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Abstract

We revisit the facial structure of the axial 3-index assignment polytope. After reviewing
known classes of facet-defining inequalities, we present a new class of valid inequalities,
and show that they define facets of this polytope. This answers a question posed by Qi
and Sun [21]. Moreover, we show that we can separate these inequalities in polynomial
time. Finally, we assess the computational relevance of the new inequalities by performing
(limited) computational experiments.
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1. Introduction and Motivation

The axial 3-index (or 3-dimensional) assignment problem (3AP) can be described as
follows. Given are three disjoint n-sets I, J,K and a weight function w : I×J×K −→ R.
The problem is to select a collection of triples M ⊆ I × J ×K such that each element of
each set appears in exactly one triple, and such that total weight of the selected triples
is minimized (or maximized). Its formulation as an Integer Linear Program (ILP) is:

min
∑
i∈I

∑
j∈J

∑
k∈K

wijkxijk

s.t.
∑
j∈J

∑
k∈K

xijk = 1 ∀i ∈ I, (1.1)∑
i∈I

∑
k∈K

xijk = 1 ∀j ∈ J, (1.2)∑
i∈I

∑
j∈J

xijk = 1 ∀k ∈ K, (1.3)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K. (1.4)
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The 3AP is a straightforward generalization of the well-known (two-dimensional)
assignment problem. Whereas the latter problem is solvable by a polynomial-time algo-
rithm, the 3AP is more difficult: no polynomial-time algorithm is known for the 3AP.
The 3AP however, is a very relevant problem, and has applications in many different
fields of science. In fact, the above stated formulation can be found in papers that deal
with the statistical design of experiments. For instance, Rassen et al. [22], Higgins [12],
and Xu and Kalbfleisch [24] describe how subjects, each receiving one of three possible
treatments, should be assembled into triples in a best possible way. A completely dif-
ferent application can be found in the field of computational chemistry where so-called
methyl groups need to be assigned to minimize the cost of the resulting resonance assign-
ment; we refer to John et al. [15] for further details. Yet another application is described
in computational biology (see Biyani et al. [7]).

Another reason for the importance of the 3AP is that it can be seen as a special
case of the axial multi-index assignment problem (mAP). In this case, instead of three
disjoint n-sets, we are given m disjoint n-sets, and the problem is to find n m-tuples
such that each element is in exactly one m-tuple, while minimizing total cost. This
problem is particularly relevant in target tracking situations, which occur not only in
data-association (see e.g. Poore and Gadaleta [18] and the references contained therein),
but also in particle tracking in live-cell imaging studies, see Feng et al. [14] for an example.

A consequence of these different applications is the existence of a wide range of
heuristic solution methods for the 3AP. Many of the papers above, as well as Huang
and Lim [13] and Aiex et al. [1] describe heuristic procedures. And although our work
reported here is not primarily algorithmic in nature, we remark that the inequalities
described here can be used in an (exact) cutting-plane approach, and hence can also be
used to establish lower bounds (see Section 5), thereby helping to assess the quality of
heuristic solutions found.

Thus, in this work we contribute to the polyhedral knowledge of the facial structure
of the convex hull of the feasible solutions to (1.1)-(1.4). First, we describe known classes
of facets by adopting a geometrical point of view, i.e., we organize the variables xijk in
a three-dimensional array (a cube). This allows us to illustrate the differences between
distinct classes of inequalities (Section 2). Next, we give a new class of facet-defining
inequalities, called the wall inequalities (Section 3). We show that this class can be
separated in polynomial time in Section 4. Further, we perform limited computational
experiments in order to assess the practical relevance of the wall inequalities in Section 5.

1.1. Literature

It is well-known that, as opposed to the polytope that corresponds to the two-
dimensional assignment problem, not all extreme vertices of the polytope corresponding
to (1.1)-(1.4) are integral. In fact, different types of fractional vertices exist; work on
this topic is reported in Kravtsov [16]. Early work investigating the facial structure of
the polytope PI is described in Balas and Saltzman [5] and Euler [10]. They give dif-
ferent classes of facet-defining inequalities (see Section 2). Subsequently, other classes
of facet-defining inequalities are reported in Qi and Balas [19] (see also Qi, Balas and
Gwan [20]). Separation algorithms are discussed in Balas and Qi [4]. A nice overview
of existing polyhedral results is given in Qi and Sun [21]. This paper also contains the
question: “Are there other facet classes such that the right hand sides of their defining
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inequalities are 2?”, to which we provide an (affirmative) answer here. An exact algo-
rithm based on known valid inequalities that are used in conjunction with Lagrangian
multipliers is given in Balas and Saltzman [6].

A related polytope is the one that corresponds to the so-called planar three-index
assignment problem; this is the problem that arises when a collection of triples needs to
be selected such that each pair of elements from (I × J) ∪ (I ×K) ∪ (J ×K) is selected
precisely once. The facial structure of this polytope has first been studied in Euler et
al. [9]. Also, polytopes that correspond to four-index assignment problems have been
studied, see Appa et al. [2]. Recent results that unify these polyhedral results for all
multi-index assignment polytopes can be found in Appa et al. [3].

1.2. Preliminaries

To avoid trivialities we assume n ≥ 4. Let An denote the (0, 1) matrix corresponding
to the constraints (1.1) - (1.3). Thus An has n3 columns (one for each variable) and 3n
rows (one for each constraint). Then, the 3-index assignment polytope is the following
object:

Pn
I = conv{x ∈ {0, 1}n

3

: Anx = 1},

while its linear programming (LP) relaxation is described as:

Pn = {x ∈ Rn3

: Anx = 1, x ≥ 0}.

For reasons of convenience, we will often omit the superscript n, and use A, PI and
P instead. We use R ≡ (I ∪ J ∪ K); elements of R are called indices. We also use
V ≡ I × J ×K; elements of V are called triples. Given a triple (i, j, k) ∈ V , we refer to
i, j and k as first, second, and third indices respectively.

An important object is the so-called column intersection graph corresponding to An.
This graph G(V,E), has a node for each column of An (i.e., a node for each triple) and
an edge for every pair of columns that have a +1 entry in the same row. Notice that each
column of An contains three +1’s. The intersection of two columns c and d is nothing
else but the number of indices that the triples c and d have in common; this number is
denoted by |c ∩ d|. Thus, the edge set E of the column intersection graph is given by
E = {(c, d) : {c, d} ⊆ V, |c ∩ d| ≥ 1}, i.e., two nodes are connected iff the corresponding
triples share some index. We call two triples disjoint if the corresponding nodes are not
connected in G. Clearly, cliques (a complete subgraph of G) and odd cycles (a cycle
consisting of an odd number of vertices in G) are relevant structures. Indeed, it is clear
that when given a set of variables that correspond to nodes that form a clique in G, at
most one of these variables can equal 1. In other words, a clique in G corresponds to a
valid inequality for Pn with righthand side 1, see Balas and Saltzman [5]. Also, a set of
variables that correspond to an odd cycle in G gives rise to a valid inequality, see e.g.
Euler [10].

In this work, we use well-known concepts from polyhedral theory; for a thorough
introduction into this field we refer to Nemhauser and Wolsey [17].

We will adopt a geometrical point of view to illustrate the valid inequalities. To do
so, we see the variables xijk arranged as in a cube, see Figure 1.

We find it convenient to have a symbol for the set of all x-variables that share two
indices. More concrete, we define the following sets.
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Figure 1: The arrangement of the xijk variables in a three-dimensional cube.

• For a given (j∗, k∗) ∈ J ×K: the set

(−, j∗, k∗) ≡ {(i, j, k) ∈ V : j = j∗, k = k∗}.

We use x(−, j∗, k∗) to denote the total weight of the corresponding variables.

• For a given (i∗, k∗) ∈ I ×K, the set

(i∗,−, k∗) ≡ {(i, j, k) ∈ V : i = i∗, k = k∗}.

We use x(i∗,−, k∗) to denote the total weight of the corresponding variables.

• For a given (i∗, j∗) ∈ I × J , the set

(i∗, j∗,−) ≡ {(i, j, k) ∈ V : i = i∗, j = j∗}.

We use x(i∗, j∗,−) to denote the total weight of the corresponding variables.

Geometrically, such a set of variables corresponds to an “axis” through the cube depicted
in Figure. Further, we write x(A) for

∑
q∈A xq.

In the next section we review the known classes of facet-defining inequalities of PI .

2. A review of known facet classes of PI

In this section, we review the known facet classes of PI . There are two classes of
facet-defining inequalities with right-hand side (RHS) 1 (Subsection 2.1), and we distin-
guish four classes of facet-defining inequalities with right-hand side 2 (Subsection 2.2).
Subsection 2.3 deals with other facet-defining inequalities.

2.1. Facet-defining inequalities with RHS 1

As described in Subsection 1.2, a clique in the column intersection graph gives rise to
a valid inequality. Balas and Saltzman [5] showed that there exist three types of cliques in
G(V,E), and two of them give rise to families of valid inequalities that are facet-defining
for PI . They show that these facet-defining inequalities constitute all facet-defining
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Figure 2: Geometric illustration of a clique inequality of type I; the three dotted axes correspond to the
variables in this inequality.

inequalities with coeffiecients in {0, 1}, and right-hand side 1. It is known that each of
these classes can be separated in O(n3) (see Balas and Qi [4]).

2.1.1. Clique inequalities of type I

Consider a triple c = (ic, jc, kc) ∈ V . For each c ∈ V , define

Q(c) = {(i, j, k) ∈ V : i = ic, j = jc or i = ic, k = kc or j = jc, k = kc}.

Thus, Q(c) is the set of triples sharing at least two indices with triple c. The correspond-
ing inequalities are clearly valid. For each c ∈ V :

x(Q(c)) ≤ 1. (2.5)

Fact 1. ([5]) Inequalities (2.5) define facets of PI ; these inequalities are called clique
inequalities of type I.

When we organize the variables xijk in a three-dimensional array (a cube), a clique
inequality of type I can be seen as the sum of those x-variables that lie on the three
“axes” through a particular cell. Indeed an alternative way of expressing Q(c) is by
observing that

Q(c) = (−, jc, kc) ∪ (ic,−, kc) ∪ (ic, jc,−),

see Figure 2.

2.1.2. Clique inequalities of type II

Consider two disjoint triples c = (ic, jc, kc) ∈ V and d = (id, jd, kd) ∈ V . For each such
pair of triples c, d ∈ V , define

Q(c, d) = {(ic, jc, kc), (ic, jd, kd), (id, jc, kd), (id, jd, kc)}.
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Figure 3: Geometric illustration of a clique inequality of type II; the four highlighted cells correspond
to the four variables in this inequality.

Thus, Q(c, d) is the set of triples that has two indices in common with d, and one
with c, together with triple c; notice that Q(c, d) contains exactly four triples. The
corresponding inequalities are clearly valid. For each disjoint pair c, d ∈ V :

x(Q(c, d)) ≤ 1. (2.6)

Fact 2. ([5]) Inequalities (2.6) define facets of PI ; these inequalities are called clique
inequalities of type II.

2.2. Facet-defining inequalities with RHS 2

There are four classes known of facet-defining inequalities with right-hand side 2; these
classes are members of larger classes of facet-defining inequalities that have arbitrary
right-hand sides (see Qi and Sun [21] for a nice overview). Below we describe each of
these classes restricted to right-hand side 2. It is shown in [21] that each of these four
classes can be separated in O(n3) time.

2.2.1. Lifted 5-hole inequalities

Balas and Saltzman [5] describe a class of facet-defining inequalities that correspond to
cycles of odd length in G; this class can have an arbitrary right-hand side. Here, we
restrict ourselves to describing those inequalities that have right-hand side 2, and we
will refer to them as lifted 5-hole inequalities. Let U consist of two elements of I, two
elements of J , and a single element of K, i.e., U = {i1, i2, j1, j2, k1} ⊂ R. Of course, the
roles of I, J,K in the definition of U can be interchanged. For each such U ⊂ R, define

S(U) = {(i, j, k) ∈ V : |(i, j, k) ∩ {i1, i2, j1, j2, k1}| ≥ 2}.

Thus, S(U) contains the triples that have at least two indices in common with U =
{i1, i2, j1, j2, k1}. The corresponding inequalities are valid. For each U = {i1, i2, j1, j2, k1} ⊂
R:

x(S(U)) ≤ 2. (2.7)

6



k k

k k

i1j2k2 i2j2k2 i3j2k2

i1j1k2 i2j1k2 i3j1k2

j j

i i1j2k1 i2j2k1 i3j2k1 i

i i1j1k1 i2j1k1 i3j1k1 i

j k j k

k k

Figure 4: Geometric illustration of a lifted 5-hole inequality; the eight dotted axes correspond to the
variables in this inequality.

Fact 3. ([5]) Inequalities (2.7) define facets of PI ; these inequalities are called lifted
5-hole inequalities.

Informally, we can view the left-hand side of a lifted 5-hole inequality as the union
of four (specific) clique inequalities of type I. Indeed, it is easily verified that S(U) =
Q(i1, j1, k1)∪Q(i1, j2, k1)∪Q(i2, j1, k1)∪Q(i2, j2, k1), see Figure 4. Thus, informally said,
a lifted 5-hole inequality consists of 8 axes. In fact, clique inequalities of type I, as well
as the lifted 5-hole inequalities, can be seen as members of a larger class of facet-defining
inequalities (called facet class Q in [21], see also [5]).

2.2.2. P (2) inequalities

This class of inequalities was introduced by Qi and Balas [19] (see also Qi et al. [20]),
and can be seen as a generalization of the clique inequalities of type II. Consider two
disjoint sets of indices U,W ⊂ R. We define

C1(U) ≡ {(i, j, k) ∈ V : i, j, k ∈ U}, and (2.8)

C2(U,W ) ≡ {(i, j, k) ∈ V : |(i, j, k) ∩ U | = 1, |(i, j, k) ∩W | = 2}. (2.9)

Thus, C1(U) consists of those triples whose indices are contained in U , while C2(U,W )
contains triples that share precisely one index with U , and precisely two indices with W .
We now apply definitions (2.8) and (2.9) to the following two choices of U and W . Here
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is a first choice:

U = {i1, i2, j1, j2, k1, k2},W = {i3, j3, k3}. (2.10)

This leads to

C1(U) = {(i1, j1, k1), (i1, j1, k2), (i1, j2, k1), (i1, j2, k2),

(i2, j1, k1), (i2, j1, k2), (i2, j2, k1), (i2, j2, k2)}, and

C2(U,W ) = {(i1, j3, k3), (i3, j1, k3), (i3, j3, k1), (i2, j3, k3), (i3, j2, k3), (i3, j3, k2)}.

And here is a second choice for the sets U,W :

U = {i1, i2, j1, k1},W = {i3, j2, j3, k2, k3}. (2.11)

This leads to

C1(U) = {(i1, j1, k1), (i2, j1, k1))}, and

C2(U,W ) = {(i1, j2, k2), (i1, j2, k3), (i1, j3, k2), (i1, j3, k3), (i2, j2, k2), (i2, j2, k3),

(i2, j3, k2), (i2, j3, k3), (i3, j1, k2), (i3, j1, k3), (i3, j2, k2), (i3, j3, k1)}.

The following inequalities are valid. For each disjoint pair of sets U,W ⊂ R satisfying
(2.10) or (2.11):

x(C1(U)) + x(C2(U,W )) ≤ 2. (2.12)

Fact 4. ([5]) Inequalities (2.12) define facets of PI ; these inequalities are called P (2)
inequalities.

Thus, an inequality of the class P (2) consists of 14 cells, see Figure 5.

2.2.3. Bull inequalities

This class of inequalities was described in Gwan and Qi [11]. It is a class of inequalities
with arbitrary right-hand side; here, we restrict our attention to the case where the
right hand side equals 2. Notice that this class of inequalities contains variables whose
coefficient has value 2.

Consider a single triple from V , say (i1, j1, k1), and consider a set U = {i2, j2} (with
i1 6= i2, j1 6= j2); let us call W = {i1, j1, k1} ∪ U . Define

F (U) = {(i, j, k) ∈ V : |(i, j, k) ∩W | ≥ 2, 1 ≤ |(i, j, k) ∩ {i1, j1, k1}| ≤ 2}}.

Thus, F (U) contains those triples that share at least two indices withW , and either one or
two indices with {i1, j1, k1}. The following inequalities are valid. For each (i1, j1, k1) ∈ V
and U ⊂ R:

2xi1,j1,k1 + x(F (U)) ≤ 2. (2.13)

Fact 5. ([11]) Inequalities (2.13) define facets of PI ; these inequalities are called bull
inequalities.
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Figure 5: Geometric illustration of a P (2) inequality; the fourteen highlighted cells correspond to the
fourteen variables in this inequality.

Notice that we can write

F (U) ∪ (i1, j1, k1) =

{(i1, j1,−), (i1,−, k1), (−, j1, k1), (i1, j2,−), (i2, j1,−), (i2,−, k1), (−, j2, k1)}.

Thus, a bull inequality consists of 7 axes and a single variable with coefficient 2, see
Figure 6 for an illustration.

2.2.4. Comb inequalities

This class of inequalities was also described in Gwan and Qi [11]. Again, it is a class
of inequalities with arbitrary right-hand side; here, we restrict our attention to the case
where the right hand side equals 2.

Let i1, i2, i3 ∈ I, j1, j2, j3 ∈ J , k1, k2, k3 ∈ K be pairwise distinct indices in R, and
let

U = {(i1, j2, k2), (i1, j3, k3), (i2, j2, k3), (i2, j3, k2), (i3, j1, k1), (i3, j2, k2), (i3, j3, k3)}.
(2.14)

The following inequalities are valid. For each (i1, j1, k1) ∈ V and U satisfying (2.14):

x(U) + x((i1, j1,−) + x(i1,−, k1)− x(i1, j1, k1) ≤ 2. (2.15)

Fact 6. ([11]) Inequalities (2.15) define facets of PI ; these inequalities are called comb
inequalities.

Thus, a comb inequality consists of 2 axes and 7 cells, see Figure 7 for an illustration.
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Figure 6: Geometric illustration of a bull inequality; the seven dotted axes correspond to the variables
in this inequality, whereas the highlighted cell corresponds to the variable with coefficient 2.
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Figure 7: Geometric illustration of a comb inequality; the two dotted axes, and the seven highlighted
cells, correspond to the variables in this inequality.
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2.3. Other facet-defining inequalities

Based on odd-cycles present in the column intersection graph G, Euler [10] described
a class of facet-defining inequalities. Indeed, an odd cycle in G gives rise to a valid
inequality, and, in some circumstances (see [10]), such a valid inequality can be lifted to
a facet-defining inequality. Although we refrain from giving a precise description of the
resulting inequalities, we note here that the right-hand side of this class of inequalities
equals n− 1.

As far as we aware, the classes of inequalities that we covered in this section constitute
all known facet-defining inequalities of the polytope PI .

3. Wall Inequalities

3.1. A new class of valid inequalities

In this section we present a new class of valid inequalities that we call wall inequalities.
We will prove in Section 3.2 that these inequalities define facets of PI , thereby answering
a question asked in [11].

Let i1, i2, i3 ∈ I, j1, j2, j3 ∈ J , k1, k2 ∈ K be pairwise distinct indices in R. We define
the following set of triples:

B ={(i1, j1, k1), (i1, j2, k2), (i2, j1, k2), (i2, j2, k1),

(i3, j3,−), (i3,−, k1), (i3,−, k2), (−, j3, k1), (−, j3, k2)}.
(3.16)

Consider now the following inequalities. For each B satisfying (3.16):

x(B) ≤ 2. (3.17)

Observe that choosing i1, i2, i3 ∈ I, j1, j2, j3 ∈ J , k1, k2 ∈ K completely specifies
a wall inequality, and hence there exist at most O(n8) inequalities in this class. Also,
observe that a particular wall inequality represented by i1, i2, i3 ∈ I, j1, j2, j3 ∈ J ,
k1, k2 ∈ K, is also represented by i2, i1, i3 ∈ I, j1, j2, j3 ∈ J , k2, k1 ∈ K, and by
i1, i2, i3 ∈ I, j2, j1, j3 ∈ J , k2, k1 ∈ K.

These inequalities are valid, as witnessed by the following lemma.

Lemma 7. Inequalities (3.17) are valid.

Proof. Inequalities (3.17) can be obtained by adding equations (1.1) with i = i3, (1.2)
with j = j3 and (1.3) with k = k1, k2, and by adding a clique inequality of type II:
x(Q((i2, j2, k1), (i1, j1, k2))) ≤ 1. Next, integer rounding, i.e., dividing the resulting
inequality by 2 and rounding down all coefficients to the nearest integers, gives a wall
inequality.

We note that inequalities (3.17) can be written as

x(B) = x(Q(i3, j3, k2)) + x(Q((i1, j1, k2), (i2, j2, k1)))

+ x(i3,−, k1) + x(−, j3, k1)− x(i3, j3, k1),
(3.18)

where Q(i3, j3, k2) is the set of variables in a clique inequality of type I corresponding to
triple (i3, j3, k2) and Q((i1, j1, k2), (i2, j2, k1)) is the set of variables in a clique inequality
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Figure 8: Geometric illustration of a wall inequality; the five dotted axes, and the four highlighted cells,
correspond to the variables in this inequality.

of type II corresponding to triples (i1, j1, k2), (i2, j2, k1). Thus, a wall inequality consists
of five axes and four cells, see Figure 8 for an illustration.

We remark the following. Since our polytope PI is not full-dimensional, there is no
unique representation of a facet-defining inequality. Indeed, by adding or subtracting an
equality from (1.1)-(1.3), another, equivalent representation of a facet-defining inequality
can appear. Hence, it is conceivable that a wall inequality is nothing else but another
representation of some already known inequality. That, however, is not the case. For each
class of known facet-defining inequalities that we covered in Section 2, we can exhibit
a fractional point satisfying equalities (1.1)-(1.3), such that it is not cut away by the
known class, but is cut away by a wall inequality.

We now give two fractional solutions; the first one satisfies all lifted 5-hole inequalities
and all bull inequalities, and the second one satisfies all P (2) inequalities and all comb
inequalities. Both solutions violate a wall inequality. Here is the first solution:

x222 = x213 = x123 = x112 =
1

3
;x444 = x456 = x546 = x554 =

1

3
;

x888 = x879 = x789 = x778 =
1

3
;x248 = x482 = x824 =

1

3
;x159 = x573 = x716 =

1

3
;

x331 = x665 = x997 = 1 = xiii i = 10, . . . , n,

all other variables equal 0.

We claim that this fractional solution satisfies (1.1)-(1.3), all lifted 5-hole inequalities, as
well as all bull inequalities, see Dokka [8] for the precise details. However, there exists a
violated wall inequality:

x(B) ≥ x(Q((2, 2, 2), (1, 1, 3))) + x331 ≥
4

3
+ 1 =

7

3
> 2.
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Next, consider the following fractional solution. Let N1 ≡ {1, 2, . . . , 18}, and N2 ≡
{19, 20, . . . , n}, and set ε = 1

2n . Consider now the following fractional solution:

xiii = 36ε i ∈ N1,

xiii = 1− 18ε i ∈ N2,

xkii = xiki = xiik = ε i ∈ N1, k ∈ N2,

with all other x-variables equal 0. Notice that this solution is symmetric with respect
to the three indices i, j, k. We claim that this solution satisfies all equalities in (1.1) -
(1.3), all P (2) inequalities, as well as all comb inequalities, see Dokka [8]. However, this
solution violates a wall inequality, for some n ≥ 40:

x(B) ≥ x(Q(3, 3, 3)) + x222 (3.19)

= 36ε+ (n− 18)ε+ (n− 18)ε+ (n− 18)ε+ 1− 18ε (3.20)

=
5

2
− 36ε > 2. (3.21)

3.2. Wall inequalities define facets of PI

Here we prove the main theorem.

Theorem 8. Inequalities (3.17) define facets of PI .

Proof. Let us first explain the plan we follow in order to prove that x(B) ≤ 2 defines a
facet of PI . An inequality defines a facet of PI when it is satisfied by every x ∈ PI and
the dimension of the polyhedron PB ≡ {x ∈ PI : x(B) = 2} is equal to the dimension of
PI − 1 (see [17]). To prove that this is the case we will show that

• an inequality from (3.17) does not define an improper face, and

• adding x(B) = 2 to the constraints defining PI increases the rank of the equality
system of PI by exactly one.

The latter statement means that any equation that is satisfied by all x ∈ PB , is a linear
combination of the equations in the system defining PB . Since the dimension of the
polyhedron P is equal to the number of variables in the system defining P minus rank of
the equality system of P , proving the second point above implies dim(PB) = dim(PI)−1.

To prove that an inequality from (3.17) does not induce an improper face, we need to
exhibit a feasible solution with x(B) ≤ 1. Here is such a feasible solution: xi3+`,j3+`,k2+` =
1 for ` = 0, . . . , n−1 (indices should be read modulo n; the values of the indices i3, j3, k2

follow from the specific wall inequality under consideration).
To show that an inequality from (3.17) defines a facet of PI i.e., that dim(PB) =

dim(PI) − 1, we use the same approach as used in [5] and [11]. Namely, we exhibit
scalars λi, i ∈ I, µj , j ∈ J, νk, k ∈ K and a scalar π such that if αx = α0 for all x ∈ PB ,
then the scalars λi, µj , νk, and π satisfy:
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αijk = λi + µj + νk if (i, j, k) ∈ V \B, (3.22)

αijk = λi + µj + νk + π if (i, j, k) ∈ B, and (3.23)

α0 =
∑
i∈I

λi +
∑
j∈J

µj +
∑
k∈K

νk + 2π. (3.24)

To prove (3.22) and (3.23), we repeatedly apply the following interchange procedure.

1. Consider a solution x ∈ PI containing two disjoint triples (i, j, k) and (a, b, c), i.e.,
we have xijk = xabc = 1.

2. Construct a solution x̄ from x by interchanging the first index in the two selected
triples (i, j, k) and (a, b, c): x̄ajk = x̄ibc = 1. Observe that x̄ ∈ PI .

3. Deduce the value of αijk using αx = αx̄, which now implies αijk = αajk+αibc−αabc.

The above procedure describes a first index interchange; clearly, a similar procedure
exists involving a second and third index interchange. Without of loss of generality let
us assume that i1 = 1, i2 = 2, i3 = 3, j1 = 1, j2 = 2, j3 = 3, k1 = 1, k2 = 2.

We define for all i ∈ I, j ∈ J and k ∈ K:

λi = αinn − αnnn, (3.25)

µj = αnjn − αnnn, and (3.26)

νk = αnnk. (3.27)

Then, in order to prove (3.22), we need to prove for (i, j, k) ∈ V \B

αijk = λi + µj + νk = αinn + αnjn + αnnk − 2αnnn (3.28)

In the following, when we illustrate a solution x ∈ PI , we only write those variables
in the set B that take positive values.

We first deduce four equations which we will use in proving (3.28) for each (i, j, k) /∈ B.
Consider, for each i ∈ I \ {n}, a solution x ∈ PB such that xnnn = xi32 = 1. Using a
first index interchange, we obtain x̄ ∈ PB with x̄inn = x̄n32 = 1. Using αx = αx̄ we have

αnnn + αi32 = αinn + αn32. (3.29)

Note that (3.29) is true for every i ∈ I.

Consider, for each j ∈ J \ {n}, a solution x ∈ PB such that xnnn = x3j2 = 1. Using
a second index interchange, we obtain x̄ ∈ PB with x̄njn = x̄3n2 = 1. Therefore,

α3n2 = αnnn + α3j2 − αnjn. (3.30)

Note that this is true for every j ∈ J .

14



Again, consider for each j ∈ J \ {n}, a solution x ∈ PB such that xnnn = x3j1 = 1.
Using a second index interchange, we obtain x̄ ∈ PB with x̄njn = x̄3n1 = 1. Therefore,

α3n1 = αnnn + α3j1 − αnjn. (3.31)

Note that this is true for every j ∈ J .

Now, consider for each k ∈ K \ {n}, a solution x ∈ PB such that xnnn = x33k = 1.
Using a third index interchange, we obtain x̄ ∈ PB with x̄nnk = x̄33n = 1. Therefore,

α33n = αnnn + α33k − αnnk. (3.32)

Observe that (3.32) is true for all k ∈ K.

3.2.1. Proving (3.22)

If at least two indices of i, j, k are equal to n then it is easy to see that (3.28) holds,
and hence (3.22) follows. Below we consider the cases when at least two indices of i, j, k
are not equal to n.

Case 1: when i = n, j 6= n and k 6= n
Substituting i = n in (3.28), implies that we need to show the following:

αnjk = αnjn + αnnk − αnnn. (3.33)

We consider all possible cases of j and k as follows. We explain in detail the three steps
in the interchange procedure mentioned above for the case when j = 1, k 6= 1. For other
possible values of j and k such that (n, j, k) /∈ B we omit the complete details in proving
(3.28); instead we give the start solution, the type of index interchange, and the new
solution in Table 1.

Let x ∈ PB be such that xn1k = x33n = x221 = 1. Using a third index interchange
we obtain x̄ ∈ PB such that x̄n1n = x̄33k = x̄221 = 1. By αx = αx̄ we have:

αn1k + α33n = αn1n + α33k.

Substituting the value of α33n from (3.32) we get the required equality:

αn1k = αnnk + αn1n − αnnn.

In the column ‘remarks’ of Table 1, we mention the equality used (e.g., (3.32) in the
above case) in deducing the expression for αijk. Notice that when i = n, j = 3 and
k ∈ {1, 2}, (i, j, k) ∈ B, and we need to prove (3.23).

Case 2: when i 6= n, j = n and k 6= n
We consider all possible values of i and k such that (i, n, k) /∈ B in Table 2. Straight
forward calculations prove the corresponding version of (3.28):

αink = αinn + αnnk − αnnn. (3.34)

Case 3: when i 6= n, j 6= n and k = n
15



case start sol. interchange type new sol. remarks

j ∈ {1, 2, 3}
j = 1, k 6= 1 xn1k, x33n, x221 3 x̄n1n, x̄33k, x̄221 (3.32)
j = 1, k = 1 xn11, x33n, x122 3 x̄n1n, x̄331, x̄122 (3.32)
j = 2, k 6= 1 xn2k, x33n, x111 3 x̄n2n, x̄33k, x̄111 (3.32)
j = 2, k = 1 xn21, x33n, x212 3 x̄n2n, x̄331, x̄212 (3.32)

j = 3, k /∈ {1, 2} xn3k, x3n2, x111 2 x̄nnk, x̄332, x̄111 (3.30)
j = 3, k ∈ {1, 2} (i, j, k) ∈ B
j /∈ {1, 2, 3}

k = 1 xnj1, x33n, x122 3 x̄njn, x̄331, x̄122 (3.32)
k 6= 1 xnjk, x33n, x111 3 x̄n2n, x̄33k, x̄111 (3.32)

Table 1: Proving (3.22) when i = n, j 6= n, k 6= n

case start sol. interchange type new sol. remarks

k ∈ {1, 2}
k = 1, i = 2 x2n1,x33n,x122 3 x̄2nn,x̄331,x̄122 (3.32)

k = 1, i /∈ {2, 3} xin1,x33n,x212 3 x̄inn,x̄331,x̄212 (3.32)
k = 2, i = 2 x2n2,x33n,x111 3 x̄2nn,x̄332,x̄111 (3.32)

k = 2, i /∈ {2, 3} xin2,x33n,x221 3 x̄inn,x̄332,x̄221 (3.32)
i = 3 (i, j, k) ∈ B

k /∈ {1, 2}
k /∈ {1, 2}, i = 1 x1nk,xn32,x221 1 x̄nnk,x̄132,x̄221 (3.29)
k /∈ {1, 2}, i 6= 1 xink,xn32,x111 1 x̄nnk,x̄132,x̄111 (3.29)

Table 2: Proving (3.22) when i 6= n, j = n, k 6= n

Similar to the above two cases we prove the following version of (3.28)

αijn = αinn + αnjn − αnnn (3.35)

for all possible cases of the values of i and j in Table 3.
Case 4: when i 6= n, j 6= n and k 6= n

We now prove (3.28) for the case when i 6= n,j 6= n, k 6= n. Let x ∈ PB such that
xnnn = xijk = 1 with (i, j, k) ∈ B. Note that such a solution always exists. We define x̄
by doing a first index interchange; we get x̄inn = x̄njk = 1. By αx = αx̄, we have:

αnnn + αijk = αinn + αnjk. (3.36)

Using equation (3.33) we get

αijk = αinn + αnnk + αnjn − 2 · αnnn. (3.37)

This completes the proof of equation (3.28), and hence (3.22) is true.
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case start sol. interchange type new sol. remarks

i /∈ {1, 2, 3}
i /∈ {1, 2, 3}, j = 2 xi2n,xn32,x111 1 x̄n2n,x̄i32,x̄111 (3.29)
i /∈ {1, 2, 3}, j 6= 2 xijn,xn32,x221 1 x̄njn,x̄i32,x̄221 (3.29)

i ∈ {1, 2, 3}
i = 1, j /∈ {2, 3} x1jn,xn32,x221 1 x̄njn,x̄132,x̄221 (3.29)
i = 1, j = 2 x12n,x3n1,x212 2 x̄1nn,x̄321,x̄212 (3.31)
i = 1, j = 3 x13n,x3n2,x221 2 x̄1nn,x̄332,x̄221 (3.30)

i = 2, j /∈ {1, 3} x2jn,xn32,x111 1 x̄njn,x̄232,x̄111 (3.29)
i = 2, j = 1 x21n,x3n1,x122 2 x̄2nn,x̄311,x̄122 (3.31)
i = 2, j = 3 x23n,x3n2,x111 2 x̄2nn,x̄332,x̄111 (3.30)

i = 3, j /∈ {1, 3} x3jn,xn32,x111 1 x̄njn,x̄332,x̄111 (3.29)
i = 3, j = 1 x31n,xn32,x221 1 x̄n1n,x̄332,x̄221 (3.29)
i = 3, j = 3 (i, j, k) ∈ B

Table 3: Proving (3.22) when i 6= n, j 6= n, k = n

3.2.2. Proving (3.23)

For (i, j, k) ∈ B we define

πijk = αijk − λi − µj − νk. (3.38)

Next, to prove (3.23), we show that all πijk are equal. To do this, we first prove that
π221 = π212 = π122 = π111 and then derive the rest of the relations from these equalities.

Consider x ∈ PB such that xu = xt = xr = 1, where u = (1, 1, 2), t = (2, 2, 1),
and r = (3, 3, 3). Define x̄ from x by a first index interchange with ū = (2, 1, 2) and
t̄ = (1, 2, 1). Note that ū, t ∈ B; u, t̄ /∈ B and x̄ ∈ PB . Since αx = αx̄, we have:

αu + αt = αū + αt̄. (3.39)

Substituting the values of αu and αt̄ from equation (3.22) and the values of αt and αū

from equation (3.38) we obtain:

πt + λ2 + µ2 + ν1 + λ1 + µ1 + ν2 = πū + λ2 + µ1 + ν2 + λ1 + µ2 + ν1, (3.40)

or π221 = π212.
Again, consider x ∈ PB such that xu = xt = xr = 1, where u = (1, 1, 2), t = (2, 2, 1),

and r = (3, 3, 3). A third index interchange gives ū = (1, 1, 1) and t̄ = (2, 2, 2). Using
αx = αx̄, we have:

πt + λ1 + µ1 + ν2 + λ2 + µ2 + ν1 = πū + λ1 + µ1 + ν1 + λ2 + µ2 + ν2,

which implies π221 = π111.
Similarly, consider x ∈ PB such that xu = xt = xr = 1, where u = (5, 1, 1), t =

(1, 2, 2), and r = (3, 3, 3). Define x̄ from x by a first index interchange with ū = (1, 1, 1)
and t̄ = (5, 2, 2). Notice that ū, t ∈ B; u, t̄ /∈ B and x̄ ∈ PB . Again by αx = αx̄, we

17



have:

πt + λ5 + µ1 + ν1 + λ1 + µ2 + ν2 = πū + λ1 + µ1 + ν1 + λ5 + µ2 + ν2,

or πt = πū i.e., π122 = π111.
Thus, at this point we have shown that:

ζ ≡ π221 = π111 = π122 = π212.

It still remains to show that for all i, j, k, the following is true:

π3j1 = πi31 = πi32 = π33k = π3j2 = ζ.

We prove this by exhibiting pairs of feasible solutions in the following way. Consider
x ∈ PB such that xu = xt = xr = 1, where u = (2, 2, 3), t = (i, 3, 1), and r = (3, 1, 2)
with i /∈ {2, 3}. Construct x̄ from x by a third index interchange yielding ū = (2, 2, 1)
and t̄ = (i, 3, 3). Note that ū, t ∈ B; u, t̄ /∈ B and x̄ ∈ PB . Again by αx = αx̄, we have:

πt + λ2 + µ2 + ν3 + λi + µ3 + ν1 = πū + λ2 + µ2 + ν1 + λi + µ3 + ν3,

or πt = πū i.e.,
πi31 = π221 = ζ for i /∈ {2, 3}. (3.41)

Next, consider x ∈ PB such that xu = xt = xr = 1, such that u = (3, j, k), t =
(1, 1, 2), and r = (2, 3, 3), with j /∈ {3} and k /∈ {1, 2}, a third index interchange will give
ū = (3, j, 1) and t̄ = (1, 1, k). Again using αx = αx̄ implies

π3j1 = π111 = ζ for j 6= 3. (3.42)

For simplicity, we avoid working out all details in the rest of the cases. Instead, we
refer to Table 4 which lists the start solution, the type of interchange, and the implication.

case start sol. type of implication remarks
xu, xt, xr interchange

j 6= 3, k /∈ {1, 2} x63k, x3j1, x122 1 π33k = π3j1 ū, t ∈ B, u, t̄ /∈ B
i /∈ {1, 3}, k /∈ {1, 2} x32k, xi32, x111 2 πi32 = π33k ū, t ∈ B, u, t̄ /∈ B
i /∈ {1, 3}, j /∈ {1, 3} xi37, x3j2, x111 3 π3j2 = πi32 ū, t ∈ B, u, t̄ /∈ B

x443, x331, x122 3 π331 = π333 t, t̄ ∈ B, u, ū /∈ B
x113, x231, x372 3 π231 = π111 ū, t ∈ B, u, t̄ /∈ B
x443, x332, x221 1 π332 = π432 t, t̄ ∈ B, u, ū /∈ B
x213, x132, x341 3 π132 = π212 ū, t ∈ B, u, t̄ /∈ B
x443, x312, x221 2 π312 = π342 t, t̄ ∈ B, u, ū /∈ B

Table 4: Implications

The results from Table 4, together with (3.41) and (3.42), imply the following:

π3j1 = π33k = πi32 = π3j2 = π111 = π122 = π221 = π212 = πi31 for each i, j, k.
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3.2.3. Proving (3.24)

Let x̃ be defined by

x̃ijk = 1, if i = j = k

= 0, otherwise

Then x̃ ∈ PB , hence αx̃ = α0. Substituting the values of α from (3.22), (3.23) will give
us (3.24).

4. Separation

In this section we address the separation problem corresponding to the wall inequal-
ities. Although the number of distinct wall inequalities is polynomial in n (O(n8)),
and hence simple enumeration of these inequalities already runs in polynomial time, the
structure present in these inequalities allows for faster separation. More specifically, we
give an O(n4) separation algorithm to decide whether a given x ∈ P that satisfies the
clique inequalities of type I and type II, violates a wall inequality. Notice that since the
number of variables is O(n3), the resulting complexity is less than quadratic; we refer to
Dokka [8] for a more in-depth discussion.

For convenience, let us define the concept of a large triple, and a large axis. These
concepts are defined with respect to a given (fractional) solution x ∈ P . We call a
triple c ∈ V large if xc > 1

7 . Similarly, we call an axis (i, j,−) large (respectively
(i,−, k), (−, j, k)) when x(i, j,−) > 1

7 (respectively when x(i,−, k) > 1
7 , x(−, j, k) > 1

7 ).
We assume the following sets of large triples are pre-computed in a preprocessing step:

LT (i) ≡ {(j, k) ∈ J ×K : (i, j, k) is large},
LT (j) ≡ {(i, k) ∈ I ×K : (i, j, k) is large},
LT (k) ≡ {(i, j) ∈ I × J : (i, j, k) is large}.

Further, we will use LT to denote the set of all large triples, i.e.,

LT ≡ {(i, j, k) ∈ I × J ×K : (i, j, k) is large}.

Also, the following sets of large axes are pre-computed:

LAJ(i) ≡ {j ∈ J : (i, j,−) is large},
LAK(i) ≡ {k ∈ K : (i,−, k) is large},
LAI(j) ≡ {i ∈ I : (i, j,−) is large},

LAK(j) ≡ {k ∈ K : (−, j, k) is large},
LAI(k) ≡ {i ∈ I : (i,−, k) is large},
LAJ(k) ≡ {j ∈ J : (−, j, k) is large}.

Notice that all these sets can be computed in O(n3) time. Indeed, inspecting the
value of each xc gives us the sets LT directly, and also allows us to identify the axes that
are large, from which we find the sets LAI, LAJ , and LAK. Large triples (axes) play a
vital role in our separation algorithm, because of the fact that for a fixed r ∈ R there
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are at most a constant number of large triples, and large axes that contain r. We record
the following straightforward observations in a lemma.

Lemma 9. Given is some x ∈ P . The following statements are true:

(i) For each i ∈ I (j ∈ J, k ∈ K): |LT (i)| ≤ 6 (|LT (j)| ≤ 6, |LT (j)| ≤ 6).

(ii) For each i ∈ I (j ∈ J, k ∈ K): |LAJ(i)| ≤ 6, and |LAK(i)| ≤ 6 (|LAI(j)| ≤
6, |LAK(j)| ≤ 6, |LAI(k)| ≤ 6, |LAJ(k)| ≤ 6).

(iii) |LT | ≤ 7n, i.e. the number of large triples in x equals at most 7n.

Proof. We argue by contradiction. Suppose the first statement is not true, i.e., there
exist at least 7 pairs (j, k) ∈ J ×K with x(i, j, k) > 1

7 . This implies:∑
j∈J

∑
k∈K

x(i, j, k) > 7× 1

7
= 1,

which contradicts x ∈ P . All other inequalities follow in a similar way.
In the following subsections we will prove the following theorem:

Theorem 10. The separation problem for wall inequalities (3.16) can be solved in O(n4)
time.

Recall that B stands for the set of triples present in some wall inequality, see (3.16).
We use B1 ⊂ B to denote four of these triples, i.e., we set

B1 ≡ {(i1, j1, k1), (i1, j2, k2), (i2, j1, k2), (i2, j2, k1)}.

As remarked in Section 3, wall inequalities (3.16) are symmetric in the following sense:
the values of indices k1 and k2, as well as i1 and i2 (or j1 and j2) can be interchanged
without changing the inequality. We use this symmetry later on. Theorem 10 relies on
the following lemma.

Lemma 11. Any violated wall inequality falls into at least one of the following three
cases:

Case 1: No triple in B1 is large.

Case 2: A triple from B1, as well as the axis (i3, j3,−), are large.

Case 3: A triple from B1 with a third index k from {k1, k2}, as well as an axis with
third index k′ from {k1, k2}, k′ 6= k, are large.

Proof. Observe that a violated wall inequality must contain a large axis. We argue by
contradiction. Suppose that none of the first two cases apply. Then, there exists a large
triple in B1 (since we are not in Case 1), and the axis (i3, j3,−) is not large (since we
are not in Case 2). If, in addition, we are not in Case 3, all large triples, and large axes
share a third index, say k1. However, since x ∈ P , we have x[(i3,−, k1) ∪ (−, j3, k1)] +
x(i1, j1, k1) + x(i2, j2, k1) ≤ 1. Thus, the sum of the remaining variables in the wall
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inequality, being x[(i3, j3,−) ∪ (i3,−, k2) ∪ (−, j3, k2)] + x(i2, j1, k2) + x(i1, j2, k2) must
exceed 1; this is impossible since each of these terms is not large: a contradiction.

We will now show how to detect a violated wall inequality in each of the three cases
given in Lemma 11. Taken together, these algorithms constitute a separation algorithm
for the wall inequalities.

4.1. Case 1: when no triple in B1 is large

As mentioned before, we assume that the given (fractional) solution x ∈ P satisfies
the clique inequalities of type I and type II. We now give some properties of a violated
wall inequality when no triple in B1 is large.

Lemma 12. For a violated wall inequality with no large triple in B1, the following state-
ments are true:

(i) at least one of the axes (−, j3, k1) and (−, j3, k2) is large,

(ii) at least one of the axes (i3,−, k1) and (i3,−, k2) is large,

(iii) at least one of the axes (i3,−, k1) and (−, j3, k1) is large,

(iv) at least one of the axes (i3,−, k2) and (−, j3, k2) is large.

Proof.

(i) Since x ∈ P , we know that

x[(i3, j3,−) ∪ (i3,−, k1) ∪ (i3,−, k2)] ≤ 1.

Together with x(B1) ≤ 4
7 , it follows that, for a wall inequality to be violated, at

least one of the axes (−, j3, k1), (−, j3, k2) must be large.

(ii) A similar argument as above using x[(i3, j3,−)∪(−, j3, k1)∪(−, j3, k2)] ≤ 1 applies.

(iii) Since x satisfies the clique inequalities of type I, and in particular: x(Q(i3, j3, k2)) ≤
1, statement (iii) follows from x(B1) ≤ 4

7 .

(iv) A similar argument as above using x(Q(i3, j3, k1)) ≤ 1 applies.

Here is the algorithm for Case 1.

Algorithm 1 Separation algorithm for Wall Facets - Case 1

{No large triple in B1}
0. S := ∅;
1. for each k1, k2 ∈ K ×K, i3 ∈ LAI(k1), j3 ∈ LAJ(k2), and (i1, j1) ∈ I × J :

if (4.43) is satisfied then S := S ∪ {(i1, j1)};
2. for each k1, k2 ∈ K ×K, i3 ∈ LAI(k1), j3 ∈ LAJ(k2), and (i1, j1) ∈ S:

if x(B) > 2 then output x(B) ≤ 2 as violated wall inequality.
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Correctness of Algorithm 1 Consider a violated wall inequality. It follows from
Lemma 12, and from symmetry, that it is enough to consider the case when (i3,−, k1)
and (−, j3, k2) are large. We now assume that

x(i1, j1, k1) = max{x(i1, j1, k1), x(i1, j2, k2), x(i2, j1, k2), x(i2, j2, k1)};

we come back to this assumption later. Algorithm 1 starts by enumerating over K ×K
to consider all pairs k1 and k2. For each fixed k1 and k2, each i3 ∈ LAI(k1) and
j3 ∈ LAJ(k2) are considered to identify a violated inequality. Clearly, since (i3,−, k1)
and (−, j3, k2) are large, it follows that i3 ∈ LAI(k1) and j3 ∈ LAJ(k2); no other i3, j3
need to be considered.

In addition, we claim that for a violated wall inequality to exist, it must be true that
there exist i1, j1 ∈ I × J such that:

x(i1, j1, k1) >
1− x[(i3,−, k1) ∪ (−, j3, k1)]

4
. (4.43)

Indeed, suppose this were not true, then

x(i1, j1, k1) ≤ 1− x[(i3,−, k1) ∪ (−, j3, k1)]

4
,

which is equivalent with:

4x(i1, j1, k1) ≤ 1− x[(i3,−, k1) ∪ (−, j3, k1)],

which by our earlier assumption, implies:

x(i1, j1, k1) + x(i1, j2, k2) + x(i2, j1, k2) + x(i2, j2, k1) + x[(i3,−, k1) ∪ (−, j3, k1)] ≤ 1.
(4.44)

However, since clique inequalities of type I are satisfied, we have:

x[(i3, j3,−) ∪ (i3,−, k2) ∪ (−, j3, k2)] ≤ 1. (4.45)

Inequalities (4.44) and (4.45) would imply that no violated wall inequality exists, and
hence it is true that for a violated wall inequality to exist, (4.43) must hold. Thus, we
can use (4.43) to build a list of all (i1, j1) ∈ I × J . Then the inequality is checked for
each (i2, j2) ∈ I×J for fixed i3, j3, k2, k1 and for each (i1, j1) ∈ S. Hence, in this case of
no large triple in B1, a violated wall inequality is found if one exists. We point out that
the assumption x(i1, j1, k1) = max{x(i1, j1, k1), x(i1, j2, k2), x(i2, j1, k2), x(i2, j2, k1)} is
indeed without loss of generality: one of these four elements has the largest weight
among them, and the arguments used above go through for each choice of maximum-
weight element.

Complexity of Algorithm 1 The first ‘for’ loop builds the set S. The complexity
of this loop is O(n4), since, by Lemma 9, the sets LAI and LAJ contain at most 6
elements. Observe that the cardinality of the set S is at most 3. To see this, suppose
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there exist 4 pairs (ih1 , j
h
1 ), h = 1, . . . , 4, satisfying (4.43). This implies:

4∑
h=1

x(ih1 , j
h
1 , k1) + x[(−, j3, k1) ∪ (i3,−, k1) > 1,

which contradicts x ∈ P . Thus, the cardinality of the set S is at most 3. Therefore, the
last ‘for’ loop, which detects a violated wall inequality if one exists, runs in O(n2); this
gives a total complexity of Algorithm 1 of O(n4).

4.2. Case 2: A triple from B1, as well as the axis (i3, j3,−), are large

In this case, the algorithm looks for a violated inequality when there is a large triple
in B1, and when the axis (i3, j3,−) is large. Without loss of generality we assume that
the large triple is (i1, j2, k2). As in case 1, we assume that the given solution x ∈ P
satisfies the clique inequalities of type I and II. The algorithm to identify a violated wall
inequality in this case is given in Algorithm 2.

Algorithm 2 Separation algorithm for Wall Facets - case 2

{triple (i1, j2, k2) and axis (i3, j3,−) are large}
0. S := ∅;
1. for each i3 ∈ I, j3 ∈ LAJ(i3), k1 ∈ K:

if (4.48) is satisfied then S := S ∪ {k1};
2. for each i3 ∈ I, j3 ∈ LAJ(i3), k1 ∈ S, k2 ∈ K, (i2, j1) ∈ I × J, (i1, j2) ∈ LT (k2):

if x(B) > 2 then output x(B) ≤ 2 as violated wall inequality.

Correctness of Algorithm 2 Algorithm 2 starts by choosing a candidate for i3 in I.
Then the set LAJ(i3) is enumerated for j3 making use of the fact that (i3, j3,−) is large.
Since x ∈ P satisfies all clique inequalities of type II, it follows that

x[(i3, j3,−) ∪ x(i3,−, k1) ∪ x(i3,−, k2) ∪ x(−, j3, k1) ∪ x(−, j3, k2)] > 1, (4.46)

for a wall inequality to be violated.
Let us assume that the following is true:

x(i3,−, k1) ≥ max{x(i3,−, k2), x(−, j3, k1), x(−, j3, k2)}. (4.47)

Then it follows that a wall inequality can only be violated when

x(i3,−, k1) >
1− x(i3, j3,−)

4
. (4.48)

Indeed, if this were not true then we have:

x(i3,−, k1) ≤ 1− x(i3, j3,−)

4
,

which is equivalent with:

4x(i3,−, k1) ≤ 1− x(i3, j3,−),
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leading to (using (4.47)):

x[(i3,−, k1) ∪ (i3,−, k2) ∪ (−, j3, k1) ∪ (−, j3, k2)] ≤ 1− x(i3, j3,−),

contradicting (4.46). Now, Algorithm 2 first enumerates over all i3 ∈ I, j3 ∈ LAJ(i3),
and k1 ∈ K to build a list S of all k1 satisfying (4.48). Then, again for each i3 ∈
I, j3 ∈ LAJ(i3), and for each choice of k1 ∈ S, the algorithm enumerates over all
k2 ∈ K, i2 ∈ I, j1 ∈ J , and (i1, j2) ∈ LT (k2), the algorithm checks the inequality.
Since we assumed the triple (i1, j2, k2) to be large, it is enough to consider the (i2, j1)
pairs in LT (k2) to identify a violated wall inequality in this case. Notice that assump-
tion (4.47) is indeed without loss of generality: one of the four axes in (4.47) has the
largest weight among them, and straightforward modifications of (4.48) can then be used.

Complexity of Algorithm 2 The first ‘for’ loop builds the set S, and runs in O(n2).
Notice that the cardinality of S is at most 3. Indeed, suppose this were not true, then
we have kh1 , h = 1, 2, 3, 4, each satisfying (4.48) for a fixed i3, implying

x(i3, j3,−) +

4∑
h=1

x(i3,−, kh1 ) > 1,

which is impossible, since x ∈ P . Notice that this argument applies for each possible
axis in (4.47) having the largest weight. The second ‘for’ loop runs in O(n4), since the
sets LAJ(i3) and LT (k2) contain O(1) elements. Hence the overall complexity is O(n4).

4.3. Case 3: A triple from B1, as well as an axis with a different third index, are large

In this case, the algorithm looks for a violated inequality when there is a large triple in
B1, and when an axis with a different third index is large. Without loss of generality we
assume that the large triple is (i1, j2, k2). As before, we assume that the given solution
x ∈ P satisfies the clique inequalities of type I and II.

It follows that either axis (i3,−, k1) or axis (−, j3, k1) is large. Symmetry implies that
we can assume the larger axis to be (i3,−, k1). Further, we need to distinguish three
subcases depending upon which of the remaining four axes has the largest weight.

Subcase A: max{x(i3,−, k2), x(−, j3, k2)} ≥ max{x(i3, j3,−), x(−, j3, k1)},

Subcase B: x(i3, j3,−) ≥ max{x(i3,−, k2), x(−, j3, k1), x(−, j3, k2)},

Subcase C: x(−, j3, k1) ≥ max{x(i3, j3,−), x(i3,−, k2), x(−, j3, k2)}.

4.3.1. Subcase A

In this subsection, we assume that one of the two axes containing third index k2 is
heaviest; let us say axis (−, j3, k2) is heaviest. The algorithm to identify a violated wall
inequality in this case is given in Algorithm 3.
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Algorithm 3 Separation algorithm for Wall Facets - subcase A

{triple (i1, j2, k2) and axis (i3,−, k1) are large; an axis containing as third index k2 is
heaviest}
0. S := ∅;
1. for each (i1, j2, k2) ∈ LT, (i2, j1) ∈ I × J, j3 ∈ J :

if (4.49) is satisfied then S := S ∪ {j3};
2. for each (i1, j2, k2) ∈ LT, (i2, j1) ∈ I × J, j3 ∈ S, k1 ∈ K, i3 ∈ LAI(k1):

if x(B) > 2 then output x(B) ≤ 2 as violated wall inequality.

Correctness and Complexity of Algorithm 3 Algorithm 3 starts by considering
each possible (i1, j2, k2) ∈ LT . Then, it enumerates over all pairs i2, j1 ∈ I×J , and next
for each j3 ∈ J . Algorithm 3 then makes a list S of j3’s such that

x(−, j3, k2) >
1− [x(i2, j1, k2) + x(i1, j2, k2)]

3
. (4.49)

Indeed, notice that otherwise no violated wall inequality exists: using

x(−, j3, k2) ≤ 1− [x(i2, j1, k2) + x(i1, j2, k2)]

3
,

we can arrive at:

x(i3, j3,−) + x(i3,−, k2) + x(−, j3, k2) + x(i2, j1, k2) + x(i1, j2, k2) ≤ 1,

which, since x ∈ P , implies no violated wall inequality exists.
Let us now argue that the number of such j3’s is at most 2. Indeed, suppose this is

not the case and let there be j1
3 , j

2
3 , j

3
3 which satisfy (4.49). We have:

3∑
h=1

(−, jh3 , k2) + x(i2, j1, k2) + x(i1, j2, k2) > 1− [x(i2, j1, k2) + x(i1, j2, k2)]

+ x(i2, j1, k2) + x(i1, j2, k2) = 1.

This is a contradiction and hence there are at most 2 j3’s. For a fixed i2, j1, i1, j2, k2

and for each j3 ∈ S the inequality is checked for all k1 ∈ K and i3 ∈ LAI(k1). Again
this is enough as (i3,−, k1) is large.

With respect to complexity: the first ‘for’ loop runs in O(n4) (since, by Lemma 9, we
have O(n) large triples), and the second ’for’ loop also runs in O(n4) times since both
S and LAI(k1) contain a constant number of elements. Thus, the total complexity is
O(n4).

4.3.2. Subcase B

Let us now consider the case when axis (i3, j3,−) is heaviest among the four re-
maining axes, i.e., when x(i3, j3,−) ≥ max{x(i3,−, k2), x(−, j3, k1), x(−, j3, k2)}. The
corresponding algorithm is given as Algorithm 4.
Correctness and Complexity of Algorithm 4 Suppose that we know the values of
k2, k1 and i3 of a violated wall inequality. Then, for a violated wall inequality to exist,
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Algorithm 4 Separation algorithm for Wall Facets - subcase B

{triple (i1, j2, k2) and axis (i3,−, k1) are large; axis (i3, j3,−) is heaviest}
0. S := ∅;
1. for each (k1, k2) ∈ K ×K, i3 ∈ LAI(k1), j3 ∈ J :

if (4.50) is satisfied then S := S ∪ {j3};
2. for each (k1, k2) ∈ K ×K, i3 ∈ LAI(k1), j3 ∈ S, (i2, j1) ∈ I × J, (i1, j2) ∈ LT (k2) :

if x(B) > 2 then output x(B) ≤ 2 as violated wall inequality.

j3 should satisfy

x(i3, j3,−) >
1− [x(i3,−, k2) ∪ x(i3,−, k1)]

3
. (4.50)

Otherwise, it follows that total weight on all five axes does not exceed 1, which is not
compatible with the existence of a violated wall inequality, and x satisfying clique in-
equalities of type II.

Using a similar reasoning as in Subsection 4.3.1, it can be argued that there are at
most 3 j3’s such that (4.50) is satisfied. Algorithm 4 first builds a set S containing
possible j3’s by enumerating over (k1, k2) ∈ K × K, i3 ∈ LAI(k1), and j3 ∈ J . In the
second ‘for’ loop, the algorithm again enumerates over (k1, k2) ∈ K ×K, i3 ∈ LAI(k1),
and over all j3 ∈ S, (i2, j1) ∈ I × J , and (i1, j2) ∈ LT (k2) to detect whether a violated
wall inequality exists. The first ‘for’ loop of Algorithm 4 runs in O(n3), the second ‘for’
loop runs in O(n4), which gives a total complexity of O(n4).

4.3.3. Subcase C

Let us finally consider the case when axis (−, j3, k1) is the heaviest, i.e., when
x(−, j3, k1) ≥ max{x(i3, j3,−), x(i3,−, k2), x(−, j3, k2)}. The corresponding algorithm
is given as Algorithm 5.

Algorithm 5 Separation algorithm for Wall Facets - subcase C

{triple (i1, j2, k2) and axis (i3,−, k1) are large; axis (−, j3, k1) is heaviest}
0. S := ∅;
1. for each k1 ∈ K, i3 ∈ LAI(k1), j3 ∈ J :

if (4.51) is satisfied then S := S ∪ {j3};
2. for each k1 ∈ K, i3 ∈ LAI(k1), j3 ∈ S, (i2, j1, k2) ∈ V, (i1, j2) ∈ LT (k2):

if x(B) > 2 then output x(B) ≤ 2 as violated wall inequality.

Correctness and Complexity of Algorithm 5 In the first ‘for’ loop, Algorithm 5
enumerates over K for k1, over LAI(k1) to find i3, and over J to build a set S containing
candidates for j3 satisfying:

x(−, j3, k1) >
1− x(i3,−, k1)

4
. (4.51)

Notice that, similarly to Subcase B, if this inequality is not true, it follows that total
weight on all five axes does not exceed 1. Thus (4.51) must be true for a violated wall
inequality to exist. Again, using a similar reasoning as in Subsection 4.3.1, it follows that
there are at most 3 j3’s such that (4.51) is satisfied. In the second ‘for’ loop the algorithm
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enumerates over all k1 ∈ K, i3 ∈ LAI(k1), j3 ∈ S, (i2, j1, k2) ∈ V and (i1, j2) ∈ LT (k2)
to find a violated wall inequality (if one exists). The complexity of Algorithm 5 is
determined by the second ‘for’ loop that runs in O(n4).

5. Computational experiments

Here, we report on experiments that shed light on the computational relevance of
the wall inequalities. Clearly, from a practical point of view, the ability to cut away
fractional solutions determines to a large extent the success of a cutting-plane algorithm
solving instances of 3DA, and the usefulness of the corresponding set of inequalities. We
implemented a separation algorithm for the wall inequalities. This algorithm has been
coded in C++ using Visual Studio C++ 2010 and ILOG concert technology; all the
experiments are run on a Dell Latitude E6400 personal computer with Intel core 2 Duo
processor with 2.8 Ghz clock speed and 1.59 GB RAM, equipped with Windows XP.
CPLEX 12.4 was used for solving the linear programs.

5.1. Instances

We focus on a single class of instances, namely those that can be found in [5];
these instances are available at http://mauricio.resende.info/data/index.html. The cost-
coefficients wijk in these instances are generated uniformly in the interval [0, 100]. We ac-
knowledge that other classes of instances exist, however, preliminary experiments showed
that such instances very often have a value of the linear programming relaxation equal
to the integer optimum. This property makes such classes of instances less suited as
a testbed for analyzing the practical strength of the wall inequalities. There are 45
instances in this class, and results for these instances are given in Tables 5-6: a row
corresponds to a single instance. Further, Tables 5-6 contains 9 columns; the first col-
umn gives the name of the instance (notice that the middle number in this name refers
to n), the second column contains the value of the linear programming relaxation (the
LP-value), the third column gives the value that results from separating over the clique
inequalities of type 1 and type 2, the fourth column gives the value that results from sep-
arating over the wall inequalities, the fifth column shows the value after separating over
both the clique inequalities and the wall inequalities, the sixth column gives the value
of the integer optimum (OPT), and the last three columns give the percentages of the
gap closed after adding only the clique inequalities (column 7), only the wall inequalities
(column 8), and the clique inequalities and the wall inequalities (column 9). All values
are rounded up to four decimals.

5.2. Results

When comparing the LP-values in the second column with the entries in the fourth
column (that result from separating over the wall inequalities) in Tables 5-6, we see that
the LP-value almost always improves by adding violated wall inequalities. Especially for
the smaller instances, a sizable part of the gap between the LP-value and OPT is closed
by using wall inequalities. More precise, when averaged over the instances, more than
20% of the gap between the LP-value and OPT is closed by using only wall inequalities
(see Column 8). It is also true that wall inequalities alone do not suffice to find an integral
solution. In fact, it happens only twice (out of 45 instances) that a fractional LP-value
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Instance LP LP+C1 LP+WI LP+C1 OPT % gap closed % gap closed % gap closed
+C2 +C2+WI by WI by C1+C2 by C1+C2

(alone) +WI
bs-10-1 23.6 24 25 25 25 100.00% 28.57% 100.00%
bs-10-2 9.9333 10.25 10.3333 10.4 11 37.50% 29.69% 43.75%
bs-10-3 18.6 19.5 19.9167 19.9167 21 54.86% 37.50% 54.86%
bs-10-4 16.6667 18 18.2713 18.7027 21 37.03% 30.77% 46.98%
bs-10-5 17 17 17 17 17 0.00% 0.00% 0.00%
bs-12-1 16.875 17 17 17 17 100.00% 100.00% 100.00%
bs-12-2 18.25 18.6522 19.1579 19.1795 22 24.21% 10.73% 24.79%
bs-12-3 11 11 11 11 11 0.00% 0.00% 0.00%
bs-12-4 12.6667 12.6667 13.2581 13.2632 14 44.36% 0.00% 44.74%
bs-12-5 12.6 13.525 13.8271 13.8537 14 87.65% 66.07% 89.55%
bs-14-1 7.3529 7.4375 7.6812 7.697 9 19.93% 5.14% 20.89%
bs-14-2 4.6724 5 5.12 5.1429 9 10.34% 7.57% 10.87%
bs-14-3 12 12.3421 12.6 12.6 13 60.00% 34.21% 60.00%
bs-14-4 6.6222 7.725 7.9099 7.9581 10 38.12% 32.65% 39.55%
bs-14-5 7.5 8.4333 8.3659 8.4615 9 57.73% 62.22% 64.10%
bs-16-1 7.3636 7.5455 7.9091 7.9231 11 15.00% 5.00% 15.39%
bs-16-2 4 4 4.25 4.25 7 8.33% 0.00% 8.33%
bs-16-3 9.8972 10.1739 10.2075 10.2143 12 14.76% 13.16% 15.08%
bs-16-4 8.9348 9.7016 9.6689 9.942 11 35.55% 37.13% 48.77%
bs-16-5 6.8889 7.1824 7.5751 7.6 9 32.50% 13.90% 33.68%
bs-18-1 3.709 4.0333 3.9469 4.0462 6 10.38% 14.16% 14.72%
bs-18-2 3.5857 4 4 4.1 5 29.29% 29.29% 36.36%
bs-18-3 4.2286 4.2581 4.6993 4.6993 7 16.98% 1.06% 16.98%
bs-18-4 6.0204 6.0204 6.1957 6.1957 8 8.86% 0.00% 8.86%
bs-18-5 3.2857 3.6635 3.7321 3.7532 6 16.45% 13.92% 17.22%

Table 5: The effect of Wall Inequalities

becomes integral after adding both the clique and the wall inequalities. Further, one may
wonder to what extent wall inequalities improve the LP-values when clique inequalities
of type 1 and type 2 have already been separated. i.e., when the (fractional) x satisfies
the clique inequalities. This question can be answered by considering the entries in the
third column, and compare them to the entries in the fifth column of Tables 5-6: this
comparison shows that even when a fractional solution x satisfies all clique inequalities,
the wall inequalities still have an effect, and are able to further improve the lower bound.
More precisely, on average the clique inequalities close about 15% of the gap, and when
using in addition wall inequalities, an additional 8% of the original gap between OPT
and LP-value is closed.

Since our goal here is to see whether wall inequalities have practical relevance, we
do not report running times, and we confine ourselves to the following general remarks.
The running times of the separation algorithm for both the clique inequalities and the
wall inequalities are quite reasonable, and run in seconds even for the larger instances.
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Instance LP LP+C1 LP+WI LP+C1 OPT % gap closed % gap closed % gap closed
+C2 +C2+WI by WI by C1+C2 by C1+C2

(alone) +WI
bs-20-1 2.1743 2.4762 2.6266 2.6566 5 16.01% 10.68% 17.07%
bs-20-2 2.9639 3 3.1398 3.1398 5 8.64% 1.77% 8.64%
bs-20-3 1.5565 1.6757 1.7184 1.7267 3 11.22% 8.26% 11.79%
bs-20-4 4.551 4.8372 4.8246 4.8378 7 11.17% 11.69% 11.71%
bs-20-5 1.7368 1.806 1.8763 1.8868 4 6.16% 3.06% 6.63%
bs-22-1 3 3.0775 3.1703 3.1703 5 8.52% 3.88% 8.52%
bs-22-2 1.8688 1.8689 1.8821 1.8905 3 1.18% 0.01% 1.92%
bs-22-3 2.5556 2.7263 2.7807 2.7807 5 9.21% 6.98% 9.21%
bs-22-4 2.0879 2.5145 2.733 2.7574 5 22.15% 14.65% 22.99%
bs-22-5 1.0634 1.0807 1.1176 1.1209 2 5.79% 1.85% 6.14%
bs-24-1 0.5159 0.7001 0.7943 0.8252 3 11.21% 7.42% 12.45%
bs-24-2 0 0 0 0 2 0.00% 0.00% 0.00%
bs-24-3 0 0 0.0404 0.0404 1 4.04% 0.00% 4.04%
bs-24-4 1 1 1 1 1 0.00% 0.00% 0.00%
bs-24-5 0.369 0.4788 0.5128 0.5147 2 8.82% 6.73% 8.93%
bs-26-1 0 0 0 0 0 0.00% 0.00% 0.00%
bs-26-2 0 0 0 0 0 0.00% 0.00% 0.00%
bs-26-3 1 1 1 1 2 0.00% 0.00% 0.00%
bs-26-4 0 0 0 0 1 0.00% 0.00% 0.00%
bs-26-5 0.3048 0.3807 0.4242 0.4253 2 7.04% 4.48% 7.11%

Table 6: The effect of Wall Inequalities

Also, solving the integer program using Cplex does not take too much time, even for the
larger instances this takes less than one minute.

We end this section with concluding that, based on the instances used here, the wall
inequalities have potential in improving LP-relaxations that correspond to formulations
of the 3AP.

6. Conclusion

We have exhibited a new class of valid inequalities for the axial 3-index assignment
polytope. This class of valid inequalities, called wall inequalities define facets of this
polytope, and can be separated in O(n4) time. Using limited computational experiments,
we show the usefulness of these inequalities.
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