
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  E. Mostaani, B.

Monserrat, N. Drummond and C. Lambert, Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/C5CP07891A.

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
http://dx.doi.org/10.1039/c5cp07891a
http://pubs.rsc.org/en/journals/journal/CP
http://crossmark.crossref.org/dialog/?doi=10.1039/C5CP07891A&domain=pdf&date_stamp=2016-04-12


Page 1 of 12 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
2 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
L

an
ca

st
er

 o
n 

18
/0

4/
20

16
 1

4:
04

:5
7.

 

View Article Online
DOI: 10.1039/C5CP07891A

http://dx.doi.org/10.1039/c5cp07891a


no consensus over either the BLA or the band gap of polyyne in
the literature38,39.

In this work, we use highly accurate quantum Monte Carlo
(QMC) methods40,41 to calculate ground-state and excited-state
total energies of isolated hydrogen-terminated oligoynes (C2nH2)
and supercells of polyyne subject to periodic boundary conditions.
The structure of polyyne is defined by just two parameters, the
lattice constant and the BLA, enabling us to carry out a brute-
force optimisation of the structure by minimising the QMC total
energy. To the best of our knowledge this is the first QMC study of
polyyne. We compare our data with experimental and theoretical
results in the literature.

The rest of this paper is organised in three sections: in Sec. 2 we
describe the computational methodology. Section 3 contains our
DFT and QMC results for the BLA and electronic gaps of oligoynes
and extended polyyne, including the vibrational renormalisation.
Finally, we present our conclusions in Sec. 4.

2 Computational methodology

2.1 DFT calculations

Our DFT calculations were performed using the CASTEP plane-
wave-basis code42. We relaxed the geometries of hydrogen-
terminated oligoynes consisting of up to twelve pairs of carbon
atoms using DFT-PBE and DFT-HSE06, and we relaxed the ge-
ometry of extended polyyne using DFT-HSE06. The widths and
heights of our periodic unit cells were fixed at 20 Bohr radii and,
for oligoynes, the length was varied so that a constant amount of
vacuum (20 Bohr radii) was maintained between images of the
molecule. In our DFT calculations for polyyne we used a grid of
30 k points. We used ultrasoft pseudopotentials in our DFT-PBE
calculations and norm-conserving pseudopotentials in our DFT-
HSE06 calculations. The plane-wave cutoff energy in our DFT
geometry optimisations was 25 Ha.

The DFT-PBE zero-point energy and the DFT-LDA and DFT-PBE
phonon dispersion curves of polyyne were obtained using den-
sity functional perturbation theory in a primitive cell with 100

k points in the Brillouin zone for both the electronic calculation
and the phonon calculation. The DFT-HSE06 zero-point energy
and phonon dispersion curve of polyyne were calculated using 32
primitive-cell k points and the method of finite displacements in
supercells of up to 16 primitive cells.

2.2 QMC calculations

For our QMC calculations we used the static-nucleus variational
and diffusion quantum Monte Carlo (VMC and DMC) methods
implemented in the CASINO code43. The DMC method has pre-
viously been used to study the excitation energies of a variety
of molecules and solids44–48. The many-body trial wave function
was composed of Slater determinants multiplied by a Jastrow cor-
relation factor41. We used DFT-PBE orbitals, which were gener-
ated by CASTEP using a plane-wave cutoff energy of 120 Ha, and
we used Dirac–Fock pseudopotentials49,50. The plane-wave or-
bitals were re-represented in a blip (B-spline) basis before they
were used in the QMC calculations51, allowing the use of aperi-
odic (for oligoynes) and 1D periodic (for polyyne) boundary con-

ditions in our QMC calculations.

For each oligoyne the DFT highest occupied molecular orbital
(HOMO) and HOMO−1 are degenerate, as are the lowest unoc-
cupied molecular orbital (LUMO) and LUMO+1. We have there-
fore studied the effect of multideterminant (MD) Slater–Jastrow
trial wave functions for excited, cationic, and anionic states of
oligoynes with 4, 6, 8, 10, and 24 carbon atoms as well as a super-
cell of polyyne composed of 8 primitive cells. The Slater deter-
minants in the MD wave functions contained all the orbital occu-
pancies that are degenerate at the single-particle level. In Table
1 we specify the occupancy of the orbitals in the determinants
used in our trial wave functions. We used linear-least-squares
energy minimisation52–54 and unreweighted variance minimisa-
tion55,56 to optimise the MD coefficients and the Jastrow factor,
respectively. Using variance minimisation rather than energy min-
imisation for the Jastrow factor improves the stability. A test for
C4H2 showed that the effects of additional determinants contain-
ing promotions to the LUMO+2 are negligible.

The DMC energy was linearly extrapolated to zero time step
and we verified that finite-population errors in our results are
negligible. Fermionic antisymmetry in DMC is imposed by the
fixed-node approximation57, in which the nodal surface is pinned
at that of the trial wave function. The fixed-node approximation
allows us to study excited states by using trial wave functions
with the appropriate nodal topology. Because the Jastrow factor
is strictly positive, the nodal topology is purely determined by the
Slater determinants.

Twist-averaging is less important in 1D systems than two- or
three-dimensional systems; for example momentum quantisation
in a 1D homogeneous electron gas simply introduces a smooth,
O(n−2) error in the energy per particle58.

2.3 DMC quasiparticle and excitonic gaps

A crucial quantity that characterises the electronic structure of
polyyne is the quasiparticle gap, which is the difference between
the electron affinity and the first ionisation potential. The quasi-
particle gap is the energy required to create an unbound electron–
hole pair. Within the DMC method quasiparticle gaps are evalu-
ated as

∆qp = EI −EA = E++E−−2E0, (1)

where EA = E0−E+ and EI = E−−E0 are the electron affinity and
ionisation potential, respectively. E+ and E− are the total energies
of the system with one more electron and one fewer electron,
respectively, than the neutral ground state and E0 is the ground-
state total energy. For each oligoyne we separately relaxed the
geometries of the neutral ground state, the cation, and the anion
using DFT-HSE06 before evaluating the DMC ionisation potential
and electron affinity and hence quasiparticle gap, i.e., we use the
adiabatic definition of the quasiparticle gap. For polyyne, where
there are just two structural parameters, we relaxed the ground-
state geometry using DMC, and then used that geometry to obtain
the vertical quasiparticle gap; it was verified that the difference
between the vertical and adiabatic quasiparticle gaps is small for
large oligoynes (see Sec. 3.3).
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Table 1 Number of MD terms and orbital occupancies in each determinant for the neutral ground state, singlet and triplet excited states, cationic state,
and anionic state in each of our calculations. “H” and “L” denote the HOMO and LUMO, respectively. Note that the HOMO and HOMO−1 orbitals are
degenerate, as are the LUMO and LUMO+1 orbitals. All orbitals up to the HOMO−2 are occupied in each determinant.

Orbital occupancy
State No. determinants Spin-up Spin-down

H−1 H L L+1 H−1 H L L+1

Neutral ground state 1 • • • •

Singlet excited state 8

• • • •
• • • •

• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

Triplet excited state 4

• • • •
• • • •

• • • •
• • • •

Cationic state 2 • • •
• • •

Anionic state 2 • • • • •
• • • • •

Excitonic gaps are evaluated as

∆exc = Epr −E0, (2)

where Epr is the DMC total energy when a single electron is pro-
moted from the valence-band maximum to the conduction-band
minimum (without changing its spin for a singlet excitonic gap;
swapping its spin for a triplet excitonic gap). In the ground-state
geometry, the singlet excitonic gap is equivalent to the vertical
optical absorption gap, i.e., the energy at which the onset of pho-
toabsorption occurs. The DMC static-nucleus excitonic gaps are
corrected using the DFT vibrational renormalisation method de-
scribed in Sec. 2.5.

The excitonic gaps are smaller than the quasiparticle gap due
to the attraction between the excited electron and the hole left
in the valence band. The exciton binding energy is the difference
between the quasiparticle gap and the excitonic gap. Fixed-node
errors in the DMC total energies are always positive and are ex-
pected to cancel to a significant extent when energy gaps are cal-
culated.

2.4 Finite-size effects

The BLA of polyyne in the ground state was evaluated for three
supercells consisting of 8, 12, and 16 primitive unit cells. To re-
move finite-size effects in the energy we fitted

E(n) = E(∞)+An
−2, (3)

where E(∞) and A are fitting parameters, to our DMC ground-
state energies per primitive cell E(n) in supercells of n primitive
cells58.

The DMC quasiparticle and excitonic gaps ∆(n) of polyyne were
calculated for supercells of n = 8, 10, 12, and 16 primitive cells,
and then extrapolated to infinite length by fitting

∆(n) = ∆(∞)+Bn
−1 (4)

to the data, where ∆(∞) and B are fitting parameters. When a sin-
gle particle is added to a finite simulation cell subject to periodic
boundary conditions, a periodic lattice of quasiparticles is formed.
The energy of this unwanted lattice of quasiparticles goes as the
Madelung constant of the supercell lattice and results in a signifi-
cant finite-size error in the electron affinity and ionisation poten-
tial. The 1D Madelung energy in Hartree atomic units (h̄ = me =

|e|= 4πε0 = 1) is given by vM = [−0.2319−2log(an)]/(an), where
a is the lattice constant and n is the number of primitive cells. Ig-
noring the logarithmic terms, the Madelung constant falls off as
the reciprocal of the linear size of the supercell, i.e., as 1/n. Addi-
tional finite-size effects in the exciton energy arise from the fact
that the energy is evaluated using the Ewald interaction rather
than 1/r. However, by calculating the ground-state energy of an
exciton modelled by a single electron and a single hole moving
strictly in 1D in a periodic cell as a function of cell length (Fig. 1),
we find that these finite-size errors fall off more rapidly, as 1/n

3.
Equation (4) is therefore an appropriate fitting function for ex-
trapolating gaps to the thermodynamic limit. The finite-size error
in the quasiparticle gap is significantly larger than the finite-size
error in the excitonic gap, because we do not change the number
of electrons in the simulation cell when calculating the latter. The
Madelung constant is negative, and hence the finite-size error in
the quasiparticle gap is large and negative, resulting in a nega-
tive exciton binding energy at finite system size. Physically this
is caused by the fact that, when a charged particle is added to or
removed from a finite, periodic cell in which particles interact via
the Ewald potential, a neutralising background is implicitly in-
troduced. This neutralising background charge density vanishes
in the infinite-system limit, and hence our quasiparticle gaps are
only physically meaningful in the infinite-system limit. For a fi-
nite molecule, by contrast, the 1/r Coulomb interaction is used,
and hence no additional neutralising background is introduced
when a charged particle is added to or removed from a neutral
molecule.
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Fig. 1 Finite-size error in the total energy of a 1D exciton against the
periodic cell length L = an, where a is the lattice constant and n is the
number of primitive cells. R

∗
∞ = µ/2 is the exciton Rydberg and a

∗
0 = 1/µ

is the exciton Bohr radius. µ = memh/(me +mh) is the reduced mass of
the electron–hole pair.

2.5 Vibrational renormalisation

Our DMC energies have been obtained in the static-nucleus ap-
proximation. We have used DFT methods to determine vibra-
tional corrections to our DMC results by including phonon zero-
point energies in our reported atomisation energies and by aver-
aging vertical DFT excitonic gaps over phonon displacements in
the ground-state geometry to obtain a vibrational correction to
the excitonic gap.

Vibrational renormalisations to electronic band gaps have re-
cently been shown to be as large as −0.5 eV for diamond59–61

and diamondoids62. We have therefore investigated the effects of
electron–phonon coupling on the gaps of carbon chains.

The vibrational renormalisations to the excitonic gaps were
calculated at the DFT level with the same parameters as those
used for the static calculations. Harmonic vibrational frequencies
and eigenvectors were determined using the finite-displacement
method63. The resulting harmonic vibrational wave functions
were used to calculate vibrational expectation values of the gaps
according to

〈∆exc〉= 〈Φ(q)|∆exc(q)|Φ(q)〉, (5)

where |Φ〉 is the harmonic vibrational wave function and q is
a vector containing the amplitudes of the normal modes of vi-
bration, which therefore labels atomic configurations. A Monte
Carlo sampling technique62,64 was used to evaluate Eq. (5). For
oligoynes, a quadratic approximation to Eq. (5) was also em-
ployed65, yielding results consistent with those obtained using
Monte Carlo.

2.6 Test of our method: benzene molecule

DMC has proven to be a highly accurate method for calculating
excitation energies within the static-nucleus approximation44–48.
However, as a brief test of our methodology, we have calculated
the static-nucleus DMC ionisation potential and singlet and triplet
optical-absorption (excitonic) gaps of a benzene molecule in vac-
uum. The geometry was relaxed in both the neutral ground
state and the cationic state using DFT-PBE. The resulting adi-
abatic DMC ionisation potential is 9.24(2) eV, which is in ex-

cellent agreement with the experimental value of 9.24384(6) eV
obtained by the zero kinetic energy (ZEKE) photoelectron spec-
troscopy method66. If the ground-state geometry is used for both
the ground state and the cation (i.e., the vertical ionisation poten-
tial is calculated) then the static-nucleus DMC ionisation potential
is 9.39(3) eV. This illustrates that, when calculating ionisation po-
tentials and electron affinities (and hence quasiparticle gaps) for
small molecules, it can be important to relax the geometry in the
neutral, cationic, and anionic states.

Static-nucleus DMC predicts the singlet and triplet excitonic
gaps of benzene to be 5.63(4) and 4.56(4) eV, respectively, which
are about 0.7 eV larger than the experimental values of 4.9 eV67

and 3.9 eV68, respectively. This difference is largely due to the
neglect of vibrational effects.

In Fig. 2 we report gap-renormalisation results for benzene,
where we have relaxed the benzene molecule and calculated the
band gap using DFT-PBE. The static HOMO–LUMO gap is 5.106

eV, and it reduces to 4.653 eV when the effects of quantum me-
chanical zero-point motion are included. This gives a zero-point
correction to the band gap of −0.453 eV. Using the DFT-PBE ge-
ometry, DFT-HSE06 predicts a static band gap of 6.160 eV, which
is larger than the DFT-PBE band gap, as expected, and a renor-
malised band gap of 5.660 eV, with a zero-point correction of
−0.500 eV. Similar results are obtained if the benzene molecule is
relaxed using DFT-HSE06 instead of DFT-PBE. We note that small
changes in these results could arise if the renormalisation were
calculated for the full optical absorption spectrum rather than in-
dividual electronic eigenvalues69.
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∆ZP = 4.653 eV

∆static = 5.106 eV

∆ZP - ∆static= -0.453 eV

Fig. 2 Distribution of HOMO and LUMO DFT-PBE eigenvalues of
benzene at the static-lattice level (vertical red and green lines) and
including the effects of zero-point motion (shaded blue curves).

In summary, the DFT vibrational renormalisation of the exci-
tonic gap of benzene ranges from −0.45 eV to −0.50 eV, depend-
ing on the choice of exchange–correlation functional. This cor-
rection enormously improves the agreement between theory and
experiment, as previously observed in diamondoids59. This in-
dicates that we can expect our vibrationally renormalised DMC
gaps to be accurate to within 0.2–0.3 eV.
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3 Results and discussion

3.1 Atomic structures and atomisation energies of linear

hydrogen-terminated oligoynes

The ground-state BLAs at the centres of oligoynes have previously
been calculated using a variety of theoretical methods27,37,70,71;
some of the results are compared with our DMC and DFT data in
Fig. 3. The PBE functional completely fails to describe the BLA
for long chains, while spin-restricted HF theory predicts a very
large BLA. Our DFT-HSE06 BLAs are in agreement with the val-
ues previously obtained using the B3LYP functional27,70, and are
close to the MP2 results wherever the latter are available71; how-
ever none of these BLA curves tends to the DMC BLA of polyyne
as the chain length increases. By contrast, the CCSD(T) BLAs37

of oligoynes appear to tend to a limit only slightly less than the
DMC result for polyyne. Our DMC results for the BLA of extended
polyyne provide benchmark data with which the results of other
theories may be compared.
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[37]

DMC 

Fig. 3 Optimised BLA at the centre of a hydrogen-terminated oligoyne
in the ground state against the reciprocal of the number n of pairs of
carbon atoms.

The DMC static-nucleus atomisation energy of the oligoyne
C2nH2 is defined as 2n times the DMC total energy of an isolated,
spin-polarised carbon atom plus two times the DMC total energy
of an isolated hydrogen atom minus the DMC static-nucleus to-
tal energy of C2nH2. The DMC atomisation energies of oligoynes
obtained using geometries relaxed in DFT-HSE06 and DFT-PBE
calculations are compared in Fig. 4. For oligoynes consisting of
up to five pairs of carbon atoms, the difference between the DMC
atomisation energies with the DFT-PBE and DFT-HSE06 geome-
tries is negligible.

3.2 Atomic structure, vibrational properties and atomisa-

tion energy of polyyne

As the number of carbon atoms goes to infinity, the effects of the
terminal groups become negligible; therefore polyyne can be con-
sidered to be a 1D periodic chain with a primitive cell composed
of two carbon atoms with alternating triple and single bonds.

In order to obtain the BLA of an infinite chain, we considered
supercells subject to periodic boundary conditions, in which the
lattice constant was fixed at the DFT-BLYP25 value of 2.58 Å. We
calculated DMC energies at different BLAs ranging from 0.09 to
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Fig. 4 Static-nucleus DMC atomisation energies of
hydrogen-terminated oligoynes as a function of the reciprocal of the
number n of pairs of carbon atoms. “DMCX” indicates a DMC
atomisation energy calculated using the geometry optimised by method
X. The inset shows the relative atomisation energies of
hydrogen-terminated oligoynes as a function of the reciprocal of the
number n of pairs of carbon atoms.

0.18 Å and fitted a quadratic to our DMC data, as shown in Fig.
5(a), to locate the minimum.

The DMC energy minima of supercells consisting of 8, 12, and
16 primitive cells are at BLAs of 0.152(5), 0.145(2), and 0.144(1)

Å, respectively. When the BLA is 0.15 Å, the C≡C triple-bond
length is 1.215 Å and the ratio of the C≡C triple-bond length to
the lattice constant is 0.471. We then computed the ground-state
DMC energy of polyyne at several lattice constants, from 2.4 to
2.7 Å, holding the ratio of the C≡C bond length to the lattice con-
stant at 0.471 for the supercell composed of 8 primitive cells and
holding the C≡C bond length at 1.215 Å for the supercell con-
sisting of 16 primitive cells. The quadratic fits to the DMC data
in the inset of Fig. 5(a) are in good agreement, and the ground-
state energy is minimised at lattice constants of 2.5817(9) Å and
2.5822(5) Å for supercells of 8 and 16 primitive cells, respectively.
Finally, the DMC energy was calculated at lattice constant 2.5817

Å for different BLAs as shown in Fig. 5(b) together with quadratic
fits. The DMC energy minima for supercells consisting of 8 and
16 primitive cells occur at BLAs of 0.142(2) and 0.136(2) Å, re-
spectively, which are in reasonable agreement. Furthermore, the
BLA obtained in a supercell of 16 primitive cells does not differ
significantly from the BLA 0.133(2) Å obtained by minimising the
DMC energy extrapolated to infinite system size using Eq. (3). We
therefore report the BLA obtained in a supercell of 16 primitive
cells [0.136(2) Å] as our final result.

The DMC data shown in Fig. 5 for the ground-state energy per
primitive cell e(b) against BLA b can be used to calculate the lon-
gitudinal optical (LO) phonon frequency of polyyne at Γ. Near
the minimum of the energy we may write

e(b) = e0 +
1

2

mC

2
ω

2

(

b

2
−

b0

2

)2

, (6)

where b is the bond-length alternation, b0 and e0 are constants,
mC/2 is the reduced mass of the two carbon atoms in polyyne’s
primitive unit cell, and ω is the LO phonon frequency at Γ. In
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Fig. 5 (a) Ground-state (GS) DMC energy of polyyne as a function of
BLA for lattice constant 2.58 Å in different sizes of simulation supercell.
The inset shows the ground-state DMC energy of polyyne against the
lattice constant at a fixed ratio of C≡C bond length to lattice constant for
8 primitive cells (p.c.) and a fixed C≡C bond length for 16 primitive cells.
(b) GS DMC energy of polyyne as a function of BLA for lattice constant
2.5817 Å in different sizes of supercell. The minimum of the DMC
energy, −306.901(3) eV per primitive cell, is at BLA b0 = 0.136(2) Å. The
inset shows the square modulus |ψ0|

2 of the longitudinal optical phonon
ground-state wave function for a supercell composed of 16 primitive
cells as a function of BLA.

terms of the BLA b, the ground-state wave function of the zone-
centre LO phonon mode of polyyne in Hartree atomic units is

ψ0(b) =
(

mCω

2π

)1/4
exp

[

−
mCω

2

(

b

2
−

b0

2

)2
]

. (7)

Fitting Eq. (6) to the static-nucleus DMC energy of a supercell
composed of 16 primitive cells of polyyne gives ω = 2084(5)

cm−1. The standard deviation of b in the ground state is σb =
√

2/(mCω) = 0.052 Å. The square modulus of the LO phonon
ground-state wave function is plotted in the inset of Fig. 5(b).

In Fig. 6 we show the DFT-LDA, DFT-PBE, and DFT-HSE06
phonon dispersion curves of polyyne. Our DFT-PBE phonon dis-
persion curve is in good agreement with previous DFT-PBE results
in the literature72. The DMC LO phonon frequency at Γ is 2084(5)

cm−1, which is significantly higher than the frequencies of 1162,
1223, 1723, 1844, and ∼ 1970 cm−1 obtained using DFT-LDA, DFT-
PBE, DFT-HSE06, DFT-B3LYP73, and equally-scaled spin compo-
nents MP274, respectively. It is clear that DFT provides a poor de-
scription of both the Peierls distortion and the related LO phonon

behaviour. The LO phonon frequencies of oligoynes with up to 40
carbon atoms have been measured by Raman spectroscopy to be
in the region of 1900–2300 cm−1; the precise value depends on
the terminal groups, solvent, and the number of carbon atoms in
the chain75.

Γ X
k
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) 
(c

m
-1

)

LDA
PBE
HSE06
DMC

LO

LA

TO

TA

Fig. 6 Phonon dispersion curve of polyyne calculated using DFT-LDA,
DFT-PBE, and DFT-HSE06. The DMC LO frequency at Γ is shown by
the red square. “T,” “L,” “A,” and “O” stand for transverse, longitudinal,
acoustic, and optical, respectively. We believe the slight instability of the
TA branch in the DFT-HSE06 dispersion curve is a numerical artifact.

To evaluate the quasiparticle gap of polyyne, the atomic struc-
ture should be in principle be relaxed when an electron is added
to or removed from a supercell. Although the effect on the struc-
ture becomes vanishingly small as the supercell becomes large
[falling off as O(n−1), where n is the number of primitive cells in
the supercell], the effect on the gap remains finite, because the
gap is a difference of total energies, which increase as O(n) with
supercell size and depend on the atomic structure. However, the
re-optimisation of the geometry at each system size adds noise
that affects the extrapolation to the limit of infinite system size
and, as shown in Fig. 9, the effect of relaxing the geometries of
cations and anions on the quasiparticle gap (i.e., the difference
between the vertical and adiabatic quasiparticle gaps) is small for
large oligoynes.

In Table 2 we compare the equilibrium BLAs and lattice con-
stants of polyyne obtained using different methods. DFT-LDA,
PBE, and HSE06 functionals underestimates the BLA of polyyne,
while HF theory predicts a larger BLA than DMC. The DMC BLA
happens to be in agreement with the Becke–half-and-half–Lee–
Yang–Parr (BHHLYP) and Kang–Musgrave–Lee–Yang–Parr (KM-
LYP) results25. The BLA of extended polyyne within a DWCNT
has been measured to be 0.1 Å4, which we expect to be different
from our results for free-standing polyyne due to the effects of
charge transfer between the polyyne and the DWCNT.

In Fig. 7 we compare the ground-state DMC energy of polyyne
calculated using BLAs obtained by DMC and DFT-HSE06 as a func-
tion of system size. To reduce finite-size errors, we considered su-
percells consisting of 8, 12, and 16 primitive cells, with the BLA
and lattice constant fixed as a function of cell size, and we fit-
ted a curve of the form Eq. (3). The extrapolated DMC energies
with the DFT-HSE06 and DMC geometries are −306.875(2) and
−306.895(2) eV per primitive cell, respectively, confirming that

6 | 1–12

Page 6 of 12Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
2 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
L

an
ca

st
er

 o
n 

18
/0

4/
20

16
 1

4:
04

:5
7.

 

View Article Online
DOI: 10.1039/C5CP07891A

http://dx.doi.org/10.1039/c5cp07891a


Table 2 BLA and lattice constant a of polyyne as calculated or measured
by different methods. r1 and r2 are the C–C and C≡C bond lengths,
respectively. “PBC” indicates that periodic boundary conditions were
used; otherwise results were obtained by extrapolation from a series of
oligoynes. Where known, the number n of pairs of carbon atoms in the
longest chain for which calculations were performed is given. Where a
citation is not given in the table, the data were obtained in the present
work. The experimental result is for polyyne encapsulated in a DWCNT.

Method n a (Å) r1 (Å) r2 (Å) BLA (Å)
DFT-LDA 25 PBC 2.566 1.297 1.269 0.028

DFT-LDA 35 PBC 2.532 1.286 1.246 0.040
DFT-PBE PBC 2.565 1.300 1.265 0.035

DFT-PBE1PBE 25 36 0.093
DFT-HSE06 PBC 2.56 1.323 1.237 0.086

DFT-KMLYP 25 36 0.135

DFT-BHHLYP 25 36 0.134

DFT-B3LYP 25 36 0.088

DFT-O3LYP 25 36 0.067

DFT-BLYP 25 PBC 2.582 1.309 1.273 0.036

HF 25 36 0.183

MP2 25 20 0.060

MP2 35 2.554 1.337 1.217 0.120

MP2/CO 36 2.6 1.346 1.254 0.092

CCSD 35 2.559 1.362 1.197 0.165

CCSD(T) 35 2.565 1.358 1.207 0.151

CCSD(T) 37 9 2.586 1.357 1.229 0.128
DMC PBC 2.5817(9) 1.359(2) 1.223(2) 0.136(2)
Exp. in DWCNT 4 ∼ 200 2.558 1.329 1.229 0.100

DMC is needed for geometry optimisation.
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Fig. 7 Ground-state DMC energy of polyyne against the reciprocal of
the square of the number n of primitive cells (p.c.) in the supercell.
“DMCX” indicates a DMC energy calculated using the geometry
optimised by method X.

DMC atomisation energies of extended polyyne obtained us-
ing DMC and DFT-HSE06 geometries are compared in Table 3.
The DMC static-nucleus atomisation energy with the DMC geom-
etry is 12.55(1) eV, which is outside the range 10.7–11.4 eV esti-
mated by MP2, CCSD, and CCSD(T) methods in Ref. 35; how-
ever the latter were calculated by extrapolating results obtained
for hydrogen-terminated oligoynes of up to eight pairs of carbon
atoms to infinite chain length, whereas our polyyne calculations
use periodic boundary conditions. DFT phonon zero-point ener-
gies are reported in the caption of Table 3. As shown in Fig. 4,
the difference between DMC atomisation energies with DFT-PBE
and DFT-HSE06 geometries is negligible for small oligoynes.

Table 3 Static-nucleus atomisation energy Ec of polyyne as obtained by
different methods. “DMCDMC” and “DMCHSE06” indicate that the DMC
energy of polyyne was calculated using the DMC- and
DFT-HSE06-optimised geometries, respectively. (The DFT-PBE and
DFT-HSE06 phonon zero-point energies of polyyne are 0.260 and 0.264

eV, respectively. The zero-point energy is a correction that should be
subtracted from the atomisation energy before comparison with
experiment.)

Method Ec (eV)
DFT-PBE 13.71
DFT-HSE06 12.47

MP2 35 11.375

CCSD 35 10.678

CCSD(T) 35 11.053
DMCHSE06 12.53(1)
DMCDMC 12.55(1)

3.3 Quasiparticle and excitonic gaps of hydrogen-

terminated oligoynes

The DFT-HSE06 band structure of polyyne is shown in Fig. 13.
Polyyne is a semiconductor with a direct band gap at the X point
of the Brillouin zone, as expected on the basis of the Peierls dis-
tortion mechanism.

Figure 8(a) shows that using an MD trial wave function reduces
the DMC singlet and triplet excitonic gaps of small oligoynes (by
up to 1.3 eV for C4H2). The reduction in singlet gaps is larger
than the reduction in triplet gaps. However, Fig. 8(b) shows that
using an MD wave function does not significantly affect the quasi-
particle gaps of oligoynes apart from C4H2. As the length of the
molecule increases, the effects of using multiple determinants on
the excitonic gaps decreases, becoming negligible for polyyne.

The DMC quasiparticle gaps of oligoynes are compared with
other theoretical results in Fig. 9. The HF method overestimates
the quasiparticle gap, while DFT with various functionals consid-
erably underestimates the gap. The DMC quasiparticle gaps cal-
culated using DFT-HSE06 and DFT-PBE geometries are in agree-
ment for oligoynes consisting of fewer than ten carbon atoms,
but gradually start to differ from each other for longer oligoynes,
with the difference in the DMC gaps reaching 0.8(1) eV for C24H2.
This demonstrates that, not only the method used to calculate
the gap, but also the method used to optimise the geometry of
polyyne must be highly accurate. Using the ground-state geom-
etry rather than separately optimised geometries for the ground,
cationic, and anionic states increases the quasiparticle gap by less
than 0.15 eV for oligoynes longer than C8H2 (i.e., the difference
between the vertical and the adiabatic quasiparticle gap is negli-
gible for large oligoynes). The DMC quasiparticle gap of polyyne,
evaluated using the DMC ground-state geometry, is 3.6(1) eV.

We plot the static-nucleus singlet and triplet excitonic gaps of
different oligoynes in Fig. 10(a). Singlet–triplet splitting (the dif-
ference of singlet and triplet excitonic gaps) against the recip-
rocal of the number n of pairs of carbon atoms in oligoynes is
small, about 0.1–0.2 eV as shown in Fig. 10(b). Using DFT-HSE06
geometries instead of DFT-PBE geometries typically increases the
DMC gaps by around 0.2 eV for small oligoynes. The DMC singlet
and triplet excitonic gaps of extended polyyne using the ground-
state DMC geometry are obtained by extrapolating results ob-
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Fig. 8 (a) Difference (∆MD
exc −∆

SD
exc) of the DMC excitonic gaps of

oligoynes obtained using MD and single-determinant Slater–Jastrow trial
wave functions as a function of the reciprocal of the number n of pairs of
carbon atoms. (b) Difference (∆MD

qp −∆
SD
qp ) of the DMC quasiparticle gaps

of oligoynes obtained using MD and single-determinant Slater–Jastrow
trial wave functions as a function of the reciprocal of the number n of
pairs of carbon atoms. DMCX indicates a DMC gap calculated using the
geometry optimised by method X. “X(all)” in the subscript indicates the
use of geometries separately optimised using method X for the neutral
ground state, cationic state, and anionic state.
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Fig. 9 Static-nucleus quasiparticle (QP) gaps of hydrogen-terminated
oligoynes against the reciprocal of the number n of pairs of carbon
atoms. “DMCPBE” and “DMCHSE06” denote DMC gaps calculated using
DFT-PBE and DFT-HSE06 ground-state geometries, respectively.
“DMCX(all)” denotes DMC quasiparticle gaps calculated using
geometries optimised by method X separately for the neutral ground
state, cationic state, and anionic state.

tained in finite, periodic cells to infinite system size, as discussed
in Sec. 3.4.
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Fig. 10 (a) DMC static-nucleus singlet and triplet excitonic gaps for
oligoynes, whose geometries are optimised by DFT-PBE and
DFT-HSE06, against the reciprocal of the number n of pairs of carbon
atoms. DMCX indicates a DMC gap calculated using the geometry
optimised by method X. (b) DMC singlet–triplet splitting for oligoynes
obtained with DFT-PBE and DFT-HSE06 geometries. The polyyne limit
was obtained using the DMC geometry.

In Fig. 11 we show zero-point corrections to the excitonic gaps
of hydrogen-terminated oligoynes. The error bars in the Monte
Carlo results indicate the statistical uncertainty arising from the
Monte Carlo integration. The band-gap corrections calculated us-
ing the quadratic method are in good agreement with the Monte
Carlo results. In the quadratic method, the coupling of each vi-
brational normal mode to the electronic band extrema is treated
individually, hence providing access to the microscopic behaviour
of the system. Within DFT-PBE, the largest phonon zero-point
correction to the gap is found in the shortest oligoyne consid-
ered, C4H2, at about −0.14 eV. The correction decreases with
increasing chain length to about −0.05 eV for C24H2. The de-
crease in the strength of electron–phonon coupling with increas-
ing chain size in oligoynes can be attributed to the decrease in
the importance of the hydrogen atoms at the terminations. The
DFT-HSE06 zero-point correction to the excitonic gap of polyyne
is obtained by extrapolation to infinite system size as explained in
Sec. 3.4. Phonon renormalisation of gaps is clearly not as impor-
tant in oligoynes as in either benzene or diamond.

3.4 Quasiparticle and excitonic gaps of polyyne

Figure 12(a) shows the finite-size behaviour of the DMC static-
nucleus triplet excitonic gaps of polyyne obtained using the DFT-
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Fig. 11 DFT-PBE zero-point correction ∆corr to the excitonic gaps of
oligoynes as a function of the reciprocal of the number n of pairs of
carbon atoms. The zero-point correction in the polyyne limit was
calculated by DFT-HSE06.

HSE06 and DMC ground-state geometries. In the infinite-system
limit, the DMC triplet gaps with the DFT-HSE06 and DMC ge-
ometries are 2.29(7) and 3.17(7) eV, respectively. Figure 12(b)
shows the static-nucleus triplet and singlet excitonic gaps and the
quasiparticle gap of polyyne calculated using the Ewald interac-
tion and the DMC-optimised geometry in different supercells, to-
gether with DFT-PBE gaps. The singlet excitonic gap of polyyne
is slightly larger than the triplet gap. The DFT-PBE quasiparti-
cle and excitonic gaps are calculated using the DMC-optimised
geometry and Eqs. (1) and (2) at different k-point samplings
(which may be unfolded to correspond to supercells of n primi-
tive cells). The triplet excitonic gap calculated by DFT is relatively
close to the DMC triplet excitonic gap, while the DFT quasiparti-
cle gap is far too large. The DFT gap predicted by the ground-
state band-structure calculation is (as expected) significantly un-
derestimated. The fluctuations in the DFT gaps as a function of
supercell size (i.e., k-point grid) are small, suggesting that single-
particle errors in the DMC gaps are negligible. However, it is clear
that there is a systematically varying finite-size error in the DMC
gap. We have reduced the systematic finite-size errors in our DMC
gaps by calculating both excitonic and quasiparticle gaps for su-
percells composed of 8, 10, 12, and 16 primitive cells and then
extrapolating to infinite cell size using Eq. (4). The finite-size er-
rors in the quasiparticle gaps are larger than the finite-size errors
in the excitonic gaps, as discussed in Sec. 2.4. The DMC singlet
and triplet excitonic gaps of polyyne calculated using the DMC-
relaxed geometry are 3.30(7) and 3.17(7) eV, respectively, while
the DMC quasiparticle gap is 3.6(1) eV.

To estimate the unscreened exciton binding energy within the
Wannier–Mott model, we have calculated the DFT-HSE06 band
structure of polyyne (shown in Fig. 13). In Hartree atomic units
the band effective masses m

∗
e and m

∗
h of the electrons and holes at

the X point of the Brillouin zone are given by

m
∗
e(h) =

∣

∣

∣

∣

∣

∣

1
(

d2EC(V)/dk2
)

X

∣

∣

∣

∣

∣

∣

, (8)

where EC(k) and EV(k) are the conduction and valance bands,
respectively. Numerically differentiating the DFT-HSE06 bands,
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Fig. 12 (a) DMC excitonic gaps of polyyne against the reciprocal of the
number n of primitive cells in the supercell as calculated using the
DFT-HSE06 and the DMC ground-state geometries (DMCHSE06 and
DMCDMC, respectively). (b) Quasiparticle (QP) and excitonic energy
gaps of polyyne against the reciprocal of the number n of primitive cells
in the supercell as obtained using different methods. The results simply
labelled “DFT-PBE” show the band gap obtained in a ground-state
band-structure calculation. The results labelled DMCDMC used the DMC
ground-state geometry, whereas the results labelled DMCDMC(all) used
the DMC geometries for the ground state, cationic state, and anionic
state of a finite cell of polyyne when calculating the quasiparticle gap.
The DFT calculations used the DMC geometries in the same way as the
DMC calculations. At finite size the quasiparticle gap is smaller than the
excitonic gap due to the introduction of a neutralising background when
a charged particle is added to or removed from a periodic cell, as
explained in Sec. 2.4.

we find that m
∗
e = 0.046 a.u. and m

∗
h = 0.050 a.u. In Hartree

atomic units the exciton Bohr radius is a
∗
0 = 1/µ∗, where µ∗ =

m
∗
em

∗
h/(m

∗
e +m

∗
h) is the reduced mass of the electron–hole pair and

we have assumed that the electron and hole interact via the un-
screened Coulomb interaction. In this case, the exciton Bohr ra-
dius is a

∗
0 = 22 Å, which is slightly smaller than the exciton Bohr

radii of about 30 Å estimated for various other 1D conjugated
polymers76, and is similar to or smaller than the lengths of the
simulation cells used in our calculations (21–41 Å). Within the
Wannier–Mott model, the unscreened exciton binding energy of
polyyne is 1R

∗
∞ = µ∗/2 = 0.3 eV. In fact we find the DMC static-

nucleus exciton binding energy to be 0.3(1) eV, which is consis-
tent with the small measured exciton binding energies of a range
of π-conjugated polymers77,78.

In Fig. 14 we report the DFT-HSE06 zero-point correction to the
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Fig. 13 DFT-HSE06 band structure of polyyne. The dashed line shows
the Fermi energy.

excitonic gap of polyyne, calculated at different supercell sizes.
The zero-point correction linearly extrapolated to the thermody-
namic limit is −0.11(2) eV. As observed for oligoynes, the vibra-
tional correction to the gap is not as large as in benzene.
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Fig. 14 DFT-HSE06 zero-point correction ∆corr to the excitonic gap of
polyyne against the reciprocal of the number n of primitive cells in the
supercell.

In Table 4, we compare the quasiparticle and excitonic gaps
of polyyne obtained by different methods. The spread of theo-
retical results in the literature is remarkable. The static-nucleus
DMC gaps were calculated using the DMC ground-state geometry.
The DMC static-nucleus singlet excitonic gap is 3.30(7) eV, which
is slightly reduced to 3.19(7) eV by phonon renormalisation. By
extrapolating experimental absorption gaps of oligoynes to infi-
nite chain length, various estimates of the gap of polyyne have
been made, ranging from 1.24–2.56 eV. These are lower than our
DMC excitonic gap by 0.63–1.95 eV. We note that experimental
gaps are strongly affected by finite chain length, solvent, and ter-
minal groups, and that the more recent experimental results on
longer oligoynes (e.g., Ref. 5) are closer to our results.

4 Conclusions

In summary we have used DMC to calculate the BLA together
with the quasiparticle and excitonic gaps of hydrogen-capped
oligoynes and extended polyyne. We have found that simpler
levels of theory, such as DFT, do not predict either the BLA or

Table 4 Singlet excitonic gaps ∆exc and quasiparticle gaps ∆qp of
polyyne obtained by different methods. Most of the gaps were obtained
by extrapolation from a series of oligoyne molecules; the number n of
pairs of carbon atoms in the largest oligoyne considered in each work is
shown where known. The DFT-LDA and DFT-BLYP calculations for
polyyne using periodic boundary conditions (PBC) were performed
using 133 k points 25. Where a citation is not given in the table, the data
were obtained in the present work.

Method n ∆exc (eV) ∆qp (eV)
DFT-LDA 25 PBC 0.246

DFT-LDAx 24 20 0.70

DFT-PW91 79 PBC 1.17
DFT-PBE PBC 1.277

DFT-PBE1PBE 25 36 1.801

DFT-B88 24 20 0.72

DFT-HF 24 20 6.31

DFT-HF 25 36 8.500

DFT-LHF 24 20 0.92

DFT-BLYP 24 20 0.72

DFT-BLYP 25 PBC 0.320

DFT-B3LYP 34 13 1.49

DFT-B3LYP 24 20 1.50

DFT-B3LYP 25 36 1.487

DFT-B3LYP 26 12 1.59

DFT-KMLYP 25 36 4.438

DFT-BHHLYP 25 36 3.946

DFT-BHHLYP 26 12 4.04

DFT-O3LYP 25 36 0.895

DFT-CAM-B3LYP 26 12 4.33
DFT-HSE06 PBC 1.301

GW
80 PBC 0.407

GW
38 PBC 2.15

MP2 25 20 5.541
DMCDMC PBC 3.19(7) 3.6(1)
Experiment 23 10 2.20

Experiment 7 10 2.20

Experiment 10 12 2.18–2.36

Experiment 34 10 2.33

Experiment 21 10 2.18

Experiment 22 12 2.16

Experiment 11 12 1.24–1.88

Experiment 5 22 2.56

the gap with quantitative accuracy. Our DMC calculations show
the Peierls-induced BLA of polyyne to be 0.136(2) Å, which is
significantly higher than DFT predictions. The DMC quasiparti-
cle gap of extended polyyne obtained using the DMC-optimised
BLA is 3.6(1) eV. The static-nucleus DMC singlet excitonic gap of
polyyne is 3.30(7) eV. Vibrational contributions reduce the exci-
tonic gap of polyyne by about 0.1 eV. The DMC-calculated zone-
centre LO phonon frequency of polyyne is 2084(5) cm−1, which is
significantly higher than those obtained by DFT, but is consistent
with experimental Raman measurements. Our work represents
the first direct evaluation of the structural and electronic proper-
ties of extended 1D carbon chains using a high-accuracy method.
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