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Abstract Using cross-correlation analysis, we demonstrate that flux measurements at observation
locations during hydraulic tomography (HT) surveys carry nonredundant information about heterogeneity
that are complementary to head measurements at the same locations. We then hypothesize that a joint
interpretation of head and flux data, even when the same observation network as head has been used, can
enhance the resolution of HT estimates. Subsequently, we use numerical experiments to test this hypothesis
and investigate the impact of flux conditioning and prior information (such as correlation lengths and initial
mean models (i.e., uniform mean or distributed means)) on the HT estimates of a nonstationary, layered
medium. We find that the addition of flux conditioning to HT analysis improves the estimates in all of the
prior models tested. While prior information on geologic structures could be useful, its influence on the
estimates reduces as more nonredundant data (i.e., flux) are used in the HT analysis. Lastly, recommendations
for conducting HT surveys and analysis are presented.

1. Introduction

Detailed characterization of the spatial distribution of hydraulic properties of aquifers is crucial for high-
resolution prediction of water and solute movement in the subsurface [Yeh, 1992; Yeh et al., 1995a,b; Mccar-
thy et al., 1996; Mas-Pla et al., 1997]. Traditional pumping tests and analysis yield either ambiguously aver-
aged and scenario-dependent effective hydraulic parameters for equivalent homogeneous aquifers [Wu
et al., 2005; Straface et al., 2007; Wen et al., 2010] or scenario-dependent distributed effective parameter
fields that could vary with pumping locations [see Huang et al., 2011; Wen et al., 2010]. As a consequence,
results from traditional analysis can only be used as a first-cut approach for aquifer characterization [Yeh,
1992]. To minimize the impact of these problems, hydraulic tomography (HT) has been developed over the
past two decades.

While the HT concept had been proposed earlier [e.g., Gottlieb and Dietrich, 1995; Vasco et al., 1997; Butler
et al., 1999], after the 3-D work by Yeh and Liu [2000] and Zhu and Yeh [2005], HT has emerged as a subject
of active theoretical, laboratory, and field research to characterize the spatial distributions of hydraulic
parameters at a higher level of detail [e.g., Yeh and Liu, 2000; Bohling et al., 2002; Bohling and Butler, 2010;
Liu et al., 2002; Brauchler et al., 2003, 2011, 2013; Li et al., 2005, 2008; Li and Cirpka, 2006; Zhu and Yeh, 2005,
2006; Illman et al., 2007, 2008, 2009, 2015; Liu et al., 2007; Liu and Kitanidis, 2011; Straface et al., 2007;
Kuhlman et al., 2008; Ni and Yeh, 2008; Cardiff et al., 2009, 2013b; Castagna and Bellin, 2009; Xiang et al.,
2009; Berg and Illman, 2011, 2013, 2014; Cardiff and Barrash, 2011; Huang et al., 2011; Liu and Kitanidis, 2011;
Sharmeen et al., 2012; Jim�enez et al., 2013; Hochstetler et al., 2015; Zhao et al., 2015]. In particular, Cardiff and
Barrash [2011] provide a summary of all peer-reviewed HT studies (1-D/2-D/3-D).

These past research efforts have demonstrated that HT is a cost-effective, high-resolution aquifer characteri-
zation method. Specifically, these studies have consistently demonstrated that transient HT can identify not
only the pattern of the heterogeneous hydraulic conductivity (K) but also the variation of specific storage
(Ss) (see Zhu and Yeh [2005, 2006], Liu et al. [2007], and Xiang et al. [2009] in particular). More importantly,
it is also shown that the hydraulic property fields estimated by HT can lead to better predictions of flow
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and solute transport processes than conventional characterization approaches [Ni et al., 2009; Illman et al.,
2010, 2012].

While HT is a relatively mature technology for characterizing aquifers, there remains room for improvement.
HT’s cost-effectiveness stems from collecting nonredundant information from a limited number of wells
[Yeh and Lee, 2007; Yeh et al., 2008, 2014; Huang et al., 2011; Sun et al., 2013]. New approaches that collect
additional nonredundant information at the wells used by HT experiments (i.e., without using new observa-
tion locations) would be the most appealing. For example, Lavenue and de Marsily [2001] analyze sinusoidal
pumping tests conducted in a tomographic survey fashion in a fractured dolomite of the Rustler Formation
within the Delaware Basin in southeastern New Mexico to characterize the K field in the Culebra Dolomite
Formation. Cardiff et al. [2013a] promote the advantages of oscillatory hydraulic tomography for characteriz-
ing groundwater remediation sites.

The fusion of different types of surveys (geophysical or tracer data), which may carry some nonredundant
information about heterogeneity, offers another possible suite of approaches to address this issue. None-
theless, recent studies have demonstrated that they can only provide some limited improvements, which
can be attributed to additional uncertainty in the relationships between K and other physical attributes of
other surveys (such as spatial variability of Archie’s law, which links electrical resistivity to moisture content
[see Yeh et al., 2002], and solute transport properties of tracers).

An alternative approach to improve the resolution of HT is to jointly invert steady state depth-averaged
drawdown HT data and the vertical profile of relative hydraulic conductivities based on prior flowmeter
tests along fully screened observation wells [i.e., Li et al., 2008]. In other words, this particular approach over-
comes the limitation of the depth-averaged head measurements at fully screened observation wells by
incorporating prior knowledge of vertical relative hydraulic conductivity variations from borehole flowmeter
profiles. Li et al. [2008] report that such a joint inversion allows them to derive 3-D heterogeneity even
though the observation wells are fully screened.

More recently, Yeh et al. [2011, 2015a, 2015b] and Mao et al. [2013b] discuss the necessary conditions for
the inverse problems to be well defined and advocate the importance of having K or flux measurements
around the perimeter of the pumping experiment field site. They are essential to constrain the inverse prob-
lems for the estimation of K and Ss values, such that the problems are well defined.

In addition, many existing monitoring wells in the field are fully screened and packed with gravel over a
long interval. Head measurements at these wells represent some averaged head values over the interval,
and they do not carry significant information about vertical aquifer heterogeneity [e.g., Li et al., 2008]. To
overcome this problem, flux measurements along the well screen during HT surveys may offer a possible
solution. This approach collects flux data along observation wells induced by the pumping of the HT survey,
rather than the independently pumping at observation wells as in Li et al [2008].

Following this school of thought, Zha et al. [2014] develop a new approach that incorporates the flux meas-
urements in HT analysis; this new approach is then applied to 2-D synthetic fractured rocks. They show that
inclusion of flux measurements could lead to significant improvements in the estimates of fracture conduc-
tivity and fracture distribution if a large number of measurements are available. Their study confirms the
necessary conditions that are discussed by Yeh et al. [2011, 2015a, 2015b] and Mao et al. [2013b]. Neverthe-
less, such benefits of flux measurements in more continuous 3-D porous media and impacts of prior infor-
mation used in HT analysis need to be explored.

The objective of this paper, therefore, is to investigate the improvements of hydraulic conductivity (K) esti-
mates based on a joint interpretation of head and flux measurements during HT tests in a 3-D nonstationary
heterogeneous aquifer, as well as to study the influence of prior information on these improvements. We
first start with a brief description of the Simultaneous Successive Linear Estimator (SimSLE) method for HT
analysis using both head and flux measurements in section 3.1. Then, we discuss in section 3.2, the associ-
ated cross-correlation analysis, which is used to explain the information about heterogeneity carried by
head or flux measurements. This is followed by a description of the setup for numerical experiments
(section 4.1). In section 4.2, we show results from three-dimensional cross-correlation analysis between
K and head and that between K and flux. We then conduct HT inversions in section 4.3 with and without
flux conditioning on the synthetic K field and examine the effects of prior mean, correlation lengths, and
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uncertainty in prior models on the benefits of flux conditioning. Results from these experiments and their
relevance to field applications are then discussed (section 5). In section 6, we summarize our findings and
provide recommendations for conducting HT survey and analysis.

2. Methods

2.1. Simultaneous Successive Linear Estimator (SimSLE)
For the HT analysis in this study, we adopt the steady state HT technique with flux conditioning developed
by Zha et al. [2014], which is based on the SimSLE (Simultaneous SLE) algorithm [Xiang et al., 2009]. The Sim-
SLE approach is basically the same as the SLE (Successive Linear Estimator) developed by Yeh and col-
leagues [Yeh et al., 1996, 2002, 2006; Zhang and Yeh, 1997; Hughson and Yeh, 2000; Yeh and Liu, 2000; Zhu
and Yeh, 2005; Yeh and Zhu, 2007], with the extension that it simultaneously considers the observations
from multiple pumping/injection events.

SLE conceptualizes the natural logarithm of hydraulic conductivity (lnK 5 F) as a spatial stochastic process,
characterized by prior information (i.e., mean, variance, and spatial correlation function). It assumes that the
correlation function is an exponential correlation function with correlation scales kx and ky in the horizontal
directions, and kz , in the vertical direction. Similarly, head (H) and the magnitude of flux (q) are also treated
as spatial stochastic processes. These stochastic processes can be expressed as the sum of the uncondi-
tional mean and the unconditional perturbation (i.e., HðxÞ5hHðxÞi1hðxÞ, qðxÞ5hqðxÞi1vðxÞ, and
FðxÞ5hFðxÞi1f ðxÞ). The unconditional mean head, hHðxÞi, and flux, hqðxÞi, are derived from solving the
ensemble mean steady groundwater flow equation with a given hFðxÞi.

The ensemble mean equation is a combination of Darcy’s law and mass conservation in a continuum:

2r � qðxÞ1QðxpÞ50; qðxÞ52KðxÞrHðxÞ (1)

subject to the boundary conditions

HjC1
5H0; 2q � njC1

5q0 (2)

In the above equations, x 5 (x,y,z), [L], where x and y are in the horizontal plane and z is positive upward;
K(x) is the saturated hydraulic conductivity [L/T], H is the total head [L], q is the Darcian flux or the specific
discharge (q 5 [qx, qy, qz], [L/T]), and Q(xp) is the flow rate at a source/sink at the location xp. |q| or q is the
magnitude of flux. C1 and C2 are prescribed head and flux at the Dirichlet and Neumann boundary, respec-
tively. For the finite element analysis, the solution domain for equations (1) and (2) is discretized into
N elements, such that the parameter K field is written as a vector f (N 3 1) and in turn, <F(x)>. Equations
(1) and (2) are solved using the finite element code VSAFT3 (Variably Saturated Flow and Transport in 3-D)
developed by Srivastava and Yeh [1992].

Suppose we have collected mh observed head, H� and mq observed flux perturbations, q�, during an HT sur-
vey which consists of several pumping tests. Thus, the observed data vector d (m 3 1, where m 5 mh1 mq)
is composed of mh head data values and mq flux data sets. We then employ a stochastic linear estimator
(equation (3)) to improve the unconditional mean lnK(x) by using observed data set. Since the relationship
between parameter K and head is nonlinear, a successive iteration scheme [Yeh et al., 1996] is adopted here
to fully exploit the information about K conveyed in the head data sets. That is,

F̂
r11ð Þ

c 5F̂
rð Þ

c 1x rð ÞT d�2d rð Þ
� �

(3)

In equation (3), F̂
ðrÞ
c is an N 3 1 vector representing the estimate of <F(x)>c, given the observed data

set (conditioning denoted by the subscript c), r is the iteration index. When r 5 0, the estimate starts
from an initial guess (prior information) of the K field (unconditional mean K, in general). Afterward, the
estimate of the conditional mean <F(x)>c is successively improved by the weighted difference
between d� (the observed data) and the vector d rð Þ (the simulated data). This simulated data are
obtained from the conditional mean equation (equation (1)) using the estimate of the conditional
mean F̂

ðrÞ
c at the iteration r.

The coefficient matrix x (m 3 N) in equation (3) is determined by solving the following equation:
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edd1Qd1hdiagðeddÞ½ �x5edf (4)

where edd is the conditional covariance matrix (m 3 m) between the secondary data (i.e., head, flux magni-
tude, or flux vector) sets, and edf is the conditional cross-covariance matrix (m 3 N) between the secondary
data sets and the parameter f representing the conditional perturbation of the lnK(x) field. In equation (4), h
is a stability multiplier and diagðeddÞ is a stability matrix, which is the diagonal elements of the edd matrix,
and Qd is a diagonal matrix of variances of measurement errors, unresolved heterogeneity, and others.

In equation (4), estimates of covariance matrix edd and cross-covariance edf matrix are required. They can be
approximated by using first-order Taylor’s expansion to obtain eðrÞdd 5JðrÞdf eðrÞff JðrÞTdf and eðrÞdf 5JðrÞdf eðrÞff , respectively,
where JðrÞdf is the sensitivity (or Jacobian) matrix for the observed data with respect to f using the set of esti-
mated parameters at the rth iteration. At r 5 0, the covariance matrix for parameters eff is unconditional and
is essentially the spatial covariance matrix Rff . It can be obtained using a user-specified covariance function.
In the subsequent iterations, the covariance matrices become conditional (or residual) covariance given the
observations and are updated to reflect the successive improvements in the estimates:

eðr11Þ
ff 5eðrÞff 2xðrÞT eðrÞdf (5)

Mathematically, this updating procedure is similar to that in the Kalman filter algorithm [e.g., Sch€oniger
et al., 2012] as new information is included. However, this update is applied to reflect the change in cross
correlation between head and parameters due to improved conditional mean parameters during each itera-
tion. The adjoint sensitivity formulation for SimSLE used in this work can be found in Zha et al. [2014].

2.2. Cross-Correlation Analysis Formulation
Cross-correlation analysis is a weighted sensitivity analysis casted into a stochastic framework [Mao et al.,
2013a]. It determines the relative impact of each parameter with respect to others in time and space on the
observed heads according to uncertainty or spatial variability of each parameter. The cross-correlation
matrix can be obtained by:

qdf 5 diag eddð Þ½ �21=2edf diag effð Þ½ �21=2 (6)

Each row of the cross-correlation matrix qdf defines the fractional contribution from the uncertainty of data
at the given observation location, which is carried forward to parameter estimation uncertainty of each ele-
ment in a geostatistical sense. Since this cross-correlation analysis is conducted without conditioning on
any data, eff is replaced by its unconditional counterpart Rff . Consequently, edf and edd are determined by
Rff and the unconditional mean K. With a given mean K, a pumping rate, and boundary conditions, these
cross covariances are evaluated numerically using the first-order analysis discussed earlier.

The above cross-correlation analysis in heterogeneous aquifers is similar to the sensitivity analysis by Oliver
[1993] but it adopts the stochastic or geostatistics concept. In particular, the cross-correlation analysis con-
siders the variance (spatial variability) of the parameter and its spatial correlation structure (covariance func-
tion of the parameter) in addition to the most likely flow field considered in the sensitivity analysis.
Physically, the correlation structure represents the average dimensions of aquifer heterogeneity. The cross
correlation in essence represents the statistical relationship of spatial variability (or uncertainty) of a given
parameter (K) at any location and the variability (or uncertainty) of head or flux at an observation location in
the aquifer. Therefore, if the cross-correlation pattern between an observed head at a location and K every-
where is different from that between an observed flux at the same location and K, then the head and flux
carry nonredundant information about K distribution in the aquifer. Inclusion of these different data sets
will be useful for HT analysis.

The above cross-correlation analysis is also similar to the interpolation splines used by Kitanidis [1998], Snod-
grass and Kitanidis [1998], and Fienen et al. [2008]. Note that the cross correlation is the foundation of the
cokriging approach [e.g., Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1984; Yeh et al., 1995b; Yeh
and Zhang, 1996; Li and Yeh, 1999], the nonlinear geostatistical inverse approach [e.g., Kitanidis, 1995; Yeh
et al., 1996; Zhang and Yeh, 1997; Hanna and Yeh, 1998; Li and Yeh, 1998, 1999; Hughson and Yeh, 2000], the
HT inverse model [e.g., Yeh and Liu, 2000; Zhu and Yeh, 2005], and the geostatistical inverse modeling of
electrical resistivity tomography [Yeh et al., 2002].
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3. Numerical Experiments

3.1. Experimental Setup
The synthetic aquifer that is used for the following numerical experiments is 45 m in length, 45 m in width,
and 18 m in depth (Figure 1a). The well configuration and design are identical to those at the North Campus
Research Site (NCRS) in Waterloo, Ontario, Canada [Berg and Illman, 2011].

Results from the analysis herein may help in the assessment of previous field experiments and the design
of future experiments at the site. The 15 m 3 15 m 3 18 m well array is set up in a nine-spot square pattern
such that the centers of the well array and the synthetic aquifer coincide. It consists of four continuous mul-
tichannel tubing (CMT) wells containing seven channels as observation ports, and five multilevel pumping
wells (PW) containing three to five channels (Figure 1b). For the CMT wells, the screens are spaced 2 m apart
with the upper most screens located between 4.5 and 5.5 m below ground surface (mbgs), and the deepest
screens are set at 16.5–17.5 mbgs.

This aquifer is discretized into 26,353 nodes that form 23,328 rectangular elements. The dimensions of each ele-
ment are 2.5 m (length) 3 2.5 m (width) 3 0.25 m (high). The side boundaries of the aquifer are identical con-
stant head boundaries of 100 m, while the top and bottom boundaries are no-flow. We then generate K values
for each element such that the K values in the entire aquifer represent a nonstationary random field with five
alternating layers of aquifers and aquitards, which is analogous to the geologic characteristics of the NCRS.

The K field consists of five hori-
zontal layers (Figure 2)—layer 1
is from z 5 18 to 9.5 m, 8.5 m
thick; layer 2 is from z 5 9.5 to
8 m, 1.5 m thick; layer 3 is from
z 5 8 to 6 m, 2 m thick; layer 4 is
from 6 to 4.5 m, 1.5 m thick;
layer 5 is from z 5 4.5 to 0 m.
For each of the layers, inde-
pendent random fields of K are
generated individually using
the random field generator. The
mean lnK (m/d) for each of the
layers, from layer 1 to layer 5,
is 21.2296, 1.4010, 21.7602,
20.3739, and 22.2711, respec-
tively, and the variance of lnK
for each corresponding layer is

Figure 1. (a) Plane view of the model domain, the 15 m by 15 m enclosed area is bounded by pumping and observations wells. (b) The
well layout.

Figure 2. Reference hydraulic conductivity (K) field.
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2.5, 0.1, 1.0, 4.0, and 2.0, respectively. The horizontal correlation lengths for each layer are 10 m, while the
vertical correlation length is 3 m for layer 1 and layer 5, and 0.5 m for others. The overall mean is 21.2584,
while the overall variance is 3.0724. Notice that layer 2 is a highly permeable layer with very small variability,
and layer 4 is also a layer of high permeability but high variability.

After generating the random K field with these spatial statistics, steady state responses of the aquifer under
a HT survey are simulated. The HT survey uses the same set of pumping rates and locations as Berg and
Illman [2011]. During each pumping test, head (H) and flux data are collected at 44–46 observation ports
(see Figure 1b). The pumping and observation locations are the same as Berg and Illman [2011], which are
listed in supporting information Table S1, while the pumping rates are in supporting information Table S2.
The HT experiment is designed in such a way in order to guide the field experiments at NCRS.

3.2. Cross-Correlation Analysis
For flux measurements to improve HT estimates, they must possess additional and nonredundant informa-
tion on K heterogeneity to that provided in head measurements collected at the same location. This nonre-
dundancy of the flux data can be demonstrated by comparing the cross correlations between the flux
magnitude at a location and K everywhere in the aquifer (qqf ), and that between H and K (qHf ).

In order to investigate these cross correlations, we used a pumping-observation well couplet in the syn-
thetic aquifers with the same boundary conditions as discussed in previous sections. The couplet includes a
pumping port (PW), located at x 5 22.5 m, y 5 15 m, and z 5 9 m, and a head and flux measurement port
(OW) at x 5 22.5 m, y 5 30 m, and z 5 9 m. The pumping rate is given as 2.5 m3/d, and the flow field is at
steady state. The mean K field used is 1.733 m/d and variance of lnK is 0.1.

We first assume the correlation lengths in x, y, and z directions to be 1 m. The 3-D iso-surfaces of the cross
correlations between K and head, flux magnitude, and flux vectors are shown in supporting information Fig-
ure S1. While the 3-D cross-correlation pattern between K and head and flux is new, the pattern and physi-
cal explanations are very similar to those presented in other recent work. (i.e., 1-D head examples [Yeh et al.,
2014], 2-D head examples [Mao et al., 2013a; Sun et al., 2013], 2-D flux example [Zha et al., 2014], and 3-D
head examples [Mao et al., 2013a]).

Next, we explore the cross-correlation patterns between head and K, and between flux and K under differ-
ent mean K distributions. In Figure 3, the horizontal and vertical correlation lengths in x, y, and z directions
in all cases are assumed to be 10, 10, and 2.5 m, respectively. For the ease of comparison, we report only
the cross-correlation contours of the vertical cross section that bisects PW and OW.

Figures 3a and 3b show the cross correlations for a uniform assumed mean K. In Figure 3a, the cross correla-
tion between head and K is the highest upstream of PW near the left boundary and upstream of OW near
the right boundary. As shown in Figure 3b, the cross correlation between flux and K is the highest at OW
and decreases concentrically away from it according to the correlation scales in the horizontal plane. We
repeat the cross-correlation analysis by moving OW down to z 5 4 m (Figures 3c and 3d). As expected, since
a uniform mean is assumed, the change in cross-correlation patterns only corresponds to the change in OW
location.

We now proceed to examine the cross correlation between head and lnK (Figure 3e), as well as flux and lnK
(Figure 3f), respectively, when a layered K field is assumed. Each layer is homogeneous, and layer locations
and the mean K values are identical to those for the five zones of the reference field (Figure 2). The horizon-
tal and vertical correlation lengths in x, y, and z are assumed to be 10, 10, and 2.5 m, respectively, and the
variance of lnK for all layers is 0.1. When comparing Figure 3e with Figure 3a and Figure 3f with Figure 3b,
we notice that the magnitude of cross correlation becomes higher at elevations near to that of PW and OW,
while it becomes smaller near the top and bottom of the domain. We attribute such behavior to the fact
that the two wells are located in the same highly permeable layer, which suggests that flow is predomi-
nately parallel to the layer boundaries.

We also repeat the cross-correlation analysis by moving the OW down to 4 m. The head and K cross correla-
tion (Figure 3g) change slightly but high cross-correlation areas remain in the high-permeability zone, even
though the OW is at the low-permeability zone. The flux and K cross correlation (Figure 3h), however, drops
to close to zero everywhere. Such behaviors suggest that the flux measurements carry information highly
pertinent to the connectivity between pumping location and observation location. This finding corroborates
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the work by Zha et al. [2014], which demonstrates that flux measurements can enhance mapping of frac-
tures significantly. The above finding also has important implications to the HT estimates of the layered sys-
tem in next section.

3.3. HT Analysis
In this section, we discuss the use of simulated head data or both head and flux data from the numerical
experiments and SimSLE to estimate the reference K field (Figure 2), with different types of prior informa-
tion. The aim of this analysis is to evaluate the relative importance of observed data (head or head and flux)
and prior information required by SimSLE and other geostatistically based models.
3.3.1. Prior Information Cases
The prior information for SimSLE consists of a mean and a covariance function. The covariance function is a
statistical representation of the average shape of the heterogeneous field to be estimated. The covariance
function comprises variance, autocorrelation function, and spatial correlation scales, kx, ky, and kz in x, y,
and z directions, respectively, of the parameter field. These correlation scales are analogous to the average
dimensions (i.e., length, thickness, and width) of the heterogeneity in the entire domain. For mathematical
convenience, the autocorrelation function is commonly assumed to be an exponential function. For this
nonstationary reference K field, we will consider two approaches to the prior information: in Case 1, we treat
the K field to be estimated as a stationary random field, with a uniform mean; in Case 2, we treat it as a non-
stationary random field with distributed means.
3.3.1.1. Case 1a and Case 1b
Two scenarios are considered in Case 1. A geostatistical inversion generally starts with a uniform mean
model—the field is taken to be homogeneous before it is conditioned on measurements to estimate

Figure 3. Cross correlation between (a, c, e, g) K and head, as well as (b, d, g, h) K and flux along the vertical plane bisecting the pumping
(PW) and observation ports (OW). Figures 3a–3d are evaluated with a uniform mean K field (kx 5 ky 5 10 m and kz 5 2.5m), while Figures
3e–3h are evaluated with a distributed mean K field (kx 5 ky 5 10 m and kz 5 2.5m). The dashed lines are head contours, while the solid
lines are streamlines. Note that in Figures 3a, 3b, 3e, and 3f, the OW is at 22.5, 30, and 9 m, while in Figures 3c, 3d, 3g, and 3h, the OW is at
22.5, 30, and 4 m.
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perturbation of parameters about the mean. This represents the case in which we have no knowledge
about the presence of site-specific geologic structure(s) or trend of K in a field site. With a given mean value
of the entire K field, we derive the estimates from HT data in Case 1a, assuming short horizontal correlation
scales (i.e., kx 5 ky 5 10 m and kz 5 2.5 m), i.e., we underestimate the true correlation scales of the entire
domain. In Case 1b, we assume long horizontal correlation scales (i.e., kx 5 ky 5 50 m and kz 5 2.5 m) to rep-
resent our prior knowledge about the stratified reference K field.
3.3.1.2. Case 2
Case 2 also considers several possible scenarios (Cases 2a–2d). In practice, geologic cross sections based on
well logs or geophysical surveys can reveal some layering structures in an aquifer. This information can
serve as our prior knowledge about the site-specific distribution of mean K values (e.g., a layer of coarse
sand overlying a layer of silty clay sand or vice versa) at a site. As a consequence, in Case 2a, we assume
that the prior distributed model has perfect information about the layering. That is, it consists of the five
zones identical to that used in the reference field generation. Each of the zones is homogeneous with a
known mean K value identical to that of the corresponding layer in the reference K field.

In Case 2b, we examine the effects of imprecise prior information on layer boundaries, while the mean for
each layer is known exactly. That is, we repeat the runs for the distributed mean K field using a ‘‘smoothed’’
layered initial guesses, rather than precise ones as in Case 2a. The smoothing is done by shifting the posi-
tion of the four layer boundaries about the reference ones by an arbitrarily chosen perturbation function:
De5cos ð0:4xeÞcos ð0:2yeÞ, where De, rounded to the nearest integer, is the number of elements shifted ver-
tically, while xe and ye are element numbers in the horizontal directions.

Commonly, true mean K value of each layer is not known based on geologic or geophysical investiga-
tions. Point measurements of K from core samples or slug tests are usually used to estimate the mean of
each layer. These mean estimates are likely to be different from the true means. Therefore, in Case 2c, we
will consider that the layer boundary is known exactly but the mean K values are assigned from point
measurements and different from the true means. On the other hand, Case 2d represents the scenario
where both the boundary and the means are uncertain. The assigned mean lnK (m/d) value for each of
the layers in Cases 2c and 2d is, from layer 1 to layer 5, 20.4939, 1.7646, 21.2844, 1.5794, 20.3231,
respectively, as compared with those in the reference field (21.2296, 1.4010, 21.7602, 20.3739, and
22.2711).

For all scenarios in Case 2 (i.e., 2a–2d), we also examine effects of both small horizontal correlation scales
(i.e., kx 5 ky 5 10 m and kz 5 2.5 m) and large horizontal correlation scales (i.e., kx 5 ky 5 50 m and
kz 5 2.5 m). Generally, since large-scale geologic structures have already been depicted by the distributed
means, using a smaller horizontal correlation scales should facilitate characterization of small-scale hetero-
geneity within layers [Ye et al., 2005].
3.3.2. Performance Metrics
To evaluate the HT estimates with either head or both head and flux data with different pieces of prior
information, scatterplots of the estimated versus true K values for each case are plotted, and a linear model
is then fitted to each case without forcing the intercept to zero. The slope and intercept of the fitted linear
model, the coefficient of determination (R2), the mean absolute error (L1), and the mean square error (L2)
norms are then used as performance metrics for evaluation since a single criterion is not sufficient. The L1

and L2 norms are computed as:

L15
1
N

Xn

i51

jln Ki
�2ln Kij and L25

1
N

Xn

i51

ðln Ki
�2ln KiÞ2 (7)

where N is the total element of the model, i indicates the element number, Ki
� is the estimated K value for

the ith element, and Ki is the true K value of the ith element.

In general, the smaller values for L1 and L2 are, the better the estimates are; the closer the slope of the linear
regression line to 1 and the intercept to 0, the better the estimates are. Similarly, if R2 value is close to 1, the
estimate is considered to be better.
3.3.3. Results
Performance metrics for results of all cases and scenarios using head and head/flux data are listed in Table
1. For clarity, we will discuss only selected cases and scenarios below.
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3.3.3.1. Head Inversion
Figure 4 displays the contour cross sections and scatterplots along with the performance metrics of the
estimated K field from head inversion. Figures 4a and 4b are estimates from using uniform mean and
short correlation lengths as prior (Case 1a), Figures 4c and 4d are those using uniform mean and long cor-
relation lengths (Case 1b), while Figures 4e and 4f show the results using a perfect distributed mean
(Case 2a) and short correlation lengths. When only head data are used, the estimates based on short cor-
relation scales and uniform mean as prior information (Figure 4b) are largely biased (i.e., slopes deviating
from 1 and large intercepts) for both the entire field and the interior field. The estimated K field (Figure 4a)
successfully resolves the top aquifer (i.e., layer 2), yet most of the other features in the reference field are
unresolved.

On the other hand, when the long correlation scales and uniform mean are used as the prior information,
the bias and errors of the estimates both drop drastically (Figure 4d). This reduction in bias is clearly
reflected in all performance metrics. In particular, the L2 drops from 3.893 to 2.517 for interior points and
from 3.961 to 2.884 overall. The use of the long correlation scales as prior information in essence permits
SimSLE to closely reproduce the head field in the layered medium, such that the final estimated field is
more layer like (Figure 4c). However, the estimates still cannot capture the true variability of the reference
field, as manifested by the large envelope of spread of both the overall and interior scatter points. In partic-
ular, the shape of the high-permeability layer 4 is not clearly identified.

When a distributed mean is used alongside with the assumed short correlation lengths as prior, the K esti-
mates from head inversion improve greatly (Figure 4f), while the bias and error of the estimates reduce

Table 1. Summary Statistics for Head and Head-And-Flux Inversion Using Different Prior Models

L1 L2 Slope Intercept R2

Figure No.Overall Interior Overall Interior Overall Interior Overall Interior Overall Interior

Head (k 5 10 m) (Case 1) Uniform Prior 1.577 1.45 3.961 3.893 0.148 0.166 20.025 0.249 0.096 0.091 4a and 4b
(Case 2a) Exact Layer Mean K and

True Layer Boundary
0.96 0.716 1.606 0.892 0.577 0.718 20.206 20.008 0.518 0.728 4e and 4f

(Case 2b) Exact Layer Mean K and
Smoothed Layer Boundary

1.032 0.745 1.86 0.958 0.526 0.688 20.274 20.044 0.444 0.705 S2a and S2b

(Case 2c) Point Layer Mean K and
True Layer Boundary

1.088 0.803 2.074 1.111 0.465 0.641 20.033 0.133 0.458 0.707 S2c and S2d

(Case 2d) Point Layer Mean K and
Smoothed Layer Boundary

1.166 0.84 2.368 1.226 0.419 0.622 20.094 0.103 0.368 0.662 S2e and S2f

Head (k 5 50 m) (Case 1) Uniform Prior 1.293 1.107 2.884 2.517 0.362 0.434 20.345 20.146 0.221 0.29 4c and 4d
(Case 2a) Exact Layer Mean K and

True Layer Boundary
1.069 0.797 1.97 1.068 0.613 0.717 20.327 20.056 0.437 0.668

(Case 2b) Exact Layer Mean K and
Smoothed Layer Boundary

1.127 0.856 2.133 1.22 0.525 0.615 20.402 20.174 0.377 0.612

(Case 2c) Point Layer Mean K and
True Layer Boundary

1.062 0.809 1.943 1.075 0.559 0.659 20.221 0.036 0.438 0.686

(Case 2d) Point Layer Mean K and
Smoothed Layer Boundary

1.149 0.857 2.249 1.247 0.505 0.628 20.293 20.029 0.361 0.622

Head-and-flux
(k 5 10 m)

(Case 1) Uniform Prior 1.252 0.857 2.697 1.325 0.351 0.585 20.014 0.09 0.333 0.637 5a and 5b
(Case 2a) Exact Layer Mean K and

True Layer Boundary
0.926 0.627 1.522 0.713 0.599 0.791 20.275 20.077 0.531 0.773 5e and 5f

(Case 2b) Exact Layer Mean K and
Smoothed Layer Boundary

0.992 0.651 1.761 0.753 0.558 0.778 20.284 20.084 0.468 0.76 S3a and S3b

(Case 2c) Point Layer Mean K and
True Layer Boundary

0.982 0.622 1.751 0.699 0.529 0.778 20.144 20.017 0.498 0.783 S3c and S3d

(Case 2d) Point Layer Mean K and
Smoothed Layer Boundary

1.067 0.654 2.05 0.773 0.477 0.757 20.198 20.056 0.412 0.757 S3e and S3f

Head-and-flux
(k 5 50 m)

(Case 1) Uniform Prior 1.061 0.761 1.964 0.977 0.526 0.722 20.337 20.153 0.413 0.687 5c and 5d
(Case 2a) Exact Layer Mean K and

True Layer Boundary
1.042 0.818 1.905 1.181 0.628 0.727 20.388 20.156 0.451 0.633

(Case 2b) Exact Layer Mean K and
Smoothed Layer Boundary

1.11 0.808 2.091 1.101 0.594 0.738 20.44 20.186 0.407 0.654

(Case 2c) Point Layer Mean K and
True Layer Boundary

1.034 0.772 1.863 1.032 0.622 0.748 20.334 20.118 0.458 0.676

(Case 2d) Point Layer Mean K and
Smoothed Layer Boundary

1.093 0.767 2.053 0.999 0.58 0.749 20.397 20.138 0.409 0.684
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remarkably. The layering, as expected, is better recovered given the correct distributed prior (Figure 4e).
That in turn has helped local features within the well field to be better reproduced. Head inversion results
from using noisy distributed mean prior models (Cases 2b–2d) with short horizontal correlation scales are
illustrated in supporting information Figure S2.

Figure 4. (a, c, e) Cross sections of estimated K fields and (b, d, f) their associated scatterplots from head inversion. Head inversion results
for (a, b) Case 1a (uniform mean, kx 5 ky 5 10 m and kz 5 2.5m), (c, d) Case 1b (uniform mean, kx 5 ky 5 50 m and kz 5 2.5m), and (e, f)
Case 2a (distributed mean, kx 5 ky 5 10 m and kz 5 2.5m, precise layer boundaries) are reported. Blue points are for overall estimates, while
red points are for interior estimates within the well field.
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3.3.3.2. Head-And-Flux Inversion
We next examine the effects of prior information on the estimates when both head and flux data are used
(Figure 5). Figures 5a and 5b are the contour map and the associated scatterplot, respectively, of estimates
from using uniform mean and short correlation lengths as prior (as in Case 1a). The same plots for estimates

Figure 5. (a, c, e) Cross sections of estimated K fields and (b, d, f) their associated scatterplots from head-and-flux inversion. Head-and-flux
inversion results for (a, b) Case 1a (uniform mean, kx 5 ky 5 10 m), (c, d) Case 1b (uniform mean, kx 5 ky 5 50 m and kz 5 2.5 m), and (e, f)
Case 2a are reported (distributed mean, kx 5 ky 5 10 m, kz 5 2.5 m, and precise layer boundaries). Blue points are for overall estimates,
while red points are for interior estimates within the well field.
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from using the same uniform mean and long correlation lengths (as in Case 1b) are shown in Figures 5c
and 5d. Similarly, Figures 5e and 5f illustrate those based on the precise distributed mean and short correla-
tion lengths (as in Case 2a).

When the uniform mean with the long correlation lengths are used, the estimates in the whole domain as
well as the interior of the well field are less biased in Figure 5d than those in Figure 5b. This reduction in
bias is well manifested when the slopes and intercepts of the blue dashed lines and red solid lines in the
scatterplots are compared. The L2 also drops from 1.252 to 1.061 for interior points and from 2.697 to 1.964
for overall. Notice that the scattering of the red points in both Figures 5b and 5d appear to be satisfactory.
However, the large scatter envelop of the blue points in Figure 5d seems to indicate that much of the
small-scale variability outside the well field remains undetermined when long correlation scales are used.

According to the contour plots of the estimates in Figures 5a and 5c, the head-and-flux inversion with a uni-
form mean and short or long horizontal correlation scales as prior generally resolves the layering features of
the nonstationary reference K field. However, assuming short correlation lengths leads to estimates with
too many lenses (Figure 5a) and assuming long ones overestimates the lateral extents of the high-
permeability zones (Figure 5c). These anomalies disappear when correct distributed means and short hori-
zontal correlation scales are used as the prior (see Figure 5e). That is, using these as the prior, the inverse
model yields an estimated field that faithfully represents the mixture of lenses and layers in the reference
field. Head-and-flux inversion results from using noisy distributed mean prior models with short horizontal
correlation scales (Cases 2b–2d) are reported in supporting information Figure S3.

4. Discussion

Comparing the contour maps and scatterplots of head inversion estimates (Figures 4a–4f) with head-and-
flux inversion estimates (Figures 5a–5f), we observe that flux conditioning improves estimates in all prior
information cases considered. Specifically, according to the contour maps (Figures 4a, 4c, 4e, 5a, 5c, and 5e),
estimates from head-and-flux inversion better delineate layers and depict more details within layers of the
reference field, especially in the cases where the uniform prior K field is used. The improvement is not lim-
ited to areas within the well field—flux conditioning also improves estimates near the domain boundaries
even when small correlation lengths are assumed (Figures 4a and 5a). When a uniform K is the prior mean,
scatterplots reveal that the spread and the bias of the estimates based on head and flux data (Figures 5b
and 5d) are significantly smaller than those based on both head data alone (Figures 4b and 4d). When dis-
tributed means are the prior, the improvements due to additional flux data on the estimates are less
obvious (Figures 4f and 5f). This is likely due to the particular reference K field used, in which the highest
permeability layer (layer 2) is nearly uniform (variance of lnK 5 0.1). Because of its low variability, the bene-
fits of specifying its correct prior mean outweigh the benefits of flux information. We note that, however,
the above may not be true for high variability layers such as layer 4, which has variance of lnK 5 4.0.

Results of flux and head conditioning for the layered system, created with uniform mean and large statisti-
cal anisotropy ratios (supporting information Figure S4 and Tso [2015]), also corroborate the aforemen-
tioned results. In this case, the domain is identical to that of the reference field in Figure 2 but its reference
K field has a mean lnK of 21.384 and a variance of 3.0. The horizontal and vertical correlation lengths are 50
and 10 m, respectively. As shown in supporting information Figure S4a, this is also a layered case but is
more stratified than the reference field in Figure 2. Using a uniform mean and long horizontal correlation
scales, the head-and-flux inversion estimates (supporting information Figure S4d) reveal fine layers more
sharply than those from head inversion (supporting information Figure S4b). It also better portrait the low-K
zone beneath at the bottom of the domain. The scatterplots also show that the estimates from head-and-
flux inversion are less biased (supporting information Figure S4e versus Figure S4c).

To better investigate the effects of head and head/flux data conditioning from the results in Figures 4 and 5,
as well as the effect of different levels of noise in distributed mean prior models, we plot bar charts of the
performance metrics (R2, slope, and L2) for Cases 1a and 1b, as wells as Cases 2a–2d that use short correlation
lengths, in Figures 6–8, respectively. In these bar charts, the metrics for the overall estimates are in blue,
while those for the interior estimates are in red.
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It is apparent from these bar charts that the estimates from using distributed means with short correlation
scales as prior information are superior to those from using uniform mean, regardless of using head meas-
urements or both head and flux. For overall performance metrics, the estimates from using the correct dis-
tributed mean values, short correlation scales, in conjunction with both head and flux measurements are
the best among all estimates. That is to say, the prior knowledge of the site-specific geologic structures can
play an important role in the analysis of an HT survey, at least, in the case of this study.

Nevertheless, flux measurements in addition to head data collected at the same locations unequivocally
improve the estimates in all cases and scenarios (even in Case 2a, where exact distributed means and layer
boundaries were used). The improvements are particularly prominent in estimates for within the well field,
as indicated by the red bars.

Effects of additional flux data on the estimates are even more noticeable in the cases where uniform prior
mean K is used (Cases 1a and 1b). For instance, the slope of the scatterplot for the interior estimates in Case
1b jumps from 0.434 to 0.722 (Figures 7a and 7b) after the inclusion of the flux data.

Our findings have substantiated the results of the cross-correlation analysis, which show that (1) flux data
carry nonredundant information about heterogeneity in comparison with head data, and (2) this informa-
tion reflects the connectivity between the pumping location and the observation location and in turn, the
layering or geologic structures. These benefits of flux measurements on structures are also evident in the
case shown in supporting information Figure S4, where the formation is not perfectly stratified. These bene-
fits are even more distinct for HT analysis in fractured rocks for mapping discrete fractures, reported in the
study by Zha et al. [2014].

Importance of inclusion of flux measurements is also apparent in the cases (Cases 2b–2d) in which the incorrect
prior distributed means or smoothed layer boundaries are assumed. The improvement from the addition of flux
is particularly prominent for estimates within the well field, as indicated by the red bars. We also notice that the
improvements due to the addition of flux conditioning is more prominent when the prior distributed model is
noisier (i.e., the improvement in Case 2d is the greatest, followed by Cases 2b and 2c). Our observations are

Figure 6. R2 for (a) head inversion and (b) head-and-flux inversion using different prior models. For distributed models (i.e., Cases 2a–2d),
only results from assuming short correlation lengths (i.e., kx 5 ky 5 10 m, kz 5 2.5 m) are presented.
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Figure 7. Slope for (a) head inversion and (b) head-and-flux inversion using different prior models. For distributed models (i.e., Cases
2a–2d), only results from assuming short correlation lengths (i.e., kx 5 ky 5 10 m and kz 5 2.5 m) are presented.

Figure 8. L2 for (a) head inversion and (b) head-and-flux inversion using different prior models. For distributed models (i.e., Cases 2a–2d),
only results from assuming short correlation lengths (i.e., kx 5 ky 5 10 m and kz 5 2.5 m) are presented.
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consistent with the fact that flux in addition to head measurements is critical to yield better estimated K values,
as pointed out by Yeh et al. [2011, 2015a, 2015b] as well as Mao et al. [2013a, 2013b]. Again, we emphasize that
our discussion on Cases 2a–2d here only considers the use of short horizontal correlation lengths, which yield
better results than when they are repeated using long ones.

While the measurement of groundwater flux is far from common practice for aquifer testing and monitor-
ing, its importance has long been recognized [e.g., Dagan, 1989]. In groundwater remediation, there has
been a growing interest on predicting flux fields, as mass flux has become an important metric to evaluate
remediation effort [ITRC, 2010; Suthersan et al., 2010].

In reality, numerous methods have been developed over the past few decades for flux measurements in a
borehole. Among them, the simplest one is the point dilution method [Drost et al., 1968], which is well
documented in many textbooks. More advanced methods commonly involves the release of colloids [Kearl,
1997], heat [Melville et al., 1985], or tracer [Palmer, 1993]. The rate at which they dissipate is used to estimate
groundwater velocity at the well. Other borehole methods utilize Doppler shift of waves [Momii et al., 1993;
Wilson et al., 2001]. To resolve flow variations along a wellbore, spinner log or electronic borehole flowmeter
profiling [Molz et al., 1989; Young and Pearson, 1995] are widely used.

In situ methods are immune from wellbore effects and outperform borehole methods when measuring
both magnitude and direction of groundwater velocity. They are more common for shallow, unconsolidated
environments [Berg and Gillham, 2010; Kempf et al., 2013]. Small equipment that consists of a tracer or heat
release port and several sensors are buried underground and they measure the arrival time of tracer or
heated fluid at sensors within the equipment [Ballard, 1996; Labaky et al., 2007, 2009; Devlin et al., 2012].

Lastly, our study certainly is not conclusive and definitive for any real-world problems since it tests the joint
interpretation algorithm with a single realization of a synthetic layered heterogeneous random field, with-
out including all possible sources of noise and other influences. Nevertheless, this study brings forth a new
way to collect nonredundant data using the same well facilities during an HT survey. Notice that our previ-
ous work [Zha et al., 2014] focuses on the joint inversion of head and flux data in fractured media, where
fractures are discrete. The current study examines its usefulness for HT analysis in a porous medium, which
is more ‘‘continuous’’ and contains large-scale structures (i.e., stratifications). Effects of flux measurements in
addition to head data do not appear to be as substantial as in the study by Zha et al. [2014] since the prior
distributed means specify the large-scale connectivity or stratifications. Nevertheless, as we have demon-
strated, the flux measurements are still useful to improve the resolution of the estimates by HT analysis
even if correct layering structures and layer means are known exactly. These results are consistent with the
necessary conditions for inverse problems that Yeh et al. [2011, 2015a, 2015b] and Mao et al. [2013b] have
advocated.

5. Summary and Conclusion

In this paper, using cross-correlation analysis, we first demonstrate that flux measurements at observation
locations during HT surveys carry nonredundant information about heterogeneity that are complementary
to head measurements at the same locations. That is, a joint interpretation of head and flux data, even if
they are collected at the same locations, can enhance the resolution of the HT estimates. We then examine
the impacts of prior information such as correlation lengths and initial mean models (uniform or distributed
means) on the HT estimates of a nonstationary field, using either head or both head and flux data. The
results of the analysis are summarized below.

When a homogeneous initial K model is assumed for HT analysis of a nonstationary K field, head-and-flux
inversion provides superior estimates to the inversion based on head data only, independent of initial guess
correlation scales. This result is attributed to the fact that flux data in addition to head data provide suffi-
cient information about multiscale heterogeneity structures. On the contrary, if a distributed mean K model
is assumed, improvements due to the flux data in addition to head data are not as prominent. We attribute
this to the fact the distributed mean model has already captured layer characteristics of the field. With small
initial correlation scales, the head-and-flux inversion then improves its interior estimates, indicating flux
data can refine the estimates of heterogeneity at sublayer scales.
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When noisy distributed prior K models are used, the estimates slightly deteriorate but they are still superior
to cases where homogeneous models are used. Also, head-and-flux inversion still generally outperforms
head inversion.

In conclusion, we find that head data and flux data are complementary to each other as advocated by Yeh
et al. [2011, 2015a, 2015b] and Mao et al. [2013b]. Therefore, using flux measurements in HT analysis can
improve the estimates of HT. Moreover, head-and-flux inversion estimates are found to be less impacted by
the choice of different prior models. While prior information (such as uniform mean or layered means, corre-
lation scales) could be useful, its influence on the estimates reduces as more nonredundant data (i.e., flux)
are used in the HT analysis [see Yeh and Liu, 2000].

Based on our research finding, we provide the following recommendations for practical HT experimental
design and analysis. First, collect head data and flux data at as many locations as possible and use them in
HT analysis. For locations where head is measured, measurements of flux at the same locations will improve
K estimates. Second, use uniform mean properties and long horizontal correlation scales as prior informa-
tion if geologic or geophysical information about the heterogeneity is not available. Finally, if geologic or
geophysical information is available, use correct distributed mean properties and short correlation scales as
prior information for HT analysis.
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