 

dominant component. Therefore, tri-PCBs are the main homologue group used in China 148 

accounting for 56% among all Chinese products (Frame et al., 1996). The highly chlorinated 149 

homologue groups, including the hexa-PCB and hepta-PCB, accounted for 2.5%,  which was 150 

much lower compared to commercial products produced in Europe and North America (Jiang et 151 

al., 1997). 152 

2.1.2 UP-PCBs emission in China 153 

Three major UP-PCB emission contributors have been identified as representing significant 154 

contributions to UP sources (Cui et al., 2015; Cui et al., 2013). These are cement kilns, electric 155 
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arc furnaces (EAF) used in steel making and the iron ore sintering process. This information 156 

was based on an investigation of the main industrial thermal processes in China by Liu et al. 157 

(2013). However, it is possible that there are other UP-PCB sources, such as coking, secondary 158 

aluminium production, and thermal power stations, and so this could represent an 159 

underestimation of the total (Cui et al., 2013). In addition, large uncertainties may also exist 160 

within each source category as a range of individual plants may produce a range of emissions 161 

depending on operating conditions (Cui et al., 2013). As emission inventories are generally 162 

uncertain by at least an order of magnitude, with many parameters affecting the estimates, the 163 

resulting predictions from models using such data also need to be considered as highly uncertain 164 

(Breivik et al., 2002c). Two scenarios were used to explore this potential uncertainty: (1) the 165 

default scenario using measured emission factors taken from Liu et al. (2013); and (2) a ‘high’ 166 

scenario using the measured emission factors multiplied by a factor of 10 as the conservative 167 

assumption. An inventory from the Netherlands has indicated that emission factors are uncertain 168 

by an order of magnitude (Annema et al., 1995).  169 

The relative importance of the three source types (IP-PCB, UP-PCB and secondary sources) 170 

was considered for past and future emission scenarios. The recorded and estimated production 171 

volume of cement, EAF produced steel and sinter iron are illustrated in Figure 1. The population 172 

density was regarded as a surrogate for spatial distribution. The estimated annual emission data 173 

were assigned onto a 1°×1° grid map based on the method by Li et al. (1996). These estimates 174 

represent a first approximation, which may not be appropriate for some large plants located near 175 

sources of raw materials and thus, would not correlate with population density.  176 

  177 

 178 

Figure 1. The recorded and estimated production and for cement (a), EAF-produced steel (b) 179 
and sinter iron (c) during 1949-2100. 180 

 181 

2.2 Selected fate model and study region 182 

The BETR Global model was used to predict the fate and distribution of PCBs with a spatial 183 

resolution of 15° latitude ×15° longitude and 288 grid cells (MacLeod et al., 2011). It has been 184 
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applied successfully and evaluated for a range of organic contaminants, including PCBs 185 

(Macleod et al., 2005). Each grid cell consists of up to 7 bulk compartments, which are oceanic 186 

water, fresh water, planetary boundary layer (PBL), free atmosphere, soil, freshwater sediments 187 

and vegetation (Macleod et al., 2005). The model accounts for advective transport between the 188 

regions by air/ water and inter-compartment transport processes such as dry and wet deposition 189 

and reversible partitioning (Lamon et al., 2009).   190 

The study region focussed on China and is illustrated in Figure 2. The model was used to 191 

simulate the period from 1930 to 2100 using a dynamic level IV structure that assumes non-192 

steady state conditions. The total emission was allocated to the individual 288 grid cells 193 

according to the methodology by Breivik et al. (2007). The only emission to the lower air 194 

compartment was considered. The initial model concentration in all compartments was assumed 195 

to be zero.  196 

2.3 Estimation of source-receptor relationships 197 

Multiple emission inventory scenarios were investigated to explore the different source-receptor 198 

relationships. The employed emission profiles were defined as: i) baseline and worst-case IP 199 

only scenario with or without consideration of imported e-waste as detailed inBreivik et al. 200 

(2015), which were used to compare the contribution of imported e-waste to the grid cells 201 

covering the most of China. The UP sources were added based on the worst-case IP scenario, 202 

since it has been demonstrated to work well in Breivik et al. (2015); ii) default scenario (IP+UP): 203 

UP-PCBs and IP-PCBs sources combined, with UP-PCBs calculated using measured emission 204 

factors from Liu et al. (2013).; iii) high scenario combined worst-case IP-PCBs and “high” UP-205 

PCBs using the a factor of 10 as defined in section 2.1.2, to explore the uncertainty range for 7 206 

UP-PCBs.   207 

 208 



                                                           Page 8 of 23 
 

209 
Figure 2. The grid structure of BETR-Global and the defined study region of China. 210 

 211 

The emission scenarios of baseline IP, worst-case IP and default IP+UP were first investigated 212 

allowing contaminants from both primary and secondary emissions in environmental reservoirs 213 

to increase over time to look at the individual contribution from imported e-waste and UP-PCBs 214 

over a temporal trend for seven indicator UP/IP-PCBs. Secondly, in order to distinguish primary 215 

from secondary sources, the default IP+UP scenario was repeated with re-emission from the 216 

surface compartments blocked. The blocked processes from surface-to-air included the diffusion 217 

from soil, water and vegetation to air, as well as re-suspension from soils via dust and from 218 

oceans via marine aerosol production (Wohrnschimmel et al., 2012). Thirdly, in order to explore 219 

the role of China in its global context (sink or source), the model was also run using only the 220 

emission estimated within China while the emission to other parts of the world disabled.  221 

3 Results and Discussion 222 

3.1 Evaluation with measurements 223 

First, the modelling results were evaluated with available measurements to build confidence for 224 

further exploration. A model such as the one presented here can only be validated to a limited 225 

extent, especially for a region where measurement data is scarce. However, it is also useful to 226 

assess the accuracy of model predictions where possible. The output from the model with the 227 

default scenario (IP+UP), over a limited period, was compared with available measured PCBs 228 

data in air and soil. As the BETR Global model does not provide information on urban-rural 229 

gradients, model predictions were compared against observed background concentrations. 230 
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Atmospheric PCBs concentration have been measured in China by several researchers over the 231 

last decade (Jaward et al., 2005; Xing et al., 2005). Surveys providing PCB concentration data 232 

for background soils have been conducted in 2005 and 2013 (Ren et al., 2007; Zheng et al., 233 

2014) and normalized using total organic carbon (TOC). For comparisons to be made with 234 

studies that do not distinguish between PCB congeners 28 and 31, it has been assumed that 235 

PCB-28 represents 0.55 of the combined total (Breivik et al., 2010). This is a reflection of the 236 

composition of the technical mixtures. 237 

Figures S8 and S9 compare predicted and observed time trends in air and soil for PCB 238 

congeners. According to the comparison with observations over the period 2001 to 2008, the 239 

model generally captures the main trends during this period. The agreement between predicted 240 

and observed air concentrations is better for heavier PCBs than that for the lighter congeners 241 

(PCB-28/52). Most modelled concentrations are within a factor of 3 compared to the limited 242 

observations in background air. The model tended to underestimate the atmospheric 243 

concentrations for PCB-28 and PCB-52 with the largest difference occurring in 2001 by a factor 244 

of 7 for PCB-52. This could be potentially caused by the underestimation of the emission at that 245 

time based on a limited dataset. The peak concentration, which happened around 1970 as 246 

predicted by modelling, is difficult to confirm with measurements. However, several 247 

preliminary findings from dated sediment cores could potentially support the model estimation. 248 

The historical trend was shown to increase until the mid-1970s in a dated sediment core from 249 

Yangtze River Estuary adjacent to the East Sea region and Pearl River Delta (Mai et al., 2005; 250 

Yang et al., 2012). Predicted concentrations increase again from the 1980s, mainly associated 251 

with the imported electrical equipment containing PCBs and e-waste recycling activities in 252 

nearby regions (Mai et al., 2005; Yang et al., 2012). 253 

Soil responds much slower to changes in emissions compared to air, especially for the heavier 254 

and more persistent PCB congeners. Measured surface soil concentrations from 2005 (Ren et al., 255 

2007) and 2013 for forest soil (Zheng et al., 2014) were compared with model predictions and 256 

agreed well, within a factor of 4 except for tri-PCB, although the measured concentrations 257 

varied over a wide range. The largest deviation was observed for PCB-28 for both studies, 258 

which indicated the model greatly underestimated soil concentrations by a factor of 165. The 259 

underestimation could be a consequence of the underestimation of secondary sources for more 260 

volatile congeners, since the soil is the main reservoir for atmospheric PCBs. The measurement 261 

data were limited to two years 2005 and 2013, but showed evidence of a decrease for PCB-28 262 

and PCB-101. However, for PCB-138 and PCB-153 an increase was observed from 0.28 to 0.42 263 

ng/g OC (dw) for PCB-153 and from 0.09 to 0.31 ng/g OC (dw) for PCB-153. These differences 264 

are small but could be attributed to the more recalcitrant nature of heavier PCB congeners 265 

(Zhang et al., 2008).  266 
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Many contaminant studies have been conducted around heavily polluted areas (i.e. ‘hotspots’), 267 

and much fewer data are available for national background areas. Therefore, the high spatial 268 

variability of PCB concentrations in soil with relatively low numbers of measurements at the 269 

background sites, makes it difficult to draw a reliable conclusion. A much larger dataset would 270 

be required to establish reliable ranges for background concentrations to determine the whole 271 

picture of POPs pollution in China.  272 

The homologue profiles of PCBs during the simulation period of 1930 to 2100 were also 273 

compared (see Figure S7). At the beginning of the simulation, the tri-PCB and penta-PCB 274 

dominated the atmospheric profile, and both are predicted to continue to increase until they 275 

achieved a steady state condition around 2045. The hepta-PCB contributed the least during the 276 

entire simulation period, up to about 11% initially, and it was assumed to be mainly from extra-277 

regional emission. Its contribution is predicted to decrease rapidly, becoming negligible 278 

accounting for less than 0.5% of the total at the end of the simulation. The change in the 279 

homologue trend is generally consistent with the profile of the emission measurements (Zhang 280 

et al., 2008). 281 

3.2 Temporal trend of UP-PCBs in China 282 

The predicted time trends for the past and future emissions of PCB-28 /153 and their individual 283 

contribution from imported e-waste and unintentionally sources are illustrated in Figure 3 Other 284 

congeners profiles presented in Fig S1. Since the optimum scenarios of unintentional-sources 285 

are difficult to confirm with measurements, the default scenario (IP + UP) based on measured 286 

emission factors was assumed to be most representative of reality and used for further 287 

discussion. In addition, the impact of an uncertainty factor of 10 on UP emissions from ∑7 PCBs 288 

was also explored (see Figure S2).  289 
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 290 

Figure 3. Predicted trends of total PCBs emission in China from 1930 to 2100 under the default 291 
scenario (IP+UP).  292 

 293 

The cumulative intentionally produced emission of ∑7 PCBs from 1930 to 2040 was estimated 294 

at 2300 tonnes in China (illustrated in Figure 3) with future emission estimated to be about 2 295 

tonnes from 2040 to 2100. Emissions of ∑7 UP-PCBs were predicted to be 9.5 tons between 296 

1949 and 2040. However, their future estimation (2040-2100) were estimated around 23 tons 297 

under the default scenario with measured emission factors. As a result, emissions from ∑7 UP-298 

PCB sources only account for a minor portion (of the total PCBs emission, approximately 0.4% 299 

during the period of 1930-2040 while they would play an increasingly important role in the 300 

distant future (2040-2100) accounting for up to 91% among the ∑7 PCB (UP+IP).  301 

The predicted atmospheric concentrations were almost identical for the three emission scenarios, 302 

over the period 1930 to 2010 for ∑7 PCBs (see Figure S2). This further supports the assumption 303 

that UP-PCBs did not contribute significantly over that period. After 2010, however, predicted 304 

air concentrations started to diverge differently for each congener, attributed to different 305 

congener abundances UP-PCB sources. In addition, the identification of markers could be 306 

informative for future monitoring activities. Previously, PCB-118 was demonstrated to be a 307 

good marker congener to describe and evaluate the emission trends from the industrial thermal 308 

process, since it falls in both classes of dl-PCBs and indicator PCBs (Liu et al., 2013). On the 309 

other hand, PCB-28 was also demonstrated to have a significant correlation with seven 310 

congeners (Cui et al., 2015). In this study, both correlation relationships were explored for PCB-311 
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28 and PCB-118, a correlation coefficient (R2) of 0.98 and 0.90 was observed (p<0.001), 312 

respectively. Therefore, PCB-28 was suggested to be a useful indicator congener. 313 

For UP sources, PCB-28 was the dominant congener of the ∑7 PCBs emission, accounting for 314 

approximately 78% during 1930-2100. It also contributes about 28% of the ∑7 PCBs (IP+UP) 315 

emissions over the period dominated by IP-PCBs (1940-2010). The historical predominance of 316 

IP-PCB-28 was anticipated, as tri-PCBs were dominant in commercial mixtures used in China. 317 

In addition, atmospheric concentrations of PCB-28 indicate the largest difference under three 318 

scenarios, which is up to 6 orders of magnitude (Figure 4-a). This difference is minimal for 319 

PCB-153 in Figure 4 -b. UP sources are more important for lighter PCBs (PCB28/52) than 320 

heavier ones (PCB138/153), contributing less than 50% concentrations in air. In addition, 321 

atmospheric concentrations of different congeners will be dominated by unintentional sources at 322 

different times. For example, PCB-28 is predicted to be dominated by the UP-PCBs from 2035, 323 

due to high abundance among UP-PCBs sources while PCB-52 will be dominated by UP 324 

sources after 2040 with a relatively gradual shift.  325 

 326 

Figure 4. Predicted atmospheric concentrations under three scenarios for PCB-28 and PCB-153 327 

in central China (Grid 92). 328 

3.3 Contribution from imported (national or regional) e-waste  329 
The trans-boundary movements of e-waste from developed countries to developing countries 330 

has made it a potentially substantial inventory and emission source of PCBs (Breivik et al., 2014; 331 

Breivik et al., 2015). Therefore, the contribution of imported e-waste was explored to identify 332 

its potential influence (national or regional in China). The cumulative emissions from imported 333 

e-waste are predicted to contribute around 30% to the total emissions for seven congeners 334 

during 1930-2100. PCB-180 received the highest percentage (45%) from imported e-waste. In 335 

terms of the cumulative atmospheric concentration in different study grids (see Fig S3), the 336 
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contribution of e-waste was largest for Grid 116 (which included most e-waste recycling sites in 337 

South China), making up more than 30% of all congeners.  338 

The influence of e-waste varied in different sampling years as illustrated in Figure 5. The e-339 

waste started to be imported into China from about 1980. So it is obvious that the grid 116 340 

received the highest burden in atmosphere contributed by the imported e-waste, since the main 341 

e-waste recycling sites (e.g., Guiyu and Qingyuan) with potential informal recycling activities 342 

are located here (Breivik et al., 2014). Evident regional differences are predicted in terms of 343 

influence from imported-waste, e.g., Grid cell 61 (mainly covering Xinjiang) received the least 344 

e-waste associated PCBs, possibly due to its far distance from the e-waste recycling sites. In 345 

addition, its influential scale may be potentially shifted from local/regional source to a national 346 

level.  Imported e-waste is predicted to play an increasing role until 2020-2030 on a national 347 

scale, when  Grid cell 116 receive more than 90% of input contributed by imported e-waste. The 348 

impact scale of e-waste expanded and the remote regions received increasing portion from e-349 

waste recycling sites. However, after 2030, the relative contribution from imported e-waste is 350 

diminishing (Figure 5-c, d) to present less than 5% to the total modelled air concentration on 351 

2100. 352 
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353 
Figure 5. Imported e-waste contribution (sum of domestic generation and foreign import) to the 354 
total environmental concentration in 1990 (a), 2020 (b), 2050 (c) and 2080 (d) in specified grid 355 
cell numbers (66, 69, 91, 92, 115, 116).  356 

 357 

3.4 Contribution from secondary sources 358 

Being able to distinguish between primary and secondary sources is important for understanding 359 

our ability to control sources and to aid policy makers to develop the most effective control 360 

measures. The advection into (and out of) China from the wider Asian region also needs to be 361 

quantified to place China’s activities into a regional context. Therefore, the primary and 362 

secondary sources from China (region) and out of China (extra-region) were estimated for PCB-363 

28 and PCB-153 (see Figure S4-a, b). In addition, the individual contribution of secondary 364 

sources from soil, water and vegetation to air, was explored (Figure S4 c, d), where regional 365 

primary/secondary emission represent emissions from the domestic sources (China) while extra-366 

regional/primary emission represents the emissions from outside China, as result of LRAT.  367 
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When separating secondary sources into regional and extra-regional, the profiles for PCB-28 368 

and PCB-153 were similar until 2030 (see Figure S4). The extra-regional primary and 369 

secondary sources dominate the emission during the initial period from 1930 to 1960 for both 370 

PCB-28 and PCB-153. During that period, China did not have any domestic production or usage 371 

of PCBs. Therefore, LRAT would have been responsible for supplying PCB to the Chinese 372 

environment. However, when China started to produce PCBs in 1964, primary sources became 373 

increasingly important and had provided a constant contribution of approximately 70% which is 374 

predicted to continue until around 2030. Afterwards, both congeners are predicted to behave 375 

differently behaviour. Future pattern of PCB-28 was mainly dominated by regional primary 376 

emission while PCB-153 was mostly controlled by extra-regional secondary sources. This could 377 

be because that PCB-28, mainly being supplied by ongoing and increasingly important UP 378 

sources as discussed in Section 3.2. Instead, the primary sources of PCB-153 may be gradually 379 

ceased within China with secondary extra-regional emission gradually replacing this role. 380 

Several studies suggest that the main contribution to PCB emission should move from the 381 

primary to secondary sources as production and use of PCBs declines (Cousins et al., 1999; 382 

Harner et al., 1995). In China, the same trend is seen for PCB-28 when simulations were 383 

performed only considering IP-PCBs (see Figure S5). However, when taking UP-PCB into 384 

account, it appeared that the primary sources remained dominant over the whole simulation 385 

period. As for the individual sources of UP-PCBs, the main contribution to emissions is 386 

converted cement kilns to EAF production over the period 2010 to 2020 (see Figure S6). EAF 387 

allows steel to be made from 100% scrap, and as a result, it could greatly reduce energy 388 

consumption (Pauliuk et al., 2013). So this technology is being strongly promoted. However, 389 

without effective control measures, EAF may have potential to cause increased emission of UP-390 

PCBs   391 

3.4.1 Re-emission from soil-air 392 
The exchange of POPs across the air-soil interface is one of the most important process 393 

determining their long-term environmental fate, as the soil is thought to be the major sink in the 394 

terrestrial environmental (Cousins et al., 1999). When individual contributions from soil and 395 

vegetation to the secondary sources for PCB-153 were explored (see Figure S4-c, d), vegetation 396 

is predicted to dominate until 2030 with soil gradually becoming the main secondary source. 397 

This is a reflection of the relative size of vegetation and soils as storage compartments. Delayed 398 

re-emissions normally occur from compartments that are slow to respond to changes in 399 

atmospheric concentrations such as soils and the oceans (Wohrnschimmel et al., 2012). 400 

Therefore, soil represents an initial sink for PCBs until it reaches equilibrium with air, after 401 

which it becomes a net source as primary emissions reduce (Li et al., 2010). It is important to 402 
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take into account that these calculations assume a soil depth of 20 cm and increasing the depth 403 

would increase soil capacity (Sweetman et al., 2005) and vice versa.  404 

Secondary emissions also occur from vegetation, although over a much shorter time-scale as 405 

vegetation responds rapidly to the changes in atmospheric concentrations (Wohrnschimmel et 406 

al., 2012), The model suggests that vegetation is the dominant secondary source for the whole 407 

simulation period for PCB-28 (see Figure S4-c). This may be because primary sources are 408 

controlling the emission to the atmosphere, with soils acting as a reservoir during the simulated 409 

period. It has also been demonstrated that atmospheric deposition is the main contamination 410 

pathway for vegetation, rather than uptake from the soil, based on a study of paddy rice in China 411 

(Bi et al., 2001).  412 

3.4.2 Analysis of compartment response times (VZ/D)  413 
The importance of soil and vegetation compartments as secondary sources can also be explained 414 

in terms of model calculations. Taking air (A), soil (S) and vegetation (V) as examples. The 415 

fugacity capacities of each medium can be calculated using compartment volume (V, m3) and 416 

fugacity capacity (Z, mol m-3 Pa-1). For PCB-28, the VSZS is 2.6×1015 mol Pa-1, VvZv is 417 

2.5×1012 VAZA is 7.4×1011 mol Pa-1. Thus, the soil has approximately 3500 times the storage 418 

capacity of the air and has approximately 1000 times capacity of the vegetation The transport 419 

parameter D value for soil-to-air transfer DSA is 2.3×109 mol Pa-1h-1 and vegetation-to-air 420 

transfer DV,A is 9.6×109 mol Pa-1 h-1. The characteristic time (VZ/D), is the average time that a 421 

chemical spend in a single compartment and is the first indication of persistence (Mackay, 422 

2001). This was calculated to be about 92 years and ten days in soil and vegetation, respectively 423 

(Sweetman et al., 2002). Therefore, the PCB-28 in the atmosphere will rapidly exchange with 424 

the vegetation as it attempts to approach equilibrium. In addition, the pathways of air-to-soil and 425 

vegetation-to-soil were also calculated to compare the relative importance of these two 426 

pathways. The calculations suggest that the characteristic time from air to soil are 3 and 18 days 427 

while vegetation to soil is about one year. However, the leaf area can be much bigger than the 428 

soil surface area covered by vegetation (Moeckel et al., 2009). So vegetation may take a lot 429 

more PCBs to the soil then directly deposit from air to soil can account for. 430 

3.5 Atmospheric advection  431 
The importance of atmospheric advection between study regions (covered main China) and 432 

extra-region was investigated and the results presented in Figure 6 for two contrasting years 433 

1980 and 2050, representing the ‘in-use’ and ‘phase-out’, respectively. PCB production and use 434 

were restricted around 1974 (Breivik et al., 2002a), and peak emissions were expected around 435 

1980. At that time, the central part of China (represented by grids 66, 69, 90, 91, 92,115 and 116) 436 

acted as a PCB storage reservoir while the west and east of the country as industrialized areas 437 
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acted as sources of PCBs to the regions. It is interesting to note that the western parts of the 438 

country, which are not highly industrialized, have been acting as a net source of PCB-28, which 439 

may be attributed to its volatility and advection from the rest of the world. When looking at 440 

future predictions until 2050, the central part of China is still predicted to receive PCBs from the 441 

industrialized regions although with the decreasing quantity. The direction of the net flux 442 

changes from the west and northeast. Therefore, the Chinese region has a high potential to 443 

change from a source to a sink. When examining China a whole, the model predicts that the 444 

country has moved from a net sink with a net input of 800 kg year-1 to acting as a potential 445 

source to neighbouring regions with a net output of 444 kg year-1.   446 

 447 

 448 

Figure 6. The net flux of air between region and extra-region on 1980 (a) and 2050 (b), 449 
reflecting the default emission scenario (IP+UP). 450 

 451 

3.6 Uncertainty 452 

The emission inventory and environmental concentrations estimated in this study contain high 453 

levels uncertainty caused by a wide range of factors. The first issue is on the identification of 454 

comprehensive of e-waste sources. Although the domestically generation of e-waste and its 455 

import have generally been captured in the current inventory,  several types of electronic 456 

equipment were not considered (e.g., large household appliances and telecommunication 457 

equipment), which are still on the rise combined with shortened lifespan.  These may be 458 

considered in future work, though PCB production has been banned (Breivik et al., 2014). 459 

Another concern has been the difficulty in tracking illicit import of e-waste without effective 460 

regulation in China. A complementary approach to tracking the sources, flows and destination 461 
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of e-waste could provide further insights into the emission of e-waste pollutants (Breivik et al., 462 

2014). 463 

For the emission of UP-PCBs, only three major industrial processes were considered and 464 

explored in this study. Other industrial sources could also contribute to the emission of UP-465 

PCBs, such as secondary zinc smelting and thermal wire reclamation (Liu et al., 2013). 466 

However, the individual congener profile of many industrial processes is lacking, and using 467 

emission factors from other countries has been shown to be misleading. Fox example, when 468 

comparing the emission factors used in this study (Liu et al., 2013) with those reported from 469 

other countries, large differences were observed. For example, emission factors for cement 470 

production were up to 1000 times lower here than those used in the Japanese Toolkit (Cui et al., 471 

2013). This could be that the industrial thermal process used as the waste incinerators fed on 472 

alternative waste material in China is not very common, leading to less emission of toxic 473 

chemicals via thermal processes. In addition, the composition of the raw materials fed to the 474 

sinter plant, would potentially enhance the chlorination formation of PCBs. Even within this 475 

study, there were wide variations observed in the same type of plants in China with up to 100 476 

times difference in the most extreme case (Liu et al., 2013). Therefore, using the emission 477 

factors from other countries would only be recommended when domestic measurements are not 478 

available. Even then, caution should be taken. These differences also highlight the need for a 479 

more systematic survey of emission sources on a national scale to provide an unbiased and 480 

comprehensive reference for the emission inventory. A better characterization of emission 481 

factors is essential to help to produce a more accurate estimation of the time trends in future. 482 

The actual sources of PCBs via the industrial process also need to be further scrutinized. Since 483 

PCBs are not only formed by  de novo synthesis or precursors, they may also be present in the 484 

raw materials (Roudier et al., 2013). For example, PCB concentrations in iron ores were 485 

reported to be around 1-1.6 mg t-1 in a European sinter plant (Fisher et al., 2005). They are 486 

likely to be destroyed mostly in the combustion zone but may be driven off due to their 487 

volatility. Therefore, it is very important but also, a great challenge to differentiate the portion 488 

existing in the raw material and from the new formation, in order to avoid double accounting for 489 

emission estimation and customized the most effective control strategies.  490 

In the cement industry, China uses the coal almost exclusively as the fuel (Hasanbeigi et al., 491 

2010). In addition, there is very little use of alternative fuels (defined as waste materials with 492 

heat value more than 4000 kcal kg-1 for cement clinker burning) or compressing with waste 493 

materials (defined as the incineration of wastes for disposal purposes ) in cement production. 494 

However, Chinese laws and policies now tend to encourage industry to use alternative fuels and 495 

waste materials (Hasanbeigi et al., 2010). This may have an increased trend if the more recycled 496 

waste material is used to feed the cement production.  497 
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In the steel and iron industries, the raw materials are mainly from self-produced steel scrap, 498 

collected from society and imported from aboard. The process of scrap preheating used in EAF 499 

may result in higher emissions of PCBs from contaminated scrap with paints and lubricants 500 

containing PCBs, which could be minimized post-combustion using additional oxygen burners 501 

(Fisher et al., 2005). However, the related information is very limited in China. For recycled 502 

scrap, it is forbidden to have hazardous material with more than 50 mg kg-1 PCBs regulated by 503 

the Chinese government (GB13015-91). So the impact caused by the presence of PCBs in raw 504 

materials for steel industry is assumed negligible. 505 

In this study, population density was used distribute PCB emission to each grid cell. For the UP-506 

PCBs, high uncertainty may exist due to the recent movement of industrial sources from urban 507 

to rural or semi-rural areas. For example, most  PCB-containing equipment is stored at special 508 

sites after they are out of use. Due to poor management and storage conditions, PCBs from 509 

some of these special storage locations have leaked into the environment of surrounding areas, 510 

especially to the soil (Xing et al., 2005; Zhang et al., 2008). 511 

3.7 Implications for control measures 512 

The environmental response to regulatory measures for the control of persistent chemicals can 513 

be very slow and substance-specific (Lammel and Stemmler, 2012). Meanwhile, a regional 514 

difference is also anticipated, particularly for a large country with varied geographical 515 

information and levels of economic development like China. For this reason, an effective 516 

strategy should be developed and implemented as early as possible. Results from this study 517 

suggest that the effectiveness of emission control measures may vary significantly for individual 518 

substances and specific regions. For example, primary sources are still predominant for PCB-28, 519 

which means the controllable sources could be effectively mitigated via implementing policy 520 

and regulations, especially for controlling the UP-PCBs from industrial processes. Although the 521 

techniques have been developed for reducing the emissions of individual POPs, further work is 522 

needed to control POPs from industrial activities, and on-site monitoring is lacking (Liu et al., 523 

2015). Nevertheless, this may not work well for PCB153 and PCB-180, since imported e-waste 524 

is a more important contributor at this stage, particularly in the southern part of China (Grid 525 

116). The situation is also different in western of China, where both imported e-waste and UP-526 

PCBs do not play a significant role.  527 

4 Conclusions 528 

The contribution of unintentional sources and imported e-waste to the total emission and 529 

atmospheric burden of ∑7 PCBs were explored in this study. A dynamic Level IV multimedia 530 

fate model (BETR-Global) was shown to be a useful tool to reconstruct and assess the historical 531 
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emission trend as well as to predict the environmental behaviour of this classical POP category. 532 

China could become a potential source to neighbouring regions with a predicted net output of 533 

444 kg year-1 for PCB-28 by 2050 without effective control measures. The influence of e-waste 534 

could be potentially shifted from a regional to a national level by 2020. The predictions suggest 535 

that UP-PCBs have had little impact on the past emission profile, but may potentially provide a 536 

greater contribution from around 2050, if current industrial thermal processes, continue without 537 

further control strategies. Contemporary emission estimates combined with predictions from a 538 

multimedia fate model suggests that primary sources still predominate environmental burdens, 539 

with PCB-28 produced by unintentional sources becoming a main contributor around 2035. 540 

Calculation of the future significance of UP-PCBs sources involves large uncertainties but could 541 

be improved significantly with systematic measurements of emission factors, which would 542 

enable more accurate determination of emission trends. 543 
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Physical-chemical properties of selected congeners 
Table S1. The molecular weight (MW, g mol-1), partition coefficients at 25 ℃ (K, 
dimensionless), internal energies of phase transfer (∆U, kJ mol-1), air reaction half-life (HLair, h), 
and the activation energy for reaction in air (Eair, kJ mol-1). Partition coefficient and internal 
energy of phase changes from (Schenker et al., 2005), degradation half-life was from 
(Sinkkonen and Paasivirta, 2000).  

 

Prediction of UP-PCBs  
Cement production volume prediction 
The production volume of cement in China was taken from the Statistical Yearbooks (1949-

2014) (http://www.stats.gov.cn/tjsj/ndsj/, accessed on 27/09/2015). Production volumes beyond 

2014 were estimated and assumed that China will follow the growth trend of cement production 

of developed countries based on historical analysis of past consumption patterns. The key point 

is to decide the timing when per capita will reach the maximum level, so the gap could be filled 

by extrapolation between now and then. As economic growth is not evenly distributed in China 

the year in which capita stock saturation occurs will also be different. The more developed 

regions, mostly in eastern China, would be expected to enter a period of capital stock saturation 

earlier than the relatively undeveloped regions in eastern China, due to the higher speed of 

construction. To simplify the prediction of the point in time when the cement production started 

to decrease, the year 2020 was predicted by historical analysis for the western countries was 

selected to stand for the whole countries (Shi, 2011). Cement production was estimated to 

remain stable from 2040 with an average consumption rate of 0.6 tonne capita-1year-1 as a worst 

case. The Chinese population growth data were estimated by the United Nations with the high 

fertility scenario being used (http://esa.un.org/wpp/Excel-Data/population.htm, accessed on 

26/06/2015). The gap between the peak year 2020 and 2040 was filled assuming a linear 

relationship.  

As a result, the production volume was estimated to peak around the year 2020 then reduce 

slightly becoming stable at 0.5-0.6 tonne for per person in China (Shi, 2011). For the growth 

Chemica
l 

MW log KOW log KOA Log KAW ∆UOW ∆UOA Eair HLair 

PCB-28 257.54 5.66 7.85 -1.93 -26.6 -78.4 10 161 
PCB-52 291.99 5.95 8.22 -1.96 -27.5 -81.3 10 268 
PCB-101 326.43 6.38 8.83 -2.08 -19.3 -84.4 10 444 
PCB-118 326.43 6.65 9.44 -2.36 -24.5 -89.8 10 444 
PCB-138 360.88 7.19 9.67 -1.97 -22.2 -86.9 10 739 
PCB-153 360.88 6.86 9.45 -2.13 -26.6 -94.8 10 737 
PCB-180 395.32 7.15 10.17 -2.51 -26.1 -95.2 10 1224 

http://www.stats.gov.cn/tjsj/ndsj/
http://esa.un.org/wpp/Excel-Data/population.htm
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period (2014~2020) the elastic coefficient method was used to predict the cement production 

volume (Shi, 2011): 

Pt+n=Pn×(1+E×y)t 

Where the Pn is the known production volume (t y-1) of the previous year (starting from 2013), 

E is the elastic coefficient of cement production, y is the economic growth rate, n is the number 

of years. In this study, E was calculated from the average after the year of 1985. Thus E=0.572 

and y=10.8%.    

Predicting electric arc furnace (EAF) made steel production  
The main techniques used to manufacture steel include basic oxygen furnace (BOF) and 

electronic arc furnace (EAF). EAF allows steel to be made from a 100% scrap metal feedstock, 

and so EAF will gradually replace BOF driven by the high demand for sustainable metal use in 

China (Pauliuk et al., 2012). In the past decade, the share of  EAF-produced steel only 

accounted for around 10% of total steel production in China compared 30% and 57% globally 

and in the USA (Wang and Yang, 2010). In order to improve resource utilization and facilitate 

sustainable development, a rapid increase was foreseen for EAF-produced steel using recycled 

scrap (Pauliuk et al., 2012). A model comprising all stages of the life cycle of steel was used to 

provide a complete cycle in China based on future utilization of steel, which performed a stock-

driven quantification of steel demand and supply of old scrap until 2100 (Pauliuk et al., 2012). 

The approach was developed by Pauliuk and Equation (S1) below was used to model the 

approach to saturation (Pauliuk et al., 2013): 

𝑆𝑆(𝑡𝑡) = �̂�𝑠

1+� 𝑆𝑆
�
𝑠𝑠0
−1�∙𝑒𝑒𝑒𝑒𝑒𝑒�𝑐𝑐∙�1−𝑒𝑒𝑒𝑒𝑒𝑒�𝑑𝑑∙(𝑡𝑡−𝑡𝑡0)��� 

  (S1) 

where the parameters are: t: time,  �̂�𝑠 : saturation level, S0: stock at a given to, c and d are 

numerical value for further boundary conditions. The long-term regression coefficients of 

Chinese per capita steel stock demand by a range of industries were simulated based on the data 

between 1975-2010 (Wang et al., 2014) as shown in Table 1. The total in-use stocks were 

determined by multiplying population forecasts with the perspective per capita stock patterns. 

Steel stock in China was estimated to saturate around 2050 (Wang et al., 2014). The scenario 

assumed that the Chinese government would take effective measures on the recycling of scrap 

steel, and as a result the recycle rate was estimated to reach 80% by 2020 and increase to 95% 

by 2060, which is equivalent to the level for developed countries (Wang et al., 2014).  
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Table 1. The long-term regression coefficients of Chinese per capita steel stock by industries 
(Wang et al., 2014).  

Sectors 𝒔𝒔� a b R2 Lifetime, year 
Construction 5 1.224 0.035 0.998 29 
Transportation 1.9 1.132 0.035 0.993 11 
Machinery 2.3 1.113 0.031 0.986 15 
Products 0.3 0.191 0.075 0.974 11 
Other 0.5 0.927 0.041 0.952 13 

 

Production of sinter iron   
The production of sinter iron was recorded in the Statistical Yearbook of Iron and Steel for the 

period 1949 to 2011 (National Bureau of Statistics of the People's Republic of China, 2014). 

After the year of 2011, the volume of iron oxide in sinter/pellets was estimated using the mass 

balance flow of the stock driven model, which considered stocks of steel in construction and all 

other metal-bearing as a driving force behind the steel cycle. The detailed description could be 

found elsewhere (Pauliuk et al., 2012). It was assumed that 1.6 tonnes of sinter contain about 1 

tonne of iron (Pauliuk, personal communication). However, based on the historical analysis of 

modelling results and recorded statistics, the realistic production volume of the sinter iron was 

four times higher than the prediction. To make the prediction consistent, a factor of four was 

multiplied to ensure that the trend was consistent. It is important to recognise that this represents 

a first approximation based on a mass balance approach. It is clear that uncertainty may exist 

using the different strategies/methods used for iron recycling (Pauliuk et al., 2012).  
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Additional model results 
 

 

Figure S 1. Predicted emission inventories under three scenarios for all PCB congeners. 
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Figure S 2. Predicted atmospheric concentrations under three scenarios for PCB congeners in 
central China (Grid 92) 

 

 

Figure S 3.The cumulative contribution of e-waste to the atmospheric concentrations of PCBs 
from 1930 to 2020 for different grid cells. 
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Figure S 4.The relative contribution of primary and secondary emission to total emission, and 
the individual contributions of soil, vegetation and water to secondary emission under default 
(IP+UP) scenario. 

 

 

 

 Figure S 5. Contribution of secondary sources with the default scenario (IP+UP) and only IP-
PCB (b) for PCB-28. 
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Figure S 6. Individual contribution of cement, EAF produced steel and sinter iron to the total 
unintentionally emission sources versus time trend. 

 

 

Figure S 7. Modelled temporal trend of homologue profile. 

 



Page 9 of 10 
 

Figure S 8.The compared modelled concentration of different PCBs in air (blue line) along with 
measurements (orange dots). 
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Figure S 9. The comparison of modelled and measured soil concentration on 2003 for surface 
soil (Ren et al., 2007) and 2013 for forest soil (Zheng et al., 2014). 
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Abstract 18 
Although total production and usage of polychlorinated biphenyls (PCBs) in China was 19 

relatively minor (<1%) compared to many other parts of the world, potential human exposure 20 

cannot be ignored because of their persistence in the environment with bioaccumulation and 21 

potential toxicity. The main objective of this study was to reconstruct historical exposure 22 

profiles under the combined effect of changing temporal emissions and dietary transition using 23 

seven indicator PCBs as a case study. A long-term (1930-2100) dynamic simulation using 24 

realistic emission estimates combined with dietary transition trends was conducted using a 25 

multimedia fate model (BETR-Global) linked to a bioaccumulation model (ACC-HUMAN). 26 

The female lipid-normalized body burden (ng g-1 lipid) was used as the evaluation metric over 27 

time. An approximately 30-year delay in the period of peak concentration for PCB-153 in 28 

humans was suggested for a 30-year-old Chinese female compared to their European 29 

counterpart following a Swedish diet. This was mainly attributed to the rapid diet transition and 30 

intensive e-waste imported into China. A fish-based diet predicted to eight times higher body 31 

burden in the future (2010-2100) compared to a vegetable-based diet. Furthermore, replacing all 32 

local food with imported food items from a heavily polluted region (central Europe) may result 33 

in four times higher PCB-153 body burdens. A comprehensive tracking system to record 34 

geographical information for food sources and a biobank network to facilitate data collection of 35 

human samples, would help to improve the accuracy of dietary exposure profiles and hence risk 36 

assessment for human health. 37 

 38 

Highlights: 39 

• The historical PCBs exposure profile was estimated and future trends were explored for 40 

Chinese female cohorts 1930-2100. 41 

• A peak delayed by 30 years was observed for Chinese compared to Western women due to 42 

combined effects of rapid diet transition and the emission trend. 43 

• The Chinese human body burden of PCB-153 may exceed the Western peers from 2030. 44 

• A comprehensive tracking system to record the geographical information of food sources 45 

and a biobank network to facilitate human data collection are recommended. 46 

 47 

Keywords: 48 

Human exposure; polychlorinated biphenyls; diet pattern; human body burden; Chinese 49 

population; e-waste 50 
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1 Introduction 51 
Polychlorinated biphenyls (PCBs) are one of twelve legacy persistent organic pollutants (POPs) 52 

targeted by the Stockholm Convention on POPs (UNEP, 2001), because they are stable in the 53 

environment, undergo long-range atmospheric transport (LRAT), and possess bioaccumulative 54 

ability through the food chain with potential threat to humans and biota (Jones and de Voogt, 55 

1999). China started to produce PCBs in 1965 and ceased production at the end of 1974 (Xing 56 

et al., 2005). Over the years, the accumulated amount of production has reached approximately 57 

10,000 tonnes, accounting for about 0.8% of total global PCB production. Although China has 58 

not been a main producer of PCBs and has banned them for several decades, these chemicals are 59 

still of great concern and are frequently detected in the environment and in organisms (Chen et 60 

al., 2014; Cimenci et al., 2013; Wang et al., 2010; Zhang et al., 2011a).  61 

Continuous biomonitoring could help to assess human exposure to the ambient environment. In 62 

China, several biomonitoring studies have been conducted in heavily polluted regions, e.g., the 63 

e-waste recycling regions in the southern and eastern parts of the country (Bi et al., 2007b; Shen 64 

et al., 2012; Wang et al., 2010; Zhang et al., 2011b). However, due to limited funds, long-term 65 

cross-sectional and longitudinal bio-monitoring studies in control areas are very rare. 66 

Uncertainties also arise from potentially ongoing primary emissions, e.g. the extent of 67 

contributions from e-waste to the total human body burden. This is likely to play a significant 68 

role, given that China may receive more than 70% of the total exported e-waste from the rest of 69 

the world since 2006 (Breivik et al., 2014; Liu et al., 2006). The combination of a multimedia 70 

fate model and a bioaccumulation model could be an efficient methodology to close some of the 71 

information and knowledge gaps by tracking back the exposure history for a target population, 72 

predicting potential future exposure and exploring the age-versus-burden effects (Quinn et al., 73 

2014). 74 

Many factors will affect human exposure to organic contaminants. Dietary exposure is an 75 

important source of PCBs, accounting up to 90% of the total intake, especially for foods of 76 

animal-origin rich in lipids (Shen et al., 2012). It may, therefore, overwhelm any other potential 77 

effects of global climate change on human exposure to organic contaminants in remote regions 78 

(e.g., the Arctic) (Quinn et al., 2012). Quinn et al. (2012) reported a 6 to 13 fold decrease in 79 

PCB-153 body burden from 1980-2020 due to dietary transition for Arctic population (e.g., less 80 

reliant on seal meat, (Quinn et al., 2012). Meanwhile, the Chinese population has also changed 81 

dietary habits hugely with 17, 3 and eight times higher consumption of meat, milk and fish from 82 

1950 to 2013, respectively (FAOSTA: http://faostat3.fao.org/home/E ). Here, the combined 83 

influence of PCB emission trends and dietary transition on the human body burden were 84 

explored for the Chinese population.  85 
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The relationship between age and human body burden for POPs has been broadly discussed, but 86 

no agreement reached so far (Quinn and Wania, 2012). The influential factors mainly include 87 

exposure history, metabolic/depuration half-lives, sources and exposure pathways. 88 

Concentrations of POPs in the human body have frequently been reported to be positively 89 

associated with age in human cross-sectional studies due to long-term exposure and poor ability 90 

to metabolize these substances (Covaci et al., 2008; Hardell et al., 2010; Jursa et al., 2006), 91 

where age, and birth cohort effects are confounded. However, a decreasing trend in serum 92 

concentrations with age was also observed, which may be due to steady-state exposure levels 93 

being reached (Covaci et al., 2008). In addition, growth dilution would reduce the human body 94 

burdens for people aged younger than 16 years (Bu et al., 2015). Several studies reported no 95 

significant correlation between concentrations in humans and age of participants in an 96 

industrialized area (Kunisue et al., 2004; Shen et al., 2009; Sun et al., 2006) while Sun et al., 97 

observed a positive relationship between age and dioxins like PCB concentrations (Sun et al., 98 

2010). However, all studies were conducted after the ban on PCBs and were based on limited 99 

sample sizes. Therefore, there is an urgent need to rebuild the exposure history for the Chinese 100 

population and systematically explore the age burden relationship under historic dynamical 101 

emission and dietary patterns. 102 

The purposes of the study were: 1) to reconstruct the historical exposure profile and predict 103 

future exposure trends under multiple scenarios for Chinese female cohorts, using PCBs as a 104 

case study; 2) to assess the combined effect of dietary transition and emission trends on human 105 

exposure over the longitudinal and cross-sectional trends for organic contaminants; 3) to 106 

explore the role of imported e-waste and unintentional sources of total human body burden. 107 

Modelled lipid-normalized body burdens have been used primarily to characterize the potential 108 

variability in human exposure caused by different dietary consumption pattern and multiple 109 

emission sources. 110 

2 Methods 111 

2.1 Conceptual approach 112 

Assessing implications of emission trends and dietary transition on human exposure to organic 113 

contaminant requires an integrated approach combining chemical fate and bioaccumulation 114 

modelling. In this study, the overall approach was modified after Quinn et al. (2012) and the 115 

following elements were developed and synthesized (Quinn et al., 2012): 1) emission rates over 116 

time (1930-2100) worldwide and in China were developed; 2) environmental concentrations 117 

responding to the emission scenarios were predicted; 3) food web bioaccumulation covering the 118 

main pathways of chemical accumulation in the Chinese population (e.g. water-fish-human); 4) 119 
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scenarios of different dietary patterns were explored; 5) scenarios defining trends of the dietary 120 

transition in future and human exposure to PCBs were explored. Simulations were performed to 121 

calculate human body burdens (ng g-1 lipid) as a function of time (year), i.e., longitudinal body 122 

burden versus age trends.  123 

2.2 Emission scenarios 124 

Breivik and co-workers have pioneered work on global emission inventories for intentionally 125 

produced PCBs, which estimated global emissions of 22 selected PCB congeners from 1930 to 126 

2010 (Breivik et al., 2015; Breivik et al., 2002; Breivik et al., 2007). The worst-case scenario in 127 

the revised PCBs emission inventory, which accounts for imported e-waste was used (Breivik et 128 

al., 2015). This scenario has been used in a number of modelling studies and has been 129 

demonstrated to make reasonable comparisons between predictions and observations (Breivik et 130 

al., 2015). Also, the baseline emission scenario, without consideration of the transport of e-131 

waste, was also used to estimate the impact of emissions on the human body burden in China. 132 

Unintentionally produced emissions from cement production, electronic arc furnace steel 133 

production and iron sintering have also been added to explore their contributions to human body 134 

burdens. These three industrial thermal processes were selected due to their large production 135 

volumes in China, which could potentially lead to high emissions. They have been identified as 136 

important emission sources for PCBs (Liu et al., 2013). A detailed description is given 137 

elsewhere (Zhao et al., 2015b). The default emission scenario was defined as the sum of the 138 

worst-case scenario, imported e-waste and unintentionally produced emissions. Except for the 139 

section to explore the role of imported e-waste and unintentional emissions, the default emission 140 

scenario was used as the input into the BETR-Global model for the remaining simulations 141 

(Macleod et al., 2005; MacLeod et al., 2011). PCB-153 was selected to explore the 142 

contemporary exposure profile, as it is a good indicator congener for human exposure. The 143 

other six indicator PCB congeners (PCB-28, 52,101, 105, 138 and 180) were also selected to 144 

discuss the behaviour of congener mixtures. The assembled emissions of PCB 153 and other six 145 

indicator PCBs (28, 52, 101, 105, 138 and 180) were allocated to a 1° latitude × 1° longitude 146 

grid system based on a global population density database (Li et al., 1996).  147 

2.3 Selected models 148 

2.3.1 Fate model 149 

To generate the ambient environmental levels of selected PCB congeners in the global 150 

environment over time, the emission inventory (Breivik et al., 2015) was used as input to the 151 

multimedia fate model BETR-Global (Macleod et al., 2005; MacLeod et al., 2011). This model 152 

has been evaluated and successfully applied previously for PCBs (Lamon et al., 2009; Macleod 153 

et al., 2005; MacLeod et al., 2011). The study region and covered grid cells (assigned numbers 154 
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of Grid 66, 69, 90, 91, 92, 93, 115, 116) are illustrated in Figure S1. The model has a spatial 155 

resolution of 15° latitude ×15° longitude, consisting of 288 grid cells. Each of these regions 156 

consists of up to 7 bulk compartments, which are coastal water, fresh water, planetary boundary 157 

layer (PBL), lower air, soil, freshwater sediments and vegetation. The model describes 158 

advective transport between the regions in air, water and inter-compartment transport processes, 159 

e,g., dry/wet deposition and reversible partitioning. The total emissions were allocated to the 160 

288 grid cells. The only emission to lower air was considered, and the initial model 161 

concentration was assumed to be zero. The model was run for the period 1930 to 2100 using a 162 

dynamic level IV evaluation. The physicochemical properties of the seven indicator congeners 163 

were the same as that reported by (Breivik et al., 2010).  164 

2.3.2 Bioaccumulation model 165 

Chemical bioaccumulation in food chains was modelled by a mechanistically based, non-steady 166 

state bioaccumulation model (ACC-HUMAN), which has been demonstrated to predict 167 

reasonable results for concentrations of PCBs in target biota along the food chain (Breivik et al., 168 

2010; Czub and McLachlan, 2004; Norström et al., 2010). It is subdivided into an agricultural 169 

and a marine system. The human is assumed to be made up of two compartments, which are the 170 

digestive tract and the remaining body parts (Czub and McLachlan, 2004). ACC-HUMAN 171 

assumes equilibrium distribution of test chemicals in different tissues without consideration of 172 

kinetic distribution within the human body. The considered uptake pathways of contaminants 173 

are diet and inhalation, while the elimination pathways are metabolism, percutaneous excretion, 174 

digestive tract excretion and exhalation. Childbirth and breastfeeding were additionally 175 

considered for females. 176 

Environmental concentrations (output from BETR-Global) were used as inputs along with 177 

physical-chemical properties of a given PCB congener. Using these inputs, the model calculated 178 

the time course of lipid-normalized PCBs concentrations in human tissues. All the parameters 179 

suggested in Czub and McLachlan (2004) were adopted, except for dietary pattern transition 180 

and human characteristic (e.g., growth curve, lipid content and body weight), which was 181 

modified for the Chinese population as illustrated in Figure 1 (c) and (d). The different 182 

scenarios for dietary habits are defined in Section 2.4. 183 

Cross-sectional data generated through biomonitoring studies are based on groups of different 184 

individuals sampled at the same time, whereas the longitudinal estimates derived from ACC-185 

HUMAN are for a single individual over a person’s entire lifetime. Cross-sectional trends were 186 

determined from the model-derived longitudinal estimates of lipid-normalized concentrations 187 

for individual females born at 10-year intervals. This reduces the confounding effect of the birth 188 

cohort on the human body burden. 189 
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2.4 Composition and transition of diet 190 

The food supply data for domestic utilization from 1959 to 2013 191 

(http://faostat3.fao.org/browse/FB/CL/) was used as the default dietary pattern to represent the 192 

dietary transition trends on a national average level. This  was calculated based on the food 193 

production plus imports minus exports. The domestic food supply of meat, milk and fish 194 

increased by about a factor of 17, 3 and 8 (illustrated in Figure 1-c), on a national scale during 195 

the period from1959 to 2013. For the period from 1930 to 1959, the dietary pattern was 196 

assumed to be same as 1959. This is a first approximation to gain a general overview of dietary 197 

transition in China. Potential uncertainties include regional supply variances between different 198 

sub-populations.  199 

The default lipid content in ACC-HUMAN used for fish was 3.5% and for milk. It was 4.4%. 200 

These were reset to 5.2 % and 3.2% for Chinese food products (Yang, 2007). For meat intake, 201 

pork is the main meat type consumed in China (Du et al., 2001). Pigs were treated identically to 202 

cattle. The pork was assumed to be obtained from the same processes as beef from cattle in 203 

ACC-HUMAN. However, pork has the highest lipid content among all food categories (Yang, 204 

2007). As a result, its lipid content was modified to 30 % (Yang, 2007). The only pork meat was 205 

considered for the Chinese population as a worst-case scenario. The dietary transition excluded 206 

data for vegetables, based on national diet surveys, with average vegetable consumption 207 

remaining relatively stable at around 276 to 310 g day-1 per person (He et al., 2005). 208 

Considering the relatively low PCB concentrations in vegetables, the resulting variation is 209 

minimal. Therefore, a default of 300 g day-1 of vegetable intake was used.  210 

2.4.1 Scenarios for future trends 211 
Multiple dietary scenarios were defined to explore human body burdens of Chinese populations, 212 

and specific values of each diet pattern are presented in Table S1: 1) The Chinese population 213 

maintain current dietary patterns until the end of the simulation (2100); 2) The Chinese 214 

population follows the dietary trends of populations from developed countries after 2013; 3) 215 

The Chinese populations d follows the Chinese Dietary Guidelines suggested by the Chinese 216 

Nutrition Society (Chinese Nutrition Society, 2008) until 2100; (4) Only vegetables are 217 

consumed; (5) The Chinese population adheres to a meat-rich diet; (6) The Chinese population 218 

maintains a fish-based diet. 219 

2.4.2 Food origin assumptions 220 
All food was assumed to be produced locally unless defined otherwise. Therefore, the food web 221 

bioaccumulation modelling was driven by ambient environmental levels calculated for the 222 

modelled regions. However, China is one of the largest food consumers in the world, and the 223 

domestic demand is still increasing (Huang et al., 1997), due to increasing population and 224 

limited ability to self-supply. Also, due to domestic food security issues (Chen, 2007), Chinese 225 

http://faostat3.fao.org/browse/FB/CL/
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residents tend to purchase food imported from foreign countries. Consequently, the influence of 226 

imported food on human body burden was also explored. However, it is difficult to track the 227 

origin of all imported food. Therefore, the environmental concentrations of a heavily polluted 228 

region (Grid 61, mainly covering central Europe) was selected to represent a reasonable worst-229 

case scenario. Meanwhile, the human body burdens in individual grid cells covering most of the 230 

China (66, 69, 90, 91, 92, 93, 115 and 116) were compared to the reference year 2002 based on 231 

different diet patterns.  232 

2.5 Human characteristics 233 

Dietary transitions were evaluated by comparing the lipid-normalized body burden of a 30-year 234 

old female over time under various dietary transition scenarios. By focusing on a single age 235 

group, the influence of longitudinal changes in the body burden of an individual will be 236 

eliminated (Quinn et al., 2011). Chinese women were chosen as the target receptors for 237 

simulations, as most studies did not observe significant sexual differences in human body 238 

burdens (Zhao et al., 2010). All women were assumed to be the first-born child to a 29-year-old 239 

mother and deliver one child at the age of 29. Each child was breastfed for six months as 240 

suggested by WHO (WHO, 2002). Their whole-body lipid contents were re-parametrized based 241 

on Chinese population data following (Jiang, 2006). All children were assumed to be born on 242 

their mother’s birthday. Both newborns and breast milk were assumed to have equal fugacity 243 

with the mother.  244 

3 Results and Discussion 245 

3.1 Evaluation with observations 246 

3.1.1 General trend 247 
Using the integrated modelling approach, the outputs from the fate model (BETR-Global) and 248 

the bioaccumulation model (ACC-HUMAN) were combined to calculate the body burdens of 249 

women living in China, which are schematically presented in Fig 1. All the results are presented 250 

based on predictions from the central China grid cell (92) unless mentioned otherwise. In order 251 

to build confidence in the model, the predicted human body burdens from the default scenario 252 

of emission and diet pattern were compared with measurements in the literature (summarized in 253 

Table S2).  254 

To our knowledge so far, there are no studies reporting both the dietary profiles and PCB levels 255 

in a single population at more than one-time point in China. Therefore, it is difficult to evaluate 256 

rigorously these predictions against historical measurements. The data available for the Chinese 257 

population was summarized in Table S2 and varies over one order of magnitude. For example, 258 
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Wang et al. (2010) measured PCB-153 body burden concentrations between 3.28~31.29 ng g-1 259 

lipid in adipose samples for 15-91 years old females living in Anhui provenience and 2.49~29.5 260 

ng g -1lipid for 18~88 years old people living in Jiangsu province in 2009 (Wang et al., 2010). 261 

Although there are many assumptions and uncertainties (e.g. the dietary consumption pattern, 262 

food origins and lipid content in food) in this modelling exercise, the modelled human body 263 

burden broadly corresponds to the varied biomonitoring data within a factor of two as illustrated 264 

in Figure 1 (f) for PCB-153. 265 

In developed countries, a falling trend of summed serum POP concentrations has been observed 266 

in human body samples between 1979 and 2007 (Nost et al., 2013). However, Sun et al. (2011) 267 

reported that the dioxin like-PCBs level increased from 2002 to 2007 in human milk from 268 

northern China, which is consistent with the trend of human body burdens predicted in our 269 

study as illustrated in Fig 1(f). In addition, several studies confirmed that the PCB-138 and 270 

PCB-153 were predominant congeners in human body burdens as illustrated in Figure S4 271 

(Wang et al., 2010; Zhang et al., 2011b). As a result, the default scenario was assumed to 272 

capture the main bioaccumulation behaviour of PCBs and is used in the following discussions.  273 

3.1.2 Body burden versus age trends 274 
In order to understand the relationship between age and human body burden based on data 275 

modelled at different times, the cross-sectional and longitudinal body burden versus age trends 276 

(CBATs/LBATs) of PCB-153 were calculated and sampled every 10 years from 1960 to 2050 277 

for Chinese women between 0-80 years old as presented in Figure 1-(h) and (g). The short 278 

dashed lines present the period of increasing emission while the long-short dashed lines show 279 

modelling results after all intentional emissions have ceased.  280 

The relationships between age and human body burden in cross-sectional and longitudinal 281 

studies were strongly dependent on the year of sampling, which means that a straightforward 282 

positive or negative relationship is not observed between age and human body burdens. During 283 

the time of increasing intentional emission (1930-1970), the cross-sectional human body burden 284 

peaked at the age of 10 years, which reflects the increasing prenatal exposure and relatively low 285 

body lipid content at a younger age. For a single person born during this period, the human body 286 

burden generally increased with age as illustrated in Figure 1-(h). This is attributed to 287 

accumulative exposure in a contaminated environment with increasing emission. At the time of 288 

decreasing intentional emission (1980-2010), the age at which the maximum body burden 289 

occurred in CBAT depends on the length of time after the emission peak. The predictions 290 

suggest that the peak age of human body burden happen at increasingly higher ages as time 291 

elapses after emissions ceased. For an person, the predicted human body burden was highest for 292 
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a child at age one and reduced substantially due to growth dilution. This trend is consistent with 293 

the observations of  Quinn and Wannia (2012).  294 

It is challenging to confirm the predictions of cross-sectional and longitudinal body burden 295 

versus age trends with measurements, particularly for findings before the PCB ban (1930-1970). 296 

The earliest national survey of human milk was conducted in 2008 (Li et al., 2011) and no 297 

evidence could identify the historical exposure profile during the pre-ban period. In addition, no 298 

biomonitoring studies have been conducted on a single sub-population at different time points in 299 

China. This makes it difficult to confirm the main findings from this study, which indicates that 300 

the peak of human body burden occurred around 2010. Several cross-sectional studies 301 

conducted after the banning of PCBs have confirmed the significance of age, dietary habits and 302 

geographical factors in determining human exposure in China (Zhang et al., 2011b). However, 303 

most studies surveyed have limited sample sizes and narrow age ranges, and did not reach a 304 

consistent agreement on the relationship between age and human body burden. This leads to 305 

difficulties in confirming the model predictions. For example, Sun et al. (2011) and Wang et al. 306 

(2010) reported that human tissues positively correlated with age (Sun et al., 2011; Wang et al., 307 

2010) while Kunisue et al. (2004) did not find any relationship between age and human body 308 

burden (Kunisue et al., 2004). 309 

3.2 Impact of dietary pattern on future body burden  310 
Each cohort was assumed to consume a constant dietary pattern, although they will have a wide 311 

range of preferences in reality. In order to test the influence of different types of dietary pattern 312 

on future exposure trends and offer recommendations on how to maximise the reduction of 313 

human body burdens, future dietary exposure profiles were explored under multiple scenarios 314 

defined in Section 2.4. There are illustrated in Figure S3. Only the vegetable-based diet was 315 

expected to rapidly decrease/dilute the human body burden while the fish-based diet represented 316 

the highest exposure. The 2020 born cohort mainly eating fish would have around eight times 317 

higher human body burden than those eating mainly vegetables. The elevated human body 318 

burden from eating fish reflects bioaccumulation along the aquatic food chain, which is 319 

approximately two orders of magnitude higher than in the meat food chain in the same region. 320 

The differences between other scenarios were relatively small by less than a factor of two.  321 

3.3 Implications for long-term human exposure 322 

In a dynamic simulation, the environmental compartments and the biota living within these 323 

compartments will directly reflect the variability in the emission profile when primary 324 

emissions dominate. Since dietary intake is the main exposure pathway for humans to PCBs, 325 

variable chemical concentrations in food and multiple diet patterns will lead to variable human 326 

body burdens (Zhang et al., 2011b). In particular, under non-steady state emissions human body 327 
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burdens will depend on the age when the exposure began to reflect changes in the emission 328 

profile (Quinn and Wania, 2012). 329 

 330 

 331 

 332 

  333 
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Figure 1. Schematic overview of the modelling approach employed to assess the combined 334 
effect of emission trends and dietary transition on human exposure to PCB-153 for the Chinese 335 
population. The approach was modified after Quinn et al. (2012).(Quinn et al., 2012)The global 336 
emission estimate for PCB-153 over the period 1930-2100 (a) was used as input to a global fate 337 
and transport model (BETR-Global) to produce the ambient environmental concentrations target 338 
regions (b). The estimated environmental concentrations (b) combined specified transition of 339 
diet (c) and female growth curve (d) are used as input to bioaccumulation model (ACC-340 
HUMAN) to predict the concentration in respective food items (e) and the human body burden 341 
for a 30-year-old Chinese female (f). The cross-sectional versus age dependence was modelled 342 
every ten years from 1930 to 2050 (g). 343 

 344 

Environmental fate 
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3.3.1 Historical exposure profile  345 

Under the combined effect of changing emissions and cohort dietary transition, the body burden 346 

of the 30-year-old female cohort increased 75 times over the last 70 years (1940-2010), despite 347 

a 4-fold reduction in Chinese environmental concentrations driven by declining emission. The 348 

dietary transition may cause an additional increase in human body burden of more than two 349 

orders of magnitude during the simulated time range. In addition, the peak time of human body 350 

burden is predicted to have occurred in 2010 for the 30-year-old female cohort of the Chinese 351 

population while this occurred in 1980 for Western females (Figure 2). The Western temporal 352 

trend of human body burden was assumed to be represented by a typical European female 353 

following Swedish dietary pattern parameterized as in Breivik et al. (2010). The combined 354 

effect of changing emission trends and dietary transition resulted in an approximately 30-year 355 

difference between the peak of human body burdens in the Chinese and European populations. 356 

This time lag could be attributed to two main reasons. One is the relatively fast dietary transition 357 

from 1959-2010 with rapidly increasing consumption of food of animal origin (milk, meat and 358 

fish) in China. A change in PCB exposure was also observed for Arctic populations when 359 

replacing locally-sourced traditional food (with high concentrations of PCBs) with imported 360 

food. In this case, Quinn et al. (2012) reported that the rapid diet transition could cause up to a 361 

50-fold reduction in PCB’s body burden over a 40-year period (Quinn et al., 2012). Another 362 

reason could be more intensive on-going emission sources in China compared to Western 363 

countries, although the manufacture of PCBs has been ceased around the world. For instance, 364 

China was estimated to receive more than 70% of global e-waste production since 2006 (Liu et 365 

al., 2006). In addition, it is now the largest industrial country in the world and unintentionally 366 

emitted PCBs from varied industrial thermal processes (e.g., production of steel and cement) 367 

may also contribute to the human body burden (Liu et al., 2015). Therefore, the roles of these 368 

two emission sources affecting the human body burden have been further explored for the 369 

Chinese population in Section 3.4.1. 370 

The exposure profile of the European population followed the emission trends relatively closely, 371 

peaking about ten years after the emissions peak in 1970. This could be due to their relatively 372 

stable diet compared with Chinese population, with only about a two-fold increase in animal-373 

derived food from the 1960s to 1990s (Moreno et al., 2002). In addition, the cumulative human 374 

body burden of 175 ng g-1 lipid in the Chinese population was an order of magnitude lower than 375 

the Western body burden during the period from 1930 to 2100. However, the difference is 376 

mainly associated with historical exposure (1930-2010). During this period, the cumulative 377 

body burden accounts for more than 90% of the total body burden (during 1930-2100) for the 378 

Western population while it only accounts for up to 54% for the Chinese population for PCB-379 

153. From 2030, the Chinese human body burden is predicted to exceed that of the Europeans 380 
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for the first time. This may be caused by higher continued emissions as discussed below. For 381 

instance, UP-PCB sources were estimated to start contributing significantly to the total 382 

emissions from around 2030 and become the dominant emission source from 2040 (Zhao et al., 383 

2015b). 384 

 385 

Figure 2. The human body burden (ng g-1 lipid) of PCB-153 for a 30-year-old female cohort in 386 
central China (Grid 92) and for a European (Grid 61). Both populations were assumed to eat 387 
locally produced food only. 388 

 389 

3.3.2 Roles of imported e-waste and UP-PCBs 390 
The contribution of imported e-waste and unintentionally produced PCBs (UP-PCBs from a 391 

cement kiln, electronic arc furnace-produced steel and iron sinter) to the total human body 392 

burden has been estimated for PCB 153 and ∑7 PCBs (Figure 3). Since the imported e-waste 393 

contribution would be expected to vary spatially based on the physical distance from the main e-394 

waste recycling sites (mostly located in the southeast-Grid116), the Northeast (Grid 66) was 395 

selected as a background region receiving less than 5% of the total emission of ∑7 PCBs from 396 

imported e-waste during 1930-2100. The southeast region (Grid 116) was chosen to represent a 397 

typical e-waste polluted region, receiving more than 40% of the emissions of ∑7 PCBs caused 398 

by imported e-waste (1930-2100). These two regions were compared in terms of the individual 399 

contribution from the imported e-waste and unintentionally produced emissions. 400 

During the period 1930 to 1990, contributions from imported-e-waste and unintentional 401 

emissions were negligible. This is because China did not start to import e-waste until 1980 and 402 

sources of UP-PCBs were minimal. In terms of the cumulative human body burden for ∑7 PCBs 403 

from 1930 to 2100, imported e-waste contributed more than 62% in Grid cell 116 while it was 404 

only approximately 4% in Grid cell 66. The UP sources contributed less than 1% of ∑7 PCBs in 405 

both two grids. Since 2000, the contribution of imported e-waste to total human body burdens 406 
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started to become dominant (46% in 2000 with an increasing trend over time) in Grid 116 407 

peaking in 2040 when it is predicted to account for more than 90% of ∑7 PCBs. If the exposure 408 

from imported e-waste was excluded, the peak of human body burden in Grid cell 116 would 409 

occur in the year 2000, but it is peak in 2020 with the inclusion of import of e-waste. 410 

Consequently, the on-going imported e-waste may result in a 20-year time lag of the peak 411 

human body burden.  412 

To explore further the potential sources contributing to total human body burden, congener 413 

profiles were compared with observations of people living around e-waste sites and in 414 

background sites. These two studied sources have different congener-specific contributions to 415 

the total exposure profiles (see Figure 3-b, c). Elevated body burdens were mainly caused by the 416 

heavier PCBs from imported e-waste, partial why PCB-153 which contributed the greatest 417 

proportion. The main contributors to the ∑7 PCBs in humans were PCB-153 and PCB-138 in 418 

both e-waste zone (Grid cell 116) and he background zone (Grid cell 66). This agrees with 419 

measurements where PCB-138 was found to be the most abundant congener in the samples 420 

from participants living in the e-waste disassembly sites of Zhejiang Province and Guangdong 421 

Province (Bi et al., 2007a; Zhao et al., 2009). In a national survey of mother’s milk, PCB-153 422 

and PCB-138 were also the most abundant congeners with levels found to be similar to those in 423 

other developed countries (Zhang et al., 2011b).  Moreover, Zhang et al. (2010) observed 424 

different PCB congener profiles in residents from e-waste and background zones, where PCB-425 

28 and PCB-153 contributed most to the total human body burden in the e-waste zone and PCB-426 

28 was the dominating congener in the background zone (Zhang et al., 2010). The lower 427 

contribution of PCB-28 predicted in this study may be caused by the underestimation of 428 

emission for lighter PCBs (PCB-28 and PCB-52) in China. Consequently, this could lead to 429 

underestimation of environmental concentrations compared to observations in environmental 430 

compartments (Zhao et al., 2015b). Given that dietary intake accounts for up to 90% to the total 431 

exposure (Zhao et al., 2015a), the large uncertainty about food origins may be another source of 432 

significant uncertainty in the model results.  433 

 434 

 435 

 436 

 437 
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 438 

Figure 3. The individual contribution of imported e-waste to the total human burden for 1930-439 
2100 for ∑7 PCBs in Grid cell 66 (a) and the congener pattern in Grid 116 (b) and Grid cell 66 440 
(c). 441 

 442 

3.3.3 Regional differences in dietary exposure in 2002 443 
A large variation in dietary patterns can be observed in the Chinese population. The year 2002 444 

was used as a reference year to explore differences in human body burdens with different 445 

dietary patterns (recorded in Total Diet Study) and corresponding environmental concentrations 446 

within Chinese regions. All the surveyed locations of the TDS were allocated to the grid and the 447 

average concentrations at each site were compared. Although the sampling site of Xinjiang is 448 

outside the domain of Grid cell 66, it was still assumed to represent the diet pattern in Xinjiang 449 

province and was hence used as diet pattern input for Grid cell 66.  450 

The percentage of fish and dairy products contributing to the total diet pattern varied widely 451 

between 1% and 20% and 1% and 33%, respectively. In the western part of China (Grid cell 61 452 

and 90), dairy takes up a much higher portion (33%) than in the other regions. In south-eastern 453 

parts (Grid cells 93 and 116), large amounts of fish are consumed (up to 20% of the total diet) 454 

(see Figure S2). As a combined result of environmental concentrations and dietary pattern, the 455 

highest human body burden of 29 ng g-1 lipid was predicted in 30-year-old females living in 456 

Grid cell 116, mainly covering Guangdong, Fujian and Hunan provinces. The population living 457 

in Grid cell 92 had the lowest body burden, equivalent to that of only a third of that in Grid cell 458 

116. However, this regional difference in human body burdens is relatively small compared to 459 

long-term trends. It should be noted that the spatial resolution of BETR-Global is relatively 460 

coarse (15°×15°) and “hot spots” could not be recognized in this study. This uncertainty may 461 

result in missing potentially high-risk regions. 462 

3.3.4 Impact of food origins 463 
The previous model simulations assumed that residents only eat locally produced food. 464 

However, in reality, many Chinese residents prefer imported food from developed countries 465 

instead of purchasing local food due to issues around food safety, especially with regards to 466 
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meat and milk (Huang et al., 1997). For example, the import of liquid milk cumulatively rose by 467 

800% in China from 2005 to 2013 (He, 2014). The influence of eating imported food was 468 

explored for the entire simulation period (1930 – 2100) by comparing the human body burden 469 

of people only eating local food to an extreme scenario of a person exclusively eating imported 470 

food from regions with high PCB levels  (Figure 4). In terms of the cumulative human body 471 

burden for PCB-153 (1930-2100), people only eating imported food were predicted to reach 472 

levels four times higher than people only consuming local food. The largest difference occurred 473 

in 1980, when the European population had an approximately 7-fold higher human body burden 474 

than the Chinese population. This can be attributed to China not starting to manufacture PCBs 475 

until 1965, resulting in a relatively low exposure of Chinese people eating locally-sourced food. 476 

The peak burden occurred in 1990 for people completely relying on imported food while it is 477 

predicted to occur in 2010 for people eating local food. In reality, people typically choose about 478 

23% of dairy products (Chen and Yang, 2012), 23% fish and 3 % meat products from abroad 479 

(Yi et al., 2015). This food source pattern is predicted to result in 15% higher human body 480 

burdens compared to people eating local food only. Consequently, populations with a high 481 

preference for imported food may receive higher PCB doses than people eating locally.  482 

 483 

 484 

Figure 4. Comparison of human body burden for a 30-year-old female only eating local diet and 485 
only eating imported food from a heavily polluted area in the case of PCB-153. 486 

 487 

3.4 Uncertainty and Limitations 488 

While insight can be gained through the combined application of fate and bioaccumulation 489 

models, substantial uncertainties and data gaps remain and limit further exploration of existing 490 

data. Reproductive behaviour was simplified to an initial approximation in this study for the 491 

Chinese female cohort assuming a single child at age 30. This should be modified the recently-492 
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released two-child policy. The age when giving birth, the number of children and the type of 493 

milk (formula or breast milk) are factors that may affect the prenatal and postnatal exposure of a 494 

child as well as the cumulative lifetime exposure of the adult (Quinn et al., 2011). Large 495 

uncertainty also exists in the intrinsic elimination parameters (i.e., changes in body weight and 496 

ongoing exposure) (Ritter et al., 2011). The confounding processes of on-going exposure, 497 

changes in body size/composition and other factors that would influence concentration over 498 

time, will make the intrinsic human elimination half-life of the Chinese population different 499 

from that in Western populations. Consequently, this study can only offer a general view of the 500 

exposure profile for the Chinese population. A more detailed investigation of the exposure of 501 

target populations could be achieved by improved parameterization.  502 

The origin of food consumed in China is difficult to assess. In this study, it was demonstrated 503 

that food from background sites has a minimal influence on the elevation or decrease of human 504 

body burdens. The gradient between urban and rural regions as well as ‘hot spots’ was outside 505 

the scope of this modelling study. However, many studies have reported that PCB levels in food 506 

from ‘hot spots’ can be elevated by several orders of magnitude, resulting in high body burdens 507 

in local residents, particularly in regions near e-waste cycling sites (Chan et al., 2013; Wang et 508 

al., 2011a; Wang et al., 2011b; Wu et al., 2008; Zhao et al., 2009).  509 

4 Conclusions  510 
This study has combined a complex array of factors, which determine human exposure to PCBs 511 

for the Chinese population. It highlighted the role of dietary pattern and two specific emission 512 

sources in the long-term simulation of human body burdens. With respect to the interpretation 513 

of biomonitoring data, the long-term simulation of PCBs illustrated the key roles of emission 514 

profile and dietary composition in determining the absolute human body burden and potential 515 

variability between different cohorts. A 30-year delay was predicted between people body 516 

burdens in European and Chinese populations due the combined effect of dietary transition and 517 

temporal emission trends, particularly influenced by imported e-waste, compared with European 518 

cohort. Furthermore, replacing all local food with imported food items may result in an 519 

increased accumulation (up to four times) of PCB-153 compared to people eating locally-520 

sourced food. These results highlight possible sources of variability observed in human 521 

biomonitoring data in China. For instance, the geographical source of the diet (from domestic or 522 

foreign counties), dietary transition trends and distributions, are paramount for estimating the 523 

human body burden in a population of interest.  524 

Potential improvements to enhance future predictions of human body burdens could include: 1) 525 

more detailed information on diet (e.g. the geographic origin of consumed food) and its 526 

transition (continued diet survey) in target populations; 2) the reproductive behaviour (age when 527 
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giving birth, number of childbirths) in the target population; 3) applying higher spatially-528 

resolved fate/transport data to better distinguish local/remote food as well gradients between 529 

urban and rural areas, particularly for ‘hot spots’. Food preparation processes may also affect 530 

pollutant concentrations in final ready-to-eat food items. Cooking processes have shown to 531 

cause losses of more than 30% of total PCBs via the loss of fat (Tsutsumi et al., 2002). 532 

Therefore, identifying scenarios based on different cooking process may be useful. In addition, 533 

a large-scale national biobank network program would be a valuable asset to facilitate data 534 

collection on human contaminant profiles (Elliott and Peakman, 2008). For instance, cryogenic 535 

repositories for biological samples can be used in retrospective and prospective biomonitoring 536 

studies (Zhu et al., 2011).  537 

PCBs were used as a case study here representing very persistent chemicals. Therefore, 538 

biotransformation did not play a key role in their fate and bioaccumulation along food chains. 539 

Similar simulations could be easily repeated for other well-documented persistent organic 540 

contaminants. However, even for such persistent organic contaminants, large variations were 541 

still observed for individual congeners with the age-cohort-effect. Quinn et al., (2012) suggested 542 

the half-life may have a significant influence here (Quinn and Wania, 2012). As a result, for 543 

chemicals which are more susceptible to biotransformation, uncertainty from the metabolic 544 

potential in humans and other biota needs to be accurately parameterized, in order to improve 545 

predictions.  546 
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Table S 1. Defined scenarios on different diet patterns to predict future trends for the Chinese 

population.  

Scenarios   Dietary weight, g/capital/day 

Fish Milk Meat Veg 

Keep the current diet pattern  94 81 167 300   

Followed diet from 

developed countries diets, 

following a Swedish diet as 

an example  

75 1394 43 310  

Followed the official 

guidance 

100 300 75 400  

Veg-based - - - 500 

Meat based 100 - 220 110 

Fish based 100 - 220 110 
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Table S 2. Summary of PCB measured concentrations in humans for populations living in 

background sites of China. 

 

 

PCBs 

analysed 

Sampling 

time 

Sampling 

sites 

Exposure 

group 

Human 

tissues 

∑PCBs References 

PCB-153 N/A Guangzhou 27 mothers Serum 

and breast 

milk 

0.27-73  ng/g 

 lipid 

(Bi et al., 

2006) 

PCBs 08.2005 Guiyu vs 

Haojiang 

47 residents  Serum 52 vs 63 ng/g 

lipid 

(Bi et al., 

2007) 

PCBs 11-12.2002 Dalian and 

Shenyang 

40 mothers Human 

milk 

8.8-100 ng/g lipid (Kunisue et 

al., 2004) 

PCBs 2001 Shanghai 5 women Mammary 

glands 

32-135 ng/g lipid (Nakata et al., 

2002) 

dl-PCBs 2006 Zhejiang 24 patients Adipose 

tissue 

4.1-125  ng/g 

lipid 

(Shen et al., 

2009) 

dl-PCBs 2002 Shijiazhuang 

and Hebei 

41 mothers Human 

milk 

3564 pg/g lipid (Sun et al., 

2006) 

12 PCBs  11.2006-

04.2007 

Northern 

China 

158 

mothers 

Human 

milk 

1.17-3.38 TEQ 

pg/g lipid 

(Sun et al., 

2010) 

62 PCBs  04.2008-

06.2009 

Jiangsu and 

Anhui 

province 

14-90 years 

old 

residents 

Adipose 

tissue 

27.2  µg/kg lipid 

14.2 µg/kg lipid 

(Wang et al., 

2010) 

PCBs 06.1999-

07.2000 

Hong Kong 

and 

Guangzhou 

169 

mothers 

Human 

milk  

0.033-0.042 µg/g 

lipid 

(Wong et al., 

2002) 

PCBs 04,2009-

2010.10 

Tianjin 56 workers 

and 

residents 

(35:21) 

Serum 44.1 vs 12.4 ng/g 

lipid 

(Yang et al., 

2013) 

PCBs 04.2007- 

12.2007 

Southeast 

China e-

waste vs. 

control area 

50 pregnant 

women  

Cord 

blood 

43.22~1167.01 

pg/g lipid 

(Zhang et al., 

2010) 

6 PCBs 08-11.2007 National 1237 

mothers 

Human 

milk 

10.05ng/g lipid (Zhang et al., 

2011) 

23 PCBs  10.2003-

06.2005 

Pingqiao, 

Zhejiang 

16 mothers Human 

milk 

69.22–677.29  

ng/g lipid 

(Zhao et al., 

2007) 

27 PCBs 04.2007~01

.2008 

Wenling 32-94 years 

old cancer 

patients  

Kidney, 

liver and 

lung 

257.9 -455.1 ng/g 

lipid  

(Zhao et al., 

2009) 

dl-PCBs 11.2007 National  1237 

mothers 

Human 

milk 

1.69 TEQ pg/g 

lipid 

(Li et al., 

2009) 

PCBs 2002 Guizhou 34 humans Adipose 

tissues 

1.1-110 ng/g lipid (Nakata et al., 

2005) 

12 PCBs 2002-2007 Shijiazhuang 50 mothers Human 

milk 

2.29 TEQ pg/g 

lipid 

(Sun et al., 

2011) 
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Figure S 1. The defined study region of China together with the BETR-Global grid. 
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Figure S 2. Regional human body burden for a 30-year-old female in 2002 as a reference year 

under the combined effect of local emission and diet preference in target grids cells. 
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Figure S 3. Predicted future trends of human body burden in a 30-year-old female living in Grid 

cell 92 from 2010 to 2100 under three scenarios assuming local or imported food from Grid cell 

61 (representing a very contaminated foreign site): (a) S1: keeping current diet pattern; (b) S2: 

following the diet pattern of Western (Swedish) population; (c) S3: following the diet pattern 

suggested by official  diet guidance (d) Veg based: keeping the vegetable-based diet; (e) Meat 

based: keeping meat-based diet pattern; (f) Fish based: keeping fish-based diet pattern. 
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Figure S 4. Cross-sectional body burden trends for the selected seven indicator PCBs congeners 

in different time points. 
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