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Abstract

Statistical calibration using linear regression is a useful statistical tool having

many applications. Calibration for infinitely many future y-values requires the

construction of simultaneous tolerance intervals (STI’s). As calibration often

involves only two variables x and y and polynomial regression is probably the

most frequently used model for relating y with x, construction of STI’s for

polynomial regression plays a key role in statistical calibration for infinitely

many future y-values. The only exact STI’s published in the statistical literature

are provided by Mee et al. (1991) and Odeh and Mee (1990). But they are

for a multiple linear regression model, in which the covariates are assumed to

have no functional relationships. When applied to polynomial regression, the

resultant STI’s are conservative. In this paper, one-sided exact STI’s have been

constructed for a polynomial regression model over any given interval. The

available computer program allows the exact methods developed in this paper

to be implemented easily. Real examples are given for illustration.
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1. Introduction

Statistical calibration using linear regression has a rich history going back

to Eisenhart (1939). The problem involves a quantity of interest x which is

expensive or difficult to measure, a surrogate quantity y which is cheaper or easy

to measure, and the assumption that y and x are related by a linear regression

model. For example, x is the true concentration of radon, 222Rn, while y is the

concentration reading on an alpha track detector (ATD), at a place, or x is the

true alcohol level in blood stream while y is the reading on a breathalyzer, of a

driver. In order to use an observed y to infer the corresponding but unobserved

x, a calibration experiment is carried out to measure y0i corresponding to a

known x0i for i = 1, · · · , n. A regression model of y on x is then fitted by

using the training data E = {(x0i, y0i), i = 1, · · · , n} and used to infer the x-

values corresponding to infinitely many y-values to be observed in future. The

inference for the x-value corresponding to one single future y-value is considered

by Eisenhart (1939), Brown (1982) and Smith and Corbett (1987) among others,

and the relevant literature is reviewed in Osborne (1991) and Brown (1993).

This paper focuses on inference for infinitely many future y-values. Specifi-

cally, a confidence set C(yx) for the unknown x corresponding to each observed

future yx is constructed and the infinite sequence of confidence sets C(yx) corre-

sponding to an infinite sequence of observed future yx-values has the property:

with confidence level γ, with respect to the randomness in the training data E,

that the proportion of confidence sets C(yx) containing the corresponding true

x-values is at least β, where 0 < γ, β < 1 are pre-specified constants. This

property can be expressed as

PE

{
lim inf
N→∞

1

N

N∑
i=1

I{xi∈C(yxi )} ≥ β

}
≥ γ (1)

where IA denotes the indicator function of the setA and hence 1
N

∑N
i=1 I{xi∈C(yxi )}

is the proportion of the N confidence sets that contain the true x-values. It is

argued by Lieberman et al. (1967), Scheffé (1973), Aitchison (1982), Mee et

al. (1991), Mee and Eberhardt (1996), Mathew and Zha (1997), Mathew et al.
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(1998) and Krishnamoorthy and Mathew (2009, Chapter 3) among others that

this property is highly desirable in many applications, and overwhelming ma-

jority publications on infinite many calibrations aim to guarantee this property.

Other properties that may have useful applications are discussed in Mee and

Eberhardt (1996).

One standard way to construct the confidence sets C(yx) having this property

is to use the (β, γ)-simultaneous tolerance intervals (STI’s). Assume a priori

that the unknown x-values corresponding to all the future yx’s are in a given

interval [a, b]. For example, the true blood alcohol level of any driver cannot

be lower than a = 0 or higher than some upper threshold b. The (β, γ)-STI’s

[L(x; E), U(x; E)] over the interval x ∈ [a, b] satisfy

PE {Pyx {L(x; E) < yx < U(x; E) | E , x } ≥ β for all x ∈ [a, b] } ≥ γ (2)

where yx denotes a future y-value corresponding to x and is independent of the

training data E , the probability Pyx is with respect to yx and conditional on

E , and the probability PE is with respect to E . Then for each future yx the

confidence set C(yx) for the corresponding x is defined as

C(yx) = {x ∈ [a, b] : L(x; E) ≤ yx ≤ U(x; E) } . (3)

It is shown in Scheffé (1973, Appendix B) that these confidence sets C(yx) have

the property in (1).

Numerical results in Mee and and Eberhardt (1996) and Lee (1999) lead to

the conjecture that the property in (1) is guaranteed by using the pointwise

tolerance intervals (PTI’s) instead of the STI’s in (3). We have constructed

counter examples to show that the property in (1) does not hold in general if

the STI’s are replaced by the PTI’s in the construction of C(yx) in (3). The

counter examples are not given here to save space but available from the authors.

Hence the STI’s are central to the construction of C(yx)’s in order to guarantee

the property in (1).

Construction of (β, γ)-STI’s is considered first by Lieberman and Miller

(1963) for simultaneous predictions, and there are three construction methods
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available in the literature. The first is the construction of central (β, γ)-STI’s by

Lieberman and Miller (1963), Lieberman et al. (1967) and Scheffé (1973). Note

that the central (β, γ)-STI’s are two-sided and even the exact central (β, γ)-

STI’s are conservative as (β, γ)-STI’s. The aforementioned papers only provide

conservative central (β, γ)-STI’s. The second is the probability set method by

Wilson (1967) and Liman and Thomas (1988). Similar to the confidence set

construction method of Rao (1973, pp.473), this method hinges on a γ level

confidence set for the unknown parameters of the regression model and the re-

sultant (β, γ)-STI’s are also conservative and two-sided. The third is an exact

method by Mee et al. (1991) for two-sided (β, γ)-STI’s and Odeh and Mee

(1990) for one-sided (β, γ)-STI’s. Since the first two methods are conservative

while Mee et al.’s (1991) method is exact, the two-sided (β, γ)-STI’s of Mee et

al. (1991) are usually narrower and so better than the conservative (β, γ)-STI’s,

as demonstrated numerically in Mee et al. (1991, Section 3).

In this paper, we focus on polynomial regression. A calibration problem often

involves only two quantities y and x (or their suitable transformations), and a

polynomial regression model is a simple yet probably the most frequently used

model to relate two quantities. Exact one-sided (β, γ)-STI’s will be constructed

for a polynomial model of any order p − 1 over any given covariate interval

x ∈ [a, b]. While the construction method of this paper is also applicable to

other regression models, such as the fractional polynomials (cf. Royston and

Altman, 1994), the key step of maximizing K(x) in the expression (9) below

may require a different optimization method depending on the specific form of

the regression model considered.

The upper (β, γ)-STI’s have L(x; E) = −∞ in (2), and the lower (β, γ)-STI’s

have U(x; E) =∞ in (2). The confidence set C(yx) corresponding to the upper

STI’s often takes the form of a lower confidence limit, which is most relevant

for the example of blood alcohol level since the police want to catch those

drivers whose blood alcohol levels are above the legal limit by using the lower

confidence limits (cf. Krishnamoorthy et al., 2001). The confidence set C(yx)

corresponding to the lower STI’s often takes the form of an upper confidence
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limit, which is most relevant for the example of ATD since the company wants

to monitor that the radon concentrations are not above the safety threshold set

by government agency by using the upper confidence limits.

Note that the exact (β, γ)-STI’s of Mee et al. (1991) and Odeh and Mee

(1990) are for a multiple linear regression model, in which the covariates are

assumed to have no functional relationships, over a special covariate region only.

These STI’s become conservative when applied to a polynomial regression model

of order two (i.e. quadratic regression) or above. Even for the simple linear

regression (i.e. polynomial regression of order one), these STI’s are only over

a covariate set that is symmetric about x̄, the mean of the observed covariate

values in E . See Section 2.2 for more details.

The layout of this paper is as follows. Section 2 deals with the construc-

tion of exact one-sided (β, γ)-STI’s for a polynomial regression model over a

given covariate interval. It also shows why the exact one-sided (β, γ)-STI’s for

a multiple linear regression model of Odeh and Mee (1990) can be used to pro-

duce only conservative STI’s for a polynomial regression model of order two

or higher. Section 3 provides two examples to illustrate the new STI’s and to

demonstrate the conservativeness of the STI’s of Odeh and Mee (1990) when

used for polynomial regression. The notations are adapted largely from Mee et

al. (1991).

2. Exact one-sided STI’s for polynomial regression

Assume that y and the only covariate x are related by a polynomial regression

model of order p− 1 (≥ 1):

y = α0 + α1x+ · · ·+ αp−1x
p−1 + ε = xTα+ ε

where x = (1, x, · · · , xp−1)T , α = (α0, · · · , αp−1)T is the vector of unknown

regression coefficients, and the ε’s are independent N(0, σ2) errors with unknown

variance σ2 > 0. The observed training data E can be represented in the usual

matrix form y = Xα + ε, where the n × p design matrix X is assumed to be
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of full column-rank without loss of generality. The usual estimators of α and σ

are denoted as α̂ and σ̂.

Note that the upper (β, γ)-STI’s are just a γ level upper simultaneous confi-

dence band (SCB) for the β-quantile line of yx, xTα+zβσ, where zβ denotes the

β-quantile of the standard normal distribution N(0, 1). Specifically, by setting

L(x; E) = −∞ in (2), the upper (β, γ)-STI’s U(x; E) satisfy

PE
{
xTα+ zβσ < U(x; E) for all x ∈ [a, b]

}
≥ γ. (4)

Similarly, the lower (β, γ)-STI’s L(x; E) satisfy

PE
{
L(x; E) < xTα+ z1−βσ for all x ∈ [a, b]

}
≥ γ. (5)

If U−(x; E) denotes the upper (β, γ)-STI’s for regressing −y on x, then it is

straightforward to show that L(x; E) = −U−(x; E). Hence the focus in this

section is on the construction of U(x; E). It is noteworthy that two-sided SCB’s

for a quantile line in linear regression have been studied by several researchers;

see e.g. Han et al. (2015) and the reference therein. In particular, exact two-

sided SCB’s for a quantile line that are uniformly narrower than previously

published SCB’s are provided in Han et al. (2015).

2.1. Exact STI’s

Exact upper STI’s of the form

U(x; E) = xT α̂+ λσ̂

[
zβ +

√
(p+ 2)xT (XTX)−1x

]
(6)

will be constructed, where λ > 0 is a critical constant chosen so that

PE
{
xTα+ zβσ < U(x; E) for all x ∈ [a, b]

}
= γ (7)

for given 0 < β, γ < 1. This form is taken from Odeh and Mee (1990) and

similar to what is used in Scheffé (1973) and Mee et al. (1991) for the case of

two-sided STI’s. It warrants further research to try other forms in the hope of

finding smaller upper limits.
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To find the critical constant λ, the probability in (7) is written as

PE

{
xTα+ zβσ < x

T α̂+ λσ̂

[
zβ +

√
(p+ 2)xT (XTX)−1x

]
for all x ∈ [a, b]

}

= P

 max
x∈[a,b]

xT (α− α̂)/σ + zβ

(σ̂/σ)
[
zβ +

√
(p+ 2)xT (XTX)−1x

] < λ

 = P{Q < λ} (8)

where

Q = max
x∈[a,b]

K(x) with K(x) =
xTZ + zβ

u
[
zβ +

√
(p+ 2)xT (XTX)−1x

] , (9)

where Z = (α − α̂)/σ ∼ N(0, (XTX)−1), u = σ̂/σ ∼
√
χ2
ν/ν with ν = n − p,

and Z and u are independent. It is clear from the expression of Q in (9) that

the probability in (8) has nothing to do with the unknown parameters α and σ.

Furthermore, λ is simply the γ-quantile of the random variable Q, depending

only on p, ν, β, (XTX)−1, γ and the interval [a, b].

For a general p ≥ 2 the following simple simulation-based method for finding

λ fast and accurately is used. A large number R of independent replicates of

Q : Q1, · · · , QR are simulated, and the γ-quantile of the sample Q1, · · · , QR is

used as λ. It is well known that this approximation approaches λ almost surely

as R approaches infinity (cf. Serfling, 1980). This approach of using sample

quantile to approximate the population quantile has been used successfully in

solving many otherwise difficult problems; see, for example, Edwards and Berry

(1987) and Liu et al. (2004, 2005, 2010).

In each simulation of Q, independent Z ∼N(0, (XTX)−1) and u ∼
√
χ2
ν/ν

are simulated first and Q is then computed using the expression in (9). Note

that Q is equal to the maximum of K(x) over the finite set F of x-values that

contains only a, b and all the stationary points of K(x) in the interval x ∈ [a, b].

All the stationary points of K(x) can be solved from K ′(x) = 0, where f ′(x)

denotes the derivative of f(x) with respect to x. Now a few lines of calculus

show that K ′(x) = 0 is equivalent to

− 4 (zβ)
2
d(x) (q′(x))

2
+ (p+ 2) (q(x)d′(x)− 2q′(x)d(x))

2
= 0 (10)
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where d(x) = xT (XTX)−1x and q(x) = xTZ + zβ . Since the left-side of the

equation in (10) is a polynomial function of x (of order 6(p − 1) − 4), all the

roots of the equation in (10) can quickly be found numerically by using avail-

able algorithm; the Matlab built-in function roots is used in our computation.

Hence the set F and so Q can be computed efficiently. A Matlab program

for computing λ is available from the authors. This technique of computing

maxx∈[a,b]K(x) has been used successfully in several other problems; see e.g.

Liu et al. (2008) and Wan et al. (2015).

Each λ in Examples 3.1-3.2 of Section 3 is computed using R = 1, 000, 000

simulations and took about 500 seconds on an ordinary Window’s PC (Core(TM2)

Due CPU P8400@2.26GHz). These critical constants are accurate to at least

two decimal places from our experiments with different random seeds. For ex-

ample, when β = 0.95, γ = 0.99, p = 2, τ = 2 and n = 40, the critical value

1.2675 given in Odeh and Mee (1990, Table 1.3) is computed to be 1.2671 by

our Matlab program. It is worth emphasizing that the λ, computed accurately

once, will be used for calculating all future C(yx)’s.

2.2. The STI’s of Odeh and Mee (1990)

To be specific, assumed that y and the (p−1) covariates x(0) = (x1, · · · , xp−1)T

are related by a multiple linear regression model:

y = α0 + α1x1 + · · ·+ αp−1xp−1 + ε = xTα+ ε

where xT = (1, x1, · · · , xp−1) = (1,x(0)
T ), α = (α0, · · · , αp−1)T , and the ε’s are

independent N(0, σ2) errors with unknown variance σ2 > 0. As in Section 2.1,

the observed training data E can be represented in matrix notation y = Xα+ε,

where the n× p design matrix X is assumed to be of full column-rank without

loss of generality.

Odeh and Mee (1990) consider exact upper (β, γ)-STI’s

UOM (x(0); E) = xT α̂+ λσ̂

[
zβ +

√
(p+ 2)xT (XTX)−1x

]
(11)
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for x(0) in the covariate region D = Dτ2 − Dτ1 , where 0 ≤ τ1 < τ2 are given

constants and

Dτ =
{
x(0) :

(
x(0) − x̄(0)

)T
V −1

(
x(0) − x̄(0)

)
≤ τ2

}
(12)

with x̄(0) = (x̄1, · · · , x̄p−1)T being the sample mean and V the sample covariance

matrix of the observed values on the p−1 covariates x(0) in the training data E .

Tables of critical constant λ in (11) over x(0) ∈ D = Dτ are provided in Odeh

and Mee (1990) for several τ values.

When p = 2, Dτ is an interval symmetric about the mean x̄1 of the only

covariate. Hence if STI’s over the interval [a, b] = [x̄, x̄ + δ], for a given δ > 0,

for example, are required then the exact STI’s of Odeh and Mee (1990) over the

interval [x̄ − δ, x̄ + δ] have to be used as conservative STI’s over the required

interval [a, b] = [x̄, x̄+ δ]. Some numerical information on the conservativeness

of the λ from the tables in Odeh and Mee (1990) in comparison with the exact

λ over [x̄, x̄+ δ] from the method in Section 2.1 is given in Example 3.1 below.

When p ≥ 3, we first show how the λ from the tables in Odeh and Mee

(1990) can be used as a conservative value for a polynomial regression model of

order p − 1 over the given covariate interval x ∈ [a, b]. For ease of exposition,

we assume p = 3. In this case, in order to use the λ from the tables in Odeh

and Mee (1990), one has to determine the Dτ in the following way.

First, determine the centre of Dτ , which is given by (x̄1, x̄2), where x̄k =

(1/n)
∑n
i=1 x

k
0i since the xk0i (i = 1, · · · , n) are the observed value on the k-th

covariate (k = 1, 2) in the multiple regression model. Second, determine the

region D∗ = {(x, x2) : x ∈ [a, b]}, which is a (one-dimensional) curve in the

two-dimensional (x1, x2)-plane. Finally, choose the smallest value of τ so that

Dτ just includes the curve D∗.

Now the critical value λ from Odeh and Mee (1990) over Dτ is used as a con-

servative critical value of STI’s for the quadratic polynomial over x ∈ [a, b]. It is

clear that the λ from Odeh and Mee (1990) is the γ-quantile of maxx(0)∈Dτ K(x),

while the λ of our exact method is the γ-quantile of maxx(0)∈D∗ K(x), where

K(x) is given in (9) but with x = (1, x1, x2)T = (1,x(0)
T )T . Since D∗ is
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a one-dimensional region that is strictly contained in the two-dimensional re-

gion Dτ , the λ from Odeh and Mee (1990) is larger than the λ from our exact

method. This observation holds for a general p ≥ 3 even when the interval

[a, b] is symmetric about the mean of the observed values on the only covariate

in polynomial regression. Example 3.2 below provides numerical information

on the conservativeness of the λ from Odeh and Mee (1990) when used for

polynomial regression.

3. Examples

3.1. Radon Example Mee and Eberhardt (1996, Table 3) provide data

from a calibration experiment of ATD’s which are used to measure indoor con-

centrations of radon. In the experiment, the ATD’s were exposed to known

levels of radon x in a laboratory. The response variable y is an optical count

of number of damage tracks, caused by alpha radioactive decays, over a spe-

cific area of the film. After the usual model diagnosis, the n = 40 observations

are fitted by a simple linear regression model in Mee and Eberhardt (1996),

with the fitted least squares line ŷ = 124.4 + .789x, σ̂ = 41.26, R2 = 0.93,

ν = n−p = 38, min(x0,1, · · · , x0,40) = 50, max(x0,1, · · · , x0,40) = 4241, x̄ = 683.3

and Sx =
∑n
i=1(x0i − x̄)2 = 5.717× 107.

In order to construct upper confidence bounds on the level of radon exposures

x corresponding to future observed ATD readings yx, lower STI’s are required.

Set β = 0.95 and γ = 0.99. For the STI’s on [a, b] = [0, 3074] considered in Mee

and Eberhardt (1996), one finds the critical constant λ = 1.2675 from Odeh and

Mee (1990, Table 1.3, with τ = 2 and n = 40) and the lower STI’s are given by

L(x; E) = xT α̂− λσ̂
[
zβ +

√
(p+ 2)xT (XTX)−1x

]
for all x ∈ [a, b]. (13)

Note that these STI’s are actually on the covariate interval x̄ ± τ
√
Sx/n =

[−1708, 3074], which is the smallest Dτ for p = 2 that contains the interval

[a, b] = [0, 3074]. The method of Section 2.1 can be used to computed the exact

STI’s on [0, 3074], and the critical constant λ is computed to be 1.2557, which is
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Figure 1: The fitted regression line (dashdot line), the STI’s (13) with λ = 1.2557 (solid

curve), and the corresponding upper confidence bound on x for yx = 100 (the arrow)

smaller, though only marginally in this case, than the conservative λ = 1.2675

from Odeh and Mee (1990) as expected.

The exact STI’s with λ = 1.2557 are plotted in Figure 1 by the solid curve. If

a future yx = 100, for example, is observed then the upper bound on x is 100.3,

which is the x-coordinator of the point where the level line y = 100 intersects

the STI’s.

As pointed out above, the λ from the tables in Odeh and Mee (1990) is for

interval [a, b] that is symmetric about x̄. Hence if [a, b] = [x̄, x̄+ δ], for a given

δ > 0, then the λ from Odeh and Mee (1990) for the interval [x̄− δ, x̄+ δ] has to

be used as a conservative value for the desired interval [a, b] = [x̄, x̄+ δ]. To get

some idea on the degree of conservativeness of the λ from Odeh and Mee (1990)

in comparison with the exact λ for [x̄, x̄ + δ] from Section 2.1, several δ values

have been tried for this particular example. When δ = 4782200 for example,

the λ from Odeh and Mee (1990) is 1.3848 and the exact λ is 1.3016. Hence the

conservative λ = 1.3848 is about (1.3848 − 1.3016)/1.3016 = 6.4% larger than

the exact λ = 1.3016. The conservativeness of λ from Odeh and Mee (1990)

when used for a quadratic polynomial can be more pronounced, however, as

11



Figure 2: The fitted regression model (dashdot curve), upper STI’s (6) (solid line), and the

lower confidence bound on x, 9.34(indicated by the arrow), for yx = 137.2 (the level line)

demonstrated in Example 3.2 below.

3.2. Spectroscopy Example Graphite furnace atomic absorption spec-

troscopy (GFAAS) is an analytical technique for the determination of trace

metal concentrations in different types of samples. When a sample is atomized,

an absorbency signal is obtained with a stripchart recorder. The variation of

(peak) absorbency y (in mm) with concentration x (parts per billion) is estab-

lished by atomizing samples of known concentrations and the obtained calibra-

tion curve is used to infer the concentrations of future observed disturbances.

Lundberg and De Maré (1980, Table 1) provide data from a calibration experi-

ment of GFAAS. After the usual model diagnosis, a quadratic regression model

is recommended in Lundberg and De Maré (1980); the fitted model is given by

ŷ = 0.729 + 16.44x − 0.287x2 and fits very well the n = 21 pairs of observa-

tions at four different concentrations x = 0, 5, 15 and 20 from the calibration

experiment.

Now suppose that one wants to construct lower confidence bounds on x for

future observed yx’s. For this one can use the upper STI’s in (6). For β = 0.95,
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Figure 3: The curve D∗ (dotted curve) and the region Dτ for τ = 1.6652 (ellipse)

γ = 0.99 and [a, b] = [0, 20], the exact critical constant is computed by our

program to be λ = 1.4213. Figure 2 plots the training data points (stars), the

fitted quadratic model (dashdot curve) and the upper STI’s (6) (solid curve).

From the upper STI’s, if one observe yx = 137.2, for example, then the lower

confidence bound on x is 9.34 as indicated by the arrow.

As pointed out in Section 2.2, in order to use the λ tabulated in Odeh and

Mee (1990) as a conservative value in this example with p = 3, one needs to

find the smallest τ so that Dτ in (12) contains D∗ = {(x, x2) : x ∈ [a, b]}. For

[a, b] = [0, 20], D∗ is plotted in Figure 3 by the dotted curve with one end marked

by the star and the other end by the small circle, and the corresponding Dτ is

bounded by the ellipse with τ = 1.6652. With β = 0.95, γ = 0.99, τ = 1.6652

and n = 21, the critical constant λ from Odeh and Mee (1990) is λ = 1.4589,

which is larger than the exact λ = 1.4213 given above as expected.

Now note that the point (x, x2) with x = a = 0, marked by the star in

Figure 3, is on the boundary of Dτ and so the same Dτ has to be used for

D∗ = {(x, x2) : x ∈ [a, b]} with a = 0 and any b ∈ (0, 20]; the point (x, x2)

with x = 10 is marked by the small square, and the point (x, x2) with x = 2

is marked by the small diamond. Hence the same conservative λ = 1.459 from

Odeh and Mee (1990) is used for interval [a, b] with a = 0 and any b ∈ (0, 20].

On the other hand, the exact critical constant λ decreases as b decreases to

a = 0. For example, the exact λ is equal to 1.366 for b = 10, 1.308 for b = 2,
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and 1.251 for b = 0.001. This serves to demonstrate the potential gain and so

importance of using the exact λ provided in this paper, even though, for this

particular example, it is unlikely that a value of b less than 10 will be used given

the observed covariate range of [0, 20]. It is expected that the λ from Odeh

and Mee (1990) can potentially be even more conservative than the exact λ for

p = 4, since in this case D∗ = {(x, x2, x3) : x ∈ [a, b]} is still a one-dimensional

region while Dτ is a three-dimensional region containing D∗.
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