Electronic Supplementary Information

Biospectroscopy reveals the effect of varying water quality on tadpole tissues of the Common Frog (*Rana temporaria*)

Rebecca Strong¹, Crispin J. Halsall^{1*}, Martin Ferenčík^{2, 3}, Kevin C. Jones¹, Richard F. Shore⁴ and Francis L. Martin^{1*}

¹Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK

² Povodí Labe, státní podnik, Odbor vodohospodářských laboratory (OVHL), Víta Nejedlého 951, 500 03 Hradec Králové, Czech Republic

³ Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology,

University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic

⁴Centre for Ecology and Hydrology, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK

Number of Pages = 9

Number of Tables = 6

Number of Figures = 4

PC	Liver P-value		Muscle <i>P</i> -value		Heart <i>P</i> -value		Kidney <i>P</i> -value		Skin <i>P</i> -value	
	CT vs.	CT vs.	CT vs.	CT vs.	CT vs.	CT vs.	CT vs.	CT vs.	CT vs.	CT vs.
	PF	WH	PF	WH	PF	WH	PF	WH	PF	WH
1	< 0.01	< 0.01	0.25	< 0.01	0.20	0.10	0.18	0.17	0.62	0.51
2	0.89	0.38	0.31	0.33	0.15	0.25	0.65	0.36	0.49	0.25
3	0.20	0.61	0.86	0.55	0.58	0.06	0.20	0.15	0.21	0.03
4	0.95	0.04	0.29	0.69	0.81	0.59	0.98	0.64	0.40	0.26
5	0.51	0.08	0.19	0.19	0.22	0.15	0.18	0.99	0.57	0.18
6	0.77	0.58	0.32	0.71	0.82	0.70	0.66	0.28	0.08	0.36
7	0.61	0.87	0.19	0.22	0.95	0.95	0.21	0.02	0.70	0.71
8	1.00	0.26	0.94	0.87	0.95	0.75	0.39	0.23	0.17	0.12
9	0.83	0.63	0.56	0.93	0.51	0.18	0.58	0.21	0.78	0.76
10	0.87	0.50	0.50	0.61	0.70	0.78	0.50	0.89	0.41	0.57

Table S1. Results from two-sample *t*-tests of the scores generated from principal component analysis for the first ten principal components following ATR-FTIR spectrochemical analysis of several tissues of *Rana temporaria* tadpoles. Significant results are highlighted in bold.

Table S2. Number of principal components (PCs) retained for input into a cross-validated linear discriminant analysis (LDA) model for optimum discrimination and classification. The Pareto tool function in Matlab was used to determine the number of PCs that represented 95% of the variance in each data set.

Tissue	Number of PCs				
	CT vs. PF 2012	CT vs. WH 2013			
Heart	14	17			
Kidney	9	16			
Liver	6	11			
Muscle	11	16			
Skin	11	18			

Table S3. Distinguishing wavenumbers and proposed assignments obtained from analysis of several organs of pro-metamorphic *Rana temporaria* tadpoles with ATR-FTIR spectroscopy following analysis with principal component analysis (PCA). The five largest loadings values for the most discriminating principal components are shown. Comparisons were made between tadpoles from CT: a rural agricultural pond with no pesticide input and PF: an urban pond impacted by wastewater and landfill run-off in 2012 and between tadpoles from CT and those from WH: an agricultural pond known to be impacted by pesticides in 2013. Sources: (Abdel-Gawad et al., 2012; Cakmak et al., 2006; Cakmak et al., 2003; Greve et al., 2008; Movasaghi et al., 2008; Palaniappan and Vijayasundaram, 2008, 2009; Palaniappan et al., 2011; Purna Sai and Babu, 2001; Toyran et al., 2006).

Site Comparison	Organ	Wavenumber (cm ⁻¹)	Proposed Assignment
CT vs. PF 2012	Liver	991	C-O ribose
PC1		1153	CO-O-C asymmetric stretching:
			glycogen and nucleic acids
		1516	Amide II
		1601	C=N cytosine
		1624	Amide I β -sheets
CT vs. WH 2013	Liver	968	C-O deoxyribose. C-C
PC1		991	C-O ribose
		1080	PO ₂ ⁻ symmetric stretching: nucleic acids and phospholipids
		1624	Amide I β -sheets
		1744	Ester C-O stretch: triglycerides,
			cholesterol ester
CT vs. WH 2013		988	C-O ribose
PC4		1022	Glycogen
		1616	Amide I
		1639	Amide I
		1697	Base region
CT vs. WH 2013	Muscle	972	OCH ₃ band of polysaccharides
PC1		1022	Glycogen
		1065	C-O stretching of the phosphodiester
			and ribose
		1154	Carbohydrates
		1501	Amide II
CT vs. WH 2013	Kidney	1535	Amide II stretching
PC7		1613	Amide I
		1643	Amide I
		1682	Amide I random coils
		1751	Lipid
CT vs. WH 2013	Skin	1497	Lipid
PC3		1616	Amide I
		1640	Amide I
		1670	Amide I (antiparallel β -sheet)
			v(C=C) trans, lipids, fatty acids
		1694	Amide I (antiparallel β -sheet)

Table S4. Results from two-sample <i>t</i> -tests of the scores generated from principal component
analysis-linear discriminant analysis (PCA-LDA) for the first linear discriminant (LD1)
following ATR-FTIR spectrochemical analysis of several tissues of Rana temporaria
tadpoles. Significant results are highlighted in bold.

Tissue	<i>P</i> value			
	CT vs. PF 2012	CT vs. WH 2013		
Heart	0.03	< 0.001		
Kidney	0.57	0.39		
Liver	0.02	< 0.001		
Muscle	0.81	< 0.001		
Skin	0.54	0.01		

Table S5. Results of classification accuracy (± standard deviation) for ATR-FTIR spectra of several tissues of *Rana* temporaria tadpoles with principal component analysis-linear discriminant classifier (PCA-LDC).

Tissue	Classification Rate (%)				
	CT (2012)	PF (2012)	CT (2013)	WH (2013)	
Heart	68.40 ± 22.20	64.40 ± 32.81	76.00 ± 26.33	71.11 ± 36.89	
Kidney	60.40 ± 37.41	44.00 ± 37.84	68.00 ± 31.20	51.11 ± 38.73	
Liver	99.20 ± 1.79	90.00 ± 15.14	98.00 ± 6.32	100 ± 0	
Muscle	34.98 ± 24.97	64.80 ± 39.44	71.00 ± 34.79	80.00 ± 25.39	
Skin	55.20 ± 16.83	54.40 ± 23.60	66.00 ± 26.33	66.67 ± 34.64	

Table S6. Distinguishing wavenumbers and proposed assignments obtained from analysis of several organs of pro-metamorphic *Rana temporaria* tadpoles with ATR-FTIR spectroscopy following analysis with principal component analysis-linear discriminant analysis (PCA-LDA). The five largest loadings values are shown. Comparisons were made between tadpoles from CT: a rural agricultural pond with no pesticide input and PF: an urban pond impacted by wastewater and landfill run-off in 2012 and between tadpoles from CT and those from WH: an agricultural pond known to be impacted by pesticides in 2013. Sources: (Abdel-Gawad et al., 2012; Cakmak et al., 2006; Cakmak et al., 2003; Greve et al., 2008; Movasaghi et al., 2008; Palaniappan and Vijayasundaram, 2008, 2009; Palaniappan et al., 2011; Purna Sai and Babu, 2001; Toyran et al., 2006).

Site	Organ	Wavenumber (cm ⁻¹)	Proposed Assignment
comparison	U	· · ·	
CT vs. PF 2012	Liver	1115	Symmetric stretching P-O-C
		1138	Carbohydrates
		1192	Phosphodiester stretching
		1624	Amide I β -sheets
		1732	C=O stretch lipids
CT vs. PF 2012	Heart	941	Phosphodiester region
		1088	Symmetric phosphate stretching
			vibrations
		1138	Carbohydrates
		1196	Collagen
		1273	CH rocking
CT vs. WH	Liver	1161	Stretching vibrations of hydrogen-
2013			bonding
			C-OH groups
		1454	CH ₂ bending of lipids with some protein
			contribution
		1651	Amide I
		1690	Peak of nucleic acids due to carbonyl
			stretching
		1724	C=O stretching of fatty acid esters
CT vs. WH	Muscle	988	Phosphodiester region
2013		1111	Symmetric stretching P-O-C
		1605	DNA vibration
		1651	Amide I
		1755	C=C lipids
	Heart	1161	Startshing without one of hydrogen
CI <i>VS</i> . WH	Heart	1101	Stretching vibrations of nydrogen-
2015			C OIL groups
		1220	Colleger
		1539	Amida L R shaats
		1647	Amide I p-sneets
		1647	Amide I Pasa ragion
		1097	Dase region
CT vs. WH	Skin	1165	C-O stretching of proteins and
2013			carbohydrates
		1327	Collagen
		1354	C-O stretching
		1578	Base stretching
		1667	Amide I (antiparallel β -sheet)
			<i>v</i> (C=C) <i>trans</i> , lipids, fatty acids

Figure S1. One dimensional scores plots following principal components analysis-linear discriminant analysis (PCA-LDA) of ATR-FTIR spectra obtained from several different tissues taken from *Rana temporaria* pro-metamorphic tadpoles. Tissues are liver (A), muscle (B), heart (C), kidney (D) and skin (E). Tadpoles were collected in 2012 from CT: a rural agricultural pond with no pesticide input or PF: an urban pond impacted by wastewater and landfill run-off (n=10). Two sample *t*-tests were employed to detect differences in the scores between ponds within each year. Asterisks indicate a *P*-value of <0.05 (*) or <0.01 (**).

Figure S2. One dimensional scores plots following principal components analysis-linear discriminant analysis (PCA-LDA) of ATR-FTIR spectra obtained from several different tissues taken from *Rana temporaria* pro-metamorphic tadpoles. Tissues are liver (A), muscle (B), heart (C), kidney (D) and skin (E). Tadpoles were collected in 2013 from CT: a rural agricultural pond with no pesticide input or WH: an agricultural pond known to be impacted by pesticides (n=20). Two sample *t*-tests were employed to detect differences in the scores between ponds within each year. Asterisks indicate a *P*-value of <0.05 (*) or <0.01 (**).

Pond

Figure S3. Raw mean ATR-FTIR spectra of tissue samples taken from *Rana temporaria* prometamorphic tadpoles. Tissues are liver (A), muscle (B), heart (C), kidney (D) and skin (E). Tadpoles were collected in 2012, from CT: a rural agricultural pond with no pesticide input or PF: an urban pond impacted by wastewater and landfill run-off (n=10).

Figure S4. Raw mean ATR-FTIR spectra of tissue samples taken from *Rana temporaria* prometamorphic tadpoles. Tissues are liver (A), muscle (B), heart (C), kidney (D) and skin (E). Tadpoles were collected in 2013, from CT: a rural agricultural pond with no pesticide input or WH: an agricultural pond known to be impacted by pesticides (n=20).

