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Abstract

In this work, the combined effects of magnetic field and ohmic heating on the en-

tropy generation rate in the flow of couple stress flow through a porous channel

is investigated. The equations governing the fluid flow are formulated , non-

dimensionalised and solved using a rapidly convergent semi-analytical Adomian

decomposition method (ADM). The result of the computation shows a signifi-

cant dependence of fluid’s thermophysical parameters on Joule’s dissipation as

well as decline in the rate of change of fluid momentum due to the interplay

between Lorentz and viscous forces. Moreover, the rate of entropy generation

in the flow system drops as the magnitude of the magnetic field increases.

Keywords: Magnetic field, entropy generation, slip flow, irreversibility

ratio, ADM, Ohmic heating

1. Introduction

In recent times, there has been a renewed interest in the thermodynamic

analysis involving channel fluid flows. This is due to the usefulness of the study

in several renewable energy applications. For instance, it could be used to pre-

dict the efficiecy of many thermal systems exhanging heat between two heat5
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reservoirs and other Carnot systems. Moreover, in the energy generation, ex-

cessive energy is wasted or dissipated in form of heat. Hence there is need to

minimise the wastage by improving the energy of the system. Based on this fact,

few research work has been reported in the literature. For example, Adesanya

and Makinde [1] reported the entropy generation in couple stress fluid flowing10

steadily through a porous channel with slip at the isothermal walls. Similarly,

Adesanya and Makinde [2] studied the entropy generation rate in the couple

stress fluid flowing through a porous channel with convective heating at the

walls. Also in the class of couple stress fluid, Makinde and Eegunjobi [3] inves-

tigated the inherent irreversibility of heat in steady flow of a couple stress fluid15

through a vertical channel filled with porous materials. Other important work

on the entropy generation in a moving fluid includes; [4–7].

In all the studies above on the thermodynamics analysis, the effect of mag-

netic field, placed in the transverse direction to the flow channel has been ne-

glected. In reality, magnetic field plays a vital role in many industrial and the-20

mal engineering applications. For instance, it is useful in controlling extremely

hot moving fluid like molten steel and many more. Several researchers have

investigated the entropy analysis in hydromagnetic fluid flow in recent times.

For example, Das and Jana [8] presented the second law analysis for magneto-

hydrodynamic incompressible fluid flow through a porous channel by imposing25

Navier slip conditions at the walls. Adesanya and Falade [9] analised the in-

herent irreversibility in the flow of hydrodynamic third grade fluid through a

channel saturated with porous materials. Similarly, the effect of hall current

was presented in a study by Das and Jana [10]. Intrested readers can see more

interesting work on the influence of magnetic field on entropy generation rate30

in references [11–20].

Motivated by studies in [8–20], the objective of the present study is to ex-

amine the influence of magnetic field and Ohmic heating of the couple stress

fluid on the entropy production within the flow channel, which has not been

accounted for in the literature. The outcoming results is expected to enhance35

many industrial and thermal engineering processes whose working medium is a
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non-Newtonian fluid, with a view to minimise entropy generation which tends

to deplete the amount of available energy for work.

To achieve this objective, flow governing equations are formulated, non-

dimensionalised and approximate solution of the dimensionless coupled non-40

linear boundary-value problem are obtained by using a semi-analytical Adomian

decomposition method [21, 22]. The choice of the method is due to the fact that

the method does not require any linearisation, discretisation, use of initial guess

or pertubation. These approximation solution are used to compute the entropy

generation rate and irreversibility ratio.45

In the following section, the problem is formulated and non-dimensional

analysis is also presented. 3 of the work contains the method of solution, results

are presented and discussed in 4, while 5 concludes the paper.

2. Mathematical formulation

A fully developed hydromagnetic non-Newtonian fluid flow between two par-50

allel plates is considered. The parallel plates are infinite, permeable and station-

ary relative to the fluid motion as shown in Fig.1. We choose a 2-dimensional

cartesian coordinate system with x−axis along the flow direction and y−axis

orthogonal to the planes of the parallel plates, separated by width y = h. Fluid

injection occurs at the lower plate at a uniform rate v0, matched with a corre-55

sponding fluid suction at the upper plate. A constant magnetic field of strength

B0 is applied perpendicular to the direction of fluid flow. For most industrial

applications, a non-chaotic fluid flow is desired such that the magnetic Reynolds

number is very small, and since no external voltage is applied to the fully de-

veloped flow system, the induced magnetic field and Hall effect are negligible.60

We further assumed that all the fluid properties are constant and the Stoke’s

constitutive model for the couple stresses is used. Consequently, the momentum

and energy balance equations, with the local volumetric entropy generation rate

(EG) for the fluid flow can be written as follows [1, 10]:

v0ρ
du′

dy′
= −dP

dx′ + µ
d2u′

dy′2
− η

d4u′

dy′4
− σeB

2
0u

′, (1)
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Figure 1: The geometry of the model.

ρcP v0
dT

dy′
= κ

d2T

dy′2
+ µ

(
du′

dy′

)2

+ η

(
d2u′

dy′2

)2

+ σeB
2
0u

′2, (2)

EG =
κ

T 2
0

(
dT

dy′
)2 +

µ

T0
(
du′

dy′
)2 +

η

T0
(
d2u′

dy′2
)2 +

σe

T0
B2

0u
′2, (3)

with the boundary conditions65

u′(0) = γ1
du′(0)

dy′
,
d2u′(0)

dy′2
= 0, T (0) = T0, (4)

u′(1) = γ2
du′(1)

dy′
,
d2u′(1)

dy′2
= 0, T (1) = T0, (5)

where u′ and P are the fluid velocity and pressure respectively, v0 is the

injection/suction velocity at the channel walls, η is the coefficient of couple

stress, µ is the dynamic viscosity, γi corresponds to the Navier slip coefficients at

the lower plate and upper plate, respectively for i = 1, 2, ρ is the fluid density, σe

is the fluid electrical conductivity, κ is the coefficient of thermal conductivity, cP70

is the isobaric specific heat, Tf and T0 are referenced fluid temperature, T is the

fluid temperature. The present model has potential application in automated

heat control mechanisms, especially in micro-channels. It is often desired in
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manufacturing processes that the rate of randomness (or entropy generation)

be tamed to avoid system complexity.75

Introducing the following dimensionless parameters and variables:

y =
y′

h
, u =

u′

v0
, θ =

T − T0

Tf − T0
, s =

v0h

ν
,G = − h2

µv0

dP

dx′ ,

a2 =
µh2

η
,H2 =

σeh
2B2

0

µ
, Pr =

νρcP
κ

,Br =
v20µ

κ(Tf − T0)
, (6)

Ω =
Tf − T0

T0
, Ns =

T 2
0 h

2EG

κ(Tf − T0)2
, β1 =

γ1
h
, β2 =

γ2
h
,

we obtain the following boundary value problems

s
du

dy
= G+

d2u

dy2
− 1

a2
d4u

dy4
−H2u, (7)

sPr
dθ

dy
=

d2θ

dy2
+Br

(
du

dy

)2

+
Br

a2

(
d2u

dy2

)2

+BrH2u2, (8)

together with the boundary conditions

u(0) = β1
du(0)

dy
,
d2u(0)

dy2
= 0, θ(0) = 0

u(1) = β2
du(1)

dy
,
d2u(1)

dy2
= 0, θ(1) = 0, (9)

while the entropy generation can be computed using80

Ns = (
dθ

dy
)2 +

Br

Ω
(
du

dy
)2 +

Br

Ωa2
(
d2u

dy2
)2 +

Br

Ω
H2u2. (10)

Our model given by Eqs.(7), (8) and (10) reduces to the asymptotic case as

H2 → 0 as obtained in Ref. [1].

3. Adomian decomposition method of solution

In this section, we seek the solution of the model equations (7), (8) and

(10) subject to the boundary condition (9), using the semi-analytical Adomian85
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decomposition scheme. To achieve this, the boundary value problems are con-

verted to the equivalent integral equations noting that u′′(0) = u′′(1) = 0.

Thus,

u(y) = f0 + f1y +
y3

6
f2 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

F4(Y )dY dY dY dY,

(11)

θ(y) = c0 + c1y +

∫ y

0

∫ y

0

(
F2(Y )−BrH2u2

)
dY dY (12)

where

F4(Y ) = G+
d2u

dY 2
− s

du

dY
−H2u,

FY (Y ) = sPr
dθ

dY
−Br

(
du

dY

)2

− Br

a2

(
d2u

dY 2

)2

.

The unknown coefficients f0, f1, f2, c0 and c1 are to be determined by using90

the method of undetermined coefficients. Following ADM we seek solutions in

the form of an infinite series

u(y) =

∞∑
0

un(y), θ(y) =

∞∑
0

θn(y). (13)

Substituting (13) into (11) and (12), we obtain

n=∞∑
n=0

un(y) = f0 + f1y +
y3

6
f2 + a2L4(Y )dY dY dY dY, (14)

and
n=∞∑
n=0

θn(y) = c0 + c1y +

∫ y

0

∫ y

0

(
Z1 − Z2

)
dY dY ; (15)

where

L4(Y ) =

∫ y

0

∫ y

0

∫ y

0

∫ y

0

(
G+

n=∞∑
n=0

d2un

dY 2
− s

n=∞∑
n=0

dun

dY
−H2

n=∞∑
n=0

un

)
,

Z1 = sPr

n=∞∑
n=0

dθn
dY

−Br

n=∞∑
n=0

(dun

dY

)2
,

and

Z2 =
Br

a2

n=∞∑
n=0

(d2un

dY 2

)2 −BrH2
n=∞∑
n=0

u2
n.
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Evidently (13) may be written in the recursive form95

u0(y) = f0 + f1y +
y3

6
f2 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

GdY dY dY dY, (16)

un+1(y) = a2
∫ y

0

∫ y

0

(d2un

dY 2
− s

dun

dY
−H2un

)
dY dY. (17)

In order to reduce the computational load in (15), the modified recurrent

relation

θ0(y) = c1y, (18)

is used, so that

θ1(y) =

∫ y

0

∫ y

0

(
sPr

n=∞∑
n=0

dθ0
dY

− Br

a2
( d2u
dY 2

)2)
dY dY. (19)

θ2(y) =

∫ y

0

∫ y

0

(
sPr

n=∞∑
n=0

dθ1
dY

−Br
( du
dY

)2)
dY dY. (20)

θ3(y) =

∫ y

0

∫ y

0

(
sPr

n=∞∑
n=0

(dθ2
dY

−BrH2u2
)
dY dY. (21)

θn+1(y) =

∫ y

0

∫ y

0

(
sPr

n=∞∑
n=0

dθn
dY

)
dY dY ; (n ≥ 2), (22)

Due to convergence of the ADM series solution conducted in Ref. [6] only100

few terms of the series will be required to obtain the approximate solutions of

the problem. We set the number of iteration to m so that the approximate

solutions (13) may be written as the finite series as follows:

u(y) =
m∑
0

un(y), θ(y) =
m∑
0

θn(y). (23)

The irreversibility in the heat flow to the viscous fluid is analysed using

(10) by expressing the entropy generation number Ns as partial sum of the105

entropy generation due to heat transfer, and the irreversibility resulting from

fluid friction and ohmic heating of the fluid. Therefore we set N1 and N2 as

follows
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N1 =
(dθ
dy

)2
, N2 =

Br

Ω

(du
dy

)2
+

Br

Ωa2

(d2u
dy2

)2
+

Br

Ω
H2u2. (24)

The Bejan number Be, which is a parameter that measures the irreversibility

ratio in the heat flow, may be defined as110

Be =
N1

Ns
=

1

1 + Φ
,Φ =

N2

N1
. (25)

where Φ is the irreversibility ratio, a parameter that measures the rate of

destruction of available work in the flow system. The Bejan number in Eq. (25)

is bounded in the interval 0 ≤ Be ≤ 1. The irreversibility due to heat transfer is

dominant when Be = 1, while the irreversibility due to viscosity and magnetic

field is dominant when Be = 0. The dimensionless equations (7)-(10), with the115

boundary conditions (9) were solved using the algorithm in (16)-(23), coded in

MATHEMATICA symbolic package. Using the numerical procedure discussed

above, we computed the dimensionless velocity, temperature, entropy generation

and irreversibility ratio. In what follows, we discussed some interesting results

from our findings.120

4. Results and discussion

Let us begin by examining the effect of the applied magnetic field and cou-

ple stresses on the flow velocity, the variations of the dimensionless velocity

with the width of the flow channel as presented in Fig.2, for varying values of

magnetic parameter (Hatman number, H2), couple stress inverse parameter a2,125

suction/injection parameter s, upper wall Navier-slip parameter β2, and lower

wall Navier-slip parameter β1. We showed in Table 1 that the ADM could guar-

antee a result comparable with the exact solution of the problem, with absolute

error of order 10−7 for m = 4. It is clear from Fig.2a that by increasing the

magnetic field the flow velocity would be inhibited. This could be explained130

by the action of Lorentz force, whose presence in the flow system constitutes

resistance to the momentum of fluid parcels in the adjacent fluid layers. Fig.2b

depicts the implication of increasing couple stress inverse parameter on the flow
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Table 1: Comparison between analytical and exact solution for the velocity profile for the

parameters a = 1, H = 0.2, s = β1 = β2 = 0.1

u uExact uADM Absolute error

0 0.00303054 0.00303070 1.56912× 10−7

0.1 0.00598827 0.00598858 3.11550× 10−7

0.2 0.00854151 0.00854196 4.52517× 10−7

0.3 0.01037320 0.01037370 5.66015× 10−7

0.4 0.01125880 0.01125950 6.38135× 10−7

0.5 0.01106440 0.01106510 6.55205× 10−7

0.6 0.00974517 0.00974577 6.04755× 10−7

0.7 0.00734506 0.00734554 4.77423× 10−7

0.8 0.00399756 0.00399783 2.70091× 10−7

0.9 -0.00007304 -0.00007305 9.47647× 10−9

1.0 -0.00454921 -0.00454955 3.36326× 10−7

velocity. Here, we find that an increase in couple stress inverse parameter cor-

responds to increase in fluid friction in the moving fluid. This friction arises135

from the effect of particle additves, constituting size dependent effect on couple

stress fluids. Moreover, rotational field of the velocity is generated in couple

stress fluid. Hence, an increse in couple stress results in decrease in the velocity

profile of the fluid. Fig.2c shows the effect of suction/injection on the velocity

profile of the fluid flow. Clearly, the increase in suction/injection parameter140

breaks the symmetry of the fluid flow. This is because the continual injection of

fluid into the channel, from a direction different from that of channel fluid flow,

changes the momentum of (or slows down) the fluid parcels at the lower wall-

fluid interface. This effect is propagated beyond the neighbourhood of the lower

plate, which breaks the symmetry of the channel flow system. However, increas-145

ing the suction/injection parameter does not show any significant effect at the

upper wall of the channel. Fig.2d-e depict the effects of Navier-slip parameters

on the velocity profile of the fluid flow. Evidently, the fluid slippage has signif-
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icant effect on the fluid motion, in that any change in any of the parameters

impacts on the viscous drag on the flow, which scales the maximum velocity150

of the flow up or down. In clear terms, increasing the upper wall Navier-slip

parameter decreases the fluid velocity significantly at the upper wall as well as

the maximum velocity of the fluid flow. In contrast, increasing the slip param-

eter at the lower wall increases the velocity at the wall as well as the maximum

velocity of the fluid flow.155

Next we describe the temperature response of the fluid with respect to flow

to changes in the values of the magnetic parameter, couple stress parameter and

the Brinkman number Fig.3. Fig.3a shows that increasing the magnetic field

intensity (or parameter) translates into a decrease in the channel temperature.

Fig.3b reveals that increasing couple stresses decreases the temperature profile160

in the channel. Expectedly, couple stresses enhance the fluid’s intermolecular

cohesion. This increases the fluid’s resistance to shear stress, resulting in tem-

perature rise within the flow channel. Fig.3c shows that an increase in Brinkman

number results in the increase in the fluid temperature.

To complete the analysis, the effects of the magnetic parameter, H2, couple165

stress parameter, a2, and the Brinkman number, Br on the entropy generation

are shown in Fig.4. Interestingly, it is observed from Fig.4(a) that the entropy

generation, Ns decreases with increase in magnetic parameter H2 in the mid-

dle of the channel. The interplay between the two thermophysical phenomena,

namely the intermolecular cohesion and entropy generation rate in viscous fluid170

becomes imperative. Viscosity increases as the intermolecular cohesion within

the fluid rises, or vice versa. The applied Lorentz force reduces the intermolec-

ular cohesion within the fluid resulting in decrease in entropy generation Ns

within the channel flow. Fig.4(b-c) shows that the rate of entropy generation

increases with increase in both couple stress parameter and the Brinkman num-175

ber. Increase in Brinkman number raises both dissipations due to Joule heating

and viscosity, which in turn increases the entropy generation rate. Fig.5 shows

the dominance of fluid viscosity on the irreversibility ratio, over heat transfer

at the centreline of the channel. In Fig.5(a), it is observed that as the mag-
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netic parameter H2 increases, heat transfer dominates the irreversibility ratio180

at the walls, while Figs.5(a-b) revealed that as the couple stress inverse and the

Brinkman number increase, fluid viscosity dominates the irreversibility ratio.

Following from the discussion above, at specific a2, s, β1,2 andBr, varying the

magnetic field automatically changes the fluid’s rate of change of momentum,

which in turn changes the fluid velocity. Reducing velocity in micro-channel185

fluid flow effectively reduces fluid temperature, rate of entropy production in

the fluid, and the irreversibility ratio as shown in Figs.2, 3, 4 and 5.

5. Conclusion

The effects of magnetic field and couple stresses on entropy generation in

an MHD flow through a porous channel, with suction/injection and Navier slip190

have been examined. The Adomian decomposition method was employed to

obtain semi-analytical solution that approximates the velocity and temperature

profiles, which are used to obtain the entropy generation production as well as

the Bejan number. It was found that the entropy generation rate reduces with

increasing magnetic parameter. The magnetic field acts in such a way as to195

tame the degree of randomness in the fluid’s particles, resulting in the lowering

of the fluid’s velocity and entropy generation rate in the system. In effect, the

fluid velocity, the fluid temperature and entropy generation showed significant

dependence on Joule dissipation. This result suggests a balanced mix between

heat transfer irreversibility and fluid friction irreversibility, which would enhance200

entropy minimisation and hence system design and manufacturing applications.

Our result would motivate applications in micro-channel automatic heat control

systems.

Nomenclature

β1 dimensionless Navier slip parameter at the lower wall205

β2 dimentionless Navier slip parameter at the upper wall
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η coefficient of couple stress

γ1 Navier slip coefficient at the lower plate

γ2 Navier slip coefficient at the upper plate

κ thermal conductivity210

µ dynamic viscosity

Ω parameter that measures the temperature difference between the two

heat reservoirs

ρ fluid density

σe electrical conductivity215

θ dimensionless fluid temperature

a2 couple stress parameter

B0 magnetic field strength

Br Brinkman number

cP specific heat at constant pressure220

EG volumetic rate of entropy

G dimensionless pressure gradient

h width of the channel

H2 Hartmann number

N1 entropy generation due to heat transfer225

N2 entropy generation due to entropy generation due to fluid friction and

ohmic heating

Ns entropy generation number
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Pr Prandtl number

s suction/injection parameter230

T fluid temperature

T0 temperature at the lower plate

Tf final fluid temperature

u dimensionless fluid velocity

u′ fluid velocity235

v0 uniform suction/injection velocity

x′, y′ cartesian coordinates

x, y dimensionless cartesian coordinates
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Figure 2: Parameterised velocity profiles of the fluid flow: (a) at varying Hatman number

H, with a = s = 1, β1 = β2 = 0.1; (b) at varying couple stress inverse a, with H = s = 1,

β1 = β2 = 0.1; (c) at varying suction/injection parameter s, with H = 1, a = 5, β1 = β2 = 0.1;

(d) at varying lower wall Navier-slip parameter β1, with H = a = s = 1, β2 = 0.1; (e) at

varying upper wall Navier-slip parameter β2, with H = a = s = 1, β1 = 0.1.
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Figure 3: Parametrised temperature profiles of the fluid flow: (a) at varying values of Hatman

number H, with a = s = Br = 1, Pr = 0.71, β1 = β2 = 0.1; (b) at varying values of couple

stress inverse a, with H = s = Br = 1, Pr = 0.71, β1 = β2 = 0.1; (c) at varying values of the

Brinkman number Br, with H = a = s = 1, Pr = 0.71, β1 = β2 = 0.1

17



Figure 4: Entropy generation rate: (a) at varying values of Hatman number H, with a = s =

Br = Ω = 1, Pr = 0.71, β1 = β2 = 0.1; (b) at varying values of couple stress inverse a, with

H = s = Br = Ω = 1, Pr = 0.71, β1 = β2 = 0.1; (c) at varying values of the Brinkman

number Br, with H = a = s = Ω = 1, Pr = 0.71, β1 = β2 = 0.1
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Figure 5: Irreversibility ratio: (a) at varying values of Hatman number H, with a = s =

Br = Ω = 1, Pr = 0.71, β1 = β2 = 0.1; (b) at varying values of couple stress inverse a, with

H = s = Br = Ω = 1, Pr = 0.71, β1 = β2 = 0.1; (c) at varying values of the Brinkman

number Br, with H = a = s = Ω = 1, Pr = 0.71, β1 = β2 = 0.1
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