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Abstract 

Several biases and inefficiencies are commonly associated with the judgmental extrapolation of time 

series even when forecasters have technical knowledge about forecasting. This study examines the 

effectiveness of using a rolling training approach, based on feedback, to improve the accuracy of 

forecasts elicited from people with such knowledge. In an experiment forecasters were asked to make 

multiple judgmental extrapolations for a set of time series from different time origins. For each series 

in turn, the participants were either unaided or they were provided with feedback. In the latter case, 

following submission of each set of forecasts, the true outcomes and performance feedback were 

provided. The objective was to provide a training scheme, enabling forecasters to better understand 

the underlying pattern of the data by learning directly from their forecast errors. Analysis of the 

results indicated that the rolling training approach is an effective method for enhancing judgmental 

extrapolations elicited from people with technical knowledge, especially when bias feedback is 

provided. As such it can be a valuable element in the design of software systems that are intended to 

support expert knowledge elicitation (EKE) in forecasting.  
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1. Introduction 

Surveys suggest that forecasts based either wholly or in part on expert management judgment play a 

major role in company decision making (e.g. Fildes and Goodwin, 2007). Sometimes the judgmental 

inputs may take the form of adjustments to statistical forecasts, ostensibly to take into account special 

factors that were not considered by the statistical forecast (Fildes, Goodwin, Lawrence, and 

Nikolopoulos, 2009). However, in some circumstances, judgment may be the only process involved in 

producing the forecasts. This may even be the case in situations where a statistical forecast is provided 

but the expert chooses to ignore it (Franses, 2014).  In some cases judgment is used to extrapolate 

time series data to produce point forecasts, when no other information (except perhaps variable labels 

such as ‘sales’ or ‘costs’) is provided. This type of task has been the subject of much research over the 

last thirty years and a number of biases associated with judgmental extrapolation have been identified. 

These include tendencies to overweight the most recent observation (e.g. O’Connor, Remus, and 

Griggs, 1993), to underestimate growth and decay in series (Lawrence, Goodwin, O’Connor, and 

Onkal, 2006) and a propensity to see systematic patterns in the noise associated with series (Eggleton, 

1982; O’Connor, Remus, and Griggs, 1993).  

Such biases can apply even where the forecaster has expertise, either in the domain within which the 

forecasts are being made (e.g. Pollock and Wilkie, 1993) or has technical knowledge of forecasting 

(Goodwin and Fildes, 1999). This suggests that, when experts are called upon to make judgmental 

extrapolations, the elicitation process may benefit from the inclusion of devices designed to mitigate 

these biases. Studies in the expert knowledge and elicitation (EKE) literature have examined a number 

of ways of designing elicitation methods so that they reduce the danger of biased judgments from 

experts, particularly in relation to the estimation of probabilities or probability distributions (e.g., 

Aspinall, 2010, Morgan, 2014, Bolger and Rowe, 2014, Goodwin and Wright, 2014, Chapter 11). Our 

focus here is on improving EKE in time series extrapolation. 

A variety of strategies have been explored to try to mitigate biases in the elicitation of judgmental 

extrapolations (Goodwin and Wright, 1993). One promising strategy is to use performance feedback 

to provide training  to  forecasters who have already have technical expertise to improve the accuracy 

of extrapolations that are elicited from them (Lawrence et al., 2006). Using feedback to enhance the 

quality of expert judgments has proved to be successful in other areas of EKE such as weather 

forecasting (Murphy and Winkler, 1977) and in applications of the Delphi technique where feedback 

relates to the judgments of other experts (Rowe and Wright, 1999). In time series extrapolation, while 

studies, such as Goodwin and Fildes (1999), have shown that feedback can lead to improvements in 

the accuracy of point forecasts, more research is needed to identify the most effective form of 

feedback to improve accuracy. This is a particularly important topic in demand forecasting where 

software provides information to the expert on past errors. 
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This paper reports on an experiment that was designed to explore the effectiveness of providing 

rolling feedback to forecasters on the outcomes of the variable they are attempting to predict and on 

their forecasting performance. The objective is to provide a direct training scheme, enabling 

forecasters, who already have technical knowledge, to better understand the underlying pattern of the 

data by learning directly from their forecast errors and thereby improving the accuracy of the 

judgments elicited from them. Two types of performance feedback were compared: feedback on the 

bias associated with the submitted forecasts and feedback on their accuracy. The paper is structured as 

follows. A review of the relevant literature is followed by an outline of the research questions that 

were investigated. Details of the experiment and presentation of the analysis and results follow this. 

Finally, the practical implications of the findings are discussed and suggestions made for further work 

in this area. 

 

2. Literature review & research questions 

In judgmental forecasting Sanders and Ritzman (1992) distinguish between expertise that is founded 

on contextual knowledge and that which is based on technical knowledge. Expertise relating to 

contextual knowledge results from factors such as experience of working in an industry and 

possessing specific product knowledge. In contrast, expertise based on technical knowledge is present 

when a forecaster has knowledge about formal forecasting procedures, including information on how 

to analyze data judgmentally. 

Sanders and Ritzman compared the forecasting accuracy of: i) managers who had contextual expertise 

but lacked technical expertise, ii) forecasters who lacked contextual expertise but had technical 

expertise iii) forecasters who lacked both contextual and technical expertise. They concluded that 

expertise based on technical knowledge had little value in improving the accuracy of judgmental 

forecasts when compared with expertise based on contextual knowledge. However, many of the time 

series they studied were highly volatile and contextual factors, rather than time series components, 

accounted for much of their variation. The forecasters with technical expertise who took part in the 

study were not privy to these contextual factors.  

A comparison of the forecasts of people in groups (ii) and (iii), above, enabled the authors to assess 

whether forecasters lacking contextual expertise but educated in such technical aspects as handling 

outliers, identifying trends and avoiding judgmental biases were able to achieve greater accuracy than 

those who lacked such knowledge.  The authors reported that there was little difference in accuracy 

and concluded that providing people with technical expertise had no value. However, a close 

inspection of the results reveals that this finding only holds for the five most volatile series in the 

study (those with a coefficient of variation exceeding 134%). If these series are excluded, forecasters 
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with technical knowledge had a lower average median absolute percentage error (MdAPE) than those 

without this knowledge in 13 out of 17 series (p=0.025 on a binomial test of the hypothesis that each 

group had an equal probability of achieving the lowest MdAPE on a given series). Although the mean 

reduction in these average MdAPEs was only 1.8% for the 17 series the results provide some evidence 

that, when extreme volatility is not present in series, there may, after all, be advantages in eliciting 

forecasts from people possessing technical expertise. This also raises the possibility that these 

judgments may be enhanced through further training. 

In a review of the Sanders and Ritzman (1992) study Collopy (1994) argues that people may not 

always be able to apply what they learn in a training process. He cites a report by Culotta (1992) who 

found that even students who do well in calculus courses cannot apply what they learned. Those with 

technical knowledge in the Sanders and Ritzman study had taken an elective course in forecasting and 

may therefore have been subject to didactic learning which is a relatively passive process. This is 

contrasted with experiential learning which includes actively participating in the task for which one is 

being trained, reflecting on the experience and learning from feedback (Moon, 2004). Training of this 

type may therefore be effective in obtaining improvements in accuracy by those with technical 

expertise. 

For experiential training to be effective it will need to address the specific challenges of the task 

(Kremer et al., 2011). Goodwin and Wright (1993, 1994) argue that three components of a time series 

influence the degree of difficulty associated with the judgmental time series forecasting task. These 

are: (1) the complexity of the underlying signal, comprising factors such as its seasonality, cycles and 

trends and autocorrelation; (2) the level of noise around the signal; and (3) the stability of the 

underlying signal.  

Where there are trends in series studies have consistently found that judgmental forecasters tend to 

damp them when making extrapolations (Eggleton, 1982; Lawrence and Makridakis, 1989; 

O’Connor, Remus, and Griggs, 1997). This phenomenon appears to apply both to experts working in 

their specialist field and participants in experimental studies (e.g. Wagenaar and Sagaria, 1975). The 

damping may occur because forecasters anchor on the most recent observation and make insufficient 

adjustments from this (Bolger and Harvey, 1993) or because they are unable to handle non-linear 

change. However, damping may also be caused by forecasters bringing non-time series information, 

based on their knowledge or experience, to the task. For example, the forecasters’ prior experience 

may have demonstrated that the sales growth for products tends to be damped. Similarly, in the case 

of downward trends in sales series, people may expect trend reversals to occur as action is taken to 

correct the decline (O’Connor et al., 1997). Complex seasonal patterns or cyclical components have 

also been found to lead to inaccurate judgmental forecasts (Lawrence and O’Connor, 1993). 
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Several studies have suggested that judgmental forecasters often confuse the noise in the time series 

with the signal (Andreassen, 1998; Harvey, 1995; Lopes and Oden, 1987, Reimers & Harvey, 2011). 

For example, they often adjust statistical forecasts to take into account recent random movements in 

series which they perceive to be systematic changes that were undetected by the statistical forecast 

(Goodwin and Fildes, 1999). Conversely, when systematic changes in the signal do occur, forecasters 

may delay their response to this, perceiving the change to be noise (O’Connor et al., 1993). Also, they 

may pay too much attention to the latest observation, which will contain an element of noise (Bolger 

and Harvey, 1993; Lawrence and O’Connor, 1992). It seems reasonable to expect that noise can also 

impair the detection of underlying trends and seasonal patterns, though this was not the case in two 

studies where series were presented graphically (Lawrence and Makridakis, 1989; Mosteller, Siegel, 

Trapido and Youtz, 1981). 

Learning through feedback can potentially mitigate these biases (Lawrence et al. 2006). As we 

indicated above feedback is a key component of experiential learning. Feedback has been shown to 

improve the accuracy of point forecasts (Goodwin and Fildes, 1999; Remus, O’Connor and Griggs, 

1996; Sanders, 1997; Welch, Bretschneider and Rohrbaugh, 1998). However, there are a number of 

different types of feedback that may be particularly relevant to the time series forecasting task 

(Balzer, Doherty and O’Connor, 1989; Onkal and Muradoglu, 1995) and more research is needed to 

determine the most effective type and how it should be delivered. 

The simplest form is outcome feedback, where the forecaster is told the outcome of the variable they 

have been forecasting when this becomes available. This allows them to make a direct comparison 

between each forecast and outcome which may help them to improve their forecasting accuracy over 

time. However, there is evidence that learning through outcome feedback can be slow (Klayman, 

1988). One problem is that each outcome will contain an element of noise and by highlighting this 

outcome it may exacerbate forecasters’ tendency to pay too much attention to the latest observation 

and to overreact to noise in the series. However, this may not be the case when outcome is provided 

for a set of periods (n>1), rather than just one period. In any case, outcome feedback is easy to 

provide, easily understood and it is not contaminated by older and possibly irrelevant observations 

(Goodwin et al., 2004). It is also probably something that forecasters would naturally expect to see so 

it seems reasonable to supply it even when other forms of feedback are being provided as well. 

Performance feedback provides the forecaster with information on the quality of their forecasts, such 

as their accuracy or any bias. Usually it will take the form of an average which reflects performance 

over a number of periods. Determining the number of periods over which to average performance 

poses a dilemma: too few and the feedback may be based on too small a sample of forecasts to 

provide reliable assessments of performance; too many and the performance measure will not 

adequately reflect recent improvements or deteriorations in performance. Exponentially weighted 



6 

 

moving averages of performance may help to solve the dilemma, but they may be less transparent and 

understandable to the recipients of the feedback. Another option would be simply to supply a set of 

point errors for n recent periods without using any kind of average. This could potentially enable the 

forecaster to identify specific problematic periods that invite attention (for example seasonality 

peaks). Moreover, in a rolling origin scheme, this strategy provides a way to check if point errors are 

reducing over time. 

We might expect different types of performance feedback to vary in their effectiveness. Feedback on 

bias can provide a direct message that one’s forecasts are typically too high or too low and hence 

suggest how they might be improved. This is likely to be beneficial for untrended series or series with 

monotonic trends. However, it may lead to unwarranted confidence in one’s current forecasting 

strategy when series have alternating patterns or seasonal patterns because biases in different periods 

will tend to cancel each other out if an average across the signed errors is to be used. Feedback on 

accuracy, in contrast, provides no such direct message and its implications may be difficult to discern. 

If forecasters are to learn from accuracy feedback they will need to experiment with alternative 

approaches, not specified by the feedback, and then establish if these have led to improved accuracy. 

This will require comparisons of accuracy across different periods adding to the forecaster’s cognitive 

burden. Thus accuracy feedback seems unlikely to be conducive to rapid learning. This may explain 

the ineffectiveness of performance feedback in a study by Remus et al. (1996) which consisted only of 

an accuracy measure (the mean absolute percentage error). 

Other forms of feedback seem likely to be less relevant to practical judgmental time series forecasting 

contexts. Cognitive process feedback aims to provide forecasters with insights into their own 

forecasting strategy, causing them to reflect on the possible deficiencies of this strategy (O’Connor, 

Remus and Lim, 2005). For example, a regression model may be used to attempt to capture their 

strategy so that the weights implicitly being attached to different items of available information, or 

cues, can be identified. In time series forecasting it will clearly take time to obtain sufficient 

information to estimate these weights reliably, thereby reducing the speed of learning by forecasters. 

Also, identifying the relevant cues to include in a model from the huge number of potential cues that 

are present in the time series forecasting task is problematical (e.g. typical cues might be the last 

observation, the mean of last n observations, the last difference between observations, the range of the 

last n observations and so on). In addition, many of these cues will be serially correlated so 

multicollinearity is likely to reduce the precision with which weights can be estimated. 

Task properties feedback relates to the provision of statistical information on the nature of the task to 

forecasters. In time series forecasting this might, for example, involve providing to the forecaster the 

current estimates of level, trend and seasonal indices obtained from the Holt-Winters method. 

However, this would essentially modify the task into one of accepting or adjusting statistical 
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forecasts. Task feedback has been widely researched elsewhere (e.g. Goodwin and Fildes, 1999; 

Sanders, 1997; Willemain, 1989; Willemain, 1991) and is not the topic of the current paper. 

Ultimately, any form of feedback, regardless of its type, is likely to be most effective in enhancing 

judgments from those with technical expertise  if it is easily and quickly understood (O’Connor et al,, 

2005), and salient, accurate and timely (Lawrence et al., 2006). We therefore propose and test a 

rolling training scheme, based on performance feedback. This has a number of innovations that are 

designed to address the problems associated with feedback presented in earlier studies. Unlike these 

studies we have not supplied metrics that summarise ‘average’ performance over a number of periods 

or tasks (e.g., a mean absolute percentage error or a measure of calibration, which of necessity, has to 

be based on a summary of performance over large number of judgments). Instead, a performance 

measure is supplied for each individual judgment made by the forecaster so there is no arbitrary 

censoring of earlier performance and the balance between the sensitivity and stability of the feedback 

is no longer an issue. Furthermore, the feedback is ‘rolling’ so that a complete and growing record of 

the forecaster’s performance is presented and updated at regular intervals. These innovations are 

important because, as we have seen, a key problem with feedback based on ‘average’ metrics is that it 

can be dependent on the number of periods which contribute to the average. Also, when a time series 

contains cyclical or seasonal patterns, a tendency to forecast too low when the time series rises and 

too high when it falls will be masked by an ‘average’ metric. In the scheme proposed here, forecasters 

can link their errors to individual observations and patterns. They can also easily see if their 

performance is improving over time without having to memorise the previous value of the metric.  

 

 

3. Experimental design 

3.1. Forecasting approaches 

Two judgmental forecasting approaches were evaluated in the current research. Each subject provided 

judgmental estimates with both approaches, using a fully symmetric experiment as we will discuss in 

sub-section 3.3.  

Unaided Judgment: This is the simplest judgmental forecasting approach, while being quite popular. 

Humans are requested to provide their point forecasts all at once for all lead times (h), without 

receiving any kind of guidance, other than the past data points. This approach will act as the 

benchmark in our study and, hereafter, is referred to as UJ. 

Rolling Training: We propose a direct rolling training approach. Letting N denote the number of 

available observations for a series and h the periods ahead to be estimated, k > 1 blocks of h periods 
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each are withheld (N > kh). At the first stage, only the first N - kh periods are presented to the 

forecaster, while h forecasts ahead are requested. Upon submission of the participants’ forecasts, the 

actual values of these h observations are presented, along with performance feedback in terms of 

percentage errors for each period (signed or not). This procedure is repeated for k times, with h data 

points being added in each repetition. Hence the completion of each training loop is followed by the 

submission of the h estimates for the future, unknown, periods. As such we, therefore, perform h-

steps-ahead rolling evaluation (Tashman, 2000), which is common practice in automatic forecast 

model selection (Fildes and Petropoulos, 2015). In other words, this is a rolling origin (as opposed to 

a rolling observation window) forecasting procedure with updating every h periods, where the 

observation window is not kept constant but increases with the sample size. However, in this case, 

instead of selecting the best model based on out-of-sample performance, we assume that this 

procedure will assist the participants to better understand the time series patterns, thus providing more 

accurate forecasts. Hereafter, this approach is referred to as RT. 

3.2. Time series 

Most relevant studies that have focused on the impact of feedback for judgmental forecasting tasks 

made use of simulated series (e.g. Fischer and Harvey, 1999; Bolger and Onkal-Atay, 2004). 

Moreover, many studies did not examine seasonal series, confining their attention to stationary and 

trended ones (Bolger and Onkal-Atay, 2004; Lurie and Swaminathan, 2009). Therefore, in the current 

research we focus on real time series that collectively demonstrate a variety of characteristics 

(stationary, only trended, only seasonal and both trended & seasonal). More specifically, 16 quarterly 

series were manually selected from the M3-Competition data set (Makridakis and Hibon, 2000) so as 

to have the required characteristics. These were confirmed by autocorrelation function plots, Cox-

Stuart/Friedman tests or by fitting an appropriate exponential smoothing model, using all the data. In 

addition, half of the trended and the seasonal series did not exhibit any significant pattern (trend or 

seasonality respectively) in the first two years, but did so later on. This selection was made in order to 

examine participants' adaption and ability to recognise developing series characteristics. 

The 16 series were grouped in two categories, each containing 8 series. These sets of series allowed 

for the implementation of a symmetric experimental design, which will be described in subsection 3.4. 

Each set contained exactly two series with the same characteristics, as displayed in Table 1. For 

analysis purposes, the 16 series were further split into two sets of equal size in terms of noise (low and 

high), as measured by the standardised random component of classical decomposition. Lastly, 4 

additional series were used at the first (warming-up) stage of the experiment, in order to familiarise 

the participants with the system. 
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Table 1. Sets of series 

 Stationary Trended Seasonal Trended & 

Seasonal 

Total 

Set A 2 series 2 series 2 series 2 series 8 series 

Set B 2 series 2 series 2 series 2 series 8 series 

 

The required length of all series was set to N=28 points (7 years), with longer series being truncated. 

In both UJ and RT approaches, the last 4 observations (last year) were withheld and used only for the 

out-of-sample evaluation and comparison of the two approaches. The length of this sample matches 

the required forecasting horizon, thus h=4. In addition, 12 observations were used for the RT 

procedure, thus, the number of blocks, k=3. The forecasting performance was tested on the last 4 

observations (last year), where forecasts for both approaches (UJ and RT) were produced. 

3.3. Participants & web application  

The group of participants consisted of 105 undergraduate students enrolled in the Forecasting 

Techniques module of the School of Electrical & Computer Engineering at the National Technical 

University of Athens. During the module the students had been taught principles of time series 

analysis, statistical and judgmental forecasting methods, and how to evaluate forecasting 

performance. The experiment was introduced as an elective exercise, giving bonus credit for the 50% 

of the participants who produced the more accurate forecasts.  

The group of 105 participants wwas eq 

In order to attract a large number of participants, we decided not to perform a standard laboratory 

experiment, but to build a web application. The web application was specifically designed for the 

purpose of this experiment, using the ASP .NET framework for the web development of the front-end 

and a Microsoft SQL database for storing the time series data and participants’ point forecasts. The 

Microsoft Chart Controls library was used for drawing line and bar graphs as discussed in the next 

subsection. The application was hosted in a secure web-server where participants could connect 

remotely through their internet-enabled personal computers via any web browser. 

3.4. Process of the experiment 

Instead of splitting the participants into two groups, control and test, we adopt a symmetric 

experimental design, where each participant submitted forecasts for both UJ and RT. The sets of 

series A and B alternated randomly between UJ and RT, so that half of the participants forecast some 

series with UJ and the other half forecast the same series with RT and vice-versa. In order to avoid 

familiarity with the task, UJ and RT were interchangeably presented to the participants. This means 

that after a common warm-up round, half of the participants were first asked to provide forecasts 
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using the UJ approach for 8 time series and then, at the next step, to submit their estimates under the 

RT approach for the remaining 8 series, while the opposite (first RT then UJ) was the case for the 

other half of the participants. Following this symmetric design allowed us to avoid any familiarity 

with the task effects that could have been arisen if the two approaches were always presented in the 

same order (first UJ then RT) for all the participants. When feedback was provided, each participant 

was randomly assigned to either the signed or unsigned percentage errors treatment (so that either bias 

or accuracy feedback was provided). Out of the 105 participants, 52 were given feedback on signed 

errors and 53 on absolute errors. 

All series were presented in a line graph format, using the color blue for the actual values and green 

for the submitted forecasts. While there is no evidence on the superiority of graphical or tabular 

numerical formats (Lawrence et al, 2006), a graphical representation is a more common feature in 

modern forecasting support systems. Historical data points were kept unlabeled in terms of the exact 

values, so that the participants could not export these values into a spreadsheet and use statistical 

approaches. This is a very important constraint, as the experiment took place in an unobserved 

environment and a graphical mode of presentation was the only way to guarantee that judgmental 

extrapolation is used. However, grid lines were provided in order to accommodate numerical 

estimations. Four text boxes were used for the input of judgmental forecasts for each lead time, while 

an update button could be used to refresh the graph, so that the subject could check his or her 

judgmental estimates graphically before submitting. Figure 1 presents two typical screens of the 

implemented system, before (a) and after (b) the input of the four point forecasts.  

 

Figure 1. Screenshots of the system’s graphical representation and input features. 

Including the warming-up up round, the experiment was completed after three rounds. Each round is 

described in detail below. As noted, UJ and RT rounds were presented in a reverse order for half of 

the participants.  
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Warming-up round: Each of the first four series was presented to the participants, withholding the last 

four observations. The participants were requested to provide judgmental point forecasts for the next 

four quarters (one year). A short description of each series was provided, describing any historical 

patterns. Upon submission of the forecasts for each series, forecast errors for each point (signed or 

not) were automatically calculated and displayed in bar charts, using the color red. As this round was 

a 'warm-up' the forecasts elicited were not taken into account when the results of the study were 

analysed. Figure 2 presents the screen with the information provided to the participants after the 

submission of the four point forecasts for a series. 

 

Figure 2. Screenshot of the system’s feedback report features in terms of outcome (out-of-sample actual values) 

and performance (error bars). 

UJ round: The series from Set A (or Set B) were used, holding out the last four observations in each 

series. The series were presented in a random order. The participants were given the 24 actuals of 

each series in a graphical format and were requested to provide judgmental point forecasts for the next 

four quarters (periods 25 to 28). No description of the series and no information on the accuracy of the 

forecasts were provided. 

RT round: Series from Set B (or Set A, the opposite of the previous round) were used, holding out the 

last 16 observations of each series. Series were again presented in random order. Each participant was 

requested to provide four sets of four quarterly judgmental point forecasts, for each of the next four 

years in a rolling origin manner. First, he or she was asked to submit just the first four point forecasts 

(next year). Upon submission, the actual data points were presented with the corresponding forecasts 

errors (signed or not, the same as the Warming-up Round) being given in a bar chart. Next, the second 

set of forecasts for year 2 was requested, followed by outcome and performance feedback. Then, the 
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third year set of forecasts was requested, again followed by outcome and performance feedback. 

Finally, the participants submitted their final four forecasts. In order to be directly comparable with 

the UJ, only the last set of forecasts were used in the evaluation. Moreover, when producing the final 

fourth year forecasts, the same amount of information (an observation window of 24 periods) was 

made available to participants as with the UJ approach. 

The completion of the latter two rounds was followed by a questionnaire which included questions on 

the participants’ confidence in the accuracy of their submitted forecasts, their expected forecasting 

performance, the extent to which they had examined the graphs and series patterns, and the time spent 

in producing their forecasts. In addition, a final questionnaire was used to ask participants about their 

familiarity with forecasting tasks, their level of forecasting expertise, their perceptions of the 

effectiveness of Rolling Training (RT) and their motivation to provide accurate estimates. The two 

sets of questions posed are displayed in Table 2. All questions were accompanied by 5-step ordinal 

response choices (Likert scale). 

The responses to the questions posed to the participants were analysed in order to examine any 

relationships between the variables in question (e.g., confidence, expected performance, extent of 

examination of graphs) to the actual forecasting performance achieved in the respective rounds of the 

experiment (UJ and RT). This analysis is presented and discussed in subsection 4.2. 

Table 2. Questions posed to the participants 

 Questions 

After UJ and RT 

rounds 

How confident are you that the forecasts you submitted in this round on average, be 

within 10% of the actual values? 

Please, rate your expected forecasting performance in the series of this round. 

Did you examine carefully the time series graphs? 

Did you take into account any historic patterns in the series when making your 

forecasts during this round? 

How much time (on average) did you spend for each series of this round? 

How likely it is that taking more time would change your forecasts? 

After completion of 

the experiment 

How familiar are you with such forecasting exercises? 

How would you describe your level of expertise? 

Please, rate the effectiveness of rolling training as a tool to increase your accuracy. 

Please, indicate how motivated you were to provide accurate estimates. 
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4. Analysis 

4.1. Forecasting performance 

Table 3 presents the percentage improvements in accuracy that were achieved by using RT when 

compared with UJ. These percentage improvements are measured as: 
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where the UJ in the denominator is acting as the benchmark for this study. Negative values denote 
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H

h

P

p

hphs fy
PH

MAE
1 1

,

11
 

where P denotes the number of participants, H the number of out-of-sample lead times, yh the actual 

value of a series at time h and fp,h the forecast of participant p for the same series at time h. Note that 

the number of participants (P) is not the same for all series, as a results of the slightly unequal sample 

sizes.  

The results are analysed by columns in terms of series characteristics (stationary, trended, seasonal, 

trended & seasonal, low noise and high noise). Major rows indicate all (25th to 28th), near (25th to 26th) 

or far horizons (27th to 28th). Minor rows provide additional analysis of the results based on the type of 

feedback (in the case of RT) provided to the participants. As mentioned in section 3.1, two types of 

feedback have been considered: bias feedback in the form of signed percentage errors (PE) and 

accuracy feedback in the form of absolute percentage errors (APE). Statistically significant 

differences between RT and UJ have been identified by performing a two sample paired t-test on the 

values of the mean absolute error summarised across participants for each series and each horizon. 

The analysis was replicated using the Mean Absolute Percentage Error (MAPE) as a measure of the 

forecasting performance, however no substantial differences in the interpretation of the results have 

been identified. 
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Table 3. Accuracy improvements (%) of RT approach over UJ 

  

Type of 

Feedback 
All Series Stationary Trended Seasonal 

Trended 

& 

Seasonal 

Low 

Noise 

High 

Noise 

All Horizons 

(25th – 28th) 

ALL 3.781 5.72 9.20 -4.14 0.90 0.90 5.181 

PE 4.891 4.10 10.47 2.28 2.58 1.77 5.711 

APE 3.89 7.271 7.10 -11.79 0.70 -1.99 6.23 

Near 

Horizons  

(25th – 26th) 

ALL 2.41 -2.12 -0.91 4.14 8.071 2.77 2.41 

PE 7.14 0.02 0.63 10.47 7.14 6.50 8.23 

APE 2.04 0.47 -2.45 -3.69 8.71 2.04 0.47 

Far 

Horizons  

(27th – 28th) 

ALL 4.171 6.101 15.74 -10.39 1.59 1.59 6.101 

PE 5.67 5.67 14.47 -8.14 1.54 6.51 5.67 

APE 2.35 8.141 12.86 -8.94 -5.47 -2.42 3.50 
1Differences are statistically significant at 0.05 level. 

 

Overall, there is evidence that the RT approach results in statistically significant better forecasting 

performance (3.78% performance gain). Improvements are more prominent for high noise (5.18%, 

statistically significant at the 0.05 level). Although gains of 5.72% and 9.20% were observed for 

stationary and trended series, respectively, these were not statistically significant at the 0.05 level.  

Focusing on the very first row of Table 3, where all horizons are considered, the only decrease in 

performance comes from the seasonal series. Even if this decrease is not statistically significant, 

suggesting that UJ and RT perform similarly, we attempt to understand the reason behind this result, 

by examining separately series with evident seasonality for the very first years or not, as discussed in 

section 3.2. This analysis suggested that RT might not suitable for series with developing seasonality.  

In terms of the type of feedback provided to the participants, it is apparent that bias feedback 

demonstrates the most significant improvements (4.89% overall), while improvements for accuracy 

feedback are generally smaller and not consistent. One could argue that providing errors in an 

absolute format may lead to confusion, as the participants may not be able to correctly evaluate this 

kind of information. On the other hand, bias feedback for each point in the form of signed bar charts is 

easier to interpret and understand and indicates a clear strategy for improving one’s forecasts. It is 

notable that bias feedback, which involved the provision of signed percentage errors for each 

individual period, improved accuracy for seasonal series. It is unlikely that providing a mean of these 

percentage errors would have been as effective because any tendency to over forecast for some 

seasons and under forecast for others would have been masked by the averaging process.  

Another very important observation is that RT results in improvements for series with high noise 

(5.18%) as well as when longer horizons are examined (4.17%). These improvement gains are 
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statistically significant at 0.05 level when all types of feedback are pooled together. However, the 

differences between RT and UJ for shorter horizon and low noise series are not statistically significant 

at the 0.05 level.. Lawrence, Edmundson and O’Connor (1985) suggested that, when the forecasting 

task is based on graphs, judgmental forecasts can be as good as statistical model forecasts at least for 

the shorter horizons. In contrast, longer horizons and series with high levels of noise constitute the 

cases where unaided judgmental forecasting is likely to be relatively inaccurate. The use of a direct 

rolling training scheme improves graph-based judgmental long-term forecasting, building on the 

efficiency of judgmental over statistical approaches.  

4.2. Questionnaire responses analysis  

Figure 3 presents graphically the relationships between the participants’ responses to the first set of 

questions (x-axis) with their mean performance (y-axis), as measured by MAPE. Separate lines are 

presented for UJ (black) and RT (grey). The size of the circle on each data point reflects the number 

of participants who provided the respective response. As this first set of questions was posed twice 

(after UJ and RT respectively), we can examine how the participants alternate their responses after 

each forecasting approach.  
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Figure 3. Association between questionnaire responses and forecasting performance for the first set of questions 

The negative association of confidence level with MAPE in UJ changes to no correlation for RT. 

Moreover, participants tend to have fewer expectations for the performance of their submitted 

forecasts when using RT over UJ. These outcomes are very important, as it is obvious that RT leads 

the participants to be more cautious in their expectations, thus potentially mitigating a well know 
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problem of judgemental forecasting, namely the underestimation of uncertainty (e.g. Makridakis, 

Hogarth and Gaba, 2009).  

As expected,  a propensity to examine graphs (and, to a lesser extent, patterns) has negative 

associations with the MAPE, suggesting that, as participants devote more time to this task, 

improvements in forecasting accuracy are recorded. However, literally no differences are observed 

between the two approaches (UJ and RT) in terms of mean values on the frequency in examining 

graphs and patterns. One would have expected that RT would better motivate the participants to 

examine the graphs and series patterns more carefully; however this was not the case. 

The forecasting performance achieved with both UJ and RT is associated with the time the 

participants reported spending in producing the forecasts for each series – the more time they spent 

the greater the accuracy they achieved. However, the correlation is stronger in the case of UJ, 

meaning that forecasting performance achieved by the RT approach can be seen as more time 

invariant. Also, there is evidence that participants who were less accurate recognised that spending 

more time on the task might have resulted in changing their forecasts (this is particularly the case for 

the RT group). 

The same analysis was performed for the second set of questions. The majority of the participants 

(76%) found the RT approach to be either effective or very effective. However, familiarity with 

forecasting exercises, perceived effectiveness of RT and motivation to produce accurate forecasts 

were only weakly or moderately associated with forecasting accuracy. Interestingly, the self-reported 

level of expertise of participants had a strong positive association with the realised MAPE so that 

those who considered themselves to have greater expertise produced less accurate forecasts. Further 

work would be needed to establish why this was the case but it is consistent with the Dunning-Kruger 

effect (Kruger and Dunning, 1999) where relatively unskilled people mistakenly consider that their 

ability is higher than it really is. Clearly, such an effect would have important implications for EKE if 

choices are made between experts’ forecasts based on their self-rated expertise.  

 

5. Discussion & implications 

The key finding of this study is that, in tasks involving time series extrapolation where no contextual 

information is available, the judgmental forecasting accuracy of people with a technical knowledge of 

forecasting can be substantially improved by providing simple, understandable performance feedback 

to the forecasters. This suggests that training based on feedback can be a valuable element of the EKE 

process when time series need to be extrapolated. A number of characteristics of this feedback appear 

to be crucial. First, to be most effective, the feedback should relate to bias, rather than accuracy. As 
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discussed earlier, feedback on bias provides a clear indication of how future forecasts might be 

improved. In contrast, feedback on accuracy does not provide any indication of possible improvement 

strategies. Nor does it provide an indication of whether accuracy improvement is even possible. For 

example, does an APE of 10% represent the limit of the accuracy that can be achieved, given the 

noise level, or is there scope for further improvement? 

Second, the attribute of the bias feedback that appeared to contribute to its effectiveness was the 

feedback of a set of individual errors, rather than an average of these errors. In series where the signal 

has autocorrelated elements such as seasonal series, judgmental biases may lead to positive errors at 

some stages of the cycle (e.g. where sales are increasing) and negative errors at other stages (e.g. 

where sales are decreasing). The presentation of individual errors allows each observed bias to be 

associated with individual periods and avoids the cancelling out of opposing biases that would be a 

feature of any averaging. Also, the need for appropriately selecting a length for averaging the point 

forecast errors is now removed. 

Third, the presentation of the bias feedback as a bar chart may have enhanced its effectiveness, though 

further research would be needed to establish this. For example a set of four negative bars would be a 

strong, simple and clear indication that the previous set of forecasts was too high (error = actual – 

forecast). A table of four numbers would probably provide a less salient message.  

Fourth, the rolling nature of the feedback enabled it to reflect improvements in performance quickly, 

while at the same time avoiding the danger of confining attention to the performance of the most 

recent forecast (which is a danger of outcome feedback). Moreover, rolling across origins for one 

series, before moving on to the second one, helped the participants to focus on each series separately 

and better understand the improvements (or deterioration) in their performance over time. It is 

however an unrealistic representation of the typical forecasting task: more common is where feedback 

arises across time series. 

Recent research suggests that the focus on enabling people to learn how to avoid bias is appropriate. 

A study by Sanders and Graman (2009) found that when translating forecast errors into costs (such as 

excessive inventory or labour costs) accuracy was less important than bias. In their survey of 

forecasters Fildes and Goodwin (2007) expressed surprise at the number of company forecasters who 

never checked the accuracy of their forecasts. The current study and the findings of Sanders and 

Graman (2009) suggest that monitoring and feeding back levels of bias may be just as, if not more, 

important than checking accuracy levels if the objective is to foster improved forecasts and minimize 

the costs of errors. 

The proposed RT approach offers an innovative direct feedback approach to time series forecasting. 

Usually, time series forecasting would occur periodically and across series. Thus, any feedback 
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(lessons learned) from the achieved performance on the previous periods would probably be regarded 

as outdated. RT offers direct, timely and salient feedback on the performance over a number of 

periods focusing on a single series’ performance. The provision of the past forecast errors per period 

allows for the identification of specific periods where performance drops. These two features of RT 

enable forecasters to achieve better performance for the longer horizons and the most volatile series. 

This is due to the fact that RT essentially invites the forecasters to closely examine the series patterns 

across a number of horizons, rather than focusing only on the short-term forecasts. In addition, as the 

performance is provided in a rolling manner, forecasters are able to understand the limits of 

predictability for each series. As such, RT may have an important role to play, being particularly 

suitable for forecasting and decision making under low levels of predictability (i.e. where there is a 

high degree of uncertainty). 

6. Conclusions & perspectives 

Judgmental forecasting is widely employed in many contexts for estimating future values of time 

series. However, numerous studies have shown the limitations of judgment even when this is elicited 

from those with technical expertise. The current study examined the effectiveness of a rolling training 

scheme that provides direct feedback by reporting to participants their levels of performance in such a 

task. This involved reporting signed or absolute percentage errors for each period on a rolling basis, as 

opposed to metrics that summarise performance over several periods. Real time series featuring a 

number of characteristics were used. Participants provided estimates for both the control case 

(unaided judgment) and the test case (rolling training) leading to increased power. This was achieved 

by a symmetric experimental design. Although the analysis was not based on data collected in the 

field, the experimental approach allowed the effects of feedback of different types to be efficiently 

measured and compared under controlled conditions. Experiments like these have played a valuable 

role in areas such as behavioural operations management as one component of a process of 

triangulation with field research (Siemsen, 2011). 

Analysis of the judgmental estimates indicates that a rolling training scheme can improve the 

accuracy of judgmental extrapolations elicited from forecasters with technical knowledge especially 

when this is combined with feedback in the form of signed errors. Because signed errors indicated the 

bias in the forecasts, they enabled the forecasting accuracy of participants to be enhanced. This is 

particularly obvious in non-stationary series. On the other hand, accuracy feedback based on an 

absolute form of errors is found to be more difficult to interpret, leading to worse performance in the 

case of series exhibiting seasonality. Sanders and Ritzman (1992) found little advantage in employing 

judgmental forecasters with technical knowledge. In contrast, the results presented here suggest that it 

is worth designing EKE schemes (possibly incorporated into software systems) that build on technical 
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expertise acquired though didactic learning by providing experiential learning based on feedback that 

is accurate, timely, suggestive of how improvements might be made and easily interpreted. 

One very interesting outcome is that improvements achieved by using a rolling training procedure are 

higher for longer forecasting horizons and noisy series. On top of the improvements achieved in 

forecasting performance, the rolling training procedure made the participants less confident in their 

forecasts. This is an additional advantage as there is evidence that people tend to under estimate the 

levels of uncertainty associated with their forecasts.  

The current paper focused on analysing the performance over the final set of periods (the final year) 

contrasting unaided judgment with rolling training. However, a further objective of the current 

experimental design would be to analyse how the forecasting performance changes over time within a 

single series, as a direct result of the application of the rolling training procedure. Moreover, policy 

capturing regression models may provide insights of the forecasting strategy employed by participants 

with technical knowledge. This can include a large number of potential cues linked with time series 

forecasting. Of course, often the time series forecasting task is carried out in situations where 

contextual information (such as information from market research or information on advertising 

strategies) is available to expert forecasters in addition to time series data and it would be interesting 

to test the effectiveness of rolling training in this context.  
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