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Abstract 

Herpes simplex virus 1 (HSV-1) is a widespread global pathogen, of which the strain KOS is one 

of the most extensively studied. Previous sequence studies revealed that KOS does not cluster 

with other strains of North American geographic origin, but instead clustered with Asian strains. 

We sequenced a historical isolate of the original KOS strain, called KOS63, along with a 

separately isolated strain attributed to the same source individual, termed KOS79. Genomic 

analyses revealed that KOS63 closely resembled other recently sequenced isolates of KOS and 

was of Asian origin, but that KOS79 was a genetically unrelated strain that clustered in genetic 

distance analyses with HSV-1 strains of North American/European origin. These data suggest 

that the human source of KOS63 and KOS79 could have been infected with two genetically 

unrelated strains of disparate geographic origins. A PCR RFLP test was developed for rapid 

identification of these strains.  

 

Keywords: KOS; KOS63; KOS79; HSV-1; genome; variation; genetic distance; co-infection  
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Introduction 

Infection with human herpesvirus 1, or herpes simplex virus 1 (HSV-1; genus Simplexvirus, 

subfamily Alphaherpesvirinae, family Herpesviridae, order Herpesvirales) is widespread in 

humans, and is the causative agent of recurrent herpes labialis or genitalis (1). Initial infection 

takes place at epithelial or mucosal surfaces, where virus replicates actively to form self-limited 

lesions that involve interactions with innate and adaptive immunity (1). HSV-1 also enters 

sensory nerve endings and migrates in axons of the peripheral nervous system (PNS) by 

retrograde transport to neuronal nuclei located within sensory or sympathetic ganglia (2–4). It is 

in this cell population that HSV-1 establishes latency. The virus may spontaneously reactivate 

and produce intermittent shedding and/or clinical diseases throughout life (3, 5). Occasional 

invasion of the central nervous system (CNS) by HSV-1 can result in rare but severe and 

sometimes fatal encephalitis (6, 7). While antiviral drugs have been developed for HSV, these 

are only able to target the lytic replication stages and the intermittent cycles of productive viral 

replication (8–11). The latent state is largely refractory to current antivirals (8, 12). HSV remains 

the most studied herpesvirus, and knowledge of HSV has driven key advances in our 

fundamental knowledge of the mechanisms of herpesvirus entry, replication, gene expression, 

assembly and egress (1, 12–14). 

 

The vast majority of laboratory and genetic studies have been restricted to a relatively small 

number of HSV-1 strains and isolates, of which some of the most common are HSV-1 strains F, 

KOS, 17, SC16, and McKrae (1, 15–21). Strains of HSV differ greatly in phenotype, particularly 

in in vivo animal model systems of pathogenesis (18, 22–26). Variants of the same name or 

source are often presumed to be similar, but may show different genetic and phenotypic 
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characterizations, demonstrating that this assumption does not always hold true (22, 27). For 

example, strains H166 and H166syn are distinctly different strains, both in phenotype and 

genotype, but arose from the same source patient (28, 29). Two recently published genome 

sequences of HSV-1 McKrae, which were based on strains propagated in different labs, revealed 

coding differences in genes such as UL36 and UL56 (30, 31). We recently demonstrated that 

clonal variants of strains KOS and F could differ in plaque phenotype and harbor numerous 

genetic differences despite their overall clonal identity (29). The genomes of five variants of 

KOS have been published (Table 1) (29, 32–34), and many more variants have been utilized in 

prior studies (15, 22, 34–37), before genome sequencing was a viable option. The history and 

genome sequences of several of these variants have recently been documented by Colgrove et al 

(34). These KOS variants have been noted to differ in virulence in animal models, as well as 

other phenotypes, but the genetic basis of these differences is not yet known (22, 29, 34, 38). 

 

Two variants of HSV-1 KOS, called KOS63 and KOS79, were noted relatively early on to differ 

dramatically in phenotype, both in vitro and in vivo (22). Limited genetic analyses using 

restriction fragment length polymorphisms (RFLP) and single-gene analysis by PCR suggested 

several differences. HSV-1 KOS63, which has an orolabial origin, has been passaged numerous 

times in multiple laboratories (15, 22, 34, 35, 37, 38), and is believed to represent the standard 

KOS isolates that circulate in many laboratories, but this has not been clearly established before 

this work. Another orolabial isolate attributed to the same individual, KOS79, has undergone 

minimal passage in the laboratory (22). In a matched comparison using both peripheral and 

intracerebral routes of HSV-1 infection, Dix et al. found that KOS79 was highly neurovirulent 

and neuroinvasive in mice, while KOS63 was much less so (22). KOS63 and KOS79 were 
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suggested to be distinct strains on the basis of polypeptide synthesis and RFLP analyses, 

although the primary data were not shown (22). KOS79 has also been shown to harbor an 

extended array of tandem repeats in the neurovirulence protein ICP34.5, relative to a shorter 

array found in a plaque-purified variant of KOS called KOS321 (36, 39). A number of 

differences in the ICP0 promoter region of KOS and KOS79 have also been noted (40).  

 

We set out to address the relatedness of the historical isolate KOS63, and the more virulent strain 

KOS79. We sequenced the full genomes of KOS79 and KOS63 and compared them to five 

published genome sequences of KOS (29, 32–34). We found that KOS63 and previously 

sequenced KOS variants are closely related to one another, akin to clonal variants from a 

parental population (29). However KOS63 and its clonal variants were all genetically distant 

from KOS79 – differing as much as unrelated strains isolated from individuals in disparate 

geographic regions. KOS79 clusters most closely with North American and European strains, 

while KOS63 and its variants cluster with Asian strains. These data provide further evidence that 

individuals may harbor quite disparate viral strains, and will enable future evaluations of the 

genetic basis of the neurovirulence of strain KOS79. 

 

Results 

Full genome sequencing of KOS79 and comparison to KOS 

We used genome-wide comparative sequence analysis to illuminate the genetic relatedness of 

HSV-1 KOS79 to HSV-1 KOS63 and other previously described isolates of the KOS strain 

(Table 1). To do this, we first applied Illumina high-throughput sequencing to obtain sequence 
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read data from viral nucleocapsid DNA of strains KOS79 and KOS63. Consensus genomes were 

generated for each strain using a previously described combination of de novo assembly and 

reference-guided assembly methods (Table 2; see Methods for details) (29). The genomes of 

KOS79 and KOS63 do not contain any truncated or missing proteins, with the exception of US9 

in KOS63. The presence of a SNP (C>T) in US9, which generates an early stop codon that 

truncates the protein, has been described in multiple prior sequences of the KOS strain (29, 32, 

41). Finding this identical SNP in KOS63 supported the premise that it is indeed closely related 

to the previously sequenced KOS isolates.  

 

To analyze the genetic relatedness of KOS79, KOS63, and the previously sequenced KOS strains 

from our lab and others, we compared the identity and number of variant proteins among these 

strains (Table 3 and Supplementary Table 1). As an out-group, we included for comparison the 

unrelated HSV-1 reference strain 17. We observed that the newly sequenced KOS63 and 

previously sequenced KOS variants shared an average of 99.2% DNA identity (Table 3). In 

contrast, comparison of KOS63 or the other KOS variants to either KOS79 or strain 17 resulted 

in a lower DNA identity of 98.5%. This minor shift in percent identity across the genome 

translated into a sizable number of proteins harboring coding variations in each pairwise 

comparison. Between KOS63 and the KOS variants, an average of just 6 proteins differ in any 

pairwise comparison (Table 3; see Supplementary Table 1 for complete list of variations). This 

is akin to what was previously observed for sister clones from a common parental virus stock 

(29). In contrast, pairwise comparison of any of these vs. KOS79 or strain 17 yields a similarly 

high number of over 60 proteins that harbor coding variations in each pairwise comparison 

(Table 3). Nine proteins are completely conserved between KOS79 and any of the KOS63-like 
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variants: UL15, UL16, UL20, UL26.5, UL33, VP26 (UL35), UL45, VP22 (UL49A), and UL55, 

several of which were also highly conserved in our prior global analysis of more than 20 

independent HSV-1 strains (42). Overall, the amount of difference observed in these 

comparisons suggested that KOS79 is as different from KOS63-like strains as the unrelated 

strain 17.  

 

Since percent DNA identity does not reflect the location or distribution of differences between 

these genomes, we next estimated the evolutionary distance between these strains. As 

anticipated, the KOS63-like strains had the smallest genetic distance between them in any 

pairwise comparison, correlating with their high DNA identity (Figure 1). Comparison of either 

KOS79 or strain 17 to any of the KOS63-like variants resulted in a larger estimate of genetic 

distance, in keeping with the lower DNA identity (Figure 1). SplitsTree analysis of KOS79, 

KOS63-like variants, and strain 17 confirmed the close relationship among the KOS63-like 

variants, and placed KOS79 and strain 17 at nearly equidistant points away from the KOS63-like 

variants (Supplementary Figure 1). The distance between KOS79 and any of the other KOS 

variants suggests that it is a distinct and unrelated strain.  

 

Genetic distance analysis and the likely geographic origin of strain KOS79 

In a previous comparison of HSV-1 genomes from diverse geographic areas, we found that a 

majority of strains clustered near those from the same geographic origin (42). The KOSDavido 

isolate included in that publication was the sole exception, where despite its USA origin, 

KOSDavido clustered with strains of Asian origin (42, 43). To place KOS79 within the context of 

this study, we integrated KOS79 and KOS63 into the prior 26-genome alignment and computed 
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the genetic distance among these strains. In this analysis, KOS79 clustered with 100% bootstrap 

confidence with HSV-1 strains F and H129, which were also isolated in the USA (Figure 2). 

This trio is found within a larger 100% bootstrap confidence cluster, which includes three other 

European and North American strains, HF10, 17 and McKrae. This contrasts with KOS63 and 

KOSDavido, which are assigned to the Asian genetic distance cluster with equal confidence. 

Although attributed to the same individual, KOS63 and KOS79 are fundamentally distinct strains 

that appear to have distant geographic historical origins. 

 

The extensive recombination that is postulated to occur in HSV precludes a cladistic analysis 

using these data on genetic distance (42, 44–48). To investigate the possibility of recombination 

between KOS63 and KOS79 in the original host, we performed SimPlot analysis using KOS79, 

KOS63, a consensus of the European cluster (strains HF10, 17, McKrae, F and H129) and a 

consensus of the Africa-1 cluster (strains E08, E12, E13, E14 and E19) from our prior study 

(Supplementary Figure 2A) (42). We observed that KOS79 is most closely related to the 

European consensus over most of its length, except for a few short regions where it is most 

similar to the Africa-1 consensus (e.g. between kilobases 45-50 and 97-102) or where no 

predominant background can be identified (e.g. between kilobases 60-65 and 80-85). The 

corresponding BootScan plot (Supplementary Figure 2B) shows chi-shaped crossover signals 

supportive of recombination with an African strain at 97-102 kb, although the other two areas of 

African similarity have less well formed signs of crossover. BootScan analysis suggests potential 

recombination between KOS79 and KOS63 at 60-65 kb and 80-85kb, though this finding should 

be viewed with caution because the SimPlot analysis implies genetic equidistance between all 

strains in these regions. Accurate recombination analysis in HSV-1 will always be complicated 
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by the deep evolutionary history of the species, the extent of recent intercontinental travel with 

plentiful opportunities for recombination, and the fundamental genetic similarity of all known 

strains (e.g. more than 98.5% identical over any 10 kb window).  

 

Rapid PCR test to distinguish KOS79 and KOS63 

Previous analyses have often grouped KOS63 and KOS79 together (39, 40), although the 

genomic data now indicate that these viruses are likely to be significantly different. Since the 

possibility exists that some labs may have initiated studies with a KOS isolate derived from 

either KOS63 or KOS79, we considered it important to develop an easy assay to distinguish 

these strains. We therefore designed primers to amplify segments of the tegument proteins UL14 

and UL25 (Supplementary Table 2), which each contain a strain-specific restriction digest site 

for NcoI or NdeI (Figure 3). The KOS79 genome contains an NcoI site in UL14 while KOS63 

and its variants do not (Figure 3A). KOS63 and its variants contain an NdeI site in UL25 that is 

not present in KOS79 (Figure 3C). To confirm these sequencing results, nucleocapsid DNA 

from HSV-1 strains 17, KOS63, and KOS79 were used to PCR amplify these regions of UL14 

and UL25. These amplicons were then subjected to restriction digest and analyzed. Examination 

of digestion products revealed the expected patterns (Figure 3B,D). Sanger sequencing was used 

to confirm ten additional SNPs in the UL14 amplicon, and one additional SNP in the UL25 

amplicon, that differ between KOS63 and KOS79 (data not shown). This diagnostic tool can be 

implemented to quickly screen and identify KOS virus stocks or recombinant derivatives within 

any laboratory as being either KOS63-like or KOS79. 
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RFLP analysis of KOS strains  

To validate the newly assembled genomes for KOS63-like and KOS79 using an alternative 

method, actual RFLP patterns were compared to those predicted from each genome sequence. 

Computational comparison of KOS63 and KOS79 predicted the loss of a HindIII restriction site 

in glycoprotein M (gM; UL10) in strain KOS79, resulting in the loss of a 2.8 kb band that exists 

in KOS63-like variants. In the historical lettering system for HSV-1 DNA restriction fragments, 

this 2.8 kb band was referred to as the “O” fragment (49–51) (Figure 4A). As expected, the 2.8 

kb “O” fragment was not present after HindIII digestion of KOS79 DNA, but was present in 

strains KOS and 17 (Figure 4B-C). This O-I fusion event has been previously noted to occur in 

African and European strains of HSV-1, but not in Asian strains (52). Finding the fusion in 

KOS79, but not KOS63, correlates with the geographic history suggested for each strain by 

genetic distance analysis (Figure 2). Taken together, these results indicate the wide genetic 

divergence of KOS79 and KOS63, and highlight that genetic comparisons of these strains will 

reveal many differences regardless of the phenotype under examination (22, 39, 40).  

 

Discussion 

KOS is one of the most extensively used strains in HSV-1 research, particularly in the United 

States. It was isolated from a volunteer in the 1960s (15, 43). In addition to its use in many 

mechanistic and genetic studies, the KOS strain has also been used to develop vaccine antigens 

and vectors (53–56). The full genome sequence of HSV KOS (here called KOSDavido) was first 

published in 2012 (32), and later duplicated with a high degree of fidelity by the Kinchington 
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group, using a 1981 master stock obtained from Neal DeLuca at the University of Pittsburgh 

(JQ780693; here called KOSKinchington) (33), and further detailed by Knipe, Coen and colleagues 

using a master stock provided by Priscilla Schaffer (here called KOSKnipe and KOS1.1) (34). A 

plaque-purified isolate of KOS (called KOSLarge) was sequenced by our own group using a stock 

obtained from Hendricks, Kinchington and colleagues (29, 57). Previous work by Iwasaki and 

colleagues (37) highlighted potential immune-evasion differences in the isolates of HSV-1 KOS 

held by different labs, but the genetic basis of these variants has not been investigated. Here we 

present the first analysis of overall genetic identity among the five publicly available genome 

sequences of KOS, and we extend this comparison to include newly sequenced genomes of the 

historically-dated strains KOS63 and KOS79. These additional strains have distinct levels of 

virulence in animal models, as previously characterized by Dix et al (22), with KOS79 showing 

significantly higher levels of neurovirulence and neuroinvasiveness than KOS63.  

 

One of the differences between KOS79 and KOS63 that may contribute to the higher virulence 

of KOS79 in vivo is its intact US9 protein. Previous authors have shown that US9 is involved in 

anterograde transport of viral capsids and glycoproteins to axonal termini in related 

alphaherpesviruses, such as pseudorabies virus (PRV) (58–60). However the role of US9 in 

anterograde transport of HSV-1 is less clear (61–64). KOS63 and its variants have a mutation 

present in the TATA-box promoter region of the membrane protein US9, as well as a substitution 

at position 58 in the US9 gene. This substitution introduces an early stop codon, and truncates 

the last 32 residues of the US9 protein (32, 41). This mutation removes the stop codon and 

elongates the neighboring open reading frame of US8A, a protein of undetermined function (32, 

41). The new availability of complete coding sequences for KOS79 and KOS63 will enable 
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future studies on how the differences in other herpesvirus proteins contribute to their observed 

differences in virulence phenotypes.  

 

KOS63 and KOS79 were reportedly isolated from the same volunteer on separate occasions (15, 

22, 43). The historical record does not allow us to confirm these isolations or to collect a fresh 

isolate from the same individual, but the frequent usage of KOS63-like variants in labs around 

the world makes it imperative to clarify their history as much as possible. We present here a 

rapid PCR and restriction digest test to allow labs to easily distinguish between KOS79 and the 

classic KOS63-like strains. In past studies, authors did not distinguish whether KOS63 and 

KOS79 were passage variants—i.e. high- and low-passage variants from a common parental 

stock—or were unrelated isolates (40, 39). Here we showed that KOS79 is genetically distinct 

from KOS63-like strains, with sufficient divergence that one could posit independent geographic 

acquisitions of HSV-1 infection (43). These data remove the possibility that KOS63 represents a 

passage variant of KOS79, a hypothesis that arose from examples of attenuation by serial 

passage for related herpesviruses (65–67). If they arose in the same source, the historical dating 

of strains KOS63 and KOS79 (from 1963 and 1979 respectively; (22)) suggests that these viruses 

reactivated independently of one another and at different times. It is impossible to determine now 

whether these historical isolates also arose from different body sites, which emphasizes the 

importance of recording full clinical details for new isolates. In future studies of extant cases, it 

will be important to determine how viral reactivation and shedding occur in dual- or multiply-

infected individuals, with attention to aspects of space, time, and genetic variation.  
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Methods 

Virus culture and DNA isolation 

Stocks of HSV-1 KOS63 and KOS79 were obtained from R. Dix and expanded in adherent 

MRC-5 (ATCC®, CCL-171) human fetal lung fibroblast cells. MRC-5 cultures grown in Eagle’s 

Minimum Essential Media (EMEM; Sigma-Aldrich) were infected at an MOI of 0.01 and 

harvested when cultures displayed significant cytopathic-effect (CPE). These master stocks were 

titered on Vero cells (ATCC®, CCL-81) for easier plaque visualization. For DNA preparation, 

MRC-5 cultures were infected at an MOI of 5 and viral genomic DNA (gDNA) was isolated via 

a nucleocapsid preparation assay previously described (68). Similarly prepared gDNA from 

KOSLarge (29) and from plaque-purified HSV-1 strain 17 were used in the RFLP and PCR studies  

below. 

 

Next generation sequencing 

Viral gDNA was sheared and prepared for sequencing on an Illumina MiSeq. Viral nucleocapsid 

DNA was sheared using a Covaris M220 sonicator/disruptor, with the following parameters: 60 

seconds duration, peak power 50, 10% duty cycle, at 4°C. The Illumina TruSeq DNA sample 

prep kit was used to prepare barcoded sequencing libraries, according to the manufacturer’s low-

throughput protocol. Libraries were quantified and assessed by Qubit (Invitrogen, CA), 

Bioanalyzer (Agilent), and qPCR for library adaptors (KAPA Biosystems). Paired-end 

sequencing (2 x 300 bp length) was carried out on our lab’s Illumina MiSeq instrument, 

according to manufacturer’s recommendations, with 17 pM input. All sequence data has been 

deposited at the NCBI Short Read Archive under BioProject ID PRJNA295931. Sequence 
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alignments are also openly available from the Lancaster University data archive at 

http://dx.doi.org/10.17635/lancaster/researchdata/29. 

 

Consensus viral genomes were assembled using a recently described viral genome assembly 

(VirGA) workflow (29). Briefly, this workflow performs a number of quality control filters, 

including removal of contaminating host sequences, adaptors from library preparation, or image-

acquisition artifacts. It then carries out multiple iterations of de novo assembly using SSAKE, 

which are combined into longer blocks of sequence (contigs) using Celera and GapFiller. The 

Mugsy alignment package is used to match these contigs to a reference genome for HSV-1 

(strain 17, JN555585). The best matching contigs are stitched into a single consensus genome 

using a VirGA-specific script called mafnet. Finally, an array of quality-control measures are 

used to annotate, query, and improve the draft consensus genome. These include comparing the 

pileup of raw sequence reads to the initial draft genome, detecting polymorphisms within the 

sequence, identification of sequence features, gaps, and low coverage areas, and validation of 

selected areas by PCR and Sanger sequencing. Consensus genome sequences for KOS79 and 

KOS63 have been deposited in GenBank under accessions KT425109 and KT425110. 

 

Pairwise identity and genetic distance comparisons 

Trimmed genome sequences, lacking the terminal copies of the large repeats, were used for 

genetic distance comparisons to avoid giving undue weight to the repeats. In strains KOSDavido, 

KOSKnipe, and KOS1.1, the lengths of several reiterations (also known as variable number 

tandem repeats, or VNTRs) have been artificially set to match the reiteration copy number from 

the reference strain 17 (32, 34). We used the annotation of these VNTRs in the GenBank 
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accession of KOSDavido (JQ673480) to locate and remove these regions from all pairwise 

calculations of distance and percent identity. ClustalW2 (69) was used to construct pairwise 

global nucleotide alignments between whole genome sequences and pairwise global amino acid 

alignments between ORFs. These alignments were utilized by downstream custom Python scripts 

to calculate percent identity, protein differences, and genetic distance between samples. Further, 

an all-vs.-all alignment was used to generate a NeighborNet phylogenetic network in SplitsTree 

(44, 45, 70) with Uncorrected P distances in order to illustrate potential evolutionary 

relationships between strains. 

 

Global genetic distance and recombination analyses 

KOS79 was incorporated into the genome-wide alignment from Szpara et al. (42) using MAFFT 

with input parameters specified to freeze the prior alignment (71). Addition of KOS79 and 

KOS63 did not alter the published alignment of any of the other 26 HSV-1 genomes (42). The 

source alignment is found on the accompanying data website to Szpara et al. (42): 

http://szparalab.psu.edu/hsv-diversity/. Genetic distances were calculated in MEGA6 (72) using 

the Maximum Composite Likelihood measure and a dendrogram was produced using the 

Unweighted Paired Group Mean (Arithmetic) method (UPGMA) with 1000 bootstrap replicates 

(73, 74). Recombination was analyzed using SimPlot (75). 

 

RFLP analysis 

Nucleocapsid DNA was digested overnight at 37
o
C using the restriction enzymes BamHI, EcoRI, 

and HindIII (New England BioLabs), according to the company’s specifications. 250 ng of DNA 

was used in each reaction along with the recommended buffer for each restriction enzyme. 
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Samples were visualized on a 1.0% agarose gel with ethidium bromide (Fisher Bio-Reagents) 

after overnight separation. Digital digests of the corresponding draft genomes were carried out 

using the software Geneious (version 7.1.7, created by Biomatters, available from 

http://www.geneious.com). These predicted patterns were compared against actual banding from 

above digestions, to assess draft genome matching to the observed RFLP banding patterns.  

 

Restriction digest of PCR amplicons 

Primers were designed flanking NcoI and NdeI restriction endonuclease cut sites in UL14 and 

UL25 respectively (Table 1). HSV 17, KOS79, KOSLg and KOS gDNA was boiled for five 

minutes and then snap-cooled on ice for five minutes. PCR was conducted in 50 μl reaction 

volumes using 3 μl of template DNA, 1 unit of PrimeStar GXL DNA polymerase (Clontech), 

200 mM deoxynucleoside triphosphate, 1 μM primers, and 1X buffer. PCR conditions in an 

Eppendorf Mastercycler Nexus gradient were as follows: 98
°
C for 2 minutes, followed by 35 

cycles of denaturation at 98°C for 10 seconds, 15 seconds of annealing at 55°C for UL25 or 

60°C for UL14, and primer extension at 68°C for 1 minute. Final extension was carried out at 

68°C for 2 minutes. PCR amplicons were then subjected to restriction digest using NcoI and 

NdeI (New England Biosciences). 20 μl of PCR mixture containing the amplicon of interest was 

mixed with 5 μl of enzyme-appropriate buffer, 24 μl of water, and 1 μl of restriction 

endonuclease. Samples were incubated at 37°C for 1 hour, then heat inactivated at either 65°C 

for NdeI or 80°C for NcoI. Digested samples were then purified using a QIAquick PCR 

purification kit (Qiagen). Standard agarose gel electrophoresis was used to separate and visualize 

bands. Gels were run at 100 volts for 1 hour at room temperature. 
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Tables 

Table 1: KOS variants and strains used for genome sequence comparisons. 

Abbreviated 

name 
Parent strain Accession Source lab (reference) 

KOSDavido KOS JQ673480 Davido and colleagues (32) 

KOSLarge KOS KM222721 Szpara and colleagues (29) 

KOSKinchington KOS JQ780693 Kinchington and colleagues
1
 

KOSKnipe KOS KT899744.1 Knipe and colleagues (34) 

KOS1.1 KOS KT887225.1 Knipe and colleagues (34) 

KOS63 KOS TBD Dix (22), Szpara and colleagues
2
 

KOS79 KOS79 TBD Dix (22), Szpara and colleagues
2
 

17 17 JN555585 McGeoch, Davison, and colleagues (20, 21, 76) 

1
KOSKinchington is described only by GenBank record; 

2
KOS63 and KOS79 are presented for 

the first time here. 

 

 

Table 2. Sequencing statistics for HSV-1 strains KOS79 and KOS63.  

HSV-1 

strain 

Paired-end 

read length 
Raw reads 

Used for 

assembly 

Genome 

length 

Depth. 

≥100 

GenBank 

Accession 

KOS79 300 bp 7,761,149 6,079,163 150,782 99.9% KT425109 

KOS63 300 bp 6,293,716 3,483,600 152,389 96.8% KT425110 
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Table 3: Pairwise comparisons of genome-wide DNA identity (upper right) and 

number of proteins with coding variations (lower left) in HSV-1 strains. 

#
 o

f 
p

ro
te

in
s 

w
it

h
 c

o
d

in
g
 v

a
ri

a
ti

o
n

s*
 

Percent pair-wise DNA identity  

Strains 17 KOS79 KOS63 KOSDavido KOSLarge 
KOS 

Kinchington 
KOSKnipe KOS1.1 

17 
 

98.3% 98.4% 99.0% 98.3% 98.5% 98.9% 98.7% 

KOS79 57 
 

98.4% 98.1% 98.6% 98.4% 98.1% 98.1% 

KOS63 61 65 
 

99.2% 99.3% 99.2% 99.1% 99.1% 

KOSDavido 61 65 4 
 

99.0% 99.3% 99.6% 99.7% 

KOSLarge 63 65 7 10 
 

99.6% 99.1% 99.0% 

KOSKinchington 61 65 3 2 9 
 

99.3% 99.2% 

KOSKnipe 61 65 5 4 11 3  98.9% 

KOS1.1 61 65 2 5 8 4 6  

* See Supplementary Table 2 for a list of specific proteins that vary between each pair of strains. 
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Figure Legends 

Figure 1: Genome sequence comparisons reveal that KOS63 is as different from 

KOS79 as from the HSV-1 reference strain 17. The genome sequences of multiple 

variants of KOS63 (green) were compared to those of KOS79 (blue) and the HSV-1 

reference strain 17 (red). For every possible pairwise combination of genomes, we 

calculated the genetic distance and the percent DNA identity (see Methods for details; see 

also Table 3). Points are color-coded to reflect the pairs in each comparison, with strain 

labels next to each point (see below for abbreviations). The x-axis reflects decreasing 

percent identity, while the y-axis reflects increasing genetic distance. In both cases, more 

disparate pairwise comparisons will plot further from the origin. Shaded circles provide a 

visual guide to the groups of pairwise comparisons. Green shading indicates pairwise 

combinations of KOS63-like strains, blue shading indicates combinations involving strain 

KOS79, and red shading indicates combinations involving strain 17. Yellow shading 

indicates the sole pairwise combination of strains 17 and KOS79. Trimmed genome 

sequences, lacking the terminal copies of the large repeats, were used for all comparisons 

to avoid giving undue weight to the repeats. Reiteration lengths in several published 

strains (32, 34) are artificially matched to strain 17, so these regions were removed from 

all comparisons as well (see Methods for details). Abbreviations are as follows: Da, 

KOSDavido from Davido and colleagues (32); Lg, KOSLarge from Szpara and colleagues 

(29); Ki, KOSKinchington from Kinchington and colleagues (33); Kn, KOSKnipe and 1.1, 

KOS1.1, from Knipe and colleagues (34); 63, KOS63 as described by Dix and colleagues 
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(22), with genome sequenced here; 79, KOS79 as described by Dix and colleagues (22), 

with genome sequenced here; 17, HSV-1 reference strain 17, as initially published by 

McGeoch and colleagues (20, 21), and revised by Davison and colleagues (76). All 

GenBank accessions are listed in Table 1. 

 

Figure 2: Genetic distance reveals that KOS63 and KOSDavido cluster separately 

from KOS79 in a global collection of HSV-1 strains.  

We extended a prior dendrogram analysis of 26 HSV-1 strains of global distribution (42) to 

include strains KOS63 and KOS79. KOS63 and the originally-included KOSDavido strain both 

cluster with HSV-1 strains of Asian origin, while KOS79 groups with HSV-1 strains of 

European and North American origin. Dendrogram was calculated with UPGMA in MEGA 

(1,000 bootstrap replicates). Branch confidence values are indicated on the tree. Scale bar 

indicates the number of nucleotide substitutions per kilobase. 

 

Figure 3: Restriction digest patterns of HSV-1 UL14 and UL25 amplified regions.  

Schematic representation of UL14 (A) and UL25 (C) amplicons including predicted size and 

location of strain-specific NcoI (A) or NdeI (C) sites within each PCR amplicon. The sequence 

surrounding the distinctive NcoI cut site in KOS79 (A) and NdeI cut site in KOS63 (C) are 

highlighted in yellow, with other HSV-1 strains shown for comparison. Electrophoretic analyses 

of UL14 (B) and UL25 (D) amplicons with and without enzyme addition are shown for HSV-1 

strains 17, KOSLg, KOS79, and KOS63. Bands at 0.5kb and 1kb are marked on the 100 bp ladder 

in each gel.  
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Figure 4. RFLP analysis of HSV-1 KOS variants.  

Diagram of the HSV-1 genome (top) and predicted HindIII restriction sites (bottom). The  

location (A) and sizes (B) of the historical lettering systems for HindIII fragments (49–51) 

predicted for these genomes are also illustrated. Fusion of fragment O and I, due to loss of a 

HindIII site in gM (UL10), has been previously noted in a number of HSV-1 strains. This loss 

occurs in strain KOS79, both in the genome sequence (B) and in RFLP analysis (C) after HindIII 

digestion of viral nucleocapsid DNA. Abbreviations in the genome diagram are as follows: 

TRL/IRL, terminal/internal repeat of the long region; IRS/TRS, internal/terminal repeat of the 

short region. 
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Figures 

Figure 1: Genome sequence comparisons reveal that KOS63 is as different from 

KOS79 as from the HSV-1 reference strain 17. 
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Figure 2: Genetic distance reveals that KOS63 and KOSDavido cluster separately 

from KOS79 in a global collection of HSV-1 strains.  
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Figure 3: Restriction digest patterns of HSV-1 UL14 and UL25 amplified regions.  
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Figure 4. RFLP analysis of HSV-1 KOS variants.  
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Supplementary Figures & Legends 

Supplementary Figure 1: SplitsTree analysis of KOS79 and KOS63-like variants. 

 

Supplementary Figure 1: SplitsTree analysis of KOS79 and KOS63-like variants. 

SplitsTree analysis (44, 45, 70) reveals the close relationship among the KOS63-like variants, as 

compared to either KOS79 or the HSV-1 reference strain 17. Inset (green box) provides an 

expanded view and labels for the compact section of the network containing KOS63-like strains. 

Trimmed genome sequences lacking the terminal copies of the large repeats that flank each 

unique region were excluded, so that these genome regions did not doubly influence the genetic 

relatedness. Likewise, reiterations set to match those of strain 17 were excluded, so that these did 

not unduly influence the network (see Methods for details). Genome accession numbers and 

sources are listed in Table 1. 
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Supplementary Figure 2: Simplot and BootScan comparison of KOS79 with 

consensus of the European/North American and Africa-1 clusters. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

29 

Supplementary Figure 2: Simplot and BootScan comparison of KOS79 with 

consensus of the European/North American and Africa-1 clusters. 

SimPlot analysis (A) of KOS79, in comparison to KOS63, a consensus of the European/North 

American cluster (strains HF10, 17, McKrae, F, and H129), and a consensus of the Africa-1 

cluster (strains E08, E12, E13, E14, and E19) from our prior study (Figure 2) (42). KOS79 is 

most closely related to the European/North American consensus strain over most of its length, 

except for a few short regions where it is most similar to the Africa-1 consensus (e.g. between 

kilobases 45-50 and 97-102) or where no predominant background can be identified (e.g. 

between kilobases 60-65 and 80-85). These regions may represent recombination events, 

although whether recent or ancient cannot be known. The corresponding BootScan plot (B) 

shows chi-shaped crossover signals supportive of recombination with an African strain at ~97-

102 kb, although two other areas of African similarity have less well formed signs of crossover. 

Potential crossover events with KOS63 occur at 60-60 kb and 80-85 kb (B), although the 

SimPlot signals in these areas are not strong (A). 
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Supplementary Tables  

Supplementary Table 1: Proteins varying between each pairwise combination of 

KOS63-like strains.  

Strains KOS63 KOSDavido KOSLarge 
KOS 

Kinchington 
KOSKnipe 

KOSDavido 

gB (UL27), 

VP1/2 (UL36),  

RR1 (UL39), 

ICP4 (RS1) 

- - - - 

KOSLarge 

UL8, UL9, 

UL13, UL21, 

gH (UL22), 

VP1/2 (UL36), 

US6 

UL8, UL9, 

UL13, UL21, 

gH (UL22),  

gB (UL27),  

VP1/2 (UL36), 

RR1 (UL39), 

ICP4 (RS1),  

gD (US6) 

- - - 

KOS 

Kinchington 

gB (UL27), 

VP1/2 (UL36), 

RR1 (UL39) 

VP1/2 (UL36), 

ICP4 (RS1) 

UL8, UL9, 

UL13, UL21, 

gH (UL22),  

gB (UL27), 

VP1/2 (UL36), 

RR1 (UL39), 

gD (US6) 

- - 

KOSKnipe 

gB (UL27), 

VP1/2 (UL36), 

RR1 (UL39), 

ICP34.5 (RL1), 

ICP0 (RL2) 

ICP4 (RS1), 

VP1/2 (UL36), 

ICP34.5 (RL1), 

ICP0 (RL2) 

UL8, UL9, 

UL13, UL21,  

gH (UL22),  

gB (UL27), 

VP1/2 (UL36), 

RR1 (UL39),  

ICP34.5 (RL1), 

ICP0 (RL2), 

gD (US6) 

VP1/2 (UL36),  

ICP34.5 (RL1), 

ICP0 (RL2) 

- 

KOS1.1 
UL30,  

VP1/2 (UL36) 

gB (UL27), 

UL30,  

VP1/2 (UL36), 

RR1 (UL39), 

ICP4 (RS1) 

UL8, UL9, 

UL13, UL21,  

gH (UL22), 

UL30,  

VP1/2 (UL36), 

gD (US6) 

gB (UL27), 

UL30,  

VP1/2 (UL36),  

RR1 (UL39) 

 gB (UL27), 

UL30,  

VP1/2 (UL36), 

RR1 (UL39), 

ICP34.5 (RL1), 

ICP0 (RL2) 
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Supplementary Table 2: Primers for PCR Validation 

Primer Name Target Sequence 

KOS_UL14_F1 UL14 5'-GGGGAACACTATCTGTCGTTGTTGCAGC-3' 

KOS_UL14_R1 UL14 5'-GATCGTCTTGCGGACCAGGAGGAGCAA-3' 

KOS_UL14_F2_Seq UL14 5’-GCGTGAGGGTAAGGATGTG-3’ 

KOS_UL14_F2.1_Seq UL14 5’-GCGTGAGGGTGAGGATGTG-3’ 

KOS_UL14_R2_Seq UL14 5’-CTGGTCATGTGGCAGCTAA-3’ 

KOS_UL25_F1 UL25 5'-GTCGATATCGAGCGCCGGTTAC-3' 

KOS_UL25_R1 UL25 5'-GGTACAGCAGGTAGAGACACAACAC-3' 

KOS_UL25_F2_Seq UL25 5’-CGGAACGTGCACGAGAT-3’ 

KOS_UL25_R2_Seq UL25 5’-CGTCATGAAGGTCTTGGACA-3’ 
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Supplementary Figure 1: SplitsTree analysis of KOS79 and KOS63-like variants. 

 

Supplementary Figure 1: SplitsTree analysis of KOS79 and KOS63-like variants. 

SplitsTree analysis (44, 45, 70) reveals the close relationship among the KOS63-like variants, as 

compared to either KOS79 or the HSV-1 reference strain 17. Inset (green box) provides an 

expanded view and labels for the compact section of the network containing KOS63-like strains. 

Trimmed genome sequences lacking the terminal copies of the large repeats that flank each 

unique region were excluded, so that these genome regions did not doubly influence the genetic 

relatedness. Likewise, reiterations set to match those of strain 17 were excluded, so that these did 

not unduly influence the network (see Methods for details). Genome accession numbers and 

sources are listed in Table 1. 
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Supplementary Figure 2: Simplot and BootScan comparison of KOS79 with 

consensus of the European/North American and Africa-1 clusters. 
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Supplementary Figure 2: Simplot and BootScan comparison of KOS79 with 

consensus of the European/North American and Africa-1 clusters. 

SimPlot analysis (A) of KOS79, in comparison to KOS63, a consensus of the European/North 

American cluster (strains HF10, 17, McKrae, F, and H129), and a consensus of the Africa-1 

cluster (strains E08, E12, E13, E14, and E19) from our prior study (Figure 2) (42). KOS79 is 

most closely related to the European/North American consensus strain over most of its length, 

except for a few short regions where it is most similar to the Africa-1 consensus (e.g. between 

kilobases 45-50 and 97-102) or where no predominant background can be identified (e.g. 

between kilobases 60-65 and 80-85). These regions may represent recombination events, 

although whether recent or ancient cannot be known. The corresponding BootScan plot (B) 

shows chi-shaped crossover signals supportive of recombination with an African strain at ~97-

102 kb, although two other areas of African similarity have less well formed signs of crossover. 

Potential crossover events with KOS63 occur at 60-60 kb and 80-85 kb (B), although the 

SimPlot signals in these areas are not strong (A). 
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Supplementary Table 1: Proteins varying between each pairwise combination of 

KOS63-like strains.  

Strains KOS63 KOSDavido KOSLarge 
KOS 

Kinchington 
KOSKnipe 

KOSDavido 

gB (UL27), 
VP1/2 (UL36),  
RR1 (UL39), 
ICP4 (RS1) 

- - - - 

KOSLarge 

UL8, UL9, 
UL13, UL21, 
gH (UL22), 

VP1/2 (UL36), 
US6 

UL8, UL9, 
UL13, UL21, 
gH (UL22),  
gB (UL27),  

VP1/2 (UL36), 
RR1 (UL39), 
ICP4 (RS1),  

gD (US6) 

- - - 

KOS 
Kinchington 

gB (UL27), 
VP1/2 (UL36), 
RR1 (UL39) 

VP1/2 (UL36), 
ICP4 (RS1) 

UL8, UL9, 
UL13, UL21, 
gH (UL22),  
gB (UL27), 

VP1/2 (UL36), 
RR1 (UL39), 

gD (US6) 

- - 

KOSKnipe 

gB (UL27), 
VP1/2 (UL36), 
RR1 (UL39), 

ICP34.5 (RL1), 
ICP0 (RL2) 

ICP4 (RS1), 
VP1/2 (UL36), 
ICP34.5 (RL1), 

ICP0 (RL2) 

UL8, UL9, 
UL13, UL21,  
gH (UL22),  
gB (UL27), 

VP1/2 (UL36), 
RR1 (UL39),  

ICP34.5 (RL1), 
ICP0 (RL2), 

gD (US6) 

VP1/2 (UL36),  
ICP34.5 (RL1), 

ICP0 (RL2) 
- 

KOS1.1 
UL30,  

VP1/2 (UL36) 

gB (UL27), 
UL30,  

VP1/2 (UL36), 
RR1 (UL39), 
ICP4 (RS1) 

UL8, UL9, 
UL13, UL21,  
gH (UL22), 

UL30,  
VP1/2 (UL36), 

gD (US6) 

gB (UL27), 
UL30,  

VP1/2 (UL36),  
RR1 (UL39) 

 gB (UL27), 
UL30,  

VP1/2 (UL36), 
RR1 (UL39), 

ICP34.5 (RL1), 
ICP0 (RL2) 
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Supplementary Table 2: Primers for PCR Validation 

Primer Name Target Sequence 

KOS_UL14_F1 UL14 5'-GGGGAACACTATCTGTCGTTGTTGCAGC-3' 

KOS_UL14_R1 UL14 5'-GATCGTCTTGCGGACCAGGAGGAGCAA-3' 

KOS_UL14_F2_Seq UL14 5’-GCGTGAGGGTAAGGATGTG-3’ 

KOS_UL14_F2.1_Seq UL14 5’-GCGTGAGGGTGAGGATGTG-3’ 

KOS_UL14_R2_Seq UL14 5’-CTGGTCATGTGGCAGCTAA-3’ 

KOS_UL25_F1 UL25 5'-GTCGATATCGAGCGCCGGTTAC-3' 

KOS_UL25_R1 UL25 5'-GGTACAGCAGGTAGAGACACAACAC-3' 

KOS_UL25_F2_Seq UL25 5’-CGGAACGTGCACGAGAT-3’ 

KOS_UL25_R2_Seq UL25 5’-CGTCATGAAGGTCTTGGACA-3’ 

 

 


