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ABSTRACT 

 

Previous research has demonstrated that biochar addition to soil improves the soil’s 

physical and chemical characteristics, reduces nutrients leaching, increases crop yield 

and enhances microbial activity in the soil. This has attracted significant research 

interest into the effects of biochar application on soil in recent years. However, the 

literature on tropical soils following biochar addition is scarce. Even though more 

biochar studies were conducted in temperate soil, the physical and chemical 

characteristics of temperate soils vary widely, and may respond differently upon 

biochar addition. Moreover, to date, tropical and temperate soils studies are conducted 

separately. Therefore, this thesis investigates the effect of biochar amendment on the 

soil’s physical, chemical and biological properties in two different climates at the 

same time. The aims of this study were to determine the effect of biochar ageing on 

tropical and temperate soil characteristics and also to assess the effect of different 

particle sizes and application rates on temperate soil properties. The present study 

comprised of two sets. The first set involved incubation of soils and biochar for up to 

360 days (tropical soil), 300 days (temperate soil part 1) and 30 days (temperate soil 

part 2). The soils were kept and incubated in sealed jars. The soil’s biological, 

chemical and physical properties were tested as to whether they were enhanced by the 

addition of biochar. The second set was a nutrients leaching study. In this part of the 

study, the soils and biochars were packed into glass and PVC columns. Ammonium, 

nitrate and phosphate leaching were measured to assess whether biochar application 

reduces nutrients leaching from the soil columns.  
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The results from the tropical and temperate soils revealed that at the 2% application 

rate, the addition of biochar increased the soil’s carbon and pH (P<0.05), had a limited 

effect on the mineralization of 
14

C glucose and water retention, a marginal effect on 

the cation exchange capacity, and no effect on the microbial biomass, total nitrogen, 

inorganic phosphorus and aggregate stability (P>0.05). Biochar also reduced the 

concentration of ammonium leaching (P<0.05) and showed an unclear pattern on the 

sorption of nitrate and phosphate of biochar in the soil’s leachates (P>0.05). At a 

higher application rate (5%), biochar increased the temperate soil’s carbon and pH 

(P<0.05), increased microbial activity, especially when using the finest particle size 

(0.1mm) (P<0.05), increased microbial growth (P<0.05) and reduced nitrate leaching 

in unfertilized temperate soil (P<0.05). These results were drawn from a small-scale 

study (laboratory study). The effects of biochar on a larger scale, for example in a 

long-term field study, must be investigated further to examine whether similar results 

can be obtained in a real condition. This is important to assist and provide farmers 

with information about the use of biochar before applying biochar in a vast 

agricultural area. 
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CHAPTER 1 

 

Introduction 

1.1 Biochar 

Biochar can be made from a range of organic materials, for instance crop residues, 

manure or wood, that have been heated in a closed vessel with very limited or zero 

oxygen (Lehmann and Joseph, 2009). This process is called pyrolysis or gasification 

and it produces charred materials. Biochar applications to soil began thousands of 

years ago in the Amazonian Basin, where fertile soil called Terra Preta (dark earth) 

was created by the indigenous people (Lehmann, 2003; Glaser and Woods, 2004). 

Biochar has many benefits as a soil additive and has been proposed as a soil 

amendment for sequestering carbon and improving soil properties. The effect of the 

addition of biochar varies based on its characteristics, production and feedstocks, as 

well as the soil and crop types, land management and climate (Verheijen et al., 2010; 

Scott et al., 2014). 

  

The addition of biochar to soils can have positive or negative effects on soil and crops. 

The mechanisms of these phenomena are unclear. These have created significant 

research interest into the effects of biochar application on soil in recent years (Barrow, 

2012; Ameloot et al., 2013; Semple et al., 2013; Kloss et al., 2014; Jay et al., 2015). 

A study by Angst et al. (2013) reported that sandy loam soil amended with hardwood 

biochar not only exhibited reduced nitrous oxide emissions, but also decreased N 

leaching. In addition, the application of biochar improves water holding capacity and 
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saturated hydraulic conductivity (Asai et al., 2009; Karhu et al., 2011) due to large 

numbers of small pores.  

 

Adding biochar to soil can also influence soil organisms, as a result of the chemical 

alteration after the addition of biochar to soil (Cornelissen et al., 2013). For instance, 

the release or sorption of organic compounds from biochar may in some cases be 

responsible for a decrease or increase in microbial abundance and activity (Lehmann 

et al., 2011).  

 

In spite of the positive effects, adding biochar to soil can also have negative effects. 

For example, Quilliam et al. (2013a) found that the application of biochar to soil in 

the short-term did not provide a habitat in which microbes could live. Other studies 

have revealed that biochar has no effect on microbial activity and biomass (Bruun et 

al., 2008; Dempster et al., 2010; Zhang et al., 2014a); it decreases the cation exchange 

capacity (CEC) of the soil (Novak et al., 2009; Méndez et al., 2012; Karer et al., 

2013; Kloss et al., 2014); and it does not increase the pH in temperate soil 

(McCormack, 2015; Qayyum et al., 2015).  

 

With regard to both the positive and negative effects of biochar addition to soil, 

however, little research has been conducted on the ageing effect after biochar 

application to soil, or increasing the rate of biochar loading to soil. Most of the studies 

have been carried out over less than 12 months (Hamer et al., 2004; Bruun et al., 

2008; Ding et al., 2010). Furthermore, most of the biochar experiments have focused 
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on degraded soils, such as highly weathered tropical soils (Glaser et al., 2002; 

Blackwell et al., 2009; Sohi et al., 2010) under a tropical climate and nutrient poor 

soils under a temperate climate (Jones et al., 2012; Quilliam et al., 2012; Kloss et al., 

2014). However, these soils do not represent fertile and highly managed agricultural 

soils. Also, most studies of biochar in tropical (Masulili et al., 2010; Peng et al., 2011; 

Alling et al., 2014; Kollah et al., 2015) and temperate (Jones et al., 2012; Quilliam et 

al., 2013a; Jay et al., 2015) climates have been conducted separately.  

 

In addition, the particle size of biochar is one of the important characteristics that 

should be investigated further. To date, there is limited information regarding the 

effect of the particle size of biochar on the soil quality and its degradation by soil 

biota. Therefore the mechanisms by which particle size significantly influences the 

rate of mineralization of biochar and the stability of biochar in the soils remain poorly 

investigated (Sigua et al., 2014). This is because when biochar reacts with soil 

particles (Laird et al., 2009), the resistance of biochar to microbial attack varies 

depending on the particle size of the biochar (Manyà, 2012). For example, Kollah et 

al. (2015) found that finer particle sizes of biochar accelerated CH4 consumption 

compared to larger sizes. They speculate that the colonization of microbes increased 

(Thies and Rillig, 2009) due to the increased surface area when using smaller particle 

sizes of biochar as a soil amendment. Additionally, a huge surface area of biochar 

particles enables a greater number of sites for contaminants, such as heavy metals or 

pesticides in the water and soils, to bind (Cernansky, 2015).  
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Thus, in this study the impact of long-term biochar amendment on particular physical, 

chemical and biological properties, for example, aggregate stability, water retention, 

pH, CEC, leaching, nutrient content, microbial activity and growth is investigated in 

both tropical and temperate climates. Also, the effects of different particles sizes and 

rates of biochar on two contrasting soils’ fertility in the temperate climate are 

explored, to identify whether the biochar addition has an impact on the biological and 

chemical properties of the soils. Thus, the aims of this study are: 1) to investigate the 

influence of ageing biochar and soil mixtures on soil properties in both climates under 

gradients of soil degradation and different soil types; and 2) to explore the influence of 

different sizes and rates of biochar application on the properties of two temperate soils 

with contrasting nutrients status. With adequate information in these areas, it is hoped 

that biochar amendment could improve soil properties particularly in degraded land.  

 

1.2 Thesis objectives 

The objectives of this thesis are as follows: 

1. To examine whether an addition of biochar on tropical and temperate soils can 

enhance the biological properties of the soils over time   

2. To determine the effect of biochar on tropical and temperate soils’ chemical 

properties and leaching of nutrients over time  

3. To assess the impact of biochar on soil structural changes over time for 

tropical and temperate soils with different gradients of soil degradation  

4. To investigate the effects of different particle sizes and application rates of 

biochar on two soils with contrasting nutrient availability in a temperate 

climate 
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1.3 Thesis structure 

The thesis focuses on the effect of organic soil amendment (biochar) on the physical, 

chemical and biological aspects of soil. The experiments involved materials from 

tropical and temperate climates. For the tropical climate, three Malaysian Spodosols 

soils (forest, intensive farming and non-intensive farming soils) based on different 

gradients of degradation and two types of biochar (coconut shell and rice husk) were 

chosen to investigate whether the addition of biochar would have an impact and 

enhances the soil properties over time (ageing period).  

 

The temperate study is divided into two parts. For the first part of the study, Brown 

Earth soils (grassland, arable loam and arable sandy); and biochar (hardwood) from 

the UK were used (temperate climate). In this study, the effect of ageing biochar for 

approximately 10 months was compared with biochar that had been freshly added to 

the soil. The physical, chemical and biological properties of the soils after adding 

biochar were compared with an aged soil amended with hardwood biochar. For the 

second part of the study, the soils were chosen based on different levels of soil 

management, for example highly managed soil (fertilized) and unmanaged soil 

(unfertilized). Different application rates (2% and 5%) and sizes (2mm, 1mm, 0.5mm 

and 0.1mm) of biochar were tested to examine whether the biochar addition would 

improve the soil’s biological and chemical properties. 

 

The thesis begins with an introduction in Chapter 1, which is followed by a literature 

review in Chapter 2 on the use and effects of biochar application in agricultural land. 

Shorter targeted reviews are also included in each chapter. Chapter 3 describes the 
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materials and methods used to characterize the biochars and soils in this study and 

details the methods used to carry out the experiments in the study. 

 

Chapter 4 measures the effectiveness of biochar application in tropical climates. The 

physical, chemical and biological aspects of the soils after amending them with 

biochars are evaluated in this chapter. Meanwhile, Chapter 5 assesses the impact of 

hardwood biochar addition to three contrasting temperate soils. In this chapter the 

ability of biochar to enhance the soil’s physical, chemical and biological 

characteristics is examined.  

 

The effects of biochar in temperate climates with different levels of soil management 

are further discussed in Chapter 6. Different particle sizes of biochar, as well as 

different application rates were tested to see whether both factors improved and 

enhanced the quality of the soils studied. Only biological aspects and some chemical 

characteristics of the soils were examined. These parameters were chosen based on the 

some positive results obtained from the previous chapters. 

 

Chapter 7 describes the details of both findings and the differences and similarities in 

the results achieved from the tropical and temperate regions. Further discussed in this 

chapter are the benefits of biochars in these experiments or, in other words, the 

positive effects of biochars after adding them to soils, as well as economic benefits 

from the use of biochar in both regions. These indirectly show that biochars could 

potentially be used in Malaysia and in the UK. The conclusion, in Chapter 8, gives a 
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general summary of the findings of this thesis. Finally, further works and research 

gaps that need to be filled are also presented at the end of this chapter. 
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CHAPTER 2 

 

Literature Review 

 

2.1 Biochar characteristics and potential agricultural use 

Feedstock is a type of biomass, for example, rice husk, woody, crop residues, manures 

and grasses that is pyrolysed to generate biochar (Verheijen et al., 2010). Different 

types of feedstocks influence biochar characteristics such as density, porosity and 

hardness (Spokas et al., 2012). Biochar yield from the same feedstock depends on the 

conditions of pyrolysis temperature, heating rate, time and particle size (Shafizadeh, 

1982; Williams and Besler, 1996; Demirbas and Arin, 2002; Uzun et al., 2006; Tsai et 

al., 2007). Biomass with high lignin contents, for instance olive husk, produces the 

highest biochar yields, showing the resistance of lignin to thermal degradation 

(Demirbas, 2004). 

 

Woody feedstocks produce small amounts of ash (<1% by weight), whereas biomass 

with high mineral contents, such as grass, grain husks and straw residues, produce 

high ash biochar (Demirbas, 2004). Rice husk (Amonette and Joseph, 2009) and rice 

hull (Antal and Gronli, 2003) may produce 24% to 41% ash by weight, respectively. 

Ash can also be hydrophobic, thus if this material is added to soil, it can reduce soil 

water retention and enhance runoff. This causes erosion to occur and results in poorer 

crop production due to nutrient loss (Renner, 2007). Therefore, when adding high ash-

containing biochar to soil, prevention measures for soil erosion must be taken into 

consideration. In addition, biochar produced at high temperature also results in 

increases in ash content (Kloss et al., 2012) as shown in Table 2.1 below.  
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Table 2.1 Basic characterization (pH, electrical conductivity (EC), ash content, cation 

exchange capacity (CEC), polycyclic aromatic hydrocarbon (PAHs) and yield) of the 

studied feedstocks and biochars pyrolyzed at 250, 400, 460, 525 and 650
O
C, from 

(Demirbas, 2004; Peng et al., 2011; Kloss et al., 2012).  

Feedstock Pyrolysis pH EC Ash CEC PAHs Yield 

 Temperature  (mScm
-1

) Content (mmol kg
-1

) (mg kg
-1

) (%) 

    (%)    

Straw 250
O
C 4.2 - - - - 54 

 400
O
C 9.1 1.0 9.7 161.6 5.2 - 

 460
O
C 8.7 4.9 12.0 117.0 10.7 - 

 525
O
C 9.2 4.4 12.7 97.7 33.7 - 

Spruce 400
O
C 6.9 0.4 1.9 73.5 30.7 - 

 460
O
C 8.7 1.8 3.0 54.7 5.8 - 

 525
O
C 8.6 0.7 4.7 52.2 1.8 - 

Poplar 400
O
C 9.0 1.0 3.5 144.0 4.3 - 

 460
O
C 9.2 0.7 5.7 128.3 17.9 - 

 525
O
C 8.7 0.9 6.8 107.6 2.0 - 

Oliver 

husk 

650
O
C - - - - - 43 

 

Kloss et al. (2012), suggested that the biochar surface area increased with pyrolysis 

temperature. But, Antal and Gronli (2003) argued that high temperature pyrolysis 

resulted in a greater condensation of aromatic structures, hence less surface area and 

fewer surface functional groups to be oxidized (Novak et al., 2009). Because of these 

contrasting findings, biochar is a heterogeneous material; the results of a biochar 

product depend on the feedstock used, as well as the methods used to produce it. In 

addition, the effects of the particle size of the biochar also influence its stability in the 

soils. For example, the smaller particle size of biochar increased CO2-C evolution 

more than the larger particle sizes (281 mg kg
-1

 and 226 mg kg 
-1

) (Sigua et al., 2014). 

Sigua et al. (2014) reported that the greater surface area of the finer particles 

accelerates the decomposition process by microbes, resulting in an increase in the 

CO2-C evolution (Table 2.2). They also suggested that different particle sizes of 
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biochar affect its stability, whereby the finer particle sizes can improve the fertility of 

soils, whereas the coarser particles can sequester C in the soil for longer due to their 

resistance to microbial attack. Other studies have found that larger biochar particles 

remain in forest wildfire soil after thousands of years (Gouveia and Aravena, 2001; 

Gavin et al., 2003), but smaller particle sizes of biochar have greater mobility in the 

soil (Wang et al., 2013). A recent study on the effect of the particle size also showed 

that amending soil with the smaller size of biochar (<0.25mm) increased the 

consumption of methane in arable land and thus reduced the emission of greenhouse 

gases (Table 2.2) (Kollah et al., 2015).  

 

On top of that, other researchers found that biochar yield decreases with increasing 

temperature and the relationship between yield and temperature varies with different 

feedstocks (Guha et al., 1986; Horne and Williams, 1996; Williams and Besler, 1996; 

Tsai et al., 2006). Furthermore, the pyrolysis temperature affects the polycyclic 

aromatic hydrocarbon (PAH) content of biochar (Table 2.1). This is because, during 

incomplete combustion, potentially toxic aromatic hydrocarbons are formed (Kloss et 

al., 2012). The authors also state that polycyclic aromatic hydrocarbons which have 

two or more condensed rings show different toxicity levels. In a study related to PAHs 

associated with biochar, Rogovska et al. (2012) investigated the impact of biochars on 

seedling growth. Using corn for the bioassay, results showed that shoot and radical 

length decreased in the presence of biochars produced at high temperature. The 

authors speculated that the decrease was probably due to the presence of PAHs in the 

biochar.  
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To date, field studies which have measured the characteristics of biochar relevant to 

soil improvement, soil C sequestration and soil management systems are also scarce. 

Such studies are urgently needed to identify and quantify the biochar characteristics 

before applying to agricultural soil. More research evidence will provide information 

on the biochar that is best suited to a particular agricultural site depending on soil 

type, hydrology, climate and soil contaminants.  

 

2.2 Effects of biochar on soil properties 

 

Adding biochar to soil may affect texture, structure, pore size distribution and density, 

as well as soil aeration and water holding capacity (Downie et al., 2009). Karhu et al. 

(2011) hypothesized that the incorporation of biochar into soil would increase soil 

water holding capacity due to biochar’s ability to retain water because of its high 

porosity and large number of small pores. This combined with a high surface area 

gives biochar the capability to absorb nutrients and water which are held by capillary 

forces in soil micropores (Rhodes et al., 2008; Major et al., 2009). This statement 

supports the results obtained in their study where adding biochar in soil increased soil 

water holding capacity by 11%. Moreover, in sandy soils biochar can increase the 

water holding capacity, and thus alleviate water stress on plants (NGI, 2012). 

 

Besides improved water holding capacity, the application of biochar also improves the 

saturated hydraulic conductivity of the soil (Table 2.2) (Asai et al., 2009). In their 

study, Asai et al. (2009) revealed that high biochar contents in soil not only enhanced 

soil water permeability, but also soil water holding capacity, and indirectly, water 

availability to plants. On the other hand, the smallest particle size fraction of biochar 
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potentially blocked the soil pores and may reduce conductivity, as a consequence, 

water infiltration is decreased (Verheijen et al., 2010). The particle size distribution of 

biochar is a key parameter for determining its effect on soil hydraulic properties and 

also varies depending on the feedstock and the pyrolysis condition used to 

manufacture it (IBI, 2012b). More research is needed to further understand how it 

effects soil hydrological functions and processes. 

 

The application of biochar which had a lower bulk density than in soils can reduce the 

bulk density of soil. Nevertheless, increases in bulk density of soil after adding 

biochar may be possible. For example, if the biochar that is applied to soil has a low 

mechanical strength, it will easily break into small fractions and fill soil pores and 

eventually, the soil bulk density will increase (Verheijen et al., 2010). The potential 

susceptibility of biochar particles to bind or clog the soil might also result in greater 

runoff and lower infiltration rates. Experimental evidence of these effects are scarce, 

in fact no papers could be found reporting studies in this areas, and therefore further 

studies of the effect of biochar on soil compaction is needed. 

 

Biochar is also brittle and often made up of small particles (< 0.60mm to 4.75mm); 

however, the particle size of biochar is different based on the feedstocks used and 

pyrolysis process (Downie et al., 2009; IBI, 2012a). Hamer et al. (2004) claimed that 

when biochar is applied to soil, processes such as freeze-thaw cycles, rain and wind 

may not only enhance its degradation rate, but also make it susceptible to wind and 

water erosion. Rumpel et al. (2006) studied the erosion of black carbon (BC) on steep 

slopes with slash and burn agriculture, and found that soil erosion resulted in large 
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amounts of BC being easily transport from hillslope to the watershed (Table 2.2). 

They also speculated that the BC eroded from the soil may be buried in marine 

sediments, consequently leading to loss of carbon from the terrestrial carbon cycle. 

Major et al. (2010b) as displayed in (Table 2.2) also observed significant losses of 

biochar incorporated into flat terrains, in an area where intense rainfall events occur. 

In addition, Schnell et al. (2012) found that soluble P and K nutrients in biochar are 

the major nonpoint source runoff. In contrast, Beck et al. (2011) reported 

incorporation of biochar with green roof soil improved runoff water quality and water 

retention. Inevitably, results from these studies require a best management practice to 

address erosion problem in addition to biochar application. Studies on the methods 

used for biochar incorporation to minimize erosion losses are very limited and more 

work is required to quantify this. To date, biochar loss and mobility through the soil 

profile and into the water resources, has been scarcely quantified and transportation 

mechanisms remain unclear. 

 

2.3 Effects of biochar on crop productivity 

 

One of the potential benefits of adding biochar into the soil is increasing crop yield 

and the production of crops depend on the rates of biochar and the types of soil that is 

used. Because of this, a number of studies have been conducted to evaluate the 

response of crops to biochar application. Results from various studies have shown that 

adding biochar itself into soil increases crop productivity (Baum and Weitner, 2006; 

Chan et al., 2008b). Some studies have found positive results when biochar is applied 

with fertilizers (Steiner et al., 2007), but some found a negative effect on crop yields 

when using biochar solely as a soil amendments (Wisnubroto et al., 2010; Jeffery et 
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al., 2011). The impacts are also different depending on the interaction of the various 

factors, including the type of biochar, crop and soil (Galinato et al., 2011). 

 

Compared to unamended soil, Collins (2008) reported a decline from 12.3 to 8.6 g in 

the root and 10.3 to 9.1 g in the shoot of wheat in sand soil amended at 39 mg ha
-1

 of 

softwood bark biochar. In contrast, an increase in the root biomass from 10.1 to 12.9 g 

and in the shoot biomass from 7.3 to 11.6 g of wheat were found in the Hale silt loam 

soil amended with softwood bark biochar at 19.5 mg ha
-1

. The study also found that N 

in biochar is not available to plants (Galinato et al. 2011). Therefore reducing 

chemical fertilizer inputs after biochar applications cannot be assumed. The reason for 

this may be due to biochar’s highly porous structure, leading biochar to retaining 

nutrients and making them unavailable to plants. As a result, more fertilizer may have 

to be applied in order to supply enough nutrients for plants growth. Another negative 

effect on crops was recently found by Jay et al. (2015) who studied the effect of short-

term biochar application on barley, potato and strawberry crops. The findings from 

their research showed that the addition of biochar to soil had no significant effect on 

the growth and yield in any of those crops. The authors suggest that the effect cannot 

be seen in a short-term study, and also the limited effect was due to the fertile soils 

used in their temperate study (Table 2.2).  

 

On the other hand, there is evidence from other studies indicating that using biochar as 

a soil conditioner often gives positive crop productivity in some situations and 

conditions. For example, Kammann et al. (2012) studied the effect of adding peanut 

hull biochar to a German Luvisol (soil) with ryegrass crop. The authors noticed a 
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significant crop yield in comparison with control. The cause of the increase is unclear 

and they speculated that due to reduced denitrification, N loss was reduced; therefore, 

N uptake by plants was greater in presence of biochar. Another significant effect on 

crop growth was observed by Lin et al. (2015) as displayed in Table 2.2. The 

researchers found that, at 16t ha
-1

 biochar application increased the growth of wheat 

plants by 27.7%. 

 

Biochar increases soil quality by reducing soil acidity due to its alkalinity and acts like 

a lime (Galinato et al., 2011; NGI, 2012). For example, Rondon et al. (2007) observed 

an improvement in bean yield due to an increase in soil pH from 5.04 in soil without 

biochar to 5.41 in soil with 90 g kg
-1

 biochar. Furthermore, increases in soil nutrients 

were also observe in their study as a consequence of using biochar. Inal et al. (2015) 

(Table 2.2) found that biochar reduced pH, but increased crop nutrients, such as P, K, 

Cu, Zn and Mn levels in bean and maize crops. The only exception was Fe, in which 

the addition of biochar decreased the availability of Fe in the soil. However, the 

results from their study prove that amending soil with different loads of biochar 

increased the growth of maize and bean crops. 

 

Findings from the studies above clearly show that some biochars produce negative 

impacts on crop performance, whereas others can increase crop productivity. The 

knowledge gap in this area is to understand a complete mechanism of how biochars 

cause yield to decrease and increase. Further studies on the effect of crop performance 

with various types of biochars, on different soil types, climate and environmental 

management are urgently required. 
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2.4 Sequestration of pesticides and organic contaminants by biochar 

 

During the past decade, the sorption of pesticides and organic contaminants to 

biochars has been studied widely due to the growing awareness of the importance of 

biochar to the overall sorption properties of soil (Smernik, 2009). In addition, due to 

its large surface area, high nanoporosity and other physiochemical properties 

(Cornelissen et al., 2005; Lehmann, 2007b; Glaser et al., 2009), sorption of pesticides 

and organic contaminants is the key process that controls their toxicity, transport, fate 

and behaviour in soil (Smernik, 2009). 

 

A study by Wang et al. (2012) highlighted that amending agricultural soil with 

biochar produced at 850
O
C increased pesticide sorption and at the same time reduced 

the pesticide uptake by earthworms. Yang et al. (2010) also studied the influence of 

two types of biochars (produced at two different temperatures – 450
O
C and 850

O
C) on 

the bioavailability of pesticide to plants. They showed that by adding biochar 

produced at high temperature to soil, it reduced the bioavailability of pesticide to 

microorganisms and plants grown in contaminated soil. Consequently, movement and 

plant uptake of pesticide are decreased due to the high surface area of biochar. In 

addition, the high microporosity of biochars produced at higher temperatures helps it 

to sequester pesticide in soils (Yang et al., 2010).  

 

Moreover, Sopena et al. (2012) found that application of biochar to soil can affect the 

persistence, efficacy and the fate of pesticide degradation. Their results showed that 

amending soil with 1% and 2% of biochar enhanced sorption, reduced desorption and 

reduced biodegradation of the pesticide. The study also found that after 8 days, only 
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10% pesticide remained in the soil without biochar, indicating that the degradation of 

pesticide was very fast. Whereas, in soil amended with 1% and 2% biochar, 35% and 

45% pesticide remained in the soil, respectively. Therefore, biochar could provide a 

means of effective contaminant sequestration in agricultural soils.  

 

Nevertheless, negative effects of biochar application also exist, such as the 

inactivation of pesticides in the soil preventing them controlling target organism (IBI, 

2012a). Furthermore, if sorbed organic or inorganic compounds become available to 

organisms, they may potentially have detrimental effects on them. Therefore, future 

research and scientific evidence are required to verify this phenomenon. Semple et al. 

(2013) argued that the presence of black carbon in the form of biochar in agricultural 

soil has been shown to reduce the bioavailability of some compounds to 

microorganisms. However, the length of time that biochar can retain the compounds 

and its safety towards other organisms in terms of toxicity remain unknown. This is 

because the compounds may be stored temporarily within biochar’s structure and they 

could physically remove due to physical or chemical reactions over longer period and, 

thus become available to other organisms (Semple et al., 2004). 

 

Other considerations such as how frequent biochar has to be applied to the soil in 

order to maintain its functionality must also be determined. The reason for this is 

biochar is no longer inert in soil (Hamer et al., 2004). This is because, in natural 

environments, chemical and microbial breakdown and degrade biochar which resulted 

in alteration of the biochar surface chemistry and functional properties (Glaser et al., 

2002). Verheijen et al. (2010) also hypothesized that solubilisation, leaching and 
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transportation of biochar through the soil profile and into water system is expected 

gradually enhanced for longer time exposure in soil. Therefore, further studies are 

required in order to quantify how much and how often biochar has to be added to 

ensure the persistent of biochar in soil.  

 

There is some potential of biochar amendment to control the toxicity and mobility of 

organic chemicals. Rhodes et al. (2008) pointed out that applications of biochar to 

highly contaminated areas, particularly in buffer strips, to prevent contamination of 

waterways would be possible. However, the applicability of such treatments would 

depend upon the longevity of the effect of biochar, and need to consider the potential 

for sorption sites to become blocked (Rhodes et al., 2008). 

 

2.5 Effects of biochar on soil biota 

 

Adding biochar to soil can influence soil organisms. The effects are due to the 

chemical and physical properties of biochars and soils. The differences in physical 

structure between biochar and soils lead to a transformation in the soil tensile strength, 

bulk density, porosity, pH and water holding capacity (Lehmann et al., 2011). Biochar 

structure may offer a similar role to soil particles, such as the retention of water and 

nutrients, thus creating a suitable habitat for soil microorganisms. This is due to its 

high porosity and large internal surface areas promote an optimum living place for 

microbial growth (Lehmann et al., 2011). However, the porosity is influenced by 

many factors such as the production and application methods of biochar, the 

interactions of biochar with soil organic matter pools, the physical and chemical 
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characteristics of soils and the management practices of agriculture (Ameloot et al., 

2013).  

 

Biochar is recalcitrant and this increases its resistance to oxidation, making a slow 

carbon cycle and therefore the associated carbon can remain in the soil for longer 

(Sombroek et al., 2004). Despite its longevity, several studies have showed an 

increase in soil respiration when adding biochar to soil. For example, the 

mineralization rates of smaller oak biochar is approximately 10 mg C g
-1

 char in 

sterilized incubation compared to that inoculated with microorganisms where the 

biochar mineralization rate is 20 mg C g
-1

 char (Zimmerman, 2010). This study clearly 

indicates that the role of soil microorganisms in the degradation of biochar is essential. 

Moreover, biochar can not only enhance mineralization, but it can also reduce the 

amount of humus in organic pristine soils (Wardle et al., 2008). This is due to 

adsorption of organic compounds in charcoal particles along with microbial activity 

and growth; stimulating decomposition and resulted in humus loss (Zackrisson et al., 

1996; Pietikainen, 2000).  

 

According to Steinbeiss et al. (2009), biochar enhances soil health by stimulation of 

microbial activity response, however at the same time decreases soil organic C. 

Durenkamp et al. (2010) suggested that biochar could affect soil microbial biomass. 

This is because a fraction of the organic C, approximately 0.2 – 0.3%, may be sorbed 

by biochar (Bruun et al., 2008; Kuzyakov et al., 2009). Another study revealed that, 

the proportion of 
14

C labelled biochar produced from rye grass biochar which was 

incorporated into microbial biomass for 624 days ranged between 1.5 and 2.6% 
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(Kuzyakov et al., 2009). This clearly demonstrates that even with a longer period of 

incubation only a small proportion of the biochar was assimilated by microorganisms 

(Ameloot et al., 2013). 

 

Studies on the effects of biochar on soil fauna are very limited. Most of the studies on 

soil fauna in relation to agricultural biochar use have been devoted to earthworms. 

Studies have found that earthworms can digest biochar particles grinding and mixing 

them with soil. Interestingly, some species of the earthworms (Pontoscolex 

corethrurus) prefer living in soil with biochar than soil without biochar (Topoliantz 

and Ponge, 2003; Topoliantz and Ponge, 2005). The authors speculated that this may 

be due to the fact that they used to consume charred material (Ponge et al., 2006).  

 

Recently, there have been a few studies examining soil fauna, such as protozoa, 

collembolan, nematodes, microarthropods and termites (Lehmann et al., 2011; 

Ameloot et al., 2013; McCormack et al., 2013). These soil fauna and invertebrates 

may also play an important role in the degradation and dissemination of biochar into 

the soil profile alongside earthworms (Ameloot et al., 2013). In an observational study 

at the landscape scale conducted by (Matlack, 2001) no relationship between 

nematode populations and charred materials in the soil was observed. Furthermore, 

the bioavailability of pollutants, for example polychlorinated biphenyls, polyaromatic 

hydrocarbons and other organic agrochemical such as herbicide and pesticide to soil 

fauna, may be reduced due to strong sorption to biochars (Smernik, 2009). However, 

there is no evidence of this from biochar amended soil (Lehmann et al., 2011). 

Therefore, there is an urgent need to elucidate the influence of soil fauna, other than 
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earthworms and the microbial community, after adding biochar to soils including the 

interaction between soil fauna and other microorganisms, biodiversity and 

bioturbation (Johnson et al., 2005; Wilkinson et al., 2009; Nielsen et al., 2011).   

 

2.6 Impacts of biochar in the Tropical Climate 

 

Under a humid tropical climate, many soils are infertile and face difficulties in 

improving crop productivity. This is due to highly weathered soil with acidic pH, low 

organic matter content and cation exchange capacity (CEC) (Van, 1992; Zech et al., 

1997). In Southeast Asia, highly weathered acid soils, namely Ultisols and Oxisols, 

are very common. They encompass 82% of Thailand, 72% of Malaysia, and 43% of 

Indonesia (Ishak and Jusop, 2010). In such conditions, nutrients and mineral fertilizers 

are easily leached through the soil profile enhanced by intensive rainfall (Cahn et al., 

1993; Glaser et al., 2001). 

 

In order to solve the acidity and CEC problems, liming is used to increase pH and 

CEC of soils. However, in some locations such as in Indonesia, the source of lime 

materials is limited and far from the agricultural fields where it is needed (Masulili et 

al., 2010). Moreover, liming effects on soil are temporary and, therefore, it has to be 

applied regularly, making it costly for poorer farmers to adopt (Shamshuddin et al., 

1998; Masulili et al., 2010). Instead of using lime, studies have showed that biochar 

could replace the role of liming in soil. Masulili et al. (2010) found that application of 

rice husk biochar in acid sulphate soils significantly increase soil pH, improving rice 

growth (Table 2.2).  
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In addition, adding 10 L m
-2

 bark charcoal to acidic soils not only increase pH from 

4.1 to 5.4 and CEC from 8.54 to 12.38 cmolc kg
-1

, but also increases by almost 90% in 

the amount of root and colonization of arbuscular mycorrhizal (AM) fungi (Yamato et 

al., 2006) as displayed in Table 2.2. Amending soil with biochar, also increase the 

activity of arbuscular mycorrhizal (AM) fungi and bacteria and the amount of 

macrofauna, such as earthworms (Barrow, 2012). Additionally, amending tropical soil 

with biochar can also reduce the emission of CH4 gas. A recent study by Kollah et al. 

(2015) revealed that biochar, when applied with poultry manure in a tropical Vertisol, 

had the highest consumption rate (0.24) when compared with vermicompost (0.11), 

farmyard manure (0.09) and poultry manure (0.07). The authors speculated that 

increases in soil properties, such as pH, cation exchange capacity, water holding 

capacity and microbial community after biochar application stimulate the 

consumption of CH4, thus reducing the emission of the gas into the atmosphere.  

 

Furthermore, application of organic amendments improves soil fertility, but in hot and 

humid weather, it decomposes readily and must be added gradually (Malisa et al., 

2011) in Table 2.2. As biochar is more recalcitrant carbon remains in the soil for 

longer (Lehmann et al., 2006). A study conducted by Major et al. (2010b) as shown in 

Table 2.2 found that only a single application of biochar into an infertile acidic 

tropical soil enhanced crop productivity for four years. This makes us question how 

long the biochar effect persists. However, there are no longer term studies and further 

work is therefore needed. 
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Another common problem in the tropics is the presence of sandy soils. For example, 

in Malaysia, the BRIS (Beach Ridges Interspersed with Swales) soil type consists of 

more than 90% sand and is poorly structured and leachable (Malisa et al., 2012). It 

covers about 155,400 ha area in the east coast of Peninsular Malaysia (Aminah et al., 

2006). The BRIS soil has low cation exchange capacity (CEC), contains little organic 

matter, few nutrients, as well as having a limited water holding capacity (Khan et al., 

2008). Biochar, has the potential to ameliorate this type of soil. This statement is 

supported by Malisa et al. (2011). From Table 2.2 the authors studied the response of 

kenaf plants to charcoal amendment on a BRIS soil and results showed that charcoal 

application into soil, significantly increases CEC and the yield of kenaf plants. 

Moreover, another study found that adding biochar on sandy soil of Lombok 

Indonesia improved soil organic C, CEC and macronutrients, as well as nutrients 

uptake and yield of maize (Sukartono et al., 2011) as shown in Table 2.2. 
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Table 2.2 Summary of studies on biochar in the tropical and temperate climates. 

 

Study Location Design Duration Main findings Authors  

Nitrogen retention and plant 

uptake on a highly 

weathered central 

Amazonian Ferrasol 

amended with compost and 

charcoal  

Amazon Field 

experiment 

Short-term 

study 

Amending soil with charcoal 

resulted in higher retention N in 

the soil and increased plant 

nutrient uptake. 

Steiner et al. (2008) 

Biochar amendment 

techniques for upland rice 

production in Northern 

Laos 1. Soil physical 

properties, leaf SPAD and 

grain yield 

Laos Field 

experiment 

Short-term 

study 

Amending soil with biochar 

improved saturated hydraulic 

conductivity. However, the effect 

of biochar application depends on 

soil fertility and management 

practices. 

Asai et al. (2009) 

Fate of soil-applied black 

carbon: downward 

migration, leaching and soil 

respiration 

 

Colombia Field 

experiment 

> 2 years Two years after application, 2.2% 

of black carbon was lost by 

respiration. The major of black 

carbon movement was assumed 

by water erosion during high 

rainfall events. 

Major et al. (2010a) 
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Table 2.2 continued 

Study Location Design Duration Main findings Authors 

Rice husk biochar for 

rice based cropping 

system in acid soil. 1. 

The characteristics of 

rice husk biochar and its 

influence on the 

properties of acid 

sulphate soils and rice 

growth in West 

Kalimantan, Indonesia 

Indonesia Glasshouse 

experiment 

Short-term 

study 

Rice husk biochar increased 

soil pH, organic matter, total P, 

CEC, exchangeable K and Ca 

and decreased bulk density, soil 

strength, exchangeable Al and 

Fe. 

Masulili et al. (2010) 

Influence of biochars on 

plant uptake and 

dissipation of two 

pesticides in an 

agricultural soil 

China Laboratory 

experiment 

Short-term 

study 

Biochar in contaminated soil 

reduced the bioavailability of 

pesticides to soil 

microorganisms and plants and 

decreased dissipation and plant 

uptake of the pesticides in soil. 

Biochar produced at high 

temperature (850
O
C) was more 

effective than at low 

temperatures. 

Yang et al. (2010) 
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Table 2.2 continued 

Study Location Design Duration Main findings Authors 

Biochar addition to 

agricultural soil 

increased CH4 uptake 

and water holding 

capacity-results from a 

pilot field study 

Finland Field 

experiment 

Short-term 

study 

Amending soil with biochar 

improved soil aeration and 

water holding capacity, and 

mitigated CH4 emissions. 

Karhu et al. (2011) 

Yield response of kenaf 

(Hibiscus cannabinus L.) 

to different rates of 

charcoal and nitrogen 

fertilizer on BRIS soils in 

Malaysia 

Malaysia Field 

experiment 

Short-term 

study 

Charcoal application had 

significant effects on CEC and 

exchangeable cations and crop 

yield 

Malisa et al. (2011) 

Soil fertility status, 

nutrient uptake and 

maize (Zea mays L.) 

yield following biochar 

and cattle manure 

application on sandy 

soils of Lombok, 

Indonesia 

Indonesia Field 

experiment 

Short-term 

study 

Biochar improved soil organic 

carbon, CEC, available P, 

exchangeable K, Ca and Mg, 

increased nutrient uptake and 

crop yield. 

Sukartono et al. 

(2011) 
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Table 2.2 continued 

Study Location Design Duration Main findings Authors 

Comparison of kiln-

derived and gasifier-

derived biochars as soil 

amendments in the 

humid tropics 

Uganda Greenhouse 

experiment 

Short-term 

study 

Amending soil with gasifier 

produced biochar had higher 

yields then kiln produced biochar. 

Soluble ash content of biochar 

also influenced productivity of 

acid soil in Uganda. 

Deal et al. (2012) 

Effect of rice husk (RH) 

biochar on growth and 

quality of kang kung 

(Ipomeareptans) 

Malaysia Field 

experiment 

Short-term 

study 

RH biochar enable plants to be 

harvested earlier and the yield 

was increased by 68-89%. 

Hui Ling et al. (2012) 

Effects of sewage 

sludge biochar on plant 

metal availability after 

application to a 

Mediterranean soil 

Spain Laboratory 

experiment 

Short-term 

study 

Soil amended biochar, reduced 

metal plant availability, increased 

available water and field capacity 

of soil. 

Méndez et al. (2012) 
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Table 2.2 continued 

Study Location Design Duration Main findings Authors 

Biochar as a soil 

amendment to improve 

crop yield, soil health 

and carbon 

sequestration for 

climate change 

mitigation 

Malaysia Field 

experiment 

Short-term 

study 

Application of RH and empty oil 

palm fruit bunch (EFB) biochars 

showed significant improvement of 

dry matter weight of sweet corn and 

soil pH, total carbon and CEC. 

Rosenani et al. 

(2012a) 

Effect of oil palm 

empty fruit bunch 

biochar soil amendment 

on nutrient leaching 

and plant growth of 

sweet corn (Zea mays) 

Malaysia Field 

experiment 

Short-term 

study 

EFB biochar reduced nutrient 

leaching and improved soil quality 

but had no effect on crop 

performance. 

Rosenani et al. 

(2012b) 

Capacity of biochar 

application to maintain 

energy crop 

productivity: soil 

chemistry, Sorghum 

Growth and runoff 

water quality effects 

- 

Greenhouse 

experiment 

Short-term 

study 

After two rain events, excessive 

runoff resulted in 20% loss of total 

phosphorus and K in top dressed 

biochar. 

Schnell et al. (2012) 
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Table 2.2 continued 

Study Location Design Duration Main findings Authors 

Assessing the chemical 

and biological 

accessibility of the 

herbicide isoproturon in 

soil amended biochar 

United 

Kingdom 

Laboratory 

experiment 

Short-term 

study 

Desorption process in biochar was 

related to pesticide biodegradation 

Sopena et al. (2012) 

Effect of biochar on 

growth development of 

three 

LabisiapumilaBenth. 

Varieties 

Malaysia Glasshouse 

experiment 

Short-term 

study 

EFB biochar amendment showed 

positive crop performance when 

applied at 20t ha
-1

 but had negative 

effect when applied at 60t ha
-1

. 

Siti Norayu et al. 

(2012) 

Transport of biochar 

particles in saturated 

granular media: effects 

of pyrolysis temperature 

and particle size 

- Laboratory 

experiment 

Short-term 

study 

Biochar produced at high 

temperature increased C 

sequestration and had lower 

mobility in sandy soil. Smaller 

particle sizes of biochar had a 

greater mobility in the soil. 

Wang et al. (2013) 

Carbon mineralization in 

two ultisols amended 

with different sources 

and particle sizes of 

pyrolyzed biochar 

United 

States 

Laboratory 

experiment 

Short-term 

study 

Larger size of biochar had lower C 

mineralization than the smaller 

particle sizes 

Sigua et al. (2014) 
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Table 2.2 continued 

Study Location Design Duration Main findings Authors 

Effect of biochar on soil 

microbial biomass after 

four years of consecutive 

application in the North 

China plain 

China Field 

experiment 

4 years Long-term application of biochar 

increased microbial biomass carbon 

in comparison with control 

treatment.  

Zhang et al. (2014b) 

Impacts of biochar and 

processed poultry manure, 

applied to a calcerous soil, 

on the growth of bean and 

maize 

Turkey Greenhouse 

experiment 

Short-term Biochar decreased soil pH, but 

increased plant nutrients in the soil, 

as well as plants growth. 

Inal et al. (2015) 

 

Why short-term biochar 

application has no yield 

benefits: evidence from 

three field-grown crops 

United 

Kingdom 

Field 

experiment 

Short-term Biochar increased pH and nutrients 

in the soil, but had no significant 

effects on the crops due to high 

fertility of soils used in their study. 

Jay et al. (2015) 

Effects of biochar 

application in greenhouse 

gas emissions, carbon 

sequestration and crop 

growth in coastal saline 

soil 

China Microcosm 

experiment 

Short-term Biochar addition, decreased 

greenhouse gas emissions, 

enhanced soil quality, increased 

crop yield and carbon storage in the 

soil 

Lin et al. (2015) 



31 
 

This chapter has illustrated overall effects of biochar on soil properties and its use in 

agricultural purposes, but highlights the need for further investigations into the effects 

of biochar on soil including the physical aspects of soils (water retention and 

aggregate stability), chemical (pH, cation exchange capacity, carbon and nutrients 

leaching) and biological (microbial activity and biomass) in the humid tropics and the 

cold regions. The key studies on biochar in temperate and tropical climates are 

summarised in Table 2.2. 
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 CHAPTER 3 

 

Materials and Methods 

3.1 Introduction 

In this study, the series of experiments is divided into two phases. In the first phase, 

the soils and biochars used were from Malaysia (tropical climate), whereas in the 

second phase the soils and biochar were from the United Kingdom (temperate 

climate).  

   

3.2 Materials 

 

3.2.1 Tropical biochar 

 

For the tropical climate, two types of biochars (rice husk and coconut shell) were used 

in this study. Both biochars have a high content of carbon and nutrients. The 

production methods used for both biochars are different. The rice husk (RH) biochar 

was produced by a rotary husk furnace (RHF) in Tanjung Karang, Selangor Malaysia. 

This method of production resulted in a higher biochar yield at (900
O
C to 1000

O
C) for 

only a few minutes. 

 

Coconut shell (CS) biochar production used the slow pyrolysis technique involving 

drums. The method is also used by farmers in Hilir Perak, Malaysia. The biochar was 

obtained from the local farmer in Hilir Perak. The production of biochar involves 

burning coconut shell in a drum for approximately 6 to 8 hours. During the burning 

process, the temperature in the area immediately surrounding the drum can reach to 
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400
O
C. Both biochars were then crushed and sieved using 2mm mesh. The properties 

of both biochars used in this study are shown in Table 3.1. 

 

3.2.2 Temperate biochar 

 

The temperate biochar (Bodfari Environmental, St. Asaph, UK) used in this 

experiment was hardwood biochar (HW). This type of biochar has a very high content 

of carbon. The production method used to produce is by slow pyrolysis (24 hours) in a 

ring-kiln at 400
O
C. Some properties of this biochar are illustrated in Table 3.2. 

 

3.2.3 Tropical soils 

 

Three tropical soils (Spodosols) which are acidic, with a pH < 5.5, and a high 

accumulation of Al and Fe in the subsoils were used in the first phase of experiments. 

The soils were selected based on different gradients of degradation: secondary forest 

soil; non-intensive farming soil; and intensive farming soil. For several years, logging 

activity has occurred in a secondary forest. The non-intensive farming soil consists of 

the soil which has been cleared for agricultural purpose only once, whereas the 

intensive farming soil was cultivated with various crops under rain shelter for several 

years. The sampling locations for all soils are at latitudes 4.47, 4.16, 4.96; longitudes 

101.39, 101.37 and 101.34 respectively.  

 

All the soils were sampled from the Cameron Highlands. Cameron Highlands is 

located in Pahang District, which is in central Peninsular Malaysia (Figure 3.1). 

Generally, it is a mountainous area with 10 – 35
O
 slopes at an altitude of 1070 – 
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1830m above sea level. The Cameron Highlands has mild temperatures ranging 

between 14 to 24
O
C throughout the year with 2660mm average annual rainfall 

(Abdullah et al., 2001). The Cameron Highlands is suitable for agricultural farming 

and is one of the major areas for intensive vegetable cultivation in Malaysia. 

 

A composite soil was collected from 5 random samples within a 27.5m
2
 at each 

sampling location. The soils were sampled with an auger at 10 – 15cm depth. The 

soils were kept at field moist in a cold room at 9
O
C before being shipped to the United 

Kingdom for analyses. In the laboratory, all of the samples were sieved through a 

5mm mesh. The samples were mixed with and without 2% of CS and RH biochars by 

weight. The particles size of biochars used in this study was 2mm. The non-mixture 

soils acted as a control treatment. Subsequently, the mixture and non-mixture soils 

were incubated for 0, 60, 120, 240 and 360 days at a constant temperature (21
O
C) with 

45% moisture content, close to the original temperature of the environment from 

which the soils were collected. The samples were then kept in amber jars. Prior to 

analysis the soils were dried and sieved again using a 2mm mesh to provide soil 

aggregates suitable for the soil analyses (Kandeler, 2007). The physical and chemical 

properties of the soils are demonstrated in Table 3.1.  
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Figure 3.1 Soil sampling location (Pahang State, 2015). 
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Figure 3.2 Tropical soils study in a) Forest b) Non-intensive farming and c) Intensive 

farming soils 

 

 

 

 

 

 

a) 

c) 

b) 
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Table 3.1 Physical and chemical properties of soils and biochars used in Malaysia  

 

3.2.4 Temperate soils  

 

There are two parts of studies using the temperate soils. For the part one study, three 

Brown Earth soils (grassland, arable loam and arable sandy) from Dundee, United 

Kingdom were used. The soils were chosen due to an aged soil that has been amended 

with biochar approximately 10 months by a former PhD student. All the soils were 

collected from the pots using a 15cm cylindrical core. A composite soil was collected 

from 4 random samples in each pot. In the laboratory, the samples were mixed with 

and without 2% of fresh HW biochar by weight. The particles size of biochar used in 

this study was < 5mm. The non-mixture soils acted as a control treatment. 

Subsequently, the mixture and non-mixture soils; and an aged soils amended with 

biochar were incubated for 0, 60, 180, and 300 days. The samples were then kept in 

containers. Prior to analysis the soils were dried and sieved using a 2mm to provide 

soil aggregates suitable for the soil analyses (Kandeler, 2007). Detailed characteristics 

of soils were determined and are presented in Table 3.2. 

Soils and  

biochars 

Forest Soil Intensive 

Farming Soil 

Non – 

Intensive 

Farming Soil 

CS 

Biochar 

RH  

Biochar 

% Clay 28.63 35.06 33.89 - - 

% Silt 11.01 18.09 18.08 - - 

% Sand 60.36 46.86 48.03 - - 

Texture Sandy Clay 

Loam 

Sandy Clay  Sandy Clay  - - 

% Carbon 3.42 1.64 1.08 72.95 38.64 

% Nitrogen 0.18 0.22 0.07 0.53 0.53 

C/N Ratio 19.05 7.38 14.99 139.71 72.59 

CEC (meq 100 g
-

1) 

9.7 9.4 5.8 31.17 43.28 

pH 4.62 5.03 5.52 8.33 8.46 

Inorganic P  

(mg g
-1

) 

0.06 1.85 0.2 0.39 1.75 
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Figure 3.3 The soils for the temperate study (part 1) were collected from the pots in 

Edinburgh 

Table 3.2 Physical and chemical properties of soils and biochars used in the UK.  

 

For the part two temperate study, two Brown Earth soils from Penrith, Cumbria were 

used which were chosen to represent different levels of management. The first soil 

was from an area of agriculture that contains an oil seed rape crop, which was well 

managed (fertilized) and fertile. The second soil used in this study was taken from 

extensive grassland, which was unmanaged, unfertilized (for at least 50 years) and is 

Soils and  

Biochar 

Grassland Arable 

Loam 

Arable Sandy HW 

Biochar 

% Clay 34.90 34.41 27.54 - 

% Silt 17.44 16.06 6.36 - 

% Sand 47.67 49.53 66.10 - 

Texture Sandy Clay   Sandy Clay  Sandy Clay Loam - 

% Carbon 2.39 3.79 2.06 71.38 

% Nitrogen 0.14 0.21 0.16 0.45 

C/N Ratio 16.45 17.75 12.68 158.68 

CEC (meq 100 g
-1) 13.49 13.86 9.24 34.36 

pH 6.08 6.53 5.81 9.05 

Inorganic P  

(mg g
-1

) 

1.15 1.57 1.15 0.41 
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also known as nutrient poor soil. Both soils had a same texture which were sandy clay 

loam. 

 

The soils were collected from the field at approximately 10 – 15cm depth. In the 

laboratory, the soils were sieved through a 5mm mesh, and mixed with 2% and 5% of 

HW biochar by weight. Biochar particle sizes used were 2mm, 1mm, 0.5mm and 

0.1mm. The soils without biochar addition acted as a control. All samples were kept in 

jars and were incubated for 30 days. Finally, prior to analysis, the soils were dried and 

sieved using a 2mm mesh to provide soil aggregates suitable for the soil analyses 

(Kandeler, 2007). The physical and chemical properties of the soils and biochars used 

are shown in Table 3.3 below. 

Table 3.3 Physical and chemical properties of two soils and biochar used in the UK 

(part 2). 

Soils  Fertilized Unfertilized HW 

Biochar 

 Clay 28.29 28.12 - 

% Silt 11.96 9.00 - 

% Sand 59.75 62.88 - 

Texture Sandy Clay Loam Sandy Clay Loam - 

% Carbon 2.14 3.40 71.38 

% Nitrogen 0.19 0.19 0.45 

C/N Ratio 11.26 17.89 158.68 

pH 6.16 6.15 9.05 

 

 



40 
 

 

 

Figure 3.4 The types of temperate soils study (part 2) a) Fertilized and b) Unfertilized 

soils were collected in Penrith. 

 

3.3 Methods 

The incubation study and leaching experiment were conducted separately. The 

incubation study consists of soil only (control) and a mixture of soils and biochar. 

These were incubated in sealed jars for up to 360 days for the tropical study and for up 

to 300 days for temperate part 1, as well as for up to 30 days in temperate part 2 study. 

In contrast, the leaching experiment was carried out separately in glass columns 

(tropical and temperate part 2 studies) and PVC columns (temperate part 1 study) 

containing soils and biochar mixture and control (soil only).  

a) 

b

) 
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The moisture levels in the sealed jars were determined in the beginning of every 

incubation time (days 0, 60, 120, 240 and 360 – tropical study); (days 0, 60, 180 and 

300 – temperate part 1) and (days 0 and 30 – temperate part 2). In the leaching 

experiment, all of the treatment columns (soils and biochar mixture, as well as soil 

only) were subjected to 5 wetted-dried cycles over 360 days (tropical study), 4 wetted-

dried cycles over 300 days (temperate part 1 study) and 2 wetted-dried cycles over 30 

days (temperate part two study). 

 

3.3.1 Soil moisture content 

 

2g of moist soil was added into a pre-weighed crucible. The sample was placed in an 

oven at 105
O
C. After 24 hours, the sample was removed and allowed to cool in a 

desiccator before re-weighed. The moisture content was then determined using the 

following calculation (Gardner and Klute, 1986): 

% moisture content =
(wet weight − dry weight)

dry weight
 x 100 % 

 

3.3.2 Particle size analysis 

 

Elimination of organic matter in soil sample was needed before particle size analysis 

was carried out. To remove organic matter in the soil firstly, the soil was dried and 

sieved through a 2mm mesh. The soil was weighed 20g and in the fume cupboard, the 

sample was placed in a 1000ml beaker. Subsequently, 50ml of hydrogen peroxide was 

added.  The sample was stirred and hydrogen peroxide added until any reaction 

ceased. The beaker was stand overnight at room temperature to enable oxidation to 

take place, before being placed on the hot plate to complete the process. The sample 
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was then heated at 70
O
C and hydrogen peroxide was added until frothing ceased. To 

decompose any excess hydrogen peroxide, the sample was heated to more than 70
O
C.  

 

The suspension was transferred to a mixer with 100ml of Calgon solution (10%) and 

100ml of distilled water. The mixture was blended at low speed for 30 seconds. 

Subsequently, the suspension was transferred to a 1 litre measuring cylinder and 

marked up to volume with water. The cylinder was left to reach equilibrium at room 

temperature. The suspension was then stirred thoroughly with a plunger; at the end of 

the last stroke, timing is begun and a hydrometer was gently lowered into the 

suspension. A density reading was taken in g/cm
3
 at 32 seconds. The timing or density 

reading was repeated after 8 hours for all cylinders without stirring.  

 

After the last hydrometer reading, the supernatant clay suspension was carefully 

poured off and again the soil sludge was marked up to 1 litre volume with water. The 

soil sludge was stirred and allowed to settle for 32 seconds. The suspension was then 

decanted off. The process was repeated three times to remove all the silt and clay 

particles, leaving the sand in the cylinder. Then, the sand was transferred into a pre-

weighed 200ml beaker, oven dried (105
O
C for two days) and weighed. From this the 

soil fractions were calculated according to Klute (1986) as follows: 

Silt: Density reading at 32 seconds (g/cm
3
) – density reading at 8 hours (g/cm

3
)  

Clay: Density reading at 8 hours (g/cm
3
)                                                                             

Sand: Weighed 
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The soil fractions were then converted to a soil texture using a soil triangle that was 

generated by the Soil Survey of England and Wales classification. 

 

3.3.3 Aggregate stability 

 

Several methods have been used to determine aggregate stability. Pojasok and Kay 

(1990) used wet sieving, whereas (Low (1967); Young (1984); Farres (1987)) and 

(Loch (1994)) used raindrops and rainfall treatments. Furthermore, Emerson (1967) 

applied immersion treatment, and, Kemper and Chepil (1965) practised the dry 

sieving method. All the methods from these authors only measured one mechanism of 

aggregate breakdown. 

 

An aggregate stability test should be easy to conduct and the results from the test 

should represent multiple stressors that affect the surface soil and also be relevant for 

various types of soils. Therefore, in this study the aggregate stability test using the Le 

Bissonnais method was chosen because it considers three main mechanisms of 

aggregate breakdown: fast wetting (FW) due to slaking breakdown by compression of 

trapped air; slow wetting (SW) due to breakdown by differential swelling 

(microcracking); and mechanical breakdown (M) due to raindrop impact (Bissonnais, 

1996). 

 

Before running the experiment, the air-dried soil was sieved through 2mm and 5mm 

mesh sieves (5mm mesh sieve was placed on top of 2mm mesh sieve) and 4g of 2 – 

5mm aggregates were selected for the tests. The samples were placed in the oven at 
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40
O
C overnight to create constant moisture. The FW treatment, immerses samples in 

water to examine the stability of the soils. It mimics a fast wetting condition, such as 

intense rainfall. The SW treatment is equivalent to wetting under gentle rain. 

However, for the M method, the aggregates must be shaken after pre-wetting, 

representing the effect of raindrop impact (Bissonnais, 1996).  

 

For the FW treatment, aggregates were immersed in deionised water for 10 minutes. 

The water was then sucked off with a pipette and the sample was transferred to a 

50µm sieve, which was previously immersed in ethanol. For the SW method, 

aggregates were put on a filter paper on a tension table with -3 kPa water suction for 

30 minutes. Aggregates were then transferred to a 50µm sieve, which was previously 

immersed in ethanol. For the M method, the aggregates were immersed with 50cm
3
 

ethanol for 10 minutes. The ethanol was removed with a pipette and the samples were 

transferred to an Erlenmeyer flask containing 50cm
3
 of deionised water; the water was 

then marked up to 200cm
3
. The flask was screwed and agitated end over end 20 times. 

After 30 minutes, the water in the flask was removed with a pipette and finally the 

samples were also transferred to a 50µm sieve which was previously immersed in 

ethanol. 

 

All of the samples from the three methods were then wet sieved by immersing them in 

ethanol and moved up and down 8 times to separate fragments < 50µm from those > 

50µm. Ethanol was used to avoid further breakdown of aggregates. In the second 

stage, the aggregates remained on the > 50µm sieve were oven dried at 105
O
C 

overnight. The samples were then gently dry sieved by hand on a column of six sieves 
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which are 2000, 1000, 500, 200, 100 and 50µm. The results from each breakdown 

mechanism were quantified by calculating the mean weight diameter (MWD) which is 

the sum of the mass fraction of soil remaining on each sieve (the set of 6 sieves) and 

multiplied by the mean aperture of the adjacent mesh (Bissonnais, 1996). 

 

3.3.4 Water retention 

 

Adding biochar to soil can improve water retention. Due to its high surface area, it is 

hypothesized that biochar can retain water and indirectly may increase soil water 

retention properties. To test that hypothesis, the biochars were mixed with soils and 

their water retention properties were measured using pressure plate equipment. The 

control and biochar treatments were tested at 0.3, 1, 2, 3 and 4 bars pressure. 

 

The soil samples were put in small soil cores, approximately 4cm diameter and 1cm 

height in triplicate. The samples were saturated overnight on a pre-saturated plate until 

a thin film of water could be seen on the surface of the samples. Before running the 

pressure plate, the bottom of the vessel was covered with water to create a saturated 

atmosphere. To apply the pressure, water from the porous plate was removed using a 

syringe and the outflow tube was connected with the plate. Then, the vessel was 

closed and the pressure was applied.  

 

All samples were then allowed to reach its equilibrium state when no outflow occurs. 

When that happened, the air pressure was released and all the samples were removed 

and weighed immediately. The samples again were then applied at different pressures 
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by removing and reweighing the core at equilibrium, re-inserting it and re-setting the 

pressure. The ceramic plate was moistened with a fine spray each time before 

applying the new pressure to re-establish hydraulic contact. When the last equilibrium 

took place, all samples were oven-dried at 105
O
C and weighed (Wilke, 2005). 

The volumetric water content was calculated using this formula (ISO11274, 1998): 

𝜃(𝜌𝑚) =  
𝑚(𝜌𝑚) − 𝑚𝑑

𝜌𝑤 X V
 

 

Where, 

𝜃(𝑝𝑚)  = Water content at matric pressure 𝜌𝑚, expressed as volume fraction 

m(𝑝𝑚)  = mass of wet soil in grams 

𝑚𝑑 = mass of the oven dried soil in grams 

𝜌𝑤 = density of water, in grams per cubic centimetre 

V = Volume of the core, in cubic centimetre 

 

3.3.5 Carbon and nitrogen in soil 

Soil samples were dried in the constant room temperature at 21
O
C. After two to three 

days, the soil samples were ground using a pestle and mortar. Sub-samples were used 

to determine total C and N using an Elementar Vario EL elemental analyser. Samples 

of approximately 30mg were weighed into tin cups, which were subsequently loaded 

into an auto-sampler, which dropped the sample into a combustion column maintained 

at 950
O
C. The sample and cup were flash combusted in a temporarily enriched 
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atmosphere of oxygen. The combustion products were carried by a carrier gas, 

(helium), and passed over an oxidation catalyst of copper oxide kept at 950
O
C inside 

the combustion column.  

 

The combustion products such as CO2, CO, N, NO and water passed through a 

reduction reactor in which hot metallic copper at a temperature of 550
O
C that removed 

excess oxygen and reduced N oxides to N2. These gases, together with CO2 and water, 

were next passed through sicapent to remove water then through a chromatographic 

column to a thermal conductivity detector. The detector generated an electrical signal 

proportional to the concentration of N or C present. This signal was graphed on a built 

in recorder and ported to a computer, which integrated the area under each curve and 

converted it to concentrations after each sample was run. The results were given in 

percentages. 

 

3.3.6 Phosphorus in soil 

 

Using the method of Allen (1989) total phosphorus was measured using ground soil. 

A digest reagent was prepared by adding 350ml of hydrogen peroxide to a plastic 

beaker (2L) containing 0.42g of selenium and 14g of lithium sulphate. Concentrated 

sulphuric acid (420ml) was then added with care in a fume cupboard. The mixture was 

stirred and then allowed to cool. Samples (0.2g) of the soil were weighed into digest 

tubes and 4.4ml of the digest reagent was added. A few anti-bumping granules were 

added to minimize the reaction of the digest reagent during heating.  
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The samples and digest reagent were gently heated in a heating block until the initial 

vigorous reaction had subsided, then the temperature was increased to 350
O
C in 

approximately 100
O
C increments and kept at 350

O
C until the digest had cleared. This 

step took approximately two hours. The digests were then allowed to heat for a further 

30 minutes after becoming clear then left to cool. The digests were filtered through 

Whatman number 44 filter papers into 100ml volumetric flasks, making up the 

volumes to 100ml with deionised water. The resultant samples were diluted four times 

with deionised water prior to analysis to give an acid content of 1% v/v (Allen, 1989). 

Each digest sample was then analysed for orthophosphate which was determined 

colourimetrically after formation of the molybdenum blue complex measured at 

660nm in a reaction using a blend of acid-with antimony potassium tartrate used as a 

catalyst in a continuous flow stream using a Bran + Luebbe autoanalyser 3.  

 

3.3.7 Leaching experiment 

 

For tropical experiment, the experiment used two types of biochar (CS and RH) and 

three soils (forest, intensive farming and non-intensive farming). Meanwhile for 

temperate study, the experiment was divided into two parts. The biochar used at the 

first part of experiment was an aged HW biochar which was incorporated 

approximately 10 months in three soils (grassland, arable loam and arable sandy) and 

freshly added HW biochar was also amended in the same soils. The second part of 

temperate study was also used the same biochar with different particle sizes (2mm, 

1mm, 0.5mm and 0.1mm) and was applied at different rates of biochars (2% and 5%). 

Two different soils were used in part two study (fertilized and unfertilized soils). For 

each set of experiment, all of the samples were in triplicate making a total of 27 
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leaching soil columns. The only exception was in temperate experiment for part 2, 

which was conducted in duplicate due to insufficient tools (soil columns). Soils with 

and without biochar with approximate 1.2 g cm
-3 

of bulk density were packed into a 

glass soil column (tropical and part 2 temperate experiments) and a PVC column (for 

part 1 temperate experiment) of 5cm diameter and 20cm long. For the tropical and 

part 2 temperate leaching experiments, a layer of glass wool was inserted at the 

bottom of the funnel to prevent blocking with soil particles. Another layer of glass 

wool was placed on the soil surface to reduce the impact of water drops during the 

leaching process.  

 

For the temperate leaching experiment (part 1), 40g of sand was placed at the bottom 

of PVC column to trap the clay particles from loss during the leaching process. At the 

end of each column, two layers of nylon mesh were lined and secured with a cable 

ties. The leaching was started by pouring 100ml of deionised water slowly in the glass 

and the PVC columns.  The leachate was collected in an Erlenmeyer flask and then 

kept in the fridge 4
O
C prior to analysis for two to three days. Ammonia, nitrate and 

phosphate from the leachates were then determined using a Bran + Luebbe 

Autoanalyzer 3.  

 

3.3.8 Phosphorus in soil leachates 

 

The concentration of phosphorus in soil leachate was determined using a Bran + 

Luebbe Autoanalyser 3 (Revision2, 2000) in a continuous flow stream as described 

previously.  
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3.3.9 Ammonium and nitrate in soil leachates 

 

The concentration of NH4
+
 and NO3

-
 / NO2

-
 in the soil leachates, blank samples and 

the standard samples were determined in a continuous flow stream using a Bran + 

Luebbe Autoanalyser 3 (Revision1, 1999; Revision3, 2000). The concentration of 

NH4
+
 in the leachates was calculated after reaction with salicylate and 

dichloroisocyanuric acid to form a blue compound with nitroprusside as a catalyst and 

measured at 660 nm (ISO11732, 1997).  

 

The concentration of N was determined after the reduction of NO3
-
 to NO2

-
 by 

hydrazine in alkaline solution, followed by the reaction with sulphanilamide and N-1-

naphthylethylenediamine dihydrochloride to form a pink compound measured at 550 

nm with copper used as a catalyst (ISO13395, 1996).  

 

3.3.10 pH 

 

To measure the soil pH, 25ml of deionised water from a measuring cylinder was 

added to 10gm of air-dried and sieved soil into a 50ml polyethylene beaker. The 

contents were stirred every so often and allowed to stand for an hour. The pH values 

were read with a lab pH meter model PHM 220 calibrated using buffers pH 7.0 and 

4.0 (Radojevic and Baskin, 1999). 
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3.3.11 pH in soil leachates 

 

The pH of soil leachates was determined using a lab pH meter model PHM 220 

calibrated using buffers pH 7.0 and 4.0. The pH probe was placed in the soil leachate 

directly then the reading of pH was recorded.  

 

3.3.12 Cation Exchange Capacity (CEC) 

 

Cation exchange capacity (CEC) is a quantitative technique to determine the ability of 

soil to hold cations, for instance Na, Ca, Mg and K. It is known as the mass of 

exchangeable cation sites per unit weight of dry soil (Miller et al., 1998) and can also 

be used to determine the fertility of soil. To carry out this measurement, the soil is 

saturated with a suitable cation and in this study cation such as Na in the form of 

sodium acetate is used. When the soil is saturated with Na, it is assumed that all the 

exchange sites of soil will be occupied by the Na which can be later leached off, 

analysed and used to calculate CEC. However, there is residual Na which is 

unattached that needs to be washed by leaching using methylated spirit. Therefore, 

leaving only attached Na for subsequent removal and quantification purpose. 

Ammonium acetate is then used to flush off the attached Na (Miller et al., 1998). Total 

Na is then measured by using flame photometry technique.  

 

To determine the CEC, 4g of dried soil were transferred in a centrifuge tube and then 

saturated with 30ml of sodium acetate at pH 8.2. The sample was shaken with overend 

shaker for 5 minutes and centrifuged at 4600 rpm. After 5 minutes centrifuged, the 

supernatant was filtered and the filter paper containing the sample (biochar and soil) 
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were filled back in the centrifuge tube to avoid the loss of biochar due to its 

hydrophobicity characteristic. The residue is then discarded. The sample was then 

added with 30ml of 30% methylated spirit (IMS) to the residue in the centrifuge tube, 

shaked, centrifuged and filtered. The residue of IMS was also discarded into the 

solvent waste bottle provided in the fume cupboard. Subsequently, the sample was 

added with 30ml of ammonium acetate at pH 7. The sample again was shaken, 

centrifuged and filtered. The supernatant was collected into a 100ml flask. All of the 

steps that are mentioned above were repeated twice. At the last step in this method, 

the sample (biochar and soil) that was left at the filter paper, was rinsed using a small 

amount of 1 M ammonium acetate. Finally, the flasks contents were marked up with 1 

M ammonium acetate up to 100 ml and the solutions used to determine the CEC using 

flame photometry (Chapman, 1965). 

 

3.3.13 Substrate induce respiration 

 

The substrate induced respiration (SIR) technique measures microbial primary 

respiration after adding a substrate. Indirectly, this method can also be used to 

evaluate the amount of carbon (C) content in living microorganisms bodies (Anderson 

and Domsch, 1978). In this case, glucose is added to airtight containers which contain 

soil sample. CO2 emission is monitored for several hours and the initial respiration by 

the microbes is the relative amount of microbial C from the soil samples (Kandeler, 

2007). The respired CO2 is then measured by using an alkali trap and this is followed 

by adding a liquid scintillation cocktail which is for counting purposes using a liquid 

scintillation counting machine (Hamer and Marschner, 2002; Kandeler, 2007). 
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In this study, 20g of soil sample and 10ml glucose solution (3 mM) were added to a 

respiratory bottle which consisted of a 250 ml Schott bottle with a Teflon-lined screw 

lid. The centre of the lid was drilled, and a stainless steel studding was inserted to 

connect a crocodile clip. The clip was used to hold an open 7ml glass scintillation vial 

containing 1 M Sodium Hydroxide (1ml). The vial position was in the middle of the 

respiratory bottle and above the soil slurry (see Figure 3.5). Any 
14

CO2 evolved 

through microbial catabolism is determined in the sodium hydroxide trap. After 

spiking the soil with 
14

C glucose, the samples were shaken on an orbital shaker at 100 

rpm. Then, the mineralization rate was measured every hour for four hours and every 

two hours for another four hours during a total of 24 hours. The mineralization rate 

was also measured once on a daily basis for up to 5 days. During the sampling, the 

vial containing sodium hydroxide was removed and wiped using acetone which was 

wetted on to blue roll tissue. This aimed at removing any 
14

C activity. 5ml of liquid 

scintillant cocktail were then added into the vial and subsequently, the vial was 

incubated in a dark cupboard overnight before measuring the 
14

C activity using liquid 

scintillation counting, model Canberra Packard Tri-Carb 2250A liquid scintillation 

analyser.   
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Figure 3.5 Respirometry bottle containing soil slurry 

 

3.3.14 Fumigation and non-fumigation extraction 

 

In principle, soils are fumigated with chloroform, incubated for 24 hours, and 

extracted. To correct for non-biomass organic matter of soil, the non-fumigated soil is 

also extracted using 0.5 M K2SO4. During the fumigation process, there is an increase 

in the amount and variety of organic and inorganic components variety that is lysed 

from the cells of soil microorganisms (Powlson and Jenkinson, 1976). A large part of 

the soil microbial biomass can be extracted from fumigated soil after 24 hours 

(incubation period to allow autolysis process).  

 

To carry out these experiments, 4g of soil slurry from the 250ml Schott bottle was 

weighed and added in a small 10ml beaker for fumigation extraction and another 4g in 

a plastic tube for non-fumigation extraction. The soil slurry was took at the last day 

sampling of the substrate induces respiration experiment. The non-fumigation sample 
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was extracted with 20ml of 0.5 M K2SO4. The sample was then shaked with an orbital 

shaker for 30 minutes (100 rpm). The supernatant was filtered and 5ml of supernatant 

was then added into a 20ml vial. 15ml of liquid scintillant cocktail was also added into 

the vial and the sample were kept in the cupboard overnight before counting using 

liquid scintillation counting model Canberra Packard Tri-Carb 2250A liquid 

scintillation analyser. At the same time, the other sample was fumigated in a 

desiccator lined with a wet blue roll. 75ml ethanol-free chloroform (CHCl3) was 

placed at the centre of the desiccator. A few anti-bumping granules were then added 

into the CHCl3. The desiccator was evacuated until the CHCl3 has boiled vigorously 

for 2 minutes. After 24 hours, the residual CHCl3 vapour was removed by repeated 

five or six fold evacuation. Then, the soil was extracted and counting similar as non-

fumigation extraction method.  

 

3.3.15 Sample oxidation  

 

The amounts of 
14

C remaining in the soil treatments were determined through dry 

combustion of approximately 1g of dry soil plus 200µl combust aid at three minutes 

on a Sample Oxidiser (Packard, Model 307). Prior to analysis approximately 10ml of 

Permafluor-E was acted as a liquid scintillation cocktail and 10ml of Carbosorb-E was 

used to trap evolved 
14

CO2 during combustion (trapping efficiency more than 90%) 

(Towell et al., 2011). The samples were then, kept in the dark cupboard for at least 12 

hours to reduce the effects of chemi-luminescence. Finally, solution which containing 

14
C activity was determined by liquid scintillation counting model LSC, Canberra 

Packard Tri-Carb 2250A with standard calibration and quench correction techniques.  
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3.3.16 Statistical Analysis 

 

The mean values of maximum rate, 
14

C mineralization, 
14

C biomass, total carbon, total 

nitrogen, phosphate and nutrients concentration in the leachate between the 

treatments, sorted by incubation day, were tested using a one-way analysis of variance 

(ANOVA) with a P<0.05 level of significance. The soil water retention was tested at 

each matric potential between the treatments in a similar way. Multiple mean 

comparisons were carried out using a Holm-Sidek procedure at P<0.05. For values 

that were not normally distributed, a non-parametric statistical test (Kruskal-Wallis), 

which is based on ranks, was used. In addition, the Tukey test was applied to 

determine the significant differences between the treatments for non-distributed values 

at the P<0.05 level. A two-way analysis of variance (ANOVA) was performed to test 

the significant difference for all of the parameters over time and between the soil 

treatments. All of the statistical tests were performed using the SigmaStat v3.5 (Systat 

Software Inc), except for two-way analysis of variance (ANOVA), which was 

performed using Microsoft Excel. 
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CHAPTER 4 

 

Impact of Biochar Amendment of Selected Tropical Soils 

 

4.1 Introduction 

Malaysia is a tropical South East Asian country with high temperature, rainfall, as 

well as high humidity. With this type of climate, the soils are infertile and have very 

low pH and CEC (Ishak and Jusop, 2010). The nutrients that have been applied are 

often lost through surface runoff and leaching to the groundwater, due to high rainfall 

events and intensity. As a result, a large amount of fertilizer is applied to improve the 

fertility of the soils in order to obtain a high crop yield. In addition, high temperature 

and humidity associated to this climate create a favourable condition for microbes to 

mineralize organic matter rapidly, thus resulting in inadequate amount of organic C in 

the soil (Peng et al., 2011). To overcome this problem, biochar has been suggested as 

one way to improve the quality of the soils. Biochars have a liming effect that can 

increase soil pH and ultimately increase CEC (Masulili et al., 2010; Sukartono et al., 

2011). With a high CEC, biochar can prevent nutrients from leaching, consequently 

reducing the surface and river water pollution. Moreover, the recalcitrance of biochar 

C resulting from pyrolysis helps biochar resist degradation by microbes (Sukartono et 

al., 2011). Biochar can sequester C in the soils and has the potential to increase the 

productivity of typical infertile Malaysian soils. In this study, it was hypothesized that 

adding biochars to tropical soils could enhance microbial activity, reduce nutrients 

leaching, and improve the physical and chemical properties of the soil. The objectives 

of this chapter are: 
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1. To measure the microbial activity and microbial biomass in the soil with 

biochar amendments 

2. To quantify the impact of biochar amendments on nutrient leaching from soil 

3. To investigate the effects of biochars on the soil’s chemical properties (C, N, 

P, CEC and pH) and physical properties (aggregate stability). 

 

4.2 Materials and Methods 

Three Spodosols soils with different gradients of degradation (forest, non-intensive 

farming and intensive farming soils) from Cameron Highlands, Malaysia were used in 

this study. Spodosols soils are acidic (pH < 5.5) and contain a high accumulation of Al 

and Fe in subsoils. The biochar types used in this study were coconut shell (CS) 

biochar and rice husk (RH) biochar. The former is produced by slow pyrolysis, while 

the latter was produced by fast pyrolysis. Details of the materials (soils and biochars) 

used in this study can be found in the previous chapter (Section 3.2.1 and Section 

3.2.3).  

 

The experiments are divided into three parts, which are biological, chemical and 

physical aspects of soils. Details for all the methodology can be found in Sections 

3.3.1-15. For the biological properties, the methodology employed to carry out the 

experiments were substrate induced respiration, where 3 mM of glucose solution 

(10ml) was added into soil samples, which had a radioactivity of 733 Bq on days 0, 60 

and 120 (incubation time); and 1086 Bq on days 240 and 360 (incubation time). For 

fumigation and non-fumigation extraction 0.5 M potassium sulphate was used. C-14 
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glucose associated activity remaining in soil was determined via combustion (3 

minutes) on a sample oxidiser (Packard, Model 307).  

 

For the chemical properties, the total carbon (C) and nitrogen (N) were determined by 

dry combustion and measured with an elemental analyser (Elementar Vario EL), 

phosphorus digestion with hydrochloric acid and hydrogen peroxide; the 

concentration of P in the soil was then measured with Bran + Luebbe autoanalyser 3, 

as well as phosphate, ammonium and nitrate concentrations in the soil leachate. pH 

was measured using a pH meter model PHM 220 calibrated using buffers pH 7.0 and 

4.0 and CEC was determined using 1 M ammonium acetate. The measurement of Na 

attached to soils was obtained by using flame photometry. For the physical 

characteristics, soil moisture content was determined through oven drying at 105
O
C 

for 24h and, particle size analysis determined by the hydrometer method and 

aggregate stability using the Le Bissonnais method (Bissonnais, 1996).  

 

For the statistical analyses, the mean values of maximum rate, 
14

C mineralization, 
14

C 

biomass, total carbon, total nitrogen, phosphate and nutrients concentration in the 

leachate between the treatments, sorted by incubation day, were tested using a one-

way analysis of variance (ANOVA) with a P<0.05 level of significance. Multiple 

mean comparisons were carried out using a Holm-Sidek procedure at P<0.05. For 

values that were not normally distributed, a non-parametric statistical test (Kruskal-

Wallis), which is based on ranks, was used. In addition, the Tukey test was applied to 

determine the significant differences between the treatments for non-distributed values 

at the P<0.05 level.  A two-way analysis of variance (ANOVA) was performed to test 

the significant difference for all of the parameters over time. All of the statistical tests 
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were performed using the SigmaStat v3.5 (Systat Software Inc), except for the two-

way analysis of variance (ANOVA), which was carried out in Microsoft Excel. 

 

4.3 Results and discussion 

 

4.3.1 Mineralization of 
14

C glucose to 
14

CO2 and uptake of 
14

C glucose into 

microbial biomass 

The extent of mineralization of 
14

C glucose in three different soils were not constant 

over time. Overall, the mineralization of 
14

C glucose was highest (P<0.05) at the end 

of incubation time in all soils and treatments (Tables 4.1 to 4.3). Further, adding CS 

biochar and RH biochar to the soils also did not lead to much significant change 

during the period of the study. Only after 120 d was the mineralization in RH biochar 

amended soils in forest soil (62.22 ± 6.40) significantly higher (P<0.05) than in the CS 

biochar amended soils (45.01 ± 6.05) (Table 4.1). The maximum rates in forest soils 

amended with RH biochar were significantly higher (P<0.05) than the CS and control 

treatments at all times (days 0 to 360) (Table 4.1). On the other hand, there were no 

significant difference of the maximum rates between the treatments in the other two 

soils (non-intensively farmed and intensively-farmed) at any time (P>0.05) (Tables 

4.2 and 4.3). Generally, the incorporation of 
14

C glucose into the microbial biomass 

showed no consistent pattern (Tables 4.1 to 4.3).  
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Table 4.1 Maximum rate (% h
-1

), 
14

C extent mineralization (%), 
14

C biomass uptake 

(%) and 
14

C activity remaining (%) for forest soil, over 360 d. Error bars are SEM 

(n=3). 

Treatment Day Maximum 

rate  

(% h
-1

) 

14
C extent 

mineralization 

(%) 

14
C biomass 

uptake (%) 

 fixed kEC 

14
C activity 

remaining in 

soil (%) 

Control 0 1.79 ± 0.11 29.02 ± 2.69 14.19 ± 1.03 56.78 ± 3.66 

 60 2.15 ± 0.19 49.41 ± 5.49 24.77 ± 3.61 25.81 ± 7.41 

 120 2.03 ± 0.25 37.10 ± 2.11 ND ND 

 240 1.02 ± 0.08 48.55 ± 1.73 27.59 ± 6.22 23.86 ± 7.83 

 360 1.03 ± 0.30 59.37 ± 12.23 21.73 ± 2.31 18.90 ± 10.14 

CS 0 2.06 ± 0.19 29.40 ± 1.44 14.53 ± 2.32 56.07 ± 2.04 

Biochar 60 2.23 ± 0.13 44.71 ± 3.84 24.33 ± 6.45 30.95 ± 6.09 

 120 2.33 ± 0.48 45.01 ± 6.05 29.44 ± 3.80 25.54 ± 4.27 

 240 1.54 ± 0.19 44.91 ± 1.74 26.49 ± 3.45 28.59 ± 3.62 

 360 2.35 ± 0.20 83.50 ± 8.92 15.08 ± 2.61 1.41 ± 6.57 

RH  0 2.99 ± 0.16 35.68 ± 2.22 12.96 ± 4.11 51.35 ± 2.87 

Biochar 60 3.22 ± 0.19 58.60 ± 4.89 22.81 ± 3.79 18.58 ± 1.10 

 120 4.23 ± 0.35 62.22 ± 6.40 14.31 ± 2.33 23.47 ± 8.62 

 240 1.79 ± 0.08 52.41 ± 6.16 28.81 ± 5.13 18.78 ± 1.56 

 360 4.47 ± 0.23 88.79 ± 6.86 12.00 ± 1.83 0.00 ± 0.00 

 

ND = Not Determined 

Values in bold font indicate significance at P<0.05 
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Table 4.2 Maximum rate (% h
-1

), 
14

C extent mineralization (%), 
14

C biomass uptake 

(%) and 
14

C remaining (%) for non-intensive farming soil, over 360 d. Error bars are 

SEM (n=3). 

Treatment Day Maximum 

rate  

(% h
-1

) 

14
C extent 

mineralization 

(%) 

14
C biomass 

uptake (%) 

 fixed kEC 

14
C activity 

remaining in 

soil (%) 

Control 0 3.34 ± 0.52 50.88 ± 2.64 5.11 ± 0.57 44.00 ± 2.09 

 60 1.51 ± 0.54 29.57 ± 10.24 11.49 ± 5.09 58.94 ± 15.07 

 120 2.15 ± 0.31 45.70 ± 4.07 15.43 ± 2.94 38.87 ± 5.06 

 240 1.96 ± 0.10 39.85 ± 1.47 15.63 ± 0.96 44.52 ± 1.83 

 360 2.34 ± 0.70 48.37 ± 7.56 18.76 ± 2.13 32.87 ± 6.18 

CS 0 3.49 ± 0.50 50.28 ± 4.83 8.67 ± 0.76 41.05 ± 4.09 

Biochar 60 2.00 ± 0.79 34.65 ± 13.32 6.21 ± 1.82 59.14 ± 11.65 

 120 1.89 ± 0.16 40.66 ± 1.92 16.87 ± 1.01 21.07 ± 1.08 

 240 2.47 ± 0.37 43.90 ± 4.47 14.52 ± 2.80 41.59 ± 4.06 

 360 2.51 ± 0.33 54.57 ± 6.17 12.24 ± 1.94 33.19 ± 5.33 

RH 0 4.21 ± 0.58 47.35 ± 3.22 5.36 ± 0.94 47.29 ± 2.29 

Biochar 60 1.46 ± 0.29 30.19 ± 3.80 3.06 ± 0.95 66.75 ± 4.74 

 120 2.13 ± 0.20 44.73 ± 3.46 9.17 ± 3.61 46.10 ± 6.84 

 240 2.71 ± 0.29 48.82 ± 3.20 13.87 ± 1.10 37.30 ± 2.65 

 360 4.17 ± 0.91 72.77 ± 9.37 7.88 ± 1.29 19.35 ± 8.12 

 

Values in bold font indicate significance at P<0.05 
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Table 4.3 Maximum rate (% h
-1

), 
14

C extent mineralization (%), 
14

C biomass uptake 

(%) and 
14

C activity remaining (%) for intensive farming soil, over 360 d. Error bars 

are SEM (n=3). 

Treatment Day Maximum 

rate  

(% h
-1

) 

14
C extent 

mineralization 

(%) 

14
C biomass 

uptake (%) 

 fixed kEC 

14
C activity 

remaining in 

soil (%) 

Control 0 2.83 ± 0.33 44.1 ± 1.36 16.29 ± 3.67 39.61 ± 3.24 

 60 1.65 ± 0.17 42.7 ± 2.94 17.82 ± 4.07 39.48 ± 5.70 

 120 2.12 ± 0.32 43.91 ± 4.76 14.60 ± 1.14 41.49 ± 5.51 

 240 1.79 ± 0.08 36.81 ± 1.48 15.44 ± 2.31 47.75 ± 3.60 

 360 3.70 ± 0.61 69.80 ± 3.51 14.41 ± 1.67 15.78 ± 1.88 

CS 0 3.27 ± 0.36 45.79 ± 2.51 14.47 ± 2.99 39.73 ± 2.92 

Biochar 60 1.83 ± 0.07 42.00 ± 1.70 12.75 ± 3.64 45.24 ± 4.89 

 120 1.79 ± 0.25 40.47 ± 3.16 17.13 ± 2.24 42.39 ± 2.61 

 240 2.05 ± 0.22 41.49 ± 2.97 15.62 ± 5.80 42.89 ± 8.44 

 360 2.81 ± 0.77 56.58 ± 4.95 9.67 ± 1.82 23.75 ± 12.60 

RH 0 2.98 ± 0.72 51.90 ± 3.78 9.76 ± 3.47 40.24 ± 2.15 

Biochar 60 1.58 ± 0.29 41.23 ± 2.75 18.00 ± 3.58 40.77 ± 1.21 

 120 1.57 ± 0.19 38.42 ± 3.93 19.48 ± 3.57 42.10 ± 1.41 

 240 1.54 ± 0.07 31.92 ± 1.90 15.26 ± 1.15 52.82 ± 2.76 

 360 2.40 ± 0.58 51.77 ± 6.45  13.51 ± 1.06 34.72 ± 5.41 

 

Values in bold font indicate significance at P<0.05 

 

The addition of CS and RH biochar had no effect on the mineralization and uptake of 

14
C glucose. However, on day 120 RH biochar and forest soil showed an increase of 

14
C glucose mineralization and a decrease in 

14
C uptake into microbial biomass 

(P<0.05). The maximum rates in forest soil amended with RH biochar significantly 

increased (P<0.05) at all times, as compared to control and CS biochar treatments. In 

contrast, the maximum rates in the other two soils (non-intensively farmed and 

intensively farmed soils) did not increase significantly (P>0.05) between biochar 

treatments and control treatment at any time. This is possibly due to the fertilizer that 

was supplied in these two soils as compared to the forest soil, which is a background 

soil not treated with any fertilizer. The biochar showed an effect in the soil with lower 
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nutrients. The higher effect of biochar for soil with low nutrients content is in line 

with the study on rice crop in the tropics and with the study on the effect of fertilizers 

on plant yield (Haefele et al., 2011; Jeffery et al., 2011). According to Haefele et al. 

(2011), adding RH biochar had no effect on crop yield in fertile soil, but increased 

crop yield from 16% to 35% in nutrient poor soil. Cornelissen et al. (2013) also found 

that there was a prominent effect of biochar on crop yield in the soil with the lowest 

fertility compared to soil with higher fertility. In addition, in this study mineralization 

of 
14

C glucose increased due to increasing carbon content in the soil amended with RH 

biochar, as compared to unamended soil, resulted in a decrease of 
14

C uptake by 

microorganisms. Adding CS and RH biochars to soil might affect the amount of 

carbon in the soils, and this may influence the microbial activity.  

 

Unlike forest soil, the intensively farmed soil and non-intensively farmed soil showed 

the opposite pattern of mineralization and biomass uptake. At the beginning of the 

incubation period, the mineralization of 
14

C glucose in the intensive farming soil was 

higher than in forest soil (44.1% and 29.02% respectively) (Tables 4.3 and 4.1). The 

application of CS and RH biochars also increased the mineralization rate in this soil 

but not in forest soil. However, the trend was opposite towards the end of the 

incubation time. The mineralization of 
14

C glucose in intensive farming soil amended 

with RH biochar (51.77%) (Table 4.3) was lower than in forest soil added with the 

same biochar (88.79%) (Table 4.1). The 
14

C glucose uptake by the microbial 

population decreased in forest soil, as compared to intensive farming soil (12% and 

13.51% respectively). The results indicated that amending intensive farming soil with 

biochars had no effect on microbial activity because low carbon content and organic 

materials in intensive farming soil. In comparison the higher carbon and it organic 
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matter content in the forest soil resulted in higher mineralization of 
14

C glucose to CO2 

by microbes. It is hypothesized that, with a very limited content of carbon in the soil, 

the microbes may store added glucose in their cells rather than respired (Bremer and 

Kuikma, 1994; Nguyen and Guckert, 2001), thus promoting a greater biomass uptake 

than mineralized into CO2 (Boucard et al., 2008).  

 

4.3.2 Ammonium leaching in forest, non-intensive farming and intensive farming 

soils 

The concentration of ammonium decreased over time in all soils (Figure 4.1). Adding 

biochar to soil exhibited various trends of ammonium leaching. For example, in forest 

soil biochar decreased the concentration of ammonium in the leachate and reduced the 

concentration of ammonium in non-intensive farming soil at the beginning of the 

leaching process from 0.03 (control) to 0.00067 (CS) and 0.003 mg/L (RH) (Figure 

4.1) (P<0.05). While in intensive farming soil biochar had no effect on ammonium 

leaching see Figure 4.1. The concentration of ammonium was higher in unamended 

forest soils than in biochar treatments. Biochar treatments adsorbed ammonium in the 

forest soil over time (P<0.05). This is probably due to the negative charge on the 

biochars surface (Baldock and Smernik, 2002; Glaser et al., 2002; Chen et al., 2008; 

Novak et al., 2009; Mukherjee et al., 2011) which enables positively charge cation, 

for example ammonium, to be attached (Alling et al., 2014). Therefore, less 

ammonium was leached in the soils treated with both CS and RH biochars.  
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Figure 4.1 Amount of ammonium in the leachate of three soils a) forest b) non-

intensive farming and c) intensive farming soils amended with and without CS and 

RH biochar, over 360 d. Error bars are SEM (n=3). 
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4.3.3 Nitrate leaching in forest, non-intensive farming and intensive farming soils 

The pattern of nitrate leaching was different among the three types of soils studied. 

Unlike ammonium, the concentration of nitrate in forest soil leachate increased over 

time (P<0.05), whereas in non-intensive and intensive farming soils nitrate leaching 

decreased over time (P<0.05) (Figure 4.2). Amending soils with biochar did not show 

a clear pattern, and also the differences were generally insignificant (P>0.05) see 

Figure 4.2.  

 

 

 

Figure 4.2 Amount of nitrate in the leachate of three soils a) forest b) non-intensive 

farming and c) intensive farming soils amended with and without CS and RH biochar, 

over 360 d. Error bars are SEM (n=3). 
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In forest soil the concentration of nitrate in the leachate increased and this suggests 

that nitrification process occurred in the soil. The results were in line with Alling et al. 

(2014), where the nitrate concentrations in the soil leachate increased after addition of 

5 and 10% of biochar. They speculated that the biochar itself may contribute to the 

release of nitrate and also enhance the nitrification process in the soil. On the other 

hand, the concentration of nitrate in non-intensive and intensive farming soils 

decreased over time. Less organic matter in these two soils resulted in slow microbial 

activity in the soils, hence the nitrification process by microbes was also affected.  

4.3.4 Phosphate leaching in forest, non-intensive farming and intensive farming 

soils 

Phosphate leaching exhibited a different pattern in each of the soils. Phosphate 

leaching in forest soil fluctuated over time, whereas in other two soils phosphate 

leaching decreased over time and slightly increased at the end of the leaching process 

(Figure 4.3). Amending forest soil with biochars decreased phosphate leaching, but 

the decrease was not significantly different (P>0.05). In non-intensive farming soil 

RH biochar increased phosphate leaching (P<0.05), especially at the beginning of the 

leaching process (Figure 4.3). There was no any different on the leaching of phosphate 

in the intensive farming soil (P>0.05) (Figure 4.3).  

 



69 
 

 

 

 

Figure 4.3 Amount of phosphate in the leachate of three soils a) forest b) non-

intensive and c) intensive farming soils amended with and without CS and RH 

biochar, over 360 d. Error bars are SEM (n=3). 
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soil in Indonesia. The reduction of phosphate content in the soil leachate was not only 

because of biochar alone, but could also be attributed to the other soil properties, such 

as mineral and clay content that might affect the CEC and the sorption of phosphate in 

the soils (Staunton and Leprince, 1996). Furthermore, with low anion exchange 

capacity, biochars can only adsorb a very small amount of phosphate in the soils 

(Singh et al., 2010). Because of this, they are likely to absorb only a small amount of 

phosphate and nitrate concentrations in intensive and non-intensive farming soil 

leaching.  

 

Yao et al. (2012), studied nutrient sorption on thirteen biochars in sandy soils and 

revealed that only five biochars can absorb phosphate, while the remaining biochars 

released phosphate in the leachate. In addition, more than 2% phosphate was released 

from three types of bamboo biochars, and a hydrothermally produced biochar released 

the highest concentration of nitrate and phosphate in the soil leachates. In the present 

study, the greater amount of phosphate in the leachate from soils treated with RH 

biochar may be due to the high phosphate content in the biochar itself (1.75mg g
-1

) 

(Table 3.1). Additionally, the phosphate content in intensive farming soil was also 

high because of the massive application of fertilizer to the soil.  

 

4.3.5 Leachate and soil pH 

Amending soils with 2% of CS and RH biochars by weight had a small effect on the 

pH of the leachate. The biochar treatments significantly increased leachate pH in 

forest and non-intensive farming soils, but in intensive farming soil there was no clear 

pattern (Figure 4.4).  
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Figure 4.4 pH in the leachate of three soils a) forest b) non-intensive farming and c) 

intensive farming soils amended with and without CS and RH biochar, over 360 d. 

Error bars are SEM (n=3). 
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The application of biochars affects soil pH. Adding 2% of CS and RH biochars by 

weight to soils increased significantly (P<0.05) their pH (Figure 4.5). Although the 

application of biochar to soil increased soil pH, it subsequently declined over time 

(P<0.05). Figure 4.6 shows the relationship between soil pH and time, which was also 

strong. For instance, the R
2
 values of forest soil pH in control, CS and RH treatments 

were 0.88, 0.94 and 0.85 respectively. Meanwhile, the R
2
 values for intensive farming 

were 0.91 (control), 0.86 (CS), 0.98 (RH) and non-intensive farming soils was 0.85 

(control), 0.89 (CS) and 0.83 (RH) respectively (Figure 4.6). 

 

  

 

Figure 4.5 pH in a) forest b) non-intensive farming and c) intensive farming soils 

amended with and without CS and RH biochar, over 360 d. Error bars are SEM (n=3). 
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Figure 4.6 Correlation between soil pH with days in three different soils a) forest b) non-intensive farming and c) intensive farming soils 

amended with and without CS and RH biochar.
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In this study, generally amending the soils with 2% CS and RH biochars by weight 

increased leachate and soils pH. CS and RH biochars had high pH (8.33 and 8.46 

respectively) (Table 3.1) and this suggests that biochar could be used to increase soil 

pH and ameliorate an acidic soil. The results of this study were also in line with the 

findings of previous research (Novak et al., 2009; Masulili et al., 2010; Peng et al., 

2011).  

 

Although biochars can increase the soil pH and leachate due to their alkalinity, the pH 

values decreased over time, especially in forest soil (Figure 4.5 and Figure 4.6). This 

could be attributed to the oxidation of ammonium ions in the forest soil by microbes, 

also known as nitrification, leading to a decrease in the soil pH (Fageria and Baligar, 

2008). With high organic matter in the soil and the addition of organic matter from the 

biochar itself, the nitrification process in the soil could be enhanced, hence increasing 

soil acidity. This explanation can also be considered in connection with the leaching 

results, where the nitrate content in forest soil leachate increased over time. Another 

possibility is the leaching of basic cations from the soil (Schulz and Glaser, 2012; 

McCormack, 2015). 

 

4.3.6 Cation exchange capacity (CEC) 

Adding biochar to soils in this study had little effect on the CEC. The results from 

Figure 4.7 show that adding RH biochar to soils marginally increased the CEC in 

forest soil and non-intensive farming soils (Figure 4.7). None of the biochars had an 

impact on CEC of the intensive farming soil, while CS biochar did not affect the CEC 

in any of the soils.  
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Figure 4.7 CEC in a) forest b) non-intensive and c) intensive farming soils amended 

with and without CS and RH biochar, over 360 d. Error bars are SEM (n=3). 

 

0

2

4

6

8

10

12

14

16

0 60 120 240 360
m

eq
1

0
0

g-1
 

Days 

a) 

0

2

4

6

8

10

12

14

16

0 60 120 240 360

m
eq

1
0

0
g-1

 

Days 

b) 

0

2

4

6

8

10

12

14

16

0 60 120 240 360

m
eq

1
0

0
g-1

 

Days 

c) 

Control

Coconut Shell

Rice Husk



76 
 

The CEC of the soils amended with CS and RH biochar exhibited no significant 

difference (P>0.05). Most of the studies have found that application of biochars 

increased CEC (Liang et al., 2006; Van Zwieten et al., 2010; Masulili et al., 2010; 

Peng et al., 2011). However, the present results were consistent with Novak et al. 

(2009), in which the addition of 0.5, 1.0 and 2.0% pecan shell biochar by weight did 

not change the CEC of agricultural soils significantly. They stated that the weak effect 

of biochar in increasing the CEC of the soils was due to the production of biochars at 

high temperature.  

 

Biochar produced in high temperature has low surface negative charge, which resulted 

from the low oxidation of carboxylic and phenolic groups on the outer surface of 

biochar particles will possibly decrease the CEC of soils (Novak et al., 2009). The 

biochars used in this study were also produced in high temperature (the temperature 

ranged from 400 – 1000
O
C). Therefore, the lack of a significant biochar impact on the 

CEC in this experiment may be due to the high temperature during biochar 

production.  

 

4.3.7 Carbon, nitrogen and phosphate in soils 

Adding biochar increases the carbon content of all soils. The relative increase was 

greatest in the forest soil amending with CS biochar (8.2%) (Appendix 1). However, 

the results showed a decline in carbon content over time. This was also reported by 

(Sukartono et al., 2011). The researchers found that the organic C content in the soil 

amended with CS biochar and cattle dung biochar decreased over time from 1.15 to 

1.13 mg kg
-1

 and from 1.14 to 1.11 mg kg
-1

. Besides, they noticed that the reduction of 
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organic C in the soil amended with cattle manure was higher than in the soil amended 

with biochars. They speculated that the slow reduction of C in the soil was due to the 

resistance of biochars aromatic C structure, which could slower the decomposition of 

C. Because of this characteristic, biochars would potentially sequester C in the soil. In 

addition, adding CS and RH biochars to forest, intensive and non-intensive farming 

soils had no significant effect (P>0.05) at any time on the total nitrogen and phosphate 

(see Appendix 2 and Appendix 3). 

 

4.3.8 Effect of biochar on aggregate stability of soils 

Figures 4.8 to 4.10 show that forest soil was more stable in comparison to intensive 

farming and non-intensive farming soils (P<0.05). Forest soil was also more stable in 

the fast wetting (FW), slow wetting (SW) and mechanical (M) treatments compared to 

non-intensive farming and intensive farming soils (Figures 4.8 to 4.10). The non-

intensive farming soil was only stable in the M treatment, where the mean weight 

diameter (MWD) values ranged between 2.98 to 3.45 mm (Figure 4.10). In contrast, 

intensive farming soil was the least stable in all treatments (FW, SW and M) see 

Figures 4.8 to 4.10. The MWD values ranged from 0.10 to 0.41 mm, 0.25 to 0.63 mm, 

and 0.39 to 0.67 mm respectively (Figures 4.8 to 4.10). 

 

Amending all soils with biochar had a small effect on the stability of the soils. Biochar 

amendment only had an effect on the FW treatment, but had no effect on the other two 

treatments (SW and M) at any time in all soils. 
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Figure 4.8 MWD values for FW treatment in a) forest b) non-intensive farming and c) 

intensive farming soils amended with and without CS and RH biochar, over 360 d. 

Error bars are SEM (n=3). 
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Figure 4.9 MWD values for SW treatment in a) forest b) non-intensive farming and c) 

intensive farming soils amended with and without CS and RH biochar, over 360 d. 

Error bars are SEM (n=3). 
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Figure 4.10 MWD values for M treatment in a) forest b) non-intensive farming and c) 

intensive farming soils amended with and without CS and RH biochar, over 360 d. 

Error bars are SEM (n=3). 
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In terms of physical properties, the forest soil had better aggregation than the other 

two soils, and it was also more stable in all treatments (FW, SW and M). The MWD 

values for the forest soil ranged from 1.24 to 2.58 mm (FW), 2.71 to 2.90 mm (SW) 

and 2.66 to 3.23 mm (M) respectively (Figures 4.8 to 4.10). This is due to the high 

organic matter, carbon content and fungal hyphae in the soil that can act as cementing 

agents to bind the soil particles, and eventually enhance soil aggregation (Ishak and 

Jusop, 2010). However, incorporation of biochars to soils had no effect on aggregate 

stability, which is in agreement with the observation from another study (Peng et al., 

2011). Peng et al. (2011), did not find any effect of biochar amendment on soil 

aggregation. The results were expected as the formation of soil aggregate by 

biological activity and other organic materials, including biochars are unlikely to take 

place immediately (Herath et al., 2013), therefore the effects cannot be seen in the 

period of this study. In contrast to these findings, Herath et al. (2013) reported that the 

stability of soil amended with corn stover biochar was higher than that of unamended 

soil. They argued that the formation of water stable macro aggregate against slaking in 

amendment soils and the presence of fungal hyphae within the biochar pores increased 

soil aggregation. Apart from that, the FW treatment in the pots amended with biochar 

also improved aggregate stability by more than 17% in comparison with the SW and 

M treatments in which stability improved by only 4 to 16% (Herath et al., 2013). 

 

4.5 Conclusion 

In conclusion, only RH biochar had a little effect on the mineralization of 
14

C glucose 

to CO2 in forest soil, while no significant difference was observed in intensive and 

non-intensive farming soils relative to biochar amendment. Forest soil had increased 
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nitrification due to high carbon and organic matter contents in comparison with 

intensive and non-intensive farming soils. The nitrate contents in forest soil leachate 

increased over time, whereas the nitrate in intensive and non-intensive farming soil 

leachates declined over time. Biochars showed unclear trend in the adsorption of 

nitrate and phosphate in each of the soil leachates. High pyrolysis temperatures during 

the production of biochar likely resulted in low CEC after amending soils with 

biochars. Moreover, with limited anion exchange capacity, biochars have also shown 

less ability to adsorb nutrients in the soils. However, amending soils with 2% of CS 

and RH biochars by weight increased soil C and pH. Results indicated that biochar 

could sequester C in the soils together with the liming effects. Biochar could also 

ameliorate the acidity in typical Malaysian soils. Finally, the application of both 

biochars to the tropical soils had no effect on soil aggregation. Longitudinal 

experiments are advisable in order to investigate the impact on soil aggregation. 
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Chapter 5 

 

The Impact of Biochar Amendment on Soil Properties in Three Different 

Temperate Soils 

5.1 Introduction 

Numerous studies have found that the application of biochar enhances soil quality 

(Downie et al., 2011; Uzoma et al., 2011; Quilliam et al., 2012; Qayyum et al., 2015). 

Lehmann et al. (2011) reported that adding biochar to soil affects the soil biological 

community and improves soil microbial biomass (O’Neill et al., 2009; Jin, 2010; 

Liang et al., 2010). This is due to improvements in soil structure and increasing 

nutrient concentrations (P and Ca) (O’Neill et al., 2009). Furthermore, biochar itself 

has a large surface area with a porous structure, which creates an ideal habitat for 

microorganisms (Pietikainen, 2000). These improvements in soil physico-chemical 

properties lead to changes in the soil microbial community (O’Neill et al., 2009).  

 

Biochar can alter soil chemical properties through changes in cation exchange 

capacity and pH, as well as reducing the leaching of nutrients (Scott et al., 2014). In 

addition, biochar has also the potential to sequester soil C (Qayyum et al., 2015). The 

recalcitrance of biochar C is due to its production; for example, biochar produced at 

high temperature of 400
O
C or higher can lead to depolymerisation, loss of functional 

groups and also results in larger aromatic ring structures (Zimmerman and Gao, 2013). 

This structure is more likely to be resistant to biotic or non-biotic degradation 

processes (Zimmerman and Gao, 2013). The resistance of aromatic C structure of 
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biochar, may slow the decomposition of C and leading to the sequestration of C in the 

soil.  

 

Furthermore, biochar can also reduce emission of greenhouse gas, and ultimately 

mitigate against global warming (Kammann et al., 2012). The decomposition rate of 

biochar in soil is slow, therefore may mitigate against CO2 emissions into the 

atmosphere. In addition, the alkalinity of biochar may increase the conversion of 

greenhouse gas, for example, N2O to N2 by N2O-reductase enzyme activity (Van 

Zwieten et al., 2009). Increasing the C/N ratio, as a result of biochar addition, would 

promote N immobilization, thus reducing N2O emissions through immobilization of 

inorganic N (Lehmann et al., 2006; Van Zwieten et al., 2009; Kammann et al., 2012). 

However, there are a number of studies showing the opposite effect in soil following 

the addition of biochar (Wardle et al., 2008; Jones et al., 2011; Lehmann et al., 2011; 

Qayyum et al., 2015). This is due to phytotoxic substances that have been found from 

freshly made biochar, such as polycyclic aromatic hydrocarbons (PAHs), phenolic 

compounds and acetic or formic acids (Bargmann et al., 2013; Quilliam et al., 2013b). 

These compounds may not only affect crops (Busch et al., 2012; Rogovska et al., 

2012), but could also contaminate the soils (Quilliam et al., 2013b).  

 

The results of incorporating biochar into the soil vary depending on several factors, 

such as the types of soil and climates, the types of feed stocks used to produce 

biochar, as well as the temperature and duration of the pyrolysis process. For instance, 

biochar produced from plant materials exhibited different properties to biochar 

produced from animal products. Generally, plant-derived biochars contain higher C 
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content, lower nutrient concentrations (N, P and K) and lower CEC values. Whereas, 

animal-derived biochars have lower C contents, higher nutrient concentrations and 

higher CEC values (Scott et al., 2014). Furthermore, biochars made at low 

temperatures have high C, N and S compared to biochars made at higher temperatures. 

This is because more nutrients tend to volatize as temperature increases (Scott et al., 

2014). This variability means that there is uncertainty regarding the effects of biochar 

on the properties of soil. This has created an interest in studying biochar across the 

globe from tropical to temperate climates (Karer et al., 2013). Often, the addition of 

biochar to soil benefits infertile or degraded soils, but has little effect on fertile soils, 

thus the application of biochar to agricultural soils in temperate climates remains 

debatable (Quilliam et al., 2012). In fact, some researchers have claimed that adding 

biochars to temperate soils has shown only transient effects (Jones et al., 2012; 

Quilliam et al., 2012). Some studies reported that the addition of  biochar to temperate 

soils showed some positive effects, but this was dependant on the soil type (Kolb et 

al., 2009; Kloss et al., 2014). Even though measured effects appear to be transient, but 

more importantly, adding biochar to these type of soils did not show any negative 

effects to the plant growth and soil quality, in fact promote a little advantage on 

agricultural land (Jones et al., 2012; Quilliam et al., 2012).  

 

In this chapter, the impact of 2% fresh and aged HW biochar on soils was investigated 

to determine whether biochars could stimulate microbial activity, hold nutrients in the 

soil, or alter the soil’s physico-chemical characteristics in grassland, arable loam and 

arable sandy soils. The objectives of this chapter are as follows: 
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1. To measure the microbial activity and microbial biomass in the soil amended 

with biochar 

2. To quantify the impact of biochar amendment on nutrient leaching from soil 

3. To investigate the effects of biochars on the soil’s chemical properties (C, N, 

P, CEC and pH) and physical properties (aggregate stability).  

5.2 Materials and Methods 

Three Brown Earth soils (grassland, arable loam and arable sandy) from Dundee, 

United Kingdom were used in this study. The soils were chosen due to an aged soil 

that has been amended with biochar approximately 10 months by a former PhD 

student. The biochar used in this experiment was hardwood (HW) biochar. The HW 

biochar used in this experiment was produced in a kiln. More details about the 

materials (soils and biochars) used in this study can be found in the previous chapter 

(Section 3.2.2 and Section 3.2.4).  

 

The experiments are divided into three parts, which are biological, chemical and 

physical aspects of soils. Details for all the methodology can be found in Sections 

3.3.1-15. For the biological properties, the methodology employed to carry out the 

experiments were substrate induced respiration, where 3 mM of glucose solution 

(10ml) was added into soil samples, which had a radioactivity of 1086 Bq on days 0 

and 60 (incubation time); and 654 Bq on days 180 and 300 (incubation time). For 

fumigation and non-fumigation extraction 0.5 M potassium sulphate was used. C-14 

glucose associated activity remaining in soil was determined via combustion (3 

minutes) on a sample oxidiser (Packard, Model 307).  
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For the chemical properties, the total carbon (C) and nitrogen (N) were determined by 

dry combustion and measured with an elemental analyser (Elementar Vario EL), 

phosphorus digestion with hydrochloric acid and hydrogen peroxide; the 

concentration of P in the soil was then measured with Bran + Luebbe autoanalyser 3, 

as well as phosphate, ammonium and nitrate concentrations in the soil leachate. pH 

was measured using a pH meter model PHM 220 calibrated using buffers pH 7.0 and 

4.0; and CEC was determined using 1 M ammonium acetate. The measurement of Na 

attached to soils was obtained by using flame photometry. For the physical 

characteristics, soil moisture content was determined through oven drying at 105
O
C 

for 24h and, particle size analysis determined by the hydrometer method and 

aggregate stability using the Le Bissonnais method (Bissonnais, 1996).  

 

For the statistical analyses, the mean values of maximum rate, 
14

C mineralization, 
14

C 

biomass, total carbon, total nitrogen, phosphate and nutrients concentration in the 

leachate between the treatments, sorted by incubation day, were tested using a one-

way analysis of variance (ANOVA) with a P<0.05 level of significance. Multiple 

mean comparisons were carried out using a Holm-Sidek procedure at P<0.05. For 

values that were not normally distributed, a non-parametric statistical test (Kruskal-

Wallis), which is based on ranks, was used. In addition, the Tukey test was applied to 

determine the significant differences between the treatments for non-distributed values 

at the P<0.05 level.  A two-way analysis of variance (ANOVA) was performed to test 

the significant difference for all of the parameters over time. All of the statistical tests 

were performed using the SigmaStat v3.5 (Systat Software Inc), except for two-way 

analysis of variance (ANOVA), which was performed using Microsoft Excel. 
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5.3 Results and Discussion 

5.3.1 Mineralization of 
14

C glucose to 
14

CO2 and uptake of 
14

C glucose into 

microbial biomass 

The extent of mineralization of 
14

C glucose in three different soils were relatively 

constant over time. Further, adding fresh biochar and aged biochar to the soils also did 

not lead to much significant change during the period of the study. Only after 180 d 

incubation the extent of mineralization of the aged biochar amended soils in grassland 

(74.86% ± 2.07) were significantly higher (P<0.05) than in the fresh biochar amended 

soils (62.83% ± 2.24) (Table 5.1). The mineralization of 
14

C glucose was also 

increased over time in all soils (see Tables 5.1 to 5.3). There was no significant 

difference (P>0.05) in the maximum rates observed in loamy and sandy soils at any 

time (Tables 5.2 and 5.3). The significant effect on the maximum rates can only be 

seen on day 180 in grassland soils with aged biochar, which was 4.46% h
-1 

± 0.20, 

compared to the rate for the fresh biochar amendment (3.51% h
-1 

± 0.20) and the rate 

without biochar (3.80% h
-1

 ± 0.15) in the same soil, as shown in Table 5.1. Overall, 

biochar amendment did not have a prominent effect on the microbial biomass in the 

soil. For example, only after 300 d incubation biomass uptake in grassland soil 

amended with the fresh biochar (25.20% ± 2.56) was observed to be significantly 

higher (P<0.05) than the aged biochar amendment (11.36% ± 2.90) as shown in Table 

5.1. 
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Table 5.1 Maximum rate (% h
-1

), 
14

C extent mineralization (%), 
14

C biomass uptake 

(%) and 
14

C activity remaining (%) for grassland soil, over 300 d. Error bars are SEM 

(n=3). 

Treatment Day Maximum 

rate 

(% h
-1

) 

14
C extent 

mineralization 

(%) 

14
C biomass 

uptake (%) 

fixed kEC 

14
C activity 

remaining 

in soil (%) 

Control 0 2.32 ± 0.15 42.54 ± 2.46 7.99 ± 0.54 49.47 ± 2.46 
 60 3.68 ± 0.28 75.91 ± 2.61 20.28 ± 5.07 3.81 ± 4.61 
 180 3.80 ± 0.15 67.18 ± 0.45 11.32 ± 0.24 21.49 ± 0.35 
 300 3.39 ± 0.11 76.39 ± 3.99 20.77 ± 1.89 2.83 ± 4.82 

Fresh  0 2.35 ± 0.24 41.37 ± 3.09 10.73 ± 2.25 47.90 ± 3.92 

Biochar 60 3.43 ± 0.49 71.95 ± 5.28 25.30 ± 3.51 2.74 ± 6.26 
 180 3.51 ± 0.20 62.83 ± 2.24 11.02 ± 0.90 26.15 ± 1.35 
 300 2.84 ± 0.21 71.14 ± 2.74 25.20 ± 2.56 3.66 ± 4.45 

Aged 0 2.17 ± 0.43 42.72 ± 5.27 12.96 ± 4.21 44.31 ± 2.67 

Biochar 60 3.21 ± 0.40 75.44 ± 5.17 22.73 ± 0.06 1.83 ± 5.18 
 180 4.46 ± 0.20 74.86 ± 2.07 9.77 ± 1.75 15.37 ± 1.68 
 300 5.37 ± 1.30 93.59 ± 16.09 11.36 ± 2.90 0.00 ± 0.00 

 

Values in bold font indicate significance at P<0.05 

 

In addition, after 60 d incubation the aged biochar treatment in loamy soil 

significantly (P<0.05) increased the extent of mineralization (88.12% ± 7.15) 

compared to the fresh biochar amended soil (68.33% ± 0.82), and unamended soil 

(69.91% ± 3.25), as shown in Table 5.2. The maximum rates were observed after 300 

d incubation in control (4.77 h
-1

 ± 0.77), compared to the rate for the fresh biochar 

amendment (3.00 h
-1

 ± 0.14) and aged biochar (3.44 h
-1

 ± 0.18) in the same soil, 

(P>0.05) (Table 5.2). Only at day 0, was the incorporation of 
14

C-carbon into the 

microbial biomass in loamy soil for the aged biochar treatment significantly higher 

(P<0.05) compared to the fresh biochar treatment (12.56% ± 0.09 and 7.68% ± 0.19, 

respectively) (Table 5.2).  
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Table 5.2 Maximum rate (% h
-1

), 
14

C extent mineralization (%), 
14

C biomass uptake 

(%) and 
14

C activity remaining (%) for loamy soil, over 300 d. Error bars are SEM 

(n=3). 

Treatment Day Maximum 

rate 

(% h
-1

) 

14
C extent 

mineralization 

(%) 

14
C biomass 

uptake (%) 

fixed kEC 

14
C activity 

remaining 

in soil (%) 

Control 0 3.08 ± 0.58 54.76 ± 7.56 11.23  ± 0.57 34.01 ± 7.23 
 60 3.09 ± 0.22 69.91 ± 3.25 21.00  ± 3.03 9.09 ± 5.87 
 180 4.01 ± 0.21 71.94 ± 2.75 8.72 ± 0.41 19.34 ± 2.42 
 300 4.77 ± 0.77 85.66 ± 10.72 15.15 ± 1.68 0.00 ± 0.00 

Fresh  0 2.80 ± 0.31 52.47 ± 4.24 7.68 ± 0.19 39.85 ± 4.43 

Biochar 60 2.88 ± 0.32 68.33 ± 0.82 19.74 ± 2.33 11.93 ± 2.05 
 180 3.39 ± 0.24 63.99 ± 3.75 10.05 ± 1.27 25.95 ± 4.95 
 300 3.00 ± 0.14 69.88 ± 0.72 18.19 ± 1.92 11.91 ± 2.47 

Aged 0 2.24 ± 0.05 46.94 ± 1.35 12.56 ± 0.09 40.49 ± 1.44 

Biochar 60 3.79 ± 0.47 88.12 ± 7.15 18.61 ± 1.91 0.00 ± 0.00 
 180 3.76 ± 0.12 70.29 ± 0.55 8.96 ± 0.09 20.75 ± 0.48 
 300 3.44 ± 0.18 75.52 ± 2.93 15.68 ± 2.21 8.81 ± 1.53 

 

Values in bold font indicate significance at P<0.05 

 

The changes in the extent of mineralization of 
14

C glucose had a limited effect in 

correspond to the fresh and aged biochars amendment. The significant effects 

occurred only in the middle of the study (days 60 and 180), when the aged biochar 

amendment increased the extent of mineralization of 
14

C glucose in grassland and 

loamy soils. Sandy soil exhibited no significant difference in relation to biochar 

amendment at any time (Table 5.3). This may be due to the soil’s low levels of 

nutrients and C. This finding is in agreement with Jones et al. (2012), who reported 

that the addition of biochar to soil increased microbial activity in year 2 compared to 

year 1 and year 3. Moreover, the authors stated that adding biochar to soil only 

resulted in a minor impact on the turnover of 
14

C-labelled soil organic carbon, sugars, 

organic and amino acids.  
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Table 5.3 Maximum rate (% ha
-1

), 
14

C extent mineralization (%), 
14

C biomass uptake 

(%) and 
14

C activity remaining (%) for sandy soil, over 300 d. Error bars are SEM 

(n=3). 

Treatment Day Maximum 

rate 

(% h
-1

) 

14
C extent 

mineralization 

(%) 

14
C biomass 

uptake (%) 

fixed kEC 

14
C activity 

remaining in 

soil (%) 

Control 0 2.08 ± 0.04 44.40 ± 1.18 8.98 ± 3.64 46.61 ± 4.15 
 60 2.89 ± 0.24 77.67 ± 11.19 27.95 ± 7.73 0.00 ± 0.00 
 180 2.40 ± 0.15 66.92 ± 1.31 13.21 ± 3.45 19.87 ± 4.63 
 300 1.64 ± 0.06 75.79 ± 10.41 13.71 ± 2.54 10.50 ± 8.43 

Fresh  0 2.18 ± 0.10 45.97 ± 3.66 9.20 ± 0.98 44.83 ± 3.72 

Biochar 60 4.23 ± 1.03 87.26 ± 11.36 4.28 ± 1.51 0.00 ± 0.00 
 180 3.37 ± 0.48 72.51 ± 6.20 6.94 ± 1.42 20.55 ± 6.25 
 300 2.40 ± 0.51 73.60 ± 7.53 16.41 ± 3.64 9.98 ± 10.23 

Aged 0 2.13 ± 0.41 42.17 ± 2.13 10.7 ± 1.16 47.13 ± 2.21 

Biochar 60 3.42 ± 0.46 78.27 ± 7.43 27.29 ± 1.15 0.00 ± 0.00 
 180 3.54 ± 0.55 73.83 ± 4.60 8.99 ± 1.63 17.17 ± 4.44 
 300 3.23 ± 0.57 84.30 ± 5.12 14.65 ± 1.80 1.04 ± 6.80 

 

Values in bold font indicate significance at P<0.05 

 

Similarly, Quilliam et al. (2012) studied the effects of the fresh and aged biochar with 

different rates of application. Results from their study revealed that after three years of 

biochar application, there was no significant effect on microbial growth, the 

emergence of wheat (mycorrhizal colonisation), or soil nutrients between the control 

and the soil with biochar. Both studies agreed that adding biochars to highly fertile 

and productive soils, especially in temperate climates, may contribute to the least 

significant effects of biochars (Jones et al., 2012; Quilliam et al., 2012).  

 

The 
14

C glucose uptake by microbial biomass did not show many differences either. 

The incorporation of 
14

C glucose into the microbial biomass in soil amended with 

biochar also did not show a clear trend, and differences were generally insignificant 
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(P>0.05). The results obtained in this study showed that 
14

C glucose mineralization 

was consistently higher than that incorporated into the microbial biomass in all 

treatments. In this study, adding fresh and aged biochars to soil increased the amount 

of carbon in the soils, and this may affect the microbial activity. Therefore, 

mineralization of 
14

C glucose increased after increasing carbon content in the soil 

amended with biochar, which resulted in a decrease of 
14

C uptake by microorganisms.  

 

In contrast with these findings and the previous studies (Jones et al., 2012; Quilliam et 

al., 2012), Wardle et al. (2008) and Kolb et al. (2009) found positive effects from 

biochar amendment, on the biological aspect of the soils. Kolb et al. (2009) 

investigated the correlation between microbial activity and biomass following the 

addition of charcoal to four contrasting temperate soils. The results suggested that 

charcoal amendment significantly increased microbial activity and biomass with an 

increasing application rate in all soils studied. Wardle et al. (2008) found that the 

addition of charcoal in the Boreal Forest stimulated microbial activity in the soil. 

 

5.3.2 Ammonium leaching in grassland, loamy and sandy soils 

The concentration of ammonium in all soils leachate increased over time (P<0.05) 

(Figure 5.1). In this study, both biochars (fresh and aged) significantly reduced 

ammonium leaching in all three soils. In the first leaching event, there was no 

significant difference (P>0.05) in the concentration of ammonium between the 

treatments with and without biochar amendment. In the final leaching, the 

concentration of ammonium in grassland soil had peaked and biochar treatments 

significantly (P<0.05) reduced ammonium leaching from 0.34 mg/L (control) to 0.06 
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mg/L (fresh biochar) and 0.14 mg/L (aged biochar) (Figure 5.1). The ammonium 

concentration was also reduced in loamy at the final leaching process from 0.25 mg/L 

to 0.09 mg/L (fresh biochar) and 0.15 mg/L (aged biochar) (Figure 5.1). Sandy soil 

also reduced (P<0.05) ammonium leaching at the end of the leaching process from 

0.88 mg/L to 0.27 mg/L (aged biochar) and 0.13 mg/L (fresh biochar), (Figure 5.1).  

 

The results are in agreement with Yao et al. (2012), where the ability of nine biochars 

studied to adsorb ammonium ranged from 1.8% to 15.7%. Singh et al. (2010) reported 

that adding poultry manure biochar reduced ammonium leaching by about 55% to 

93% in an Alfisol soil and 87% to 94% in a Vertisol soil. Ding et al. (2010) also 

observed that biochar sorbed ammonium by cation exchange, and that within 70 days, 

by adding 0.5% biochar to soil; biochar was found to retain the vertical movement of 

ammonium from the soil layers. 

 

Most of the studies found that the ability of biochar to adsorb cations is due to the 

negative charges on the biochar’s surface (Baldock and Smernik, 2002; Glaser et al., 

2002; Novak et al., 2009; Mukherjee et al., 2011). Furthermore, Clough and Condron 

(2010) and Zheng et al. (2013) reported that acid functional groups, for example 

(carboxyl and hydroxyl) on the biochar’s surface could hold ammonium ions through 

cations exchange.  
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Figure 5.1 Amount of ammonium in the leachate of three soils a) grassland b) loamy 

and c) sandy amended with and without fresh and aged biochar, over 300 d. Error bars 

are SEM (n=3). 
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5.3.3 Nitrate leaching in grassland, loamy and sandy soils 

The concentration of nitrate in the leachate fluctuated over time, and again the pattern 

of nitrate leaching occurred in a relatively similar manner in all soil types studied 

(Figure 5.2). Amending soils with biochar did not show a clear pattern, and also the 

differences were generally insignificant (P>0.05). 

 

 

 

Figure 5.2 Amount of nitrate in the leachate of three soils a) grassland b) loamy and c) 

sandy amended with and without fresh and aged biochar, over 300 d. Error bars are 

SEM (n=3). 

 

0

20

40

60

80

100

0 60 180 300

m
g/

L 

Days 

a) 

0

20

40

60

80

100

0 60 180 300

m
g/

L 

Days 

b) 

0

20

40

60

80

100

0 60 180 300

m
g/

L 

Days 

c) 

Control

Fresh Biochar

Aged Biochar



96 
 

The concentration of nitrate was low in the first leaching event, then rose in the 

middle and finally reduced at the end of the leaching process (Figure 5.2). This 

suggests that nitrification occurred in the middle of the leaching event and the 

inhibition of nitrification took place at the end of the leaching process, though the 

mechanisms by which this happens are unclear. The results can also be considered in 

connection with the mineralization of 
14

C glucose in the soil. The mineralization rate 

increased in grassland and loamy soils during the middle of the study. This is possibly 

due to the addition of biochar that could stimulate microbial activity in the soil, thus 

enhancing the soil’s fertility through mineralization and nitrification by the microbes.  

 

Biochar application had a minor effect on nitrate sorption. Biochar only reduced 

nitrate leaching on days 0 and 60 in grassland and loamy soil, whilst in sandy soil 

biochar had no effect at all (Figure 5.2). These findings were in agreement with Yao et 

al. (2012), where most of the thirteen biochars studied showed very limited, or no, 

ability to hold nitrate in the soil. Furthermore, the results were also in line with Alling 

et al. (2014), where the nitrate concentrations in the soil leachate increased on the 

addition of 5% and 10% biochar. The authors speculated that the biochar itself may 

contribute to the release of nitrate and also enhance the nitrification process in the soil. 

In contrast to these findings, a number of studies (Novak et al., 2010; Knowles et al., 

2011; Zheng et al., 2013) reported that adding biochars to soil reduced nitrate 

leaching. For example, Knowles et al. (2011) stated that amending soil with biochar 

plus biosolids reduced nitrate leaching to the levels of untreated soil or below. The 

mechanisms through which this occurred are not yet fully understood.  
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5.3.4 Phosphate leaching in grassland, loamy and sandy soils 

Unlike ammonium and nitrate, the trend of phosphate leaching was slightly different 

among the three types of soils studied. The concentration of phosphate reduced over 

time (Figure 5.3). Biochar amendment did not show a clear trend of phosphate 

adsorption in the soil (see Figure 5.3). The only exception was the types of soils. For 

example, in grassland soil the presence of biochar made no difference to the leaching 

of phosphate compared to soil alone. On the other hand, loamy and sandy soils 

showed slightly similar patterns (Figure 5.3). The only exception was in the types of 

biochar amendment used: in loamy soil, the aged biochar increased the concentration 

of phosphate leachate in the middle of the study, whereas in sandy soil the 

concentration of phosphate in the aged biochar amendment decreased over time. The 

fresh biochar amendment led to increased phosphate leaching in sandy soil at all times 

especially at time 0 (Figure 5.3). 
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Figure 5.3 Amount of phosphate in the leachate of three soils a) grassland b) loamy 

and c) sandy amended with and without fresh and aged biochar, over 300 d. Error bars 

are SEM (n=3). 
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These results were in line with the findings in Yao et al. (2012), where eight of the 

biochars studied released phosphate into the solution, of which three released more 

phosphate into the leachate. In addition, Alling et al. (2014) found that adding 5% and 

10% of biochar to soil did not significantly change the sorption of phosphate in 

comparison with the absence of biochar in the soil. The authors speculated that, 

because the high pH of the biochar resulted in a decrease in its positively-charged 

surface, the availability of phosphate in the solution increased. 

 

The high pH in biochar is due to the alkaline substances that exist in biochar, which 

ultimately would increase the soil’s pH. In acidic soil, phosphate can be attached with 

other substances and become unavailable to crops. Biochar which act as a lime can 

reduce iron and aluminium that was previously attached with phosphate, thereby 

phosphate becomes available in the soil and increase in the presence of biochar (Cui et 

al., 2011; Biederman and Harpole, 2013). In the current study, the greater amount of 

phosphate leachate in soils treated with the fresh and the aged biochars may be due to 

the high pH content in the biochar itself (pH 9.05) (Table 3.2) that might contribute to 

the high phosphate in the leachate. On top of that, other researchers also claimed that 

biochars can only adsorb a very small amount of phosphate in the soils due to the low 

anion exchange capacity (Singh et al., 2010).  

 

5.3.5 Leachate and soil pH 

In this study, amending soil with 2% of fresh and aged HW biochars by weight had a 

small effect on the pH of the leachate. Biochar treatment significantly increased 

leachate pH in grassland and loamy soils, but not in sandy soil (Figure 5.4). Leachate 
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pH also decreased over time (P<0.05) see Figure 5.4. The reduction of pH was due to 

the oxidation process of biochar which released acid functional groups for example, 

carboxyl and hydroxyl and which consequently reduced the pH (Liu and Zhang, 

2012). The decrease in leachate pH could also be connected with the leaching results, 

where the concentration of nitrate was increased especially on day 180 see Figure 5.2. 

The increase in nitrate suggested that a nitrification process occurred, which could 

reduce the pH due to microbial activity (Fageria and Baligar, 2008). This finding 

reflected Inal et al. (2015), where the authors found that the addition of poultry 

manure biochar significantly reduced the pH from 7.8 to 7.6. Karer et al. (2013) also 

reported that adding biochar to Chernozem did not increase the pH, but also reduced 

pH significantly when increasing the rate of biochar application plus N fertilizer.  
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Figure 5.4 pH in the leachate of three soils a) grassland b) loamy and c) sandy 

amended with and without fresh and aged biochar, over 300 d. Error bars are SEM 

(n=3). 
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Application of fresh and aged biochars significantly (P<0.05) increased soil pH over 

time. Figure 5.5 shows that all soils pH without biochar treatments decreased over 

time. This is possibly due to the high pH of biochar used in this study see Table 3.2. 

The increasing of soil pH after adding biochar was also in line with the findings from 

previous research (Novak et al., 2009; Masulili et al., 2010; Peng et al., 2011). 

Therefore, the biochar had a liming effect, and the potential to increase soil pH and 

alleviate acidic soil.  

  

 

Figure 5.5 pH in a) grassland b) loamy and c) sandy soils amended with and without 

fresh and aged biochar, over 300 d. Error bars are SEM (n=3). 
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5.3.6 Cation exchange capacity 

Although most of the studies showed positive results for the CEC (Liang et al., 2006; 

Masulili et al., 2010; Van Zwieten et al., 2010; Hale et al., 2011; Peng et al., 2011), 

amending soil with biochar in this study had little effect on the CEC. Results showed 

no significant difference (P>0.05) between biochar treatments and soil alone (without 

biochar) on days 0, 60 and 180, although the aged biochar significantly (P<0.05) 

increased CEC at the end of the study in grassland soil (Figure 5.6). CEC also 

increased at the end of the incubation time in the loamy and sandy soils. However, the 

increase was not significant (P>0.05) (Figure 5.6). The results can also be considered 

in connection with the ammonium leaching, where both biochars significantly 

(P<0.05) reduced ammonium leaching in all soils, especially after 300 d.  

 

The finding that biochar amendment had minimal effect matched that of other 

research, such as Karer et al. (2013), who found that adding biochar to soils did not 

alter the CEC of the soil. The mechanisms of how CEC decreased, however, were not 

clearly stated in their study. The findings are also consistent with those of Novak et al. 

(2009) and Kloss et al. (2014) who reported that the addition of biochars to soil did 

not affect the CEC of the soils. Both studies agreed that the small effect of the biochar 

was due to the way in which biochar is produced. For example, high temperature 

biochar production reduced the CEC of the soil, because biochar produced at high 

temperatures has low surface negative charges. This resulted in the low oxidation of 

carboxylic and phenolic groups, which would ultimately reduce the soils’ CEC. 

Therefore, the lack of a significant biochar impact on the CEC, especially at the 
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beginning of this experiment, may be due to the temperature during biochar 

production.  

 

 

 

Figure 5.6 CEC in a) grassland b) loamy and c) sandy soils amended with and without 

fresh and aged biochar, over 300 d. Error bars are SEM (n=3). 

4

6

8

10

12

14

16

18

20

0 60 180 300

m
eq

 1
0

0
g-1

 

Days 

a) 

4

6

8

10

12

14

16

18

20

0 60 180 300

m
eq

 1
0

0
g-1

 

Days 

b) 

4
6
8

10
12
14
16
18
20

0 60 180 300

m
eq

 1
0

0
g-1

 

Days 

c) 

Control

Fresh Biochar

Aged Biochar



105 
 

5.3.7 Carbon, nitrogen and phosphate in soils 

Adding fresh and aged HW biochar to grassland, arable loam and arable sandy soils 

increased the carbon content. With high carbon content in the biochar, the 

incorporation of biochar into soil increased the carbon content in each of the soils. For 

example, nearly twice as much additional carbon was found in grassland, loamy and 

sandy soils treated with the fresh and aged HW biochar (Figure 5.7). Sandy soil 

showed the lowest carbon content in the soil without biochar amendment, in 

comparison with the grassland and loamy soils (Figure 5.7). The biochars used in this 

study had a high carbon content (72.14%) and low nitrogen content (0.24%), as shown 

in Table 3.2 page 38. This indicated that the value of the C/N ratio was very high. The 

results can also be considered alongside the results of nitrate leaching, where the 

nitrification process decreased especially at the end of the leaching event, suggesting 

that N immobilization may have occurred at this stage. 

 

Although biochar increased the carbon content in all soils at all the incubation times, 

the C content in the soil also decreased over time (Figure 5.7). The reduction of C 

content was due to decomposition of organic C in the soil and biochar. Reapplication 

of biochar could enable the effects of C sequestration in the soil to last longer. 

Decrease in organic C following soil organic amendment has also been reported by 

Sukartono et al. (2011). The researchers found that the organic C content in the soil 

amended with cattle dung reduced 18% faster than in the soil amended with biochar. 

They speculated that the slow reduction of C in the soil was due to the resistance of 

biochar’s aromatic C structure, which could slow the decomposition of C. Because of 

this characteristic, biochar would potentially sequester C in the soil.  
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Figure 5.7 Carbon content in a) grassland b) loamy and c) sandy soils amended with 

and without fresh and aged biochar, over 300 d. Error bars are SEM (n=3). 
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Little effect could be seen upon nitrogen when adding biochar to soils. Only on day 

60, biochar treatments increased N significantly (P<0.05) in grassland and loamy soils 

(Figure 5.8). Even though biochar treatments in sandy soil increased N from 0.16% 

(control) to 0.23% and 0.24% (fresh and aged biochar) on the same day, but these 

changes were not significant (P>0.05).  

 

 

 

Figure 5.8 Nitrogen content in a) grassland b) loamy and c) sandy soils amended with 

and without fresh and aged biochar, over 300 d. Error bars are SEM (n=3). 
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Overall, on days 0 and 300, the phosphate content in loamy soil was higher than that 

in grassland and sandy soils (Table 5.4). Results from Table 5.4 also show that there 

was no significant effect (P>0.05) when adding fresh and aged biochar to grassland, 

loamy and sandy soils at any time. 

 

Table 5.4 Phosphate content (Mg g
-1

) in grassland, loamy and sandy soils amended 

with and without fresh and aged biochar (0 and 300 d). Error bars are SEM (n=3). 

Soil Treatment Day 0 Day 300 

Grassland Control 1.48 ± 0.15 0.92 ± 0.03 

 Fresh Biochar 1.40 ± 0.13 0.92 ± 0.02 

 Aged Biochar 1.22 ± 0.04 0.93 ± 0.03 

Loamy Control 1.74 ± 0.05 1.47 ± 0.02 

 Fresh Biochar 1.76 ± 0.06 1.44 ± 0.04 

 Aged Biochar 1.77 ± 0.03 1.66 ± 0.13 

Sandy Control 1.28 ± 0.01 0.99 ± 0.03 

 Fresh Biochar 1.23 ± 0.03 0.97 ± 0.03 

 Aged Biochar 1.32 ± 0.03 0.93 ± 0.01 

 

However, other findings show that the addition of biochar significantly increased P in 

the soil (Glaser et al., 2002; Chan et al., 2008a; Gaskin et al., 2010; Hossain et al., 

2010; Kloss et al., 2014). However, the mechanisms behind this process are poorly 

understood. The P content measured in the leachate samples was opposite to that 

found in the soil, whilst the concentration of phosphate leaching was higher in the 

biochar treatments than in the control. Nevertheless, biochar amendment had no effect 

on the soil P content at any time in any of the soils. According to Kloss et al. (2012), 

biochars may contribute soluble nutrients such as P, K and S, thus more P may be lost 

via the leaching. Other researchers also found that the incorporation of biochar in soils 

increased the concentration of soluble P (Liu et al., 2012), as well as increased plant-

available P, Zn, Cu and Mn concentrations (Inal et al., 2015). 
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5.3.8 Effect of biochar on aggregate stability of soils 

Figures 5.9 to 5.11 show three different aggregate stability treatments - fast wetting 

(FM), slow wetting (SW) and mechanical (M) - in three types of soil, with and 

without biochar amendment over time. In the FW treatment, sandy soil was more 

stable than the other two soils. Sandy soil with no biochar was stable over time, but 

with biochar amendment the mean weight diameter (MWD) values fluctuated (Figure 

5.9). On the other hand, grassland and loamy soils were less stable than sandy soil, 

and over time there were no changes. Biochar amendment in all the types of soil had 

no effect on the FW treatment at all. 
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Figure 5.9 MWD values for FW treatment in a) grassland b) loamy and c) sandy soils 

amended with and without fresh and aged biochar, over 300 d. Error bars are SEM 

(n=3). 
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For the SW treatment, the stability of the three types of soil studied was quite similar. 

Biochar treatments had a little effect on the stability of the soils, see Figure 5.10.  

 

 

 

 

Figure 5.10 MWD values for SW treatment in a) grassland b) loamy and c) sandy soils 

amended with and without fresh and aged biochar, over 300 d. Error bars are SEM 

(n=3). 

0

0.5

1

1.5
2

2.5

3

0 60 180 300

M
W

D
 (

m
m

) 

Days 

a) 

0
0.5

1
1.5

2
2.5

3

0 60 180 300

M
W

D
 (

m
m

) 

Days 

b) 

0

0.5

1

1.5

2

2.5

3

0 60 180 300

M
W

D
 (

m
m

) 

Days 

c) 

Control

Fresh Biochar

Aged Biochar



112 
 

Unlike FW and SW treatments, M treatment indicated a different pattern in the 

aggregation of the soils. In this treatment, grassland and loamy soils were more stable 

than sandy soil. In fact, as time went by the stability of the soils increased under most 

of the treatments, except the fresh biochar treatment in grassland and sandy soils (see 

Figure 5.11). In terms of biochar effect, only on day 0 did the fresh biochar 

amendment in loamy soil (2.50 mm) have a significantly different effect (P<0.05) than 

the aged biochar amendment (2.23 mm).    

 

 

 

Figure 5.11 MWD values for M treatment in a) grassland b) loamy and c) sandy soils 

amended with and without fresh and aged biochar, over 300 d. Error bars are SEM 

(n=3). 
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As regards the soils’ physical properties, results showed a varied pattern of soil 

aggregation in the three types of soil studied. For example, sandy soil was more stable 

than grassland and loamy soils in the FW treatment (Figure 5.9). For the SW 

treatment, the pattern of the soils’ aggregation showed a similar trend (Figure 5.10). 

Nevertheless, grassland and loamy soils had a better aggregation than sandy soil under 

the M treatment (Figure 5.11). This is due to the comparatively high level of organic 

matter and carbon content in both soils, that can act as cementing agents to bind the 

soil particles, and eventually enhance soil aggregation (Ishak and Jusop, 2010).  

 

Application of biochars to soils was observed to have a very limited effect on 

aggregate stability, where an aged biochar in grassland was more stable than the 

control on day 180 and biochar treatments was more stable in loamy soils on day 300 

under the SW treatment. Only fresh biochar increased the stability of loamy soil under 

the M treatment at the beginning of the study, whereas there were no effects under the 

FW treatment at any time. The limited effects of the biochar amendment may have 

been due to the formation of the soil’s structure from organic materials that usually 

take longer. Brodowski et al. (2006), reported that a long-term study could establish 

that the soils were achieving stability through the formation of micro-aggregates. The 

researchers speculated that black carbon could be acting as a cementing agent, 

improving the stability of the soil through the formation of micro-aggregates. This is 

because a larger amount of black carbon was found in the < 53 µm soil fraction than 

the > 2 mm one, in a field experiment lasting approximately 25 to 85 years.  
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Furthermore, results from the current study were also in line with the findings from 

another study (Peng et al., 2011). The researchers did not find any effect of biochar 

amendment on soil aggregation. However, Herath et al. (2013) reported that adding 

biochar to an Alfisol and an Andisol significantly increased the stability of soils. They 

argued that the soil aggregation improved due to the increase in polysaccharides 

produced by fungi that could bind the soils’ aggregates. The results also indicated that 

biochar produced in high temperatures in the Typic Fragiaqualf was more stable than 

biochar produced in low temperatures in the Typic Hapludand. However, the 

mechanisms of how different temperatures affect aggregate stability remained 

unravelled. 

 

5.5 Conclusion 

The following conclusions can be drawn from this chapter: 

 Amending soil with 2% of fresh and aged biochars showed some small 

positive effects on the soils studied.  

 The effects vary depending on the biochars and the soil types.  

 The aged biochar amendment had a minor effect on the mineralization of 
14

C 

glucose to CO2 in grassland and loamy soils. 

 No significant difference was observed in sandy soil in relation to biochar 

amendment. Due to the low content of the initial C in sandy soil, might 

contribute to the least effects of the mineralization of 
14

C glucose and 
14

C 

biomass uptake.  

 Adding biochars to soil significantly increased carbon in all soils studied.  



115 
 

 The leaching results showed that biochars could adsorb nutrients depending on 

the types of nutrients. Biochars can hold slightly better ammonium than nitrate 

and phosphate, but even released more nitrate and phosphate in the solution.  

 Biochar treatments increased soil pH and had some effect on the CEC, whilst 

only the aged biochar increased the CEC of soils at certain time points. 

 Biochar had limited effect on soil aggregate stability.  
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CHAPTER 6 

 

The Effect of Biochar Particle Size and Application Rate on Soil Functioning in 

Two Soils of Contrasting Fertility 

 

6.1 Introduction  

Biochar has been viewed by many authors as a soil conditioner. As well as improving 

soil properties, such as water retention (Karer et al., 2013), cation exchange capacity 

(Liang et al., 2006) and soil carbon and pH (Uzoma et al., 2011; Cornelissen et al., 

2013), it also reduces nutrient leaching (Angst et al., 2013). The addition of biochar to 

soil affects the biological aspects of the soils. For example, increases and decreases in 

the abundance and activity of microorganisms are dependent on the release or sorption 

of organic molecules from the biochar (Lehmann et al., 2011). In addition, biochar 

can also influence the abundance of mycorrhizal, thus enhancing the uptake of 

nutrients by plants (Warnock et al., 2007). However, biochar in this study (Chapters 4 

and 5) and others (Jones et al., 2012; Quilliam et al., 2012; Karer et al., 2013) has not 

been as effective. A number of reasons for the ineffectiveness of biochar have been 

suggested: 1) the presence of organic contaminants and heavy metals in biochar 

(Bridle and Pritchard, 2004; Chan and Xu, 2009; Wisnubroto et al., 2011), 2) the 

recalcitrant C in biochar resists microbial decomposition (Quilliam et al., 2013a), 3) 

the different feedstock and production of biochar, and 4) the types of soil. There is 

also some evidence that biochar has a greater effect in less fertile soils (Kolb et al., 

2009; Jones et al., 2012; Anders et al., 2013).  
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The results from the previous chapters (Chapters 4 and 5) show that adding 2% of 

biochar by weight in the tropical and temperate soils increased the soil carbon and pH 

and reduced ammonium leaching. However, biochar had little effect on cation 

exchange capacity (Novak et al., 2009; Méndez et al., 2012; Kloss et al., 2014), 

inconsistent effect on nitrate and phosphate leaching (Alling et al., 2014); and had no 

effect on aggregate stability (Peng et al., 2011), or nitrogen (Jones et al., 2012; Wang 

et al., 2015a) and phosphate content in the soil. Nor did it affect the microbial biomass 

(Bruun et al., 2008; Dempster et al., 2010; Zhang et al., 2014a) or 
14

C glucose 

mineralization (Zhang et al., 2014a). Possible explanations are that the particle size of 

biochar used was too coarse (Sigua et al., 2014) (< 2mm and < 5mm) and the 

application rate was low (2%) (Quilliam et al., 2012). Insufficient surface area and 

lower application rate may explain the lack of positive results obtained from the 

previous chapters. Therefore, to explore this further in this chapter, the effects of 

particle size and application rates of biochar on intensive arable and extensive 

grassland soils are considered further by looking at various particle sizes (2mm, 1mm, 

0.5mm and 0.1mm) and application rates (2% and 5%). The parameters used to 

examine the effectiveness of biochar are based on the most significant results from the 

previous findings, for example soil pH, carbon and nutrient leaching, as mentioned 

earlier. Although the findings from Chapters 4 and 5 also indicate that the biochar had 

a very limited effect on the biological properties, other authors did find an effect 

(Kolb et al., 2009; Lehmann et al., 2011; Zhang et al., 2014b). Therefore, in this 

chapter the effect of biochar on the biological properties was tested again to examine 

whether the addition of biochar with larger surface areas would give a different result 

for the soils.  
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This chapter tests the hypotheses that: 1) biochar will make a greater improvement to 

the biological and chemical properties of the nutrient poor soil than the nutrient rich 

soil, 2) biochar with a smaller particles size will retain more nutrients than the larger 

particles size, and 3) a higher application rate of biochar will improve the fertility of 

both soils than a lower application rate.  

 

It is expected that biochar addition will benefit nutrient poor soil, because Cornelissen 

et al. (2013) found that biochar increased the nutrient and water retention in the soil 

with the lowest fertility. In addition, Jay et al. (2015) found that adding biochar to 

fertile soil had no effect on the growth of three different crops. The authors speculated 

that well managed fertile soil supplied enough nutrients for the crops. Jones et al. 

(2012) and Quilliam et al. (2012) also stated that biochar often benefits poor quality 

soil. Furthermore, it is expected that ammonium leaching will decrease after the 

addition of finer particles of biochar to the soil. This is because finer biochar particles 

will have large surface areas.   

 

6.2 Materials and methods 

In this study, two Brown Earths soils with same classification, as well as parent 

material from Penrith, Cumbria were used. They were chosen to represent different 

levels of management and contrasting nutrient status. The first soil was from an area 

of agriculture that contained an oil seed rape crop, which was well managed and 

fertile. The second soil used in this study was taken from extensive grassland, which 

was unmanaged and unfertilized (for at least 50 years). This soil is also known to be 

nutrient poor soil. Both soils had the same texture, which was sandy clay loam. 
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The soils were collected from the field at a depth of approximately 10 – 15cm. In the 

laboratory, the soils were sieved through a 5mm mesh, and mixed with 2% and 5% of 

HW biochar by weight. The HW biochar particle sizes used were 2mm, 1mm, 0.5mm 

and 0.1mm. Soils without HW biochar addition acted as a control. All of the samples 

were kept in jars and incubated for 30 days. Finally, prior to the analysis, the soils 

were dried out and sieved using a 2mm mesh to provide soil aggregate suitable for the 

soil analysis (Kandeler, 2007). The physical and chemical properties of the soils are 

displayed in Table 6.1.  

 

Table 6.1 Physical and chemical properties of two soils used in the study. 

Soils  Fertilized Unfertilized 

 Clay 28.29 28.12 

% Silt 11.96 9.00 

% Sand 59.75 62.88 

Texture Sandy Clay Loam Sandy Clay Loam 

% Carbon 2.14 3.40 

% Nitrogen 0.19 0.19 

C/N Ratio 11.26 17.89 

pH 6.16 6.15 

 

The experiments were divided into two parts, in order to examine the biological and 

chemical properties of the soils. Details of all of the methodologies can be found in 

Sections 3.3.1-15. With regard to the biological effects, the methodology employed to 

carry out the experiments was substrate induced respiration, whereby 3 mM of 

glucose solution (10ml) was added to the soil samples, which had a radioactivity of 

1051 Bq on days 0 and 30 (incubation time). For fumigation and non-fumigation 

extraction 0.5 M potassium sulphate was used. C-14 glucose associated activity 
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remaining in soil was determined via combustion (3 minutes) on a sample oxidiser, 

(Packard, Model 307).  

 

With regard to the chemical properties, the total carbon (C) and nitrogen (N) were 

determined by dry combustion and measured with an elemental analyser (Elementar 

Vario EL). The ammonium, phosphate and nitrate concentration in the soil leachate 

were measured with a Bran + Luebbe autoanalyser 3. pH was measured using a pH 

meter, model PHM 220, calibrated using buffers pH 7.0 and 4.0. The soil moisture 

content was determined through oven drying at 105
O
C for 24h and particle size 

analysis was determined by the hydrometer method.  

 

For the statistical analyses, the mean values of maximum rate, 
14

C mineralization, 
14

C 

biomass, total carbon, total nitrogen, phosphate and nutrients concentration in the 

leachate between the treatments, sorted by incubation day, were tested using a one-

way analysis of variance (ANOVA) with a P<0.05 level of significance. Multiple 

mean comparisons were carried out using a Holm-Sidek procedure at P<0.05. For 

values that were not normally distributed, a non-parametric statistical test (Kruskal-

Wallis) based on ranks was used. In addition, the Tukey test was applied to determine 

the significant differences between the treatments for non-distributed values at the 

P<0.05 level.  A two-way analysis of variance (ANOVA) was performed to test the 

significant difference for all the parameters over time and between the soils 

treatments. All of the statistical tests were performed using the SigmaStat v3.5 (Systat 

Software Inc), apart from the two-way analysis of variance (ANOVA), which was 

conducted in Microsoft Excel. 
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6.3 Results and Discussion 

 

6.3.1 Mineralization of 
14

C glucose to 
14

CO2 and uptake of 
14

C glucose into 

microbial biomass 

The extents of mineralization of 
14

C glucose in the fertilized soil was low over the 30 

day incubation period (Table 6.2). This results contrasted with the findings of the 

previous chapters (Chapters 4 and 5) where the extents of mineralization of 
14

C 

glucose was higher during the study period. The maximum rate of mineralization did 

not show a consistent trend at any time. Overall, the greatest value of the maximum 

rate of mineralization was observed on day 0 with a 5% application rate and at 1mm 

particle size of biochar (1.20% h
-1

 ± 0.19) (P<0.05), as displayed in Table 6.2. The 

lowest value of the maximum rate of mineralization was observed on day 0 with the 

same application rates and size of biochar (5%, 0.1mm) (Table 6.2). The maximum 

rates in control, 2mm and 1mm treatments at 5% application rate were also 

significantly higher (P<0.05) than the 0.1mm particle size of biochar at similar rate 

(Table 6.2) on day 0. No significant difference in the maximum rates was found on 

day 30 (P>0.05). 

 

Amending the fertilized soil with 2% of HW biochar in different particle sizes also 

had no significant effect (P>0.05) compared with the higher application rate of HW 

biochar at any time. However, the finest particle size (0.1mm) significantly increased 

(P<0.05) the mineralization of 
14

C glucose at the 5% application rate on the last day of 

incubation, as shown in Table 6.2.  For the 
14

C uptake into the microbial biomass, the 

results show that at both application rates (2% and 5%) biochar decreased the 

microbial biomass (P<0.05) compared with the untreated soil at all times (Table 6.2). 
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Even though the biomass at 2mm size on day 30 higher than other treatments, 

however it was not significantly different (P>0.05). 

 

Table 6.2 Maximum rate (% h
-1

), 
14

C extent of mineralization (%), 
14

C biomass uptake 

(%) and 
14

C activity remaining (%) for the fertilized soil, over 30 d. Error bars are 

SEM (n=3). 

Treatment Day Maximum 

rate 

(% h
-1

) 

14
C extents 

mineralization 

(%) 

14
C biomass 

uptake (%) 

fixed kEC 

14
C activity 

remaining in 

soil (%) 

Control 0 1.01 ± 0.10 12.02 ± 1.23 93.22 ± 11.34 0.00 ± 0.00 
 30 0.76 ± 0.12 10.34 ± 0.84 47.67 ± 5.45 37.78 ± 7.78 

2% (2mm) 0 1.05 ± 0.32 11.30 ± 1.18 72.25 ± 6.55 11.61 ± 11.60 
 30 1.10 ± 0.07 12.89 ± 0.96 61.61 ± 12.30 20.33 ± 15.47 

2% (1mm) 0 0.82 ± 0.16 9.80 ± 0.40 73.49 ± 11.18 13.08 ± 13.58 

 30 0.73 ± 0.03 12.78 ± 0.64 39.63 ± 2.23 42.75 ± 6.79 

2% (0.5mm) 0 1.19 ± 0.11 9.66 ± 0.22 45.65 ± 0.86 41.28 ± 3.39 
 30 1.07 ± 0.27 13.77 ± 1.72 46.90 ± 6.51 33.17 ± 11.27 

2% (0.1mm) 0 1.07 ± 0.13 9.68 ± 0.24 48.92 ± 4.70 37.96 ± 7.72 

 30 1.02 ± 0.10 13.79 ± 1.41 43.48 ± 7.70 36.84 ± 8.81 

5% (2mm) 0 0.99 ± 0.08 9.84 ± 0.47 23.54 ± 1.57 62.91 ± 2.33 
 30 0.97 ± 0.18 12.31 ± 1.15 29.04 ± 3.06 53.50 ± 6.80 

5% (1mm) 0 1.20 ± 0.19 9.66 ± 0.18 27.17 ± 4.80 59.80 ± 3.11 
 30 0.86 ± 0.08 13.09 ± 1.13 41.19 ± 2.21 40.33 ± 2.92 

5% (0.5mm) 0 0.76 ± 0.03 8.08 ± 0.22 31.65 ± 7.49 57.39 ± 8.45 
 30 0.82 ± 0.12 13.32 ± 0.5 37.08 ± 4.50 44.70 ± 7.56 

5% (0.1mm) 0 0.47 ± 0.02 7.97 ± 0.94 30.05 ± 2.53 58.47 ± 3.37 
 30 0.85 ± 0.09 16.15 ± 0.52 42.65 ± 2.05 35.35 ± 7.59 

 

Values in bold font indicate significance at P<0.05 

 

The unfertilized soil also exhibited a similar trend to the fertilized soil for the 

mineralization of 
14

C glucose (Table 6.3). In this soil, the percentage of the extent of 

mineralization of 
14

C glucose was generally lower than the 
14

C biomass uptake. The 

results from Table 6.3 also show that the finest particle size (0.1mm) increased the 
14

C 

mineralization of glucose (P<0.05) after 30 d at the higher application rate.  
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The maximum rate of mineralization in the unfertilized soil showed a consistent trend 

where the maximum rate increased over time. For example, the maximum rate of 

mineralization on days 0 and 30 ranged from 0.36 to 0.95 (% h
-1

) and 1.26 to 2.12 (% 

h
-1

), respectively (Table 6.3). Also, the maximum rate in control treatment on day 0 

was significantly higher (P<0.05) than at 5% application rate with 0.1mm particle size 

of biochar (Table 6.3). As in the fertilized soil, the biomass uptake of 
14

C glucose also 

decreased at the 5% application rate of biochar in comparison with the untreated soil 

(P<0.05). No significant effect of the biomass uptake was observed at the lower 

application rate at any time (P>0.05). 

 

Table 6.3 Maximum rate (% h
-1

), 
14

C extent of mineralization (%), 
14

C biomass uptake 

(%) and 
14

C activity remaining (%) for the unfertilized soil, over 30 d. Error bars are 

SEM (n=3). 

Treatment Day Maximum 

rate 

(% h
-1

) 

14
C extents 

mineralization 

(%) 

14
C biomass 

uptake (%) 

fixed kEC 

14
C activity 

remaining in 

soil (%) 

Control 0 0.94 ± 0.15 11.55 ± 0.39 41.20 ± 5.40 43.04 ± 7.20 
 30 1.36 ± 0.08  19.09 ± 1.22 38.31 ± 4.13 35.12 ± 11.47 

2% (2mm) 0 0.79 ± 0.07 10.87 ± 0.59 11.62 ± 2.88 73.35 ± 2.26 
 30 1.26 ± 0.17 22.26 ± 2.06 30.31 ± 3.85 38.14 ± 7.82 

2% (1mm) 0 0.81 ± 0.09 11.65 ± 1.12 13.40 ± 0.97 70.04 ± 5.82 

 30 1.31 ± 0.20 26.04 ± 3.44 24.12 ± 5.61 38.03 ± 17.72 

2% (0.5mm) 0 0.56 ± 0.05 13.39 ± 0.59 14.45 ± 0.27 67.15 ± 5.44 
 30 1.43 ± 0.17 23.43 ± 1.49 36.02 ± 2.44 31.37 ± 11.68 

2% (0.1mm) 0 0.95 ± 0.01 11.98 ± 1.16 13.67 ± 1.43 69.30 ± 4.36 

 30 1.86 ± 0.35 29.75 ± 2.80 23.34 ± 3.45 34.44 ± 15.64 

5% (2mm) 0 0.88 ± 0.06 10.27 ± 1.15 6.05 ± 0.89 79.21 ± 5.73 
 30 2.12 ± 0.01 24.20 ± 0.17 26.80 ± 1.90 40.78 ± 6.83 

5% (1mm) 0 0.74 ± 0.15 12.19 ± 0.51 9.15 ± 4.21 74.13 ± 4.71 
 30 1.95 ± 0.30 22.26 ± 1.01 31.28 ± 2.84 38.12 ± 10.72 

5% (0.5mm) 0 0.63 ± 0.05 11.83 ± 1.49 4.37 ± 1.39  78.49 ± 3.38 
 30 1.86 ± 0.28 25.37 ± 1.26 31.59 ± 1.89 33.44 ± 10.71 

5% (0.1mm) 0 0.36 ± 0.03 11.96 ± 0.09 8.17 ± 1.56 75.79 ± 4.47 
 30 1.51 ± 0.05 30.92 ± 0.73 21.40 ± 1.97 36.70 ± 8.71 

 

Values in bold font indicate significance at P<0.05 
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The results from this study show that, generally, the mineralization and biomass 

uptake of 
14

C glucose in both the fertilized and unfertilized soil indicated no 

significant effect at the 2% biochar application rate, or for the different particle sizes 

of biochar. The results support the previous findings, as reported in Chapter 5 

(temperate study) and also those of other researchers, such as Jones et al. (2012) and 

Quilliam et al. (2012). However, there was a significant effect in mineralization of 
14

C 

glucose at higher application rates of biochar, and also a significant effect of 

mineralization of 
14

C glucose increased over time in two soils studied (P<0.05). These 

results suggest that the effect of biochar amendment showed an increase in microbial 

activity when a higher loading of biochar was applied. Also the effect was observed 

after 30 d of incubation time. The increased carbon mineralization suggests that there 

was a positive priming and degradation of labile carbon fractions of biochar after 

adding biochar to soil (Hamer et al., 2004). Similarly, Quilliam et al. (2012) found 

that after three years of biochar application, there was a significant effect on soil 

quality and microbial growth in the treatments that had received double rates of 

biochar (25+25t ha
-1

 and 50+50t ha
-1

) compared to the treatments that had received 

only a single rate (25t ha
-1

 and 50t ha
-1

) of biochar. The authors demonstrate that 

higher rate biochar applications increase soil nutrients (dissolved organic carbon and 

basic cations), as well as enhancing the soil structure, thereby creating a suitable 

habitat for microbes to grow.  

 

In addition, the findings of this study show that finer particle sizes mineralized more 

14
C glucose than the larger sizes in both soils. The effect was apparent in both soils; 

the extents of mineralization increased significantly in the treatment amended with the 

finest particle size. The results agree with the findings reported by Sigua et al. (2014). 
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In their study, they found that powdered-sized biochar (<0.42mm) increased the 

mineralization rate and amount of CO2 evolution in comparison to the coarser-sized 

biochar (>2mm). The researchers claimed that the huge surface areas of the finer 

particle size accelerated the carbon mineralization (smaller particle sizes are easier for 

the microbes to degrade). 

 

There was a greater increase in the biomass uptake of 
14

C glucose over time (P<0.05) 

in the unfertilized soil. This suggests that biochar amendment with different particle 

sizes at different rates stimulates microbial growth in the unfertilized soil. These 

results are supported by Anders et al. (2013). In their research, the authors observed a 

positive correlation between nutrients and microorganisms especially after adding 

biochar to nutrient poor soils. They suggest that biochar enhances soil quality, thus 

affecting the microbial community in less fertile soil. The authors also highlighted that 

biochar acted as a carbon sink rather than improving the nutrient status in nutrient rich 

soil.  

 

Furthermore, the results revealed that the biomass uptake in the fertilized soil was 

higher than in the unfertilized soil (P<0.01). Different nutrient status between the two 

soils might affect the biomass in these soils. For example, high nutrient content in the 

fertilized soil increased the microbial growth, and this resulted in more biomass 

uptake than mineralization. More nutrients can be derived from the crop and 

additional nutrients (fertilizer supply) in the fertilized soil are among the reasons for 

microbial growth in this soil. Conversely, low nutrient content in unfertilized soil is 

subject to decreased microbial biomass uptake and a higher mineralization rate 

compared with fertilized soil. In unfertilized soil, the limited source of nutrients (the 
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soil has not received any fertilizer for at least 50 years) restricts the microbial growth 

in the soil. The differences between the biomass uptakes was due to the nutrient 

availability, which affects the biomass in these two soil systems. This explanation is 

supported by Zhang et al. (2014b), who report that a limited nutrient supply and 

available C content in a coarse-textured soil create an unfavourable environment for 

microbial growth.  

 

6.3.2 Ammonium, nitrate and phosphate leaching in fertilized and unfertilized 

soils 

The concentration of ammonium in the fertilized soil leachate was very low (0.00 to 

0.07mg/L). During the first leaching event (day 0), the concentration of ammonium in 

the fertilized soil leachate for the control treatment was high. However, the 

concentration of ammonium during the second leaching event (day 30) was reduced in 

all of the treatments. No significant difference was observed among the treatments 

(Table 6.4).  

 

In the unfertilized soil, the concentration of ammonium leaching was low. The effect 

of particle size on the leaching could be observed only in the 1mm and 0.1mm particle 

sizes of biochar. At these sizes, the incorporation of biochar into soil decreased the 

ammonium leaching (P<0.05) compared to the 2mm particle size at the 2% 

application rate from 0.03 ± 0.003mg/L to nil (day 0) (Table 6.4). For the second 

leaching event (day 30), the leaching of ammonium was very low and no significant 

difference was observed either in the application rate or in the particle sizes (Table 

6.4). 
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The concentration of nitrate was higher than ammonium in the leachate of the 

fertilized soil (Table 6.5). The incorporation of biochar into fertilized soil affected the 

nitrate leaching only at the beginning of the leaching process. For example, the 

concentration of nitrate at the 5% application rate with the finest particle size (0.1mm) 

significantly increased was on day 0, but at the end of the leaching process (day 30) 

biochar had no effect on the nitrate leaching in this soil (Table 6.5). Moreover, soil 

amended with 2% and 5% HW biochar and with different particle sizes also had no 

effect on the phosphate leaching at any time (Table 6.6).  

 

For the unfertilized soil, there was also a significant difference in nitrate leaching 

between the soils at the 5% application rate of biochar (Table 6.5). The smallest 

particle size (0.1mm) increased the concentration of nitrate (P<0.05) in the soil 

leachate, whereas the larger particle sizes had no effect on the nitrate leaching in this 

soil during the first leaching event (Table 6.5). However, during the second leaching 

event, soil amended with (2mm, 1mm and 0.5mm) biochar decreased the 

concentration of nitrate at the 5% application rate compared to the control treatment 

(Table 6.5).  

 

Phosphate leaching in unfertilized soil exhibited the same trend as in the fertilized 

soil, where biochar had no effect either on the application rates or the particle sizes at 

any time (Table 6.6). 
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Table 6.4 Ammonium leaching amount, over 30 d in fertilized and unfertilized soils. Error bars are SEM (n=2). 

Variable Treatments Fertilized  

Day 0 (mg/L) 

Fertilized Day 

30 (mg/L) 

Difference Unfertilized 

Day 0   (mg/L) 

Unfertilized 

Day 30 (mg/L) 

Difference 

Ammonium  Control 0.07 ± 0.05 0.00 ± 0.00 0.07 0.008 ± 0.008 0.00 ± 0.00 0.008 

Leaching 2% (2mm) 0.00 ± 0.00 0.00 ± 0.00 0.00 0.03 ± 0.003 0.01 ± 0.01 0.02 

 2% (1mm) 0.00 ± 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 

 2% (0.5mm) 0.00 ± 0.00 0.00 ± 0.00 0.00 0.003 ± 0.003 0.00 ± 0.00 0.003 

 2% (0.1mm) 0.00 ± 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 

Variable Treatments Fertilized  

Day 0 (mg/L) 

Fertilized Day 

30 (mg/L) 

Difference Unfertilized 

Day 0   (mg/L) 

Unfertilized 

Day 30 (mg/L) 

Difference 

Ammonium  Control 0.07 ± 0.05 0.00 ± 0.00 0.07 0.008 ± 0.008 0.00 ± 0.00 0.008 

Leaching 5% (2mm) 0.00 ± 0.00 0.001 ± 0.00 -0.001 0.00 ± 0.00 0.01 ± 0.01 -0.01 

 5% (1mm) 0.00 ± 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 

 5% (0.5mm) 0.00 ± 0.00 0.00 ± 0.00 0.00 0.006 ± 0.006 0.00 ± 0.00 0.006 

 5% (0.1mm) 0.00 ± 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 

 

Values in bold font indicate significance at P<0.05 
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Table 6.5 Nitrate leaching amount, over 30 d in fertilized and unfertilized soils. Error bars are SEM (n=2). 

Variable Treatments Fertilized  

Day 0 (mg/L) 

Fertilized Day 

30 (mg/L) 

Difference Unfertilized 

Day 0   (mg/L) 

Unfertilized 

Day 30 (mg/L) 

Difference 

Nitrate  Control 19.70 ± 0.45 15.92 ± 2.42 3.78 11.48 ± 0.63 15.04 ± 0.92 -3.56 

Leaching 2% (2mm) 16.60 ± 3.50 15.81 ± 2.54 0.79 12.08 ± 0.88 7.04 ± 4.58 5.04 

 2% (1mm) 16.28 ± 0.33 9.72 ± 4.36 6.56 10.45 ± 0.30 9.38 ± 0.11 1.07 

 2% (0.5mm) 17.70 ± 0.55 5.29 ± 2.87 12.41 10.48 ± 0.63 12.11 ± 2.93 -1.63 

 2% (0.1mm) 18.83 ± 0.88 4.47 ± 0.76 14.36 10.90 ± 0.05 8.03 ± 0.54 2.87 

Variable Treatments Fertilized  

Day 0 (mg/L) 

Fertilized Day 

30 (mg/L) 

Difference Unfertilized 

Day 0   (mg/L) 

Unfertilized 

Day 30 (mg/L) 

Difference 

Nitrate  Control 19.70 ± 0.45 15.92 ± 2.42 3.78 11.48 ± 0.63 15.04 ± 0.92 -3.56 

Leaching 5% (2mm) 17.53 ± 2.63 17.11 ± 6.01 0.42 10.83 ± 0.08 4.88 ± 0.20 5.95 

 5% (1mm) 11.55 ± 1.60 22.08 ± 3.64 -10.53 9.28 ± 0.43 3.66 ± 0.62 5.62 

 5% (0.5mm) 15.30 ± 1.15 14.15 ± 2.34 1.15 9.63 ± 0.73 2.18 ± 0.12 7.45 

 5% (0.1mm) 22.30 ± 1.75 6.00 ± 3.47 16.3 12.53 ± 0.13 5.25 ± 0.37 7.28 

 

Values in bold font indicate significance at P<0.05 
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Table 6.6 Phosphate leaching amount over 30 d in fertilised and unfertilised soils. Error bars are SEM (n=2). 

Variable Treatments Fertilized  

Day 0 (mg/L) 

Fertilized Day 

30 (mg/L) 

Difference Unfertilized 

Day 0   (mg/L) 

Unfertilized 

Day 30 (mg/L) 

Difference 

Phosphate Control 0.36 ± 0.07 0.30 ± 0.02 0.06 0.04 ± 0.02 0.23 ± 0.03 -0.19 

Leaching 2% (2mm) 0.26 ± 0.03 0.29 ± 0.005 -0.03 0.05 ± 0.004 0.20 ± 0.005 -0.15 

 2% (1mm) 0.29 ± 0.01 0.29 ± 0.001 0.00 0.05 ± 0.007 0.20 ± 0.003 -0.15 

 2% (0.5mm) 0.29 ± 0.05 0.35 ± 0.06 -0.06 0.04 ± 0.006 0.21 ± 0.01 -0.17 

 2% (0.1mm) 0.28 ± 0.001 0.31 ± 0.01 -0.03 0.07 ± 0.002 0.21 ± 0.003 -0.14 

Variable Treatments Fertilized  

Day 0 (mg/L) 

Fertilized Day 

30 (mg/L) 

Difference Unfertilized 

Day 0   (mg/L) 

Unfertilized 

Day 30 (mg/L) 

Difference 

Phosphate Control 0.36 ± 0.07 0.30 ± 0.02 0.06 0.04 ± 0.02 0.23 ± 0.03 -0.19 

Leaching 5% (2mm) 0.28 ± 0.04 0.29 ± 0.01 -0.01 0.04 ± 0.02 0.20 ± 0.001 -0.16 

 5% (1mm) 0.27 ± 0.02 0.31 ± 0.01 -0.04 0.03 ± 0.03 0.20 ± 0.001 -0.17 

 5% (0.5mm) 0.22 ± 0.02 0.35 ± 0.03 -0.13 0.04 ± 0.004 0.21 ± 0.002 -0.17 

 5% (0.1mm) 0.19 ± 0.03 0.32 ± 0.001 -0.13 0.13 ± 0.04 0.21 ± 0.004 -0.08 
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The leaching process reduced the amount of ammonium in the leachate in all of the 

soils studied. The results were in agreement with the leaching data from the previous 

chapters (Chapters 4 and 5) and also from other studies (Singh et al. (2010); Yao et 

al., 2012). In the present study, the concentration of ammonium in the control 

treatment was higher than in the biochar treatments. In the fertilized soil, for example, 

the concentration of ammonium in the control was 0.07 mg/L and nil for the other 

treatments (Table 6.4). In the unfertilized soil, adding 1mm and 0.1mm particle sizes 

at the 2% application rate decreased the ammonium significantly (P<0.05) (Table 6.4). 

This suggests that biochar can retain ammonium ion in the soil columns. The presence 

of acid functional groups on the biochar’s surface enables positively charged cations 

to attach to its surfaces (Ding et al., 2010; Zheng et al., 2013; Alling et al., 2014). 

During the final leaching process (day 30) the concentration of ammonium was also 

low in all of the treatments and soils. This suggests that either biochar still holds the 

ammonium ion or a nitrification process may have occurred; therefore less ammonium 

was leached from the soil columns. 

 

However, the addition of biochar to soil had a minimum effect on the nitrate leaching 

in both of the soils (Table 6.5). The pattern of leaching was also different depending 

on the soil types and particle sizes. For example, in both the fertilized and unfertilized 

soils, the incorporation of 0.1mm biochar at the 5% application rate increased nitrate 

leaching. But the concentration of nitrate in the leachate of the unfertilized soil was 

significantly decreased (P<0.05) during the second leaching event with the particle 

sizes of 2mm, 1mm and 0.5mm at the 5% application rate (Table 6.5).  
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The increase in nitrate in the leachate may be because of the nitrification process that 

occurred in the soil. This is because the concentration of ammonium in the soil’s 

leachate reduced considerably, and on the other hand the nitrate in the leachate was 

increased as shown in Tables 6.4 and 6.5. The increasing of nitrate concentration in 

the solutions suggests that ammonium is converted to nitrate. Adding biochar to soil 

enhances microbial activity, and accelerates nitrification in soil (DeLuca et al., 2006; 

Warnock et al., 2007; Laird et al., 2009). In addition, the ability of biochar adsorb 

organic compounds is also influences the nitrification process (DeLuca et al., 2002; 

Berglund et al., 2004). Biochar may reduce the presence of elements that inhibit 

nitrification by adsorbing organic compounds, such as phenolic (White, 1994; DeLuca 

et al., 2006; Warnock et al., 2007), as well as reducing the presence of C compounds 

that might stimulate immobilization (Fierer et al., 2001; Castells et al., 2003).  

 

This finding is in line with Alling et al. (2014), who claim that the nitrate 

concentration increased at the 5% and 10% application rates because of the 

nitrification process that took place in the soil, as well as the release of nutrients from 

the biochar itself. An additional reason for the increase in nitrate in the leachate may 

be due to the repellence of negative charges sites of biochar therefore, resulted in an 

increase of nitrate concentration in the leachate. However, biochar reduced nitrate 

leaching in the unfertilized soil during the final leaching process and this result was in 

agreement with other researchers (Knowles et al., 2011; Zheng et al., 2013). In their 

studies, the authors did not identify the mechanisms of how the biochar reduced 

nitrate leaching. The effect of biochar was also not consistent between the two soils, it 

reduced nitrate leaching in unfertilized soil, but had no effect on the fertilized soil. 

The reason biochar increased and decreased nitrate leaching in different type of soils 
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is unclear. One possible explanation on the ability of biochar reduce nitrate leaching is 

that the adsorption of nitrate to basic functional groups of biochar (Scott et al., 2014), 

such as chromenes and pyrenes (Amonette and Joseph, 2009). Moreover, biochar used 

in this study was produced at high temperature (400
O
C). According to Guo and 

Rockstraw (2007) the loss of acid functional groups starts at 400
O
C and basic 

functional groups increase as the pyrolysis temperature increases (Chun et al., 2004). 

Thus, the ability of biochar adsorb of nitrate in the soil’s leachate may be related with 

the temperature used to produce biochar. 

 

There was no effect on the leaching of phosphate in any of the soils studied (Table 

6.6). Amending soils with different particle sizes of biochar and at different rates 

exhibited no differences among the treatments (see Table 6.6). This result is supported 

by Alling et al. (2014), who found that amending soil with biochar made no difference 

compared with soil alone. In contrast with these findings, Yao et al. (2012) found that 

adding biochar to soil increased the phosphate in the leachate. The limited effect of 

biochar in reducing phosphate leaching is possibly because of the low anion exchange 

capacity (Singh et al., 2010). 

 

6.3.4 Soil pH, total carbon and total nitrogen in fertilized soil and unfertilized 

soils 

Amending soils with 2% and 5% HW biochar with different particle sizes increased 

the pH significantly (P<0.05) in all of the soils at all times (Table 6.7). The finest 

particle sizes (0.5 and 0.1mm) had the highest soil pH (P<0.05) compared to the 

coarser sizes (2mm and 1mm) and the control (Table 6.7).  
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The C content in both of the soils showed a similar pattern when adding 2% and 5% 

biochar to soil. In terms of the effects of the particle sizes in both soils, the smaller 

particle sizes (1mm, 0.5mm and 0.1mm) increased the C significantly (P<0.05) 

compared to the larger particle sizes (2mm), as well as the control treatment (Table 

6.8). The contrasting C content between the smaller and larger particle sizes of 

biochar when adding the same amount of C to soil was probably due to the sampling 

error (unrepresentative sample while measuring C from the larger particle sizes of 

biochar). 

 

Unlike pH and C, N content in the fertilized and unfertilized soils showed a different 

trend. For example, the N content in the unfertilized soil was significantly higher 

(P<0.05) than in the fertilized soil. Also, the N content in both soils reduced 

significantly (P<0.05) after 30 d incubation time (Table 6.9). 
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Table 6.7 Soil pH in fertilized and unfertilized soils, over 30 d. Error bars are SEM (n=3) 

Variable Treatments Fertilized 

Day 0  

Fertilized 

Day 30  

Difference Unfertilized 

Day 0 

Unfertilized 

Day 30 

Difference 

Soil pH Control 6.16 ± 0.02 5.92 ± 0.04 0.24 6.15 ± 0.02 5.91 ± 0.01 0.24 

 2% (2mm) 6.22 ± 0.01 6.11 ± 0.02 0.11 6.19 ± 0.02 6.03 ± 0.02 0.16 

 2% (1mm) 6.25 ± 0.04 6.28 ± 0.04 -0.03 6.53 ± 0.02 6.29 ± 0.04 0.24 

 2% (0.5mm) 6.57 ± 0.02 6.51 ± 0.01 0.06 6.80 ± 0.03 6.39 ± 0.01 0.41 

 2% (0.1mm) 6.89 ± 0.02 6.71 ± 0.03 0.18 6.98 ± 0.04 6.60 ± 0.01 0.38 

Variable Treatments Fertilized 

Day 0  

Fertilized 

Day 30  

Difference Unfertilized 

Day 0 

Unfertilized 

Day 30 

Difference 

Soil pH Control 6.16 ± 0.02 5.92 ± 0.04 0.24 6.15 ± 0.02 5.91 ± 0.01 0.24 

 5% (2mm) 6.31 ± 0.03 6.34 ± 0.03 -0.03 6.31 ± 0.02 6.36 ± 0.05 -0.05 

 5% (1mm) 6.64 ± 0.05 6.66 ± 0.02 -0.02 6.86 ± 0.04 6.57 ± 0.01 0.29 

 5% (0.5mm) 6.95 ± 0.01 7.06 ± 0.02 -0.11 7.16 ± 0.05 6.99 ± 0.02 0.17 

 5% (0.1mm) 7.35 ± 0.03 7.52 ± 0.08 -0.17 7.48 ± 0.06 7.44 ± 0.04 0.04 

 

Values in bold font indicate significance at P<0.05 
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Table 6.8 Total carbon in fertilized and unfertilized soils, over 30 d. Error bars are SEM (n=2) 

Variable Treatments Fertilized 

Day 0  

Fertilized 

Day 30  

Difference Unfertilized 

Day 0 

Unfertilized 

Day 30 

Difference 

Total C (%) Control 2.14 ± 0.03 1.94 ± 0.03 0.2 3.40 ± 0.03 3.25 ± 0.10 0.15 

 2% (2mm) 2.65 ± 0.14 2.12 ± 0.06 0.53 4.34 ± 0.24 3.89 ± 0.15 0.45 

 2% (1mm) 4.20 ± 0.24 3.50 ± 0.35 0.7 5.34 ± 0.61 4.29 ± 0.29 1.05 

 2% (0.5mm) 4.37 ± 0.09 3.44 ± 0.14 0.93 5.54 ± 0.22 4.70 ± 0.20 0.84 

 2% (0.1mm) 3.79 ± 0.29 4.06 ± 0.22 -0.27 4.92 ± 0.11 5.14 ± 0.14 -0.22 

Variable Treatments Fertilized 

Day 0  

Fertilized 

Day 30  

Difference Unfertilized 

Day 0 

Unfertilized 

Day 30 

Difference 

Total C (%) Control 2.14 ± 0.03 1.94 ± 0.03 0.2 3.40 ± 0.03 3.25 ± 0.10 0.15 

 5% (2mm) 2.73 ± 0.07 2.45 ± 0.16 0.28 5.73 ± 0.15 4.23 ± 0.09 1.50 

 5% (1mm) 7.05 ± 0.87 5.09 ± 0.24 1.96 7.72 ± 0.71 6.37 ± 0.57 1.35 

 5% (0.5mm) 6.64 ± 0.17 6.60 ± 0.10 0.04 7.47 ± 0.39 7.61 ± 0.49 -0.14 

 5% (0.1mm) 5.77 ± 0.46 6.71 ± 0.41 -0.94 7.10 ± 0.40 7.87 ± 0.36 -0.77 

 

Values in bold font indicate significance at P<0.05 
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Table 6.9 Total nitrogen in fertilized and unfertilized soils, over 30 d. Error bars are SEM (n=3). 

Variable Treatments Fertilized 

Day 0  

Fertilized 

Day 30  

Difference Unfertilized 

Day 0 

Unfertilized 

Day 30 

Difference 

Total N (%) Control 0.19 ± 0.002 0.17 ± 0.02 0.02 0.19 ± 0.003 0.17 ± 0.021 0.02 

 2% (2mm) 0.19 ± 0.010 0.13 ± 0.005 0.06 0.23 ± 0.012 0.19 ± 0.012 0.04 

 2% (1mm) 0.17 ± 0.001 0.12 ± 0.001 0.05 0.21 ± 0.012 0.18 ± 0.022 0.03 

 2% (0.5mm) 0.17 ± 0.012 0.10 ± 0.06 0.07 0.21 ± 0.006 0.19 ± 0.012 0.02 

 2% (0.1mm) 0.13 ± 0.008 0.08 ± 0.01 0.05 0.22 ± 0.003 0.19 ± 0.001 0.03 

Variable Treatments Fertilized 

Day 0  

Fertilized 

Day 30  

Difference Unfertilized 

Day 0 

Unfertilized 

Day 30 

Difference 

Total N (%) Control 0.19 ± 0.002 0.17 ± 0.02 0.02 0.19 ± 0.003 0.17 ± 0.021 0.02 

 5% (2mm) 0.12 ± 0.006 0.07 ± 0.01 0.05 0.28 ± 0.024 0.19 ± 0.006 0.09 

 5% (1mm) 0.15 ± 0.005 0.07 ± 0.01 0.08 0.29 ± 0.001 0.22 ± 0.026 0.07 

 5% (0.5mm) 0.14 ± 0.009 0.10 ± 0.03 0.04 0.29 ± 0.021 0.19 ± 0.011 0.10 

 5% (0.1mm) 0.13 ± 0.008 0.09 ± 0.001 0.04 0.26 ± 0.008 0.17 ± 0.008 0.09 

 

Values in bold font indicate significance at P<0.05 
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The biochar used in this study had a high pH (9.05). Therefore the addition of biochar 

to the fertilized and unfertilized soils increased the soil pH significantly (P<0.05). The 

results also showed that finer particles sizes with a greater application rate had the 

highest pH compared with other treatments (P<0.05). The finer particle size has a 

huge surface area, and thus there is more contact between the biochar particles and the 

soil solution, which increased the pH more than when using the coarser sizes. The pH 

in the fertilized soil increased after 30 days of incubation, especially in the treatments 

with the smaller sizes of biochar. Even though biochar increased the pH, on day 30 the 

pH reduced, especially in the unfertilized soil. This result agrees with the previous 

study, where the highest rate of biochar decreased the soil pH from 7.8 to 7.6 (Inal et 

al., 2015). The authors claimed that the oxidation process of biochar releases acid 

functional groups, therefore reducing the soil pH.  

 

Similar trends were also observed for the C content in the soil. Amending soils with 

biochar to the fertilized and unfertilized soils increased the C. However on the last 

incubation day (day 30), the C content decreased. Several studies reported 

considerable losses of biochar C in soils only a few years after the biochar application 

(Tagoe et al., 2008; Lehmann et al., 2009). This is due to the slow abiotic oxidation in 

soil and biochar will eventually be degraded (Cheng et al., 2008). An increase in C 

after biochar addition was also reported in Wang et al. (2015a). According to the 

authors, biochar increased the C compared to the control treatment. The recalcitrant of 

C in the biochar is one of the characteristics of biochar, which can sequester C in the 

soil longer (Kuzyakov et al., 2009; Wang et al., 2015b).  
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The results from the current study also showed that, the C and N content in the 

unfertilized soil was higher than in the fertilized soil (Tables 6.8 and 6.9). Legume 

plants that were found while sampling the soil might have contributed the organic C 

and N in that soil. This findings supported by De Deyn et al. (2009) who reported that 

the presence of legume species in grassland (L. corniculatus and T. repens) increased 

carbon and nitrogen storage in the soil. Moreover, massive earthworms were also 

found in the unfertilized soil during the soil sampling. The presence of living things 

may add organic material to the soil, thus increasing the C and N content. In contrast 

with this finding, Jones et al. (2012) and Wang et al. (2015a) observed that biochar 

application made no significant difference to the total N in the soil. Furthermore, 

adding biochar to the soil decreased the total N in both soils (Table 6.9). The 

reduction of total N in the soil may be attributed to the denitrification process that 

occurred in the soils during the incubation time. The soil samples were kept in sealed 

jars, and this could have perhaps created an anaerobic environment, possibly reducing 

nitrate to nitrogen gas.  

 

6.4 Conclusion 

Overall, amending soils with biochar had a significant effect on the microbial activity 

in both the fertilized and unfertilized soils. In this study, finer biochar stimulated the 

mineralization of 
14

C glucose at a high application rate in both soils after 30 d of 

incubation. Furthermore, biochar adsorbed ammonium in the soil leachate, but only 

the 5% application rate of the biochar reduced nitrate leaching at the second leaching 

event in the unfertilized soil. No significant effects were observed with regard to the 

phosphate leaching either of the soils at any time. Finer particle sizes were also shown 

to increase the pH of the soil in both the fertilized and unfertilized soils. At higher 
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application rates of biochar, the pH and C increased compared to the lower application 

rates. The results supported the hypotheses that finer particles sizes, as well as higher 

application rates, give a more prominent effect than coarser particle sizes and the 

lower application rate of biochar. In terms of the differences in the nutrient status of 

the soils, biochar application had a different impact on the soils study, for example, 

the contrasting effects that could be seen when the microbial growth in the unfertilized 

soil increased over time, compared to the lack of effect of microbial growth in 

fertilized soil.  
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CHAPTER 7 

 

Biochar in Amended Soils: A Comparison between the Tropics and the 

Temperate Regions 

 

7.1 Introduction  

Previous research has shown that the effectiveness of biochar is dependent on various 

factors (Downie et al., 2009; Scott et al., 2014), which include: 1) the feedstock and 

method used to produce the biochar 2) the soil type used to apply the biochar and 3) 

the climate. The method used, for instance slow or fast pyrolysis (Scott et al., 2014), 

as well as the temperature used to produce the biochar also influence the end product. 

In addition, soils have their own contrasting characteristics, in which all of these 

factors are dependent on the association of the mineral and the organic matter (Brady 

and Weil, 2008). According to Kolb et al. (2009) and Kloss et al. (2014) biochar 

demonstrates positive effects on soil, but the effects are dependent on the type of the 

soil. 

 

Tropical soils are old, dominated with 1:1 clay minerals, have more variable charge, 

are reddish in colour and highly weathered (Ishak and Jusop, 2010). High rainfall and 

temperature accelerate the weathering process in the tropics, and also enhance 

mineralization of organic matter in the soils (Tiessen et al., 1994; Hashim and Wan 

Abdullah, 2001; Haruna et al., 2012). Because of these characteristics, tropical soils 

are often infertile and less productive. Furthermore, typical tropical soils are acidic, 

have lower CEC and lower bases due to the process of weathering; as a result, Al and 

Fe are released into the soil solution (Cornelissen et al., 2013; Alling et al., 2014; 
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Kloss et al., 2014). With low pH, the exchangeable Al and Fe are high and can cause 

Al toxicity in the plants. Unlike tropical soils, temperate soils are younger and 

dominated with 2:1 clay minerals, are less variable in charge, and are more resistant to 

physical and chemical weathering (Ishak and Jusop, 2010). On the other hand, 

temperate soils are fertile and Al toxicity is unlikely to occur in this soil. This is 

because temperate soils have higher pH and higher soil organic matter content (Kloss 

et al., 2014). The different characteristics between tropical and temperate soils may 

result in a different respond upon biochar addition to both tropical and temperate soils. 

 

In addition, often biochar application benefits degraded soils, such as soils in the 

tropics that are highly weathered, have a low CEC or increased nutrient leaching and 

are acidic, as mentioned above (Ishak and Jusop, 2010; Alling et al., 2014). 

Meanwhile, biochar addition to temperate soils that are more fertile than soils in the 

tropics show less effects or only a minor advantage. In this chapter, the long-term 

effects of biochar on various soil types from different geographical regions and 

climates are highlighted. The similarities and differences in the physical, chemical and 

biological properties of soils after biochar addition are compared. In sections 7.5, 7.6 

and 7.7, the potential use of biochar, as well as economic benefits of using biochar in 

these two different regions are further discussed. A summary of the findings from the 

previous chapters (Chapters 4, 5 and 6) is displayed in Table 7.1 below: 
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Table 7.1 Summary of the findings from the tropical study (Chapter 4), temperate part 

1 (Chapter 5) and temperate part 2 (Chapter 6). 

Variable Tropical Temperate (Part 1) Temperate (Part 2) 

 Chapter 4 Chapter 5 Chapter 6 

Microbial activity + + ++ 

Microbial biomass O O ++ 

Ammonium leaching ++ +++ +++ 

Nitrate leaching +  O +- 

Phosphate leaching + + O 

CEC + + NM 

pH +++ +++ +++ 

Total Carbon  +++ +++ +++ 

Total Nitrogen +- +- +- 

Soil Phosphate O O NM 

Aggregate stability O O NM 

 

+++ = Significant effect 

++ = Some significant effect 

+ = Limited effect 

+- = Trend is not clear (increase and decrease) 

O = No effect 

NM = Not measured 
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7.2 The effects of biochar on the biological properties of soils in Malaysian and 

the UK  

Generally, the results from the biochar experiment on both Malaysian and UK soils 

(Chapters 4 and 5) exhibited similar effects in terms of the microbial activity and 

growth at a 2% application rate. For example, amending soil with RH biochar and an 

aged HW biochar only gave a minimal effect on the microbial activity in the soil. The 

limited effects of biochar in these two soils may be because of the lower application 

rate of biochar applied to the soil and the particle size of biochar, which was too 

coarse. However, amending soil at a 5% application rate of 0.1mm biochar increased 

the microbial activity in the temperate soil (Chapter 6). A higher application rate and 

finer particle size accelerated the mineralization of 
14

C in the soil.  

 

Furthermore, the soil with a limited amount of carbon reduced the mineralization of 

14
C carbon in the soil. The results from the previous chapters (Chapters 4 and 5) show 

that the initial carbon content in the forest, grassland and loamy soils was higher than 

in the non-intensively farmed, intensively farmed and sandy soils. As a consequence, 

amending soil with RH biochar, and an aged HW biochar increased the extent of 

mineralization of 
14

C glucose in forest, grassland and loamy soils more than in the 

non-intensively and intensively farmed soil, as well as in the sandy soils.  

 

The results also showed no effects on the biomass uptake in the tropical and UK soils 

(part 1) (Chapters 4 and 5). These results are consistent with the findings of Bruun et 

al. (2008). They did not find any microbial assimilation even after 20 days of 

incubation. Nevertheless, biochar increased microbial growth over time in the 
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unfertilized temperate soil more than in the fertilized temperate soil (part 2) (Chapter 

6). Biochar increased the growth of microbes in the unfertilized soil for various 

reasons: the biochar itself can serve as a food source due to labile fraction C on the 

biochar (Bruun et al., 2012); and its surfaces contain nutrients (Cheng et al., 2008). 

Additionally, the sorption of organic C and the ability of the biochar to hold nutrients 

(Lehmann et al., 2011), including the pores that provide a habitat for microbes 

(Pietikainen, 2000), enhance the microbial growth in the unfertilized soil. 

 

The scanning electron microscopy (SEM) images below indicate the pores in all of the 

biochar types used in this study (Figure 7.1). The presence of pores in the biochar, 

which can provide a habitat for microorganisms, may be the reason for the increase in 

microbial activity and growth in the soil. Chenu et al. (2001) found that the amount of 

microorganisms on clayey soil surfaces increased and the number of microbes 

increased both inside and on the surface of sandy soils after the addition of glucose. 

Ascough et al. (2010) observed that fungi colonized on the surface and in the pores of 

charcoal. The authors claimed that the physical structure of the biochar and the 

available nutrients on the surface of the charcoal were the reasons for the fungal 

colonization.  

 

Even though the biomass in the fertilized soil was higher than in the unfertilized soil, 

over time there was no effect on the microbial biomass after the addition of biochar in 

this soil (Chapter 6). A limited effect was observed in the fertilized soil, which was 

attributed to the high fertility of the soil. This is because the microorganisms in the 

fertilized soil had already received enough nutrients (Anders et al., 2013). The 
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findings are in line with Kolb et al. (2009) and also Anders et al. (2013), who reported 

that the microbial biomass in sandy soil, which has a low organic matter content, 

increased significantly more when compared with unamended soil. The former 

authors argued that the increase was due to the increase of available C content and 

charcoal also providing a habitat for the microbes.  

 

      

  

Figure 7.1 Scanning electron microscopy (SEM) pictures of biochars made of a) CS 

(Mag: 490x), b) RH (Mag: 460x), and c) HW biochars (Mag: 450x).    

 

a) b) 

c) 



147 
 

7.3 The effects of biochars on the tropical and temperate soil leaching 

Biochar application to soil has different effects, based on the types of nutrients, as 

well as the types of biochar. For example, amending soil with biochar decreased the 

ammonium leaching in the soil leachate (Chapters 4, 5 and 6). The reason for the 

decrease in ammonium leaching in the tropical and temperate soils is due to the 

sorption of the ammonium ion to the acidic biochar functional groups (Clough and 

Condron, 2010; Zheng et al., 2013; Scott et al., 2014). Furthermore, the aged biochar 

in the temperate soils adsorbed more ammonium than the fresh biochar amendment 

(Chapter 5). Aged biochar has a high CEC (Cheng et al., 2008), and therefore can 

hold greater amounts of nutrients (Major et al., 2009). According to Singh et al. 

(2010), as biochar ages, the effectiveness of its ammonium adsorption capacity 

increases because of the oxidation on the biochar’s surfaces, which can also increase 

the CEC of the soils.  

 

However, nitrate and phosphate exhibited an inconsistent trend on the soil’s leaching 

in both the tropical and temperate studies (Chapters 4, 5 and 6). In terms of the status 

of different nutrients in the temperate study (Chapter 6), biochar reduced nitrate 

leaching in the unfertilized soil and no effect was observed in the fertilized soil. But, 

at the beginning of the leaching process, the finer particles increased nitrate leaching 

in both of the soils. Finer particles are porous and lighter than coarser particles. The 

smaller particles are more likely to move through the soil and accelerate nutrient 

transportation in the soil (Major et al., 2009).  
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Additionally, the minimal effect of nitrate and phosphate leaching in both soils was 

due to the negatively charged (NO3
-
 and PO4

3-
) anions being repelled by the negative 

charges on the biochar (Hale et al., 2013). However, the ability of biochar to adsorb 

nitrate in this study (Chapters 5 and 6); and previous studies, such as those by 

Knowles et al. (2011), Yao et al. (2012) and Gronwald et al. (2015) is not fully 

understood. A possible explanation may be because of the N immobilization by 

microbes in the soil that can lead to a decrease of nitrate concentration in the soil 

leachate (Novak et al., 2010). More studies are needed in order to elucidate this 

mechanism. 

 

Unlike nitrate, which is susceptible to leaching, phosphate can form ligand bonding 

(Mukherjee et al., 2011) with other cations or metals and alter its anion characteristics 

(Ashman and Puri, 2013). As a consequence, phosphate leaching decreased, possibly 

due to ligand bonding. Furthermore, the difference in the temperatures of biochar 

production may affect the effectiveness of the sorption of phosphate in the soils. In 

this study, the RH biochar was produced at 900
O
C, whereas the CS biochar was 

produced at 400
O
C. Results showed that the RH biochar treatment increased the 

phosphate leaching more than the CS biochar (Chapter 4). Consistent with this 

finding, Lentz and Ippolito (2012) found that switchgrass biochar produced at 250
O
C 

reduces phosphate leaching 2-3 times better than biochars produced at 500
O
C. 

Therefore, the difference temperatures during biochar production may affect the 

ability of phosphate sorption in the soils. 
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In addition, the leaching experiment was conducted in a different moisture content and 

this is subject to wet and dry cycles in every leaching event. Unlike the soil-biochar 

incubation study, the soils were kept in sealed jars, which are likely to have become 

anaerobic relatively quickly. For the leaching study, the variation in moisture levels 

during the leaching experiments might have affected the results. Therefore, it is 

difficult to assess and understand what happens to nitrification over time and 

comparisons of ammonium concentrations in leachate over time are difficult to 

interpret.  

 

7.4 The effects of chemical and physical properties of tropical and temperate soils 

amended with biochar 

There were no prominent effects in terms of the CEC in the tropical and temperate soil 

studies (Chapters 4 and 5). For example, the CEC of the soil only increased at the end 

of the incubation time in the forest soil amended with the RH biochar (Chapter 4) and 

the grassland soil amended with the aged HW biochar (Chapter 5). The effects of CEC 

were not consistent in the soil amended with CS biochar and fresh HW biochar. The 

less significant effect of the biochar in the tropical and temperate soils is possibly due 

to the temperature during the production of the biochar. The temperature used to 

produce the biochar in this study was high: 400
O
C for the CS and HW; and 900

O
C for 

the RH biochar. High temperature biochar has a low negative surface charge due to 

the loss of functional groups (hydroxyl and carboxyl); ultimately this decreases the 

CEC of the soils (Novak et al., 2009). According to Gaskin et al. (2008), Novak et al. 

(2009), Singh et al. (2010) and Kloss et al. (2014), increasing the pyrolysis 

temperature significantly decreases the CEC of biochars. Guo and Rockstraw (2007) 

reported that the loss of acid functional groups starts at 400
O
C and basic functional 
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groups increase as the pyrolysis temperature increases (Chun et al., 2004). In addition, 

the marginal effect of CEC that could be seen in the temperate soils is possibly due to 

the ageing process of the biochar. A recent study by Scott et al. (2014) suggests that 

the oxidation reaction on the biochar’s surface increases the CEC of the soil as the 

biochar ages in the soil. Therefore, in the present study, amending soils with the aged 

HW biochar increased the CEC in grassland soils, but fresh HW biochar amendment 

had no effect on the CEC of the soils.  

 

Biochar application significantly increased the pH of the tropical soil (Chapter 4). 

This is due to the alkalinity of the biochar. Gaskin et al. (2010) and Uzoma et al. 

(2011) suggest that the pyrolysis process during the production of biochar leads to the 

accumulation of alkaline substances in the biochar. Thus, in the current study, 

amending soil with the RH and CS biochars caused a liming effect (Van Zwieten et 

al., 2007) where the pH of the acidic soil rose. Generally, a low soil pH, especially in 

the tropics, increases the level of available Al toxicity (Cornelissen et al., 2013; Kloss 

et al., 2014). Other studies have found that a higher pH is associated with a lower Al 

level in the soil (Van Zwieten et al., 2007; Kuka et al., 2013; Yang et al., 2013). 

Therefore, adding biochar to this soil not only increases the soil pH, but may also 

reduce the Al toxicity in the soil. However, the Al level was not measured in this 

current study.  

 

Adding biochar to soil can not only decrease the acidity of tropical soil, but can also 

increase the pH of temperate soils (Chapters 5 and 6). An increasing soil pH in 

relation to biochar application has been found in other studies (Uzoma et al., 2011; 
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Cornelissen et al., 2013; Kloss et al., 2014). However, biochar application does not 

always increase temperate soil pH; it can have the opposite effect. For example, Karer 

et al. (2013) reported that the addition of biochar decreased the pH of Chernozem soil. 

Qayyum et al. (2015) found that the application of 1% biochar to an alkaline soil did 

not affect the pH significantly. The smaller effect on the pH of the temperate soils was 

attributed to the high initial pH of the soil (Karer et al., 2013; Qayyum et al., 2015). 

Qayyum et al. (2015) recommended that biochar can be used as a soil amendment in 

temperate soil when applied at a lower rate. Furthermore, McCormack (2015) recently 

reported that incorporation of biochar to temperate soil had no effect on the soil’s pH. 

The author speculated that an absent of pH effect is due to the low rate of biochar 

application and also the leaching of basic cations after biochar addition to soil. 

 

The results from this thesis also indicated that the pH in the leachate of temperate soils 

decreased, whereas the pH in the soil increased over time (Chapter 5). The pH 

declined in the soil leachate has been previously attributed to the leaching of basic 

cations (Schulz and Glaser, 2012) and the biological process that took place in the soil 

(Fageria and Baligar, 2008). During leaching, CO2 from microbial respiration is 

combined with water and carbonic acid is formed, leading to a reduced soil pH 

(Ashman and Puri, 2013). Furthermore, according to Singh et al. (2010), nitrification 

increases with soil moisture, thereby reduces the pH in the soil’s leachate. In contrast 

with the pH of the soil, the soil samples are drier (kept in the container during 

incubation time), there is less biological activity and less carbonic acid is released 

from the soil, thus resulting in a higher pH compared with the soil leachate.   
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In contrast with the temperate soils study, tropical soils study exhibited an opposite 

trend, for example both the leachate and soil pH decreased over time (Chapter 4). The 

reduction of soil pH in the leachate was possibly due to the biological activity and the 

leaching of basic cations during the leaching process. However, it is unclear how the 

pH in the soil declined with time. The pH reduced over time may be related to the 

biochar application rate (McCormack, 2015), particle sizes or oxidation process of 

biochar (Inal et al., 2015). Lower biochar doses (2%) and coarser particle sizes 

(<2mm) used in the tropical study (Chapter 4) may be the reasons of the pH reduction 

in the soil. Additionally, the oxidation process of biochar releases acid functional 

groups, therefore reducing the soil pH (Inal et al., 2015). Unlike tropical soils, 

temperate soils study amended with higher dosage of biochar (5%) and finer particle 

size (0.1mm), increased the pH in the fertilized soil through time (Chapter 6). 

Nevertheless, further research is needed to determine whether these factors 

(application rate, particle sizes or oxidation of biochar’s surfaces) influence the pH in 

both the tropical and temperate soils. 

 

Biochar addition increased the carbon content in all of the soils studied (Chapters 4, 5 

and 6). Although, biochar increased carbon content in both tropical and temperate 

soils, but it decreased over time. The loss of C may be attributed to the degradation of 

labile C in biochar. McCormack (2015) noticed a reduction of C content in the soil 

treated with biochar. The author speculated that, the decrease in C may be due to the 

loss of biochar via leaching and wind erosion. In contrast with these findings, Cross 

and Sohi (2011) revealed that several soils in their study exhibited a negative priming 

effect after the addition of biochar, demonstrating that labile soil C is stable in those 

soils. Despite higher C values following biochar addition, the N values in biochar are 
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low. Results from this thesis showed that biochar application had no effect on the total 

N content in the tropical soil or in the temperate study.  

 

In terms of the soil’s physical properties, both the tropical and temperate soil studies 

showed little effect on the aggregate stability (Chapters 4 and 5). Biochar application 

in the tropical and temperate soils study did not show much difference in the soil 

aggregation. There is some debate in the literature over the role of biochar in 

promoting soils structure. For example, Peng et al. (2011), found that amending soil 

with biochar decreased the aggregate stability by 1-17%, but contrast with that of 

Lehmann et al. (2008) who showed biochar could enhance soil aggregates through the 

formation of the soil’s structure; for instance, biochar particles were found to be 

attached to microaggregates of soil.  

 

As well as soil aggregation, Figures 7.2 and 7.3 show the water release characteristics 

of the tropical and temperate soils studied amended with different types of biochars. 

Generally, the biochar had a minor impact on the water retention in the tropical soils, 

but no effect in the temperate study. For example, in the tropical study, the results 

from Figure 7.2 indicate that CS increased the water retention significantly (P<0.05) 

more than the RH biochar and control at higher tension. No significant difference was 

observed in the soils amended with biochars at the lower tensions (<0.3) bars (Figure 

7.2). CS biochar held more water possibly because the volume of smaller pores 

present in the CS was greater than in the RH biochar, as illustrated in Figure 7.1. RH 

has less pores; therefore less water can be retained in the soils at any matric potential. 

Conversely, Masulili et al. (2010) found that RH biochar application increased water 
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retention by 15.47% in the soil compared with the control treatment (11.34%). The 

authors suggested that this was or due to the high soil porosity (more than 50%) in the 

treated soil caused by the addition of organic amendment.  

 

 

Figure 7.2 Water release curves of a) forest b) non-intensive farming and c) intensive 

farming soils amended with and without CS and RH biochar at different tension bars. 

Error bars are SEM (n=3). 
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For the temperate study, amending three soils with 2% of fresh and aged HW biochars 

showed a similar pattern and the changes were generally insignificant at all tensions 

(P>0.05). The results also indicated that as the tensions increased, the volumetric 

water content declined considerably (Figure 7.3). In contrast with this finding, Herath 

et al. (2013) reported that biochar application increased the available water content in 

an Alfisol by 22% and in an Andisol by 19-33% compared to untreated soil at a 

specific matric potential. The effects of biochar on water retention are not only due to 

the different types of soils as suggested by Herath et al. (2013), but also the 

temperatures used to produce the biochar. The same authors revealed that biochar 

produced at higher temperatures retained more water than that produced at lower 

temperatures. This is because at permanent wilting point the former biochar retained 

more water due to more micropores than the latter.   
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Figure 7.3 Water release curves of a) grassland b) loamy and c) sandy soils amended 

with and without fresh and aged HW biochar at different tension bars. Error bars are 

SEM (n=3). 
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7.5 The potential use of biochar amendment in Malaysia  

In Malaysia, the Cameron Highlands is a mountainous area, with a low temperature 

(14-24
O
C) and high rainfall. The average annual rainfall is about 2660mm (Abdullah 

et al., 2001). The climate is ideal for the cultivation of subtropical and temperate 

vegetables (Salama and Kookana, 2001). Approximately 5251 ha of land is used for 

agriculture and 47% of that is cultivated with vegetables (Abdullah et al., 2001). The 

crops are planted on the subsoils. The top soils are lost because of the high intensity of 

rainfall. In addition, most of the top soils are no longer pristine due to changes in the 

soil management, such as the application of fertilizers or liming to sustain crop 

productivity (Aminuddin et al., 2005). The subsoils in the Cameron Highlands are 

also infertile; they have a lower CEC and pH.  

 

The tropical soils used in this study were spodosols, which are acidic, with a pH < 5.5, 

and a high accumulation of Al and Fe in the subsoils. To ameliorate these soils, the 

addition of biochar can increase the pH of the soils. In this study, the pH of the soils 

increased as a result of adding the biochar to them. Biochar has a high pH due to the 

alkaline minerals that exist within it. The pyrolysis process during the biochar 

production leads to an accumulation of these alkaline minerals (Gaskin et al., 2010). 

In acidic soils, the amount of exchangeable aluminium is also moderately high (Ishak 

and Jusop, 2010). To overcome the aluminium levels in the soil, liming is introduced 

to the soils. In this case, biochar can act as a liming agent due to its alkalinity and high 

pH. Petter et al. (2012) reported that the pH increased with an increasing rate of 

biochar addition. The authors also observed a reduction in acidity (H + Al) of 

approximately 20% when 32 Mg ha
-1

 biochar was applied compared to the soil alone. 

Similar findings were also reported by Mbagwu and Piccolo (1997), Topoliantz et al. 
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(2005) and Masulili et al. (2010), in which consistent with the high pH, the levels of 

(H+ and Al) decreased when charcoal was incorporated into the soil.  

 

The leaching experiment showed that the use of CS and RH biochars reduced 

ammonium leaching in forest soil considerably throughout the study. However, there 

was no consistent trend in terms of the biochar reducing nitrate and phosphate. This 

suggests that biochar retains ammonium better than nitrate and phosphate in the soils. 

The CEC of the soils after adding biochar was no different. However, the CEC of the 

soils was low after biochar addition; a reduction in the ammonium concentration in 

the soil’s leachate is possible as demonstrated in the findings. According to Lehmann 

et al. (2003), decreasing ammonium leaching is likely for a biochar with a low CEC 

(Rajkovich et al., 2012). Therefore, the addition of biochar to tropical soils is expected 

to decrease ammonium loss through leaching. Moreover, nutrients leaching has been 

identified is a problem because many Malaysian soils carry a positive charge, it is 

likely to ammonium leaching occurs in this soil. With the addition of biochar, the 

reduction of ammonium leaching is possible and; may decrease the demand for 

ammonium fertilizer, ultimately, reduce the eutrophication problem in lakes and 

rivers. 

 

Another common problem associated with the tropics is soil erosion and the loss of 

organic matter. Soil loss in vegetable farms is estimated to be as high as 82 t ha
-1

 yr
-1

 

(Aminuddin et al., 2001), whereas nutrient loss is reported to be approximately 470 kg 

N ha
-1

 yr
-1

 (Aminuddin et al., 2005). Cerri et al. (2007) and Lal et al. (2007) have 

reported that about 20 to 80 t C ha
-1

 of agricultural soils is lost in the tropics and 
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released into the atmosphere. The high temperature and humidity create suitable 

conditions for organisms to decompose the organic matter. Less organic matter, as a 

result of the rapid turnover rates of organic matter, reduces the level of carbon in the 

soil, and over time the soil becomes degraded and infertile (Mekuria and Noble, 

2013). Biochar has the potential to sequester carbon in the soil for longer. This is due 

to its aromatic structure and long mean residence time in the soil. Therefore, the 

addition of biochar may alleviate the loss of organic carbon and organic matter in 

tropical soils. The findings from this study revealed that amending soil with 2% of CS 

and RH biochar increased the C in soil (Chapter 4). Nearly twice as much as C was 

found after adding biochar to all of the tropical soils studied (forest, non-intensive and 

intensively farmed soils). In addition, a study by Rosenani et al. (2012a) found that 

there was an increase of total C even after the second crop cycle when adding empty 

oil palm fruit bunch (EFB) biochar to Malaysian soil compared to control treatment 

from 1.06 to 1.92%. Also, the increase was significant with increasing biochar 

application rate (1.49% at 10t ha
-1

 and 1.79% at 15t ha
-1

 respectively). EFB biochar 

application also increased the amount of total C in acid sulphate soil from 4.45 to 

5.21% (Rosenani et al., 2013). Other studies in the tropics (Indonesia), for example 

Sukartono et al. (2011), found that biochar addition increased carbon in sandy soil 

from 0.9% to 1.2% carbon. The C in soil amended with biochar was also more stable 

compared to the soil treated with cattle manure, suggesting that biochar C remained in 

the soil longer. Another study also conducted in Indonesia and reported by Islami et 

al. (2011) found that C in soil treated with biochar remained high in the soil even after 

the second year of cassava crop harvesting compared to the soil alone ranged from 

(20.3 to 25.8 g kg
-1

 and 10.3 to 11.2 g kg
-1

 respectively). With this evidence, therefore, 
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biochar may sequester C and could improve the fertility of degraded tropical soils 

over time. 

 

7.6 The potential use of biochar in the UK 

 

Some studies have stated that adding biochar only benefits poor soils, and that 

incorporating biochar into productive soil, especially temperate soils, does not make 

much difference (Jones et al., 2012; Karer et al., 2013; Kloss et al., 2014; Quilliam et 

al., 2012). This is because fertile soils are always associated with a high pH, CEC, soil 

organic matter and nutrients (Kloss et al., 2014). However, fertile soils, which are 

found widely in temperate climates, demonstrate huge variability in their physico-

chemical properties. Therefore, they may respond differently to biochar amendment 

(Kloss et al., 2014). In the current study, the application of the fresh and the aged HW 

biochar to temperate soils exhibited some positive effects. Furthermore, the addition 

of different particle sizes of biochar with a higher application rate to the fertile and 

less fertile soils showed some prominent effects on the soil quality. Therefore, biochar 

could potentially be used as a soil amendment in temperate soils.  

 

One of the positive effects of biochar is that it can enhance microbial activity in both 

nutrient rich and nutrient poor soils. The results indicate that the finest particles of 

biochar increased the activity of microbes in those soils at a higher loading of biochar 

(5%). This is because the smaller size biochar has a greater surface area and can react 

faster when mixed with the soil, ultimately enhancing the mineralization of C in the 

soils (Sigua et al., 2014). Furthermore, biochar addition also stimulates microbial 
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growth in unfertilized temperate soil. Biochar provides a habitat and serves as a food 

source for microorganisms, thus increasing the biomass in the nutrient poor soil.  

 

Another significant effect of biochar is that it can increase C in temperate soils. 

Similarly, previous studies have reported increased C in soils (Kloss et al., 2014; 

Tammeorg et al., 2013; Uzoma et al., 2011) after the addition of biochar. Moreover, 

biochar is recalcitrant, because the biomass C in the biochar is in pyrogenic form, 

where the C in biochar is hard to mineralize (Zimmerman and Gao, 2013). According 

to Atkinson et al. (2010), during the pyrolysis process, about 50% of the carbon in the 

feedstocks can be retained in the biochar. Moreover, the low mean annual temperature 

of temperate soils may promote long-term biochar stability. A lower temperature can 

slow down the degradation of labile C fractions (Haruna et al., 2012) and thus biochar 

has the potential to provide a stable C sink in temperate soils. 

 

Moreover, adding biochar to temperate soils significantly (P<0.05) increased the soil 

pH. An increase in soil pH has also been reported in other studies, such as those by 

Liang et al. (2006), Warnock et al. (2007) and Tammeorg et al. (2013). In terms of 

nutrient leaching, amending soils with biochar reduced the ammonium concentration 

in the leachate. Although there was little effect on the CEC of these soils, there is a 

possibility that ammonium leaching could be reduced in temperate soils. In the 

temperate study, the biochars exhibited greater ability to absorb ammonium than 

nitrate and phosphate. A reduction in ammonium leaching may decrease the demand 

for ammonium fertilizer for crop growth. However, nitrate and phosphate nutrients 

showed an inconsistent trend in terms of leaching when biochar was added to the 
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soils. More studies using different types of biochars and soils should be conducted in 

the future in order to understand the mechanisms of the nitrate and phosphate sorption 

of biochar.  

 

7.7 Economic benefits of biochar in both tropical and temperate regions 

The previous chapters demonstrated that biochar has a significant effect on pH and 

carbon and could also impact on nutrients leaching and biological properties of the 

soils at 5% biochar dosage. These effects are important particularly in Malaysia 

because Malaysian soils face problems with acidity and lower CEC because they are 

deeply weathered. Lower organic matter is always associated with the soils in the 

tropics as a result of rapid mineralization and decomposition. Controlling acidity in 

Malaysia is also an issue due to inadequate sources and higher price of agricultural 

lime to consumer, as compared to biochar. In contrast, UK soils tend not to be acidic, 

from the only exception being the Western UK. Also, the liming cost in the UK is far 

cheaper than in Malaysia due to the abundant sources of limestones. Table 7.2 shows 

the available feedstock and cost of biochar and agricultural lime in Malaysia and in 

the UK. The liming rate shown in Table 7.2 (2t ha
-1

) is the sufficient rate for liming 

requirement in Malaysia. The effect of liming at this rate is reported to last over 4 

years (Ishak and Jusop, 2010). 
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Table 7.2 The available feedstock and cost of biochar and agricultural lime in 

Malaysia and the UK 

Malaysia Available 

feedstock 

(tonne)  

Production  

(tonne) 

Cost of 

production 

 

Cost to 

consumer 

 (2t ha
-1

) 

CS Biochar 88,000 (ha) 30,000 (shell) GBP 10 GBP 200 

RH Biochar - 32,000 GBP 4,200 GBP 500 

EFB Biochar 188 Million 4.3 Million - GBP 150 

Agricultural 

Lime  

- - - GBP 350 

UK Available 

feedstock 

(tonne) 

Production  

(tonne) 

Cost of 

production 

 

Cost to 

consumer 

(2t ha
-1

) 

Biochar 48 Million 203,000 GBP 148 to 389 t
-1

 GBP 3500 

Agricultural 

Lime  

- - - GBP 1120 

 

Sources: Shackley et al. (2010), Shackley et al. (2011), Anem (2015) and Biochar 

Malaysia (2015). 

 

According to Table 7.2, it can be seen that biochar prices vary widely; for example, 2t 

ha
-1

 of EFB biochar in Malaysia is approximately GBP 150, compared to GBP 3500 in 

the UK. Therefore, biochar in Malaysia is great because it is cheaper than to 

agricultural lime. This contrasts with the situation in the UK, where agricultural lime 

is much cheaper than biochar. This is due to the massive limestones that can be found 

to produce agricultural lime in the UK and to the fact that biochar is not widely 

available. For example, the available feedstock in the UK is 48 million tonnes, 

compared to 188 million tonnes of EFB biochar in Malaysia (Table 7.2). The cost of 

agricultural lime to consumer in the UK is cheap, GBP 1120, compared to the cost of 

using biochar in the UK, which is GBP 3500 at 2t ha
-1

 (Table 7.2). The cheaper cost of 

biochar in Malaysia is attributed to the abundant sources of agricultural waste, for 
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example RH, CS and EFB from oil palm crop. In Malaysia, the most commonly 

available biochars are produced from RH and EFB (Rosenani et al., 2012b). RH is 

available at rice mills as a by-product of burning to produce heat for drying rice, 

whereas EFB is produced from oil palm extraction and has high potential to be 

converted to biochar because Malaysia produces a large quantity of EFB from the oil 

palm industry (Rosenani et al., 2012b). Additionally, to the best of my knowledge, in 

some parts of the East Coast of Malaysia, farmers can even obtain RH biochar for 

free. Although the cost of biochar to consumer is cheap in Malaysia, other issues must 

be taken into consideration, such as whether the sources used to produce biochar are 

sufficient enough to supply the demand if that increases, and the logistics cost 

(transportation for biomass collection in order to produce biochar or biochar collection 

from one place to another).  

 

According to Table 7.2, biochar is potentially used in Malaysia due to the cheaper 

source as a soil amendment. In contrast, in the UK, the cost of biochar is far more 

expensive than using other liming materials, such as agricultural lime. Even though 

the cost of biochar is high in the UK, biochar is potentially used for other purposes, 

such as carbon sequestering. Biochar can lock up the carbon in soils due to its 

recalcitrance and resistance to degradation, ultimately reducing the emission of carbon 

in the atmosphere and eventually, reducing global warming. More research is needed 

to find alternative feedstocks, as well as low cost and sustainable technology to 

produce biochar, thus, the price of biochar, especially in the UK market can be 

reduced. It is possible that the economic returns from using biochar may be higher 

than that from using agricultural lime after considering other non-pH benefits to the 

growers (Galinato et al., 2011).  
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Building of soil carbon content is important for a number of reasons, including 

promotion of soil structure stability, increase of water retention and infiltration, 

carbon fixation, and reduction of soil erosion (Victoria et al., 2012). In Malaysia, 

organic matter is low (1 to 2%), and therefore, not sufficient for crop growth. 

Consequently, organic amendment is needed to enhance soil quality and productivity 

(Ishak and Jusop, 2010). Unlike soils in the tropics, UK soils are more fertile and have 

higher organic matter content (Kloss et al., 2014). However, different soil properties 

from one place to another may exhibit various effects, thus, detailed investigation 

regarding the use of organic amendment to the temperate soil is essential to better 

understand whether the effects are beneficial or detrimental. Besides biochar, there are 

a number of organic materials (carbon sources) available to farmers. Other organic 

amendments that have been used in agricultural lands include agricultural wastes, such 

as manure and compost. Table 7.3 shows the differences of organic matter sources and 

highlights the advantages and disadvantages of these materials to the farmers in 

Malaysia and the UK.  
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Table 7.3 The advantages and disadvantages of various organic amendment sources in 

Malaysia and the UK 

Organic 

Amendment 

Source 

(Malaysia) 

Advantages Disadvantages Source 

Biochar  Low cost 

 Recalcitrance 

 Increases pH 

 Increases CEC 

 Reduces 

nutrients 

leaching 

 Adsorbs water, 

nutrients and 

contaminants 

 Reduces 

greenhouse 

gases emission 

 Competition in 

the use of 

feedstock for 

animal feeding  

 Deforestation 

 Risk of 

contamination 

(PAH, heavy 

metals) 

 Occupational 

health and fire 

hazard 

Masulili et 

al. (2010) 

Sukartono et 

al. (2011) 

Rosenani et 

al. (2012b) 

Rosenani et 

al. (2013) 

Alling et al. 

(2014) 
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Table 7.3 continued 

Organic 

Amendment 

Source 

(Malaysia) 

Advantages Disadvantages Source 

Rice husk 

compost 
 Increases pH 

 Alleviates Al 

toxicity 

 Increases CEC 

 

 Higher 

decomposition 

rate 

 Increases 

greenhouse 

gases emission 

 Reduces crop 

growth at high 

application 

rate (80t ha
-1

)  

 Production of 

humic 

substances 

from 

composting 

reduces 

micronutrients 

at high rate 

Ishak and 

Jusop (2010) 

Chicken 

manure 
 High nutrients 

(N, P and K) 

sources 

 Accumulation 

of heavy 

metals 

Ishak and 

Jusop (2010) 

EFB (Empty 

fruit bunch) 
 Improves soil 

structure 

 High nutrients 

(N, P, K, Ca and 

Mg) 

 Short-lived Ishak and 

Jusop (2010) 
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Table 7.3 continued 

Organic 

Amendment 

Source (UK) 

Advantages Disadvantages Source 

Biochar  Recalcitrance 

 Improves 

hydraulic 

conductivity 

 Increases pH, 

total C and N, 

Olsen-P and CEC 

 Reduces nutrients 

leaching 

 Adsorbs water, 

nutrients and 

contaminants 

 Reduces 

greenhouse gases 

emission 

 Increases 

microbial activity 

and biomass 

 High cost 

 Risk of 

contamination 

(PAH, heavy 

metals) 

 Deforestation  

 Occupational 

health and fire 

hazard 

Verheijen et 

al. (2010) 

Uzoma et al. 

(2011) 

Karer et al. 

(2013) 

Zhang et al. 

(2014b) 

Gronwald et 

al. (2015) 

 

 

Cow manure  High nutrients (N 

and P) 

 Short-lived 

 Ammonia 

volatilazation 

 Dangerous 

pathogens 

Verheijen et 

al. (2010) 

Uzoma et al. 

(2011) 

Sewage sludge  Improves soil 

structure 

 Increases 

infiltration rate 

and water holding 

capacity 

 High metals 

 Dangerous 

pathogens 

 Leaching of 

contaminants 

from the soils 

Verheijen et 

al. (2010) 

Méndez et al. 

(2012) 

 

The main limitation of using organic materials as a soil amendment rather than 

biochar is the fact that organic materials are short-lived because they can be easily 

decomposed, compared to biochar. Therefore, the application of these materials has to 

be done repeatedly in every crop cycle and every year (Masulili et al., 2010). In 

addition, there is a competition in the use of fresh organic materials for animal 

feeding, as well as energy resources. Also, rapid mineralization and decomposition of 
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these materials contribute to the emission of greenhouse gases, thus resulting in global 

warming (Rondon et al., 2007).  

 

Furthermore, Table 7.3 illustrates that organic amendment sources from manure and 

sewage sludge may contain heavy metals and other contaminants, such as PAH. 

Research showed that biochar can absorb these contaminants due to large surface 

areas, as well as macro and micro pores which are present in biochar (Cornelissen et 

al., 2005; Lehmann, 2007a). Other studies also found that biochar can adsorb not only 

contaminants, but pesticides too (Yang et al., 2010; Sopena et al., 2012; Wang et al., 

2012). However, the ability of biochar to retain pesticides may prevent them from 

controlling target organism (IBI, 2012b). Moreover, if sorbed organic or inorganic 

compounds become available to organisms, they may potentially have detrimental 

effects on them. The presence of black carbon in the form of biochar in agricultural 

soil has been shown to reduce the bioavailability of some compounds to 

microorganisms. However, the length of time that biochar can retain the compounds 

and its safety towards other organisms in terms of toxicity remain unknown (Semple 

et al., 2013). In addition, biochar itself may contain heavy metals and other organic 

pollutants, especially when poultry manure is used to produce biochar. However, this 

depends on the types of feedstocks, because the physico-chemical properties of 

biochar depend on the feedstock used to produce biochar. Moreover, during slow 

pyrolysis process at 500
O
C, heavy metals and PAH accumulate in the biochar (Painter, 

1998; Verheijen et al., 2010). Brown (2009) reported that several chars produced at > 

500
O
C, the concentration of PAH ranged between 3-16 µg g

-1
 compared to that of 28 

µg g
-1 

in char from burned pine forest. Therefore, full risk assessment for such 
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contaminants is required to understand the safety of biochar use before its application 

in vast agricultural areas.  

 

7.8 Conclusion 

In conclusion, biochars could potentially be used in both tropical and temperate 

climates as mentioned earlier in the previous sections. For example, biochar increased 

carbon mineralization when using finer particle sizes at a higher dosage of biochar and 

it improved the biomass in the unfertilized temperate soil (Chapter 6). Furthermore, 

biochar increased the pH and carbon content, as well as adsorbing ammonium 

leaching from both tropical and temperate soils (Chapters 4, 5 and 6). Although 

tropical and temperate soils’ chemical and physical properties are not similar, 

however, not much different could be seen in terms of the effects of biochar 

application in the tropical and temperate climates at 2% application rate (Chapters 4 

and 5). Higher rates of application maybe needed to make a real and prominent effect 

following biochar addition to these two soil systems. 

 

In addition, other issues should be taken into consideration when applying biochar in 

both climates, especially in huge agricultural areas. For instance, the cost of biochar 

production is one of the issues because most of the technologies for biochar 

production require high investment cost (Kong et al., 2014; Cernansky, 2015). The 

production of finer particle sizes of biochar would increase the cost even more (Kollah 

et al., 2015). Another issue regarding biochar production is that if the demand for 

biochar increases, the feedstock used would need to be produced on a massive scale. 

Using HW biochar, for example, may lead to deforestation (Cernansky, 2015) and 
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create other environmental problems, such as increasing GHG gas emissions, reducing 

biodiversity and accelerating soil erosion. Safety issue regarding organic contaminants 

on biochar is also a matter of concern. More research is needed in this area to ensure 

its safety, particularly when applying biochar at higher application rates. Therefore, 

the use of biochar needs further assessment before making a recommendation.
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CHAPTER 8 

 

Conclusions 

 

8.1 General conclusions 

 

Overall, this thesis has investigated the effects of biochar amendment on soil 

properties in two different geographical regions. The biochars used were coconut shell 

and rice husk biochars (tropical study) and hardwood biochar (temperate study). The 

mixtures of biochar and soil were evaluated to see whether the biochar improved the 

soil’s biological and chemical properties, including nutrient leaching, and physical 

properties over time.  

 

The major findings of this study were that the addition of biochar at 2% and 5% 

application rates increased the soil’s carbon content and pH in all of the soils studied. 

This indicates that biochar addition has the potential to benefit the environment by 

sequestering carbon in the soil and ameliorating acidic soils. Another finding from this 

research is that biochar has the ability to absorb ammonium better than nitrate and 

phosphate. Ammonium absorption by biochar may reduce the demand for ammonium 

fertilizer, as well as reducing the loss through leaching, and indirectly minimizing 

eutrophication by nitrogen. 

 

For the biological properties experiment, a higher application rate of biochar at 5% 

enhanced the mineralization of 
14

C glucose in the soil. The results also showed that 

finer particles with a higher loading of biochar mineralized more carbon than other 

sizes. Biochar addition also benefits nutrient poor soil more than nutrient rich soil in 
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terms of the growth of microbes. The results from this study show that the effects of 

biochar amendment on the biological properties depend on a higher application rate 

and smaller particle size of biochar, as well as the different nutrient status of the soils. 

 

Based on the findings from this thesis, the results provide important information 

regarding the use of biochar in two different climates. For example, the effects of 

biochar in this thesis are dependent on various factors, such as the types of soils and 

biochars, the application rates and the particle sizes of biochar. All of these factors 

exhibit different responds. For instance, some of the positive effects were increased 

carbon and pH; some of the unclear effects were nitrate and phosphate leaching; and 

no effects or limited effects was seen in terms of the physical properties, as well as 

cation exchange capacity as a results of the biochar addition. Therefore, this reflects 

the impacts of biochar application, which need to be further assessed and examined 

before applying biochar on a wider scale to agricultural land can be suggested. 

 

8.2 Recommendations for future research 

 

The long-term effects of biochar amendment should be explored further in order to 

identify how long the effect of biochar persists. The current study has also examined 

the long-term effect (based on the laboratory incubation); however the effects were 

unclear and some of them could not be seen. Therefore, longer effects of biochar 

(more than 3 years) should be investigated especially the physical properties of the 

soil, such as aggregate stability. This is because the formation of aggregate in the soil 

after organic amendment usually takes a long time.  
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There is limited research on the particle sizes of biochar and its stability in the soil that 

should be explored. This is because biochar is porous, lighter than soil particles and 

hydrophobic. Research showed that finer size of biochar may adsorb better 

contaminants, such as PAH and pesticides compared to larger size (Bucheli and 

Gustafsson, 2001; Hiller et al., 2007). The finer particles of biochar, for instance, are 

also subject to travelling further and loss through leaching. Additionally, smaller 

particle sizes of biochar may degrade faster than the larger sizes. Thus the 

effectiveness of biochar as a carbon sink is reduced due to both effects: loss via 

leaching and degradation by microbes. However, the information on the breakdown of 

biochar’s particle size is limited. It is unclear whether different particle sizes affect the 

mineralization rate and biochar stability. Thus, these areas must be investigated and 

documented. In addition, in this thesis (Chapter 4-tropical soils study) only measures 

the effects of biochar at lower application rate with coarser particle sizes. Finer 

particle sizes and higher application rate should be investigated further using the 

biochar and soils in the tropics. This is because, different types of biochar, methods to 

produce biochar (fast or slow pyrolysis) and temperatures used to produce biochar 

may exhibit various effects of biochar to the soils. Therefore, more research are 

needed to explore these areas. 

 

Furthermore, biochar application in this study increased soil pH. Therefore, the effects 

of soil pH should be explored on a larger scale, such as in a field trial to assess 

whether the effects exist in a real condition after it is shown that there is a liming 

effect of biochar in a small scale study (laboratories study) (Chapters 4, 5 and 6). 

Moreover, the long-term effect of biochar on pH should be investigated further. This 

is important to observe how long the effect of pH in the soil can last after biochar 



175 
 

addition. Ideally, biochar should have a long residence time in soil, but more work is 

needed to quantify this. The comparison of biochar with other liming materials, such 

as dolomitic lime or a combination of both, is required to observe the long term effect, 

particularly in the tropics. This is because agricultural lime application in Malaysia 

can only ameliorate the topsoil, the subsoil is not ameliorated enough for better root 

growth (Ishak and Jusop, 2010). Therefore, combining lime and biochar may solve 

this problem and may decrease the demand of feedstock used to produce biochar. 

Also, the use of biochar might reduce the cost of liming, because biochar is a cheaper 

liming material than dolomitic lime. 

 

For the leaching experiment, biochar had the ability to retard ammonium better in the 

soil than nitrate and phosphate. But biochar can also retain nitrate in the soil. However 

the mechanism is poorly understood. Thus, more studies in this area should be 

conducted to understand the mechanisms through which biochar can retain anions, 

such as nitrate in the soil. Moreover, as well as the study on the carbon mineralization, 

a study on nitrogen mineralization is also required. The reduction of nitrate leaching 

may be possible due to N immobilization, and this mechanism is related to N 

mineralization and the C/N ratio.  

 

In addition, there are few studies on the use of radioactive isotope (
14

C) labelling 

techniques in biochar. To the best of my knowledge, until now, there have been no 

studies on biochar using this technique in the tropics. The technique is beneficial and 

needed to better understand the fate of biochar and its interaction in the ecosystem 

(Ladygina and Rineau, 2013). Furthermore, the study in this thesis was conducted on a 
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small scale (laboratory study). The effects of biochar in a large-scale study should be 

investigated, especially in actual conditions. For example, the effectiveness of biochar 

in field situations should be assessed along with crops. This is because the crops may 

respond differently with different biochars, as well as in different soils. Moreover, 

more research regarding the application techniques of biochar in the field is 

warranted. This is to avoid the loss of biochar via water and wind erosion, which can 

also affect humans through inhalation during the application. Finally, the effect of 

organic contaminants in the biochar, such as PAHs, heavy metals and pathogens must 

be taken into consideration. More research are urgently needed, particularly in this 

area to ensure the safety of biochar amendment, especially when applied at higher 

dosage.  

 

 

 



177 
 

REFERENCES 

 

Abdullah, W. W., Aminuddin, B., Salama, R., Cheah, U., Jamaluddin, J. & Osman, G. 

(2001).Site descriptions and project field activities in the Cameron Highlands. 

In ACIAR PROCEEDINGS, 3-9: ACIAR; 1998. 

Allen, S. E. (1989). Chemical analysis of Ecological Materials 2nd Edition. Oxford, 

England: Blackwell Scientific Publishers. 

Alling, V., Hale, S. E., Martinsen, V., Mulder, J., Smebye, A., Breedveld, G. D. & 

Cornelissen, G. (2014). The role of biochar in retaining nutrients in amended 

tropical soils. Journal of Plant Nutrition and Soil Science 177(5): 671-680. 

Ameloot, N., Graber, E. R., Verheijen, F. G. A. & De Neve, S. (2013).Interactions 

between biochar stability and soil organisms: review and research needs. In 

European Journal of Soil Science, Vol. 64, 379-390. 

Aminah, A., Wong, C. C. & Hashim, G. M. (2006).Production potential of Kenaf for 

forage and fibre on BRIS under smallholder production systems. The Fourth 

Technical Review Meeting on Research and Development of Kenaf 

Production for Animal Feed and Fibre, pp:15-29. 

Aminuddin, B., Abdullah, W. W., Cheah, U., Ghulam, M., Zulkefli, M. & Salama, R. 

(2001). Impact of intensive highland agriculture on the ecosystem. Journal Of 

Tropical Agriculture And Food Science 29: 69-76. 

Aminuddin, B., Ghulam, M., Abdullah, W. W., Zulkefli, M. & Salama, R. (2005). 

Sustainability of current agricultural practices in the Cameron Highlands, 

Malaysia. Water, Air, & Soil Pollution: Focus 5(1-2): 89-101. 

Amonette, J. E. & Joseph, S. (2009). Characteristics of biochar: Microchemical 

properties. Biochar for environmental management: science and technology 

33. 

Anders, E., Watzinger, A., Rempt, F., Kitzler, B., Wimmer, B., Zehetner, F., Stahr, K., 

Zechmeister-Boltenstern, S. & Soja, G. (2013). Biochar affects the structure 

rather than the total biomass of microbial communities in temperate soils. 

Agricultural and Food Science 22(4): 404-423. 

Anderson & Domsch (1978). A physiological method for the quantitative 

measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 

215-221. 

Anem, M. (2015).Cashing in on coconuts. http://www.thestar.com.my/news/ 

community/ [Date Access: 30 Nov 2015] 

Angst, T. E., Patterson, C. J., Reay, D. S., Anderson, P., Peshkur, T. A. & Sohi, S. P. 

(2013). Biochar diminishes nitrous oxide and nitrate leaching from diverse 

nutrient sources. Journal of Environmental Quality 42(3): 672-682. 

Antal, M. J. & Gronli, M. (2003). The art, science, and technology of charcoal 

production. Industrial & Engineering Chemistry Research 42(8): 1619-1640. 

Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., 

Kiyono, Y., Inoue, Y., Shiraiwa, T. & Horie, T. (2009). Biochar amendment 

techniques for upland rice production in Northern Laos: 1. Soil physical 

properties, leaf SPAD and grain yield. Field Crops Research 111(1): 81-84. 

Ascough, P. L., Sturrock, C. J. & Bird, M. I. (2010). Investigation of growth responses 

in saprophytic fungi to charred biomass. Isotopes in environmental and health 

studies 46(1): 64-77. 

Ashman, M. & Puri, G. (2013). Essential soil science: a clear and concise 

introduction to soil science. John Wiley & Sons. 



178 
 

Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. (2010). Potential mechanisms for 

achieving agricultural benefits from biochar application to temperate soils: a 

review. Plant and Soil 337(1-2): 1-18. 

Baldock, J. A. & Smernik, R. J. (2002). Chemical composition and bioavailability of 

thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry 

33(9): 1093-1109. 

Bargmann, I., Rillig, M., Buss, W., Kruse, A. & Kuecke, M. (2013). Hydrochar and 

biochar effects on germination of spring barley. Journal of Agronomy and 

Crop Science 199(5): 360-373. 

Barrow, C. (2012). Biochar: Potential for countering land degradation and for 

improving agriculture. Applied Geography 34: 21-28. 

Baum, E. & Weitner, S. (2006). Biochar application on soils and cellulosic ethanol 

production. Clean Air Task Force, Boston, MA, USA. 

Beck, D. A., Johnson, G. R. & Spolek, G. A. (2011). Amending greenroof soil with 

biochar to affect runoff water quantity and quality. Environmental Pollution 

159(8): 2111-2118. 

Berglund, L., DeLuca, T. & Zackrisson, O. (2004). Activated carbon amendments to 

soil alters nitrification rates in Scots pine forests. Soil Biology and 

Biochemistry 36(12): 2067-2073. 

Biederman, L. A. & Harpole, W. S. (2013). Biochar and its effects on plant 

productivity and nutrient cycling: a meta‐analysis. GCB Bioenergy 5(2): 202-

214. 

Biochar Malaysia (2015).UPM-Nasmech effort of producing EFB biochar - world's 

first. http://biocharmalaysia.blogspot.co.uk/ [Date Access: 27 Nov 2015] 

Bissonnais, Y. l. (1996). Aggregate stability and assessment of soil crustability and 

erodibility: I. Theory and methodology. European Journal of Soil Science 

47(4): 425-437. 

Blackwell, P., Riethmuller, G. & Collins, M. (2009). Biochar application to soil. 

Biochar for environmental management: science and technology: 207-226. 

Boucard, T. K., Charles, M., Bardgett, R. D., Paynter, C. D. & Semple, K. T. (2008). 

The impact of synthetic pyrethroid and organophosphate sheep dip 

formulations on microbial activity in soil. Environmental Pollution 153: 207-

214. 

Brady, N. & Weil, R. (2008).An introduction to the nature and properties of soils. 

Prentice Hall: Upper Saddle River, NJ, USA. 

Bremer, E. & Kuikma, P. (1994). Microbial Utilization Of 
14

C[U]Glucose In Soil Is 

Affected By The Amount And Timing Of Glucose Additions. Soil Biology and 

Biochemistry 26: 511-517. 

Bridle, T. & Pritchard, D. (2004). Energy and nutrient recovery from sewage sludge 

via pyrolysis. Water Science & Technology 50(9): 169-175. 

Brodowski, S., John, B., Flessa, H. & Amelung, W. (2006). Aggregate-occluded black 

carbon in soil. European Journal of Soil Science 4: 539-546. 

Brown, R. (2009). Biochar production technology. Biochar for environmental 

management: science and technology: 127-146. 

Bruun, E. W., Ambus, P., Egsgaard, H. & Hauggaard-Nielsen, H. (2012). Effects of 

slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil 

Biology and Biochemistry 46: 73-79. 

Bruun, S., Jensen, E. S. & Jensen, L. S. (2008). Microbial mineralization and 

assimilation of black carbon: Dependency on degree of thermal alteration. 

Organic Geochemistry 39(7): 839-845. 



179 
 

Bucheli, T. D. & Gustafsson, Ö. (2001). Ubiquitous observations of enhanced solid 

affinities for aromatic organochlorines in field situations: are in situ dissolved 

exposures overestimated by existing partitioning models? Environmental 

Toxicology and Chemistry 20(7): 1450-1456. 

Busch, D., Kammann, C., Grünhage, L. & Müller, C. (2012). Simple biotoxicity tests 

for evaluation of carbonaceous soil additives: Establishment and 

reproducibility of four test procedures. Journal of Environmental Quality 

41(4): 1023-1032. 

Cahn, M. D., Bouldin, D., Cravo, M. & Bowen, W. (1993). Cation and nitrate 

leaching in an Oxisol of the Brazilian Amazon. Agronomy Journal 85(2): 334-

340. 

Castells, E., Peñuelas, J. & Valentine, D. W. (2003). Influence of the phenolic 

compound bearing species Ledum palustre on soil N cycling in a boreal 

hardwood forest. Plant and Soil 251(1): 155-166. 

Cernansky, R. (2015).A charcoal rich product called biochar could boost agricultural 

yields a nd control pollution. Scientist are purtting the trendy substance to the 

test. In Nature. 

Cerri, C. E. P., Sparovek, G., Bernoux, M., Easterling, W. E., Melillo, J. M. & Cerri, 

C. C. (2007). Tropical agriculture and global warming: impacts and mitigation 

options. Scientia Agricola 64(1): 83-99. 

Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. (2008a). 

Agronomic values of greenwaste biochar as a soil amendment. Soil Research 

45(8): 629-634. 

Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. (2008b). Using 

poultry litter biochars as soil amendments. Soil Research 46(5): 437-444. 

Chan, K. Y. & Xu, Z. (2009). Biochar: nutrient properties and their enhancement. 

UK and USA: Earthscan. 

Chapman, H. D. (1965). Cation-exchange capacity. Methods of soil analysis. Part 2. 

Chemical and microbiological properties (methodsofsoilanb): 891-901. 

Chen, B., Zhou, D. & Zhu, L. (2008). Transitional Adsorption and Partition of 

Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with 

Different Pyrolytic Temperatures. Environmental Science Technology 42: 

5137-5143. 

Cheng, C.-H., Lehmann, J. & Engelhard, M. H. (2008). Natural oxidation of black 

carbon in soils: changes in molecular form and surface charge along a 

climosequence. Geochimica et Cosmochimica Acta 72(6): 1598-1610. 

Chenu, C., Hassink, J. & Bloem, J. (2001). Short-term changes in the spatial 

distribution of microorganisms in soil aggregates as affected by glucose 

addition. Biology and Fertility of Soils 34(5): 349-356. 

Chun, Y., Sheng, G., Chiou, C. T. & Xing, B. (2004). Compositions and sorptive 

properties of crop residue-derived chars. Environmental Science & Technology 

38(17): 4649-4655. 

Clough, T. J. & Condron, L. M. (2010). Biochar and the nitrogen cycle: Introduction. 

Journal of Environmental Quality 39(4): 1218-1223. 

Collins, H. (2008).Use of biochar from the pyrolysis of waste organic material as a 

soil amendment: Laboratory and greenhouse analyses. A quarterly progress 

report prepared for the biochar project. 

Cornelissen, G., Gustafsson, Ö., Bucheli, T. D., Jonker, M. T., Koelmans, A. A. & van 

Noort, P. C. (2005). Extensive sorption of organic compounds to black carbon, 

coal, and kerogen in sediments and soils: Mechanisms and consequences for 



180 
 

distribution, bioaccumulation, and biodegradation. Environmental Science & 

Technology 39(18): 6881-6895. 

Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., 

Rutherford, D. W., Sparrevik, M., Hale, S. E., Obia, A. & Mulder, J. (2013). 

Biochar effect on maize yield and soil characteristics in five conservation 

farming sites in Zambia. Agronomy 3(2): 256-274. 

Cross, A. & Sohi, S. P. (2011). The priming potential of biochar products in relation 

to labile carbon contents and soil organic matter status. Soil Biology and 

Biochemistry 43(10): 2127-2134. 

Cui, H.-J., Wang, M. K., Fu, M.-L. & Ci, E. (2011). Enhancing phosphorus 

availability in phosphorus-fertilized zones by reducing phosphate adsorbed on 

ferrihydrite using rice straw-derived biochar. Journal of Soils and Sediments 

11(7): 1135-1141. 

De Deyn, G. B., Quirk, H., Yi, Z., Oakley, S., Ostle, N. J. & Bardgett, R. D. (2009). 

Vegetation composition promotes carbon and nitrogen storage in model 

grassland communities of contrasting soil fertility. Journal of Ecology 97(5): 

864-875. 

Deal, C., Brewer, C. E., Brown, R. C., Okure, M. A. & Amoding, A. (2012). 

Comparison of kiln-derived and gasifier-derived biochars as soil amendments 

in the humid tropics. biomass and bioenergy 37: 161-168. 

DeLuca, T., MacKenzie, M., Gundale, M. & Holben, W. (2006). Wildfire-produced 

charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil 

Science Society of America Journal 70(2): 448-453. 

DeLuca, T., Nilsson, M.-C. & Zackrisson, O. (2002). Nitrogen mineralization and 

phenol accumulation along a fire chronosequence in northern Sweden. 

Oecologia 133(2): 206-214. 

Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from 

pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 

72(2): 243-248. 

Demirbas, A. & Arin, G. (2002). An overview of biomass pyrolysis. Energy sources 

24(5): 471-482. 

Dempster, D., Gleeson, D., Solaiman, Z., Jones, D., Murphy, D. & Gilkes, R. 

(2010).Biochar addition to soil changed microbial community structure and 

decreased microbial biomass carbon and net inorganic nitrogen mineralized. In 

19th World Congress of Soil Science, Soil Solutions for a Changing World, 

Brisbane, Australia. 

Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z. & Zhong, Z. K. (2010). Evaluation of 

biochar effects on nitrogen retention and leaching in multi-layered soil 

columns. Water Air Soil Pollution 213: 47-55. 

Downie, A., Crosky, A. & Munroe, P. (2009). Physical properties of biochar. Biochar 

for environmental management: science and technology: 13-32. 

Downie, A. E., Van Zwieten, L., Smernik, R. J., Morris, S. & Munroe, P. R. (2011). 

Terra Preta Australis: Reassessing the carbon storage capacity of temperate 

soils. Agriculture, ecosystems & environment 140(1): 137-147. 

Durenkamp, M., Luo, Y. & Brookes, P. C. (2010). Impact of black carbon addition to 

soil on the determination of soil microbial biomass by fumigation extraction. 

Soil Biology and Biochemistry 42(11): 2026-2029. 

Fageria, N. & Baligar, V. (2008). Ameliorating soil acidity of tropical Oxisols by 

liming for sustainable crop production. Advances in agronomy 99: 345-399. 



181 
 

Farres, P. (1987). The dynamics of rainsplash erosion and the role of soil aggregate 

stability. Catena 14(1): 119-130. 

Fierer, N., Schimel, J. P., Cates, R. G. & Zou, J. (2001). Influence of balsam poplar 

tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain 

soils. Soil Biology and Biochemistry 33(12): 1827-1839. 

Galinato, S. P., Yoder, J. K. & Granatstein, D. (2011). The economic value of biochar 

in crop production and carbon sequestration. Energy Policy 39(10): 6344-

6350. 

Gardner, W. H. & Klute, A. (1986). Water content. Methods of soil analysis. Part 1. 

Physical and mineralogical methods: 493-544. 

Gaskin, J., Steiner, C., Harris, K., Das, K. & Bibens, B. (2008). Effect of low-

temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe 

51(6): 2061-2069. 

Gaskin, J. W., Speir, R. A., Harris, K., Das, K., Lee, R. D., Morris, L. A. & Fisher, D. 

S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn 

nutrient status, and yield. Agronomy Journal 102(2): 623-633. 

Gavin, D. G., Brubaker, L. B. & Lertzman, K. P. (2003). Holocene fire history of a 

coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 

84(1): 186-201. 

Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. (2001). The'Terra 

Preta'phenomenon: a model for sustainable agriculture in the humid tropics. 

Naturwissenschaften 88(1): 37-41. 

Glaser, B., Lehmann, J. & Zech, W. (2002). Ameliorating physical and chemical 

properties of highly weathered soils in the tropics with charcoal–a review. 

Biology and Fertility of Soils 35(4): 219-230. 

Glaser, B., Parr, M., Braun, C. & Kopolo, G. (2009). Biochar is carbon negative. 

Nature Geoscience 2(1): 2-2. 

Glaser, B. & Woods, W. I. (2004). Amazonian Dark Earths: Explorations in space 

and time. Springer Verlag. 

Gouveia, L. P. S. & Aravena, R. (2001). Radiocarbon dating of total soil organic 

matter and humin fraction and its comparison with 14C ages of fossil charcoal. 

Radiocarbon 43(2B): 595-601. 

Gronwald, M., Don, A., Tiemeyer, B. & Helfrich, M. (2015). Effects of fresh and 

aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption 

in agricultural soils. SOIL 1. 

Guha, R., Grover, P. D. & Guha, B. (1986). Low temperature pyrolysis of pine 

needles, Research and Industry,. 31: 60-63. 

Guo, Y. & Rockstraw, D. A. (2007). Activated carbons prepared from rice hull by 

one-step phosphoric acid activation. Microporous and Mesoporous Materials 

100(1): 12-19. 

Haefele, S., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A., Pfeiffer, E. & 

Knoblauch, C. (2011). Effects and fate of biochar from rice residues in rice-

based systems. Field Crops Research 121(3): 430-440. 

Hale, S., Alling, V., Martinsen, V., Mulder, J., Breedveld, G. & Cornelissen, G. 

(2013). The sorption and desorption of phosphate-P, ammonium-N and nitrate-

N in cacao shell and corn cob biochars. Chemosphere 91(11): 1612-1619. 

Hale, S. E., Hanley, K., Lehmann, J., Zimmerman, A. R. & Cornelissen, G. (2011). 

Effects of chemical, biological and physical aging as well as soil addition on 

the sorption of pyrene to activated carbon and biochar. Environmental Science 

and Technology 45: 10445-10453. 



182 
 

Hamer, U. & Marschner, B. (2002). Priming effects of sugars, amino acids, organic 

acids and catechol on the mineralization of lignin and peat. Journal of Plant 

Nutrition and Soil Science 165: 261-268. 

Hamer, U., Marschner, B., Brodowski, S. & Amelung, W. (2004). Interactive priming 

of black carbon and glucose mineralisation. Organic Geochemistry 35(7): 823-

830. 

Haruna, A. O., Ch'ng, H. Y. & Ab Majid, N. M. (2012). Rehabilitation of degraded 

Malaysian tropical forests and soil carbon storage. Serdang: University Putra 

Malaysia Press. 

Hashim, G. & Wan Abdullah, W. (2001).Soil erosion processes and nutrient loss in 

highland agricultural areas. In Agrochemical pollution of water resources. 

Proceedings of a conf. held on 16-18 Feb. 2000 at Hat Yai., 17-25. 

Herath, H. M. S. K., Camps-Arbestain, M. & Hedley, M. (2013). Effect of biochar on 

soil physical properties in two contrasting soils: An Alfisol and an Andisol. 

Geoderma 209-210: 188-197. 

Hiller, E., Fargašová, A., Zemanova, L. & Bartal, M. (2007). Influence of wheat ash 

on the MCPA immobilization in agricultural soils. Bulletin of environmental 

contamination and toxicology 79(4): 478-481. 

Horne, P. A. & Williams, P. T. (1996). Influence of temperature on the products from 

the flash pyrolysis of biomass. Fuel 75(9): 1051-1059. 

Hossain, M. K., Strezov, V., Chan, K. Y. & Nelson, P. F. (2010). Agronomic 

properties of wastewater sludge biochar and bioavailability of metals in 

production of cherry tomato (Lycopersicon esculentum). Chemosphere 78(9): 

1167-1171. 

Hui Ling, P., Ahmad, S. H., Rosenani, A. B. & Tajidin, N. E. (2012).Effect rice husk 

biochar on growth and quality of kangkung (Ipomeareptans). In Soil Science 

Conference of Malaysia 2012, 451-457. 

IBI (2012a).Biochar technology. 

IBI (2012b).Standardized Product Definition and Product Testing Guidelines for 

Biochar That Is Used in Soil. 

Inal, A., Gunes, A., Sahin, O., Taskin, M. & Kaya, E. (2015). Impacts of biochar and 

processed poultry manure, applied to a calcareous soil, on the growth of bean 

and maize. Soil Use and Management 31(1): 106-113. 

Ishak, C. F. & Jusop, S. (2010). Weathered tropical soils: the ultisols and oxisols. 

Serdang: Universiti Putra Malaysia Press. 

Islami, T., Guritno, B., Basuki, N. & Suryanto, A. (2011). Biochar for sustaining 

productivity of cassava based cropping systems in the degraded lands of East 

Java, Indonesia. J. Trop. Agric 49: 31-39. 

ISO11274 (1998).Soil Quality - Determination of the water retention characteristic - 

Laboratory methods. (Ed H. a. Environment). British Standard BS ISO 

11274:1998. 

ISO11732 (1997).Determination of ammonium nitrogen by flow analysis (CFA and 

FIA) and spectrometric detection. International Organization for 

Standardization. 

ISO13395 (1996).Water quality - Determination of nitrite nitrogen and nitrate 

nitrogen and the sum of both by flow analysis (CFA and FIA and 

spectrometric detection. International Organization for Standardization. 

Jay, C., Fitzgerald, J., Hipps, N. & Atkinson, C. (2015). Why short‐term biochar 

application has no yield benefits: evidence from three field‐grown crops. Soil 

Use and Management. 



183 
 

Jeffery, S., Verheijen, F. G. A., van der Velde, M. & Bastos, A. C. (2011). A 

quantitative review of the effects of biochar application to soils on crop 

productivity using meta-analysis. Agriculture, Ecosystems & Environment 

144(1): 175-187. 

Jin, H. (2010).Characterization of microbial life colonizing biochar and biochar-

amended soils. Cornell University, Ithaca NY. 

Johnson, D., Martin Krsek, Elizabeth M. H. Wellington, Andrew W. Stott, Lisa Cole, 

Richard D. Bardgett, David J. Read & Leake, J. R. (2005). Soil Invertebrates 

Disrupt Carbon Flow Through Fungal Networks. Science 309: 1047-1047. 

Jones, D., Edwards-Jones, G. & Murphy, D. (2011). Biochar mediated alterations in 

herbicide breakdown and leaching in soil. Soil Biology and Biochemistry 

43(4): 804-813. 

Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. (2012). 

Biochar-mediated changes in soil quality and plant growth in a three year field 

trial. Soil Biology and Biochemistry 45: 113-124. 

Kammann, C., Ratering, S., Eckhard, C. & Müller, C. (2012). Biochar and hydrochar 

effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes 

from soils. Journal of Environmental Quality 41(4): 1052-1066. 

Kandeler, E. (2007). Physiological and biochemical methods for studying soil biota 

and their function. Soil microbiology, ecology, and biochemistry: 53-83. 

Karer, J., Wimmer, B., Zehetner, F., Kloss, S. & Soja, G. (2013). Biochar application 

to temperate soils: effects on nutrient uptake and crop yield conditions. 

Agricultural and Food Science 22: 390-403. 

Karhu, K., Mattila, T., Bergström, I. & Regina, K. (2011). Biochar addition to 

agricultural soil increased CH< sub> 4</sub> uptake and water holding 

capacity–Results from a short-term pilot field study. Agriculture, Ecosystems 

& Environment 140(1): 309-313. 

Kemper, W. & Chepil, W. (1965). Size distribution of aggregates. Methods of Soil 

Analysis. Part 1. Physical and Mineralogical Properties, Including Statistics 

of Measurement and Sampling (methodsofsoilana): 499-510. 

Khan, M. A., Kim, K.-W., Mingzhi, W., Lim, B.-K., Lee, W.-H. & Lee, J.-Y. (2008). 

Nutrient-impregnated charcoal: an environmentally friendly slow-release 

fertilizer. The Environmentalist 28(3): 231-235. 

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., 

Schwanninger, M., Gerzabek, M. H. & Soja, G. (2012). Characterization of 

slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on 

biochar properties. Journal of Environmental Quality 41(4): 990-1000. 

Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F. & Soja, G. (2014). 

Biochar application to temperate soils: Effects on soil fertility and crop growth 

under greenhouse conditions. Plant Nutrient Soil Science 177: 3-15. 

Klute (1986). Methods of soil analysis part 1 - physical and mineralogical methods, 

2nd edition. Madison, Wisconsin, USA. 

Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. (2011). Biochar for the 

mitigation of nitrate leaching from soil amended with biosolids. Science of the 

Total Environment 409: 3206-3210. 

Kolb, S. E., Fermanich, K. J. & Dornbush, M. E. (2009). Effects of charcoal quantity 

on microbial biomass and activity in temperate soils. Soil Science Society of 

America 73(4): 1173-1181. 



184 
 

Kollah, B., Dubey, G., Parasai, P., Saha, J. K., Gangil, S. & Mohanty, S. R. (2015). 

Interactive effect of biochar size and organic amendments on methane 

consumption in a tropical vertisol. Soil Use and Management 31(1): 52-59. 

Kong, S.-H., Loh, S.-K., Bachmann, R. T., Rahim, S. A. & Salimon, J. (2014). 

Biochar from oil palm biomass: A review of its potential and challenges. 

Renewable and Sustainable Energy Reviews 39: 729-739. 

Kuka, K., Franko, U., Hanke, K. & Finkenbein, P. (2013). Investigation of different 

amendments for dump reclamation in Northern Vietnam. Journal of 

Geochemical Exploration 132: 41-53. 

Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. & Xu, X. (2009). Black 

carbon decomposition and incorporation into soil microbial biomass estimated 

by 14C labeling. Soil Biology and Biochemistry 41(2): 210-219. 

Ladygina, N. & Rineau, F. (2013). Biochar and soil biota. CRC Press. 

Laird, D. A., Brown, R. C., Amonette, J. E. & Lehmann, J. (2009). Review of the 

pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts 

and Biorefining 3(5): 547-562. 

Lal, R., Follett, R. F., Stewart, B. & Kimble, J. M. (2007). Soil carbon sequestration to 

mitigate climate change and advance food security. Soil Science 172(12): 943-

956. 

Lehmann, J. (2003). Amazonian dark earths: origin, properties, management. 

Springer. 

Lehmann, J. (2007a). Bio-energy in the black. Frontiers in Ecology and the 

Environment 5(7): 381-387. 

Lehmann, J. (2007b). A handful of carbon. Nature 447(7141): 143-144. 

Lehmann, J., Czimczik, C., Laird, D. & Sohi, S. (2009). Stability of biochar in soil. 

Biochar for environmental management: science and technology: 183-206. 

Lehmann, J., Gaunt, J. & Rondon, M. (2006). Bio-char sequestration in terrestrial 

ecosystems–a review. Mitigation and adaptation strategies for global change 

11(2): 395-419. 

Lehmann, J. & Joseph, S. (2009). Biochar for environmental management: science 

and technology. Earthscan. 

Lehmann, J., Kern, D., German, L., Mccann, J., Martins, G. C. & Moreira, A. 

(2003).Soil fertility and production potential. In Amazonian dark earths, 105-

124: Springer. 

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C. & Crowley, D. 

(2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry 

43(9): 1812-1836. 

Lehmann, J., Solomon, D., Kinyangi, J., Dathe, L., Wirick, S. & Jacobsen, C. (2008). 

Spatial complexity of soil organic matter forms at nanometre scales. Nature 

Geoscience 1(4): 238-242. 

Lentz, R. & Ippolito, J. (2012). Biochar and manure affect calcareous soil and corn 

silage nutrient concentrations and uptake. Journal of Environmental Quality 

41(4): 1033-1043. 

Liang, B., Lehmann, J., Sohi, S. P., Thies, J. E., O’Neill, B., Trujillo, L., Gaunt, J., 

Solomon, D., Grossman, J. & Neves, E. G. (2010). Black carbon affects the 

cycling of non-black carbon in soil. Organic Geochemistry 41(2): 206-213. 

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., 

Skjemstad, J., Thies, J., Luizao, F. & Petersen, J. (2006). Black carbon 

increases cation exchange capacity in soils. Soil Science Society of America 

Journal 70(5): 1719-1730. 



185 
 

Lin, X., Xie, Z., Zheng, J., Liu, Q., Bei, Q. & Zhu, J. (2015). Effects of biochar 

application on greenhouse gas emissions, carbon sequestration and crop 

growth in coastal saline soil. European Journal of Soil Science 66(2): 329-338. 

Liu, J., Schulz, H., Brandle, S., Miehtke, H., Huwe, B. & Glaser, B. (2012). Short-

term effect of biochar and compost on soil fertility and water status of a 

Dystiric Cambisol in NE Germany under field conditions. Plant Nutrient Soil 

Science 175: 698-707. 

Liu, X. H. & Zhang, X. C. (2012). Effects of biochar on pH of alkaline soils in the 

loess plateu: results from incubation experiments. International Journal of 

Agriculture and Biology 14: 745-750. 

Loch, R. (1994). A method for measuring aggregate water stability of dryland soils 

with relevance to surface seal development. Soil Research 32(4): 687-700. 

Low, A. (1967). Measurement of stability of moist soil aggregates to falling 

waterdrops according to Low. West-European methods for soil structure 

determination: 51-78. 

Major, J., Lehmann, J., Rondon, M. & Goodale, C. (2010a). Fate of soil‐applied black 

carbon: downward migration, leaching and soil respiration. Global Change 

Biology 16(4): 1366-1379. 

Major, J., Rondon, M., Molina, D., Riha, S. J. & Lehmann, J. (2010b). Maize yield 

and nutrition during 4 years after biochar application to a Colombian savanna 

oxisol. Plant and Soil 333(1-2): 117-128. 

Major, J., Steiner, C., Downie, A. & Lehmann, J. (2009). Biochar effects on nutrient 

leaching. Biochar for environmental management: science and technology 

271. 

Malisa, M., Hamdan, J. & Husni, M. (2011). Yield Response of Kenaf (Hibiscus 

cannabinus L.) to Different Rates of Charcoal and Nitrogen Fertilizer on Bris 

Soils in Malaysia. Middle-East Journal of Scientific Research 10(1): 54-59. 

Malisa, M. N., Hamdan, J. & Husni, M. H. A. (2012).Evaluating charcoal as an 

amendment for sustainable kenaf (Hibiscus cannabinus L.) cultivation on 

sandy BRIS soil in Malaysia. In Soil Science Conference of Malaysia 2012, 

34-41. 

Manyà, J. J. (2012). Pyrolysis for biochar purposes: a review to establish current 

knowledge gaps and research needs. Environmental Science & Technology 

46(15): 7939-7954. 

Masulili, A., Utomo, W. H. & Syechfani, M. (2010). Rice husk biochar for rice based 

cropping system in acid soil 1. The characteristics of rice husk biochar and its 

influence on the properties of acid sulfate soils and rice growth in West 

Kalimantan, Indonesia. Journal of Agricultural Science 2(1): p39. 

Matlack, G. R. (2001). Factors determining the distribution of soil nematodes in a 

commercial forest landscape. Forest Ecology and Management 146: 129-143. 

Mbagwu, J. S. C. & Piccolo, A. (1997).The Role of Humic Substances in the 

Ecosystems and in Environmental Protection: . In Proceedings of the 8th 

Meeting of the International Humic Substances Society, Poland: Polish Society 

of Humic Substances, Polish Chapter of the International Humic Substances 

Society. 

McCormack, S. A. (2015).Soil invertebrate regulation of terrestrial carbon cycling: 

responses to biochar. In Lancaster Environment Centre, Vol. Doctor of 

Philosophy: Lancaster University. 



186 
 

McCormack, S. A., Ostle, N., Bardgett, R. D., Hopkins, D. W. & Vanbergen, A. J. 

(2013). Biochar in bioenergy cropping systems: impacts on soil faunal 

communities and linked ecosystem processes. GCB Bioenergy 5(2): 81-95. 

Mekuria, W. & Noble, A. (2013). The role of biochar in ameliorating disturbed soils 

and sequestering soil carbon in tropical agricultural production systems. 

Applied and Environmental Soil Science 2013. 

Méndez, A., Gómez, A., Paz-Ferreiro, J. & Gascó, G. (2012). Effects of sewage 

sludge biochar on plant metal availability after application to a Mediterranean 

soil. Chemosphere 89(11): 1354-1359. 

Miller, R. W., Gardiner, D. T. & Miller, J. U. (1998). Soils in our environment. 

Prentice hall Upper Saddle River, NJ. 

Mukherjee, A., Zimmerman, A. & Harris, W. (2011). Surface chemistry variations 

among a series of laboratory-produced biochars. Geoderma 163(3): 247-255. 

NGI (2012).Biochar – mitigating climate change and improving soil quality. 

Norwegian Geotechnical Institute. 

Nguyen, C. & Guckert, A. (2001). Short-term utilisation of 14 C-[U] glucose by soil 

microorganisms in relation to carbon availability. Soil Biology and 

Biochemistry 33(1): 53-60. 

Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. (2011). Soil biodiversity and 

carbon cycling: a review and synthesis of studies examining diversity-function 

relationships. European Journal of Soil Science 62(1): 105-116. 

Novak, J. M., Busscher, W. J., Laird, D. A., Ahmedna, M. A., Watts, D. W. & 

Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a 

Southern Coastal plain soil. Soil Science 174: 105-112. 

Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A. & 

Niandou, M. A. S. (2010). Short-term CO2 mineralization after additions of 

biochar and switchgrass to a Typic Kandiudult. Geoderma 154: 281-288. 

O’Neill, B., Grossman, J., Tsai, M., Gomes, J., Lehmann, J., Peterson, J., Neves, E. & 

Thies, J. E. (2009). Bacterial community composition in Brazilian anthrosols 

and adjacent soils characterized using culturing and molecular identification. 

Microbial Ecology 58(1): 23-35. 

Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E. & van de Giesen, N. (2008). Effects of 

charcoal production on soil physical properties in Ghana. Journal of Plant 

Nutrition and Soil Science 171(4): 591-596. 

Pahang State, M. (2015).Pahang State, Malaysia (Online Image). http://www.my-

rummy.com/bera/tasik bera.html [Date Access: 12 Nov 2015]  

Painter, T. J. (1998). Carbohydrate polymers in food preservation: an integrated view 

of the Maillard reaction with special reference to discoveries of preserved 

foods in Sphagnum-dominated peat bogs. Carbohydrate Polymers 36(4): 335-

347. 

Peng, X., Ye, L., Wang, C., Zhou, H. & Sun, B. (2011). Temperature-and duration-

dependent rice straw-derived biochar: Characteristics and its effects on soil 

properties of an Ultisol in southern China. Soil and Tillage Research 112(2): 

159-166. 

Petter, F. A., Madari, B. E., Silva, M. A. S. d., Carneiro, M. A. C., Carvalho, M. T. d. 

M., Júnior, M., Hur, B. & Pacheco, L. P. (2012). Soil fertility and upland rice 

yield after biochar application in the Cerrado. Pesquisa Agropecuária 

Brasileira 47(5): 699-706. 



187 
 

Pietikainen, J., Kikkila, O. and Fritze, H. (2000). Charcoal as a habitat for microbes 

and its effects on the microbial community of the underlying humus. Oikos 

89(2): 231-242. 

Pojasok, T. & Kay, B. (1990). Assessment of a combination of wet sieving and 

turbidimetry to characterize the structural stability of moist aggregates. 

Canadian Journal of Soil Science 70(1): 33-42. 

Ponge, J.-F., Topoliantz, S., Ballof, S., Rossi, J.-P., Lavelle, P., Betsch, J.-M. & 

Gaucher, P. (2006). Ingestion of charcoal by the Amazonian earthworm 

Pontoscolex corethrurus: A potential for tropical soil fertility. Soil Biology and 

Biochemistry 38(7): 2008-2009. 

Powlson, D. & Jenkinson, D. (1976). The effects of biocidal treatments on metabolism 

in soil—II. Gamma irradiation, autoclaving, air-drying and fumigation. Soil 

Biology and Biochemistry 8(3): 179-188. 

Qayyum, M. F., Abid, M., Subhan Danish, M. K. S. & Ali, M. A. (2015). EFFECTS 

OF VARIOUS BIOCHARS ON SEED GERMINATION AND CARBON 

MINERALIZATION IN AN ALKALINE SOIL. Pak. J. Agri. Sci 51(4): 977-

982. 

Quilliam, R. S., Glanville, H. C., Wade, S. C. & Jones, D. L. (2013a). Life in the 

‘charosphere’–Does biochar in agricultural soil provide a significant habitat 

for microorganisms? Soil Biology and Biochemistry 65: 287-293. 

Quilliam, R. S., Marsden Karina, A., Gertler, C., Rousk, J., DeLuca, T. H. & Jones, D. 

L. (2012). Nutrient dynamics, microbial growth and weed emergence in 

biochar amended soil are influenced by time since applicatioan and 

reapplication rate. Agriculture, Ecosystem and Environment 158: 192-199. 

Quilliam, R. S., Rangecroft, S., Emmett, B. A., Deluca, T. H. & Jones, D. L. (2013b). 

Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) 

compounds in agricultural soils? GCB Bioenergy 5(2): 96-103. 

Radojevic, M. & Baskin, V. N. (1999). Practical environmental analysis. Royal 

Society of Chemistry. 

Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R. & Lehmann, J. 

(2012). Corn growth and nitrogen nutrition after additions of biochars with 

varying properties to a temperate soil. Biology and Fertility of Soils 48(3): 

271-284. 

Renner, R. (2007). Rethinking biochar. Environmental Science & Technology 41(17): 

5932-5933. 

Revision1 (1999). Added AA3 data; changed flow diagram. Bran + Luebbe. 

Revision2 (2000). Extended high range, added operating note 9,addedorn/grn pump 

tube tolist of consumables.: Bran + Luebbe. 

Revision3 (2000). Extended high range, added operating note 8, added orn/grn pump 

tube list of consumables. Bran + Luebbe. 

Rhodes, A. H., Carlin, A. & Semple, K. T. (2008). Impact of black carbon in the 

extraction and mineralization of phenanthrene in soil. Environmental Science 

& Technology 42(3): 740-745. 

Rogovska, N., Laird, D., Cruse, R., Trabue, S. & Heaton, E. (2012). Germination tests 

for assessing biochar quality. Journal of Environmental Quality 41(4): 1014-

1022. 

Rondon, M. A., Lehmann, J., Ramírez, J. & Hurtado, M. (2007). Biological nitrogen 

fixation by common beans (Phaseolus vulgaris L.) increases with bio-char 

additions. Biology and Fertility of Soils 43(6): 699-708. 



188 
 

Rosenani, A. B., Ahmad, S. H., Nurul, A. S., Khairunissa, M. Y., Tan, W. L. & Lee, 

S. C. K. (2012a).Biochar as a soil amendment to improve crop yield, soil 

health and carbon sequestration for climate change mitigation. In Soil Science 

Conference of Malaysia 2012, 5-14. 

Rosenani, A. B., Mohd. Nurhafiz, S. & Tan, W. L. (2012b).Effect of oil palm empty 

fruit bunch biochar soil amendment on nutrient leaching and plant growth of 

sweet corn (Zea mays). In Soil Science Conference of Malaysia 2012, 475-479. 

Rosenani, A. B., Zahidah, R., Ahmad, S. H., Jalili Seh-Bardan, B. & Coulter, C. 

(2013).Empty fruit bunch biochar on rice cultivated in an acid sulphate soil 

system of rice intensification. In Soil Science Conference of Malaysia 2013, 

145-149 (Eds W. R. Kadir, R. Abdullah, M. F. Ishak, C. F. Ishak, L. Y. Ann, 

Z. Malik and C. T. Boon Sung). Gambang, Phanag: Malaysian Society of Soil 

Science. 

Rumpel, C., Chaplot, V., Planchon, O., Bernadou, J., Valentin, C. & Mariotti, A. 

(2006). Preferential erosion of black carbon on steep slopes with slash and 

burn agriculture. Catena 65(1): 30-40. 

Salama, R. B. & Kookana, R. S. (2001).Agrochemical Pollution of Water Resources. 

(Eds R. B. Salama and R. S. Kookana). Canberra: Australian Centre for 

International Agricultural Research. 

Schnell, R. W., Vietor, D. M., Provin, T. L., Munster, C. L. & Capareda, S. (2012). 

Capacity of biochar application to maintain energy crop productivity: Soil 

chemistry, sorghum growth, and runoff water quality effects. Journal of 

Environmental Quality 41(4): 1044-1051. 

Schulz, H. & Glaser, B. (2012). Effects of biochar compared to organic and inorganic 

fertilizers on soil quality and plant growth in a greenhouse experiment. Zeits 

Pflanzenernahr Bodenkunde-Journ Plant Nutrit Soil Science 175(3): 410. 

Scott, H. L., Ponsonby, D. & Atkinson, C. J. (2014). Biochar: an improver of nutrient 

a nd soil water availability - what is the evidence? CAB Reviews 9(019): 1-19. 

Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A. & Harms, H. (2004). 

Peer Reviewed: Defining bioavailability and bioaccessibility of contaminated 

soil and sediment is complicated. Environmental Science & Technology 

38(12): 228A-231A. 

Semple, K. T., Riding, M. J., McAllister, L. E., Sopena-Vazquez, F. & Bending, G. D. 

(2013). Impact of black carbon on the bioaccessibility of organic contaminants 

in soil. Journal of hazardous materials. 

Shackley, S., Hammond, J., Gaunt, J. & Ibarrola, R. (2011). The feasibility and costs 

of biochar deployment in the UK. Carbon Management 2(3): 335-356. 

Shackley, S., Sohi, S., Brownsort, P., Carter, S., Cook, J., Cunningham, C., Gaunt, J., 

Hammond, J., Ibarrola, R. & Mašek, O. (2010). An assessment of the benefits 

and issues associated with the application of biochar to soil. Department for 

Environment, Food and Rural Affairs, UK Government, London. 

Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and 

Applied Pyrolysis 3(4): 283-305. 

Shamshuddin, J., Sharifuddin, H. & Bell, L. (1998). Longevity of ground magnesium 

limestone applied to an Ultisol. Communications in Soil Science & Plant 

Analysis 29(9-10): 1299-1313. 

Sigua, G., Novak, J., Watts, D., Cantrell, K., Shumaker, P., Szögi, A. & Johnson, M. 

(2014). Carbon mineralization in two ultisols amended with different sources 

and particle sizes of pyrolyzed biochar. Chemosphere 103: 313-321. 



189 
 

Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. (2010). Influence 

of biochars on nitrous oxide emission and nitrogen leaching from two 

contrasting soils. Journal of Environmental Quality 39(4): 1224-1235. 

Siti Norayu, O. B., Hawa, Z. J. & Radziah, O. (2012).Effect of biochar on growth 

development of three Labisiapumila Benth Varieties. In Soil Science 

Conference of Malaysia 2012, 430-433. 

Smernik, R. J. (2009). Biochar and sorption of organic compounds. Biochar and 

Environmental Management: Science and Technology.’(Eds J Lehmann and S 

Joseph) pp: 289-300. 

Sohi, S., Krull, E., Lopez-Capel, E. & Bol, R. (2010). A review of biochar and its use 

and function in soil. Advances in agronomy 105: 47-82. 

Sombroek, W., Ruivo, M., Fearnside, P., Glaser, B. & Lehmann, J. (2004).Amazonian 

Dark Earths as Carbon Stores and Sinks. In Amazonian Dark Earths, 125-139 

(Eds J. Lehmann, D. Kern, B. Glaser and W. Wodos). Springer Netherlands. 

Sopena, F., Semple, K., Sohi, S. & Bending, G. (2012). Assessing the chemical and 

biological accessibility of the herbicide isoproturon in soil amended with 

biochar. Chemosphere 88(1): 77-83. 

Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. 

P., Boateng, A. A., Lima, I. M., Lamb, M. C. & McAloon, A. J. (2012). 

Biochar: a synthesis of its agronomic impact beyond carbon sequestration. 

Journal of Environmental Quality 41(4): 973-989. 

Staunton, S. & Leprince, F. (1996). Effect of pH and some organic anions on the 

solubility of soil phosphate: implications for P bioavailability. Soil Science 

47(2): 231-239. 

Steinbeiss, S., Gleixner, G. & Antonietti, M. (2009). Effect of biochar amendment on 

soil carbon balance and soil microbial activity. Soil Biology and Biochemistry 

41(6): 1301-1310. 

Steiner, C., Glaser, B., Teixeira, W. G., Lehmann, J., Blum, W. E. H. & Zech, W. 

(2008). Nitrogen retention and plant uptake on a highly weathered central 

Amazonian Ferralsol amended with compost and charcoal. Journal of Plant 

Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und 

Bodenkunde 171(6): 893-899. 

Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E. 

& Zech, W. (2007). Long term effects of manure, charcoal and mineral 

fertilization on crop production and fertility on a highly weathered Central 

Amazonian upland soil. Plant and Soil 291(1-2): 275-290. 

Sukartono, W. H., Utomo, Z., Kusuma & Nugroho, W. H. (2011). Soil fertility status, 

nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle 

manure application on sandy soils of Lombok, Indonesia. Journal of Tropical 

Agriculture 49: 47-52. 

Tagoe, S. O., Horiuchi, T. & Matsui, T. (2008). Effects of carbonized and dried 

chicken manures on the growth, yield, and N content of soybean. Plant and 

Soil 306(1-2): 211-220. 

Tammeorg, P.,, Simojoki, A., Makela, P., Stoddard, F. L., Alakku, L. & Helenius, J. 

(2013). Biochar application to a fertile sandy clay loam in boreal condition: 

Effects on soil properties and yield formation of wheat, turnip rape and faba 

bean. Plant and Soil 374: 89-107. 

Thies, J. E. & Rillig, M. C. (2009). Characteristics of biochar: biological properties. 

Biochar for environmental management: science and technology: 85-105. 



190 
 

Tiessen, H., Cuevas, E. & Chacon, P. (1994).The role of soil organic matter in 

sustaining soil fertility. In Nature, Vol. 371, 783-785. 

Topoliantz, S. & Ponge, J.-F. (2003). Burrowing activity of the geophagous 

earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in the 

presence of charcoal. Applied Soil Ecology 23(3): 267-271. 

Topoliantz, S. & Ponge, J.-F. (2005). Charcoal consumption and casting activity by 

Pontoscolex corethrurus (Glossoscolecidae). Applied Soil Ecology 28(3): 217-

224. 

Topoliantz, S., Ponge, J.-F. & Ballof, S. (2005). Manioc peel and charcoal: a potential 

organic amendment for sustainable soil fertility in the tropics. Biology and 

Fertility of Soils 41(1): 15-21. 

Towell, M. G., Browne, L. A., Paton, G. I. & Semple, K. T. (2011). Impact of carbon 

nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] 

pyrene in soil. Environ Pollut 159(3): 706-715. 

Tsai, W., Lee, M. & Chang, Y. (2007). Fast pyrolysis of rice husk: Product yields and 

compositions. Bioresource technology 98(1): 22-28. 

Tsai, W. T., Lee, M. K. & Chang, Y. M. (2006). Fast pyrolysis of rice husk: Product 

yields and composition. Bioresource technology 76(230-237). 

Uzoma, K., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A. & Nishihara, E. (2011). 

Effect of cow manure biochar on maize productivity under sandy soil 

condition. Soil Use and Management 27(2): 205-212. 

Uzun, B. B., Pütün, A. E. & Pütün, E. (2006). Fast pyrolysis of soybean cake: Product 

yields and compositions. Bioresource technology 97(4): 569-576. 

Van, W. (1992). Soils of the tropics.Their properties and appraisal. 

Van Zwieten, L., Kimber, S., Downie, A., Chan, K., Cowie, A., Wainberg, R. & 

Morris, S. (2007).Papermill char: benefits to soil health and plant production. 

In Proceedings of the conference of the international agrichar Initiative, Vol. 

30. 

Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S. & 

Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste 

on agronomic performance and soil fertility. Plant and Soil 327(1-2): 235-246. 

Van Zwieten, L., Singh, B., Joseph, S., Kimber, S., Cowie, A. & Chan, K. Y. (2009). 

Biochar and emissions of non-CO2 greenhouse gases from soil. London: 

Earthscan. 

Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M. & Diafas, I. (2010). Biochar 

application to soils: a critical scientific review of effects on soil properties, 

processes and functions. Joint Research Centre, Ispra, Italy. 

Victoria, R., Banwart, S., Black, H., Ingram, J., Joosten, H., Milne, E., Noellemeyer, 

E. & Baskin, Y. (2012). The benefits of soil carbon. Emerging issues in our 

global environment. UNEP Yearbook. 

Wang, D., Zhang, W., Hao, X. & Zhou, D. (2013). Transport of biochar particles in 

saturated granular media: effects of pyrolysis temperature and particle size. 

Environmental Science & Technology 47(2): 821-828. 

Wang, J., Chen, Z., Xiong, Z., Chen, C., Xu, X., Zhou, Q. & Kuzyakov, Y. (2015a). 

Effects of biochar amendment on greenhouse gas emissions, net ecosystem 

carbon budget and properties of an acidic soil under intensive vegetable 

production. Soil Use and Management 31(3): 375-383. 

Wang, J., Xiong, Z. & Kuzyakov, Y. (2015b). Biochar stability in soil: meta‐analysis 

of decomposition and priming effects. GCB Bioenergy. 



191 
 

Wang, T.-T., Cheng, J., Liu, X.-J., Jiang, W., Zhang, C.-L. & Yu, X.-Y. (2012). Effect 

of biochar amendment on the bioavailability of pesticide chlorantraniliprole in 

soil to earthworm. Ecotoxicology and environmental safety. 

Wardle, D. A., Nilsson, M. C. & Zackrisson, O. (2008). Fire-derived charcoal causes 

loss of forest humus. Science 320: 629. 

Warnock, D. D., Lehmann, J., Kuyper, T. W. & Rillig, M. C. (2007). Mycorrhizal 

responses to biochar in soil–concepts and mechanisms. Plant and Soil 300(1-

2): 9-20. 

White, C. S. (1994). Monoterpenes: their effects on ecosystem nutrient cycling. 

Journal of Chemical Ecology 20(6): 1381-1406. 

Wilke, B.-M. (2005).Determination of chemical and physical soil properties. In 

Monitoring and Assessing Soil Bioremediation, 47-95: Springer. 

Wilkinson, M. T., Richards, P. J. & Humphreys, G. S. (2009). Breaking ground: 

Pedological, geological, and ecological implications of soil bioturbation. 

Earth-Science Reviews 97(1-4): 257-272. 

Williams, P. T. & Besler, S. (1996). The influence of temperature and heating rate on 

the slow pyrolysis of biomass. Renewable Energy 7(3): 233-250. 

Wisnubroto, E., Hedley, M., Hina, K. & Camps-Arbestain, M. (2011).The Use of 

Biochar from Biosolids on Waitarere Sandy Soils: Effect on the Growth of 

Rye Grass. In New Zealand Biochar Research Centre Workshop Massey 

University, Palmerton North, New Zealand, 10-11. 

Wisnubroto, E. I., Hedley, M., Hina, K. & Camps-Arbestain M. (2010). Personal 

communication. The use of biochar from biosolids on waitarere sandy soils: 

effect on the growth of rye grass. 

Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S. & Ogawa, M. (2006). Effects of 

the application of charred bark of Acacia mangium on the yield of maize, 

cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. 

Soil Science and Plant Nutrition 52(4): 489-495. 

Yang, X.-B., Ying, G.-G., Peng, P.-A., Wang, L., Zhao, J.-L., Zhang, L.-J., Yuan, P. 

& He, H.-P. (2010). Influence of biochars on plant uptake and dissipation of 

two pesticides in an agricultural soil. Journal of agricultural and food 

chemistry 58(13): 7915-7921. 

Yang, Z.-B., Rao, I. M. & Horst, W. J. (2013). Interaction of aluminium and drought 

stress on root growth and crop yield on acid soils. Plant and Soil 372(1-2): 3-

25. 

Yao, Y., Gao, B., Zhang, M., Inyang, M. & Zimmerman, A. R. (2012). Effect of 

biochar amendment on sorption and leaching of nitrate, ammonium, and 

phosphate in a sandy soil. Chemosphere 89: 1467-1471. 

Young, R. (1984). A method of measuring aggregate stability under waterdrop impact. 

Transactions of the ASAE-American Society of Agricultural Engineers 27. 

Zackrisson, O., Nilsson, M.-C. & Wardle, D. A. (1996). Key Ecological Function of 

Charcoal from Wildfire in the Boreal Forest. Oikos 77(1): 10-19. 

Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T. M., 

Miltner, A. & Schroth, G. (1997). Factors controlling humification and 

mineralization of soil organic matter in the tropics. Geoderma 79(1): 117-161. 

Zhang, H., Voroney, R. & Price, G. (2014a). Effects of biochar amendments on soil 

microbial biomass and activity. Journal of Environmental Quality 43(6): 2104-

2114. 



192 
 

Zhang, Q.-z., Dijkstra, F. A., Liu, X.-r., Wang, Y.-d., Huang, J. & Lu, N. (2014b). 

Effects of biochar on soil microbial biomass after four years of consecutive 

application in the north China plain. 

Zheng, H., Wang, Z., Deng, X., Herbert, S. & Xing, B. (2013). Impacts of adding 

biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 

206: 32-39. 

Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced 

black carbon (biochar). Environmental Science & Technology 44: 1295-1301. 

Zimmerman, A. R. & Gao, B. (2013).The stability of biochar in the environment. In 

Biochar and Soil Biota, 1 NW: CRC Press. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



193 
 

APPENDIX 1 

 

Table A1 Carbon content (%) in forest, non-intensive and intensive farming soils 

amended with and without CS and RH biochar, over 360 d. Error bars are SEM (n=3). 

Treatment Day Forest Non-intensive 

farming 

Intensive 

farming 

Control 0 3.63 ± 0.17 1.09 ± 0.04 1.69 ± 0.31 

 60 3.61 ± 0.16 0.96 ± 0.02 1.52 ± 0.17 

 120 4.30 ± 0.13 1.00 ± 0.05 1.47 ± 0.05 

 240 2.97 ± 0.21 0.78 ± 0.02 1.12 ± 0.06 

 360 3.01 ± 0.06 0.94 ± 0.05 1.23 ± 0.03 

CS Biochar 0 8.15 ± 0.43 3.71 ± 0.25 2.50 ± 0.05 

 60 7.06 ± 0.52 4.38 ± 0.46 2.98 ± 0.30 

 120 6.96 ± 0.70 3.86 ± 0.51 2.80 ± 0.17 

 240 6.25 ± 0.35 3.65 ± 0.50 3.47 ± 0.42 

 360 6.35 ± 0.24 3.68 ± 0.07 3.47 ± 0.33 

RH Biochar 0 5.98 ± 0.28 3.13 ± 0.04 2.67 ± 0.13 

 60 6.61 ± 1.01 3.13 ± 0.22 3.01 ± 0.40 

 120 4.82 ± 0.21 2.38 ± 0.03 2.28 ± 0.03 

 240 4.33 ± 0.03 2.30 ± 0.06 2.18 ± 0.11 

 360 4.22 ± 0.22 2.44 ± 0.18 2.28 ± 0.07 
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APPENDIX 2 

 

Table A2 Nitrogen content (%) in forest, non-intensive and intensive farming soils 

amended with and without CS and RH biochar, over 240 d. Error bars are SEM (n=3). 

Treatment Day Forest Non-intensive 

farming 

Intensive 

farming 

Control 0 0.19 ± 0.01 0.06 ± 0.01 0.25 ± 0.04 

 60 0.18 ± 0.02 0.06 ± 0.001 0.22 ± 0.02 

 120 0.23 ± 0.01 0.06 ± 0.001 0.23 ± 0.002 

 240 0.15 ± 0.01 0.05 ± 0.002 0.16 ± 0.01 

CS Biochar 0 0.22 ± 0.02 0.08 ± 0.01 0.22 ± 0.01 

 60 0.23 ± 0.02 0.07 ± 0.01 0.20 ± 0.01 

 120 0.22 ± 0.03 0.07 ± 0.002 0.20 ± 0.004 

 240 0.16 ± 0.01 0.06 ± 0.004 0.18 ± 0.01 

RH Biochar 0 0.22 ± 0.01 0.10 ± 0.001 0.22 ± 0.01 

 60 0.25 ± 0.03 0.09 ± 0.01 0.23 ± 0.02 

 120 0.19 ± 0.01 0.08 ± 0.001 0.20 ± 0.003 

 240 0.16 ± 0.003 0.07 ± 0.003 0.19 ± 0.01 
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APPENDIX 3 

 

Table A3 Phosphate content (Mg g
-1

) in forest, non-intensive and intensive farming 

soils amended with and without CS and RH biochar (0 and 360 d). Error bars are SEM 

(n=3). 

Soil Treatments Day 0 Day 360 

Forest Control 0.21 ± 0.06 0.31 ± 0.13 

 CS Biochar 0.13 ± 0.001 0.25 ± 0.01 

 RH Biochar 0.24 ± 0.01 0.33 ± 0.06 

Non-Intensive Control 0.51 ± 0.04 0.68 ± 0.02 

Farming  CS Biochar 0.50 ± 0.05 0.72 ± 0.05 

 RH Biochar 0.52 ± 0.03 0.84 ± 0.05 

Intensive Control 2.20 ± 0.08 3.19 ± 0.21  

Farming CS Biochar 2.29 ± 0.10 3.19 ± 0.11 

 RH Biochar 2.42 ± 0.03 3.27 ± 0.08 

 

  

 


