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Abstract

This thesis considers the defensive surveillance of multiple public areas which are

the open, exposed targets of adversarial attacks. We address the operational prob-

lem of identifying a real time decision-making rule for a security team in order to

minimise the damage an adversary can inflict within the public areas. We model

the surveillance scenario as a multiclass queueing system with customer abandon-

ments, wherein the operational problem translates into developing service policies

for a server in order to minimise the expected damage an adversarial customer can

inflict on the system.

We consider three different surveillance scenarios which may occur in real-

world security operations. In each scenario it is only possible to calculate optimal

policies in small systems or in special cases, hence we focus on developing heuristic

policies which can be computed and demonstrate their effectiveness in numerical

experiments. In the random adversary scenario, the adversary attacks the system

according to a probability distribution known to the server. This problem is a

special case of a more general stochastic scheduling problem. We develop new

results which complement the existing literature based on priority policies and an

effective approximate policy improvement algorithm. We also consider the scenario

of a strategic adversary who chooses where to attack. We model the interaction of

the server and adversary as a two-person zero-sum game. We develop an effective

heuristic based on an iterative algorithm which populates a small set of service

policies to be randomised over. Finally, we consider the scenario of a strategic

adversary who chooses both where and when to attack and formulate it as a robust
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optimisation problem. In this case, we demonstrate the optimality of the last-come

first-served policy in single queue systems. In systems with multiple queues, we

develop effective heuristic policies based on the last-come first-served policy which

incorporates randomisation both within service policies and across service policies.
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Chapter 1

Introduction

1.1 Motivation

The threats faced on a daily basis from adversarial agents are a prominent feature

of the modern world. Criminals wish to evade the authorities, thieves seek to steal

valuable commodities, immigrants look to illegally cross borders, and terrorists

hope to cause mass damage and disruption to daily life. When these threats

become reality, the impact can be devastating. This is especially evidenced in the

notorious terrorist attacks of 9/11 in 2001, as well as the terrorist bombings in Bali

in 2002 and 2005, the 7/7 2005 London bombings, and recently the 2013 Boston

marathon bombing. Given the potentially significant impact of adversarial threats,

together with the fact that threats grow and evolve through time as adversaries

become more capable, there is a real need for defensive efforts to mitigate these

threats both now and in the future.

The abilities of authorities to engage in defensive efforts have been greatly

enhanced by technological innovation. This trend is expected to continue into

the future. Surveillance cameras, either static or as part of an unmanned aerial

vehicle, enable the screening of public areas consisting of many people. Pictures

or video-feeds can be relayed to a control centre in real time whereby subjects

can be matched against a database by means of their biometric signatures to

determine their identity or possible intentions. Use of such surveillance resources
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for defensive purposes can be referred to as defensive surveillance. Central to

the idea of Homeland Security, a term coined in the United States in response

to terrorist threats, is that preventing threats from maturing or minimising their

impact is certainly preferable to responding to events which do occur. For example,

defensive efforts which prevent a terrorist from detonating a bomb in a public area

are better than responding to the mass damage caused and subsequent retaliation.

Defensive surveillance is part of a wider strategy to realise this goal.

The strong capabilities of surveillance resources are paired with the drawback

that they are finite in nature. In a public area, such as a train station, consisting

of a crowd of people, it is only possible to screen a finite number of individuals,

often one, at any given time. Screening is not instantaneous as it requires some

processing time. The only way every member of the crowd could be screened is

if they all stayed in the public area for the necessary length of time needed to

screen every person. However, the nature of public areas reveals that this is not

realistic. In reality, people arrive into a public area and stay there for some finite,

random period of time before leaving. Public areas evolve somewhat randomly,

wherein the people within them have a finite lifetime. It is clear then that the

choice to screen one individual ahead of many others presents an opportunity cost

of not being able to screen the individuals who leave the area during the screening

of the chosen individual. However, it is not known who will leave or how many.

Typically, screening every individual is an impossible task. Fundamentally then,

at a given point in time, which individual should be screened? This reflects one

of the major challenges of defensive surveillance, management of a scarce resource

in the context of screening subjects who have a finite lifetime.

A pertinent example of an adversarial threat is that of a terrorist attack. These

attacks often take place in crowded, everyday locations or public areas. For exam-

ple, tourist spots, transportation hubs, and organised public events. This indicates

the carefully planned nature of the adversary. The first trait of this planning is

that terrorists wish to strike in places which allow for enhanced impact. These
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places are open, exposed, and not too difficult for the adversary to penetrate. In

this sense, public areas are somewhat soft targets in comparison to a well defended

and fortified military base, for example. The second trait is that terrorists wish

to remain covert and avoid detection by defensive forces. Crowds within public

areas facilitate this function, as the surveillance resource is drawn to other people

the adversary is able to carry out and complete an attack before the surveillance

resource is able to screen the terrorist. Alternatively, an immigrant could use the

crowd in a public area to provide coverage whilst he passes across a border illegally.

Given the limitation of the surveillance resource, such outcomes are possibilities.

These possibilities are enhanced when the adversary is capable of behaving as

a decision-making agent, choosing which area to attack. Consequently, this ad-

versarial capability must be recognised by the defensive forces. Hence, another

major challenge in the process of defensive surveillance is controlling surveillance

technology in the presence of an adversary capable of making strategic decisions.

The main motivation of this thesis is to consider the operational challenges

posed by defensive surveillance: How should a surveillance resource be utilised in

real time to minimise the impact of adversarial threats? In particular, we wish

to consider relevant scenarios within the context of the threats faced in public

areas as described above. We will develop multiclass queueing system models for

the defensive surveillance scenarios. The queueing systems will contain the main

features of the scenarios; the notion of customer abandonment or impatience, and

the notion of an adversarial customer seeking to enter the system among other cus-

tomers, conduct an illicit activity, and leave without detection. The operational

challenges of defensive surveillance then become the challenges of developing con-

trol policies within the queueing systems with respect to some stated objectives.

Variation of assumptions and objectives in each model will give rise to different

defensive surveillance scenarios in practice. Furthermore, even in the absence of an

adversarial threat, the challenge of developing control policies in multiclass queue-

ing systems with customer abandonments is an interesting and relevant problem
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in other application areas such as the operation of call centres. Consequently,

through consideration of the main defensive surveillance motivation we also hope

to shed light on these more general problems.

1.2 Challenges and Objectives

In this section, we develop the defensive surveillance scenarios motivated previously

and which will be the focus of the thesis. We consider a large public area which

can be divided into multiple sub-areas. As such, we refer to k public areas to

actually mean the sub-areas which aggregate to the original larger area. When we

refer to public areas, we mean areas in which people are free to come and go at

their own will. For example, a train station which could be divided into sub-areas

of different platforms, ticketing lobbies, and walkways. Our description of the

surveillance process in these public areas follows the one given by Lin et al. (2009)

in their work which uses a queue to model an antiterrorist surveillance system.

Arrays of video cameras monitor the areas continuously, relaying video-feeds

in real time to a control centre operated by a security team. The security team

uses the video-feeds to screen people within the areas in two phases: an initial

classification phase, and a screening phase. In the first initial classification phase,

as soon as people arrive into an area they are assessed visually and classified as

members of one of two groups: nonsuspects and suspects. In this classification,

some civilians and all adversaries will be classified as suspects, while all nonsus-

pects are civilians. Nonsuspects are not subject to any further screening and are

subsequently ignored by the security team. Suspects become eligible for second-

phase screening. In second-phase screening, biometric signatures are extracted

from a suspect, for example face structure and hair characteristics, and matched

against a database. If no match is found the suspect is reclassified as a nonsuspect

and is subsequently ignored. However, a positive match yields the identity of the

suspect and appropriate action can be taken. If this identity is not of relevance

to the security team then the suspect is reclassified as a nonsuspect and is subse-
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quently ignored. However, if this identity is of relevance, for example the suspect

is a known criminal or terrorist, then security forces can be notified to intervene.

People arrive at random into each of the k public areas which immediately

initiates the first phase of the screening process. We assume that this phase is fast

and so the time taken is negligible. The first phase screening identifies a set of

suspects in each area. Whilst in an area, suspects conduct their own daily busi-

ness and leave the area when this concludes. Since some suspects are potentially

adversaries, this daily business could be something harmful. We say that each

suspect has a lifetime in the area and the length of this lifetime is random and

independent for each suspect. Expiration of the lifetime for a suspect corresponds

to the suspect leaving the area. During this lifetime, each suspect is available for

second-phase screening. The security team is only able to engage in second-phase

screening for one suspect from one of the k areas at any given time. The process-

ing time taken to complete second-phase screening is random and independent for

each suspect. Lifetimes can expire during second-phase screening, in which event

the screening is incomplete and the security team moves onto another suspect.

Each public area represents a target for an adversary such as a terrorist or

illegal immigrant. The public area itself and people within it may be the target,

or infrastructure located within an area may be the target, or indeed the area

may provide passage to the target. The objective of the adversary is to enter one

of the public areas, conduct an illicit activity such as planting or detonating a

bomb, and leave (if applicable) before second-phase screening of the adversary can

be completed. If an adversary enters an area, they are inconspicuous, appearing

to the security team to be just like every other person in the area. The random

time taken to conduct the illicit activity is the lifetime of the adversary within the

area, and hence the time for which they are available for second-phase screening.

The only way the security team is able to uncover the identity of each suspect

is by full second-phase screening and so there is no way to know a priori when

the adversary is in an area or which suspect it is. The purpose of surveillance
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is then to screen suspects across all public areas in order to successfully identify

an adversary before he is able to achieve his goal. The operational problem is to

identify a decision-making rule which declares which suspect should be engaged in

second-phase screening at each point in time to ultimately minimise the probability

of evading detection or damage inflicted by the adversary.

We now develop a mathematical model for the surveillance problem faced by the

security team. The scenario described can be modelled as a multiclass queueing

system with customer abandonments and a single server. The k public areas

are modelled as k parallel queues and the people classified as suspects in the

areas as customers in the queues. We can also refer to the parallel queues as

customer classes. Customers arrive into queue i according to a Poisson process

with rate λi. The security team controlling the surveillance resource is modelled

as the server, where service of a customer is equivalent to second-phase screening.

Each queue i customer has two random quantities: a service requirement and a

lifetime. Service requirements in queue i represent the time taken for the server

to successfully serve a customer or equivalently the time taken to successfully

complete second-phase screening of a suspect. These are given by independent and

identically distributed random variables. Lifetimes in queue i represent the lengths

of time customers stay in the queue and are given by independent and identically

distributed random variables. Note that we allow the stochastic distributions of

the arrival rates, service requirements, and lifetimes to differ between queues to

represent areas with different characteristics. For example, longer lifetimes may

reflect suspects waiting on a train platform as opposed to walking down a hall and

longer service requirements may reflect the longer time needed to extract biometric

signatures from suspects walking rather than standing. Expiration of a customer

lifetime before completed service is referred to as a customer abandonment, where

abandonment can occur before or during service.

After customers have arrived into a queue they queue for service until ulti-

mately either service completion or abandonment occurs, after which they are
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considered as having left the system regardless. Although suspects would not

physically form a queue in practice, when we model them as customers we adopt

the convention of a queue to refer to the order in which they arrived. Service of a

customer can either be preemptive or nonpreemptive. Preemptive service means

that the server can stop a service at any time and switch to another customer,

which is equivalent to the second-phase screening process being stopped and an-

other beginning on another suspect. Nonpreemptive service means that once the

server begins a service, this continues until it is either completed or the customer

abandons. In other words, the second-phase screening can only be stopped by the

suspect leaving the area.

We do not model the adversary as a customer who actually enters the system,

but rather as a potential customer possessing the ability to join or attack any of

the k queues. If the adversary attacks queue i then his service requirement is

identically distributed to that of every other queue i customer, and similarly for

the lifetime of the adversary. In other words, when attacking queue i the adversary

behaves like every other customer in that queue. Once in the system there are two

possible outcomes, service completion and abandonment representing unsuccessful

and successful attacks respectively. The goal of the adversary is to abandon his

queue before being served to completion. If the adversary is able to abandon a

queue, he is able to incur a fixed amount of damage in the process.

At any given point in time, the number of customers currently in each queue

gives the state of the system. A service policy is a rule which uses the system

state to decide which customer to serve from which queue at each point in time.

Clearly, we have implicitly assumed here that the server always knows the state

of the system in real time. The service policy adopted by the server reflects the

way in which the security team controls the surveillance resource. Use of a specific

service policy directly determines the probability of each outcome available to

the adversary should he attack a specific queue. The choice of service policy is

the mechanism through which the security team can affect the probability of the
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adversary being able to abandon each queue and so complete a successful attack.

Importantly, the information available to and capability of the adversary dic-

tates his decision-making ability. Moreover, the information the server has re-

garding the capability of the adversary affects the choice of service policy. In

this thesis, we consider different surveillance scenarios based on three variations of

information available to both the server and adversary and the capability of the

adversary. The scenarios are as follows:

• Random adversary : The adversary attacks the different queues randomly

according to a probability distribution which is known to the server.

• Strategic adversary who chooses where to attack : The adversary attacks the

different queues according to a probability distribution under his control,

which the server does not know.

• Strategic adversary who chooses where and when to attack : The adversary

attacks the system based on knowledge of the state of the system. The server

does not know where or when the adversary will attack.

The objective throughout this thesis is to develop service policies and surveil-

lance strategies which minimise the probability of abandonment experienced by the

adversary in each scenario. When the adversary can inflict different amounts of

damage in each queue, the objective generalises to minimising the expected damage

inflicted by the adversary. We will often use the two objectives interchangeably

throughout the thesis.

In the random adversary scenario, the decision of the adversary is known to

the server. The defensive surveillance problem can be seen as a special case of a

more general stochastic scheduling problem in which a server attempts to maximise

the average reward rate in a system affected by abandonments. This stochastic

scheduling problem and other variants have been studied in recent years by nu-

merous authors including Glazebrook et al. (2004), Atar et al. (2010), and Down

et al. (2011) to name just a few. We develop new results and approaches for this
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problem which complement the existing literature. In the strategic adversary sce-

narios, the unknown decision of the adversary poses a different problem which can

be addressed using ideas from game theory or by formulation as a robust optimi-

sation problem. These scenarios share a similar motivation to a number of other

defender-attacker problems, see for example Lin et al. (2013). It is our belief that

the strategic adversary scenarios within this thesis, in particular the use of a mul-

ticlass queueing system with abandonments to model the defensive surveillance of

public areas, are novel and have not been previously studied. The closest known

work is that of Lin et al. (2009) who model the defensive surveillance of a single

public area as a single queue with impatient customers. However, the authors

do not consider the case of multiple areas and an adversary capable of making

strategic decisions which is the major feature of the strategic adversary scenarios

within this thesis.

1.3 Thesis Structure

In this section, we provide an outline of the remaining chapters of the thesis,

highlighting the main features, approaches, and contributions of each chapter. A

paper based on the combined work of Chapters 3 and 4 has been published in

INFORMS Journal on Computing; see James et al. (2016). We begin in Chapter

2 with a comprehensive review of the literature relevant to the subsequent chap-

ters of the thesis. The literature review first considers broad theoretical areas

which underpin the methods used within the thesis. We then consider literature

concerning stochastic scheduling with customer abandonments as this is highly

relevant to the problem formulated to address the random adversary defensive

surveillance problem. Finally, we consider a class of related literature we refer to

as defender-attacker problems as this shares similar motivations to the strategic

defensive surveillance problems.

The remainder of the thesis studies the three defensive surveillance scenarios

described in Section 1.2, each sharing the common foundations outlined. We dis-
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tinguish between the scenarios based on the capability of the adversary and the

knowledge of the server regarding the adversary. Together these form a set of de-

fensive surveillance models which cover a number of potential scenarios which may

occur in real-world security operations. We will see that the operational strategies

suggested in each scenario are different, indicating the importance of identifying

which scenario prevails before identifying the appropriate defensive actions.

Chapter 3 - Defence against Random Adversaries: Priority Policies

In Chapter 3 we study the problem of a single server faced with impatient cus-

tomers spread across k customer classes. Each customer class can be seen as a

separate queue, each containing customers of the same type. Each customer has

a random lifetime during which he is available for preemptive service. Should a

customer be served to completion before this lifetime expires, a reward is received;

otherwise, the customer abandons the system and a penalty is inflicted. In ad-

dition, each customer in the system incurs a holding cost at a fixed rate. The

random lifetimes, random service times, rewards, penalties, and holding costs are

dependent upon the customer class. The goal of our analysis is to determine a

service policy to maximise the long-run reward rate net of penalties and holding

costs incurred. We show that the three parameters in the reward structure can be

consolidated into a single parameter through a proper transformation and without

loss of generality we are able to consider a pure-reward problem by ignoring the

abandonment penalty and holding cost. The problem is studied with respect to

arbitrary rewards and so in this sense is rather general.

As previously discussed, the principle motivating application of our model is

to defensive surveillance. We consider the scenario of a random adversary who

attacks the system in its long-run steady state conditions at random according to

some probability vector p which assigns probability pi to attack of queue i. The

adversary could have chosen p entirely at random, or through some knowledge

of the system in an attempt to maximise the damage he can inflict. In either
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case, p is known to the server. By expressing the class dependent rewards for

service completions in terms of the probability vector p, the goal of maximising

the long-run reward rate is equivalent to maximising the probability of serving an

adversary. This objective is consistent with our general objective throughout the

thesis of developing service policies which minimise the probability of abandonment

experienced by the adversary, or minimising the expected damage inflicted. The

random adversary scenario is hence studied in Chapter 3 as a special case of a

more general stochastic scheduling problem featuring customer abandonments.

We model the problem as a Markov Decision Process (MDP) and use standard

methods of Dynamic Programming (DP) to compute the optimal service policies.

However, the computational burden of such methods make them only practical in

most problems with up to three customer classes. Hence, our focus is on the devel-

opment of strongly performing heuristic policies with a preference for operationally

simple policies with strong reward rate characteristics.

We consider a set of priority policies which are effective across much of the

problem’s parameter space. Such policies serve customers according to a strict

priority ordering among the customer classes. In the case where the system is

overloaded, it has been shown in the literature that the Rµ rule, a priority policy

that ranks all customer classes based on the product of reward R and service rate

µ, performs well, since it maximises the instantaneous reward rate (Atar et al.,

2010; Ayesta et al., 2011; Verloop, 2014; Larrañaga et al., 2014). To complement

the Rµ rule in the light-traffic case, the main contribution of Chapter 3 is to

present the Rµθ rule, which ranks all customer classes based on the product of

R, µ, and the abandonment rate θ. This ranking was proposed in Section 2 of

Glazebrook et al. (2004) for batch problems, and we extend its application to

systems with customer arrivals. We prove that the Rµθ rule is asymptotically

optimal as customer abandonment rates approach zero in light traffic systems.

This result sheds light on cases where the time spent by individuals in the public

areas tends to be large relative to the time taken to surveil them. Extensions of this
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result are discussed for other model classes of interest, namely a multiserver version

of our system and in Klimov Networks (see Klimov (1974) and Klimov (1978)).

Further to this we develop a priority policy known as the PaS policy by applying

a pairwise swapping mechanism to both the Rµ and Rµθ rules to search for an

improved policy. Finally, we compare the Rµ and Rµθ rules both analytically and

numerically in light traffic systems in a set of numerical experiments.

Chapter 4 - Defence against Random Adversaries: Approximate Policy

Improvement

In Chapter 4, we further study the problem of developing effective service policies

for multiclass queueing systems with customer abandonments, wherein the random

adversary defensive surveillance scenario is a special case. Whereas Chapter 3 con-

siders priority policies, Chapter 4 considers an approach which aims to overcome

the computational intractability of DP methods in larger systems. This is consis-

tent with the objective in the research field of approximate dynamic programming

(ADP). In particular, we consider the policy iteration method (see Howard (1960))

in which the difficulty of utilising this method lies in the computation of bias func-

tions at each state of the system under a given service policy. The main contribu-

tion of Chapter 4 is to develop an approximate policy iteration (API) method for

the problem. For a given policy, the API method uses simulation to estimate bias

values for a set of carefully chosen states, and then uses these values to interpolate

the bias function for all states. This approximate bias function allows us to run

policy improvement to obtain a new policy. The logic which underlies this method

is that if the approximate bias functions are accurate representations of the true

bias functions then the new policy will be at least as good as the initial policy.

Our API approach can be viewed as a refined ADP implementation with two

distinctive features: (1) a suite of strongly-performing priority policies to initialise

the API algorithm, and (2) a simulation / interpolation methodology to fit the

bias surface by estimating biases both at states that are frequently visited, and also
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at a carefully chosen set of widely spread states. Our numerical results indicate

that, in most cases, the best priority policy is nearly optimal in systems with 2 or 3

customer classes and we have an effective service policy of simple structure. In the

cases where it is not, the API method invariably tightens up the gap substantially

and provides an improved policy, albeit of more complex structure. The structure

and performance of API brings to light a trade-off between policy simplicity and

quality, which potentially has useful managerial implications. In our motivating

random adversary defensive surveillance application, even small improvements in

reward rate performance can be of high practical importance. In Chapter 4 we also

conduct an extensive numerical study to compare the performance of a range of

heuristic policies, notably the API approach and the priority policies of Chapter 3.

To assess the closeness to optimality of a given policy, we use a linear programming

relaxation to develop upper bounds for the reward rate achievable in the system.

The upper bounds are used to evaluate our heuristics in systems with 5 customer

classes.

Chapter 5 - Defence against Strategic Adversaries Who Choose Where

To Attack

In Chapter 5 we consider the defensive surveillance scenario in which a strategic

adversary chooses which queue to attack. We adopt the same model as in the

random adversary scenario of Chapters 3 and 4. Once more, the adversary attacks

the system in its long-run steady state conditions according to some probability

vector p which assigns probability pi to attack of queue i. The difference in this

scenario is that p is not known by the server. Given the capability of the adversary

to choose any p, the server wishes to find a robust service policy which achieves

a low expected damage, regardless of the choice of p. Whilst the server does not

know the decision of the adversary, namely p, the adversary does not know the

decision of the server of which service policy to use. The objective of the adversary

is to maximise the expected damage he can inflict on the system by deciding which
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queue to attack. The objective of the server, on the other hand, is to determine a

randomised service policy which minimises the expected damage inflicted. Given

the lack of knowledge of each others decision, we model the interaction of the server

and the adversary as a simultaneous move two-person zero-sum (TPZS) game.

We develop an optimal solution to the TPZS game from both the perspective

of the server and the adversary, where in each case the optimal decision for each

player is independent of the optimal decision of the other. We show that we

can determine the optimal randomised policy of the server by formulating and

solving an appropriate linear program. However, this is only possible for most

systems of up to three queues. Subsequently, there is a need to develop heuristic

approaches to the problem which can be used in larger systems. Our heuristic

approach is motivated by our consideration of the problem from the perspective

of the adversary. We show that the optimal probability vector p for the adversary

can be found by formulating a convex optimisation problem which can be solved

through Kelley’s cutting plane (KCP) method (see Kelley (1960)). The KCP

method provides a strong link to the random adversary scenario of Chapters 3 and

4. We restrict the server to a finite set of service policies which consists of the

optimal service policies against given choices of p by the adversary. We see that

the KCP method is equivalent to an iteratively expanding finite matrix game in

which the server is restricted to using only policies in this set and more policies

are added to the set. The value of the matrix game converges to the optimal

expected damage as the policy set increases and the server can achieve this by

adopting a mixed strategy over the policy set. However, the KCP method is

computationally intractable for systems of more than three queues. Our heuristic

approach is a heuristic application of the KCP method. We formulate a finite

matrix game between the server and adversary and iteratively populate a finite

set of service policies using the strongly performing heuristic policies developed

in Chapters 3 and 4 for the random adversary scenario. This yields the heuristic

cutting plane (HCP) method and an enhanced version of this method. We assess
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the performance of our heuristic methods in a set of numerical experiments which

indicate strong performance with favourable amounts of computation.

Chapter 6 - Defence against Strategic Adversaries Who Choose Where

and When To Attack

In Chapter 6 we extend the strategic adversary scenario of Chapter 5. In addition

to choosing which queue to attack, the adversary can also choose when to attack the

system. In this case, the server wishes to find a robust service policy which provides

a performance guarantee against any choice of queue and time the adversary could

make. We first study a single queue system in which the adversary does not have

a set of queues to choose from and only chooses the time at which he attacks

the queue based on the state of the system. The state consists of two elements:

the volume state which represents the number of customers in the system, and

the server state which represents which customer is in service and how long that

customer has been in service. We consider two scenarios in which the adversary

chooses when to attack based on both the volume and server states or only the

volume state. We refer to these as the full and partial information scenarios

respectively. The first contribution of this chapter is to show that the last come first

served (LCFS) policy, namely the policy which serves the most recently arrived

customer, is optimal in a number of versions of the single queue problem. The

strength of the LCFS policy is based on the fact that the abandonment probability

of the adversary depends on the arrival process after the adversary has joined

the queue, and not on the state of the system. In practice, the server may or

may not know the capability of the adversary and the adversary may or may not

know the state of the system. If the adversary is not as capable as assumed, our

analysis provides an upper bound on the abandonment probability of a less capable

adversary.

We generalise the problem to systems with multiple queues and consider two

ways in which the security team is able to control the system. With decentralised
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control, the decision of which queue to serve and which customer to serve are sep-

arate. The choice of which customer to serve is made locally, once the server is

allocated to a queue. With centralised control, the server can decide which cus-

tomer to serve from all customers in the system. In both cases, the objective of the

server is to determine a robust service policy which provides the best performance

guarantee against the best decision the adversary could make. However, in both

cases it is very difficult to solve the optimisation problem. Hence, our goal is to

develop heuristic approaches to the problem which provide strong upper bound

performance guarantees for the server.

The first step is to simplify the optimisation problem by arguing that the

worst case for the server occurs when the adversary attacks when the number of

customers in each queue approaches infinity. In designing a heuristic decentralised

policy, we develop heuristics based on the strong performance of the LCFS policy

in a single queue system. We develop the Departure Reselection (DR) and Service

Reselection (SR) policies which both allocate the server to a queue according to a

probability vector (called the reselection vector) and then serve according to the

LCFS policy within that queue. We seek to find the best performance guarantees

for the server from within the classes of DR and SR policies by optimising the

reselection vector. We define a method based on the work by Regis & Shoemaker

(2005) which intelligently utilises simulation within a response surface method for

global optimisation problems.

In the case of centralised control, the server knows and can compare the arrival

times of all customers in the system. The server can build this information into

the service policy, providing greater capability than in the case of decentralised

control, hence the server can achieve better performance guarantees. In a multiple

queue system, we extend the definition of the LCFS policy to be the policy which

serves the most recently arrived customer into the system. In a symmetric mul-

tiple queue system, we show that the LCFS policy provides the best performance

guarantee as a consequence of our analysis of single queue systems. We would
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not expect the LCFS policy to provide the best performance guarantee in general

asymmetric systems, so we develop a heuristic approach based on the LCFS pol-

icy. We develop the Last Come First Served with Probabilistic Skipping (LCFS-PS)

policy to improve upon the LCFS policy. The LCFS-PS policy is parametrised by

a vector of probabilities (called the skipping vector). The server orders the most

recent arrivals in each queue and attempts to serve the first customer, but has the

potential to skip over this customer. The server repeats this down the order until

a customer is selected for service. The rationale is to reduce the abandonment

probability in the most damaging queue under the LCFS policy by providing more

service to that queue, at the expense of the other queues. We seek to find the best

performance guarantees for the server from within the class of LCFS-PS policies

by optimising the skipping vector. We adopt a similar approach to that taken for

the DR and SR policies. We demonstrate the superior performance of the heuristic

approach based on LCFS-PS over the decentralised approaches based on DR and

SR in sets of numerical examples. We show that our carefully designed heuristics

achieve large performance improvements over simpler policies such as the LCFS

policy and a round robin (RR) policy which aims to treat each queue fairly.
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Chapter 2

Literature Review

In this chapter we provide a review of various fields of literature which are relevant

to the defensive surveillance problems and models studied within the thesis. We

begin by reviewing the three subject areas of Markov decision processes, approx-

imate dynamic programming, and game theory under the heading of theoretical

underpinnings. Much of the modelling framework and many of the methodolog-

ical tools within the rest of the thesis are provided within these areas. Hence,

the review mainly focuses on aspects closest to the needs to the thesis from these

otherwise vast subject areas. We then consider literature concerning stochastic

scheduling, with particular emphasis on customer abandonment in the context of

stochastic scheduling. This area is relevant to Chapters 3 and 4 of the thesis. Fi-

nally, we consider the literature related to defender-attacker problems. This area

is relevant to Chapters 5 and 6 of the thesis.

2.1 Theoretical Underpinnings

2.1.1 Markov Decision Processes

There are many situations in which a decision-making agent wishes to make a

sequence of decisions in order to optimise some previously stated objective. In

such a sequential decision process, decisions are made based upon the information
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available at a point in time, under the uncertainty of the future effect of those

decisions. That is, each decision incurs an immediate contribution to some ongoing

objective, but also affects the ability to make future decisions and so indirectly

affects future contributions. Optimal decision-making must balance the trade-off

between immediate effects and possible future effects.

Elements of Markov Decision Processes

Consider a system in which decisions are to be made at evenly spaced discrete

points in time, known as decision epochs, over an infinite time horizon. At a

given decision epoch t the system occupies one of a number of possible states.

The set of possible states available is known as the state space S. The state s

allows the decision-maker to choose an action a from a finite set of feasible or

allowable decisions As in that state. As a result of choosing action a ∈ As in state

s at decision epoch t, then independent of the past, two things occur. Firstly,

a non-negative expected reward R(s, a) is received. Secondly, the system moves

to a new state s′ according to some transition probability p(s′|s, a). From this

new state, this process repeats. A policy π is a sequence of rules or procedures

for action selection in each state at all decision epochs. A stationary, Markovian

policy selects actions based only on the current state and not time, always selecting

the same action in the same state. The policy is deterministic when actions are

selected with certainty. Following such a policy through time yields a sequence of

rewards for the decision-maker. The objective of the decision-maker is to determine

a policy which maximises some function of the reward sequence generated. The

dependence of expected rewards and state transitions only on the current state and

action and not the prior history of the process means that such sequential decision

processes are known as Markov Decision Processes (MDP). Whilst it is possible

to adopt non-stationary policies where actions in states can change through time,

Puterman (1994) established that it is often sufficient to only consider stationary,

deterministic policies.
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Discounted Reward Criterion

Over an infinite horizon the objective can take three main forms: maximising the

expected total reward (assumed finite), maximising the expected total discounted

reward, and maximising the average reward rate over all policies. In the latter

two cases rewards R(s, a) are assumed to be bounded and finite. Consider the

case of an expected total discounted reward criterion in which rewards R(s, a) are

discounted at rate α, 0 < α < 1. Denoting the state and action at decision epoch t

by st and at respectively, the objective of the decision maker is to maximise among

all policies π

V π(s) = lim
n→∞

Eπ
{ n∑

t=1

αt−1R(st, at)

}
.

This limit is guaranteed to exist when the rewards are bounded. The value of

policy π for initial state s is given by V π(s) and the corresponding value of the

MDP is given by

V ∗(s) = sup
π
V π(s).

A policy π∗ is said to be discount optimal if for every initial state s we have that

V π∗(s) = V ∗(s). An effective method for solving MDPs first developed by Bellman

(1957) is known as dynamic programming (DP). The idea of DP is reflected in the

Principle of Optimality which states that:

“An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.”

This can be formulated as an equation which links the decision at the current

epoch with the decision at the next epoch. The resulting equation is known as the

Bellman equation or optimality equation:

V ∗(s) = max
a∈As

(
R(s, a) + α

∑
s′∈S

p(s′|s, a)V ∗(s′)

)
. (2.1)
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The theory of MDPs is given excellent coverage in the book by Puterman

(1994). This theory shows the existence of a deterministic, stationary optimal

policy which corresponds to selecting actions in states which maximise the right

hand side of (2.1). The value function V ∗(s) captures the value of being in state

s and following an optimal policy forward.

Average Reward Criterion

In the case of an average reward criterion, in an analogous way, the objective is to

maximise among all policies π

gπ(s) = lim
n→∞

1

n
Eπ
{ n∑

t=1

R(st, at)

}
.

This limit exists when the rewards are bounded, the state space is finite, and the

policy is stationary. When the Markov chains induced by deterministic, stationary

policies are unichain or ergodic, the average reward or gain gπ(s) of policy π is

constant and equal to gπ for all states. The average reward version of the optimality

equation is given by

g∗ + h∗(s) = max
a∈As

(
R(s, a) +

∑
s′∈S

p(s′|s, a)h∗(s′)

)
. (2.2)

The quantity g∗ is the optimal gain or maximum average reward rate and the

function h∗(s) is known as the bias function of state s under the optimal policy.

The bias function measures the asymptotic relative difference in total reward which

results from starting in state s as opposed to some other reference state. Another

interpretation is that the bias is the expected total difference between reward

received starting from state s and the stationary reward received starting from

a steady state system. This difference occurs in the early phase of the decision-

making process. A deterministic, stationary policy which maximises the right hand

side of (2.2) is said to be bias-improving and is an average optimal policy.

From the previous discussion, in the expected total discounted reward and av-
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erage reward cases respectively, if the optimal value function V ∗(s) or optimal

bias function h∗(s) was known for each state then an optimal policy can be de-

termined from the actions which maximise the right hand side of (2.1) and (2.2)

respectively. However, these quantities are unknown and difficult to calculate and

so there is a need for other ways to identify optimal policies. The two main ap-

proaches are known as value iteration and policy iteration and were introduced

by Bellman (1957) and Howard (1960) respectively. Both iterative methods have

proven convergence properties. Other approaches such as modified policy iteration

and relative value iteration are variants of these two main approaches, with the

former being a cross between value and policy iteration. Another method based

on a linear programming reformulation of the optimality equation was proposed

by d’Epenoux (1963).

Value Iteration

In the expected total discounted reward case value iteration begins with a set

of initial arbitrary bounded functions V0(s) for each state and finds V1(s) as the

solution of (2.1), using V0(s) in the right hand side. In general, for n > 1, Vn(s)

is the solution of (2.1), using Vn−1(s) in the right hand side. In theory Vn(s)

converges uniformly to V ∗(s) as n→∞. In practice, this procedure is repeated for

a finite number of iterations until a termination criterion is met. The termination

criterion holds that largest difference in the value functions between successive

iterations across all states, as measured by the supremum norm, is smaller than

some threshold controlled by a small parameter ε. This condition guarantees an

error of less than ε/2. For further details, see Puterman (1994, p161). The

deterministic, stationary policy which solves the optimality equation in the final

iteration is said to be ε-optimal. In the average reward case the algorithm is similar

with termination occurring when the increase in the value functions for all states

is close to constant. This constant increase approximates the gain g∗, the relative

difference in value functions approximate the bias functions h∗(s), and again the
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deterministic, stationary policy which solves the optimality equation in the final

iteration is said to be ε-optimal. Note, the gain is guaranteed to be positive due

to the assumption of a non-negative expected reward.

Policy Iteration

Policy iteration consists of two main steps: policy evaluation and policy improve-

ment. Suppose there is an arbitrary initial stationary policy π. Policy evaluation

calculates the value functions or bias functions associated with π using a version of

the optimality equation which drops the max operator, prescribes actions accord-

ing to π, and replaces (∗) with π. Policy improvement uses these value functions

or bias functions to define a new policy π′ which is at least as good as π. This

is done by determining actions which maximise R(s, a) +
∑
p(s′|s, a)hπ(s′) in the

case of average rewards. This procedure iterates through the class of deterministic,

stationary policies until no further improvements can be made, at which point the

current policy is optimal.

Continuous-time MDPs and Uniformisation

Standard MDP theory assumes that decision epochs occur at a discrete set of

time points which are evenly spaced. However, there are many situations in which

the times between successive decision epochs are random. These random times

are dependent upon the states and actions. This naturally occurs in the control of

queueing systems whereby state transitions occur at the random arrival instants or

random departure instants of customers. Sequential decision processes of this form

are considered in continuous time and are more generally known as semi-Markov

Decision Processes. The special case in which the times between decision epochs

each follow an exponential probability distribution is known as a continuous-time

Markov Decision Process. It is possible to analyse these decision processes within

the discrete-time framework outlined through the use of uniformisation, notably

first applied by Lippman (1975) and Serfozo (1979). Uniformisation converts the
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original continuous-time process into an equivalent discrete-time process. Suppose

decision epochs occur at state transitions and the time taken to transition from

state s into a new state under action a is exponentially distributed with rate ∆s(a).

The uniformisation defines a new transition rate ∆ such that ∆s(a) ≤ ∆ for all

s and a and allows fictitious transitions from a state to itself. A transition out

of state s at rate ∆s(a) in the original process is statistically identical to leaving

at faster uniform rate ∆, but returning back to it with probability 1 − ∆s(a)/∆

in the uniformised process. Transition probabilities in the uniformised process are

denoted p̃(s′|s, a), rewards are denoted R̃(s, a), and in the case of average rewards

the gain is denoted g̃. These elements allow the formulation of a uniformised

discrete-time MDP with optimality equation given by:

g̃∗ + h∗(s) = max
a∈As

(
R̃(s, a) +

∑
s′∈S

p̃(s′|s, a)h∗(s′)

)
.

In this uniformised decision process the unit of time is the expected transition

time ∆−1 and the so the optimal gain is interpreted as the maximum average

reward per transition. Multiplication by ∆ converts this back into unit time. For

a more comprehensive coverage of MDP theory, the reader is once more referred

to the book by Puterman (1994).

2.1.2 Approximate Dynamic Programming

The formulation of a sequential decision problem as an MDP provides a powerful

framework from which to identify optimal decision-making strategies. The stan-

dard approach of DP to solving such problems comes in the form of value iteration

or policy iteration. These algorithms require the evaluation of value functions at

every state in the state space, an assessment of all feasible actions which can be

taken from each state, and consideration of all possible outcomes following each

action. Identification of optimal policies through these methods in most sequential

decision problems which occur in practice is typically not feasible, even with the

most powerful computers. This issue was famously referred to by Bellman (1957)
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as the curse of dimensionality. As the dimension of the number of variables within

the problem grows, the actual size of the problem grows exponentially. For ex-

ample, if the state space has n dimensions with each dimension taking m possible

values, then there can be up to mn states. Alternatively, if the action space has k

dimensions with each dimension taking l possible values, then there can be up to lk

possible actions. When these values are large, tasks such as considering the value

of all states or considering all actions are not achievable. Aside from the curse

of dimensionality, DP requires that almost all aspects of the system are known,

specifically a reward function and a set of transition probabilities under each state

and action. In many settings these are not known, adding another issue to the

solution of an MDP. However, despite these restrictions, there is still a need for

near yet suboptimal policies or policies which simply improve existing strategies of

decision-makers. Building upon the framework set out by DP, this has motivated

the research field of Approximate Dynamic Programming (ADP).

ADP is a term which collectively describes methods designed to solve large,

complex sequential decision problems to near optimality. It is not readily defined

given the vast array of different approaches which can be taken, each with differ-

ent components. Methods which originated in the artificial intelligence community

are termed Reinforcement Learning in that systems “learn how to make good deci-

sions by observing their own behaviour, and use built-in mechanisms for improving

their actions through a reinforcement mechanism” (Sutton & Barto, 1998). This

statement captures the essence of ADP since most methods are founded on the

integration of four main themes: the framework and methods of DP for solving

MDP problems; the use of simulation to replicate the behaviour of a stochastic sys-

tem; the idea of learning from observations made within simulated environments;

and the use of function approximations as means of representing value functions.

Synthesis of these ideas within ADP presents the opportunity to identify strongly

performing suboptimal policies. However, the vast range of ways in which algo-

rithms can be designed is often the central challenge in ADP, and focus lies in
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finding methods which work harmoniously together. The books by Bertsekas &

Tsitsiklis (1996), Sutton & Barto (1998), Bertsekas (2012), and Powell (2011) give

the best extensive coverage of ADP methods.

In an MDP the value functions V ∗(s) or V π(s) of an optimal policy or policy

π in state s are of fundamental importance. Knowledge of these value functions

allows for improvement of policies and the identification of optimal policies. The

curse of dimensionality renders methods for evaluating these functions infeasible

and so central to ADP are value function approximations Ṽ ∗(s) or Ṽ π(s). Approx-

imate policy iteration (API) is an approach to ADP based on the policy iteration

algorithm. It takes suitable approximations Ṽ π(s) of policy π and using an ex-

pected total discounted reward criterion as an example, identifies an improved

policy π′ with actions given by

π′(s) = argmax
a∈As

(
R(s, a) + α

∑
s′∈S

p(s′|s, a)Ṽ π(s′)

)
. (2.3)

This performs an approximate policy improvement step based on an implicit set

of approximate policy evaluations Ṽ π. If the approximations are accurate, similar

actions will be taken to those taken if the true value functions were known. Much

of the difficulty in ADP lies in performing accurate approximate policy evaluations.

The case in which there is a value function approximation stored in memory for

every state is known as a lookup table representation. Lookup table representations

are not practical in the case of massive state spaces and so compact representations

are used. A compact value function approximation for policy π is written Ṽ π(s|θ)

and represents the true value function through some function with relatively few

parameters θ. With this scheme, only the parameters and functional form need

to be stored in memory and estimates can be readily computed for every state

when required. This is a key idea in circumventing the challenge of a massive

state space.

The use of a compact value function approximation requires the selection of an

approximation architecture which defines the class of parametric functions which
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can be used for Ṽ π(s|θ). Architectures can be broadly separated into two main

categories: linear and non-linear. A linear architecture is given by

Ṽ π(s|θ) =
K∑
k=0

θkφk(s).

This expresses the value function approximation as a linear function of K + 1

parameters and basis functions. Examples of architectures include polynomial

regression, kernel regression, neural networks, radial basis functions, splines, and

interpolation schemes to name a few. A challenge in ADP is finding an architecture

which is rich enough for accurate approximation at all states. Once an approxi-

mation architecture is fixed, the idea is to find the best approximation within the

defined class through the choice of parameters so that the true value function is

accurately represented. This is referred to as training the approximation. How-

ever, it is not possible to train with respect to the true value functions. There is

a need for estimates with which to train the approximation. Simulation can be

used to directly obtain samples of value functions at a set of representative states

S̃. Suppose for each s ∈ S̃ there are M(s) samples of V π(s) and the mth such

sample is denoted v(s,m). The approximation is trained by solving the following

least squares optimisation problem

min
θ

∑
s∈S̃

M(s)∑
m=1

(
Ṽ π(s|θ)− v(s,m)

)2

.

This naturally poses the following questions: How can the least squares prob-

lem be solved? How are the representative states identified? How are samples

obtained? One possibility is to simulate the system using actions derived from π

and observe those states visited most often by the simulation and let these com-

prise the representative set S̃. Then simulate trajectories or episodes starting from

initial states within S̃, observe the rewards accumulated, and let the average over

many trajectories form sample estimates. This results in a set of training pairs,

state and sample estimates. The least squares problem can be solved using stan-
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dard optimisation techniques. Alternatively, these issues are often addressed in

a simultaneous manner. A simulated trajectory will reveal a sequence of states

visited by policy π. All states within the trajectory comprise S̃ and the rewards

accumulated from intermediate states along the trajectory can be used as sample

estimates starting from those intermediate states. The least squares problem can

be solved by iterative gradient methods, either in batch mode at the end of a

trajectory or incrementally along the trajectory. These methods have roots in the

stochastic approximation method of Robbins & Monro (1951). A popular way to

implement iterative gradient methods is through temporal difference (TD) learn-

ing (see Sutton (1988)). Fitting an approximation through simulated observations

can be seen as a learning procedure. Often the choice of architecture is coupled

with the learning procedure. Other practical considerations involve the choice of

step-sizes and the number and length of trajectories to ensure convergence to the

solution of the least squares problem. API requires that the least squares problem

is solved to deem the approximate policy evaluation step complete and allow for

an update to the policy.

The fitted approximation Ṽ π(s|θ) depends both on the set of representative

states and the quality of the sample estimates at each state in this set. Iterative

gradient methods will inherently give more weight to those states which are visited

most frequently within the simulated trajectories, hence the least squares solution

will provide better approximations for these states as opposed to those states less

frequently visited. Furthermore, simulating trajectories under a specific policy

π will drive the system towards certain parts of the state space upon which the

approximation will be fitted. Consequently value function approximations at less

visited states or in fact those states not visited at all may not be accurate which

may cause errors in the approximate improvement step. This is a generic potential

issue known as inadequate exploration which must be carefully considered when

designing an ADP algorithm based on approximate policy iteration.

A variant of approximate policy iteration is known as optimistic policy itera-
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tion. This is an ADP implementation of the modified policy iteration algorithm.

Optimistic policy iteration follows the same approach as API, using an iterative

gradient method within simulated trajectories. However, it does not wait until the

least squares problem has been solved before implementing an approximate policy

improvement step. Instead, the system makes a finite number of transitions under

policy π, over which the parameter vector of the approximation is updated. The

approximate policy improvement step is performed with respect to the current

approximation and this process is repeated. API is an extreme case. Optimistic

policy iteration is sometimes viewed as an Actor-Critic system. The actor uses

policy π to make decisions within the system and the critic observes the outcomes

of these decisions and maintains an evaluation of the policy. The critic provides

feedback to the actor every so often and the actor subsequently attempts to im-

prove his actions in light of this feedback. The choice of method for solving the

least squares problem associated with a fixed policy controls how the critic views

the system and the frequency of feedback provides a trade-off between being able

to evaluate more policies at the expense of their true value functions not being

approximated accurately.

Approximate value iteration is another approach to ADP based on the value

iteration algorithm. This is also another extreme case of optimistic policy iteration.

This method aims to directly approximate the optimal value functions V ∗(s) as

opposed to the value functions of a fixed policy. Instead of simulating trajectories

according to a fixed policy, they are simulated according to a greedy policy. In a

given iteration n of the algorithm, suppose Ṽ ∗n (s|θ) is the current approximation

of the optimal value function. Select a set Sn of representative states, perhaps by

simulation under the current greedy policy. Using the expected total discounted

reward criterion as an example, compute estimates of the optimal value functions

at states within Sn by
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vn+1(s) = max
a∈As

(
R(s, a) + α

∑
s′∈S

p(s′|s, a)Ṽ ∗n (s′|θ)

)
, ∀s ∈ Sn. (2.4)

These estimates vn+1(s) are used to update the value function approximation

to Ṽ ∗n+1(s|θ) by solving a least squares problem with respect to them. This pro-

cess is then repeated for many iterations and finally actions can be determined at

any state through greedy decision-making with respect to the final approximation.

Approximate value iteration lends itself to iterative methods such as TD learning

whereby the parameter vector of the value function approximation can be itera-

tively updated. Although this method can work well, it also suffers from the same

potential issue of inadequate exploration as approximate policy iteration.

The methods discussed all rely upon an explicit model of the system which

allow the expectation within (2.3) or (2.4) to be calculated. Alternatively this

expectation may be intractable if the state space or action space or both are too

large. A method which circumvents the need to compute an expectation is known

as Q-learning (see Watkins (1989)). This method can be seen as a combination of

approximate value iteration and simulation. This method uses an approximation

architecture to represent the optimal Q-factor function Q∗(s, a) which denotes the

value of being in a particular state and taking a certain action. Value functions

are defined as V ∗(s) = maxaQ
∗(s, a). In each iteration of Q-learning in state s an

action is taken greedily with respect to the current approximation Q̃∗(s, a|θ) and

a transition of the system to a new state s′ is simulated under this greedy action.

An estimate of the Q-factor associated with this state-action pair is calculated,

taking the observed new state into account, and is then used to update the func-

tion approximation. This process is repeated. As a contrast, under approximate

value iteration the new value function estimates are obtained before the transition

with respect to an expectation over the current value function approximations.

This subtle difference is what makes Q-learning suitable to the type of problems

identified.

30



2.1.3 Game Theory

The interaction of multiple decision-making agents in a given situation has long

been a problem of interest. Individual agents must not only consider their pursuit

of some objective, but crucially the potential decisions of other agents and their

impact on this pursuit. In a competitive environment, decision-making strategies

of one agent towards attractive options may have undesirable outcomes if another

agent engages in opposing decision-making strategies. With all agents analysing

the situation in the same strategic fashion, agents can be thought of as playing a

game against each other when making decisions. Game theory provides a language

to formulate, structure, analyse, and understand such strategic scenarios.

The simplest strand of game theory considers strategic scenarios in which there

are two decision-making agents engaged in competition or conflict with one an-

other. Each agent is referred to as a player in a game, whereby each player has an

objective. When the objectives of each player are completely opposed the game is

said to be zero-sum and the situation is described as a two-person zero-sum game

(TPZS). In contrast a scenario concerning n agents whose objectives are not com-

pletely opposed is described as an n-person general-sum game. A TPZS game in

strategic form or normal form consists of players A and B, each with a nonempty

set of strategies X = {x1, ..., xn} and Y = {y1, ..., ym} respectively. These strategy

sets represent the set of choices available to each decision-maker. Elements of these

sets are known as pure strategies. The game is played simultaneously such that A

chooses x ∈ X and B chooses y ∈ Y which results in player A receiving a payoff

M(x, y). This payoff is a function of the strategies played by A and B and can

be represented by a rectangular matrix. This is referred to as the payoff matrix

M whose entries are given by mij = M(xi, yj). This is sometimes called a matrix

game wherein the rows of the matrix correspond to the pure strategies available

to player A, columns correspond to the pure strategies of player B, and entries

represent the payoff of a simultaneous row and column selection. Good coverage

of the general theory on TPZS games is given by Washburn (2014).
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In the game, the objective of player A is to maximise his payoff through his

choice of strategy, whereas player B similarly wishes to minimise this payoff. An-

other interpretation is that player B views the payoff as his own loss and so wishes

to minimise his loss. It is assumed that both players are rational, always choosing

the best strategy to achieve their objective. It is also assumed that both players

know the set of pure strategies available to the other player and the corresponding

payoffs when chosen joint with their own pure strategies. However, due to simul-

taneous play each player does not actually know which strategy will be chosen

by the opposite player. This is also equivalent to a situation in which one player

announces his strategy first, but this is not revealed to the opponent. This kind

of sequential play is equivalent to simultaneous play. Generally, if the announced

strategy was known to the opponent this gives rise to an extensive form of the

game. Two examples of simultaneous play matrix games with 3 pure strategies of

each player are as follows:

M1 =


4 1 2

3 2 5

2 1 6

 M2 =


4 1 2

3 4 5

2 1 6


In matrix games, it is important to consider which strategy should be played

if the strategy of the other player was known. In matrix game M1, if player A

knew that player B would play y1 then A should play x1 to maximise the payoff.

However, if B actually played y2 then playing x2 would be the best strategy to

maximise payoff. Similarly, play x3 for y3. Conversely, B could conduct the same

thought experiment to reason the best strategy to play if A chose certain strategies.

In this game, by choosing x2 player A maximises the payoff he can be guaranteed

to receive. Similarly, choosing y2 player B minimises the loss he can be guaranteed

to incur. This is an example of the important concept of worst case analysis,

each player does as well as they can under the assumption that the other player

will know their strategy and maximise or minimise against this strategy. If either
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player announced this strategy in advance, the other player cannot improve his

position. This represents an equilibrium solution of the game known as a saddle

point and the resulting payoff of 2 is known as the value of the game V . When

saddle points exist in TPZS games, each player has an optimal pure strategy. A

saddle point does not exist in matrix game M2 and there is no pure strategy which

either maximises or minimises the guaranteed payoff for either player.

In general, we do not restrict the choice of players to elements within their

sets of pure strategies. A mixed strategy for a player is a probability distribution

over their set of pure strategies. A mixed strategy for player A is given by p =

{p1, ..., pn} such that pure strategy xi is selected with probability pi and
∑
pi = 1.

Similarly, a mixed strategy for player B is given by q = {q1, ..., qm} such that

pure strategy yj is selected with probability qj and
∑
qj = 1. Any pure strategy

can be written as a mixed strategy by specifying one non-zero element equal to

one. Considering mixed strategies, the objective of each player is to maximise or

minimise their expected payoff through their choice of mixed strategy. Suppose

that player A uses mixed strategy p and player B uses mixed strategy q, then the

expected payoff to player A would be given by K(p,q) =
∑

i

∑
j pimijqj. If the

mixed strategy of player B was known to be a fixed q then player A would seek

a mixed strategy p to maximise K(p,q). Alternatively, if the mixed strategy of

player A was known to be a fixed p then player B would seek a mixed strategy

Q to minimise K(p,q). These are known as best response strategies to particular

mixed strategies of the opposing player. A maximin strategy for player A is one

which maximises the expected payoff under the assumption of a best response

strategy of player B. Likewise, a minimax strategy for player B is one which

minimises the expected payoff under the assumption of a best response strategy

of player A. The maximin and minimax strategies give the lower and upper values

of the game respectively representing the maximum and minimum players A and

B can guarantee the expected payoff to be no matter what the other player does.

Conventionally, although maximin seems an appropriate term for the strategy of
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player A, it is often also referred to as a minimax strategy since we could reverse

the roles of players A and B and then player A would seek a minimax strategy.

The terminology minimax is used to convey the idea that each player optimises

their own expected payoff under the assumption of a best response strategy of the

other player.

When the lower and upper values of the game are equal, the value of the game

is said to exist and is equal to the common value V . The Minimax Theorem of

von Neumann (1928) is one of the most fundamental results in game theory and

states that every finite TPZS game has a value and both players have minimax

strategies which are optimal. This theorem is powerful in that it guarantees the

existence of a solution to every finite TPZS game in terms of mixed strategies.

Moreover, it states that the optimal mixed strategies p∗ and q∗ are minimax

strategies, which gives an indication of how to find these strategies. The solution

(p∗,q∗) is an equilibrium solution known as a Nash equilibrium. The concept of

a Nash equilibrium is that assuming each player knows the strategies of the other

players, no player can benefit by unilaterally changing strategy. This concept arose

through the work of John Nash in studies of n-person general-sum games. Nash

(1950) proved the existence of at least one Nash equilibrium for every finite game

and the Minimax theorem is simply a special case of Nash’s theorem.

The theory underlying Linear Programming (LP) is intertwined with the theory

of TPZS games. During the inception of LP, in a meeting between George Dantzig

and von Neumann (see Dantzig (2002)), the latter pointed out that the Minimax

Theorem is equivalent to the concept of duality. A TPZS game can be transformed

into a pair of primal-dual LP problems (see Dantzig (1951)). As such, there is

an equivalence between the Minimax Theorem and the LP Duality theorem. This

transformation of a TPZS game into an LP problem enables the use of LP methods

to solve such games. In the general TPZS game described, the objective of player

A is to find a mixed strategy p which maximises the minimum expected payoff

when player B uses mixed strategy q. It can be shown that for a given p the best
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response strategy of B is some pure strategy j. Regardless of the pure strategy of

B, player A is guaranteed an expected payoff of minj
∑

imijpi and let this lower

bound be v. The objective of A is then to maximise v and so an LP for player A

can be formulated as follows (LP1):

maximise v

subject to:

n∑
i=1

mijpi ≥ v, j = 1, ...,m.

n∑
i=1

pi = 1

pi ≥ 0, i = 1, ..., n

Here, the first set of constraints correspond to one constraint for each pure strategy

of player B. Based on an analogous argument, from the perspective of player B,

the dual LP reflects their objective. The dual LP can be formulated as follows

(LP2):

minimise u

subject to:

m∑
j=1

mijqj ≤ u, i = 1, ..., n.

m∑
j=1

qj = 1

qj ≥ 0, j = 1, ...,m

Suppose that LP1 has an optimal solution p∗ with objective function v∗. Also

suppose that LP2 has an optimal solution q∗ with objective function u∗. Then by

the LP Strong Duality theorem v∗ = u∗, the optimal expected payoff to player A is

equal to the optimal expected payoff to player B. This is precisely the result of the

Minimax Theorem and so this shows its equivalence to the LP Duality theorem.
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Thus by solving LP1 or LP2, whichever is easiest, the value of the game can be

found.

It is widely recognised that transformation of a TPZS game into an LP problem

is an efficient way to obtain optimal mixed strategies for each player, provided the

game is not too large. In larger games with vast numbers of pure strategies for

one or both players the dimensions of the resulting linear programs are too large

to be solved. An alternative procedure for finding optimal mixed strategies in

TPZS games called Fictitious Play (FP) was originally proposed by Brown (1949).

Convergence of FP in finite TPZS games to the optimal mixed strategies and value

was shown by Robinson (1951) and hence it is sometimes referred to as the Brown-

Robinson method. However, this convergence is slow. Although FP is applicable

in any finite TPZS game, it can be particularly appealing in larger games where

LP methods no longer work.

The FP procedure is an iterative method in which both players are assumed to

be fictitiously playing the game over a sequence of rounds in which they are able

to learn and adapt their choices accordingly. The description of the procedure

which follows is based on the article by Zafra (2010). Denote row i of M by M i

and column j by M j and let k be the index count of the number of iterations.

Define two vectors v(k) = (v1(k), ..., vn(k)) and u(k) = (u1(k), ..., um(k)) as payoff

vectors for players A and B respectively. For k = 0, set v(0) = (0, ..., 0) and

u(0) = (0, ..., 0). For k = 1, player A plays pure strategy i arbitrarily and the

payoff vector is updated as u(1) = u(0) + M i. In response player B plays pure

strategy j according to j = argmin(u1(1), ..., um(1)). The other payoff vector is

then updated as v(1) = v(0) + M j. In subsequent iterations, player A plays

pure strategy i according to i(k) = argmax(v1(k − 1), ..., vn(k − 1)) and player

B responds according to j(k) = argmin(u1(k), ..., um(k)). The payoff vectors are

updated according to v(k) = v(k − 1) +M i(k) and u(k) = u(k − 1) +M j(k).

In each iteration of the FP algorithm, player A selects row i which maximises

the payoff against the empirical mixed strategy so far of player B. Conversely, player
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B does the opposite. Let ai(k) and bj(k) be the number of times pure strategies i

and j are played in k iterations by player A and B respectively. Then after k iter-

ations estimates of the mixed strategies of both players are given by the empirical

distributions p(k) = (a1(k)/k, ..., an(k)/k) and q(k) = (b1(k)/k, ..., bm(k)/k). The

quantities maxi v(k)/k and minj u(k)/k give upper and lower bounds respectively

for the value of the game. As the number of iterations increase these bounds con-

verge to the value of the game and the empirical mixed strategies converge to the

optimal mixed strategies. In practice, the algorithm continues until an iteration

limit has been reached or the difference in the bounds is sufficiently small. Even

though this convergence can be slow, the FP algorithm can be useful in identify-

ing good mixed strategies which guarantee an expected payoff close to the optimal

value.

The discussion in this section has concerned classical results and concepts from

game theory, most notably from the theory of TPZS games. Recent applications of

game theory are to security and defence related problems wherein another problem

such as a scheduling problem is contained within the context of a game. For

example, Lin et al. (2014) and Alpern et al. (2011) use game theory to model and

analyse a patroller defending a network against an attacker. Brown et al. (2006)

study the defence of critical infrastructure from adversarial attacks using game

theory. Further examples include the Bayesian Stackelberg games for security

studied by Paruchuri et al. (2008) and the stream of related applications Pita

et al. (2008), Tsai et al. (2009), Pita et al. (2011), and Shieh et al. (2012). These

and further applications will be discussed more comprehensively in Section 2.3

under the label of defender-attacker problems.

2.2 Stochastic Scheduling with Abandonment

Scheduling problems concern the allocation of a resource within some system to a

set of competing tasks over time to optimise some stated objective. The resource

could refer to a machine on which jobs are processed, a server dealing with cus-
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tomers, or a worker faced with a series of tasks. In each case there is a processing

or service requirement of each job, customer, or task. When there are sources of

randomness attached to elements of the system, the scheduling problem is stochas-

tic. For example, the processing time of a job on a machine may not be known

exactly, but instead only probabilistically over a range of possible values. In a

queueing system, new customers may arrive adding to the workload of a server

who does not know how long service of a given customer will take or indeed when

these new arrivals will occur.

In the control of a stochastic system actions are applied at various time in-

stances to adjust the behaviour of the system and directly impact upon some

performance measure of interest. In a clearing system, which concerns the pro-

cessing of a finite set of n jobs, actions relate to which job is selected for processing,

for instance, each time a machine becomes available. If each job j incurs a holding

cost cj for each unit of time spent in the system and has expected processing time

µ−1
j , then a classic scheduling result asserts that with a single machine, processing

jobs in decreasing order of the index cjµj minimises the total expected holding

cost. Such a scheduling policy is known as an index policy, which typically inde-

pendently calculates a set of indices for competing jobs or job classes and uses an

ordering of these to determine how processing should be prioritised. Index policies

are common in many scheduling problems. In a single server multiclass queueing

system in which customers arrive according to independent Poisson processes into

one of k queues, incur holding costs cj in queue j, and have expected service times

µ−1
j , the cµ-rule is again optimal under nonpreemptive service for minimising the

average holding cost per unit time, see Cox & Smith (1961). An extension of the

cµ-rule to a single server multiclass queueing system with Bernoulli feedback is

attributed to Klimov in his seminal work (see Klimov (1974) and Klimov (1978))

which establishes an index policy for minimising the long-run average holding cost

in the system.

Related to stochastic scheduling problems, which are the main focus in this
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thesis, are those of routing control and admission control in queueing systems.

Routing control problems invariably concern which queue an arriving customer

should be sent to upon arrival into a queueing system whereas admission control

problems concern whether arriving customers should be permitted entry into the

system. In some classic control problems in these areas we often see that optimal

policies are quite simple. For example, in an admission control problem of deciding

whether an arriving customer should be admitted into a G/M/1 queue, Stidham

(1985) showed that a threshold policy maximises the total expected net benefit over

an infinite horizon. That is, reject customers who arrive when the queue length

exceeds some threshold N . In a routing control problem of routing customers to

one of many identical queues, the join-the-shortest-queue policy maximises the

discounted number of jobs to complete service in any specified time interval (see

Winston (1977)). Ephremides et al. (1980) also showed that it minimised the

expected total time to complete the service of all jobs that arrived before some

fixed time. The literature on queueing control problems, in fact in a wider sense the

design, analysis, and control of queueing systems is vast. We refer to the excellent

summaries given by Walrand (1988) and Stidham (2002) for further reading.

One important stream of work in the field of stochastic scheduling is bandit

models. The multi-armed bandit problem is concerned with the optimal sequential

allocation of resources between projects which require them and only yield rewards

and change state when active. It is a classic problem of stochastic scheduling which

has at its heart the trade-off between exploitation (obtaining the highest immediate

reward) and exploration (learning about the system). The problem of maximising

the expected total discounted reward was first solved and published by Gittins &

Jones (1974). The optimal policy for this problem takes the form of an index policy

which chooses at each time the project with maximal Gittins index, each computed

as a function of its current state. The major success of this result is that it reduces

an n-dimensional problem into a collection of n one-dimensional problems which

can be solved. One extension of the multi-armed bandit problem is known as the
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restless bandit problem in which projects evolve even when a control is not applied

to it and further evolve differently when the control is applied. Control of queueing

systems often fall into this class of problems. The restless bandit problem has been

shown to be computationally intractable (see Papadimitriou & Tsitsiklis (1999)).

See Whittle (1988) for a discussion of this problem in which he proposes a class of

index heuristics. Unified coverage of bandit problems, as well as their relation to

the control of queueing systems is given by Gittins et al. (2011).

There are many real-world scenarios in which tasks, jobs, customers, or items

do not have limitless availability for processing or service. For example, in a mil-

itary setting, targets may move out of the range of defensive forces and become

unavailable to attack. In a call centre, customers placed on hold may hang up if

made to wait too long. In a medical emergency, the condition of patients requiring

treatment may deteriorate the longer they wait and indeed they may die if treat-

ment is not provided in time. In a healthcare setting, blood passing through blood

screening procedures with the aim of stocking a blood bank may become unusable

if it not passed within a certain timeframe. In telecommunications, transmitted

messages or data may be lost if it is not sent or received in time. In a surveillance

setting, suspects subject to screening by a security team may leave an area be-

fore screening is completed. It is the latter application which is the focus of this

thesis. In all applications this limited availability is referred to as impatience or

abandonment. It is a key feature of many stochastic scheduling problems, having

a major impact on the control strategies applied. Indeed there is now an extensive

literature concerning optimal scheduling in the presence of abandonment.

Abandonment can be modelled as a deadline applicable to each job or customer.

In the literature these deadlines are either applicable to the beginning of service

or the end of service. The first case means that abandonments will not occur once

service has commenced, whereas in the second case they can also occur during

service. It is the second variation which we consider within the models in this

thesis, namely abandonments may occur during service.
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There is a large collection of work which must be distinguished from the mod-

elling approach adopted within this thesis. In this work the notion of limited

availability of a collection of jobs is modelled as a set of hard deadlines known to

the controller of the system. These deadlines are either announced upon arrival

into the system in the case of queueing systems or announced at the beginning

of the scheduling horizon in the case of a clearing system. The system controller

takes these deadlines into account when considering scheduling policies, often as

the objective reflects some measure of missed deadlines or tardiness. For impor-

tant examples, see Liu & Layland (1973), Glazebrook (1983), Panwar et al. (1988),

Bhattacharya & Ephremides (1989), Bhattacharya & Ephremides (1991), De et al.

(1991), Jiang et al. (1996), Doytchinov et al. (2001), Jang & Klein (2002), and

Van Mieghem (2003).

From these works, Panwar et al. (1988) study the transmission of voice packets

over a packet-switched network. They model the problem using a single server

queue in which service times of customers are i.i.d random variables and service

is nonpreemptive. Each customer upon arrival announces a deadline which is

randomly drawn from a general probability distribution, independent of other

customer deadlines. This gives rise to an extinction time for each customer whereby

if their service has not begun by this extinction time this is equivalent to a voice-

packet being deemed useless. They showed that the shortest time to extinction

(STE) policy maximises the long-run fraction of successful customers if the server

is prohibited from idling. Each time the server is available for service this policy

schedules the customer closest to its extinction time. When the server is allowed

to idle, they also show that when it exists the optimal policy belongs to the class

of policies which are shortest time to extinction with unforced idling (STEI). This

problem is also studied by Bhattacharya & Ephremides (1989), wherein they show

that STE minimises the expected number of lost customers over any time interval

within the class of nonpreemptive and non-idling policies under exponential service.

They also show that the optimal policy with permitted idling belongs to the class
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of STEI policies when available. The STE policy is also shown to be optimal in

the case of preemptive service. In this case idling is never preferable. In a similar

problem, Bhattacharya & Ephremides (1991) also show that a form of the shortest

time to extinction policy minimises the average tardiness per customer in a two-

queue problem where customers remain in the queue and are scheduled beyond

their deadline, but incur a penalty for doing so.

In contrast to the case of known deadlines of jobs or customers, there are

many situations in which availability is unknown prior to service. Work exhibiting

this feature of unknown and random deadlines until abandonment is of particular

interest in this thesis given the lifetimes of suspects in surveillance applications are

generally unknown. In the literature, typically deadlines of jobs are assumed to be

independent and identically distributed random variables, with this distribution

known by the system controller, and exact realisations of which are not known

until the deadline passes. There are three examples of this feature in the papers

by Pinedo (1983), Boxma & Forst (1986), and Emmons & Pinedo (1990) which

study clearing systems. Pinedo (1983) considered a problem in which a collection of

jobs are to be processed on a single machine. Processing times are i.i.d exponential

random variables with rate µi, deadlines are i.i.d random variables, and processing

is nonpreemptive. Each job has a weight wi which can be interpreted as a penalty

paid for completion after its deadline. Static list scheduling policies are considered,

which means that all jobs are ordered at time zero and scheduled according to this

order. The order is never changed which means all jobs, including those whose

deadline has passed, must be processed. Processing jobs in decreasing order of wiµi

was shown to minimise the expected weighted number of tardy jobs. Boxma &

Forst (1986) studied further variations of this problem. Emmons & Pinedo (1990)

extend this problem to multiple servers and also consider dynamic policies which

can modify scheduling decisions in light of new information. Both papers identify

optimal dynamic or list policies subject to certain conditions. An example from a

queueing system is found in Bhattacharya & Ephremides (1989). An extension to
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the known deadline problem in the same paper discussed previously, for i.i.d service

times and i.i.d random unknown deadlines with increasing failure rate, the earliest

arrival (EA) policy minimises the expected number of lost customers over any time

interval when deadlines apply to the beginning of service. The same result holds

when deadlines apply to the end of service provided the common distribution of

service times is exponential.

In the clearing models studied by Pinedo (1983) and Boxma & Forst (1986) jobs

did not depart the system upon expiration of their deadlines, but instead were still

processed with a penalty for tardiness. This clearing model is further studied by

Glazebrook et al. (2004) with the exception that jobs are lost from the system as

soon as their lifetime expires. A collection of n jobs, present at time zero, are to be

processed nonpreemptively on a single machine. The processing time of each job is

an arbitrary random variable and jobs remain in the system for an exponentially

distributed period of time unless processing begins first, meaning jobs do not

abandon during service. A reward is received upon completion of a job and the

objective is to find a scheduling policy which maximises the total expected reward

earned. The authors develop a permutation policy which orders the jobs according

to decreasing values of an index which favours large reward-rate losses and small

mean processing times. This index is given by Rjθj/E(Xj), where Rj, θj, and Xj

represent the reward, abandonment rate, and processing time of job j respectively.

This policy is shown to be asymptotically optimal as abandonment rates all go

to zero. Motivated by the use of limited medical resources in a mass casualty

emergency, Argon et al. (2008) also study this problem, assuming jobs are placed

into a number of priority classes after a triage assessment of patients is conducted.

With the objective of maximising the number of jobs taken into service, if lifetimes

admit the same hazard rate ordering as a likelihood ratio ordering on service times,

the optimal policy gives priority to the job with shortest lifetime and service time.

Such jobs are referred to as time-critical. For the case of exponential lifetimes and

service times in which jobs with shorter lifetimes have longer service times, the
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authors note that the optimal policy has a more complex structure. They develop

a state-dependent heuristic known as the triangular heuristic which at each point

prioritises the job class with the smallest mean number of abandonments during

the next service.

One further contribution to the clearing model discussed is by Li & Glazebrook

(2010). In this paper the authors note that the static priority policy proposed in

Glazebrook et al. (2004) and the heuristic policy proposed in Argon et al. (2008)

both perform well in certain parameter regimes, but are not robust, performing

poorly in other parameter regimes. The authors take a somewhat different ap-

proach in their design of a heuristic policy. Allowing for arbitrary i.i.d service

times and lifetimes within job classes, they use the concept of policy improve-

ment from the field of stochastic dynamic programming in order to define a policy

which improves the static priority policy in Glazebrook et al. (2004). Such a

method quickly becomes computationally intractable with many job classes and

certain distributional assumptions. Instead they adopt an approximate policy im-

provement step to define a heuristic policy, using a fluid model to approximate

necessary quantities. The resulting heuristic policy is shown to be both robust

and outperform the competitor policies in all parameter regimes over an extensive

set of numerical experiments. One final application of scheduling in a clearing

system with abandonment worth considering is by Glazebrook & Mitchell (2002).

In this paper, jobs in the system improve while being processed and deteriorate

while not being processed, hence affecting the reward yielding characteristics of

job completion. With an objective of maximising the total discounted reward from

job completions, this problem can be modelled as a restless bandit problem. A

variation of the model covers the situation where jobs abandon the system once

they reach a certain state. The authors show that the problem is indexable in the

sense of Whittle and develop an index policy with strong performance. It must be

highlighted here that the models studied in Glazebrook et al. (2004), Argon et al.

(2008), and Li & Glazebrook (2010) are all similar to the model which we study in
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Chapters 3 and 4 of this thesis. However, one key difference is that these models

consider a finite set of jobs to be processed as opposed to allowing for the arrival

of jobs over time. Hence we will now restrict attention solely to queueing systems

with abandonment.

There have been a number of contributions in the areas of admission and

routing control problems which feature customer abandonments. Ward & Ku-

mar (2008) study admission control in a G/G/1 queue in which customers have

i.i.d exponential patience times until the end of service. With the objective of min-

imising the long-run discounted cost from penalties for refusing to admit arriving

customers plus costs from customer abandonments, a barrier policy is shown to be

asymptotically optimal in an appropriate heavy traffic regime. Movaghar (1998)

and Movaghar (2005) study two variations of a routing problem which concerns

the routing of a stream of Poisson arrivals with exponential service requirements

and random deadlines to a collection of identical queues. With exponentially dis-

tributed lifetimes, the policy of joining the shortest non-full queue minimises the

number of customers lost by any time. With generally distributed lifetimes a con-

dition is provided under which the policy of joining the shortest queue minimises

the number of lost customers during any finite period in the long-run. Glazebrook

et al. (2009) study a problem of both admission and routing control in which a

Poisson arrival stream is either refused entry to the system or routed to one of

a number of heterogeneous service stations. The model incorporates rewards for

service completions, penalties for denied admissions, and costs for customer aban-

donments. An approach founded on the restless bandit problem is used to derive

an index policy for maximising the net of rewards minus penalties and costs. This

index policy is shown to be optimal in a number of asymptotic regimes.

In the context of the vast literature related to call centre applications, Bas-

samboo et al. (2005) study a problem of admission control of impatient customers

to a collection of customer classes whilst simultaneously controlling the alloca-

tion of a group of identical server pools to the set of customer classes. Arrival
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rates are permitted to vary and the skills of servers in each pool determine which

customer classes they are able to serve in. There are penalties incurred for each

customer refused admission to the system, penalties for abandonment, and holding

costs whilst waiting for service. The objective is to find dynamic controls which

minimise the expected total cost incurred over a finite horizon. In an asymptotic

parameter regime, an approximating stochastic fluid model is solved by means

of a linear program and shown to give an asymptotically optimal control in the

original problem. Similar methods and results are found in the subsequent paper

by Bassamboo et al. (2006) which replaces the admission control problem with

a staffing problem relating to how many servers should be employed within each

server pool at the expense of associated personnel costs. Jouini et al. (2010) study

an interesting problem of a call centre with two queues and many parallel servers

populated by two types of impatient customer, premium and regular. The objec-

tive is to develop scheduling policies which satisfy a target ratio constraint on the

abandonment probabilities of premium customers to regular ones. Two paramet-

ric families of scheduling policies are developed with respect to this aim, the first

being based on routing of customers under a fixed server allocation policy, and the

second based on allocation of servers to waiting customers under a fixed routing

policy.

An example application related to Homeland Security is presented by Lin et al.

(2009). In this paper, a single server queue with abandonment is used to model

an antiterrorist surveillance system in which suspects arriving into a public area

are subject to screening by a security team. There are two types of customer, each

with their own random variable representing their lifetime in the system during

which they are available for service. One type represents terrorist suspects which

are the sole interest of the security team, whereas the other type are civilians

and are not of interest. Each arriving customer is independently a terrorist with

some probability and the server receives a reward for serving this customer type

before their lifetime expires. The objective of the server is to find a scheduling
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policy which maximises the expected reward received. The authors show that the

optimal policy in the case of exponentially distributed lifetimes is to serve first

come first served (FCFS) or last come first served (LCFS) dependent on the ratio

of the mean lifetime of the terrorists compared to the civilians. Gaver et al. (2006)

consider a multiclass queueing system in a military setting. Customers arrive

at random into one of a number of customer classes with i.i.d random service

requirements and i.i.d exponential lifetimes. These customers represent enemy

targets who may move out of range of a defensive force. Service completions yield

rewards and the objective is to maximise the long-run average reward earned by the

server. Versions of the model are presented which allow for the cases where both

abandonments and/or service completions are not observed by the server during

service. The main challenge in this paper is to decide both which customer to serve

next and how much processing time to allocate to that customer. For the case of

a single customer class the authors propose a heuristic which allocates a constant

processing time to each customer. For the case of multiple customer classes the

authors propose three heuristics, two of which extend the constant processing time

idea, and one which myopically maximises the ratio between the expected reward

received and expected reward lost during the next service. Glazebrook & Punton

(2008) further study the problem of allocating processing times in a single customer

class with the objective of maximising the throughput of the system. The authors

develop two heuristic dynamic scheduling policies which allocate processing times

based on the state of the system using DP policy improvement. These heuristics

are shown to be near-optimal and improve upon the static policy in Gaver et al.

(2006) in a number of numerical experiments.

There are a number of papers which are of direct relevance to this thesis as they

study either the same model or minor variations of the scheduling model featured in

Chapters 3 and 4. Glazebrook et al. (2004) study the same model in which a single

server provides preemptive service to customers across k classes. Customers arrive

according to independent Poisson processes with rate λj with class dependent
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exponentially distributed service requirements and lifetimes, with corresponding

rates µj and θj respectively. If a customer is served before his lifetime expires,

a reward Rj is received, otherwise the customer departs the system both before

or during service. The objective is to find a service policy which maximises the

long-run average reward earned per unit time. In principle it is possible to find

the optimal policy from the methods of DP, but in practice this is unrealistic

for problems with many customer classes. The authors develop a heuristic policy

via a two stage process. The first stage analyses a policy which allocates a fixed

service effort to each class at all times, and computes the optimal allocation,

and the second stage second stage performs an exact policy improvement step.

The parametric optimisation involved at the first stage can pose computational

challenges, especially for large k, and was only implemented for cases with k = 2.

However, the approach does have the advantage that the structure of the resulting

heuristic policy is simple to recover.

A variation of this model with many servers is studied by Atar et al. (2010)

and further in Atar et al. (2011). In addition, as opposed to rewards for service

completion, each customer incurs a class-dependent holding cost cj for each unit

of time spent waiting in the queue and the objective is to minimise the long-run

average holding cost. In their model, customers cannot abandon during service

and holding costs do not apply during service. This stands in contrast to the model

in this thesis and are features of their model. The authors use a fluid scaling in

an overload setting and show that the cµ/θ rule is asymptotically fluid optimal

under both preemptive and nonpreemptive service. Here overload refers to the

workload defined as ρ =
∑

j λj/µj being greater than one. This rule calculates

the index cjµj/θj for each queue and prioritises customers according to decreasing

values of this index. This index rule is remarkably simple and independent of the

arrival rates, resembling and modifying the cµ rule which is optimal in the case

of no abandonments. The index rule easily extends to the case where additional

penalties are incurred for abandonments. Ayesta et al. (2011) study a single server
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version of this model in discrete time with no arrivals, but allow the customer in

service to contribute a holding cost. The authors find the optimal solution to

a relaxed version of the problem via Lagrangian methods which yields an index

policy referred to as the AJN rule. The AJN rule has a similar form to the cµ/θ rule

and is used as a heuristic for the continuous-time problem with arrivals, exhibiting

strong performance numerically in overload scenarios.

A version of the model with two customer classes was studied by Down et al.

(2011). Abandonments may occur during service which is preemptive and pro-

vided at rate 1. Two problems were studied, firstly maximising average rewards

received from service completions, and secondly minimising average net holding

costs plus penalties from abandonment. In both cases, a priority policy is shown

to be optimal if parameters of the system are agreeably ordered in an underloaded

regime. However, more generally numerical examples illustrate that optimal poli-

cies can exhibit a threshold structure, leading to the poor performance of priority

policies. Verloop (2014) studies a k class multiserver version of the model as a

special case of a more general restless bandit model. In addition to the model in

Atar et al. (2010), a more general framework is presented in which customers can

abandon during service at different class dependent rates and also incur different

class dependent holding costs and abandonment penalties whilst in service. An

index policy is derived which is shown via fluid-scaling techniques and LP results

to be asymptotically optimal in overload for minimising the long-run average cost.

In special cases this index policy coincides with both the cµ/θ rule and the AJN

rule. The latter coincidence provides a proof of asymptotic optimality of the AJN-

rule in overload for a continuous-time system with arrivals. A single server version

of the full holding cost and abandonment penalty model in Verloop (2014) with

preemptive service is studied by Larrañaga et al. (2014). In terms of the restless

bandit literature, the problem is shown to be indexable and the corresponding

Whittle index (see Whittle (1988)) is derived, allowing for convex holding costs.

In the case of linear holding costs the Whittle index policy is equivalent to the in-
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dex policy derived by Verloop (2014) which subsequently shows that the cµ/θ rule

and the AJN rule are themselves Whittle index policies which are asymptotically

optimal in overload.

In an earlier paper, Larrañaga et al. (2013) study the same problem through a

fluid control problem. The optimal solution in an overload setting coincides with

the same index policy derived in Larrañaga et al. (2014). In underload where ρ < 1,

the fluid control problem is solved optimally for the case of two customer classes.

The optimal solution exhibits a switching curve structure whereby service is decided

through the cµ rule when the system is closer to being empty, whereas service is

decided through the cµ/θ rule when the system has many customers. Numerical

evidence suggests that the optimal policy in the original stochastic problem also

exhibits this structure and the switching curve is well approximated by the fluid

model. This motivates a heuristic policy based on this observation for systems

with more customer classes. There are further contributions in the papers by

Harrison & Zeevi (2004), Ata & Tongarlak (2013), and Kim & Ward (2012) which

study approximating Brownian control models in different heavy traffic limits. The

latter article considers general arrival, service, and abandonment processes. These

papers show that optimal policies in the Brownian control problems are state

dependent and assign service based on the changing workload in the system. This

is opposed to static priority rules such as the cµ rule and index rule derived by

Verloop (2014) which use fixed indices at all time points to assign service and the

only state information used is knowledge of whether a queue is empty.

In the model which will be the focus of Chapters 3 and 4 of this thesis, the

literature suggests that although the cµ/θ rule will perform well in highly loaded

systems which will contain many customers in steady state, it is not guaranteed

to perform well across all loads. Alternatively, comparatively little is known about

lighter loaded systems. The observed structure of the optimal policy suggests good

performance of the cµ rule, although there are no results which guarantee this

apart from in the case of no abandonments. Furthermore, there is potential value
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in developing service policies which are not simply priority policies, induce the

potential for state dependent decisions, and work well in all parameter regimes.

The model and analysis in Chapters 3 and 4 of this thesis will shed further light

on these observations.

2.3 Defender-Attacker Problems

There are many scenarios in which defensive agents are faced with adversarial

attacking agents. Patrollers, security forces, or the government may all be seen

as defensive agents whereas terrorists, smugglers, and criminals are examples of

attacking agents, each within a given context. The term we adopt here to refer to

such scenarios is defender-attacker problems. This is an umbrella term designed

to refer to scenarios in which there are two decision-making agents with opposed

objectives, one looking to protect or defend and the other looking to attack, dam-

age, evade, or destroy. The context in which different scenarios arise describes

the domain in which these agents operate and over which there is mutual inter-

est. The domain can often lead to alternative and sometimes more informative

descriptions such as security games, interdiction games, patrol games, and search

games and can be found across a wide range of fields such as computer science,

artificial intelligence, machine learning, operations research, and game theory.

In many systems, the decisions required from a defensive perspective occur

under the uncertainty of future events and the effect of making certain decisions.

This is of particular importance when uncertainty characterises some form of risk,

threat, or vulnerability in the system which the defender wishes to protect against.

In order to best account for the uncertainty of events outside his control, a defen-

sive agent must also consider how such uncertainty occurs and hence the type of

threat being faced. For example, a defensive agent seeking to protect infrastructure

from the effects of an accident or natural disaster is faced with a random event.

Alternatively, when protecting infrastructure from an attack, the defensive agent

is faced with an intentional event. In these two situations Bier (2006) argues that
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“protecting against intentional attacks is fundamentally different from protecting

against accidents or acts of nature”. Furthermore, this paper discusses the fact

that intentional attacks are the product of intelligent and adaptable adversaries

who take defensive efforts into account when planning their attacks. The role of

game theory is highlighted as an essential tool for modelling and analysing such

strategic threats. Unsurprisingly then, game theoretic ideas form a critical part

of most defender-attacker problems in the literature. The paper by Golany et al.

(2009) shares this view, stating that decision-making is somewhat different when

faced with probabilistic and strategic risk, where the latter type can be addressed

using game theory. The authors illustrate this through a case study of home-

land security grant allocations in the United States. They consider the problem

of a decision-maker allocating a fixed budget over many sites to reduce the ex-

pected damage from uncertain events when this uncertainty is either probabilistic

or strategic. No allocation to a site results in maximal probability of an undesired

event, whereas increasing an allocation reduces this. The probabilistic and strate-

gic risk problems are shown to have similar formulations, but a stark difference in

the optimal allocations made. Under probabilistic risk, the decision-maker must

prioritise his budget and allocate in the highest impact sites. Under strategic risk

it is best to spread the budget among sites, decreasing the damage levels of the

most vulnerable sites first.

The vulnerability of critical infrastructure in the United States is considered

in the paper by Brown et al. (2006). Given the scale of investment in critical

infrastructure systems and their importance, any disruption to a system can have

a substantial impact. The authors state that “random component failures offer a

poor paradigm in a world with intelligent adversaries”, which is consistent with

the view expressed by both Bier (2006) and Golany et al. (2009). Moreover, the

authors discuss the ability of terrorist organisations to collect relevant informa-

tion about a range of features and use this to plan devastating attacks on an

infrastructure system. The observation is made that most civilian infrastructure
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is “soft” and so vulnerable. Golany et al. (2009) share this observation, referring

to exposed homeland security assets whereby terrorists can attack in amongst the

public, move around like ordinary citizens, and conduct valuable surveillance of

defensive operations which allows them to assess with high accuracy their own

chances of causing damage. Brown et al. (2006) state the importance of worst

case analysis in defender-attack problems. Given the uncertainty over the exact

knowledge and capabilities of attackers it is prudent to assume the attacker will

act to maximise damage and has all the information and capabilities needed to do

so.

This paper considers three variations of the general defender-attacker problem.

Defender-attacker problems or conversely attacker-defender problems are formu-

lated as bilevel programs which themselves are a type of Stackelberg or sequential

game. In a Stackelberg game, one agent makes the first decision and hence is

referred to as the leader and the other agent makes the second decision and is

referred to as the follower. Having observed the first decision, the follower opti-

mally decides upon a best response. Importantly, the leader possesses a perfect

model which anticipates how the follower will best respond to his decision and

consequently make his decision to his own best advantage. This setup is con-

sistent with the observation that an attacker is able to conduct surveillance of

defensive decisions before attacking. A defender-attacker-defender problem is a

three stage sequential game in which, for example, the defender makes an initial

decision which precedes the final two stages. The paper gives details of how to

model these problems and illustrates their use through three examples: protection

of the US Strategic Petroleum Reserve, border control on the US/Mexico border,

and protection of an electric power grid. On reflection the authors highlight the

potential significance of deception and secrecy as a tool for successful defence.

A three stage sequential game between a defender and an attacker is studied

by Carlyle et al. (2011). A defensive planner wishes to design parallel service

channels knowing that an intelligent attacker will attempt to maximise disruption
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in the system. For example, should a community have one large hospital with

economies of scale in operating costs or a few smaller hospitals which may be

more resilient to disruption. The problem models the service channels as parallel

M/M/1 queues and the ultimate decision for the defender is how to allocate a fixed

service capacity to these queues. After this allocation is made an attacker disrupts

the system by reducing these service capacities, then finally the defender routes

jobs through the system under the reduced capacities to maximise throughput of

jobs. When attacks are incremental in nature, meaning that service channels are

not fully destroyed, it is optimal to concentrate service capacity in one large server

to exploit associated economies of scale. This would be equivalent to planning a

single large hospital. When attacks are more destructive, such that an attack can

destroy an entire service channel, planning is more difficult. Under certain con-

ditions the attacker wishes to concentrate attacks whereby the defender responds

by completely distributing capacity, for example by planning many smaller hospi-

tals. Under other conditions the attacker wishes to distribute attacks and so the

defender responds by concentrating capacity in one large server. Here a detailed

understanding of attacker capabilities is imperative for optimising defence plans.

An interesting example of a defender-attacker problem is due to Wein & Baveja

(2005) who studied the potential security threat of visitors entering the United

States. Under the US-VISIT Program, visitors are fingerprinted when they enter

the United States and matched and scored against a watchlist containing millions

of fingerprints of known criminals and suspected terrorists. When a fingerprint

closely matches with one on the watchlist, the visitor is further investigated. The

performance of the biometric matching system is known to be dependent upon the

image quality of the fingerprint. The authors identify an opportunity for terror-

ists to exploit this fact by sending people with either worn fingers or deliberately

altered fingers in order to have low image quality fingerprints and more chance of

evading a match. The problem is formulated as a Stackelberg game in which the

biometric identification strategy is first set to maximise detection probability sub-

54



ject to a constraint on processing times of visitors and the terrorist then chooses his

image quality to minimise his detection probability. The results suggest alternative

strategies for the defender which lead to large increases in detection probability

when compared to the existing strategy in use under the assumption of a strategic

attacker. Another interesting defender-attacker problem is studied in Brown et al.

(2009). In this paper a proliferator seeks to develop nuclear weapons as quickly as

possible and an interdictor wishes to maximally delay this project. In some sense

the roles of attacker and defender are reversed in this problem since the interdictor

corresponds to a nation attempting to delay the project through seemingly attack

like actions. The problem is formulated as a Stackelberg game since the prolifer-

ator is able to observe the interdiction plan and adjust his own plan accordingly,

hence the interdictor must take this into account. An algorithm based on Benders

decomposition (see Benders (1962)) is presented to solve a detailed model which

incorporates case study data.

It is evident from the literature previously discussed that Stackelberg games are

commonly adopted to model defender-attacker problems since they can account for

the ability of an attacker to gather information about defensive strategies before

initiating their attack. Stackelberg games have been used extensively to model

defender-attacker problems in security domains and consequently the term security

game is often used here. In security domains, defensive measures often take the

form of a schedule which is repeated over time. For example, a police patrol around

an urban area looking for a criminal may take a specified route around a set of

locations every few hours and repeat this schedule. To guard against an intelligent

attacker observing and hence exploiting this deterministic behaviour, the patroller

may decide to randomise his route. However, Ordónez et al. (2013) discuss the

difficulty in effectively randomising, citing the potential for humans to fall into

predictable patterns and so the need for game theoretic approaches to finding good

randomisation strategies.

The objective in Stackelberg games is to find the optimal mixed strategy for
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the leader to commit to given an optimal response of the follower. Conitzer &

Sandholm (2006) state that in the special case of zero-sum games, the optimal

mixed strategy to commit to is a minimax strategy. This means that zero-sum

Stackelberg games can be considered as standard simultaneous move games and

hence solved through LP methods. This is no longer true for general-sum games.

In the extension to general-sum games, the authors show that LP can also be

used to compute the optimal mixed strategy to commit to. This amounts to solv-

ing multiple linear programs in which the leader maximises his payoff under the

constraint of a pure strategy response of the follower. A further extension is the

concept of a Bayesian Stackelberg game in which there are multiple leader and

follower types, where the leader has incomplete information regarding the follower

type and subsequent payoffs in the game. Paruchuri et al. (2008) study Bayesian

Stackelberg games for security in which there is a single defender type and multi-

ple attacker types. Pita et al. (2008) illustrate that defender-attacker problems in

security domains are well modelled as Bayesian Stackelberg games, owing to their

flexibility in capturing multiple attacker types and the ability to weigh different

targets according to their significance. Whereas the method of Conitzer & Sand-

holm (2006) is computationally intractable for these security games, Paruchuri

et al. (2008) develop an efficient exact algorithm known as DOBSS (Decomposed

Optimal Bayesian Stackelberg Solver) for finding the optimal mixed strategy to

commit to. This method involves formulating and solving a single mixed integer

linear program.

There have been some notable examples of the Bayesian Stackelberg game ap-

proach to defender-attacker problems in real-world security domains. Pita et al.

(2008) developed a software assistant known as ARMOR which has been deployed

at LAX airport in Los Angeles since 2007 to randomise checkpoints on inbound

roads to the airport and canine patrol routes within the airport terminals. These

problems are modelled alongside security experts as Bayesian Stackelberg games

and subsequently solved using the DOBSS algorithm. The system enumerates
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every possible pure strategy in the game for both defender and attacker, which

for the defender corresponds to how resources can be allocated among targets.

Subjective assessments of the rewards to each player of each pure strategy combi-

nation and attacker type embeds the ability to weigh the significance of each event.

These rewards are not equal in magnitude and so the game is general-sum. Tsai

et al. (2009) developed a software scheduling assistant known as IRIS for the Fed-

eral Air Marshal Service to randomise air marshal schedules aboard United States

commercial flights. In this security domain, the set of attacker targets corresponds

to tens of thousands of commercial flights each day and the set of defender strate-

gies is how to schedule a fixed number of air marshals over all flights. Alongside

scheduling constraints specific to the transportation network domain, this scale of

problem cannot be addressed using the approach in ARMOR. In a closely related

paper, Kiekintveld et al. (2009) study large Bayesian Stackelberg games motivated

by the same security domain. The key idea is to consider a compact form of the

game which subsequently scales well to large problems. The authors develop ef-

ficient algorithms for these compact form games, exploiting payoff structure and

incorporating realistic scheduling constraints. The IRIS system uses this modelling

approach together with a preference elicitation system for experts to determine the

general-sum payoffs in the game. The algorithms from Kiekintveld et al. (2009)

solve the resulting game efficiently. Pita et al. (2011) developed an application

called GUARDS for the United States Transportation Security Administration to

assist in randomising security resource allocation to tasks in the protection of over

400 airports. This problem considered heterogeneous security activities, for ex-

ample perimeter patrols or baggage screening, as well as heterogeneous attacker

modes, for example an outside attack or a suitcase bomb. The approach involved

detailed modelling of strategies and payoffs using expert knowledge as well as a

compact form representation which enabled solution through the DOBSS algo-

rithm. Shieh et al. (2012) developed a system called PROTECT for scheduling

randomised patrols for the United States Coast Guard in the port of Boston. This
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problem divides the port into a number of patrol areas over which a patroller must

decide both an order to visit and a set of activities to perform over this route,

ensuring the route starts and ends with the same area. The authors determine a

method for a compact form representation for increased computational efficiency.

A key feature of this problem is the assumption of an attacker who is not per-

fectly rational in his choices, for which an optimal randomised patrol schedule is

computed using the work of Yang et al. (2012).

A common feature of these real-world security systems (ARMOR, IRIS, GUARDS,

PROTECT) is the considerable amount of calibration required to formulate a rel-

evant Bayesian Stackelberg game which accurately represents the respective secu-

rity domain. Critical to the success of those systems was the integration of expert

knowledge of each domain to reduce the size of each problem and specify the

required general-sum payoffs in the game. In contrast, the defensive surveillance

scenarios we consider within Chapters 5 and 6 of this thesis involve an infinite num-

ber of unique pure strategies available to the defender, each with its own unique

impact upon targets in the system. Consequently there is no obvious possibility

of representing the problems there in a compact form to ease the computational

challenge. Furthermore, the complex nature of both the domain and the defensive

pure strategies is such that subjective assessment of payoff values is unlikely to be

possible. Subsequently, payoff values under the joint pure strategies of defender

and attacker are given as probabilities which must be either computed exactly or

accurately estimated within a queueing system model of the domain of interest.

Even for a finite set of defender pure strategies this can be time consuming. Al-

though the models in this thesis allow for the ability to weigh targets differently

dependent on their significance, the valuation of these targets is common to both

the defender and attacker and hence we consider zero-sum games. Furthermore,

in the surveillance scenarios considered in this thesis, the attacker is unable to

observe the defensive strategies deployed, hence we analyse them as simultaneous

move games.
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An example of a zero-sum defender-attacker problem with simultaneous moves

is studied by McMahan et al. (2003). This paper considers planning a route for

a robot to navigate a known environment to reach a goal location whilst avoiding

detection by sensors placed within the environment by an adversary. A MDP

model describes the movement of the robot through the environment, whilst a

specific placement of sensors imposes a specific cost vector upon the MDP. For

a known set of placements, and so known cost vector, the planner (defender)

can determine a route which minimises the observability through MDP methods.

However, the adversary chooses a sensor placement to maximise the observability.

The problem is formulated as a zero-sum game in which the pure strategies of

the adversary correspond to a finite set of cost vectors and the pure strategies

of the adversary correspond to a finite set of deterministic policies for the MDP.

The authors develop an iterative algorithm based on Benders decomposition which

utilises what they term an Oracle. Given any cost vector, the Oracle provides an

optimal policy with respect to that cost vector. The iterative algorithm finds an

optimal mixed strategy for the adversary given a subset of policies available to the

planner and then uses the Oracle to provide a best response policy for the planner

to this adversarial mixed strategy and adds this new policy to the policy set. The

algorithm proceeds in this way, trading best responses back and forth, until the

Oracle provides a policy the planner already has. The algorithm converges to the

optimal mixed strategies for each player due to the corresponding convergence of

Benders algorithm. This is referred to as a single Oracle algorithm since only the

planner possesses an Oracle. In the case where the set of cost vectors available to

the adversary is large, the authors develop and prove convergence of an analogous

double Oracle algorithm in which both players possess an Oracle. Another example

of use of a double Oracle algorithm is found in Tsai et al. (2014) in a problem in

which a defensive force attempts to prevent the spread of a malign influence in a

social network. Here approximate Oracles are used since computing best responses

is not practical.
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A paper which provides strong motivation for methods within this thesis is due

to Lin et al. (2013). They consider a patrol problem in which a patroller traverses

the edges of a graph whose nodes are potential targets for an attacker. The pa-

trol problem reflects real scenarios such as a security guard patrolling a museum

or soldiers patrolling borders and the structure of the graph model reflects the

underlying topology of the domain in question. Attacks at nodes take random

amounts of time to complete and costs are incurred if they are not detected by the

time they complete. The objective is to design a patrol policy which minimises

the expected cost incurred by the attacker. The approach of the authors is first to

model the case of random attackers who choose which node to attack according

to a probability distribution known to the patroller. They then consider the case

of strategic attackers who intelligently choose which node to attack in a zero-sum

game with the patroller. The insights and methods derived from the random at-

tacker case lead to effective methods for the strategic attacker case. In the random

attacker case, the problem is formulated as a MDP which can be solved optimally

for small size problems, but larger problems become computationally intractable

due to the exponential growth of the state space with an increasing number of

nodes. Consequently, the authors develop effective index-based heuristic policies.

In the strategic attacker case, similar computational problems exist for finding

an optimal patrol policy and so an effective heuristic policy is proposed which

randomises over a feasible set of patrol policies. The feasible set is constructed

in an iterative manner based on Fictitious Play (FP). In a given round, the at-

tacker identifies a mixed strategy based on a best response to the history of patrol

policies used by the patroller in previous rounds. The patroller interprets this

mixed strategy as the attacker choosing which node to attack according to the

corresponding probability distribution. This relates to the random attacker case

in which the best response of the patroller is given by the index-based heuristic.

The set of patrol policies revealed by this iterative procedure is used in a matrix

game with the attacker, the solution of which gives a heuristic randomised patrol
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strategy which is shown to exhibit near-optimal performance in numerical exper-

iments. An extension to this work by Lin et al. (2014) allows for the possibility

of overlooking, whereby there is a chance the attacker is not detected, even if the

patroller inspects the node under attack. The authors adopt the same approach

of random and strategic attacker problems in this more difficult problem. In the

strategic attacker problem, the iterative method of constructing a feasible patrol

set is more efficient than the method based on FP. The method used is analogous

to the single Oracle algorithm of McMahan et al. (2003), since the mixed strategy

of the attacker in a given round is now computed as the best response to the patrol

policies currently available to the patroller. The difference with the algorithm of

McMahan et al. (2003) concerns the use of a heuristic as opposed to a best response

Oracle.

Although the inherent features of the defensive surveillance scenarios we con-

sider within this thesis are somewhat different to the patrol scenarios considered

by Lin et al. (2013) and Lin et al. (2014), there are elements which are similar.

For example, a specific patrol policy will have some performance impact upon each

target in the system in terms of what the adversary will achieve if he attacks that

target. The patroller is concerned with protecting against any possible decision

the adversary could make. Embedded within the strategic attacker problem, the

random attacker problem was a mechanism with which to best protect against a

variety of adversarial decisions. In essence, this is similar to the defensive surveil-

lance scenario in Chapter 5 of this thesis and so we adopt the same paradigm of

utilising a random adversary problem within a strategic adversary problem. Chap-

ters 3 and 4 are analogous to the random attacker problem and are interesting

within their own right. Chapter 5 is analogous to the strategic attacker problem

and draws upon the insights of the random adversary case in earlier chapters.

The work by Lin et al. and Shieh et al. are examples of patrol games, a

further example of which is given by Alpern et al. (2011). There are a number of

other notable related problems worthy of consideration which use a game-theoretic
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framework to study the interaction between forms of defenders and attackers. In

search games, a searcher wishes to minimise the time taken to find a hider who does

not want to be found on a network or in a region, for example see Alpern & Gal

(2003). In inspection games (see Avenhaus & Canty (2002)), an inspector wishes

to verify that an inspectee adheres to certain legal rules, for example in an arms

control treaty which the inspectee may benefit from violating. In interdiction or

infiltration games, an intruder wishes to maximise his probability of penetrating

a sensitive area protected by a guard who wishes to minimise this probability,

see Washburn & Wood (1995), Auger (1991), and Alpern (1992) for examples.

In accumulation games, a hider distributes material over a set of locations and

a seeker searches over these locations to confiscate the material, for example see

Kikuta & Ruckle (2002). These are selected examples of what is a large and

distributed body of literature and we refer the reader to the reviews given in these

for further examples.
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Chapter 3

Defence against Random

Adversaries: Priority Policies

In this chapter we consider a stochastic scheduling problem with customer aban-

donments based upon the mathematical model outlined in Chapter 1 for defensive

surveillance. We describe the model in this chapter for clarity. We consider a set-

ting in which a single server must preemptively serve impatient customers spread

across k customer classes. We can imagine every customer class residing in one

queue or equivalently the case where each class corresponds to a separate queue.

Different classes of customers arrive according to independent Poisson processes,

with the arrival rate being λj for class j customers, 1 ≤ j ≤ k. The service time

for a class j customer is given by a random variable which follows an exponential

distribution with rate µj. A class j customer, however, will only remain available

for service for a random time that follows an exponential distribution with rate

θj, after which the customer will abandon the system, whether the customer is

still waiting in the queue or already in service. If a class j customer is served

to completion, then a reward Rj is earned, but if he abandons the system before

service completion, then a penalty Dj is incurred. In addition, each class i cus-

tomer in the system incurs a linear holding cost at rate cj per time unit. All of the

parameters listed are assumed to be strictly positive, unless stated otherwise. We
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seek to determine a service policy that maximises the long-run reward rate earned

net of penalties and holding costs incurred.

The random adversary defensive surveillance scenario presented in Chapter

1 will be shown to be a special case of this model in which the penalties for

abandonment are viewed as damages the adversary can inflict. Minimising the

probability of abandonment or expected damage inflicted by the adversary is shown

to be equivalent to minimising the long-run pure penalty rate, which itself is a

special case of the general reward, penalty, and holding cost model described.

This is achieved through a suitable definition of the penalty Dj, related to the

random attack configuration of the adversary. We will discuss this connection

and further the equivalence of finding a policy which maximises the long-run pure

reward rate with similarly suitably defined rewards, which will be the main focus

of this chapter.

3.1 Model and MDP Formulation

We develop further the problem of the optimal preemptive scheduling of the mul-

ticlass queueing system described above and formulate it as a Markov Decision

Process (MDP). Recall that our model has three reward parameters. For a class j

customer, there is a reward Rj for service completion, a penalty Dj for customer

abandonment, and a linear holding cost rate cj per unit time, for 1 ≤ j ≤ k. If

we write Nπ
j,θ for the number of class j customers in the system and απj , βπj for,

respectively, the rate of class j service completions and abandonments under pol-

icy π in steady state, then the optimal long-run system reward rate net of holding

costs and abandonment penalties can be written as

max
π

k∑
j=1

(
Rjα

π
j −Djβ

π
j − cjE[Nπ

j,θ]
)
. (3.1)
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However, the guaranteed stability of the system implies that, for all choices of class

j and policy π, we have that

λj = απj + βπj , (3.2)

and

βπj = θjE[Nπ
j,θ]. (3.3)

Using (3.2) and (3.3), we can rewrite (3.1) in three different ways :

max
π

k∑
j=1

((
Rj +Dj +

cj
θj

)
απj −

(
Dj +

cj
θj

)
λj

)
(3.4)

= max
π

k∑
j=1

(
Rjλj −

(
Rj +Dj +

cj
θj

)
βπj

)
(3.5)

= max
π

k∑
j=1

(
(Rjλj − ((Rj +Dj)θj + cj)E[Nπ

j,θ]
)
. (3.6)

Equation (3.4) transforms the original model into an equivalent pure reward model

with Rj + Dj + cj/θj earned upon every class j service completion. Similarly,

equation (3.5) shows an equivalent pure penalty problem with penalty Rj +Dj +

cj/θj incurred upon every class j customer abandonment. Finally, equation (3.6)

shows an equivalent pure holding cost problem with holding cost (Rj+Dj)θj+cj per

unit of time and per class j customer present in the system. Although expressed

as maximisation problems, we could have expressed our original model as one

of minimising the long-run holding cost and penalty rate net of rewards and the

transformed pure forms would then be minimisation problems. Objective values of

policies in the equivalent maximisation and minimisation problems would be equal

up to a sign change. From this discussion we see that any model which features any

combination of rewards, penalties, and holding costs can simply be transformed

into one of the pure forms of the problem and the parameters consolidated into a

single parameter. Without loss of generality, we shall focus on the pure reward

maximisation problem (Dj = cj = 0 for all j) for (almost all of) the remainder of

the chapter.

65



We now formulate the pure reward problem as a MDP. Denote the system state

n = (n1, . . . , nk), with nj the number of class j customers present in the system.

We further write n (t) for the system state at time t. Further details of the model

are as follows:

1. Decision epochs occur at time zero and at all transitions of the system state.

2. At each decision epoch, the server must decide which waiting customer to

serve next across all customer classes. The set of admissible actions for state

n 6= 0 is given by

A (n) = {a : na ≥ 1, 1 ≤ a ≤ k} .

Note, A(n) is not defined for n = 0. An action a ∈ A(n) denotes the service

of a class a customer. We use ej for the system state in which only a single

customer of class j is present in the system. We assume the server never

idles when there are customers waiting in the system.

3. In state n 6= 0 under admissible action a ∈ A(n), the effective transition

rate is Λ(n, a) = µa +
∑k

j=1(λj + njθj). Transitions to states n + ej,n− ea,

and n− ei, i 6= a, respectively, occur with probabilities λj{Λ(n, a)}−1, (µa +

naθa){ Λ(n, a)}−1, and niθi{Λ(n, a)}−1. The effective transition rate in the

empty state 0 is Λ(0) =
∑k

j=1 λi with a transition from 0 to state ej occurring

with probability λj{Λ(0)}−1. When a transition from n to n− ea occurs at

a class a service completion, a reward Ra is earned.

4. A service policy is a rule for choosing admissible actions using the history of

the process (past states and actions) only. An admissible, deterministic, sta-

tionary, and Markov policy is determined by a function π : Nk → {1, . . . , k}

satisfying π (n) ∈ A (n) ,∀n. The theory of MDPs (see, for example, Chapter

8 of Puterman (1994)) implies that, to determine the optimal policy, it is

sufficient to consider only policies in this class.
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5. The goal of analysis is to choose a policy that will maximise the long-run

reward rate earned or that will come close to doing so.

A standard approach to the determination of ε-optimal policies is through

the application of DP to a version of the above system with finite state space

×kj=1{0, 1, . . . , Nj}. In this truncated version of the above model, new class i

customers are blocked from entering the system when Ni are already present. The

Nj must be chosen large enough to ensure that this system approximates that

in 1 − 5 well enough for the purpose at hand. This reduction of the state space

facilitates the conversion of the problem to one in discrete time through the process

of uniformisation (see, for example, Lippman (1975) and Serfozo (1979)). We write

∆ =
∑k

j=1 (λj + µj +Njθj), a uniform upper bound on the rate of state transitions

in the finite state system. By the addition of fictitious transitions from a state

to itself, we develop a uniformised system that makes transitions at a uniform

rate ∆. We write V π (n, t) and V (n, t) for the expected reward earned under the

application of policy π and an optimal policy, respectively, over t transitions of the

uniformised process, beginning at time zero in system state n. Standard theory

enables us to write V π (n, t) = gπ

∆
t+ωπ (n)+o (1) and V (n, t) = g

∆
t+ω (n)+o (1)

as t→∞, where gπ and g are the long-run reward rates or gains earned, and ωπ

and ω the bias functions under application of π and an optimal policy, respectively.

Bias functions yield an estimate of the transient effect on rewards of the starting

state n and will be further discussed in Chapter 4. Bellman’s equation for the

finite state system can now be written

g

∆
+ ω(n) = max

a

{
Raµa

∆
+
∑
n′∈S

p(n′|n, a)ω(n′)

}
, (3.7)

where the p (n′ | n,a) are transition probabilities under the uniformisation. It is

now possible to compute the optimal gain and associated optimal policy for the

finite state approximation by a recursive scheme such as DP value iteration or by

LP. Further details may be found in Chapter 8 of Puterman (1994).
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Although it is possible to formulate our model as a MDP and use standard

methods of DP to compute the optimal policy, since the state space grows expo-

nentially in k, in practice, the computations quickly become intractable for k ≥ 4.

Hence, our focus is to develop strongly performing heuristic policies that require

much less computation, with a preference for operationally simple policies with

strong reward characteristics. The first element of our approach, featured in this

chapter, is the development of a suite of simple priority policies which are effec-

tive across much of the problem’s parameter space. Such policies serve customers

according to a strict priority ordering among the customer classes. An additional

attraction of priority policies is their simple structure, making them operationally

desirable. The second element of our approach which follows from this will be the

feature of Chapter 4. This involves the development of an effective approximate

policy improvement method.

In general, good policies will achieve an appropriate trade-off between securing

high returns from the customers currently available, while avoiding inefficiencies

in processing, most especially when the server is idle. In the case of an overloaded

system, there are almost always many customers present in the system. It is

therefore intuitive that the server should pay little attention to the possibility

of idling, and focus on continuously maximising the instantaneous reward rate.

This can be done by serving according to the Rµ rule, a priority policy that

ranks all customer classes based on the product of reward R and service rate µ,

namely the instantaneous reward rate. The strong performance of this rule in

heavy traffic is shown in the literature in the work of Atar et al. (2010), Ayesta

et al. (2011), Verloop (2014), and Larrañaga et al. (2014). Although this work

considers variations of the cµ/θ rule in linear holding-cost only models, it is a

consequence of our analysis in equations (3.4) and (3.6) that this is equivalent to

the Rµ rule in our pure-reward model. We must recall here that when we refer to

a rule, we simply refer to a service policy, as discussed on page 66.

Away from heavy traffic, lost reward opportunities due to an empty system
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become a much more important concern. To complement the Rµ rule in the light

traffic case, we present the Rµθ rule which ranks all customer classes based on

the product of R, µ, and the abandonment rate θ. This policy incorporates the

effect abandonments have on each class. This ranking was proposed in Section 2

of Glazebrook et al. (2004) for batch problems and shown to be effective, and we

extend its application to systems with customer arrivals.

Section 3.3 considers the Rµθ rule in greater detail and establishes its asymp-

totic optimality as θ → 0. Section 3.4 describes the extension of this result to

other complex service situations. Section 3.5 compares the Rµθ and the Rµ rules.

Finally, Section 3.6 presents a mechanism to explore local improvements on a given

priority policy. We first discuss in Section 3.2 how the random adversary defensive

surveillance scenario in Chapter 1 is a special case of our model.

3.2 Special Case: Random Adversaries

Recall the mathematical model underlying the three defensive surveillance models

in Chapter 1. An adversary is a potential customer possessing the ability to join

any of the k queues. If the adversary joins queue j then he behaves like every other

customer in the queue, carrying an exponential service requirement with rate µj

and having an exponential lifetime with rate θj. The goal of the adversary is to

abandon the queue he joins before being served to completion; if this occurs a

fixed amount of damage dj is inflicted.

In the three different surveillance scenarios identified in Chapter 1, we denoted

the random adversary scenario by one in which the adversary decides which queue

to join at random according to a probability vector which is known to the server.

We assume the adversary decides which queue to join according to a fixed prob-

ability vector p = (p1, ..., pk), such that queue j is joined with probability pj and∑
j pj = 1. We assume that the server knows the probability vector p used by

the adversary, perhaps gathered through intelligence operations. We can imagine

two situations in which this situation may occur. Firstly, the adversary may have
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generated p entirely at random, without any knowledge of the system. Alterna-

tively, the adversary may have chosen p based on knowledge of the system and the

potential service policies which could be in use in order to maximise the expected

damage he can inflict. In either case, the objective of the server is the same.

The server does not know when the adversary will enter the system or indeed

exactly in which queue, and even then cannot uncover the identity of the adversary

until he has completed service or abandoned. However, the server does know that

the adversary will enter at some point and the probability of entering each queue

when this occurs. We assume that the adversary will join the system at some

random point in time while the system is in its long-run steady state position under

a given service policy π. The objective of the server is to determine a service policy

which minimises the expected damage conditional on p. If the adversary joins

queue j at some point while the system is in its long-run steady state position

under a given service policy π, the damage which will be inflicted is a discrete

random variable with two outcomes: damage dj if he abandons before completing

service or zero if he completes service. The probability of each outcome depends on

the service policy π. Recall απj and βπj for, respectively, the rate of class j service

completions and abandonments under policy π in steady state. The probability

of abandonment of the adversary is the same as every other arbitrary class j

customer and is equal to βπj /λj. Similarly, the probability of service completion

is equal to απj /λj. It is a consequence of (3.2) that these probabilities sum to

one. Therefore, the expected damage inflicted by the adversary under policy π

conditional on joining queue j is given by djβ
π
j /λj. Subsequently, using the law

of total expectation we have that the expected damage inflicted by the adversary

joining the system according to p is given by
∑

j(djβ
π
j /λj)pj. It is easy to see that

when dj = 1 for 1 ≤ j ≤ k, the expected damage simply equals the abandonment

probability of the adversary. We can now express the optimal expected damage

for the server as follows
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min
π

[ k∑
j=1

djβ
π
j

λj
pj

]
.

It is possible to express this differently as follows

min
π

[ k∑
j=1

(
djpj
λj

)
βπj

]
= min

π

[ k∑
j=1

Djβ
π
j

]
,

which expresses the problem as one of minimising the long-run penalty rate, where

penalties Dj = djpj/λj are incurred for class j abandonments. From our earlier

discussion, from a policy perspective, this pure-penalty problem is equivalent to

a pure-reward problem in which the server maximises the long-run reward rate

where rewards Rj = djpj/λj are received for service completions.

Remark. Suppose that adversaries arrive into the entire system as a Poisson

process with rate λA, then the total arrival rate into queue j would be λj + pjλA.

Each customer in queue j would independently be an adversary with probability

(pjλA)/(λj + pjλA). Given that adversarial arrivals would be very rare, we can

safely assume that λA would be very small. Each time a customer is served in

queue j, the probability this customer is an adversary would then be approximately

equal to (pj/λj)λA. We can trivially set the quantity λA equal to one given the

common scaling effect on these probabilities in each queue. We can then interpret

the class j reward Rj = djpj/λj as the expected damage avoided by the server in

each class j service completion. Maximising the long-run reward rate is equivalent

to maximising the long-run rate at which expected damages are avoided, which is

intuitively equivalent to minimising the long-run rate at which expected damages

are inflicted.

We have shown in this section that the random adversary defensive surveil-

lance scenario in which the single server wishes to minimise the expected damage

inflicted by an adversary who attacks randomly is a special case of a more gen-

eral stochastic scheduling problem with customer abandonments in which a server

wishes to maximise the long-run reward rate from service completions. It is the
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latter problem which is the main focus of this chapter and so in what follows we

will consider this problem with arbitrary rewards Rj and note that it is possible

to realise the former problem through the definition Rj = djpj/λj.

3.3 The Rµθ Rule

If a system is not overloaded with customers, then it becomes important to take

into account the lost reward opportunities when the system becomes empty due to

customer abandonment. For example, consider a two-class system, with R1µ1 =

R2µ2, and θ1 < θ2. If there is one customer present from each class, then intuition

suggests that the server should first serve the class 2 customer, since there is a

better chance that the class 1 customer will still be available upon the other’s ser-

vice completion. Consequently, a class’s priority should go up as its abandonment

rate θ increases. We call the rule in which the server always serves a customer

having the maximal Rµθ value among all customers present in the system, the

Rµθ rule. As seen in equations (3.4) and (3.6), the Rµθ rule in our pure-reward

model is equivalent to the cµ rule in the linear holding-cost only model. Whereas

the cµ rule is optimal in queueing systems with no customer abandonment (see,

for example, Section 5.2 in Gittins et al. (2011)), it is not optimal in systems with

customer abandonment (see Down et al. (2011)). To the best of our knowledge,

the asymptotic optimality of this rule in systems with customer abandonment has

never been established in the literature.

The main result of this section is to show that the Rµθ rule is asymptotically

optimal as θ → 0. In the random adversary surveillance scenario, this result sheds

light on cases where the time spent by individuals in the area of interest tends to be

large relative to the time taken to surveil them. First, write Rπ(θ) for the reward

rate achieved by policy π, and RRµθ(θ) for the reward rate achieved by the Rµθ

rule. To describe the limiting regime simply, we suppose that the abandonment

rate of each customer class is the multiple of some underlying rate θ such that

θj = θνj, where νj > 0, 1 ≤ j ≤ k.
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Theorem 3.1. If
∑

j λj/µj < 1, then

max
π

Rπ(θ)−RRµθ(θ) ≤ O(θ2).

Proof. Consider the k-class queueing system under stationary nonidling service

control policy π, under an assumption that
∑

j
λj
µj

< 1 in which the system is

stable under nonidling policies in the absence of abandonments. We shall consider

the system in the limit as θ → 0.

The reward rate under policy π

Under policy π and with abandonment parameter θ write W π
j,θ for the waiting time

of a class j customer in steady state, to be understood as follows: W π
j,θ is the time

needed for a class j customer arriving at the system in steady state and with zero

personal abandonment rate to complete its service. An arriving class j customer

in steady state will actually complete its service if this waiting time is no greater

than Yj ∼ exp (θj) , the time available to the customer in the system prior to her

abandonment. The quantity E
(
exp

(
−θjW π

j,θ

))
= E

(
P
(
W π
j,θ < Yj

))
is the long-

run proportion of class j customers who achieve service completion under policy

π. We can now write the reward rate achieved under π as

Rπ(θ) =
k∑
j=1

λjRjE
(
exp

(
−θνjW π

j,θ

))
. (3.8)

Lower bound for the reward rate

Now consider any priority policy $, namely any policy which operates a fixed

priority ordering among the customer classes. The Rµθ and Rµ rules are such

policies. We shall assume without loss of generality that $ chooses individual

customers from the chosen class for service in a first-come-first-served fashion.

Now write W$
j for the waiting time (time to achieve completed service) of a class
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j customer in steady state under priority policy $ for the no abandonment case

with θ = 0. It is clear from a simple argument based on realisations of the system

that the total workload (uncompleted service) in the system from customers in

the l classes which have top priority under $ (for any 1 ≤ l ≤ k) when θ = 0

stochastically bounds above the corresponding quantity when θ > 0. Since epochs

at which any class j customer enters service are those at which the workload from

higher priority classes is zero, it follows straightforwardly that for priority policies

$ we have W$
j ≥ST W$

j,θ, and hence from (3.8) that

R$(θ) ≥
k∑
j=1

λjRjE
(
exp

(
−θνjW$

j

))
=

k∑
j=1

λjRj − θ
k∑
j=1

λjRjνjE
(
W$
j

)
+O

(
θ2
)
. (3.9)

Upper bound for the reward rate

In (3.9), we have established a lower bound for the reward rate R$ (θ) for any

priority policy $. We now develop an upper bound for Rπ (θ) for any π. To

achieve this, we consider first a realisation of the system under nonidling policy

π and with no abandonments (θ = 0). This realisation will be determined by π

and a given set of arrival times A and service durations S. We write the lengths

of successive busy periods for this realisation as Bn, and the number of customers

served in successive busy periods as Mn, n ∈ N. Write lnj for the number of class j

customers in period n, and W
π(n)
jl for their waiting times, for 1 ≤ l ≤ lnj, 1 ≤ j ≤ k,

where
∑

j lnj = Mn.

We now apply abandonment to this realisation. Hence we consider the stochas-

tic process generated when the realisation determined by π,A, and S is modified

by random abandonments with class-specific rates θνj, 1 ≤ j ≤ k. It is trivial that

at all epochs at which the system is empty for the no abandonment realisation,

it will also be empty when abandonments are applied. Expressed differently, the

busy periods for the process without abandonments contain (one or more) busy
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periods for any generated process with abandonments. When abandonments are

applied to the realisation with waiting times W
π(n)
jl , 1 ≤ l ≤ lnj, 1 ≤ j ≤ k, n ∈ N,

then it is easy to show that the probability that none of the customers served in

busy period n is abandoned is bounded below by exp (−θν∗BnMn) ≥ 1−θν∗BnMn

where ν∗ = maxj νj.

Use W π
j− for the collection of waiting times for class j customers of the non-

abandonment realisation, namely W π
j− := {W π(n)

jl , 1 ≤ l ≤ lnj, n ∈ N}. We

now seek a lower bound for the conditional expectation E(W π
j,θ | W π

j−), which

is the mean class j waiting time (after abandonments) conditional on this no-

abandonment realisation. To compute this conditional expectation we use X(n)

for the collection of exponential random variables which determine the available

lifetimes (deadlines) for the customers concerned with busy period n. We write

{W π(n)
jl

(
X(n)

)
, 1 ≤ l ≤ lnj, n ∈ N} for the new (random) class j waiting times

which result from the abandonment process when applied to successive busy peri-

ods of the non-abandonment process. By the above argument

P (W
π(n)
jl (X(n)) = W

π(n)
jl , 1 ≤ l ≤ lnj) ≥ exp(−θν∗BnMn)

from which it follows that

E(W π
j,θ | W π

j−) = lim
N→∞

∑N
n=1

∑lnj
l=1E(W

π(n)
jl (X(n)))∑N

n=1

∑lnj
l=1 lnj

≥ lim
N→∞

∑N
n=1

∑lnj
l=1W

π(n)
jl exp (−θν∗BnMn)∑N
n=1

∑lnj
l=1 lnj

≥ lim
N→∞

∑N
n=1

∑lnj
l=1W

π(n)
jl∑N

n=1

∑lnj
l=1 lnj

(1−O (θ))

= E(W π
j )−O(θ),

where the equality follows from the ergodicity of the system, and the lower bound

E(W π
j ) − O(θ) is a uniform one that does not depend on W π

j−. Unconditioning,
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we infer that

E(W π
j,θ) ≥ E(W π

j )−O(θ).

Combining this with (3.8), we have that

Rπ(θ) ≤
k∑
j=1

λjRj − θ
k∑
j=1

λjRjνjE(W π
j ) +O(θ2). (3.10)

Please note that in (3.9) and (3.10), all theO (θ2) terms, upon division by θ2 involve

expectations which are uniformly bounded as $, π range over their respective

policy classes.

Inference from the lower and upper bounds

Applying (3.10), we infer that

max
π

(
k∑
j=1

λjRj − θ
k∑
j=1

λjRjνjE
(
W π
j

)
+O

(
θ2
))
≥ max

π
Rπ (θ) , (3.11)

where the maxima in (3.11) are over all policies π. Making the Rµθ rule the choice

of priority policy $ in (3.9), using the fact that maxπ R
π(θ) ≥ RRµθ(θ), and using

(3.11) it follows that

max
π

Rπ (θ)−RRµθ (θ) ≤ θ

{
k∑
j=1

λjRjνjE
(
WRµθ
j

)
−min

π

k∑
j=1

λjRjνjE
(
W π
j

)}
+O

(
θ2
)
.

(3.12)

Little’s Law and conclusion

We finally observe that the minimisation in (3.12) can alternatively be written,

using Little’s Law, as

min
π

k∑
j=1

RjνjE(Nπ
j ), (3.13)

with Nπ
j the number of class j customers in the system (without abandonments)

in steady state under policy π. The minimisation in (3.13) is of a holding cost

rate for the system, with cost Rjνj incurred per class j customer and per unit
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of time. A classical queueing control result (the cµ rule) asserts that for the no

abandonment system, this holding cost rate is minimised by the Rµν rule which

provides service according to a priority policy with class ordering determined by

(decreasing) values of Rjµjνj. Upon multiplication of these values by θ it is clear

that this is our Rµθ rule. We infer from this fact and from (3.12) that

max
π

Rπ(θ)−RRµθ(θ) ≤ O(θ2)

as required, which concludes the proof.

In heavy traffic, the Rµ rule appropriately greedily chooses processing actions

to maximise the instantaneous reward rate achieved. In the regime of Theorem

1, the focus is on choices that minimise reward rate loss from the system through

abandonments. From the preceding proof, this loss rate is given by θhπ + O(θ2),

where

hπ =
k∑
j=1

λjRjνjE
(
W π
j

)
.

The strong performance of the Rµθ rule resides in its minimisation of the dominant

O(θ) component of this loss rate—a consequence of the optimality of the cµ rule

for linear holding costs in the absence of abandonments.

3.4 Extensions

Close inspection of the proof of Theorem 3.1 reveals that we make little use of the

stochastic structure of the system’s service mechanism. The Rµθ rule emerges

as a priority policy, which minimises a holding cost-type objective for the no

abandonment system (θ = 0). It is therefore unsurprising that the result can

be generalised to more complex service situations, provided that a priority policy

continues to optimise an appropriate holding cost type objective in the absence of

abandonments. We now give some examples.
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3.4.1 Klimov Networks

Consider a multiclass M/G/1 queueing network with Bernoulli feedback, known as

a Klimov Network ; see Klimov (1974) and Klimov (1978). Exogenous arrivals to

the system form independent Poisson streams, with λi the rate for class i, 1 ≤ i ≤

k. With each class i is associated a collection Ji of service stations with Sij ∼ Gij a

generic class i service time at station ij, 1 ≤ j ≤ Ji. All service times are mutually

independent and are assumed to have finite second moment. Each class i customer

begins service at station i1 and is thereafter routed for further service according

to the Markovian routing matrix P i or exits the system. Hence the sequence of

stations visited by each class i customer forms a Markov Chain with departure

from the system represented by entry into an absorbing state. A single server is

available to provide service at all service stations, namely those in the collection

∪1≤i≤k ∪j∈Ji {ij} . This service is provided nonpreemptively in the case of general

service times, which is the case we now consider.

We write Si ∼ Gi for the total service requirement of a class i customer, namely

the aggregate of all individual service times until the system is exited. We suppose

that the
∑k

i=1 λiE (Si) < 1 and hence that the system is stable under nonidling

service. If we write Ni for the total number of class i customers present in the

system in steady state then a holding cost objective E
(∑k

i=1 CiNi

)
is minimised

by a service policy which imposes a priority ordering KR (C) among the stations,

where C = (C1, C2, . . . , Ck). See Klimov (1974) and Klimov (1978) for details.

We modify the above Klimov Network by imposing customer abandonment.

Hence all class i customers have their sojourn in the system terminated at a time

after entry which has an exponential distribution with rate θi = θνi, unless the

customer has already exited the system upon completion of all service. We suppose

that each class i customer who completes all service prior to abandonment earns

a reward Ri. As before we write Rπ (θ) for the reward rate achieved under service

policy π. We write Rθ = (R1θ1, R2θ2, . . . , Rkθk) and KR (Rθ) for the Klimov

ordering determined by Rθ. The proof of the following result is in all essentials
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unchanged from that of Theorem 1.

Corollary 3.1. For the above Klimov Network, if
∑k

i=1 λiE (Si) < 1, then

max
π

Rπ(θ)−RKR(Rθ)(θ) ≤ O
(
θ2
)
.

Remark. Our assumption that all service times Sij have finite second moment and

are mutually independent is important in completing the proof of Corollary 3.1 in

the manner of the proof of Theorem 1. This enables the use of the approximation

E(e−θνjW
π
j ) = 1− θνjE(W π

j ) +O(θ2). (3.14)

To see why this is true, let B denote the busy period of an M/G/1 queue without

abandonments, where the arrival rate is
∑k

i=1 λi, and the service time S is given

by S ∼
∑k

i=1
λi
Λ
⊗ Si, where Si =

∑Ji
j=1 Sij. The busy period B is invariant to

service discipline. Hence, for any policy π, the waiting time of class j customers

W π
j is stochastically smaller than B and we can write E[(W π

j )n] < E[Bn], for all

n ∈ N.

We require conditions which allow us to write f(θ) := E(e−θB)−(1−θE(B)) =

O(θ2). This is equivalent to limθ→0
f(θ)
θ2

<∞. To compute this limit, we use Takacs

functional equation (see Takács (1962)) for the Laplace Transform (LT) of the busy

period given by

E(e−θB) = B∗(θ) = S∗(θ + λ− λB∗(θ))

where B∗ and S∗ denote the LT of the busy period and service time distributions

respectively. To find the limit, use l’hôpital’s rule twice by taking the derivative of

Takacs equation to give

lim
θ→0

f(θ)

θ2
=
B∗(2)(0)

2
=

E(S2)

2(1− ρ)3
.

Hence the limit exists if the second moment of the service time distribution is finite.

Since S ∼
∑k

i=1
λi
Λ
⊗ Si, we know that E[S2] is finite because of our assumption
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that the second moment of each class i, station j service time distribution is finite.

Consequently we are able to write

E(e−θB) = 1− θE(B) +O(θ2),

which enables us to establish Equation (3.14). This completes the proof of Corollary

3.1 in the case of generic service times.

A version of the above result also holds for Markovian Klimov Networks in

which all individual service times are exponentially distributed and priorities be-

tween customers are imposed preemptively. Please also note that trivially the

above also provides an analysis for a version of the model in this chapter with gen-

eral service times and nonpreemptive service, i.e., a conventional multiclass M/G/1

queueing system with no feedback.

One application of the above network structure has all customers of class i

needing an initial period of service of exp (µi1) duration. This service is conclusive

with probability αi. Should the first phase of service not prove conclusive, a

second phase of service of exp (µi2) duration is provided prior to exiting the system.

Priorities are imposed preemptively. In the context of defensive surveillance, this

may represent a situation in which a security team splits its second-phase screening

into two phases, the first which quickly screens suspects but may not be as accurate

and the second which takes longer but is more accurate.

Following the approach taken in Glazebrook (1996), in this case the Klimov

Rule KR (Rθ) operates as follows: station i1 has an associated Klimov Index ηi1

given by

ηi1 = max

{
Riµi1θiαi;

Riθi

µ−1
i1 + (1− αi)µ−1

i2

}
,

while the station i2 has an associated index

ηi2 = Riθiµi2.
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In this case the Klimov Rule orders the stations according to the values of the

indices {(ηi1, ηi2) , 1 ≤ i ≤ k} , with highest priority accorded to stations of highest

index.

3.4.2 Multiserver Systems

Consider a multiserver version of our system with abandonments, with m servers

working in parallel, then the required stability condition becomes ρ :=
∑k

j=1
λj
µj
<

m and the Rµθ rule now allocates preemptive service to the m customers present in

the system whose associated Rjµjθj are maximal. The proof of a suitable version

of Theorem 1 for this system goes through up to (3.12). However, it is no longer

true that the Rµθ rule achieves the minimum in (3.12), though it does come close

to doing so. To give a theoretical result for this system we need the quantity

B (m) = ρ (Rµν)max

(
1

µ

)
max

I (m > 1) ,

where I is an indicator and the maxima in the expression are taken over the

customer classes. The following result makes use of Theorem 3 in Glazebrook &

Niño-Mora (2001), which shows that B(m) bounds above the quantity multiplying

θ on the right-hand side of (3.12) when there are m servers. It generalises Theorem

3.1 to multiserver systems.

Proposition 1. When there are m servers and
∑k

j=1
λj
µj
< m

max
π

Rπ (θ)−RRµθ(θ) ≤ θB (m) +O
(
θ2
)
.

3.5 Numerical Study: Comparing Rµθ and Rµ

In this section we present a set of numerical experiments which both illustrate the

performance of the Rµθ rule as described in Theorem 1, and also enable us to draw
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comparisons between its performance and that of the Rµ rule in the corresponding

asymptotic regime. It is worth noting that we are now back in the single server

case (m = 1).

It follows from calculations in the proof of Theorem 1 that when
∑k

j=1 λj/µj <

1, we have Rπ(θ) →
∑k

j=1 λjRj, as θ → 0, for all priority policies (and hence

both the Rµθ and Rµ rules). Unsurprisingly, all priority policies achieve the

maximal reward rate
∑k

j=1 λjRj in the no abandonment limit, since in the limit

all jobs are served. Think of the random adversary surveillance problem in which

abandonments of the system are rare, but very damaging, and attention focuses on

making the O (θ) loss rate from abandonments as small as possible. Now consider

a situation in which the class orderings determined by the Rµθ and Rµ rules are

distinct. Recall from page 75 the definition of hπ as the reward rate loss due to

abandonments when using policy π. It follows from (3.9) and (3.10) that

RRµθ (θ)−RRµ (θ) = θ(hRµ − hRµθ) +O
(
θ2
)
.

When Rµθ and Rµ are distinct, the quantity that multiplies θ in the above ex-

pression is strictly positive. Consequently, there exists θ∗, such that for θ < θ∗, we

have that RRµθ (θ) > RRµ (θ). Therefore,

maxπ R
π(θ)−RRµθ(θ)

maxπ Rπ(θ)−RRµ(θ)
→ 0, as θ → 0.

It follows that the percentage loss of reward rate due to abandonment from the

use of Rµθ relative to that experienced from the use of Rµ becomes negligible in

the limit θ → 0.

We illustrate the convergence of the Rµθ and Rµ rules in Table 3.1. Reward

rates for the Rµθ and Rµ rules to a given accuracy are obtained by truncating the

state space and using the uniformisation technique to facilitate the deployment of

value iteration. Truncation levels are set so that the resulting finite-state model

provides a sufficiently good approximation to the original model. All results con-
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cern k class systems, where k = 2, 3. We use Nj = 100 for each class j. Problems

were randomly generated with respect to assumptions on system parameter values.

In light of the discussion in the preceding paragraph, care was taken to ensure that

the problems generated were such that Rµθ and Rµ rules were distinct. As in the

preamble to Theorem 1, abandonment rates are expressed as a multiple of some

underlying abandonment rate, θj = θνj and all problems studied are such that

ρ =
∑

j λj/µj < 1. Problems were randomly generated as follows:

µj ∼ U [0.2, 5] (all cases); (3.15a)

λj ∼ U [0.2, 5] (all cases); (3.15b)

ρ ∈ [0.5, 0.9] (light traffic); (3.15c)

Rj ∼ U [1, 3] (all k = 2 system cases); (3.15d)

Rj ∼ U [1, 5] (all k = 3 system cases); (3.15e)

νj ∼ U [1, 3] (all cases); (3.15f)

In the parameter generation, the µj and λj were generated according to (3.15a)

and (3.15b) by means of a rejection algorithm until the desired ρ condition (3.15c)

was met. For each system, 100 problems were generated at random according to

(3.15a) to (3.15f) for a given set of abandonment rates. For each problem, value

iteration was used to compute the gains of the Rµθ and Rµ rules and an optimal

policy.

As seen in Table 3.1, the results reflect and illustrate the above observations

concerning the relative reward rate performances of the Rµθ rule and Rµ rule. It

is evident from the table that the percentage suboptimality of both policies go to

zero in the limit θ → 0. As stated above, this would indeed be the case for any

priority policy. However, it is evident that this convergence is much more rapid

(of order θ2) in the case of Rµθ, where it is already the case at θ = 0.1 that the

median percentage suboptimality of Rµθ is zero (to 2 d.p.) for both k = 2 and

k = 3. The much slower O (θ) convergence of the percentage suboptimality of the
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Rµ rule is particularly clear from the ‘median’ columns of the Rµ part of Table

3.1.

Rµθ Rµ
k = 2 k = 3 k = 2 k = 3

θ Median 90th Median 90th Median 90th Median 90th
5 0.28 1.26 0.10 0.78 0.00 0.06 0.00 0.14

2.5 0.23 1.37 0.06 0.87 0.00 0.39 0.02 0.36
1 0.16 1.36 0.02 0.67 0.00 0.79 0.06 0.68

0.5 0.06 0.97 0.01 0.76 0.07 1.06 0.15 0.94
0.1 0.00 0.32 0.00 0.27 0.22 1.09 0.18 0.84
0.05 0.00 0.17 0.00 0.14 0.20 1.08 0.15 0.72
0.025 0.00 0.07 0.00 0.04 0.15 0.80 0.12 0.56
0.01 0.00 0.01 0.00 0.00 0.09 0.47 0.05 0.39
0.005 0.00 0.00 0.00 0.00 0.05 0.28 0.04 0.20
0.0025 0.00 0.00 0.00 0.00 0.03 0.16 0.02 0.12
0.001 0.00 0.00 0.00 0.00 0.01 0.07 0.01 0.06
0.0005 0.00 0.00 0.00 0.00 0.01 0.04 0.01 0.03
0.00025 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01
0.0001 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

Table 3.1: Percentage suboptimalities of the Rµθ rule and Rµ rule in sets of 100
randomly generated problems in k = 2 and k = 3 class systems. Median and 90th
percentiles are shown.

3.6 The PaS Class of Priority Policies

In the parameter space we know that the Rµ rule is effective in heavy traffic and the

Rµθ rule is effective in the regime of Theorem 1. Hence for much of the parameter

space at least one of Rµ and Rµθ will be effective. We conclude this chapter by

developing a simple pairwise-swapping mechanism to explore local improvements

in any given priority policy.

Given any class ordering (π1, π2, . . . , πk), we take the classes in order from π2

to πk and explore, in turn, whether each class should be promoted up the order.

This is achieved for each class by a sequence of pairwise comparisons with the next

highest class in the list to determine how high up the list the class can be promoted.

In comparing classes i and j, we consider the two-class subsystem comprising them

alone (with their class parameters inherited from the full problem) and use value

iteration to compute the respective performance of the two priority policies i→ j
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and j → i. If the better policy contradicts the current class ordering, then a

pairwise swap is performed, and the procedure is repeated until a comparison does

not result in a swap. We then examine the potential promotion for the next class

on the original list π2 to πk. This process ends once all classes in the original list

have been considered. The resultant class ordering prescribes a priority policy we

refer to as PaS. The acronymn PaS refers to the Pairwise Swapping procedure

used to derive the policy. The derivation of PaS via this procedure is shown in

Algorithm 1.

Algorithm 1 Algorithm to derive PaS from a given priority policy.

Given a class ordering (π1, π2, . . . , πk), take a copy given by the vector A.
Let Aj denote the customer class of element j such that A1 is the top customer
class.
Set i = 2;
Set j = i;
while i ≤ k do

Formulate a two-class problem with class a = Aj and b = Aj−1;
if priority policy a→ b is better than priority policy b→ a then

i← i+ 1
j ← i

else
Swap customer classes Aj and Aj−1

if j > 1 then
j ← j − 1

else
i← i+ 1
j ← i

end if
end if

end while
The resultant ordering (A1, A2, . . . , Ak) defines PaS.

This approach is founded on the observation that the evaluation of priority

policies in a k = 2 class subsystem through DP methods is a relatively cheap

computational operation. The pairwise-swapping mechanism is analogous to an

insertion sort which has best and worst case performance of O(k) and O(k2) re-

spectively in terms of the number of operations. These reflect the number of k = 2

subsystems which must be evaluated to obtain the final PaS ordering. The compu-

tational cost of these evaluations is low. Although there is no guarantee that the
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PaS policy is indeed an improvement on the initial priority policy, our basic guid-

ing principle is that prioritising one class above another in the two-class subsystem

comprising them alone may suggest that this prioritisation should be retained in

the full system. Pairing this insight with the low computational expense suggests

PaS as an effective heuristic priority policy.

We now illustrate the pairwise-swapping mechanism through a numerical ex-

ample.

Example 3.1: Consider a system with k = 5 queues. The class j parameters of

the example system are as follows

(λj, µj, θj, Rj) =



(3λ/5, 3, 0.1, 7.5) j = 1

(λ/5, 5, 1, 2.5) j = 2

(4λ/5, 4, 5, 1) j = 3

(3.5λ/5, 3.5, 0.2, 5) j = 4

(4.5λ/5, 4.5, 1.5, 2) j = 5

The traffic intensity is ρ :=
∑

j ρj =
∑

j λj/µj and in this example we have

λ = ρ = 1.1, with equal traffic intensity in each class ρ1 = ρ2 = ρ3 = ρ4 = ρ5. The

Rµθ rule prescribes the priority policy 35241 whereas the Rµ rule prescribes the

priority policy 14253. Intuitively it may be better to give higher priority to class

2 and class 5. The low abandonment rates in classes 1 and 4 mean that customers

are likely to stay in the queue for a long time, meaning that a class 2 or 5 customer

could be served and the high reward class 1 or 4 customers will still be be available

to serve. The high abandonment rate and low reward in class 3 suggests a lower

chance of obtaining a lower reward if a class 3 customer were served ahead of a

class 2 or 5 customer for example.

We take an initial class ordering from the Rµθ rule, hence 35421. In Table 3.2

we show the reward rates under priority policies i→ j in the two-class subsystems

comprising classes i and j alone. Typically, these reward rates would be computed

as required, but for illustrative purposes we have computed these in advance for
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j
1 2 3 4 5

i

1 7.310 5.506 8.905 6.511
2 7.505 2.767 6.221 3.822
3 5.550 2.749 4.279 1.898
4 8.958 6.073 4.248 5.265
5 6.655 3.813 1.911 5.374

Table 3.2: Reward rates of priority policies i → j in two-class subsystems com-
prising classes i and j alone in Example 3.1.

every i, j combination. The pairwise-swapping mechanism proceeds as follows:

• We begin by comparing class 5 with class 3. The reward rate of 1.898 for

3→ 5 is less than 1.911 for 5→ 3, so we swap the order of these two classes.

No further comparisons of class 5 can be made as it occupies the top position.

The order is 53241.

• We next consider class 2 and first compare it with class 3. Priority policy

2 → 3 is better than 3 → 2, so we swap the order. We now compare class

2 with class 5. Priority policy 2 → 5 is better than 5 → 2, so we swap the

order. Class 2 now occupies the top position and no further comparisons can

be made. The order is 25341.

• We next consider class 4 and first compare it with class 3. Priority policy 4→

3 is worse than 3 → 4, so we do not swap the order. Since the comparison

did not yield a swap, we end consideration of class 4. The order is 25341.

• We finally consider class 1 and first compare it with class 4. Priority policy

1 → 4 is worse than 4 → 1, so we do not swap the order. Since the com-

parison did not yield a swap, we end consideration of class 1. The order is

25341.

• All classes in the original order have been considered so the resultant ordering

defines PaS to be 25341. This final order would also have been obtained had

the Rµ rule been used to define the initial ordering.
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The reward rates of the Rµθ rule, the Rµ rule, and PaS cannot be computed

through DP methods due to computational intractability. However, we compute

Monte Carlo estimates of the reward rates through discrete event simulation of

each policy. These reward rate estimates are 11.14, 10.91, and 11.26 for the Rµθ

rule, the Rµ rule, and PaS respectively, where each estimate is the mean of 1000

independent replications. In this example we estimate the percentage improvement

of PaS over the Rµθ and Rµ rules to be 1.1% and 3.2% respectively. This demon-

strates, at least in this case, the potential for PaS to deliver improvements over a

given priority policy. In this example we were only able to compare performance

between policies and on this basis, together with its computational feasibility, it

appears that PaS is a potentially effective heuristic policy. However, we were un-

able to ascertain the performance of any policy relative to the optimal policy, which

would be the basis on which to assess the actual effectiveness of any service policy.

In Chapter 4 we conduct an extensive numerical study to assess the performance

of a range of heuristic policies, including Rµθ, Rµ, and PaS, with respect to opti-

mality or an appropriate upper bound for a variety of k = 2, 3 and 5 class systems

for a wide range of system parameters. Hence, we refer the reader to Chapter 4

for further numerical examples and a more in-depth numerical assessment of the

priority policies in this chapter.

Conclusion

In this chapter we have studied a stochastic scheduling problem with customer

abandonments, of which the random adversary surveillance scenario is a special

case. In this scenario, the security team knows the decision of the adversary in

a probabilistic sense and we found that it is very effective for the security team

to use a single, deterministic service policy in response to this. The service poli-

cies proposed within this chapter are priority policies. In a defensive surveillance

setting, a priority policy would translate into the security team ranking suspects

from the different target areas according to some rule. Screening would then be
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provided according to this ranking. In a heavy traffic system, the Rµ rule is shown

in the literature to perform well and would be the suggested policy to minmise the

expected damage inflicted by the adversary. In a light traffic system, with small

abandonment rates, we showed the strong performance of the Rµθ rule and this

would be the suggested policy. Furthermore, we suggest that the security team

could perhaps improve performance by using another priority policy known as the

pairwise swapping (PaS) policy. In this chapter we also discussed how results asso-

ciated with the Rµθ rule could be extended into some more general problems. For

example, multiserver systems and Klimov Network models. The literature would

suggest that a generalisation of the Rµ rule would also perform well in heavy traf-

fic in multiserver systems. In any more general versions of the random adversary

surveillance problem, extensions of the priority policies discussed in this chapter

would be good initial starting points for the security team.
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Chapter 4

Defence against Random

Adversaries: Approximate Policy

Improvement

In Chapter 3 we considered a stochastic scheduling problem with customer aban-

donments with a focus on developing strongly performing heuristic policies. We

developed the first element of our approach, a suite of simple priority policies which

are both operationally simple and could be effective over much of the problem’s

parameter space. In this chapter we study this stochastic scheduling problem fur-

ther and develop the second element of our approach, an effective approximate

policy improvement (API) method. This approach attempts to improve an ex-

isting candidate policy, in this case one of our simple priority policies, using the

concept of policy improvement from DP. The policy improvement is approximate

due to the computational intractability of DP cited in Chapter 3. Our numeri-

cal results indicate that, in most cases, the best of our priority policies is nearly

optimal in systems with 2 or 3 customer classes and we have an effective service

policy of simple structure. In the cases where it is not, the API method invariably

tightens up the gap substantially and provides an improved policy, albeit of more

complex structure. In one instance, the API method improves our best priority
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policy that is 4.26% suboptimal, to an improved policy that is only 0.04% sub-

optimal. It is for the decision maker to perform the trade-off between simplicity

of policy structure and strength of reward performance. In our motivating ran-

dom adversary defensive surveillance application, even small differences in reward

rate performance can be of practical importance, hence any approach capable of

delivering improvements is valuable to the security team.

There are some recent works on approximate approaches to DP seeking to over-

come computational intractability. See, for example, Powell (2011). Contributions

that deploy value function approximations within a policy approach include those

of Krishnan (1987), Glazebrook et al. (2004), and Li & Glazebrook (2010), while

API methods which utilise simulation are discussed by Powell (2011) and Bertsekas

(2012). Our approach can be viewed as an ADP implementation, where the nov-

elty lies in its special choice of initial policies and its use of simulation to estimate

the bias functions at a set of carefully chosen states, followed by interpolation to

secure estimates elsewhere.

4.1 Heuristic Based on Policy Improvement

Policy improvement develops optimal policies for MDPs by using the DP recursion

to produce a sequence of successively improving policies (Howard, 1960). In our

problem, we truncate the state space and uniformise, as in Section 3.1, to develop

an ergodic system with optimality equation in (3.7). To develop a PI step from

policy π, let ωπ (n) be the bias associated with system state n under policy π. A

new policy PIπ, say, is obtained as follows:

PIπ(n) = argmax
a

{
Raµa

∆
+
∑
n′∈S

p(n′|n, a)ωπ(n′)

}
. (4.1)

Accordingly, policy PIπ always takes the current decision optimally, given that

all future decisions are made according to π. Tijms (1994) noted that the first

few PI iterations usually yield the greatest improvement. Whereas policy PIπ is
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a heuristic policy based on a single, exact, PI step, in principle it is possible to

perform multiple PI steps to determine a heuristic policy with strong reward rate

performance.

The challenge to implementation of PI in large systems lies in the intractability

of the computation of the bias ωπ. Hence, approximations are required, and the

PI step in (4.1) can be replaced by

APIπ(n) = argmax
a

{
Raµa

∆
+
∑
n′∈S

p(n′|n, a)ω̃π(n′)

}
, (4.2)

where ω̃π approximates ωπ.

Recall V π(n, t) for the expected reward earned under the application of policy

π over t transitions of the uniformised process, beginning at time zero in system

state n. The bias functions, with respect to a reference state m, are defined as

ωπ(n) = lim
t→∞
{V π(n, t)− V π(m, t)}.

The bias function measures the asymptotic relative difference in total reward which

results from starting in state n as opposed to the reference state m. Computation

of the bias ωπ involves specification of the reference state m, which we take to be

one frequently visited under π. We introduce the following quantities:

• rπ (n) is the expected reward received starting from state n until the system

enters the reference state m for the first time, if policy π is used.

• tπ (n) is the expected time starting from state n until the system enters the

reference state m for the first time, if policy π is used.

The system evolving under policy π is ergodic and so rπ(n) and tπ(n) are guar-

anteed to be finite for all states. Using the fact that the system regenerates upon

entry to the reference state, the theory of regenerative processes (see Tijms (1994))

indicates that

ωπ(n) = rπ(n)− gπtπ(n), (4.3)
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where gπ is the gain of policy π.

From (4.3), the approximations ω̃π(n) can then be obtained by approximating

the quantities rπ(n), tπ(n), and gπ. A heuristic policy based on an API step can

then be defined from (4.2).

4.2 The Algorithm

The implementation of an API step depends crucially on the approximation scheme

used for the bias functions. As the bias function does not have an analytical form,

we use discrete-event simulation to estimate it. However, since simulation carries a

computational cost, our constrained computational resource needs to be effectively

managed through a carefully designed algorithm. The algorithm consists of five

sequential, complementary stages, taking an initial policy π as an input to produce

a new policy APIπ. The five steps are summarised below, with more details to

follow.

1. Pilot : Simulate the steady state of initial policy π to estimate its gain, and

the frequency each state is visited.

2. Selection: Based on the pilot run, select a set of states at which we estimate

the bias function via simulation.

3. Sampling : For each state n selected, simulate the system under π from that

state until some chosen reference state m is entered and estimate ωπ (n)

using (4.3).

4. Interpolation: Use the simulation results for selected states to interpolate

the bias functions for all other unselected states.

5. Improvement : Use (4.2) to produce a new policy APIπ.

In step 1, we run a pilot steady state Monte Carlo simulation to estimate the gain

gπ required to estimate ωπ from (4.3). We take the estimate of the gain gπ to be
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the sample average of a fixed number of replications. To facilitate steps 2 and 3,

we also collect data on how often each state is visited in steady state under π.

Step 2 consists of the selection of a small number of states, denoted Ssel, at

which the bias ωπ will be estimated by simulation in step 3. Interpolation of

ωπ at other states will follow in step 4. Although desirable, estimation of ωπ by

simulation at all states is not feasible given a fixed computational resource, hence

our design manages this resource. The set Ssel consists of the anchor set together

with a support set. The anchor set consists of the states most frequently visited

in the pilot and hence influential to policy performance. However, anchor states

are likely to be tightly grouped together, so alone they will not create an adequate

basis for the construction of an effective interpolation scheme. The support set

will complement the anchor set to ensure adequate coverage and wider exploration

of the state space. Insufficient exploration of the state space is a commonly cited

drawback in API methods (see Bertsekas (2012)) and our support set aims to

address this issue.

To select M support states, we adopt lattice points of the following form:

PM = {((zj modM)/M) = ((z1j modM)/M, ..., (zkj modM)/M) | 0 ≤ j ≤M−1},

where z is an integer vector modulo M . The components of z are chosen to

be relatively prime to each other and to M . In what follows, policies will be

constructed for numerous problems with k = 2, 3, and 5 making use of the choices

z = (2, 3) , (2, 3, 5), and (2, 3, 5, 7, 11), respectively. These lattice points are then

appropriately scaled and rounded from the unit hypercube to the state space to

obtain the support states. Such well-spread points were proposed in the field of

Quasi-Monte Carlo methods for numerical integration and shown to enable good

approximations of integrals (Niederreiter, 1978).

In step 3, we choose reference state m to be the one most visited in the pilot

and use Monte Carlo simulation to estimate rπ (n) and tπ (n) for each n ∈ Ssel.

In what follows, we use n for the size of Ssel and m for the number of simulated
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realisations of the system from each n ∈ Ssel until entry into reference state m.

In each realisation we record the reward received and time taken for the system

to go from each initial state n ∈ Ssel to the reference state m and use the sample

averages of the m realisations to estimate rπ (n) and tπ (n).

If we write Rπ (n) and T π (n) for the simulation-based estimators of rπ (n) and

tπ (n), respectively, and Gπ for the estimator of gπ available from the pilot, then

from (4.3) our estimator of ωπ (n) for n ∈ Ssel is Ωπ (n) := Rπ (n) − GπT π (n).

Since all estimators are unbiased, and Gπ is independent of Rπ(n) and T π(n), we

conclude by conditioning on Gπ, that

Var {Ωπ (n)} = Var {E(Rπ(n)−GπT π(n)|Gπ)}+ E {Var(Rπ(n)−GπT π(n)|Gπ)}

= (tπ(n))2Var{Gπ}+ Var{Rπ(n)− gπT π(n)}+ Var{Gπ}Var{T π(n)}

= Var{Rπ(n)− gπT π(n)}+ Var{Gπ}E{(T π(n))2}. (4.4)

Equation (4.4) decomposes the variance of the bias estimators into two terms. The

first term is controlled by the number of replicates m used in the simulation relating

to state n in step 3, and the second term is controlled by the size of the pilot study

in step 1. The computational challenge is dominated by the need to control the

first term in (4.4), as designing a pilot study large enough to control the second

term has not proved to be an issue. One feature that helps reduce the first term is

that Rπ(n) and T π(n) are positively associated. In addition, our choice of reference

state m means that the biases at anchor states (with smaller Rπ(n) and T π(n))

tend to be estimated with greater precision than those at support states, which is

a feature shared with other approaches to ADP (for example, see Powell (2011)).

The central trade-off for the quality of the method for given computational effort

is that between large n supporting the quality of the interpolation, and large m

supporting precision at the selected states.

In step 4, we use the bias estimates in Ssel to construct a bias function approxi-

mation for the entire state space. This poses a multivariate function approximation
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problem for which many methods are applicable, for example variations of least-

squares regression (see Powell (2011)). Such parametric approaches to the problem

require the design of an effective parametric model, which can be difficult in prac-

tice. Nonparametric methods, such as interpolation, are an effective alternative.

While there are many interpolation algorithms, we use the radial basis function

method (see Powell (1987)) for its simplicity.

Assume that some function f : S → R has known values at each xi ∈ Ssel. An

augmented radial basis function h : S → R which takes the form

h(x) =
n∑
i=1

αiφ(‖x− xi‖) +
d∑
j=1

βjpj(x), x ∈ Rk, (4.5)

will be designed as a smooth interpolator of f , taking the values f (xi) for xi ∈ Ssel.

From (4.5), h (x) is a weighted sum of n = |Ssel| radial basis functions φ (·), one

centred on each xi ∈ Ssel, together with d low order polynomials pj(·). Note

that ‖·‖ denotes the Euclidean norm. For φ (·), we take the thin plate spline

φ (r) = r2 log(r); for low order polynomials, we set d = k + 1 and use p1 (x) = 1,

pj (x) = xj−1, 2 ≤ j ≤ k + 1. These choices produce a surface which minimises a

measure of smoothness (Powell, 1999).

We write A for the n×n matrix with elements Aij = φ (‖xi − xj‖), 1 ≤ i, j ≤ n

and P for the n× (k + 1) matrix with elements Pij = pj (xi), 1 ≤ i ≤ n, 1 ≤ j ≤

k + 1. We write f for the n-vector with fi = f (xi), 1 ≤ i ≤ n. Let α and

β be corresponding vectors of coefficients. The matrix form of the interpolation

problem is  A P

P T 0


α

β

 =

f

0

 .

The equations Aα+ Pβ = f ensure that h (xi) = f (xi), xi ∈ Ssel, while the k+ 1

equations P Tα = 0 take up the extra degrees of freedom in the problem, which

ensures the radial basis function h(·) is conditionally positive definite and the

interpolation problem solvable. Consequently, the interpolation matrix delivers a

96



unique solution in the coefficients and hence in h. If we take f (xi), xi ∈ Ssel, in

the above to be the estimates of bias from step 3, we can then use the resulting

h (x), x ∈ S, as bias estimates for all states.

In step 5, we design a new policy APIπ by using the function h from step 4 in

place of ω̃π in (4.2) to obtain

APIπ(n) = argmax
a

{
Raµa

∆
+
∑
n′∈S

p(n′|n, a)h(n′)

}
.

In principle, the above procedure can be repeated multiple times. Although obtain-

ing progressively better policies—a feature of exact PI—can no longer be guaran-

teed, we have generally found that, in practice, improvement in policy performance

is indeed achieved. To highlight key design choices, we denote the above procedure

by API(π, n,m, r, t). The parametrising arguments offer great flexibility and are

as follows: the initial policy π, n the number of selected states to run simulation to

estimate the bias function, m the number of replicated simulations at each selected

state, r the fraction of selected states that are included in the anchor set (so 1− r

is the fraction in the support set), and t the number of iterations of the algorithm.

In what follows, we write APIπ for the best-performing policy from t iterations

of the algorithm, including the initial policy, which ensures that we only consider

policies which improve as t increases. The trade-off between different choices of the

parameters will be explored in Section 4.4, where we will give a recommendation

for their selection.

We now present an example to illustrate the algorithm.

Example 4.1: Consider a k = 2 class system with the parameters: λ1 = 2.5, λ2 =

3, µ1 = 3.5, µ2 = 4, θ1 = 0.75, θ2 = 2.5, R1 = 2.5, R2 = 1.7. We use truncation

levels N1 = N2 = 20 throughout. Please note that for this example the Rµ rule

gives priority to class 1, while the Rµθ rule gives priority to class 2. We use

algorithms of the form API
(
Rµθ, 45,m, 32

45
, 1
)

to construct policies. Figures 4.1 to

4.3 illustrate the selection and interpolation stages of the algorithm for the case

m = 105. Figure 4.1 shows Ssel within the selection stage, with anchor states shown
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as diamonds and support states as circles. Figure 4.2 shows the interpolated bias

estimates over the entire state space. Figure 4.3 adds to this the surface of the

exact biases ωπ and plots the absolute difference between the interpolated and

exact biases at each state. Analysing Figure 4.3, although this cannot be observed

clearly, the interpolated surface closely resembles the surface of exact biases ωπ,

capturing its shape and curvature well, especially so around the anchor set. This is

further evidenced by the fact that the absolute differences are small. Although not

shown here, the interpolated surface is also an accurate and smooth reconstruction

of the surface which would have been obtained had simulation been possible at

every state. Figure 4.4 shows the actions taken in each state by the optimal policy

for this example, along with the actions resulting from use of the above algorithm

with m set at 103, 104, and 105. We observe that as m increases, the corresponding

policies approach more closely the switching curve structure of the optimal policy.

This observation is also reflected in the percentage suboptimalities of each policy,

which are 0.33%, 0.24%, and 0.01% for m = 103, 104, and 105 respectively. This

performance can be compared to percentage suboptimalities of 1.56% and 0.34%

for the Rµ and Rµθ rules respectively. This example indicates policy improvement

delivered through the API algorithm, with greater improvement achieved as m

increases.

4.3 An Upper Bound on Achievable Rewards

In order to evaluate heuristic policies when the optimal solution in (3.7) is not

available, we derive an upper bound for the long-run reward rate. For a given

feasible policy, if xj represents the implied fraction of time the server spends serving

class j customers, then
k∑
i=1

Riµixi (4.6)

is the long-run reward rate for the feasible policy. To compute an upper bound

for the optimal long-run reward rate, we formulate a linear program with the
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Figure 4.1: Illustration of the selection stage of the API algorithm in Example 4.1.

variables xj ≥ 0, 1 ≤ j ≤ k, and the objective function to maximise (4.6), subject

to the constraint
∑k

j=1 xj ≤ 1. The key to get a tight upper bound is to impose

additional constraints on the xj so that the resulting optimal policies come as close

as possible to those implied by a feasible policy.

First, denote by A{j} the long-run fraction of time the server is busy if he

serves only class j customers and ignores all other classes, 1 ≤ j ≤ k. Taking the

number of class j customers as the state, we have a birth-and-death process, so it

is straightforward to compute

A{j} = 1−

[
∞∑
n=0

(λj)
n

{
n∏

m=1

(µj +mθj)

}−1 ]−1

, 1 ≤ j ≤ k.

We can add xj ≤ A{j} as a constraint in the aforementioned linear program,

1 ≤ j ≤ k, or a total of k constraints.
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Figure 4.2: Illustration of the interpolation stage of the API algorithm in Example
4.1.

To extend this idea, for T ⊆ {1, . . . , k}, we can add a constraint
∑

j∈T xi ≤ AT ,

where AT denotes the maximal long-run fraction of time that the server serves

customer classes in T by ignoring all other classes. To compute AT , consider

the same pure-reward MDP model in Section 3.1 with customer class set T , and

substitute Rj = µ−1
j , j ∈ T , so that the long-run reward rate becomes equivalent

to the long-run fraction of time that the server is busy. Using DP value iteration to

compute the optimal solution when |T | = 2 or |T | = 3 is computationally viable,

resulting in
(
k
2

)
+
(
k
3

)
additional constraints.

Computing AT when |T | ≥ 4 is computationally infeasible, but we can still

impose constraints derived from relaxed systems. To do so, we create a single

fictitious class by aggregation and relaxation of the customer classes in T . Denote

the arrival, service, and abandonment rates of this fictitious class by λ =
∑

j∈T λj,

µ = minj∈T{µj}, and θ = minj∈T{θj}, respectively. Since the server can only be
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Figure 4.3: Interpolated and exact biases and their absolute difference (crosses) in
Example 4.1.

busier with this fictitious class, the long-run fraction of time that the server is busy

in this relaxed system is a legitimate upper bound for
∑

j∈T xi.

Taking this idea further, we could improve this upper bound by formulating

a number of two-class MDPs. Divide customer classes in T into two groups and

aggregate the classes in each group into a fictitious class, as before. We then use

DP value iteration to compute the maximal fraction of time that the server is

busy dealing with these two fictitious classes. We do this for every way in which

the customer classes in T can be divided into two groups. For example, when

|T | = 4 there are
(|T |

1

)
combinations which take one class in the first group with

the remaining classes in the other group. There are
(|T |

2

)
combinations which take

two of the classes in the first group with the remaining classes in the other group.

Hence we solve
(|T |

1

)
+
(|T |

2

)
two-class MDPs. When |T | ≥ 4, we write BT for
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various policies in Example 4.1.
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the tightest upper bound for
∑

j∈T xj derived with this method, and add it as

one constraint. Although it is possible to divide T into three or more groups, the

marginal benefit is outweighed by the increased computational burden.

To formulate a linear program to compute an upper bound for the optimal

long-run reward rate, define Sk′ ≡ {T ⊆ {1, . . . , k} : |T | = k′}, which is the set of

all subsets of {1, ..., k} whose cardinality is k′. This linear program is thus given

by

max
k∑
j=1

Rjµjxj

subject to
k∑
j=1

xj ≤ 1, xj ≥ 0, 1 ≤ j ≤ k;

∑
j∈T

xi ≤ AT for all T ∈ Sk′ , k′ = 1, 2, 3;

∑
j∈T

xi ≤ BT for all T ∈ Sk′ , 4 ≤ k′ ≤ k.

We would expect the upper bound to come close to the optimal long-run reward

rate in smaller systems k ≤ 3, mainly because of the optimised upper bounds AT .

The upper bounds BT in subsystems of size k′ > 3 will worsen as k′ increases,

due to a greater relaxation when creating more fictitious customer classes. Conse-

quently, the quality of the upper bound tends to degrade as the size of the system

k increases.

4.4 Numerical Study

In this section, we conduct extensive numerical experiments to assess the impact

and design of our API method, as well as the performance of a range of heuristics

which includes our suite of priority policies from Chapter 3. Section 4.4.1 uses

a numerical study based on cases with two customer classes to explore design

choices for our API heuristics. We assess, inter alia, the relative performance of the

candidate initialising priority rules Rµ and Rµθ as well as testing different choices
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of parameters for our API method. This test yields a recommended API policy

which we denote rAPI. Using numerical studies based on cases with three and

five customer classes, Section 4.4.2 compares the performance of rAPI with that

of other heuristics. Section 4.4.3 contains a brief discussion of the computational

burden of developing rAPI and the upper bound discussed in Section 4.3.

4.4.1 Selecting Parameters for the API Algorithm

To explore the trade-off between different choices of parameters for our API al-

gorithm, we test the algorithm on systems with k = 2 customer classes. Prob-

lems were randomly generated to reflect a wide range of conditions with regard

to (1) the length of customer lifetimes in relation to service times (reflected in

the categorisation A,B,C in (4.7c)–(4.7e) below); and (2) the traffic intensity or

workload in the corresponding system without abandonments. There are three

categories of traffic—namely light, moderate, and heavy—as determined by the

value of ρ =
∑k

j=1 λj/µj; see (4.7f)–(4.7h) below. For all nine combinations of

A,B,C with the traffic categorisation light, moderate, heavy, 500 problems were

generated at random. Parameters were sampled as follows:

µj ∼ U [0.2, 5] (all cases); (4.7a)

λj ∼ U [0.2, 5] (all cases); (4.7b)

θ−1
j µj|µj ∼ U [0.5, 2] (short lifetimes, A); (4.7c)

θ−1
j µj|µj ∼ U [5, 10] (moderate lifetimes, B); (4.7d)

θ−1
j µj|µj ∼ U [20, 200] (long lifetimes, C); (4.7e)

ρ ∈ [0.6, 0.8] (light traffic); (4.7f)

ρ ∈ [0.9, 1.1] (moderate traffic); (4.7g)

ρ ∈ [1.2, 1.4] (heavy traffic); (4.7h)

In the parameter generation, µj and λj were sampled according to (4.7a) and

(4.7b) by means of a rejection algorithm until a desired ρ condition (4.7f)–(4.7h)
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was met. An additional rejection step ensured that the Rµθ and Rµ rules of

each parameter set were distinct; otherwise, all parameters were resampled. In all

cases, rewards were sampled as follows: R2 ∼ U [1, 3] and R1R
−1
2 |R2 ∼ U [1.25, 2].

To compute the optimal policy, we use DP value iteration by truncating the state

space at Nj = 40 for each class j with case A, and Nj = 60 with cases B and C,

as discussed in Section 3.1.

Tables 4.1 to 4.3 report the numerical results with k = 2 customer classes.

Firstly, Table 4.1 explores the trade-off between parameters n and m within the

API algorithm, representing the number of selected states for simulation and

the number of simulation replications at each selected state respectively. We

considered API variations with the Rµθ rule as the initial policy, t = 1 iter-

ation, and r = 32
45

. We considered all combinations of n ∈ {15, 45, 75} with

m ∈ {m0,m1,m2,m3} where m0 = 102,m1 = 103,m2 = 104, and m3 = 105.

It is important to point out that the results here state the percentage suboptimal-

ity of the policy derived from the resulting API step and do not include the initial

policy. This allows us to observe the underlying impact of different design choices

within the API step, free from any additional effects of the initial policy. The

results indicate that in designing the algorithm to effectively manage a fixed com-

putational resource, increasing m brings larger performance improvements than

increasing n. However, n must be sufficiently large (for example n = 45), as sug-

gested by case {B, Heavy}, whilst increasing this parameter beyond this level does

not yield much improvement.

Table 4.2 explores the trade-off between parameters t and m within the API

algorithm, where t represents the number of iterations of the algorithm. We con-

sidered API variations with the Rµθ rule as the initial policy, n = 45 selected

states, and r = 32
45

. These variations are designed to provide fair comparisons

between choices of t and m which reflect multiple, less detailed iterations and a

single, more detailed iteration, both having the same level of computational effort.

We denote the variations by (t,m) where t ∈ {1, 2, 3} and m ∈ {m1,m2,m3} with

105



W
or
k
lo
ad

L
ig
h
t

M
o
d
er
at
e

H
ea
v
y

C
as
e

n
m

0
m

1
m

2
m

3
m

0
m

1
m

2
m

3
m

0
m

1
m

2
m

3

A
1
5

0
.2
9

0
.1
3

0
.0
0

0.
00

0.
32

0.
15

0.
01

0.
00

0.
6
4

0.
1
8

0.
0
4

0
.0
1

90
th

0
.1
1

0
.0
4

0
.0
0

0.
00

0.
14

0.
04

0.
00

0.
00

0.
3
9

0.
0
6

0.
0
1

0
.0
0

75
th

0
.0
2

0
.0
0

0
.0
0

0.
00

0.
04

0.
00

0.
00

0.
00

0.
1
3

0.
0
0

0.
0
0

0
.0
0

M
ed

ia
n

4
5

0
.2
8

0
.1
3

0
.0
0

0.
00

0.
32

0.
15

0.
01

0.
00

0.
6
2

0.
1
8

0.
0
3

0
.0
0

90
th

0
.1
1

0
.0
4

0
.0
0

0.
00

0.
13

0.
04

0.
00

0.
00

0.
3
9

0.
0
6

0.
0
1

0
.0
0

75
th

0
.0
3

0
.0
0

0
.0
0

0.
00

0.
04

0.
00

0.
00

0.
00

0.
1
4

0.
0
1

0.
0
0

0
.0
0

M
ed

ia
n

7
5

0
.2
8

0
.1
3

0
.0
0

0.
00

0.
32

0.
15

0.
01

0.
00

0.
6
2

0.
1
8

0.
0
3

0
.0
0

90
th

0
.1
1

0
.0
4

0
.0
0

0.
00

0.
13

0.
04

0.
00

0.
00

0.
3
9

0.
0
6

0.
0
1

0
.0
0

75
th

0
.0
3

0
.0
0

0
.0
0

0.
00

0.
04

0.
00

0.
00

0.
00

0.
1
4

0.
0
1

0.
0
0

0
.0
0

M
ed

ia
n

B
1
5

0
.7
2

0
.4
3

0
.1
3

0.
09

0.
86

0.
60

0.
36

0.
25

3.
4
8

2.
3
9

2.
6
0

2
.5
2

90
th

0
.3
6

0
.2
4

0
.0
7

0.
04

0.
59

0.
39

0.
22

0.
14

1.
6
4

1.
4
4

1.
4
0

1
.3
6

75
th

0
.2
0

0
.1
1

0
.0
3

0.
02

0.
36

0.
21

0.
10

0.
07

0.
6
8

0.
5
8

0.
5
1

0
.4
9

M
ed

ia
n

4
5

0
.7
5

0
.4
0

0
.1
1

0.
02

0.
99

0.
55

0.
24

0.
05

2.
5
4

1.
4
2

0.
6
7

0
.3
2

90
th

0
.3
7

0
.2
3

0
.0
6

0.
00

0.
65

0.
36

0.
15

0.
03

1.
6
3

0.
8
5

0.
3
8

0
.1
8

75
th

0
.2
0

0
.1
1

0
.0
3

0.
00

0.
40

0.
23

0.
07

0.
00

0.
8
1

0.
4
7

0.
2
0

0
.0
6

M
ed

ia
n

7
5

0
.7
5

0
.4
0

0
.1
1

0.
02

1.
01

0.
57

0.
24

0.
04

2.
4
1

1.
3
5

0.
6
4

0
.2
0

90
th

0
.3
7

0
.2
3

0
.0
6

0.
00

0.
65

0.
36

0.
15

0.
02

1.
4
1

0.
8
7

0.
4
0

0
.1
0

75
th

0
.2
0

0
.1
1

0
.0
3

0.
00

0.
40

0.
23

0.
07

0.
00

0.
8
0

0.
5
3

0.
2
0

0
.0
2

M
ed

ia
n

C
1
5

0
.6
9

0
.4
3

0
.2
4

0.
13

0.
93

0.
77

0.
68

0.
62

2.
3
7

1.
2
4

0.
4
1

0
.4
1

90
th

0
.4
2

0
.2
4

0
.1
5

0.
09

0.
54

0.
44

0.
42

0.
36

0.
9
0

0.
1
7

0.
0
1

0
.0
1

75
th

0
.1
5

0
.0
9

0
.0
6

0.
05

0.
23

0.
20

0.
17

0.
16

0.
0
2

0.
0
0

0.
0
0

0
.0
0

M
ed

ia
n

4
5

0
.8
8

0
.5
8

0
.2
4

0.
09

1.
42

0.
97

0.
56

0.
36

3.
0
9

1.
5
3

0.
7
1

0
.3
0

90
th

0
.4
7

0
.3
7

0
.1
5

0.
06

0.
74

0.
63

0.
38

0.
20

2.
0
2

0.
7
9

0.
1
4

0
.0
6

75
th

0
.1
8

0
.1
7

0
.0
8

0.
03

0.
35

0.
29

0.
21

0.
12

0.
9
0

0.
0
8

0.
0
0

0
.0
0

M
ed

ia
n

7
5

0
.8
8

0
.5
9

0
.2
5

0.
10

1.
37

1.
03

0.
62

0.
29

3.
3
8

2.
0
2

0.
6
0

0
.3
0

90
th

0
.4
8

0
.3
7

0
.1
6

0.
07

0.
79

0.
66

0.
42

0.
20

1.
8
9

0.
6
8

0.
1
3

0
.0
6

75
th

0
.1
9

0
.1
6

0
.0
9

0.
04

0.
38

0.
33

0.
23

0.
13

0.
8
5

0.
1
0

0.
0
2

0
.0
0

M
ed

ia
n

T
ab

le
4.

1:
P

er
ce

n
ta

ge
su

b
op

ti
m

al
it

ie
s

in
k

=
2

cl
as

s
sy

st
em

s
of

va
ri

ou
s

tr
affi

c
an

d
ab

an
d
on

m
en

t
le

ve
l
co

m
b
in

at
io

n
s,

ex
p
lo

ri
n
g

th
e

tr
ad

e-
off

b
et

w
ee

n
p
ar

am
et

er
s
n

an
d
m

in
th

e
A

P
I

al
go

ri
th

m
.

N
ot

e,
th

e
in

it
ia

l
p

ol
ic

y
is

n
ot

in
cl

u
d
ed

in
th

e
re

p
or

te
d

A
P

I
re

su
lt

s
sh

ow
n

h
er

e.
M

ed
ia

n
,

75
th

,
an

d
90

th
p

er
ce

n
ti

le
s

ar
e

sh
ow

n
.

106



m1 = 103,m2 = 104, and m3 = 105. The results here report the performance of the

best performing policy from t iterations of the algorithm and so is consistent with

our definition of the API method. From the results there appears to be a degree of

indifference in performance between multiple, less detailed iterations and a single,

more detailed iteration. In designing the algorithm there is a direct choice between

larger t with smaller m and larger m with t = 1, without any performance lost in

this choice. Given that a single iteration is simpler to implement, this could be

the basis upon which to make this choice.

Table 4.3 reports the performance of a range of heuristic policies. In comparing

the Rµθ and Rµ rules, please recall that we use the descriptors ‘light’, ‘moderate’,

and ‘heavy’ as a shorthand for ranges of the traffic intensity ρ. The actual volume

of traffic in the system will also be strongly influenced by the abandonment rate

θ, with case C (small θ) yielding higher volumes than case A (large θ). Hence,

while the Rµθ rule performs very well in the case {C, light}, as is consistent

with Theorem 1 in Chapter 3, it performs poorly in the heaviest traffic case of

all, namely {C, heavy}. Its performance under A is less variable than under C,

as larger abandonment rates act as a moderator on traffic levels, though it still

performs best under A when ρ is small. The Rµθ rule clearly outperforms the Rµ

rule when ρ is small and θ not too large, while Rµ is the better policy when ρ is

large, increasingly so as θ declines in value and the traffic levels increase. The Rµ

rule performs very well in the case {C, heavy} which is consistent with the work

of Atar et al. (2010), Ayesta et al. (2011), Verloop (2014), and Larrañaga et al.

(2014). It is worth noting that at least one of these two priority rules delivers a

median performance less than 1% suboptimal across all cases, so they complement

each other well.

Table 4.3 also reports the performance of the policy PI-Rµθ, which is derived

from exact application of a single PI step to the Rµθ rule. The fact that the PI-

Rµθ is nearly optimal shows promise of the API method, if the bias function can be

approximated satisfactorily. The policy GADL—due to Glazebrook et al. (2004),
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with GADL referring to the paper’s four coauthors—requires much computational

effort but is typically not as good as the better between the Rµθ and Rµ rules.

The next seven columns in Table 4.3 further explore the trade-off between dif-

ferent choices of parameters of the API(Rµθ, n,m, r, t) proposed in Section 4.2.

We use n = 45 selected states throughout, with r = 32
45

. As before, we denote

the variations of API by (t,m) where t ∈ {1, 2, 3} and m ∈ {m1,m2,m3} with

m1 = 103,m2 = 104, and m3 = 105. As one would expect, increasing m and t

improves performance whilst increasing computational effort. For a given level of

computational effort, the strong performance of PI-Rµθ suggests that the policy

API(π, n,m, r, t) may perform better with a single, more detailed iteration. As

discussed, our results in Table 4.2 reveal a degree of indifference in performance

between multiple, less detailed iterations and a single, more detailed iteration.

Further, and unsurprisingly, a strongly performing initial policy π improves per-

formance. This is shown in the improvement made by the inclusion of the initial

policy when compared to the policy derived from the API step in the relevant parts

of Table 4.1. Based on these observations, to choose parameters in API(π, n,m, r, t)

for general k class systems, we recommend t = 1, a large value of m (105, say) and

allow n, the number of selected states, to scale roughly linearly with k, so that

20k ≤ n ≤ 25k. Although we have not explored the impact of the parameter r,

we use a proportion roughly equal to 0.7. To choose the initial policy π, we first

run the pairwise-swapping mechanism in Section 3.6 on the Rµθ rule, and on the

Rµ rule, separately, and it turns out that in all numerical tests in this section, the

final orderings are the same, which we label PaS. The initial policy π in the API

method is thus set to be the best performing among Rµθ, Rµ, and PaS. Note that

in our systems with k = 2 customer classes, PaS is simply the better performing

policy between Rµθ and Rµ. We shall denote our recommended API policy by

rAPI. As seen in Table 4.3, the rAPI is nearly optimal in all cases.
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4.4.2 Comparing the rAPI and Other Heuristics

This section compares the rAPI and other heuristics in systems with k = 3 and 5

customer classes. Problem parameters were again generated according to (4.7a)–

(4.7h), along with suitable rejection algorithms. We now use Rj ∼ U [1, 4] for

sampled rewards. For each lifetime/traffic combination, 100 problems were gener-

ated at random.

Table 4.4 reports the performance of various service policies against the optimal

solution for systems with k = 3 customer classes. The rAPI was constructed with

t = 1, m = 105, n = 75, and r = 52
75

. As seen in the table, the rAPI delivers near-

optimal performance in all cases, which reaffirms the strength of policies based

on a single, well-estimated (but nonetheless approximate) PI step applied to a

well-chosen priority policy. Table 4.4 also shows that a naive heuristic that always

serves the longest queue (labeled SLQ) can perform poorly. This indicates the merit

in searching for strongly performing heuristic policies. In considering our suite of

priority policies from Chapter 3, the performance of the Rµθ and Rµ rules is much

the same as observed in the k = 2 customer class study results in Table 4.3. In

every case other than {C, Heavy}, PaS improves on both Rµθ and Rµ and is

near-optimal. In the {C, Heavy} case where it is not, the Rµ rule is strong and

rAPI is near-optimal. In all cases rAPI delivers a marginal improvement on PaS.

The quality of the upper bound for k = 3 customer classes is similar to that for

k = 2 customer classes.

Table 4.5 reports the performance of various service policies against an upper

bound on the optimal solution, as discussed in Section 4.3, for systems with k = 5

customer classes. Since value iteration is not computationally feasible, the gain of

each heuristic is estimated as the mean of 1000 Monte Carlo realisations, which is

then compared with the upper bound presented in Section 4.3. The policy rAPI

was constructed with t = 1, m = 105, n = 100, and r = 69
100

. As seen in Table 4.5,

the relative quality among Rµθ, Rµ, PaS, and rAPI, is consistent with that in

Table 4.4. The PaS typically improves Rµθ and Rµ, and then the rAPI further
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Case Workload Rµθ Rµ PaS SLQ rAPI UB
A Light 90th 0.76 0.46 0.01 5.54 0.00 1.03

75th 0.23 0.23 0.00 3.29 0.00 0.70
Median 0.03 0.07 0.00 1.20 0.00 0.34

Moderate 90th 1.30 0.75 0.01 6.64 0.00 1.25
75th 0.62 0.39 0.00 3.25 0.00 0.94

Median 0.11 0.03 0.00 1.50 0.00 0.51
Heavy 90th 1.32 0.86 0.02 8.52 0.00 1.54

75th 0.62 0.32 0.00 5.28 0.00 0.99
Median 0.11 0.02 0.00 2.41 0.00 0.61

B Light 90th 0.26 0.69 0.04 3.39 0.01 1.15
75th 0.07 0.24 0.01 2.32 0.00 0.76

Median 0.01 0.09 0.00 1.43 0.00 0.45
Moderate 90th 0.85 0.89 0.08 6.03 0.02 1.58

75th 0.38 0.30 0.01 4.27 0.00 0.92
Median 0.10 0.05 0.00 2.58 0.00 0.55

Heavy 90th 1.52 0.86 0.16 10.10 0.03 1.65
75th 0.84 0.32 0.04 7.15 0.01 1.03

Median 0.13 0.02 0.00 3.70 0.00 0.58
C Light 90th 0.01 0.97 0.00 1.44 0.00 0.63

75th 0.00 0.50 0.00 0.90 0.00 0.29
Median 0.00 0.21 0.00 0.50 0.00 0.14

Moderate 90th 0.67 1.52 0.29 4.76 0.10 1.51
75th 0.24 0.70 0.07 3.28 0.02 0.93

Median 0.02 0.22 0.00 1.88 0.00 0.56
Heavy 90th 6.62 0.45 3.02 13.48 0.09 0.80

75th 2.78 0.13 1.03 8.83 0.01 0.38
Median 0.76 0.00 0.09 5.23 0.00 0.17

Table 4.4: Percentage suboptimalities in k = 3 class systems of various traffic and
abandonment level combinations. In the last column, we report the percentage
above the optimal policy of the upper bound. Median, 75th, and 90th percentiles
are shown.
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Case Workload Rµθ Rµ PaS SLQ rAPI
A Light 90th 3.86 4.05 3.76 7.95 3.72

75th 3.40 3.43 3.24 6.28 3.23
Median 2.88 2.89 2.73 5.46 2.73

Moderate 90th 5.47 4.91 4.91 11.63 4.89
75th 4.08 3.92 3.86 9.86 3.86

Median 3.32 3.19 3.13 7.38 3.13
Heavy 90th 6.00 5.86 5.52 13.39 5.52

75th 5.16 4.97 4.80 10.60 4.80
Median 4.38 4.05 3.94 8.79 3.94

B Light 90th 3.76 3.97 3.74 7.85 3.74
75th 3.25 3.51 3.25 6.52 3.25

Median 2.74 2.88 2.70 5.36 2.70
Moderate 90th 5.76 5.96 5.73 13.30 5.73

75th 4.77 5.15 4.71 11.34 4.67
Median 3.40 3.41 3.37 9.30 3.37

Heavy 90th 6.45 6.29 6.08 17.56 6.07
75th 4.86 4.94 4.75 14.64 4.74

Median 3.87 3.82 3.78 11.66 3.64
C Light 90th 1.00 1.55 1.00 2.85 1.00

75th 0.80 1.23 0.80 2.32 0.80
Median 0.59 0.77 0.59 1.81 0.59

Moderate 90th 3.85 4.09 3.85 9.21 3.65
75th 2.53 3.29 2.53 7.23 2.51

Median 2.03 2.25 2.03 5.82 2.02
Heavy 90th 4.73 1.77 4.40 19.11 1.51

75th 2.92 1.01 2.24 15.09 0.88
Median 1.20 0.48 1.04 11.03 0.41

Table 4.5: Percentage below the upper bound in k = 5 class systems of various
traffic and abandonment level combinations. Median, 75th, and 90th percentiles
are shown.

improves the PaS, although the improvement, on average, is rather marginal. The

rAPI is the best-performing policy in all cases, and its median performance is

within 4% of the upper bound derived in Section 4.3. Although it is difficult to

judge how the rAPI compares with the optimal policy, the fact that the rAPI is

much closer to the optimal value than it is to the upper bound in Tables 4.3 and

4.4 suggests that the figures in Table 4.5 are a conservative statement of where the

policies stand in relation to the optimal value.

Whereas our numerical experiments in Tables 4.1 to 4.5 show that the suite of

priority policies (Rµ, Rµθ, and PaS) generally perform very well and, in several
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cases the API method offers only marginal improvement on average, it is not

always the case. To conclude our numerical study, we offer one example where the

improvement of the rAPI method is substantial.

Example 4.2: Consider a k = 3 class example system in which the class

parameters (λj, µj, θj, Rj) are given for classes 1, 2, and 3 by (λ, 3, 0.1, 5), (5λ/3,

5, 1, 2), and (4λ/3, 4, 5, 1), respectively. With these parameters we have λ = ρ,

and the Rµθ rule gives class ordering 321, while the Rµ rule gives 123. As seen in

Figure 4.5, the Rµθ rule performs well for small ρ, while the Rµ rule performs well

for large ρ, which coincides with intuition. For intermediate ρ values, intuition

suggests that there should be more service of class 2 since class 1 customers are

likely to still be available for service at the completion of a class 2 service and also

the instantaneous reward rate of class 2 is larger than that of class 3. Figure 4.5

shows a substantial gap in the range ρ = 1.4 to 2.4 between the suite of priority

policies (Rµ, Rµθ, and PaS) and the rAPI method (with t = 1, m = 105, n = 75).

In particular, when ρ = 1.7, the Rµ rule is 4.26% suboptimal, the Rµθ rule is 9.96%

suboptimal, PaS is 5.10% suboptimal, while the rAPI is 0.04% suboptimal. This

may be suggestive of greater service of class 2 customers by rAPI. In the random

adversary defensive surveillance scenario, even small performance improvements

can have a profound impact on safety, hence a large improvement in this example

represents an even greater impact.

4.4.3 Computational Time for rAPI and the Upper Bound

Table 4.6 summarises the time needed to compute the rAPI heuristic. Please note

that the algorithm was coded in the C programming language and carried out on a

High Performance Computing cluster, with a typical node specification of 2.26Ghz

Intel Xeon E5520 processor. Unsurprisingly, the computational burden grows with

the number of customer classes k. Recall that the number of selected states n used

in the approximate PI step grows roughly linearly in k. Further, as k increases,

the balance of computational effort moves toward the sampling stage of the API
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Figure 4.5: Percentage suboptimality for six heuristics in Example 4.2.
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algorithm and, within the sampling stage, toward the estimation of bias at the

support states. These trends particularly reflect the nature of the growth in the

mean times tπ (n) for a single simulation run during the estimation of the bias

ωπ (n).

The mean computation times for the upper bound in each problem are in the

order of 10 seconds, 400 seconds, and 3000 seconds for systems with 2, 3, and 5

customer classes, respectively. This growth in the computational burden reflects

the growth in the number of MDP subproblems that must be solved through DP

methods to generate the constraints for the linear program in Section 4.3, when

the number of customer classes increases.

Conclusion

In this chapter have further studied the stochastic scheduling problem with cus-

tomer abandonments in Chapter 3, of which the random adversary surveillance

scenario is a special case. The main contribution of the chapter is to develop an

approximate policy iteration (API) method for the problem which aims to improve

the suite of priority policies in Chapter 3. Our numerical results indicate that, in

most cases, the best priority policy from Chapter 3 is nearly optimal in systems

with 2 or 3 customer classes and the security team can adopt an effective service

policy with a simple structure. In the cases where it is not, the API method in-

variably tightens up the gap substantially and provides an improved policy, albeit

of more complex structure and requiring lots of computation time. Consequently,

the suggestion for the security team derived from this chapter is to develop a sin-

gle, deterministic service policy by following the API method, using the priority

policies in Chapter 3 as a starting point. The resulting policy will have a complex

structure which can be heavily state dependent, meaning the security team must

decide which suspect to screen based on exactly how many suspects are present in

each target area. Although this requires lots of computational effort by the secu-

rity team to develop and analyse such a policy, the potential offered by the API
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Proportion
k Case Workload Time Pilot Anchor Support

2

A Light 25 0.07 0.54 0.39
Moderate 26 0.07 0.54 0.39

Heavy 29 0.06 0.54 0.39
B Light 39 0.05 0.43 0.52

Moderate 49 0.04 0.44 0.52
Heavy 73 0.03 0.47 0.50

C Light 69 0.03 0.36 0.61
Moderate 233 0.01 0.45 0.54

Heavy 291 0.01 0.50 0.48

3

A Light 76 0.04 0.30 0.67
Moderate 81 0.03 0.31 0.66

Heavy 87 0.03 0.31 0.65
B Light 127 0.02 0.24 0.74

Moderate 157 0.02 0.27 0.71
Heavy 209 0.02 0.31 0.67

C Light 249 0.01 0.19 0.80
Moderate 806 0.01 0.32 0.68

Heavy 1822 0.00 0.45 0.54

5

A Light 198 0.02 0.17 0.81
Moderate 210 0.02 0.18 0.80

Heavy 224 0.02 0.19 0.79
B Light 338 0.01 0.14 0.84

Moderate 422 0.01 0.18 0.81
Heavy 559 0.01 0.24 0.75

C Light 810 0.01 0.11 0.88
Moderate 2371 0.00 0.29 0.71

Heavy 8786 0.00 0.49 0.51

Table 4.6: Mean computation time (secs) needed to generate the rAPI policy in
each problem of various k class systems. Also shown are the mean proportions of
overall computation time spent on the pilot study, sampling of the anchor set, and
sampling of the support set.
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method to deliver even small improvements in minimising the expected damage

inflicted by the adversary can be of high practical importance in the surveillance

setting. Should no improvements be delivered, it is proposed that the security

team uses the priority policies in Chapter 3.

In principle, it would be possible to extend the main elements of the API

method to more general surveillance problems. The main challenges would arise

in the underlying MDP structure of the problem for performing the policy im-

provement steps and any associated increase in computation time. However, the

framework of the API method, namely the simulation and interpolation method-

ology, presented in this chapter is general and could be adpated to more general

problems to provide effective service policies for the security team.
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Chapter 5

Defence against Strategic

Adversaries Who Choose Where

To Attack

In this chapter we consider the defensive surveillance scenario identified in Chapter

1 in which the adversary acts strategically and can choose which queue to attack.

This surveillance scenario is an extension of the random adversary scenario dis-

cussed in Chapters 3 and 4. Consequently, in this chapter we consider the same

mathematical model with an identical stochastic structure to that of the model

in the random adversary scenario. Whereas in Chapters 3 and 4, the adversary

joined the system according to a fixed probability vector p which was known to

the server, we now consider the case in which p is unknown to the server. In this

case, the server wishes to find a robust service policy which achieves a low expected

damage regardless of the adversary’s choice of p.

The structure of this chapter is as follows. In Section 5.1 we formulate a game-

theoretic model for the surveillance problem. In Section 5.2 we discuss how to

obtain the optimal solution to the model. We consider the optimal solution from

both the perspective of the server and the perspective of the adversary. In Section

5.3 we develop a heuristic approach for systems where the optimal solution cannot
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be computed. Our heuristic approach is based on a matrix game formulation of

the model, which utilises insights gained from the method used to compute the

adversary’s optimal policy and the random adversary scenario studied in Chapters

3 and 4. We conclude the chapter with a numerical study in Section 5.4.

5.1 A Game-Theoretic Model

We consider a setting in which a single server must preemptively serve impatient

customers spread across k queues. As in Chapter 3, we may also refer to each

queue as a customer class. Different classes of customers arrive according to in-

dependent Poisson processes, with the arrival rate being λj for class j customers,

1 ≤ j ≤ k. The service time for a class j customer is given by the random vari-

able which follows an exponential distribution with rate µj. A class j customer,

however, will only remain available for service for a random time that follows an

exponential distribution with rate θj, after which the customer will abandon the

system, whether the customer is still waiting in the queue or is already in service.

An adversary is a potential customer possessing the ability to join any of the k

queues. If the adversary joins queue j then he behaves like every other customer

in the queue, carrying an exponential service requirement with rate µj and having

an exponential lifetime with rate θj. The goal of the adversary is to abandon the

queue he joins before being served to completion; if this occurs a fixed amount of

damage dj is inflicted.

The adversary decides which of the k queues to join according to a fixed prob-

ability vector p = (p1, ..., pk) such that queue j is joined with probability pj and∑
j pj = 1. Recall in Chapters 3 and 4, p was known to the server and the goal

was to find a service policy to minimise the expected damage for a given p. In

practice, it is likely that there are many situations in which p is not known to

the server. If p is not known, then it is natural to consider a robust formulation

in which the server seeks a service policy which achieves a low expected damage

regardless of the adversary’s choice of p.
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The server decides upon a service policy π to use in the system. In Chapters

3 and 4, it was sufficient to only consider deterministic service policies, which in

every state defined which queue to serve. We now extend the definition of a service

policy π to allow for randomisation in the actions of the server. A randomised

policy π maps from the state space to a probability vector q = (q1, ..., qk), such

that whenever the system enters a state, the server chooses queue j to serve with

probability qj. There are an infinite number of service policies the server could

use.

Neither the server, nor the adversary know each other’s choices: the server does

not know which queue the adversary will join and the adversary does not know

which service policy is used. However, they do know each other’s decision spaces.

We assume that the adversary will join the system while it is in its long-run steady

state under the service policy π. Given that the adversary can be considered as an

arbitrary steady state arrival in his chosen queue, the abandonment probability he

will experience is the steady state abandonment probability of that queue under

the service policy in use π. Both the server and the adversary possess the ability to

hypothetically determine the abandonment probability of the adversary if he joins

queue j and the server uses policy π. They both use this information as the basis

upon which to make their decision of which service policy to use and which queue

to join respectively.

The objective of the adversary is to maximise the expected damage he can

inflict on the system by deciding which queue to attack. The objective of the server,

on the other hand, is to determine a randomised service policy which minimises the

expected damage inflicted. In the case where each dj = 1, the expected damage

inflicted is equivalent to the abandonment probability of the adversary. Given the

lack of knowledge of each other’s decision, we model the interaction of the server

and the adversary as a simultaneous move two-person zero-sum (TPZS) game.

In the TPZS game, suppose the server uses policy π and the adversary joins

queue j. Recall απj and βπj for, respectively, the rate of class j service completions
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and abandonments under policy π in steady state. The abandonment probability

of the adversary is the same as every other arbitrary class j customer and is equal to

βπj /λj. The expected damage inflicted by the adversary under policy π, conditional

on joining queue j, is given by Dπ
j = djβ

π
j /λj. Therefore, for a policy pair (π, j),

the payoff to the adversary is given by Dπ
j . Now, if the adversary uses probability

vector p, the payoff is equal to the expected damage computed using the law of

total expectation as Dπ(p) =
∑

j pjD
π
j . The server wishes to find a randomised

service policy which minimises this quantity over all of the adversary’s possible

choices of p. The adversary wishes to find p which maximises this quantity over

all possible service policy choices of the server. The value of the game V ∗ represents

the optimal expected damage each player can guarantee himself and is given by

V ∗ = min
π

max
p

Dπ(p) = max
p

min
π
Dπ(p). (5.1)

The optimisation problem in (5.1) is first written from the perspective of the

server seeking to find an optimal policy and is second written from the perspective

of the adversary seeking to find an optimal probability vector. Our primary interest

is solving (5.1) from the perspective of the server to determine a performance

guarantee for the server regardless of the adversary’s choice of p.

5.2 The Optimal Policy

In this section we will develop an optimal solution to (5.1) from the perspective

of both the server and the adversary. In both cases, the optimal decision of each

player is independent of the optimal decision of the other. For the server, we will

show that we can find the optimal randomised policy by formulating the problem

as a linear program and solving it through standard methods. Although it is not

our primary interest, for the adversary, we will show that we can find the optimal

probability vector p by formulating the problem as a convex optimisation problem

which can be solved through Kelley’s cutting plane (KCP) method (see Kelley
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(1960)). Considering the problem from the adversary’s perspective motivates a

heuristic approach to the problem for the server, which will be discussed in Section

5.3.

5.2.1 The Server’s Optimal Policy

Firstly, we will consider (5.1) from the perspective of the server. It is possible

to formulate (5.1) as a linear program and hence find the optimal randomised

service policy and associated value of the game through standard LP methods.

The optimal randomised policy of the server is independent of the decision made

by the adversary. Before we do this, firstly recall from Chapter 3 the random

adversary scenario in which p is fixed and known to the server. The optimisation

problem for the server is given by

min
π
Dπ(p) (5.2)

A deterministic service policy π which is optimal in (5.2) is said to be a best

response policy to the probability vector p. In Chapter 3 we discussed how this

problem was a special case of a more general stochastic scheduling problem which,

in principle, could be solved through standard DP methods such as value iteration.

It is also possible, in principle, to formulate this problem as a linear program. To

formulate a linear program to compute the server’s optimal policy π, first recall

the MDP model described in Section 3.1, in which we truncate the state space

and consider a uniformisation. Denote the truncated set of states by S. Let

x(n, j) denote the steady state proportion of time spent in state n whilst serving

in queue j, according to policy π. The set of x(n, j) over all states and actions

summarises the performance of the system under policy π. There is a one-to-one

correspondence between the set of x(n, j) and the policy π, hence they can be used

to define the policy π. The truncation must be large enough such that x(n, j) is

negligible for states outside the truncation. Let p(n′|n, j) be the probability of a
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transition from state n to n′ whilst serving in queue j under the uniformisation.

Further details regarding the LP formulation of MDPs is given in Puterman (1994).

A linear program to compute the optimal policy in (5.2) is then given by:

min
x

k∑
j=1

pjdj

(
1− µj

λj

∑
n∈S

x(n, j)

)
(5.3)

subject to
∑

j∈A(n′)

x(n′, j)−
∑
n∈S

∑
j∈A(n)

p(n′|n, j)x(n, j) = 0, n′ ∈ S (5.4)

∑
n∈S

∑
j∈A(n)

x(n, j) = 1 (5.5)

x(n, j) ≥ 0 for j ∈ A(n) and n ∈ S. (5.6)

In the objective function (5.3), the quantity µj
∑

n x(n, j) equals the rate of

class j service completions under policy π, namely απj . Hence, the objective func-

tion is equal to
∑

j pjdj(1 − (απj /λj)), the expected damage Dπ(p). Constraint

(5.4) states that, under any policy, the long-run transition rates into and leaving a

state must be the same. This is a necessary condition for the system to be stable

under policy π. Constraints (5.5) and (5.6) ensure that x(n, j) defines a proba-

bility distribution and indeed all of the time of the server is fully accounted for.

Together, the constraints ensure a feasible service policy.

We now extend this to the strategic adversary problem (5.1) from the per-

spective of the server as a LP problem. Suppose the server uses a fixed service

policy π, then the expected damage Dπ(p) =
∑

j pjD
π
j under probability vector p

defines a hyperplane in k − 1 dimensions. This is equivalent to a straight line for

k = 2 queues and a plane for k = 3 queues. The best response of the adversary,

and hence worst case for the server, against this fixed service policy is achieved at

one of the corners of the hyperplane, that is set pj = 1 for some queue j and set

pi = 0 for queue i 6= j. Hence, the best response of the adversary and the largest

124



expected damage the server can achieve by using policy π is given by

max
p

Dπ(p) = max
j
Dπ
j .

Let the value of the maximum expected damage under π given by this equation

be z. This is the largest expected damage the server can guarantee himself by using

π regardless of the adversary’s choice of p. This provides an upper bound for the

optimal expected damage V ∗. The objective of the server is then to find a policy

which minimises the upper bound z. In other words, the server wishes to find

a policy which minimises the expected damage the server can guarantee himself

regardless of the adversary’s choice of p. We can modify the linear program given

for the random adversary problem to define a linear program for (5.1) to find the

optimal policy of the server as follows:

min
x

z

subject to dj

(
1− µj

λj

∑
n∈S

x(n, j)

)
≤ z, j = 1, ..., k (5.7)

and contraints (5.4) to (5.6) .

The k constraints (5.7) ensure that the expected damages in each queue are

no greater than z for any choice of p by the adversary. The constraints (5.4) to

(5.6) ensure the server adopts a feasible service policy. Solving this linear program

will give the optimal expected damage V ∗. There is a one-to-one correspondence

between the optimal set of variables x(n, j) and the optimal service policy π.

The variables x(n, j) map to the optimal randomised service policy by defining

actions for the server in each state as follows: in state n, the server chooses action

j with probability equal to x(n, j)/
∑k

i=1 x(n, i). Further details regarding this

correspondence are given in Puterman (1994).

The computations required to solve this linear program quickly become in-

tractable even for systems of moderate size. This is since the state space grows
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exponentially in the number of queues k. This requires a vast number of variables

and constraints within the linear program, which makes solving the linear program

computationally infeasible. Consequently there is a need to consider heuristic ap-

proaches to (5.1) from the perspective of the server, which are readily computable

and have strong performance.

5.2.2 The Adversary’s Optimal Policy

We will now consider (5.1) from the perspective of the adversary. The optimal

probability vector of the adversary is independent of the service policy used by the

server. If the adversary uses probability vector p, the smallest expected damage

the adversary can guarantee himself is given by the deterministic best response

policy of the server to p. The best response policy is determined by solving the

random adversary problem (5.2). Define the following function

V (p) = min
π
Dπ(p)

to be the optimal expected damage as a function of p in the random adversary

problem (5.2). The function V (p) represents the smallest expected damage the

adversary can guarantee himself under each choice of p.

In general, for an arbitrary service policy π, the expected damage Dπ(p) as a

function of p defines a hyperplane in k − 1 dimensions. Subsequently, V (p) can

be seen as the lower envelope of the infinite set of hyperplanes corresponding to

the infinite set of service policies. This implies that V (p) is a concave, continuous

function. Moreover, the hyperplanes of best response policies from the random

adversary problem (5.2) are tangents to V (p) at their respective points p. This

implies that V (p) is a differentiable function.

The adversary wishes to maximise, through his choice of p, the expected dam-

age he can guarantee himself. This is equivalent to maximising the function V (p)

over p. Hence, we can formulate the strategic adversary problem (5.1), from the
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perspective of the adversary, as a convex optimisation problem as follows:

max
p

V (p) (5.8)

subject to
k∑
j=1

pj ≤ 1

pj ≥ 0 i = 1, ..., k.

The constraint
∑

j pj ≤ 1 allows for the case that the adversary may not attack

the system at all, but in the optimal solution this constraint will always hold with

equality. Solving (5.8) will give an optimal probability vector for the adversary

in (5.1) and its objective value will be equal to the optimal expected damage V ∗.

However, (5.8) cannot be solved directly, as opposed to solving the LP formulation

for the server’s optimal randomised policy. Let the value of the minimum level of

expected damage the adversary can guarantee himself through his choice of p be

given by w. This provides a lower bound for the optimal expected damage V ∗.

We can equivalently write (5.8) as one of the adversary seeking to maximise this

lower bound as follows:

max
p,w

w (5.9)

subject to V (p)− w ≥ 0

k∑
j=1

pj ≤ 1

pj ≥ 0 i = 1, ..., k.

The purpose of reformulating (5.8) as (5.9) is that this formulation can be

solved using Kelley’s cutting plane (KCP) method (see Kelley (1960)), which is an

iterative method developed to solve convex optimisation problems. Application

of this method to (5.9) will converge to the optimal probability vector p∗ and

optimal expected damage V ∗. A proof of this result is given in Luenberger &

Ye (2008) under these conditions: (1) The objective function is a continuously
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differentiable, concave function; (2) The constraints are continuously differentiable,

concave functions. Since the optimisation in (5.9) meets these conditions, the KCP

method can be used to compute p∗ and V ∗.

The application of the method is based on the fact that every concave function

can be approximated by a set of piecewise linear functions that are tangents to

the function at a finite subset of points. The concavity property means that this

approximation will lie above the function to be maximised. We can approximate

V (p) as the lower envelope of a set of hyperplanes corresponding to the best

response policies at a finite subset of probability vector points. Suppose we have

a set of m probability vectorsM = {p1, ...,pm}. Suppose also we have a set of m

service policies P = {π1, ..., πm} such that each element πt corresponds to the best

response policy to the element pt in M for t = 1, ...m. From these, suppose we

can also obtain their corresponding expected damages Dπt
j in each queue, hence

also the hyperplanes Dπt(p) =
∑k

j=1 pjD
πt
j as functions of p. We can approximate

V (p) as follows:

V (p) ≈ min
t
{Dπt(p)}

Using this approximation we can replace (5.9) with the following relaxation:

max
p,w

w (5.10)

subject to Dπt(p)− w ≥ 0 for 1 ≤ t ≤ |P|
k∑
j=1

pj ≤ 1

pj ≥ 0 i = 1, ..., k.

Importantly, this relaxation is a linear program, whose optimal solution gives

an upper bound for the optimal expected damage V ∗. In addition, the expected

damages Dπt(pt) are feasible for the adversary in the original problem, ensuring

a minimum level of expected damage and so provide lower bounds to V ∗. Since

each hyperplane in the approximation is a tangent to V (p) at each respective
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point, the approximation will get better as more hyperplanes are added to the

approximation. Each time a new hyperplane is added, a constraint is added to the

relaxed linear program. Continuation of this process eventually recovers the true

function and both the lower and upper bounds approach V ∗.

We have described the principle underlying the KCP method without actually

describing the application of the method itself. We will now do this. The KCP

method iteratively constructs the approximation of V (p), using solutions of the

relaxed linear program as the probability vector points at which to improve the

approximation. We summarise the algorithm as follows:

1. Set U = ∞ and L = 0 as upper and lower bounds respectively for V ∗ and

let the sets M and P initially be empty.

2. Set iteration counter t = 1 and initialise the probability vector of the adver-

sary pt. Solve the random adversary problem (5.2) for pt to obtain the best

response policy πt for the server. Add pt to M and πt to P .

3. Formulate and solve the linear program (5.10) in which the server is re-

stricted to using the service policies in P . Denote the solution by (pt+1, V ),

where pt+1 is the optimal probability vector of the adversary and V is the

corresponding objective function value.

4. Update the upper bound U = V .

5. If U and L are close enough, then stop.

6. For probability vector pt+1, find the corresponding best response policy πt+1

by solving the random adversary problem (5.2). Update the lower bound

L = max(L,Dπt+1(pt+1)).

7. Add pt+1 to M and πt+1 to P . Increase the iteration counter t = t+ 1 and

go to step 3.

In steps 3 and 4 of the algorithm, (5.10) is a relaxation of (5.9) from the

perspective of the adversary and a restriction from the perspective of the server.

129



Hence, the optimal objective function value provides an upper bound to V ∗. This

upper bound will be at least as good as the previous upper bound since an extra

constraint has been added to (5.10), tightening the relaxation. In step 6 of the

algorithm, pt+1 and the corresponding expected damage Dπt+1(pt+1) is feasible

in the original problem (5.9). This means that the adversary can use pt+1 and

guarantee an expected damage at least equal to Dπt+1(pt+1), a lower bound for

V ∗. It is not the case that the lower bound will necessarily improve, hence we set

the lower bound to be the highest known feasible expected damage. The upper

and lower bounds of the algorithm eventually converge to V ∗. Step 5 is a stopping

criterion which terminates the algorithm when the upper and lower bounds become

sufficiently close, namely when |U − L| < ε for some small ε > 0.

The KCP algorithm is illustrated for k = 2 queues in Figure 5.1. The red

curve represents V (p), which the adversary wishes to maximise through his choice

of p = (p, 1 − p). In the first two iterations of the algorithm, the adversary uses

p = 0 and p = 1 respectively. Hence, the server responds with π1 and π2, which

are priority policies. These two policies form an initial approximation of V (p),

which is iteratively improved in the next two iterations through the addition of π3

and π4. The improving upper bounds are shown as blue points whereas feasible

lower bounds are shown as green points. After four iterations of the algorithm,

the approximation of V (p) is very good and the upper and lower bounds are close

to V ∗.

The most important part of the KCP method is the ability to repeatedly solve

the random adversary problem (5.2) to generate best response policies for the

server. Whilst this is possible in principle, in practice it was shown in Chap-

ters 3 and 4 that the random adversary problem is computationally challenging.

Best response policies can be found through DP methods for systems of up to

k = 3 queues, meaning that the KCP method is feasible for systems of this size.

However, for larger systems the random adversary problem is computationally in-

tractable, meaning that the KCP method is also computationally intractable for
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Figure 5.1: Illustration of the KCP algorithm.
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larger systems of more than three queues.

In general, we are not interested in finding the optimal probability vector of the

adversary. Our interest lies in finding the optimal randomised policy of the server.

In the next section, we will see that the KCP method provides the motivation for

a heuristic approach to (5.1) from the server’s perspective.

5.3 A Matrix Game Formulation

Many TPZS games can be formulated as matrix games. We can conceptually

consider the TPZS game in Section 5.1 as a matrix game. Each row in the matrix

game represents a pure strategy of the adversary, which corresponds to joining

each of the k queues. A mixed strategy for the adversary is given by a probability

vector over his set of pure strategies. In Section 5.1, we stated that the adversary

joined the system according to a fixed probability vector p = (p1, ..., pk), which is

equivalent to a mixed strategy of the adversary in the matrix game. Each column

in the matrix game represents a pure strategy of the server, which corresponds to

the choice of service policy π. Each entry in the matrix game corresponds to the

payoff of a pure strategy pair (π, j), namely Dπ
j . A mixed strategy for the server

is given by a probability vector over his set of pure strategies.

It is impossible to formulate the matrix game equivalent to (5.1) since there

are an infinite number of pure strategies of the server, hence an infinite number

of columns in the matrix. Our heuristic approach is to formulate a finite version

of the matrix game. In the finite matrix game, the adversary will still have k

pure strategies, however, the server will be restricted to a finite number of m

pure strategies corresponding to m service policies in a set P . A mixed strategy

for the server in the finite matrix game is represented by a probability vector

q = (q1, ..., qm) over the policies in P . In practice, the mixed strategy of the server

would be implemented by first selecting a policy from P using q, then using the

selected policy thereafter. The heuristic is a restriction of the conceptual infinite

version of the matrix game equivalent to (5.1), hence its solution provides an upper
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bound to the optimal expected damage V ∗.

Our heuristic approach is motivated by the KCP method. In the KCP method

we restricted the server to a set of service policies and iteratively populated this

set with various deterministic best response policies. The relaxed linear program

(5.10) in the KCP method in which the server was restricted to this set of service

policies is in fact equivalent to the LP formulation of a finite matrix game from

the perspective of the adversary. From this observation, we can view the KCP

method as an iteratively expanding finite matrix game. Hence, in our heuristic

approach, we propose to populate the set of policies P using the KCP method.

The LP formulation of the finite matrix game from the perspective of the server is

given by the dual of (5.10). Solving the dual gives a mixed strategy for the server

over the policies in P . In theory, we know from the KCP method that the value of

the finite matrix game will converge to the optimal expected damage V ∗ as more

policies are added to P .

The KCP method was used in a search problem by Lin & Singham (2015), in

which a searcher wishes to find an object hidden by an adversary. In this work,

the KCP method iteratively solves the problem since the sub-problem equivalent

to the random adversary problem (5.2) has a simple analytical solution. The KCP

method has also been used by McMahan et al. (2003) in a problem of planning a

route for a robot through sensors controlled by an adversary. The algorithm in this

work is referred to as an application of Benders decomposition. The sub-problem

corresponding to (5.2) is an MDP whose optimal solution can be readily computed.

In both of these examples, since the sub-problems do not pose any challenges, the

algorithms are able to deliver optimal solutions. Lin et al. (2014) consider a graph

patrol problem in which a patroller traverses the edges of a graph whose nodes

are potential targets for an attacker. The sub-problem equivalent to (5.2) is an

MDP problem which is computationally intractable in larger systems. The authors

develop an effective algorithm which is a heuristic application of the KCP method

in that instead of using best response policies in the MDP sub-problem, strongly
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performing heuristics are used.

5.3.1 Heuristic Cutting Plane Method

As we have already noted, solving the random adversary sub-problem (5.2) is

computationally intractable for larger systems of more than three queues. Whilst

this prohibits the application of the KCP method exactly in our heuristic approach,

the method provides a structural framework within which to adjust our heuristic

approach. We can adjust our heuristic approach by populating the set of policies

P in the finite matrix game using a heuristic application of the KCP method. We

will refer to this as the heuristic cutting plane (HCP) method. The HCP method

relaxes the necessity to provide best response policies to (5.2) in steps 2 and 5

of the KCP algorithm in return for strongly performing heuristic policies which

can be computed. Lin et al. (2014) develop an analogous heuristic method with

success.

The effectiveness of this heuristic approach depends critically upon the ability

to handle the random adversary problem (5.2). Intuitively, generating near best

response policies in (5.2) will enable the HCP method to closely match the charac-

teristics of the KCP method. In Chapters 3 and 4 we studied this problem in detail

and identified a set of strongly performing priority policies: the Rµθ rule, the Rµ

rule, and the PaS policy. Recall, to determine these priority policies, we set the

rewards Rj based on the mixed strategy of the adversary, namely Rj = djpj/λj.

The best of these priority policies was near-optimal in the majority of problems.

We also developed a heuristic policy based on an approximate policy improvement

method, which we labelled the API policy. This policy provides the capability to

tighten up the suboptimality gap in the relatively few problems where the best

priority policy is not near-optimal.

We summarise the HCP algorithm as follows:

1. Let the set P initially be empty.

2. Set iteration counter t = 1 and add an initial priority policy πt to P .
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3. Formulate and solve the TPZS matrix game (5.10) in which the server is

restricted to using the service policies in P . Denote the solution to this

matrix game by (pt+1, V ).

4. For mixed strategy pt+1, determine the priority policy πt+1 as a heuristic

policy for the random adversary problem (5.2).

5. If πt+1 ∈ P , then skip step 6 and go to step 7.

6. Add πt+1 to P . Increase the iteration counter t = t+ 1 and go to step 3.

7. Formulate and solve the dual of (5.10) to find a mixed strategy q for the

server over the set of policies P . The value of the game V gives the expected

damage of this mixed strategy of the server. Stop.

In step 4 of the algorithm, the priority policy response of the server to mixed

strategy pt+1 is determined by choosing one of the Rµθ rule, the Rµ rule, and the

PaS rule. A selection rule determines which of these priority policies is used in

every iteration of the algorithm, for example use the Rµ rule each time. In steps

2 to 6 of the algorithm, the server populates his policy set P with priority policies

until no new priority policy can be added under the selection rule. The reason for

using priority policies here as heuristic responses is due to the observation that

the chosen priority rule will be either optimal or near-optimal for many of the

mixed strategy choices the server could make, as evidenced in Chapters 3 and 4.

This is especially true when a few elements of p are high, for example pj close to

1, corresponding to much higher rewards/penalties in some queues compared to

others. Priority policies also typically occur naturally as best response policies in

the early iterations of the KCP method, when the KCP method is initialised with

a priority policy best response. Another advantage is the simplicity of priority

policies and the ease with which they can be constructed. The only computational

cost associated with this is the time it takes to evaluate the payoffs D
πt+1

j for the

matrix game.
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In the initialisation of the algorithm in step 2, the initial priority policy could

be determined by first selecting a mixed strategy p with pj = 1 for some queue j

and pi = 0 for queue i 6= j. Then choose a priority policy response through the

selection rule. Whichever policy is chosen will prioritise queue j. Alternatively, we

can suppose the server only serves in queue j and ignores all others for 1 ≤ j ≤ k.

The expected damages Dj can be calculated by considering a birth-death process

from which we can compute

Dj = dj

[
1− µj

λj

][
1−

[
∞∑
n=0

(λj)
n

{
n∏

m=1

(µj +mθj)

}−1 ]−1]
, 1 ≤ j ≤ k.

The expected damages Dj are equivalent to the expected damages in queue j under

a policy which prioritises that queue. We can determine the initial priority policy

by sorting the Dj in descending order and prioritising according to this order. In

some sense this gives top priority to the queue in which the adversary can inflict

the most damage.

5.3.2 Enhancement to Heuristic Cutting Plane Method

It is possible to enhance the HCP method by replacing step 7 with the following

three steps, giving the HCP+ method:

7a Formulate and solve the TPZS matrix game (5.10) in which the server is

restricted to using the service policies in P . Denote the solution to this

matrix game by (p∗, V ).

7b For mixed strategy p∗, construct the API policy π∗ (as discussed in Chapter

4) as a heuristic policy for the random adversary problem (5.2). Add π∗ to

P .

7c Formulate and solve the dual of (5.10) to find a mixed strategy q for the

server over the set of policies P . The value of the game V gives the expected

damage of this mixed strategy of the server. Stop.
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In the replacement steps 7a and 7b, it is no longer possible to add prior-

ity policies to P under the chosen selection rule. Furthermore, for p∗, there is

a suboptimality gap between the expected damages of the best priority policies

currently in P and the optimal expected damage. Consequently, we attempt to

improve upon the expected damages of the policies in P for p∗ by using the API

policy as a strongly performing heuristic. Any improvement will improve the value

of the matrix game. The construction of the API policy is more computationally

intensive, which is why it is only used once in this enhanced algorithm in the

place it is likely to have the largest impact on performance. However, due to

its approximate nature there is no guarantee of improvement. The HCP method

will be significantly faster than the HCP+ method. There is a trade-off between

any performance improvement offered by the HCP+ method and the increased

computation time.

An alternative to the HCP and HCP+ methods is again to populate a policy

set P , but not through an iterative procedure. We could populate P directly

with all k! possible priority policies and solve the finite matrix game consisting

of these policies. We will refer to this as the PA method. The rationale behind

the PA method is that P will give the server policies which provide the best

possible defence of each queue, as well as good coverage across the queues. It

can be seen as a limiting form of the HCP method, since the priority policies

developed during the HCP method will form a subset of the priority policies in

the PA method. Consequently, the expected damage under the PA method will

be less than or equal to the HCP method. However, the HCP method is likely to

be significantly faster than the PA method, especially for systems with more than

3 queues. Comparing the relative performance of these two methods will also give

an indication of any impact in the choice of the priority policy selection rule (the

Rµθ, the Rµ rule, or the PaS policy).
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5.4 Numerical Study

In this section we conduct a set of numerical experiments to assess the performance

of the heuristic approaches to (5.1) developed in Sections 5.3.1 and 5.3.2. We begin

by considering an example in a k = 2 queue system in order to illustrate the KCP

method and the heuristic approaches in more detail. We then consider performance

in large sets of randomly generated problems.

Example 5.1: Consider the following example system in which there are k = 2

queues. The parameters of the system are as follows:

(d1, d2) = (1, 1)

(λj, µj, θj) =

 (2, 3, 1) j = 1

(3, 4, 0.5) j = 2

The optimal expected damage V ∗ = 0.3903 can be computed by solving the linear

program developed for the server’s optimal randomised policy in Section 5.2.1.

We can also compute V ∗ by applying the KCP method to the problem. The KCP

method iteratively develops a finite matrix game in which the server is restricted

to a set of service policies P containing deterministic best response policies.

Since there are k = 2 queues, a mixed strategy of the adversary is given by

p = (p, 1 − p) and the expected damage hyperplane of policy π, namely Dπ(p),

is a straight line function of p. Figure 5.2 shows the first 3 iterations of the KCP

method along with both the HCP and HCP+ methods. The red curve shows V (p),

which is maximised at p = 0.441, at which point V (p) = V ∗ = 0.3903. First, we

consider the KCP method. Initially, the adversary sets p = 1 and the server’s best

response policy π1 is the priority policy 1→ 2. The adversary then sets p = 0 and

the server’s best response policy π2 is the priority policy 2 → 1. The expected

damages, as functions of p, are shown by the solid black lines in Figure 5.2.

The solution of the finite matrix game (5.10) in which P = {π1, π2} is given

by (p3, V ), where p3 = (0.4233, 0.5767) and V = 0.3925 gives an upper bound for
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Figure 5.2: The first 3 iterations of the KCP method along with both the HCP and
HCP+ methods in Example 5.1. The red curve shows V (p). The bold black lines
show the expected damages of the priority policies 1→ 2 and 2→ 1 as functions
of p. These are best response policies in the first 2 iterations of the KCP method
and all priority policies in the HCP method. The dashed line shows the expected
damage of the best response policy in the 3rd iteration of the KCP method. The
bold blue line shows the expected damage of the API policy in the HCP+ method.
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|P| V Percentage above V ∗

1 0.4332 10.98
2 0.3925 0.56
3 0.3913 0.25
4 0.3907 0.08
5 0.3904 0.01
6 0.3903 0.01
7 0.3903 0.00
8 0.3903 0.00

Table 5.1: Value of the finite matrix game V and the percentage above the optimal
expected damage V ∗ as the the size of the policy set P increases through the KCP
method in Example 5.1.

V ∗. The solution is achieved by maximising, with respect to p, the lower envelope

of the straight lines given by the policies in P . The lower envelope serves as an

approximation of the red curve V (p). The best response policy π3 to p3 is shown

by the dashed line. The expected damage Dπ3(p3) gives a lower bound of 0.3886

for V ∗. Solving the finite matrix game (5.10) in which P = {π1, π2, π3} gives

(p4, V ), where p4 = (0.4361, 0.5639) and the value of the game V = 0.3913 gives

an improved upper bound. The first 8 iterations of the KCP method are shown in

Figure 5.3. When |P| = 8, the value of the finite matrix game is 0.3903 and the

resulting mixed strategy over the policies in P is essentially optimal. Table 5.1

shows the percentage above the optimal expected damage V ∗ of the solution to

the finite matrix game as the size of the policy set P increases through the KCP

method. Figure 5.3 shows that the approximation of V (p) is extremely good after

8 iterations, especially around the maximising p. Table 5.1 further shows that

the rate of convergence of the KCP method is quick, where the value of the finite

matrix game is already 0.56% above V ∗ after two iterations. Also, much of the

improvement in the finite matrix game is achieved in the first few iterations.

We now consider the HCP and HCP+ methods. In the first two iterations of

the HCP method, we used the Rµ rule to add the priority policies 1→ 2 and 2→ 1

to P . The expected damages, as functions of p, are shown by the solid black lines

in Figure 5.2. There are only two priority policies in a k = 2 queue system, hence
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Figure 5.3: The first 8 iterations of the KCP method in Example 5.1. The red
curve shows V (p). The bold black lines show the expected damages of the priority
policies 1 → 2 and 2 → 1 as functions of p. These are best response policies in
the first 2 iterations of the KCP method. The dashed lines are each the expected
damages of the best response policies in iterations 3 to 8 of the KCP method.
Each bold black line and each dashed line is a tangent to V (p). After 5 iterations,
the percentage of the finite matrix game above the optimal expected damage V ∗

is 0.01%.
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the HCP method terminates after two iterations. In this example, the first two

iterations of the HCP method and the KCP method are identical, hence the HCP

method achieves an expected damage 0.56% above optimal. The HCP method is

also identical to the PA method. For the HCP+ method, the solution of the finite

matrix game (5.10) yields mixed strategy p∗ = (0.4233, 0.5767). To construct the

API policy as a heuristic response to p∗, we used the Rµ rule as the initial policy,

along with the parameters t = 1, m = 105, n = 45, and r = 32
45

. The resulting

API policy is shown by the solid blue line in Figure 5.2. As it is not a tangent

to the red curve, it is not a best response policy, however its distance from the

red curve indicates a small optimality gap in the random adversary problem (5.2).

Solving the finite matrix game consisting of the two priority policies and the API

policy, the HCP+ method achieves an expected damage of 0.3911, which is 0.21%

above V ∗. The HCP+ method improves upon the HCP method, albeit at increased

computational expense. In this example, both heuristic approaches are not too far

from the optimal expected damage.

To assess the performance of the heuristics more generally, we now conduct

large sets of numerical experiments in k = 2, 3, and 5 queue systems. Prob-

lems were randomly generated to reflect a wide range of conditions with regard

to (1) the length of customer lifetimes (reflected in the categorisation A, B, C in

(5.11c)–(5.11e) below); and (2) the traffic intensity or workload in the correspond-

ing system without abandonments. There are three categories of traffic—namely

light, moderate, and heavy—as determined by the value of ρ =
∑k

j=1 λj/µj; see

(5.11f)–(5.11h) below. For all nine combinations of A, B, C with the traffic cat-

egorisation light, moderate, heavy, 100 problems were generated at random for
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k = 2, 3, and 5 queue systems. Parameters were sampled as follows:

µj ∼ U [0.2, 5] (all cases); (5.11a)

λj ∼ U [0.2, 5] (all cases); (5.11b)

θj ∼ U [1, 5] (short lifetimes, A); (5.11c)

θj ∼ U [0.1, 0.5] (moderate lifetimes, B); (5.11d)

θj ∼ U [0.01, 0.05] (long lifetimes, C); (5.11e)

ρ ∈ [0.5, 0.7] (light traffic); (5.11f)

ρ ∈ [0.9, 1.1] (moderate traffic); (5.11g)

ρ ∈ [1.3, 1.5] (heavy traffic); (5.11h)

In the parameter generation, µj and λj were sampled according to (5.11a)

and (5.11b) by means of a rejection algorithm until a desired ρ condition (5.11f)–

(5.11h) was met. In addition, in each generated problem we set dj = 1 for each

queue and consequently the objective concerned the abandonment probability of

the adversary.

In each k = 2 problem, we used LP to compute the abandonment probability of

the server’s optimal randomised policy by truncating the state space at Nj = 40 for

each queue j in case A, and Nj = 60 for each queue j in cases B and C, as discussed

in Section 5.2.1. In the HCP and HCP+ methods, we used DP value iteration with

the same truncated state spaces to compute the payoffs for the finite TPZS matrix

game (5.10), which was subsequently solved using LP to obtain the abandonment

probability of each method. Within the HCP+ method, we constructed the API

policy using the Rµ rule as the initial policy, along with the parameters t = 1,

m = 105, n = 45, and r = 32
45

. Table 5.2 reports the numerical results for k = 2

queues.

In each k = 3 problem, we used the KCP method to compute the optimal

expected damage V ∗, since finding the server’s optimal randomised policy through

LP was computationally infeasible. In each iteration of the KCP method, we
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Case Workload HCP HCP+

A Light 90th 0.00 0.00
75th 0.00 0.00

Median 0.00 0.00
Moderate 90th 0.03 0.01

75th 0.01 0.00
Median 0.00 0.00

Heavy 90th 0.10 0.03
75th 0.03 0.01

Median 0.00 0.00
B Light 90th 0.22 0.10

75th 0.10 0.06
Median 0.04 0.02

Moderate 90th 0.98 0.54
75th 0.59 0.27

Median 0.23 0.11
Heavy 90th 1.33 0.72

75th 0.73 0.47
Median 0.33 0.18

C Light 90th 0.23 0.19
75th 0.13 0.12

Median 0.04 0.04
Moderate 90th 3.51 3.03

75th 1.85 1.66
Median 0.94 0.90

Heavy 90th 0.15 0.11
75th 0.06 0.03

Median 0.01 0.01

Table 5.2: Percentage above the optimal expected damage in k = 2 queue systems
of various traffic and abandonment level combinations.

used DP value iteration with the same truncation levels used in the k = 2 queue

problems to compute the payoffs for the finite TPZS matrix game (5.10), which was

subsequently solved using LP. We also used this method to compute the expected

damages of the heuristics HCP, HCP+, and PA. In addition, we recorded the

number of priority policies generated in the HCP method, n(HCP). Within the

HCP+ method, we constructed the API policy using the Rµ rule as the initial

policy, along with the parameters t = 1, m = 105, n = 75, and r = 52
75

. Table 5.3

reports the numerical results for k = 3 queues.

As seen in Tables 5.2 and 5.3, the performances of HCP, HCP+, and PA are
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Case Workload HCP HCP+ PA n(HCP)
A Light 90th 0.01 0.00 0.01 3

75th 0.00 0.00 0.00 1
Median 0.00 0.00 0.00 1

Moderate 90th 0.02 0.01 0.02 3
75th 0.00 0.00 0.00 2

Median 0.00 0.00 0.00 1
Heavy 90th 0.07 0.05 0.07 4

75th 0.02 0.01 0.02 3
Median 0.00 0.00 0.00 2

B Light 90th 0.34 0.28 0.29 4
75th 0.20 0.14 0.19 4

Median 0.03 0.02 0.03 3
Moderate 90th 1.27 1.04 1.18 4

75th 0.82 0.61 0.75 4
Median 0.50 0.35 0.43 3

Heavy 90th 1.33 1.03 1.14 4
75th 0.97 0.76 0.80 4

Median 0.60 0.41 0.53 4
C Light 90th 0.35 0.31 0.30 4

75th 0.23 0.21 0.20 4
Median 0.10 0.10 0.09 3

Moderate 90th 4.01 3.43 3.65 4
75th 2.81 2.40 2.65 4

Median 1.73 1.51 1.61 3
Heavy 90th 0.20 0.19 0.20 4

75th 0.07 0.04 0.06 4
Median 0.02 0.01 0.01 4

Table 5.3: Percentage above the optimal expected damage in k = 3 queue systems
of various traffic and abandonment level combinations.

excellent, with the median percentage above the optimal expected damage being

at most 0.6%. There is an exception in the category {C, Moderate}, in which the

performance of each heuristic is less than 1% and 2% above the optimal expected

damage in the k = 2 and k = 3 queue problems respectively. In Table 5.2, the

performance of PA is not reported since it is equivalent to the performance of

HCP. Table 5.3 shows that while PA requires the evaluation of 6 priority policies,

it only performs marginally better than HCP which requires the evaluation of at

most 4 priority policies in terms of the 90th percentile shown. The comparative

performance of HCP and PA also indicates that using the Rµ rule to select priority
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policies within the HCP method does not adversely affect its performance. Both

tables illustrate that HCP+ outperforms HCP, with the median improvement of-

fering at most a 0.16% reduction in the expected damage relative to HCP. This

marginal improvement comes at the expense of increased computational cost. It

is also the case that HCP+ marginally outperforms PA in most cases.

In each k = 5 queue problem, we are unable to compute the optimal expected

damage through either LP or the KCP method. Furthermore, we are unable to

compute the expected damages of the heuristics HCP, HCP+, and PA using DP

value iteration, as we did in the case of k = 2 and k = 3 queues. Instead, for each

heuristic, we use simulation to estimate the payoffs for each policy which comprises

the set P in the finite TPZS matrix game (5.10). We estimate the payoffs using

the mean of 2000 Monte Carlo realisations. Based on these estimates, we solve

the matrix game using LP to obtain an estimate of the expected damage of each

heuristic. Within the HCP+ method, we constructed the API policy using the Rµ

rule as the initial policy, along with the parameters t = 1, m = 105, n = 100, and

r = 69
100

.

Table 5.4 reports the numerical results for k = 5 queues. It shows the percent-

age improvement of both PA and HCP+ over HCP, shown as ∆(HCP, PA) and

∆(HCP, HCP+) respectively. The column denoted n(HCP) reports the number of

priority policies evaluated in the HCP method. From the table, we see that while

PA requires the evaluation of 120 priority policies, it only performs at most 0.31%

better in terms of the median percentage improvement. The HCP method requires

the evaluation of at most 8 priority policies in terms of the 90th percentiles and

often only requires 6 in terms of the median and 75th percentiles. Hence, HCP

requires approximately 5% of the computation time of PA and achieves a similar

level of performance. Once again, the comparative performance of HCP and PA

indicates that using the Rµ rule to select priority policies within the HCP method

does not adversely affect its performance. HCP+ offers marginal improvements

over HCP, with the median improvement offering at most a 0.11% reduction in
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Case Workload ∆(HCP, PA) ∆(HCP, HCP+) n(HCP)
A Light 90th 0.00 0.02 2

75th 0.00 0.00 2
Median 0.00 0.00 1

Moderate 90th 0.00 0.02 5
75th 0.00 0.00 3

Median 0.00 0.00 1
Heavy 90th 0.02 0.02 7

75th 0.00 0.00 5
Median 0.00 0.00 2

B Light 90th 0.09 0.07 7
75th 0.00 0.00 6

Median 0.00 0.00 5
Moderate 90th 0.30 0.27 7

75th 0.18 0.17 7
Median 0.09 0.06 6

Heavy 90th 0.58 0.23 7
75th 0.31 0.15 7

Median 0.16 0.06 6
C Light 90th 0.35 0.00 7

75th 0.00 0.00 6
Median 0.00 0.00 6

Moderate 90th 0.83 0.27 6
75th 0.54 0.17 6

Median 0.31 0.11 6
Heavy 90th 0.12 0.00 8

75th 0.04 0.00 7
Median 0.03 0.00 6

Table 5.4: Percentage improvement over HCP in k = 5 queue systems of various
traffic and abandonment level combinations.

the expected damage.

Remark. In systems with more than 3 customer classes, we cannot evaluate the

performance of each heuristic with respect to the optimal damage. Subsequently, we

seek a tight lower bound for the optimal expected damage. We can develop a lower

bound based on a modification of the method used to derive an upper bound for the

optimal reward rate in Section 4.3. For a given feasible policy, if xj represents the

implied fraction of time spent serving in queue j, then

dj

(
1− µjxj

λj

)
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is the expected damage the adversary will inflict if he joins queue j. Let z represent

the largest expected damage across all queues, then z is an upper bound for the

optimal expected damage. To compute a lower bound for the optimal expected

damage, we formulate a linear program similar in principle to the linear program

given in Section 5.2.1 for the server’s optimal randomised policy, but allow the xj

to be implied by an infeasible policy. We formulate the following linear program

with the variables xj ≥ 0, 1 ≤ j ≤ k, and the objective function to minimise z:

min z

subject to dj

(
1− µjxj

λj

)
≤ z, 1 ≤ j ≤ k;

k∑
j=1

xj ≤ 1, xj ≥ 0, 1 ≤ j ≤ k;

plus additional constraints.

We impose additional constraints on the xj so that their values under the resulting

optimal policy come as close as we can make them to those implied by a feasible

policy. The additional constraints used are those based on sub-systems, derived in

Section 4.3, to which the reader is referred for further details.

However, in practice we have found that the lower bound does not produce

consistent results upon which we can assess the performance of each heuristic in

k = 5 queue systems. Whilst it can be tight in some cases, it is not in others.

Consequently, further investigation is required to improve the lower bound.

We draw upon a number of observations in order to infer the quality of the

heuristics in the k = 5 queue systems. The excellent performance of all heuristics in

k = 2 and k = 3 queue systems suggests that their performance is likely to be also

be excellent in k = 5 queue systems. As observed in our earlier example, since HCP

will often match the early iterations of the KCP method, which improves rapidly

in the early iterations, this suggests the quality of the HCP method. Furthermore,

in the random adversary problem studied in Chapters 3 and 4, we observed that
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the suboptimality gap of the best priority policy in the majority of problems was

not too large. This observation suggests that the PA method, which considers all

priority policies, will always have at least one priority policy which is not too far

from the optimal expected damage for any choice of p by the adversary. This also

infers the strength of the HCP and HCP+ methods.

Conclusion

In this chapter we have studied the defensive surveillance scenario of a strategic

adversary who chooses where to attack. Since the server and the adversary do not

know each others decision, we modelled their interaction as a simultaneous move

two-person zero-sum (TPZS) game. An important feature of this approach is that

it is important for the server to randomise his actions, which can be done within

service policies or between service policies. By considering the TPZS game from the

perspective of the adversary, we developed the heuristic cutting plane (HCP) and

enhanced heuristic cutting plane (HCP+) methods. These methods are heuristic

applications of Kelley’s cutting plane (KCP) method which is theoretically capa-

ble of delivering an optimal surveillance strategy. The methods exploit a strong

connection with the random adversary surveillance scenario and iteratively de-

velop a set of service policies to randomise over. Numerical experiments indicate

the strong performance of this approach. Consequently, our suggestion for the

security team is randomise over the set of deterministic service policies generated

through a computed mixed strategy. In effect, this will require the security team

to select one of the deterministic service policies according to a discrete probability

distribution and then adopt this service policy thereafter, perhaps re-selecting in

the same way every so often.

The methodology used in this chapter is widely applicable to other defender-

attacker problems, namely the use of the random adversary problem as a sub-

problem within the master strategic adversary problem. This method has been

used successfully in other problems in the literature (see McMahan et al. (2003),
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Lin et al. (2014), and Lin & Singham (2015)). This illustrates the general and

flexible nature of the method. The main challenge in extending this approach to

more general problems lies in the associated sub-problem and whether effective

heuristic solutions to this problem can be found.
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Chapter 6

Defence against Strategic

Adversaries Who Choose Where

and When To Attack

In this chapter we consider the defensive surveillance scenario identified in Chapter

1 in which the adversary acts strategically and can choose both which queue to

attack and when to attack that queue. This scenario is an extension of the strategic

scenario studied in Chapter 5. Subsequently, we consider a mathematical model

with a near-identical stochastic structure. The only differences in this chapter are

that we allow for both the case of nonpreemptive service and also allow the service

times in each queue to follow some general probability distribution. We will make

these differences clear when they arise. Whereas in Chapter 5, the adversary was

able to choose which queue to join, we now consider the case in which the adversary

can also choose the time at which he arrives into his chosen queue. In this case,

the server wishes to find a robust service policy which provides a performance

guarantee against any choice of queue and time the adversary could make.

The structure of this chapter is as follows. Section 6.1 studies a single queue

system in which the adversary can choose when to attack the queue. Section 6.2

studies a system with multiple queues and control of the system by the security
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team is decentralised. Section 6.3 studies a system with multiple queues and

control of the system by the security team is centralised. We conclude the chapter

by studying numerical examples in Section 6.4.

6.1 Single Queue

We will begin by formulating an optimisation problem in the context of a single

queue system. The problem will then be generalised later in the chapter to systems

with multiple queues. Given that we consider a single queue system, the adversary

does not have a set of queues to choose from. The adversary chooses the time at

which he joins the queue based on the state of the system. The state consists of two

elements: the volume state and the server state. The volume state represents the

number of customers in the queue and the server state represents which customer

is in service and how long that customer has been in service.

We consider two scenarios which represent the capability of the adversary:

1. The adversary chooses both the volume state and the server state to attack.

We refer to this as the full information scenario.

2. The adversary chooses the volume state to attack, but not the server state.

We refer to this as the partial information scenario

To motivate these scenarios in practice, consider a defensive surveillance sce-

nario in which an adversary targets a train station. Suppose the adversary has

hacked into the security system, or has a spy in the security team. The adversary

makes his way to the train station repeatedly and prepares to initiate an attack.

Before entering the train station, the adversary checks with the spy to learn some

information about the system. In the full information scenario, the spy tells the ad-

versary the volume state and the server state. In the partial information scenario,

the spy can only tell the adversary the volume state. Based on this information

provided by the spy, the adversary decides whether or not to initiate an attack. If

he chooses not to attack, he leaves and will try again another time. If he chooses

152



to attack he will enter the train system and join the queue. In practice, the adver-

sary does not monitor the volume state or the server state in real time, instead he

learns about them at the point of initiating an attack and bases his decision upon

this information.

The server decides upon a service policy π to use in the system, of which there

are an infinite number he could use. A policy is a rule followed by the server to

decide which customer to serve next, each time the server becomes available. The

server can track the arrival times of each customer and is able to define a policy

based on these. The service policy can be randomised and the server can choose

to idle when there are customers present, which we will refer to as strategic idling.

We study both preemptive service and nonpreemptive service. With nonpre-

emptive service, once the service of a customer begins, it only concludes once the

service has been completed or the customer has abandoned. The server chooses a

new customer for service at these points. On the other hand, preemptive service

allows the service of a customer to be stopped at any moment so that the server

can switch to another customer.

For a given scenario, full information scenario or partial information scenario,

the objective of the server is to determine a robust service policy which provides

the best performance guarantee against an adversary.

6.1.1 The Case of Preemptive Service

This section concerns a single queue case with preemptive service. We first assume

that the service times follow an exponential distribution with rate µ. In this

chapter, the abandonment probability of the adversary is heavily policy and state

dependent. To see this, let us compare two service policies: the first-come first-

served (FCFS) policy and the last-come first-served (LCFS) policy. Each time

the server becomes available to start a new service, the FCFS policy selects the

customer with the earliest arrival time into the queue whereas the LCFS policy

selects the most recent arrival.
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Under the FCFS policy, the abandonment probability of the adversary is heav-

ily state dependent. Consider two scenarios: (a) the adversary joins when there

is one customer in the system, (b) he joins when there are 100 customers in the

system. In (a), the abandonment probability will be low since the server is likely

to take the adversary into service before he abandons. In (b), the abandonment

probability will he high since there are 100 customers ahead of the adversary and

the server is unlikely to take him into service before he abandons.

Under the LCFS policy, however, the probability of abandonment is state in-

dependent. The abandonment probability depends entirely on the arrival process

after the adversary has joined the queue, hence the probability in (a) and (b) will

be the same. Since with the LCFS policy, a customer’s abandonment probability

does not depend on the number of customers in the queue when he arrives, it is

intuitive that the LCFS policy is a strong policy against an adversary who chooses

when to attack. We next present a theorem to formalise this idea.

Theorem 6.1. Consider a M/M/1 queue with preemptive service and customer

abandonment. Customers only remain available for service for a random time

that follows an exponential distribution, after which the customer will abandon

the system, whether the customer is still waiting in the queue or is already in

service. The LCFS policy minimises the abandonment probability of an adversary

who chooses which volume state to attack (partial information).

Proof. Let xπi denote the probability of abandonment if a customer arrives when

there are i customers in the system under policy π. Let pπi denote the steady state

probability that there are i customers already in the system upon arrival under

policy π. We define A∗ as the long-run fraction of customers who abandon with

any nonidling policy, which is invariant to any nonidling service policy. For any

policy π, including policies that incorporate strategic idling, we have that

A∗ ≤
∞∑
i=0

xπi p
π
i , (6.1)
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where the equality holds if π is nonidling. If the adversary chooses which volume

state to attack, then the worst case is for the adversary to achieve abandonment

probability maxi x
π
i . The optimisation problem faced by the server is given by

min
π

max
i
xπi (6.2)

Since the right-hand side of (6.1) is a weighted average of xπi , it follows that a

lower bound for maxi x
π
i is given by A∗ for all policies π. Hence, a lower bound for

(6.2) for all policies is given by

min
π

max
i
xπi ≥ A∗. (6.3)

Under the LCFS policy, xLCFS
i is equal for all i ≥ 0. Denote this probability by

xLCFS. Using (6.1), we have that

A∗ =
∞∑
i=0

xLCFS
i pi = xLCFS,

where equality holds since the LCFS policy is nonidling. Since the abandonment

probability of the LCFS policy achieves the lower bound A∗ given in (6.3), we

can conclude that the LCFS policy minimises the abandonment probability of an

adversary who chooses which volume state to attack.

Corollary 6.1. Consider a M/M/1 queue with preemptive service and customer

abandonment. Customers only remain available for service for a random time

that follows an exponential distribution, after which the customer will abandon

the system, whether the customer is still waiting in the queue or is already in

service. The LCFS policy minimises the abandonment probability of an adversary

who chooses which volume state and server state to attack (full information).

Proof. Since the adversary is more capable in the full information scenario, the

optimal value A∗ in Theorem 6.1 is a lower bound on the optimal value. Since the

LCFS policy achieves the lower bound A∗, it is optimal.
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In the case that the service time distribution is not exponential, then the prob-

lem becomes much more complicated. Preemptive service has two variations. In

the first variation, the service needs to start anew once interrupted; in the second

variation, the previous service effort is retained after service interruption, and the

service resumes when the same customer enters service again. In either of these two

cases, interrupted service often translates to wasted effort, because the customer

that receives partial service may abandon before entering the service again. The

optimal policy remains an open problem, and is outside the scope of this thesis.

6.1.2 The Case of Nonpreemptive Service

This section concerns a single queue case with nonpreemptive service. We first

assume that the service times follow an exponential distribution with rate µ. With

nonpreemptive service, once the service of a customer begins, it only concludes once

the service has been completed or the customer has abandoned. In practice, it is

simpler to implement service nonpreemptively to avoid the complication of service

interruption and resumption. We next show that the LCFS policy provides the

best performance guarantee among all nonidling policies in a single queue system

with exponential service times and nonpreemptive service.

Theorem 6.2. Consider a M/M/1 queue with nonpreemptive service and cus-

tomer abandonment. Customers only remain available for service for a random

time that follows an exponential distribution, after which the customer will aban-

don the system, whether the customer is still waiting in the queue or is already

in service. Among all nonidling policies, the LCFS policy minimises the abandon-

ment probability of an adversary who chooses which volume state to attack (partial

information).

Proof. Let xπi denote the probability of abandonment if a customer arrives when

there are i customers in the system under nonidling policy π. This probability

does not depend on the server state, because of the memoryless property of the

exponential service distribution. Let pi denote the steady state probability that
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there are i customers already in the system upon arrival for any nonidling service

policy. The long-run fraction of arriving customers who abandon by any nonidling

policy is given by

A∗ =
∞∑
i=0

xπi pi = xπ0p0 +
∞∑
i=1

xπi pi.

Denote the arrival rate by λ, the exponential service rate by µ, and the expo-

nential abandonment rate by θ. For all nonidling policies π, the probability of

abandonment of those customers arriving into an empty queue, xπ0 , is given by

xπ0 =
θ

θ + µ
.

The probability xπ0 is equal to the probability that a customer in service abandons

before service is complete. It is a function of the parameters µ and θ which are

independent of the service policy and hence is constant. The probability of arriving

into an empty queue is given by

p0 =

[
∞∑
n=0

(λ)n

{
n∏

m=1

(µ+mθ)

}−1 ]−1

,

which is a function of the arrival rate λ and the parameters µ and θ, and hence is

constant. Therefore,
∞∑
i=1

xπi pi = A∗ − xπ0p0, (6.4)

remains constant under all nonidling policies.

Since an arrival into an empty queue is taken into service immediately whereas

an arrival into a non-empty queue faces some initial wait before potential service,

xπi > xπ0 for all i ≥ 1. From this, we see that the adversary will have a greater aban-

donment probability if he joins the queue when it is non-empty. In the worst case,

the adversary maximises the abandonment probability and achieves maxi≥1 x
π
i .

The optimisation problem faced by the server is given by

min
π

max
i≥1

xπi (6.5)
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Since xπi ≤ maxi≥1 x
π
i , we have the following

∞∑
i=1

xπi pi ≤
∞∑
i=1

(
max
i≥1

xπi
)
pi =

(
max
i≥1

xπi
) ∞∑
i=1

pi =
(

max
i≥1

xπi
)
(1− p0).

Hence, using (6.4), for all nonidling policies π we have that

max
i≥1

xπi ≥
A∗ − xπ0p0

1− p0

. (6.6)

The constant given in the right-hand side of (6.6) provides a lower bound for (6.5).

Under the LCFS policy, xLCFS
i is equal for all i ≥ 1. Denote this probability by

xLCFS. From Equation (6.4), we have that

xLCFS =
A∗ − xπ0p0

1− p0

.

Since the abandonment probability of the LCFS policy achieves the lower bound

for (6.5), we can conclude that the LCFS policy minimises the abandonment prob-

ability of an adversary who chooses which volume state to attack in the partial

information scenario.

Please note that Theorem 6.2 states that the LCFS policy is optimal among

nonidling policies. If strategic idling is allowed, then the server may not always

want to serve a customer who arrives to an empty system. Instead, the server

can stay idle from time to time, such that a customer who arrives at a nonempty

system also has a probability to enter service right away. An optimal strategy

would use strategic idling so that the abandonment probability of a customer will

be the same regardless of the number of customers in system when he arrives. The

derivation of the optimal policy is outside the scope of this thesis, and remains an

open problem.

Corollary 6.2. Consider a M/M/1 queue with nonpreemptive service and cus-

tomer abandonment. Service times follow an exponential distribution with rate

µ. Customers only remain available for service for a random time that follows
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an exponential distribution with rate θ, after which the customer will abandon the

system, whether the customer is still waiting in the queue or is already in service.

Among all nonidling policies, the LCFS policy minimises the abandonment prob-

ability of an adversary who chooses which volume state and server state to attack

(full information).

Proof. Since the adversary is more capable in the full information scenario, the

optimal value is no smaller than that in Theorem 6.2. The additional service

time of the customer currently in service when the adversary arrives at a chosen

time point follows the same exponential distribution as the additional service time

when the adversary arrives at a random time point. Consequently, using the LCFS

policy, the server can obtain the same abandonment probability as in Theorem 6.2.

Hence the LCFS policy is optimal.

We next relax the assumption on the exponential service distribution, and allow

the service time to follow an arbitrary probability distribution. We next show that

the LCFS policy provides the best performance guarantee in a single queue system

with general service time distributions and nonpreemptive service.

Theorem 6.3. Consider a M/G/1 queue with nonpreemptive service and cus-

tomer abandonment. Customers only remain available for service for a random

time that follows an exponential distribution with rate θ, after which the customer

will abandon the system, whether the customer is still waiting in the queue or is

already in service. Among all nonidling policies, the LCFS policy minimises the

abandonment probability of an adversary who chooses which volume state to attack

(partial information).

Proof. The proof is exactly the same as the proof of Theorem 6.2, apart from the

following small detail. Let Z denote a random variable which represents the service

time of a customer, then xπ0 = 1− E[e−θZ ], which is constant under all nonidling

policies. The probability of arriving into an empty queue is also different to that

quoted in the proof of Theorem 6.2, but also remains constant under all nonidling
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policies.

In the case of generally distributed service times, we do not have a corollary

for the full information scenario. This is because the full and partial information

scenarios are no longer equivalent. If the adversary can choose which server state to

attack, then he prefers a server state which will occupy the server for the longest in

some stochastic sense. To facilitate the discussion, suppose that the service time

distribution possesses the increasing failure rate (IFR) property. This property

asserts that if x time units have already been spent on the service of a customer, the

residual service time is stochastically decreasing in x. This assumption is suitable

if the service of a customer draws increasingly nearer completion as it proceeds.

With IFR service times, the abandonment probability for the adversary arriving at

some chosen time point in the service cycle will not be equal to that when arriving

at some random point. In the full information scenario, the adversary knows

the server state. The adversary knows that he can maximise his abandonment

probability from each initial volume state by joining the queue at the exact instant

a new service is initiated. This choice ensures the longest possible wait for the

adversary before he can potentially be taken into service. However, if the server

knows the adversary will do this, he can use this information to recognise that the

new customer joining the system at this time instant is the adversary. Hence, at

the end of the service cycle, the server will pick out the adversary for service. A

service policy which does this is clearly not LCFS. Taking this further, in response

the adversary may wish to disguise his arrival somehow, perhaps by waiting some

small random time after a new service cycle is initiated before joining the system.

Identifying a robust service policy in the full information scenario with general

IFR service times remains an open problem, and is outside the scope of this thesis.

In practice, the server may or may not know the capability of the adversary.

The adversary may or may not know the volume state or the server state, or

in some cases the adversary may be able to take a guess with some success. If

the adversary is not as capable as assumed in the full information scenario or
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the partial information scenario, then the theorems in this section can provide an

upper bound on the abandonment probability of a less capable adversary.

6.2 Multiple Queues with Decentralised Control

We next generalise the problem to systems with multiple queues. We will con-

sider the case in which service is nonpreemptive and service times are generally

distributed with the IFR property. In a multiple queue system, the adversary

chooses which queue to attack and the time at which he joins that queue based on

the state of the system. As before, the state consists of two elements: the volume

state and the server state. The volume state now refers to the number of customers

in each queue. We will denote the volume state by n = (n1, ..., nk), where nj is

the number of customers in queue j. We consider the partial information scenario,

such that the adversary chooses the volume state to attack, but not the server

state. This scenario may impose too strong an assumption on the capability of

the adversary, however, we study this scenario to develop performance guarantees

for the server in practice. We will study decentralised control in this section, and

centralised control in the next section.

Control of the system by the security team is decentralised. Consider the case

in which the server represents a centralised computer centre which is capable of

comparing a suspect’s biometric data to a large database. Also, each queue rep-

resents a major airport. In decentralised control, the information available to the

server consists of which queues require service. The server does not have informa-

tion regarding the arrival times of customers within each queue. Each time the

centralised server becomes available it is allocated to a queue (an airport), which

is under its own local control. At this point, the server gains access to the arrival

time information of customers within the queue and consequently a customer is

selected for service based on this information. In effect, a feasible service pol-

icy for the server then comprises a two-staged decision: which queue, then which

customer.
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The server does not know the queue and state in which the adversary will

attack the system. If the server uses policy π and the adversary attacks queue j

in state n, denote the expected damage inflicted by Cπ
j (n). The objective of the

server is to determine a robust service policy which provides the best performance

guarantee against the best decision the adversary could make. We consider the

case of nonidling service policies. Namely, the server wants to solve the following

optimisation problem over the class of nonidling service policies:

min
π

max
j,n

Cπ
j (n). (6.7)

In general, it is very difficult to solve (6.7). Firstly, there is no known method

to compute Cπ
j (n) for any combination of policy π, queue j, and volume state

n. The best we can do is estimate these expected damages through simulation

for given choices of π, j, and n. Secondly, the decision spaces of both the server

and adversary are infinite. Hence, estimating the expected damages under all

combinations of π, j, and n is not possible. Given the inability to solve (6.7),

our objective is to develop a heuristic approach to this problem to obtain a strong

upper bound performance guarantee for (6.7).

The first step in our heuristic approach is to simplify the optimisation problem

in (6.7). We argue that the largest expected damages inflicted by the adversary

occur when the adversary attacks when there are a vast number of customers in

each queue. Our rationale is that the adversary joins the system in amongst a

large number of other customers, since the server will always be kept busy with

demands from other customers in all queues. No other queue will empty during

the lifetime of the adversary and there will always be other customers which the

server could potentially serve ahead of the adversary. We will assume that by vast

we mean that the worst case for the server occurs when the adversary attacks when

the number of customers in each queue approaches infinity, which will be referred

to as the over-crowded state. Although such an over-crowded state would never

be realised in practice, the analysis emerging from this worst case scenario would
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provide a performance guarantee in practice. We will drop the dependence on the

volume state n and write Cπ
j for the expected damage inflicted when the adversary

joins queue j in the over-crowded state and the server uses policy π. Let the value

of the best performance guarantee be given by C∗, then the optimisation problem

given in (6.7) is restricted to the following optimisation problem

C∗ = min
π

max
j
Cπ
j . (6.8)

The simplification from (6.7) to (6.8) does not mean it can be solved. How-

ever, it does make it easier to develop a heuristic approach since this formulation

incorporates the effect of the adversary’s choice of volume state and the problem

which remains is one of the adversary’s choice of queue and the server’s choice of

policy.

6.2.1 Heuristic Policies

In designing a heuristic decentralised policy, recall the strong performance of the

LCFS policy in the case of a single queue. In the two-staged decision required

in a decentralised policy, we propose that once the server has been allocated to a

queue, the queue will exercise the LCFS policy locally ; that is, allocate service to

the customer who most recently joined the queue. Consequently, we will focus on

the first part of the server’s decision of which queue to serve each time the server

becomes available.

We study three heuristic policies. A simple heuristic policy is the Round Robin

(RR) policy, which we define as follows:

Definition 6.1. Under the Round Robin (RR) policy, the server continues to serve

the same customer until either service completion or customer abandonment. Each

time the server needs to select a new customer to serve, allocate the server to a

queue according to a simple schedule. Under this schedule, the server is allocated

to each queue in turn and after which all queues have been visited, the cycle is
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repeated. If the server is allocated to an empty queue, it is skipped and the server

is allocated to the next queue in the schedule. Once allocated to a queue, a customer

is selected for service according to the LCFS policy.

Consider the simple case of a symmetric system in which all queues have the

same arrival rates, customer lifetimes, service times, and damages. Intuitively,

since all queues are identical, a good service policy will treat all queues fairly and

offer the same amount of service in each queue. The RR policy is fair to each

queue, offering each the same amount of service and returning to each queue after

random amounts of time which are equal in distribution. From this observation, it

is intuitive that the RR policy is a strong policy in the symmetric system described.

However, in the case of an asymmetric system where the queues differ in their

characteristics, there is no way to naturally extend the RR policy to account for

the asymmetry.

We introduce two heuristic policies which can be extended to asymmetric sys-

tems. These heuristics reflect an alternative approach to allocating the server.

Instead of allocating according to a schedule, we can randomly allocate the server

to a queue according to a probability vector. The first of these heuristic policies

is the Departure Reselection (DR) policy. We define the DR policy as follows:

Definition 6.2. The Departure Reselection (DR) policy is parametrised by a prob-

ability vector, or reselection vector r = (r1, ..., rk) in which 0 ≤ rj ≤ 1 and∑
j rj = 1. Under the DR policy with reselection vector r, the server continues to

serve the same customer until either service completion or customer abandonment.

Each time the server needs to select a new customer to serve, allocate the server

to a queue according to the reselection vector r. If there are one or more empty

queues, the server is allocated to nonempty queue j with probability proportional

to rj. Once allocated to a queue, a customer is selected for service according to

the LCFS policy.

In the simple symmetric system described previously, setting each rj equal is

another way to achieve a fair policy which we believe would be strong. We also

164



define the Service Reselection (SR) policy in an analogous way as follows:

Definition 6.3. The Service Reselection (SR) policy is parametrised by a probabil-

ity vector, or reselection vector r = (r1, ..., rk) in which 0 ≤ rj ≤ 1 and
∑

j rj = 1.

Under the SR policy with reselection vector r, the server continues to serve in the

same queue until a service completion occurs. If the current customer in service

abandons, another customer from within the same queue is selected according to

the LCFS policy. If the queue is now empty and there is no customer from within

the same queue to serve, the server needs to be allocated to a new queue. Each

time the server needs to be allocated to a new queue, allocate according to the res-

election vector r. If there are one or more empty queues, the server is allocated to

nonempty queue j with probability proportional to rj. Once allocated to a queue,

a customer is selected for service according to the LCFS policy.

The DR and SR policies are similar in the way the server is allocated to a queue

according to a reselection vector. However, they differ in when the server becomes

available for re-allocation. The server will be re-allocated far more frequently under

the DR policy than under the SR policy.

The DR and SR policies define two classes of service policies, each parametrised

by the reselection vector r. We will focus on the DR policy from this point, but

point out that all of the subsequent discussion can also be applied to the SR policy

in the same way. We write Vj(r) for the expected damage from the over-crowded

state when the adversary joins queue j under the DR policy with parameter r. If

we restrict the server to only using service policies from the class of DR policies,

we can seek the best performance guarantee for the system from within the class

of DR policies by solving the following optimisation problem

min
r

max
j
Vj(r). (6.9)

The best performance guarantee from within the class of DR policies is an

upper bound for the best performance guarantee C∗ over all decentralised policies.
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The optimisation problem given in (6.9) of finding the best performance guarantee

within the class of DR policies corresponds to optimising the reselection vector r.

Let D be the set or domain over which we define the functions Vj : D → R for

j = 1, ..., k. The set D = {r : 0 ≤ rj ≤ 1,
∑

j rj = 1}, namely the unit simplex

in k − 1 dimensions. The optimisation problem given in (6.9) is equivalent to a

global optimisation problem of finding r∗ ∈ D such that maxj Vj(r
∗) ≤ maxj Vj(r)

for all r ∈ D.

We must estimate the expected damages Vj(r) for given vectors r ∈ D through

simulation. If we were able to estimate these for every r ∈ D, then we would

be able to solve the global optimisation problem. However, this is not practical.

Simulation is a computationally costly process, hence we can view the estimation

of Vj(r) through simulation as an expensive black box. In practice we wish to

find r̃ ∈ D such that maxj Vj(r̃) is close to maxj Vj(r
∗) without requiring too much

estimation using the black box. The next section presents an algorithm to compute

r∗.

6.2.2 Computing the Best DR and SR Policies

We will present a method for solving (6.9) through an intelligent use of the expen-

sive simulation black box which is based on response surfaces. Response surfaces

are approximations of parametrised functions based on response values of the func-

tion. The main advantage of response surfaces in our application are their ability to

provide inexpensive approximations to the simulation black box functions. These

approximations can be used to identify candidate vectors r for estimation using

the expensive black box. We will follow a method in Regis & Shoemaker (2005)

known as the Constrained Optimization using Response Surfaces (CORS) method.

This method was developed in the context of a classic problem of minimising an

expensive black box function, as opposed to the minimax problem posed in (6.9);

however, the adjustment is straightforward. The CORS method was shown to

converge to the global minimum under quite general conditions.
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In the original application of the CORS method in Regis & Shoemaker (2005),

an initial set of points in D are chosen and evaluated and a response surface is

fitted to the data to approximate the expensive black box function to be minimised.

The initial set of points are chosen to be well-spread, for which the authors use

a symmetric latin hypercube design. The response surface used is a radial basis

function approximation. The next point for costly function evaluation is chosen to

be a point which minimises the response surface subject to distance constraints.

These distance constraints ensure that the proposed point is chosen to be at least

some distance from all previously evaluated points. The method is iterative since

it updates the response surface model after each new point is evaluated and then

reselects the next point for function evaluation. One aim is to find points with

good objective function values, which can be done by exploitation of the current

information. Another aim is to improve the response surface and hence future

iterations by exploration of regions for which little information exists. The method

manages the trade-off between exploration and exploitation by allowing the distance

constraint to cycle from high to low values.

We now summarise our application of the CORS method to (6.9), with more

details to follow. To facilitate discussion, we present the method in the context of

the DR policy. The best SR policy can be computed in a similar manner.

1. Select n well-spread initial points ri for i = 1, ..., n. Let R = {r1, ..., rn}.

2. For r ∈ R, simulate the DR policy with reselection vector r, and record the

expected damages in each queue Vj(r) for j = 1, ..., k.

Repeat steps 3 to 6 until some stopping condition is met:

3. Fit k response surface models Ṽj for each queue j using the data, j = 1, . . . , k.

We use a radial basis function interpolation for each response surface.

4. Compute the maximin point

δ = max
r∈D

min
ri∈R
||r− ri||
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5. Select a candidate point rnew for simulation by solving the following con-

strained approximate optimisation problem

min
r∈D

max
j
Ṽj(r) (6.10)

Subject to ||r− ri|| ≥ βδ for all ri ∈ R

where β ∈ [0, 1] is a predetermined constant.

6. Add the candidate point rnew to R, simulate its performance Vj(rnew) for

each queue j, update the data, and go to Step 3.

In step 1, in contrast to selecting initial points in a hypercube through a deter-

ministic design, as was done in Regis & Shoemaker (2005), the well-spread initial

points are selected by generating a set of uniform random samples from the unit

simplex in k−1 dimensions. This is done by sampling from the symmetric Dirich-

let distribution with parameter 1. In Regis & Shoemaker (2005), the convergence

of the method did not depend on the initial points used. Hence, we adopt an

approach which sensibly achieves a set of well-spread points in a unit simplex. In

step 3, each response surface is fitted using a radial basis function interpolation

method. This is the same radial basis function interpolation method described in

Chapter 4 in the context of the API algorithm. We encourage the reader to refer

to Chapter 4 for details.

The maximin point δ is the point in D which is the furthest away from all

previously evaluated points. The distance constraint is implemented using the

maximin point along with the distance parameter β, where 0 ≤ β ≤ 1. The

distance parameter β is set to cycle over a sequence of decreasing values, starting

with a high value close to 1 and ending with β = 0. We represent the cycle sequence

of β values by (β1, β2, ..., βN = 0), where N is the cycle length. The cycling of β

divides the CORS method into a sequence of rounds, where each round consists of

N iterations. The number of rounds can be used as a stopping condition for the

method. The complete CORS method then consists of an initial phase followed
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by a fixed number of further rounds.

Solving the constrained approximate minimax problem (6.10) with β = 1 ex-

plores the set D, whereas solving with β = 0 exploits the current approximations

Ṽj(r). A cycle consisting of β values close to one focuses on exploration. This is

not desirable since the method uses all of its costly function evaluations construct-

ing good radial basis function approximations without ever trying to identify a

point with a good objective function value. A cycle consisting of zeros represents

the extreme case of pure exploitation. This may not be desirable if the underlying

radial basis function approximation is not adequate and the method may become

trapped at an undesirable point. We want a cycle sequence which balances be-

tween these two extremes, which explores earlier and exploits later in each round.

Hence, this underpins the rationale of cycling over a sequence of decreasing values.

Ending each round with β = 0 ensures that we periodically solve an approximate

version of the optimisation problem (6.9).

We note that in step 4 when the maximin point is computed we must solve an

optimisation problem. We propose an approximate solution of this optimisation

problem by considering a set of points defined on a fine grid over D. Through eval-

uation of the objective at each point in the fine grid we simply take the largest of

these to identify approximately the maximin point. We adopt a similar approach

in step 5 when we solve (6.10) since we are able to evaluate both the objective

function and the distance constraints at each fine grid point. The point which

satisfies the distance constraints with the lowest objective function is the approx-

imate solution to (6.10). In both cases, a finer grid results in a more accurate

solution at the cost of more computational effort.

At the end of the CORS method we obtain a strong reselection vector r which

should be close to to the optimal reselection vector r∗. However, the CORS method

is restricted to reselection vectors on a grid in D. Below we attempt to improve

the output from the CORS method by finding a reselection vector r off the grid.

Consider a TPZS game between the server and the adversary. The robust opti-
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misation problem of the server is equivalent to the server’s problem in a TPZS

game between the server and adversary. In the TPZS game, pure strategies of the

adversary correspond to joining each of the k queues in the over-crowded state and

pure strategies of the server correspond to decentralised service policies. We can

formulate a finite version of the TPZS game in matrix form in which the server

is restricted to a finite set of service policies. We can use the set of DR policies

developed throughout the CORS method as the server’s set of service policies in

the matrix game. The payoffs in the matrix game are the estimated expected

damages Vj(r) for each queue j and vector r ∈ R. We can formulate the matrix

game from the perspective of the server to obtain a mixed strategy over his set of

DR policies. The value of the matrix game provides a performance guarantee for

the server. This performance guarantee will be at least as good as the one given

by the DR policy with the final reselection vector in the CORS method, which

corresponds to a pure strategy in the matrix game.

It is possible to extend this approach by first solving the matrix game to obtain

a mixed strategy q for the server over his set of pure strategies. Suppose the

server has m pure strategies where m = |R|. We define a new reselection vector

rnew according to the weighted average rnew =
∑m

i=1 qiri. We simulate the DR

policy with reselection vector equal to rnew, estimate the expected damages in

each queue, and add this new service policy to the matrix game. We repeat this

procedure until no further new points can be identified. In adding new service

policies to the matrix game, the server can potentially improve the value of the

game. This procedure allows us to identify reselection vectors which do not lie on

the grid and which may be better than any feasible vector which could be found

on the grid. Consequently, our heuristic approach is to adopt the optimal mixed

strategy from the finite TPZS matrix game resulting from the CORS method

followed by the extension described.
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6.3 Multiple Queues with Centralised Control

In this section, we study centralised control for systems with multiple queues. In

centralised control, the server decides which customer to serve from all customers in

the system. The control of each queue is centralised and not local. The server has

access to more information upon which to base the decision of which customer to

select for service. In the example of the server representing a centralised computer

centre and each queue representing a major airport, the server keeps track of all

of the suspects in each airport. It is possible to compare the arrival times of

customers across queues, whereas in the case of decentralised control it was only

possible to compare the arrival times of customers within queues once the server

was allocated to that queue. Decentralised service policies are still feasible in

the case of centralised control, but given the greater capability of the server in

the centralised control, we would expect the server to achieve better performance

guarantees on the system.

All other aspects of the problem are the same as in the case of decentralised

control. The objective of the server is to determine a robust service policy which

provides the best performance guarantee against the best decision the adversary

could make in the partial information scenario. The optimisation problem for the

server is given by (6.7). The difference we now have is that the server seeks the

robust service policy over the set of centralised service policies.

The key observation when moving from decentralised control to centralised

control is that the server now knows and can compare the arrival times of all cus-

tomers in the system, across queues. Hence, the server can build this information

into the service policy. In a single queue system, we considered the LCFS policy

as the policy which served the most recently arrived customer in the queue. We

can generalise this idea to define the LCFS policy in a multiple queue system. In

a multiple queue system, the server can sort the arrival times of every customer

in the system and the LCFS policy serves the most recently arrived customer into

the system.
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We will first consider the case of a system with multiple symmetric queues. It is

a consequence of Theorem 6.3 that the LCFS policy provides the best performance

guarantee in (6.7).

Corollary 6.3. Consider a system with multiple queues in which service is non-

preemptive and customers can abandon the system. Customers arrive into each

queue according to independent Poisson processes. Service times in each queue

follow an arbitrary probability distribution. Customers only remain available for

service in each queue for random times that follow exponential distributions, after

which customers will abandon the system, whether the customer is still waiting

in the queue or is already in service. The system is symmetric, in that the ser-

vice time distributions, the customer lifetime distributions, and damages inflicted

in each queue are common. The Poisson arrival rates in each queue may differ.

Among all nonidling policies, the LCFS policy minimises the expected damage of

an adversary who chooses which queue and volume state to attack (partial infor-

mation).

Proof. The system with multiple symmetric queues is equivalent to a single queue

with multiple classes of customers, if we label a customer in queue i as a class i

customer. The arrival rate is
∑

i λi for the single queue.

From Theorem 6.3, the LCFS policy is optimal for a single queue model. The

optimal value in a single queue model is the abandonment probability of a customer

that arrives into a nonempty queue under the LCFS policy. Denote this value by

V ∗.

The difference between the M/G/1 queue with multiple classes of customers

we consider here and the M/G/1 queue in Theorem 6.3 is that, in the latter the

adversary can decide to join the queue based on
∑

i ni, while in the former the

adversary can choose based on specific volume state n = (n1, n2, ..., nk). The

adversary chooses the volume state and a class for himself. Since the adversary

has more choices in the M/G/1 queue with multiple classes of customers, the

optimal abandonment probability is at least V ∗. Hence, V ∗ is a lower bound for
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the optimal value.

However, being able to choose the volume state and a class for himself does

not help the adversary, since the service time and lifetime of each customer class is

identical. If the server uses the LCFS policy, the abandonment probability will be

V ∗ for
∑

i ni ≥ 1. If the adversary chooses to arrive in the volume state (0, 0, ..., 0),

then the abandonment probability is less than V ∗.

For the M/G/1 queue with multiple customer classes, since the LCFS policy

achieves V ∗, which is a lower bound for the optimal value, the LCFS policy is

optimal. Hence, the LCFS is optimal for the system with multiple symmetric

queues.

Whilst the LCFS policy provides the best performance guarantee in symmetric

systems, we would not expect this to be the case in general when the characteristics

of each queue are different. Because (6.7) is very difficult to solve, our objective

is to develop a heuristic approach to this problem to obtain a strong upper bound

performance guarantee for the system. We will evaluate our heuristic based on

its performance when an adversary arrives in an over-crowded state, since the

adversary will achieve the maximal abandonment probability for any service policy.

6.3.1 Last Come First Served with Probabilistic Skipping

Motivated by the strong performance of the LCFS policy, we propose a heuristic

based on the spirit of the LCFS policy. Under the LCFS policy, from the over-

crowded state, denote the expected damage if the adversary joins queue j by

CLCFS
j . These expected damages will be unequal in each queue and the worst-case

expected damage will be achieved if the adversary joins queue ω which satisfies

ω = argmaxj C
LCFS
j . Intuitively, we can reduce the expected damage in queue

ω by instead using a policy which provides more service in this queue than the

LCFS policy. This would be provided at the expense of less service in the other

queues, increasing the expected damage if the adversary attacks the other queues.
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However, the net effect would be to reduce the largest of these expected damages,

hence a better performance guarantee for the server.

We can use this observation as the motivation for a heuristic policy designed

to achieve this reduction in expected damage relative to the LCFS policy. We will

refer to this heuristic policy as Last Come First Served with Probabilistic Skipping

(LCFS-PS). We define the LCFS-PS policy as follows:

Definition 6.4. The Last Come First Served with Probabilistic Skipping (LCFS-

PS) policy is parametrised by a vector of probabilities, or skipping vector s =

(s1, ..., sk) in which 0 ≤ sj ≤ 1 and sω = 1. Under the LCFS-PS policy with

skipping vector s, the server continues to serve the same customer until either

service completion or customer abandonment. Each time the server needs to select

a new customer to serve, identify the most recent arrival in each queue and order

them by their arrival times into a list. Starting with the most recent arrival in this

list, allocate the service to the customer with probability sj or skip it and move

to the next customer with probability 1− sj, if the customer comes from queue j.

The process is repeated if all customers in the list are skipped, until the service is

allocated.

Note that each nonempty queue has only one customer who is eligible to receive

service, the most recently arrived customer. None of the other customers in the

same queue will be served, whether the first customer is skipped or not. If the

most recent arrival in the sorted list is skipped, the second customer considered

may not be the second most recent arrival into the entire system, rather it is the

most recent arrival into one of the other queues. In the skipping vector, setting

sω = 1 ensures that customers from the queue with the highest expected damage

under the LCFS policy will not be skipped, as they would not be under the LCFS

policy. For the other queues, setting sj ≤ 1 for j 6= ω, ensures that sometimes

service is not provided in these queues, even if they contain the most recent arrival,

and instead is provided in queue ω. The result of this procedure is to reduce the

expected damage achieved by the adversary if he joins queue ω under the LCFS
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policy at the expense of higher expected damages in the other queues, with the net

effect being to reduce the maximal expected damage the adversary could inflict

over all queues.

The LCFS-PS policy defines a class of service policies, parametrised by the

skipping vector s. The extreme case of s with sj = 1 for j = 1 to k represents

the LCFS policy, hence the LCFS policy belongs to the class of LCFS-PS policies.

We write Wj(s) for the expected damage from the over-crowded state when the

adversary joins queue j under the LCFS-PS policy with parameter s. If we restrict

the server to only using service policies from the class of LCFS-PS policies, we can

seek the best performance guarantee for the system from within the class of LCFS-

PS policies by solving the following optimisation problem

min
s

max
j
Wj(s). (6.11)

The best performance guarantee from within the class of LCFS-PS policies is an

upper bound for the best performance guarantee over all centralised policies. The

optimisation problem given in (6.11) of finding the best performance guarantee

within the class of LCFS-PS policies corresponds to optimising the skipping vector

s.

Problem (6.11) is analogous to the problem of optimising the reselection vector

for the DR and SR policies in (6.9) in the case of decentralised control. Our

approach to solving (6.11) is analogous to the approach taken to solve (6.9). One

difference with the LCFS-PS policy is that the the domain D over which we define

the functions Wj : D → R for j = 1, ..., k are given by D = {s : s ∈ [0, 1]k with

sw = 1}, namely the unit hypercube in k − 1 dimensions. Another key difference

is that estimating the expected damages Wj(s) for given vectors s ∈ D through

simulation is a far more challenging task for the LCFS-PS policy. Other than this,

we will use the same approach of the CORS method for optimising the skipping

vector of the LCFS-PS policy.
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6.3.2 Simulation Model for LCFS-PS Policy

Estimating the expected damages in each queue under the LCFS-PS policy, namely

Wj(s), through simulation is not straightforward. To replicate the system expe-

rienced by the adversary, firstly we must create an over-crowded state for the

adversary to arrive into. Secondly, upon arrival the server must have been serv-

ing according to LCFS-PS policy in an over-crowded state for some time to the

extent that the service process is in equilibrium. This is required to ensure that

the adversary arrives correctly at a random point in the service cycle. The main

difficulty in simulating the LCFS-PS policy is the need to allocate the server based

on the arrival time of customers. This difficulty is enhanced with an over-crowded

state.

We will first give a broad description of the simulation model before focusing

on specific details. In the simulation model, we denote the adversary by customer

A who arrives into the system at time 0. Customers who arrive before time 0 are

referred to as old customers, while customers who arrive after time 0 are referred

to as new customers. At time 0 there are m old customers in the system who

arrived before time 0 and did not yet abandon. We want to evaluate the LCFS-PS

policy in the over-crowded state, so we will take m → ∞. In the time interval

(−∞, 0], the server uses the LCFS-PS policy. At time 0, the service process is

in equilibrium and customer A arrives into one of the queues at some random

point during the service cycle. In particular, the server will be engaged in service

in a particular queue, with some additional service time remaining. After the

arrival of customer A, other new customers also arrive into the system according

to independent Poisson processes. After time 0, each time the server becomes

available he applies the LCFS-PS policy to select a customer. The simulation

continues until customer A is either taken into service or abandons the queue.

Within the simulation, we maintain a state vector for the new customers (in-

cluding customer A). The state vector includes the arrival time, abandonment

time, service requirement, and queue of each customer. We use the state vector
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when allocating the server according to the LCFS-PS policy after time 0. Before

time 0 and at times when the server skips over all new customers under LCFS-

PS, the server is allocated to old customers. It turns out that we do not need to

maintain a state vector for old customers, and below we explain why.

Consider the k queues without the service process. Each queue can be viewed as

an M/M/∞ queue, if we interpret the lifetimes until abandonment as the service

times. Let Nj denote the number of customers in queue j in steady state for

j = 1 to k. The random variables N1, ..., Nk are independent, with Nj having a

Poisson distribution with mean λj/θj. One way to see that Nj follows a Poisson

distribution is to reset the clock time to 0 at steady state. A queue j customer

that arrived at time t ≤ 0 would still be in the queue at time 0 if his lifetime is

greater than −t, the probability of which is eθjt for t ≤ 0. Therefore, we can think

of customers in queue j at time 0 as the number of events arriving according to

a nonhomogeneous Poisson process in (−∞, 0], with intensity function λje
θjt for

t ≤ 0. Hence, Nj follows a Poisson distribution with mean given by

∫ 0

−∞
λje

θjtdt =
λj
θj
.

Let there be m old customers in the system at time 0. The joint probability

distribution of N1, ..., Nk, conditional on
∑

j Nj = m, follows a multinomial distri-

bution. Write Nj,m(t) for the random variable representing the number of queue

j old customers at time t ≥ 0, conditional on there being m customers at time 0.

Taking the marginals of the multinomial joint distribution at t = 0, we infer that

Nj,m(0) follows a binomial distribution with parameters m and

λj/θj∑k
i=1 λi/θi

.

In addition, conditional on Nj,m(0) = nj,m(0), the random variable Nj,m(t) follows

a binomial distribution with parameters nj,m(0) and e−θjt. The random variable
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Nj,m(t) follows a binomial distribution with parameters m and

qj ≡
λj/θj∑k
i=1(λi/θi)

e−θjt.

Conditional on Nj,m(t) = nj,m(t), the joint distribution of the arrival times of the

old customers in queue j at time t is the order statistics of nj,m(t) independent

random variables with density function θje
θj t for t ≤ 0. This is the exponential

distribution with rate θj, when we stand at time 0 and look backwards in time.

Suppose there are m old customers at time 0. Write Aj,m(t) for the event

that the most recent old customer is in queue j at time t. Let Nm(t) be the

joint distribution of the Nj,m(t), with nm(t) a realisation of this joint distribution.

The probability of Aj,m(t), conditional on nm(t), is derived from the fact that the

minimum of a set of exponential random variables is also exponential. We are

interested in the probability that the minimum of these is from queue j. Hence,

we have

P{Aj,m(t)|Nm(t) = nm(t)} =
θjnj,m(t)∑k
i=1 θini,m(t)

.

We wish to determine

lim
m→∞

P{Aj,m(t)} = lim
m→∞

E

[
θjNj,m(t)∑k
i=1 θiNi,m(t)

]
.

Since Nj,m(t) follows a binomial distribution with parameters m and qj, using the

law of large numbers, as m→∞,

θjNj,m(t)

m
→ θjqj (6.12)

almost surely. Similarly, as m→∞,

∑k
i=1 θiNi,m(t)

m
→

k∑
i=1

θiqi
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almost surely, and so

m∑k
i=1 θiNi,m(t)

→ 1∑k
i=1 θiqi

(6.13)

almost surely.

Putting equations (6.12) and (6.13) together we get

θjNj,m(t)∑k
i=1 θiNi,m(t)

=

(
θjNj,m(t)

m

)(
m∑k

i=1 θiNi,m(t)

)
→ θjqj∑k

i=1 θiqi

almost surely, as m→∞. Since the sequence of random variables

θjNj,m(t)∑k
i=1 θiNi,m(t)

, m = 1, 2, . . .

converges almost surely to

θjqj∑k
i=1 θiqi

,

it follows that the sequence of real numbers

E

[
θjNj,m(t)∑k
i=1 θiNi,m(t)

]
, m = 1, 2, . . .

converges to

θjqj∑k
i=1 θiqi

,

or equivalently,

lim
m→∞

E

[
θjNj,m(t)∑k
i=1 θiNi,m(t)

]
=

θjqj∑k
i=1 θiqi

.

Finally, we can conclude that

lim
m→∞

P{Aj,m(t)} = lim
m→∞

E

[
θjNj,m(t)∑k
i=1 θiNi,m(t)

]

=
θjqj∑k
i=1 θiqi

=
λje
−θjt∑k

i=1 λie
−θit

. (6.14)

Further to the probability that the most recent customer being in queue j at time
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t being given by (6.14), we are also interested in the identity of the second most

recent customer and so forth. Suppose, at time t, we sort all old customers by their

arrival times and try to identify each customer, then as m→∞, each customer is

independently from queue j with probability given by (6.14).

In the simulation model we let the server start to work at a time before 0 long

enough so that the server will go through many service cycles before customer

A arrives at time 0. The actual time used depends on the customer lifetime

and service time distributions. Each time the server needs to select a customer

according to the LCFS-PS policy, we use the probabilities in (6.14) with t =

0 to create a temporary ordered list to make this allocation. The ordered list

corresponds to the order in which the most recent old customers in each queue

arrived, with the most recent in the system being first. We can use the probabilities

in (6.14) with t = 0 for all time points t < 0, since there is no difference between

the overcrowded state at t = 0 and t < 0. Further, although these probabilities

were derived by considering the system without the service process, since m→∞,

including the service process would not change the ordered list based on (6.14).

After the server has been allocated to a customer, we generate the time at

which the server will next become available as the minimum of the lifetime and

service time of the customer in service and move the clock time to this point.

We repeat this process of allocation under the LCFS-PS policy and advance the

simulation clock until the clock reaches time 0. At this point we record the time

at which the server will next become available for service. At time 0, customer

A arrives into one of the queues. We add customer A to a state vector of new

customers and generate new customers who arrive before the abandonment time

of customer A and add these to the state vector of new customers. From the time

at which the server is next available, the server uses the LCFS-PS policy, until

either customer A abandons or enters service.

We point out here that a simulation model for the DR and SR policies adopts

the same structure as described here. However, the DR and SR simulation models
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are significantly simpler to implement. At all times, we can allocate the server to

a queue simply using a probability vector, without the need to use ordered lists.

After time 0, we only need to maintain a state vector of customers in the same

queue as customer A in order to appropriately select the correct customer if the

server is allocated to this queue. At no point does the server skip a customer or do

we need to create an ordered list of old customers. These aspects of the simulation

models make them comparatively simpler.

Recall that our goal was to estimate the expected damages Wj(s) for j =

1, ..., k. For a fixed queue j, let W i
j (s) be an estimate of the expected damage from

replication i of the simulation model if the adversary joins queue j. We estimate

Wj(s) as the sample mean of a fixed number of replications of the simulation

model and repeat this process for j = 1, ..., k. To obtain the estimates from a

single replication for a fixed queue j, we consider 10,000 realisations of the system

and record the proportion of the realisations in which customer A is taken into

service. These proportions estimate the probability of the adversary entering into

service. Denote these proportions by ej. Let Zj be a random variable representing

the service time in queue j. Once in service, the probability of completing service

is given by E[e−θjZj ]. The estimate of the expected damage in a single replication

is then given by

dj
(
1− ejE[e−θjZj ]

)
.

6.3.3 Computing the Best LCFS-PS Policy

Recall the CORS method described in Section 6.2.2 for optimising the reselection

vector for the DR policy. We can apply the CORS method in a similar way to find

the best skipping vector for the LCFS-PS policy. We summarise our application

of the CORS method for the LCFS-PS policy as follows:

1. Select n well-spread initial points si for i = 1, ..., n using a lattice point set

method. Let S = {s1, ..., sn}.

181



2. For s ∈ S, simulate the LCFS-PS policy with skipping vector s, and record

the expected damages in each queue Wj(s) for j = 1, ..., k.

Repeat steps 3 to 6 until some stopping condition is met:

3. Fit k response surface models W̃j for each queue j using the data, j =

1, . . . , k. We use a radial basis function interpolation for each response sur-

face.

4. Compute the maximin point

δ = max
s∈D

min
si∈S
||s− si||

5. Select a candidate point snew for simulation by solving the following con-

strained approximate optimisation problem

min
s∈D

max
j
W̃j(s) (6.15)

Subject to ||s− si|| ≥ βδ for all si ∈ S

where β ∈ [0, 1] is a predetermined constant.

6. Add the candidate point snew to S, simulate its performance Wj(snew) for

each queue j, update the data, and go to Step 3.

In step 1, the well-spread initial points are selected using a lattice point set

method. This is the same lattice point set method described in Chapter 4 in the

context of the API algorithm. We encourage the reader to refer to Chapter 4 for

details. All other aspects of the method are the same as described in Section 6.2.2.

Once again, as we did for the DR and SR policies, we can potentially improve

upon the performance guarantee offered by the LCFS-PS with the final skipping

vector in the CORS method. We can formulate a finite TPZS matrix game in which

pure strategies of the server correspond to the set of LCFS-PS policies developed

in the CORS method. The procedure for adding more pure strategies to the
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matrix game which may not lie on the grid used in the CORS method is described

in Section 6.2.2. Overall, our heuristic approach is to adopt the optimal mixed

strategy from the finite TPZS matrix game resulting from the CORS method

followed by the iterative extension in Section 6.2.2. The value of the resulting

matrix game provides a performance guarantee for the server.

6.4 Numerical Examples

In this section we consider a set of numerical examples to assess the relative per-

formance of the heuristic approaches to (6.7) developed in Sections 6.2.1 to 6.2.2

and Sections 6.3.1 to 6.3.3. We begin by considering an example in a k = 3 queue

system in order to illustrate the CORS method in more detail.

Example 6.1: Consider the following example system in which there are k = 3

queues. Service is nonpreemptive and the service time distributions in each queue

follow independent Gamma distributions. The shape and rate parameters, aj and

bj respectively, characterise the service time distribution in queue j, hence expected

service times are given by aj/bj. The parameters of the system are as follows:

(d1, d2, d3) = (1, 1, 1)

(λj, aj, bj, θj) =


(4, 3, 20, 4) j = 1

(3, 1, 10, 0.5) j = 2

(2, 2, 14, 1.5) j = 3

We will demonstrate the application of the CORS method for finding the best

skipping vector for the LCFS-PS heuristic, discussed in Section 6.3.3. Firstly, we

use the simulation method discussed in Section 6.3.2 to estimate the expected

damages in each queue from an over-crowded state under the LCFS policy. This

corresponds to the LCFS-PS policy with skipping vector s = (s1 = 1, s2 = 1, s3 =

1). Since the damages in each queue are equal to one, the expected damages

are equivalent to the abandonment probabilities of the adversary. The vector of
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estimated abandonment probabilities in each queue under the LCFS policy is given

by (W1(s),W2(s),W3(s)) = (0.6635, 0.1556, 0.3863). The estimated abandonment

probability the server can guarantee by using the LCFS policy is 0.6635. Since

the solution of ω = argmaxjWj(s) is given by ω = 1, we set s1 = 1 in all skipping

vectors of the LCFS-PS heuristic. Hence, we seek to find the best skipping vector

over the domain D = {s : s ∈ [0, 1]2 with s1 = 1}, which is equivalent to optimising

the elements s2 and s3.

In step 1 of the CORS method, we select n = 5 initial skipping vectors using the

lattice point set method described in Chapter 4. In the lattice point set method,

we generate skipping vectors s = (1, s2, s3), where (s2, s3) are given by ((zj mod

5)/5) for 0 ≤ j ≤ 4 and z = (2, 3). We set the distance parameter β to cycle

over the sequence (β1, β2, β3, β4) = (0.95, 0.25, 0.03, 0). We also set the number of

rounds to be 5, where each round consists of 4 iterations. In defining a grid over

which we solve the optimisation problems, we take each of s2 and s3 in the range

from 0 to 1 inclusive, at intervals of 0.01. Hence, the grid consists of 10,201 points.

Figure 6.1 shows the points (s2, s3) from the set of skipping vectors s in S

developed through the CORS method at the end of the initial phase and at the

end of each round. Figure 6.2 shows the radial basis function approximations W̃j

for each queue 1 ≤ j ≤ 3 at the end of the CORS method, after all 5 rounds.

In Figure 6.1, the skipping vectors identified throughout round 1 indicate good

approximations from the initial phase which were further refined in round 1. The

method made larger refinements in unexplored regions in further rounds and small

refinements in the previously explored regions. We see that at the end of each

round, in which the method exploits the current approximations, the skipping

vectors identified all lie in a small region where the main density of points are

situated, with s2 slightly smaller than 0.2 and s3 slightly larger than 0.3. From

Figure 6.2 we see that in this region, the approximations W̃j are nearly equal. The

interpolating nature of the approximations, together with the number of points

simulated in the main density, ensure accurate approximations and lead to a firm
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belief that the best skipping vector lies in this small region.
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Figure 6.1: Points (s2, s3) from the set of skipping vectors s in S developed in
the initial phase and each round of the CORS method for the LCFS-PS policy in
Example 6.1.

The final skipping vector identified by the method was (s2, s3) = (0.18, 0.33)

and the corresponding estimated abandonment probabilities were (W1(s),W2(s),W3(s)) =

(0.6134, 0.5838, 0.6124). The estimated abandonment probability the server can

guarantee by using the LCFS-PS policy with this skipping vector is 0.6134. We

can potentially find a better skipping vector which does not lie on the grid by

formulating a finite TPZS matrix game, as discussed in Section 6.3.3. The skip-

ping vector derived from the solution of the finite matrix game was (s2, s3) =

(0.1655, 0.3311) and the corresponding estimated abandonment probabilities were

(W1(s),W2(s),W3(s)) = (0.6133, 0.6105, 0.6109). The server can guarantee an esti-
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Figure 6.2: Approximations W̃j for each queue 1 ≤ j ≤ 3 at the end of 5 rounds
of the CORS method in Example 6.1. Also shown are the points (s2, s3) from the
set of skipping vectors s in S developed in the CORS method.

mated abandonment probability of 0.6133 with this skipping vector. In fact, using

the optimal mixed strategy for the server in the finite matrix game consisting of

all LCFS-PS policies developed, the server can achieve an estimated abandonment

probability of 0.6132. This is an improvement of 7.6% over the LCFS policy. If

we formulate the matrix game following the initial phase of the method, we can

guarantee an estimated abandonment probability of 0.6211, which shows that the

subsequent rounds of the CORS method deliver an improvement of 1.3% over this

alternative.

We will now consider wider sets of numerical examples for k = 3 queues, within

which we will estimate the performance of a number of heuristic policies. Specif-

ically, we will consider the following heuristics which were discussed throughout
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the chapter: LCFS, LCFS-PS, DR, SR, and RR. In addition, we will estimate

the performance of a heuristic we will label as PA. The PA heuristic formulates a

finite TPZS matrix game in which the server’s pure strategies correspond to the

k policies which prioritise each queue. Prioritisation can be achieved by setting a

reselection vector r in the DR policy with a single element equal to one and all

other elements equal to zero. The PA heuristic is analogous to the heuristic policy

developed and shown to perform well in the surveillance problem in Chapter 5,

which we also labelled PA.

We are unable to identify optimal service policies, or indeed the corresponding

best performance guarantees, in both cases of decentralised and centralised con-

trol. There is also no known lower bound for the best performance guarantees of

optimal policies. Consequently, we will focus on a comparison between the per-

formance of each of our heuristic policies. When referring to the performance of a

given heuristic, this corresponds to the estimated expected damage which can be

guaranteed by the heuristic. Whilst the LCFS-PS, DR, and SR heuristics repre-

sent classes of service policies and individual policies within these classes provide

performance guarantees, we are interested in the best performance guarantee we

are able to achieve within each class. Subsequently, as discussed in Sections 6.2.2

and 6.3.3, for the LCFS-PS, DR, and SR heuristics, we develop policies using the

CORS method and an iterative extension and the performance guarantee is the

value of the resulting finite TPZS matrix game. For the policies LCFS and RR,

the performance guarantees are simply the largest expected damages among the

queues under each policy. As discussed above, the performance guarantee of the

PA policy corresponds to the value of the associated finite TPZS matrix game.

In what follows, we make the following choices in our application of the CORS

method for the LCFS-PS, DR, and SR heuristics. Firstly, for the LCFS-PS heuris-

tic, we will apply the CORS method in the same manner as in the preceding ex-

ample system. That is, we fix ω by simulating the LCFS policy. For simplicity,

suppose ω = 1. We then generate n = 5 initial skipping vectors s = (1, s2, s3)
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using the lattice point set method described in Chapter 4, where (s2, s3) are given

by ((zj mod 5)/5) for 0 ≤ j ≤ 4 and z = (2, 3). We set the distance parameter β

to cycle over the sequence (β1, β2, β3, β4) = (0.95, 0.25, 0.03, 0) and set the number

of rounds to be 5, where each round consists of 4 iterations. In defining a grid over

which we solve the optimisation problems, we take each of s2 and s3 in the range

from 0 to 1 inclusive, at intervals of 0.01. For both the DR and SR heuristics, we

use the same number of rounds and β cycle. However, in contrast, we generate

n = 5 initial reselection vectors r = (1−r2−r3, r2, r3) by sampling the parameters

r2 and r3 uniformly from the unit simplex in k− 1 dimensions. In defining a grid,

we take each of r2 and r3 in the range from 0 to 1 inclusive, at intervals of 0.01,

and apply the constraint r2 + r3 ≤ 1.

We study three sets of examples with a similar design, with each set containing

nine scenarios reflecting different service time and lifetime conditions. In all of

our examples, service is nonpreemptive and the service time distributions in each

queue follow independent Gamma distributions. In describing the parameters of

the example systems, we denote the arrival rates in each queue by the vector

λ = (λ1, λ2, λ3), the abandonment rates in each queue by the vector θ = (θ1, θ2, θ3),

and the damages in each queue by the vector d = (d1, d2, d3). The service time

distribution in queue j is characterised by the shape and rate parameter pair

(aj, bj), hence we denote the service time distribution in each queue by the vector

g = ((a1, b1), (a2, b2), (a3, b3)).

In the first set of examples, there are three cases for the service time distribution

vector g (labelled case 1 to 3) and three cases for the abandonment rate vector θ

(labelled case A to C). Every combination of service time case and abandonment

rate case leads to nine distinct scenarios, labelled A1 to C3. The parameters in
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this set of examples are as follows:

λ = (4, 2, 3) (all scenarios); (6.16)

d = (1, 1, 1) (all scenarios); (6.17)

g = ((3, 20), (1, 10), (2, 14)) (service case 1); (6.18)

g = ((3, 10), (1, 5), (2, 7)) (service case 2); (6.19)

g = ((3, 5), (2, 5), (4, 7)) (service case 3); (6.20)

θ = (4, 2, 3) (abandonment case A);

θ = (2, 1, 3/2) (abandonment case B);

θ = (2/3, 1/3, 1/2) (abandonment case C);

We refer to this set of examples as the (2:1) set, since this reflects the ratio of the

largest to smallest abandonment rates in the vector θ for all scenarios. This ratio

is used as an intuitive measure of asymmetry between the queues in the system. In

each scenario in the (2:1) set, the queue with the shortest expected service times

also has the smallest arrival rate and longest lifetimes. Conversely, the queue with

the longest expected service times also has the largest arrival rate and shortest

lifetimes. In selecting these parameters, we attempt to reflect relative conditions

which may occur in a practical surveillance setting. For example, one area such

as a corridor through which suspects pass quickly, making them more difficult to

screen, compared to another area such as a lobby through which suspects pass

slowly, making them easier to screen. The estimated performance guarantees of

each heuristic in the (2:1) set of examples are reported in Table 6.1.

In our second set of examples, we use the same arrival rate and damage vectors

and the same cases for the service time distribution vector. We alter the abandon-

ment rate vectors θ in our definition of the abandonment cases A to C. Again, we

create nine distinct scenarios, A1 to C3. We refer to this set of examples as the

(4:1) set, once again to reflect the ratio of the largest to smallest abandonment

rates in the vector θ for all scenarios. The parameters in the (4:1) set of examples
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Scenario LCFS LCFS-PS DR SR RR PA

A1 0.6444 0.6208 0.7047 0.7272 0.7510 0.8292
3.67 -9.35 -12.85 -16.55 -28.69

A2 0.8325 0.8099 0.8515 0.8692 0.8908 0.8988
2.71 -2.28 -4.40 -7.00 -7.97

A3 0.9407 0.9276 0.9435 0.9528 0.9636 0.9567
1.39 -0.30 -1.28 -2.43 -1.70

B1 0.4918 0.4617 0.5653 0.5800 0.6185 0.7718
6.12 -14.94 -17.92 -25.76 -56.91

B2 0.7316 0.6971 0.7555 0.7698 0.8087 0.8405
4.71 -3.27 -5.22 -10.54 -14.89

B3 0.8892 0.8649 0.8880 0.8978 0.9230 0.9127
2.74 0.14 -0.96 -3.79 -2.64

C1 0.3170 0.2885 0.3800 0.3847 0.4558 0.7117
8.98 -19.89 -21.37 -43.79 -124.56

C2 0.6364 0.6126 0.6371 0.6406 0.7162 0.7641
3.75 -0.11 -0.65 -12.53 -20.06

C3 0.8334 0.8173 0.8207 0.8223 0.8703 0.8463
1.92 1.52 1.33 -4.43 -1.55

Table 6.1: Estimated abandonment probability under each heuristic in the (2:1)
set of examples. We use the LCFS policy as a reference and show the percentage
improvement of each heuristic over the LCFS policy in italics.

are given by (6.16) to (6.20), together with the following abandonment cases:

θ = (4, 1, 2) (abandonment case A);

θ = (2, 1/2, 1) (abandonment case B);

θ = (2/3, 1/6, 1/3) (abandonment case C);

The (4:1) set represents example systems which have greater asymmetry between

the queues than the (2:1) set examples. The estimated performance guarantees of

each heuristic in the (4:1) set of examples are reported in Table 6.2.

In our final set of examples, once again we create nine distinct scenarios, A1

to C3, using the same parameters as used in the (2:1) and (4:1) example sets.

Once again, we alter the abandonment rate vectors θ in our definition of the

abandonment cases A to C. We refer to this set of examples as the (8:1) set, once
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Scenario LCFS LCFS-PS DR SR RR PA

A1 0.6563 0.6156 0.6760 0.6925 0.7607 0.8119
6.20 -3.01 -5.51 -15.92 -23.70

A2 0.8456 0.8071 0.8367 0.8495 0.8995 0.8849
4.56 1.05 -0.46 -6.37 -4.65

A3 0.9486 0.9255 0.9356 0.9423 0.9684 0.9476
2.44 1.38 0.67 -2.09 0.11

B1 0.5036 0.4521 0.5335 0.5443 0.6260 0.7572
10.22 -5.96 -8.09 -24.31 -50.37

B2 0.7476 0.6904 0.7367 0.7470 0.8175 0.8247
7.65 1.46 0.08 -9.35 -10.31

B3 0.9001 0.8601 0.8772 0.8840 0.9292 0.9002
4.44 2.55 1.79 -3.23 -0.01

C1 0.3265 0.2756 0.3547 0.3582 0.4596 0.7042
15.59 -8.64 -9.70 -40.77 -115.68

C2 0.6475 0.6102 0.6274 0.6298 0.7216 0.7526
5.77 3.11 2.74 -11.43 -16.23

C3 0.8402 0.8146 0.8167 0.8174 0.8746 0.8368
3.04 2.79 2.71 -4.10 0.40

Table 6.2: Estimated abandonment probability under each heuristic in the (4:1)
set of examples. We use the LCFS policy as a reference and show the percentage
improvement of each heuristic over the LCFS policy in italics.

again to reflect the ratio of the largest to smallest abandonment rates in the vector

θ for all scenarios. The parameters in the (8:1) set of examples are given by (6.16)

to (6.20), together with the following abandonment cases:

θ = (4, 1/2, 3/2) (abandonment case A);

θ = (2, 1/4, 3/4) (abandonment case B);

θ = (2/3, 1/12, 3/12) (abandonment case C);

The (8:1) set represents example systems which have greater asymmetry between

the queues than the (4:1) and (2:1) set examples. The estimated performance

guarantees of each heuristic in the (8:1) set of examples are reported in Table 6.3.

Observing the results in Tables 6.1 to 6.3, we see that the LCFS-PS heuristic
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Scenario LCFS LCFS-PS DR SR RR PA

A1 0.6635 0.6130 0.6625 0.6751 0.7657 0.8020
7.61 0.16 -1.74 -15.40 -20.86

A2 0.8532 0.8059 0.8306 0.8399 0.9045 0.8766
5.54 2.65 1.55 -6.02 -2.75

A3 0.9531 0.9245 0.9324 0.9373 0.9712 0.9428
2.99 2.17 1.66 -1.90 1.08

B1 0.5101 0.4473 0.5182 0.5270 0.6302 0.7492
12.33 -1.58 -3.31 -23.53 -46.85

B2 0.7562 0.6877 0.7289 0.7373 0.8228 0.8155
9.05 3.60 2.49 -8.81 -7.85

B3 0.9056 0.8582 0.8730 0.8785 0.9326 0.8933
5.24 3.60 3.00 -2.97 1.36

C1 0.3317 0.2693 0.3432 0.3462 0.4618 0.7002
18.82 -3.48 -4.38 -39.21 -111.10

C2 0.6533 0.6093 0.6247 0.6265 0.7244 0.7462
6.74 4.38 4.11 -10.89 -14.22

C3 0.8432 0.8133 0.8152 0.8159 0.8769 0.8318
3.55 3.32 3.23 -4.00 1.35

Table 6.3: Estimated abandonment probability under each heuristic in the (8:1)
set of examples. We use the LCFS policy as a reference and show the percentage
improvement of each heuristic over the LCFS policy in italics.

achieves the best performance guarantee in every example scenario. This is not

surprising given that we developed the heuristic to improve upon the LCFS pol-

icy, which it significantly does. The observed improvement over the LCFS policy

is expected in the asymmetric scenarios studied, since the LCFS policy is only

optimal in symmetric systems. Moreover, we would expect centralised service poli-

cies to outperform decentralised service policies, which underpins the superiority

of LCFS-PS over DR and SR. The superiority of the centralised LCFS policy over

the decentralised DR and SR heuristics in many cases strengthens this observa-

tion. However, the DR and SR heuristics outperform the LCFS policy in some

scenarios, in part due to the weakness of the LCFS policy and in part due to the

strength of the DR and SR heuristics in those scenarios.

If the only feasible service policies in the system were decentralised policies,

we see that the DR heuristic achieves the smallest performance guarantee in every
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example scenario, outperforming SR, RR, and PA. The superior performance of DR

compared to SR indicates that it is better for the server to potentially switch queues

at the conclusion of each attempted service rather than remain in the same queue

and attempt to complete a service there. The observed improvement of DR and SR

over the RR policy is expected in the asymmetric scenarios studied, since the RR

policy is only suitable for entirely symmetric systems. The poor performance of the

PA heuristic illustrates a fundamental difference between the surveillance problems

in this chapter and in Chapter 5. In this chapter, the PA heuristic performs poorly

when the adversary can choose when and where to attack, whereas in Chapter 5 an

analogous heuristic to PA performs well when the adversary can only choose where

to attack. In Chapter 5, the adversary arrives into a steady state system, so the

priority policies within PA still serve all queues during the lifetime of the adversary.

Here, we look at the overly-crowded state, so the priority policies within PA only

serve one queue. Hence, if the adversary selects any other queue, his abandonment

probability is 1. This underlines the poor performance of PA here.

The performance guarantee of the LCFS policy increases in each scenario from

the (2:1) set of examples to the (8:1) set of examples. In each scenario, the per-

formance guarantee is derived from the adversary attacking the first queue. In-

creasing the amount of asymmetry from (2:1) to (8:1), θ1 is the same across the

sets, whereas the abandonment rates in the other queues are smaller. Conse-

quently, under the LCFS policy, the server spends more time serving in the other

queues in the examples with greater asymmetry, which leads to a higher abandon-

ment probability in the first queue. In contrast, the performance guarantee of the

LCFS-PS heuristic decreases from (2:1) to (8:1). This is due to the greater amount

of asymmetry increasing the amount to which the LCFS-PS heuristic can reduce

the abandonment probability in the first queue at the expense of increasing the

abandonment probabilities in the other queues. The RR policy exhibits similar

behaviour to the LCFS policy and similarly, the DR and SR heuristics exhibit

similar behaviour to the LCFS-PS heuristic. More asymmetry between the queues
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increases the effectiveness of the DR and SR heuristics.

In conclusion, while it is simple to adopt the LCFS policy in a centralised

system and the RR policy in a decentralised system, these policies can perform

relatively poorly compared to carefully designed heuristics. Comparison of the

LCFS-PS heuristic with the LCFS policy in a centralised system and the DR

heuristic with the RR policy in a decentralised system, illustrate the large im-

provements which can be made in performance. We recommend the LCFS-PS

heuristic for centralised control systems and the DR heuristic for decentralised

control systems. Furthermore, in making these recommendations, through our

application of the CORS method and formulation as a finite TPZS matrix game,

we are confident that we obtain a guaranteed performance close to the the best

performance guarantee possible within the respective classes of the LCFS-PS and

DR policies. If it was possible to upgrade the security system from decentralised

control to centralised control, the comparative performance of the LCFS-PS and

DR heuristics indicates the performance improvement which could be obtained.

This improvement could then be used to decide whether it was worth upgrading,

given such an upgrade may require a costly investment.

Conclusion

In this chapter we have studied the defensive surveillance scenario of a strategic

adversary who chooses both where and when to attack the system. The server

wishes to find a robust service policy which provides a performance guarantee

against any choice of queue and time the adversary could make. In practice, the

adversary may not be as capable as we assume in the chapter, hence the analysis

provides an upper bound on the abandonment probability of a less capable ad-

versary. In considering variations of the problem consisting of a single queue, we

proved that the last-come first-served policy (LCFS) is optimal for the security

team. In adopting the LCFS policy, the security team would track the arrival

times of suspects into the public area and screen the suspect who arrived most
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recently. The strength of the LCFS policy resides in the fact that in ensures the

abandonment probability of the adversary depends entirely on the arrival process

after he joins the queue. This highlights the importance of considering which cus-

tomer to serve when the adversary has knowledge of the state of the system, whilst

the LCFS policy seeks to remove the value of this information for the adversary.

A consequence of this analysis is that the LCFS policy is also optimal in a system

with multiple symmetric queues. In such a system, the security team should screen

the most recent arrival across all of the public areas.

In systems with multiple asymmetric queues, we developed heuristic policies

based on the strength of the LCFS policy which provide upper bound performance

guarantees for the server. Within the approaches developed, an important feature

is that the server randomises his actions. We developed the Departure Reselection

(DR) and last-come first-served with probabilistic skipping (LCFS-PS) policies,

each parametrised by vectors. In adopting the DR policy, the security team first

randomly selects an area to screen according to a probability distribution, then

screens a suspect according to LCFS. In adopting the LCFS-PS policy, the security

team orders the most recent arrivals across all areas, then selects a suspect to

screen based on a possible sequence of random decisions governed by a probability

rule. In both cases, we found the best performance guarantees for the server

from within the policy classes by optimising their parameter vectors. This was

acheived through a method which intelligently uses simulation within a response

surface method for global optimisation problems. Sets of numerical experiments

demonstrate the superior performance of the heuristic approach based on LCFS-

PS over approaches based on DR and other policies. Consequently, our suggestion

for the security team is to adopt the approach based on LCFS-PS in some cases,

otherwise adopt the approach based on DR in other cases.

It is unclear whether the methodology in this chapter could be extended to

other defender-attacker problems. Our methodology centred around the consid-

eration of simpler single queue problems to gain insights into the more complex
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multiple queue problems. It would seem this would be a valuable approach in other

problems which share similar characteristics, notably the insights gained from the

LCFS policy in queueing system models where an adversary acts on state informa-

tion. There are a number of open problems arising from this chapter, for example

the consideration of strategic idling in the service policy. It would also be valuable

to derive a lower bound on the optimal policy in the asymmetric systems to gain

a better understanding of the quality of the heuristic methods developed.
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Chapter 7

Conclusion

Our motivation in this thesis was that of how authorities can engage in defensive

efforts against the many threats faced in the modern world from adversarial agents.

In particular, we considered the use of technology in the defensive surveillance of

public areas which are the open, exposed targets of adversarial attacks. Our

broad research question asked the following: How should a surveillance resource

be utilised in real time to minimise the impact of adversarial threats?

We developed an underpinning surveillance scenario to reflect our motivation.

A security team continuously monitors multiple public areas and applies a screen-

ing process to people within the areas. However, suspects have lifetimes within

the areas, after which they leave the area if they have not yet been screened. The

capability of the security team is such that only one suspect can be screened at any

given time, hence the loss of suspects is inevitable. Each public area is a target for

an adversary who wishes to enter an area, conduct an illicit activity, and leave be-

fore being screened. The security team does not know when the adversary is in an

area, which area he is in, or which suspect he is and can only detect the adversary

through complete screening. The purpose of surveillance is ultimately to detect the

adversary before he is able to achieve his goal. This translates our broad research

question into the operational problem of identifying a real time decision-making

rule for the screening process of the security team to minimise the the probability

of the adversary evading detection or the damage he can inflict.
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Our approach to the operational problem was to model the surveillance scenario

as a multiclass queueing system with customer abandonments. A single server

corresponds to the security team, whereby service by the server corresponds to

screening by the security team. Customers in the queueing system correspond to

suspects, whereby the event of suspects leaving at the conclusion of their lifetimes

corresponds to the abandonment of customers from the queueing system. We allow

the stochastic distributions of elements of each queue in the queueing system to

differ to represent public areas with different characteristics. The adversary is

modelled as a potential customer, able to arrive into any queue. The operational

problem in our model was to develop control policies within the queueing system

which minimise the abandonment probability of the adversary. Control policies

from our model are directly equivalent to real time decision-making rules for the

screening process of the security team. Hence, the insights gained from our model

lead to insights in the security team’s operational problem.

Based on the underpinning surveillance scenario and associated multiclass

queueing system model, we considered three different surveillance scenarios which

apply to a number of potential scenarios which may occur in real-world security

operations. We distinguish between the scenarios based on the capability of the

adversary and the knowledge of the server regarding the adversary. In Chapters 3

and 4 we considered the scenario of a random adversary. In Chapter 5 we consid-

ered the scenario of a strategic adversary who chooses where to attack. Finally, in

Chapter 6 we considered the scenario of a strategic adversary who chooses where

and when to attack. The adversary is increasingly more capable as we progress

through the thesis, representing an increasing threat for the security team. Al-

though sharing many common features, each scenario is inherently different and so

the operational strategies suggested for each are different. This illustrates the im-

portance in security operations to first identify the prevailing scenario encountered

before deploying an operational defensive surveillance strategy.

The research shares a similar motivation to a number of other defender-attacker
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problems, which we discuss in the literature review of Chapter 2; see for example

Lin et al. (2013). However, we believe that the defensive surveillance scenarios

and the modelling approach used are novel and have not been previously studied.

Consequently, the research makes a novel contribution to the wide ranging body

of literature of defender-attacker problems. The closest known work is that of Lin

et al. (2009), which is the work upon which we base our underpinning surveillance

scenario. However, in this work, the focus is on a single public area, whereas the

major features of our research are those of multiple public areas and the capability

of the adversary to act as a decision-making agent. The random adversary scenario

in Chapters 3 and 4 is a special case of a more general stochastic scheduling problem

which, together with other variants, has been studied extensively in recent years

see Glazebrook et al. (2004), Atar et al. (2010), Ayesta et al. (2011), Down et al.

(2011), Verloop (2014) and Larrañaga et al. (2014), as well as Harrison & Zeevi

(2004), Kim & Ward (2012), and Ata & Tongarlak (2013)). We develop new results

and approaches for this problem which complement the existing literature. We are

also the first to make clear the connection with random adversary surveillance

scenario, which is a further contribution to the literature.

It is a common feature of each surveillance scenario in each chapter of the thesis

that often we can only compute the optimal service policy in systems with a small

number of queues or in special cases. Consequently, our focus is on the development

of strongly performing heuristic service policies which can be computed by the

security team. In the stochastic scheduling problem with customer abandonments

in Chapter 3 (of which the random adversary scenario is a special case), we focus

on priority service policies. A priority policy known as the Rµ rule is shown in the

literature to perform well in overloaded systems. To complement the Rµ rule in the

light traffic case, the main contribution of Chapter 3 is to present another priority

service policy known as the Rµθ rule and prove that it is asymptotically optimal

as customer abandonment rates approach zero in light traffic systems. Extensions

of this result are discussed for other model classes of interest, namely a multiserver
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version of our system and in Klimov Networks. Further to this we develop a priority

policy known as the pairwise swapping (PaS) policy. We consider the same problem

in Chapter 4, whereby the main contribution is to develop an approximate policy

iteration (API) method for the problem which aims to improve the suite of priority

policies in Chapter 3. Our numerical results indicate that, in most cases, the best

priority policy from Chapter 3 is nearly optimal in systems with 2 or 3 customer

classes and we have an effective service policy of simple structure. In the cases

where it is not, the API method invariably tightens up the gap substantially and

provides an improved policy, albeit of more complex structure and requiring lots

of computation time. In our motivating random adversary defensive surveillance

application, even small improvements in performance can be of high practical

importance. A paper based on the combined work of Chapters 3 and 4 has been

published in INFORMS Journal on Computing; see James et al. (2016).

In Chapter 5, since the server and the adversary do not know each others de-

cision, we model their interaction as a simultaneous move two-person zero-sum

(TPZS) game. By considering the TPZS game from the perspective of the adver-

sary, for which Kelley’s cutting plane (KCP) method applied to a suitably defined

convex optimisation problem delivers an optimal solution, we develop the heuris-

tic cutting plane (HCP) and enhanced heuristic cutting plane (HCP+) methods.

These methods are a heuristic application of the KCP method in which we define

a set of service policies for the server and iteratively populate this set using the

heuristic service policies developed for the random adversary problem. This ex-

ploits the strong connection between the random adversary scenario and strategic

adversary scenario in Chapter 5. Our suggestion for the security team is to ran-

domise over this set of service policies according to a mixed strategy. Numerical

experiments indicate the strong performance of this approach.

Whilst there is a strong connection between the random adversary scenario

and the strategic adversary scenario in Chapter 5, the scenario studied in Chapter

6 is very different. This is due to the fact that the adversary no longer attacks
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the system in steady state and can time his attack. The first contribution of this

chapter is to prove that the last-come first-served (LCFS) policy is optimal in a

number of variations of the problem consisting of a single queue. The strength

of the LCFS policy is based on the fact that the abandonment probability of the

adversary depends entirely on the arrival process after he joins the queue. In

practice, the adversary may not be as capable as we assume, hence our analysis

provides an upper bound on the abandonment probability of a less capable adver-

sary. The scenario studied in Chapter 6 is something of a worst case scenario for

the server. In multiple queue systems, we prove that the LCFS policy applied to

multiple queues is optimal in the special case of a symmetric system. This follows

from our analysis of single queue systems. In asymmetric systems, we use these

insights to develop heuristic policies based on the strength of the LCFS policy.

We develop the Departure Reselection (DR), Service Reselection (SR), and last-

come first-served with probabilistic skipping (LCFS-PS) policies, which are each

parametrised by vectors. In each case, we find the best performance guarantees

for the server from within the classes of DR, SR, and LCFS-PS policies by opti-

mising their parameter vectors through a method based on the work by Regis &

Shoemaker (2005) which intelligently utilises simulation within a response surface

method for global optimisation problems. Sets of numerical examples demonstrate

the superior performance of the heuristic approach based on LCFS-PS over the

approaches based on DR and SR, and other simpler policies. Our suggestion for

the security team is to adopt the heuristic approach based on LCFS-PS in some

cases, otherwise adopt the heuristic approach based on DR in other cases.

When we compare the findings of each chapter, we see that our answers to the

general research question are quite different in each surveillance scenario. When

the server knows the decision of the adversary, at least in a probabilistic sense,

and the adversary can only choose which queue to attack, it is often very effective

for the server to use a single, deterministic, priority service policy, as seen in the

Rµ and Rµθ rules. When the server does not know the decision of the adversary,
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it becomes important for the server to randomise. This can be via a randomised

policy or by randomising over a set of deterministic service policies, which each

provide good defence against various decisions the adversary may make, as seen

in the HCP method. When the adversary can also time his attack, it is important

for the server to consider which customer to serve in addition to which queue to

serve, as seen in the LCFS policy. The customer served is not a concern in the

scenarios in which the adversary attacks the system in steady state. Serving the

most recently arrived customers into the system seeks to remove the advantage of

the adversary knowing the state of the system. When the server does not know

where or when the adversary will attack, it is also good for the server to randomise

his actions, both within service policies and across a set of service policies, as seen

in the heuristics based on the DR and LCFS-PS policies.

We recognise the limitations of the research. The surveillance scenarios we

have considered are limited by the model assumptions that have been imposed on

them. In Chapters 3, 4, and 5 we assume that service times follow an exponential

distribution and that service is provided preemptively. In Chapter 6 we study the

case in which service times follow arbitrary probability distributions and service is

provided nonpreemptively. In real security operations, the model of the screening

process may require any combination of these assumptions. Application of the

general service time, nonpreemptive setup to the scenarios in Chapters 3, 4, and

5 would require further research. Such further research would be valuable as it

would allow the security team to directly compare their performance in each of

the three surveillance scenarios, indicating the increased value to the adversary of

greater capability.

Throughout the thesis we make the assumption that the lifetimes of customers

are exponentially distributed. It would be more realistic to assume an arbitrary

probability distribution for lifetimes and this would be a challenging direction of

future research. Moreover, we assume that when the adversary joins a queue,

his lifetime is distributed in the same way as the other customers in the queue.
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In the absence of any information regarding the lifetime of an adversary, this

assumption seems a sensible one to make. However, an interesting direction for

future research would be to suppose the adversary’s lifetime is independent from

the system and is the same regardless of which queue he attacks. This problem

would be significantly more difficult since, for example if the adversary arrives

in steady state, his abandonment probability would no longer be equal to the

steady state abandonment probability experienced by any arbitrary customer in

that queue.

There are a few aspects of the research which were identified as being outside

the scope of the thesis in Chapter 6, for example consideration of strategic idling

in the case of nonpreemptive service. These open problems would be an immediate

and interesting direction for future research. Other directions for future research

involve extending the surveillance scenarios and associated models to make them

more realistic or changing them into related scenarios. For example, the server

may need to take some time to switch from one queue or customer to another.

Also, the screening may not be perfect and there may be some form of overlooking,

wherein suspects are not identified with a certain probability. The Klimov Network

model in Section 3.4.1 is one example of this type of scenario. Another direction

could be to consider surveillance scenarios with multiple servers, perhaps where

each server is only responsible for a subset of areas. One obvious limitation of the

research is the fact that we study time-homogeneous systems, whereas real security

operations may concern public areas with time-varying characteristics. We suggest

that a time-varying problem may be initially approached by approximating it with

a number of variations of our time-homogeneous problems in which the security

team changes their operational strategies to suit in line with our suggestions.

While our broad research motivation was concerned with the defensive efforts

of authorities against adversarial agents, our focus has been on the operational

aspects of the defensive surveillance part of these efforts. In this thesis, we believe

we have studied some interesting and novel defensive surveillance scenarios and
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have developed some valuable models, insights, and methods which could inform

real security operations. Furthermore, as we have discussed, we believe that our

research can be used as the motivation and a basis for a wide range of further

avenues of future research. Hopefully this will lead to a greater understanding and

provide a greater range of operational strategies which could be used to defend

against adversarial agents.
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