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Abstract 

Understanding the relationship between areas of active geothermal or volcanic activity and 

the glaciers that overlie them remains a significant knowledge gap in the earth sciences.  

Using Virkisjökull glacier in south east Iceland as a case study, a geochemical approach is 

taken to this problem by utilising stable isotopes of water and sulphate alongside major 

chemistry and the noble gases.  Analysis of oxygen deuterium data collected over four years 

revealed a hydrological system dominated by glacial meltwater and aquifer fed groundwater 

that varied both seasonally and spatially.  Sulphate isotopes suggested that water chemistry is 

the result of a ternary mixing of three endmembers: precipitation, ice melt and bedrock 

weathering whose relative inputs varied with season.  This seasonality demonstrated that 

prevailing weather conditions have a significant impact on the chemistry of the meltwaters.  

Oxygen sulphate isotopes were used as an indicator of redox status in the subglacial 

hydrological regime.  This pointed towards a year round fully oxidized channel system 

operating at the glacier bed, which is in contrast to the seasonality observed at other glaciers 

in Iceland and around the world.  Finally, noble gases were used to identify the relative 

contribution of basal ice melt at various sites in the sandur.  Taken together these chemical 

indicators hint at a weak to non-existent geothermal regime operating under the Virkisjökull 

glacier.   
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Chapter 1:  Introduction and Literature Review 

1.1  Introduction 

Glaciers and ice caps currently cover 10% of the Earth’s land surface (Knight, 2013) and 

have been widely shown to be in rapid retreat since the beginning of the 20
th

 century 

(Dyurgerov and Meier, 2000).  This relationship between atmospheric conditions and 

cryospheric response has received a great deal of attention in the scientific literature (Clark et 

al., 2009; Rignot et al., 2008; Serreze et al., 2000).  However, more recent work has 

demonstrated that the interaction between the cryosphere and volcanically active portions of 

the lithosphere is more closely related than originally thought.  Work by Maclennan et al. 

(2002) on Icelandic glaciers has demonstrated that decreasing isostatic pressure from the 

melting of glaciers and ice caps at the end of the Pleistocene resulted in up to a hundred fold 

increase in volcanic activity.  Devastating glacial outburst floods (jökulhlaups) occur in 

Iceland as a result of sub-glacial eruptions and have been known to cause severe damage to 

infrastructure and fatalities.  Moreover, subglacial volcanic activity has been demonstrated to 

be occurring underneath the West Antarctic ice sheet (Blankenship et al., 1993; Corr and 

Vaughan, 2008) where any form of positive feedback between decreasing ice coverage and 

increasing volcanic activity has the potential to have global consequences.   

Identifying sub-glacial geothermal or volcanic activity has proved problematic with most 

studies focusing on either airborne geophysics (Corr and Vaughan, 2008) or a mixture of 

chemical signals (Kristmannsdóttir et al., 2002b).  However, recent work by Wynn et al. 

(2015) has demonstrated the potential of sulphate isotope analysis to determine the presence 

of seasonal geothermal activity underneath the Mýrdalsjökull ice cap in Iceland.  Coupled 

with other chemical signatures, this has the potential to be a powerful new tool in analysing 

subglacial geothermal fields and eruptions.  By utilising Virkisjökull glacier in south-east 



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 2 

Iceland, which has been monitored for over four years by the British Geological Survey 

(BGS), this study will attempt to understand the relationship between the ice cap, the 

hydrological system, and any subglacial volcanic activity.  Specifically, sulphate isotopes will 

be analysed alongside major ion chemistry and the noble gases in order to relate the 

chemistry of the glacial meltwater to subglacial processes.   

1.2  Statement of Objectives 

1. Utilising water isotopes and major ion chemistry, a conceptual hydrological model for 

the Virkisjökull catchment will be produced.   

2. Sulphate isotopes from sites across the Virkisjökull region will be used to identify any 

signal of subglacial geothermal activity (Wynn et al., 2015). 

3. Noble gas concentrations (Ne through to Xe) will be analysed to understand the 

variable contribution of basal and surface melt throughout the year.  Using noble gases to 

understand cryospheric processes is a relatively new and novel technique but has produced a 

variety of exciting and promising results in recent years (Ritz et al., 2011; Winckler and 

Severinghaus, 2013). 
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1.3  Geological History of Iceland 

Iceland represents “one of the most dramatic ‘geowonderlands’ on Earth” (Thordarson and 

Hoskuldsson, 2002) being one of the few locations where a mid-ocean ridge is exposed above 

sea level.  In addition, Iceland is the only remaining active portion of the North Atlantic 

Igneous Province which includes Tertiary volcanics from the Isle of Skye in Scotland to 

South East Greenland (Thompson, 1982; Thordarson and Hoskuldsson, 2002).  Iceland 

formed during the mid-Tertiary as a mantle plume migrated underneath the active mid-ocean 

ridge (Lawver and Muller, 1994).  The presence of a mantle plume is adhered to due to 

seismic (Wolfe et al., 1997) and numerical modelling investigations (Ito et al., 1999) with 

some suggesting its origin lies at the core-mantle boundary (Helmberger et al., 1998).  

Lawver and Muller (1994) suggest that the plume began underneath Greenland at 70Ma and 

has been tracking eastwards since then to its present location underneath the Vatnajokull ice 

cap.  However, the plume hypothesis is by no means universally accepted (Foulger, 2010) but 

remains the most widely used model to explain Iceland’s unique situation. 

Iceland sits at the junction between the Reykjanes Ridge in the south and the Kolbeinsey 

Ridge in the north (Thordarson and Hoskuldsson, 2002) which branch out in a series of minor 

faults across the island that are characterized by active volcanism and earthquakes.  The main 

volcanic zones are termed the Western, Eastern and Northern volcanic zones.  The youngest 

geology is found towards the centre of the island and the oldest towards the western and 

eastern coasts, reflecting their common origin from a diverging mid-ocean ridge.  The oldest 

surface rocks dated in Iceland are found in the north west and have been dated between 14-

16Ma (McDougall et al., 1984; Moorbath et al., 1968).  It is suggested therefore, that this is 

the time when Iceland first rose above sea level.  However, this has been disputed by Foulger 

(2006) who stipulates that the distance between the oldest crust on either side of Iceland 

suggests a much earlier origin of 26–37 Ma.   
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The geology of Iceland is simplified into three main formations (Figure 1):  The Tertiary 

basalt formation (16-3.3Ma); the Plio-Pleistocene formation (3.3-0.7Ma) and the Upper 

Pleistocene formation (<0.7Ma) (Thordarson and Hoskuldsson, 2002).  The majority of rocks 

on Iceland are basic to acidic igneous rocks with sedimentary rocks only comprising 2% of 

the Tertiary and up to 50% of Quaternary deposits (Einarsson and Albertsson, 1988).   

 

Figure 1:  Simplified geological map of Iceland.  Adapted from Jóhannesson and 

Sæmundsson (1998). 
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1.3.1  Glacial History 

The glacial history of Iceland since the Pleistocene has proved difficult to reconstruct.  

Gudmundsson (1997) gives an overview of the glacial history of Iceland showing how our 

understanding has evolved from a relatively simple model to one of significant complexity.  

The first model of deglaciation was set up by Einarsson (1961) and termed the Single 

Advance Deglaciation, or SAD model.  This was based on the assumption of age correlation 

between moraines on opposite sides of the island.   This assumption proved incorrect and the 

DAD model or Double Advance Deglaciation was introduced by Einarsson (1967).  Further 

work by Ingólfsson (1985) revealed that multiple advances have taken place bringing about 

the now widely accepted MAD model (Multiple Advance Deglaciation).  Exactly how 

volatile the glaciers on Iceland have been is still unclear but Einarsson and Albertsson (1988) 

suggest that at least 4 glaciations have occurred in the last 0.7Ma with 15-23 glaciations in 

the last 3Ma.  During the Last Glacial Maximum the ice sheet extended out to the continental 

shelf before changes in ocean currents forced its break up around 15ka (Geirsdóttir et al., 

2009). 
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1.3.1.1 Holocene Glaciation 

The glacial history of the Holocene has been reconstructed through pollen analysis; sediment 

records; carbon dating and historical accounts (Geirsdóttir et al., 2009).  By 10.3ka the 

Icelandic ice sheet was undergoing rapid retreat.  Associated with this retreat were a series of 

jökulhlaups (outburst floods) that resulted in the erosion of many glacial deposits (Geirsdóttir 

et al., 1997).  In addition, evidence of extensive birch forests become apparent around 10ka 

reinforcing the case for a warming climate during the Preboreal and Boreal stages of the 

Holocene (Geirsdóttir et al., 2009).  The Holocene thermal maximum was reached around 

8ka with temperatures around 3°C higher than present and largely ice free conditions across 

Iceland (Geirsdóttir et al., 2009).  This warm period finished around 6ka with glacial activity 

becoming more intense around 3-2.5ka.  The Medieval warm period did not appear to 

accelerate deglaciation in Iceland.  On the contrary, it appears that minor glacial advances 

took place during this time (Gudmundsson, 1997).  However, the “Little Ice Age” (AD 1250-

1900) caused a significant increase in glaciation associated with temperatures 1-2°C less than 

present resulting in the most expansive glaciation during the Holocene on Iceland (Bradwell, 

2004).   

Most present day Icelandic glaciers have been in retreat since the end of the Little Ice Age 

(1780-1900) (Bradwell et al., 2013) with accelerated retreat in the past two decades.  

Icelandic glaciers are particularly sensitive to small perturbations in temperature or 

precipitation given their large altitude range and low accumulation to ablation ratio 

(MacDonald et al., 2012).  It appears therefore, that despite the vast number of deglaciations 

occurring in Iceland over the past 3Ma, the current deglaciation is one of the most rapid to 

date.  In addition, recent research has shown that a positive feedback may exist between 

glacial retreat and volcanic activity (Tuffen, 2010).    
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1.3.2  Sub-Glacial Eruptions 

The volcanoes on Iceland generally occupy topographically higher areas and are therefore 

overlain by glaciers.  Interaction between the volcanoes and cryosphere is an inevitable and 

well-documented phenomenon in Iceland.  The large thermal gradient generated between 

extrusive igneous products and the glacier bed results in the formation of distinctive rock 

types and features.  The rapid cooling of a rising body of magma results in the formation of 

hydroclastite (Gudmundsson et al., 1997) which can contain distinctive features associated 

with rapid cooling such as pillow basalts and sideromelane tuff (Allen, 1980).  On a regional 

scale, sub-glacial eruptions are credited with forming the iconic table mountains (or tuyas) 

that are found across the island (Bourgeois et al., 1998).  They are the result of continual 

horizontal rather than vertical propagation of magma along the glacier base (Wilson and 

Head, 2002) resulting in the accumulation of flat lying layers of lava.  In addition, thicker ice 

sheets are capable of containing a volcanic eruption and thus decreasing the potential hazard.  

However, (Tuffen, 2010) shows that the current thinning of the Icelandic ice sheets can result 

in dramatic pressure release and therefore increase the explosivity of an eruption. 

The effect ice sheets have on the frequency and intensity of volcanic activity has only 

recently become clear (Tuffen, 2010).  The rapid retreat of ice sheets as is being recorded in 

the present day leads to significant lithospheric unloading and subsequent isostatic rebound.  

At the end of the last glacial maximum, volcanic activity increased globally by a factor of 

two to six (Huybers and Langmuir, 2009) and in Iceland somewhere between 30 to 50 

(Tuffen, 2010).  The exact mechanism by which this occurs is still under debate (Tuffen, 

2010) but it is believed that isostatic rebound causes decompression of the asthenospheric 

mantle, resulting in increased melt (Hardarson and Fitton, 1991).  Maclennan et al. (2002) 

have shown the chemistry of lava flows post glaciation to be consistent with increased melt 

generation associated with asthenospheric decompression.  Furthermore, it is clear that 
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increased volcanism is notable almost immediately after deglaciation (Maclennan et al., 

2002).  However, Tuffen (2010) concludes that further investigation is needed to understand 

the response times of volcanoes to glacial unloading and the associated hazard that it will 

pose in the near future.  
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1.4  Geochemistry 

1.4.1  Isotopes in the Earth Sciences 

Isotopes are defined as elements with different atomic masses and are employed ubiquitously 

in the Earth sciences.  Their usefulness is derived from the way they fractionate, which is 

related to physical processes.  The two main methods for isotopic fractionation are kinetic or 

equilibrium which are outlined below. 

1.4.1.1 Kinetic Fractionation 

Kinetic fractionation results from isotopes having the same kinetic energy but different 

masses and therefore velocities.  This results in the lighter isotopes diffusing and evaporating 

more rapidly than the heavier isotope.  This is clearly demonstrated in Craig’s meteoric water 

line.  Craig (1961) showed that the deuterium and oxygen isotopes in meteoric waters tend to 

be lightest at the poles and heaviest as the equator.  It is argued that this can be explained by 

the heavier isotopes “raining out” over the lower latitudes and thus the isotopic composition 

of polar waters is relatively enriched in the lighter isotopes.   

1.4.1.2 Equilibrium Fractionation 

Equilibrium fractionation tends to be most prevalent at lower temperatures and is the result of 

the heavy isotopes going preferentially to the element with the strongest chemical bond 

(Clark and Fritz, 1997).  Equilibrium fractionation can be explained by considering quantum 

mechanical effects and their relationship to an atom’s mass.  Isotopes that have been 

fractionated in this way can be used as an indicator of temperature and pressure as the process 

of equilibrium fractionation is governed by the laws of thermodynamics.   
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1.4.1.3 Oxygen deuterium isotopes 

Oxygen-deuterium isotopes (
18

O/
16

O and 
2
H/

1
H) of waters, provide insight into provenance.  

This is most commonly done by comparing results to the global or local meteoric water line. 

1.4.1.3.1 Meteoric Water Line 

The meteoric water line was first described by Craig (1961) and represents a predicted 

relationship between oxygen and hydrogen isotope values in precipitation (Figure 2).  Craig 

(1961) defined the “global meteoric water line” by the equation: 

δD = 8δ
18

O + 10       Equation 1 

This describes linear isotopic variation with respect to latitude across the globe.  This is 

termed the “latitude effect” whereby heavier isotopic values are observed at the equator and 

the lightest isotopic values are found at the poles.  This linear relationship arises from a 

kinetic fractionation effect whereby the heaviest isotopes are “rained out” first leaving water 

vapour that is preferentially enriched in the lighter isotopes (Clark and Fritz, 1997).   
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Figure 2:  Global Meteoric Water line (Clark and Fritz, 1997) 

In addition, to the “latitude effect” identified by Craig (1961) three other factors are known to 

cause kinetic fractionation in water isotopes:  The continental effect, altitude effect and 

amount effect (Clark and Fritz, 1997).  The continental effect was first described by 

Dansgaard (1964) and is the result of a similar kinetic fractionation that brings about the 

latitude effect.  Precipitation of marine origin will become preferentially enriched in the 

lighter isotopes towards the continental interior.  Moreover, a similar process is responsible 

for the altitude effect whereby heavier isotopes are rained out at lower altitudes (Dansgaard, 

1964).  This latter fractionation effect has important implications for glaciology as it allows 

the altitude of meltwater to be determined (e.g. Wynn et al. 2015).  Finally, the “amount 

affect” refers to the process observed where heavy rainfall decreases the δD and δ
18

O values 

of the precipitation (Clark and Fritz, 1997).  This is best observed in arid regions.   
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1.4.1.3.2 Deuterium Excess 

It became apparent soon after Craig (1961) published his landmark paper that local derivation 

occurred from the global meteoric water line.  This led Dansgaard (1964) to introduce a new 

parameter termed “deuterium excess” which relates to the physical conditions present at the 

oceanic source (Froehlich et al., 2002).  Deuterium excess is defined by the equation: 

d = δD – 8*δ
18

O        Equation 2 

Deuterium excess is directly related to humidity at precipitation source (Clark and Fritz, 

1997) and has been successfully employed by Petit et al. (1991) to determine the origin of 

Antarctic snows to be in tropical waters rather than local.   
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1.4.2  Sulphur isotopes 

Sulphur is composed of four stable isotopes with masses of 32, 33, 34 and 36 (Seal, 2006).  

Of these 
32

S and 
34

S have relative abundances of 95.02% and 4.21% respectively and 

therefore are the most widely employed.  Sulphur isotopes have been successfully utilized 

across the geosciences to understand a variety of processes including pyrite provenance 

(Muntean et al., 2011), snowball earth (Bao et al., 2009) and more recently as a potential 

indicator of subglacial geothermal activity (Wynn et al., 2015).   

Sulphur is ubiquitous in geothermal and volcanic systems (Mandeville, 2010).  It is most 

commonly present as either sulphate (SO4) or hydrogen sulphide (H2S) (Kristmannsdóttir et 

al., 2000).  An Icelandic glacier will therefore have three major sulphur inputs:  Atmospheric 

sulphur, bedrock sulphur and geothermal sulphur (Wynn et al., 2015).  Atmospheric sulphur 

is a combination of marine derived sulphate and anthropogenic emissions with minor inputs 

of volcanic aerosols and continental biogenic emissions.  Given Iceland’s location the input 

from volcanic aerosols into the atmospheric inventory is likely to be elevated.  The isotopic 

composition of marine derived sulphur is relatively fixed at +21‰ (Rees et al., 1978).  

Volcanic aerosols tend to have a sulphur isotope ratio of around 0‰ (Nielsen et al., 1991).  

Finally, anthropogenic emissions have a variable sulphur isotope composition of between -5 

to 10‰ (Clark and Fritz, 1997).  The effect of anthropogenic sulphur varies depending on 

location.  In central Europe or North America anthropogenic sulphur can have a very 

significant effect on the atmospheric isotope composition of sulphur.  However, in more 

isolated areas, such as Iceland, its effect is reduced.   

The isotopic composition of Icelandic bedrock was measured by Torssander (1989) who 

showed that the sulphur isotope ratio is related to the silica content of the bedrock.  Basalts 
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for example tend to have a sulphur isotope composition of 0‰ whereas geology of more 

intermediate or felsic composition can have a sulphur isotope ratio of up to +4.2‰.   

Geothermal sulphur isotope ratios are difficult to constrain given the variety of geothermal 

gases that can be emitted.  For example, hydrogen sulphide has a sulphur isotope composition 

of +5.8 to +6.2‰ whereas other volcanic gases and magmatic sulphide has a composition of 

0‰.   

1.4.2.1 Sulphate in Glacial Catchments 

Sulphate is most widely employed in glacial catchments as an indicator of redox status at the 

glacier bed or as a tracer of the various chemical inputs into the catchment (Robinson et al., 

2009b; Wynn et al., 2015).  Tranter et al. (2002b) successfully used sulphate oxygen isotopes 

to demonstrate the seasonal variation in redox conditions at the bed of the Haut Glacier 

d'Arolla in Switzerland.  This was furthered by Wynn et al. (2006) who demonstrated this 

seasonality to also occur in polar glaciers and that the “switch” from anoxic to oxic 

conditions was very rapid.  Finally, Wynn et al. (2015) successfully used sulphate oxygen 

isotopes to resolve a signal of geothermal interaction at the base of Sólheimajökull glacier in 

Iceland.  Robinson et al. (2009b) also demonstrated the potential of sulphur isotopes in 

Iceland as tracers of hydrochemical processes and water origin.  This is due to the diagnostic 

sulphur isotope composition of major hydrological inputs such as marine derived 

precipitation (+21‰) and bedrock (0‰). 
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1.4.3  Glacial Chemistry 

The chemical signature of glacial meltwater is the product of two sources:  The atmosphere 

and chemical weathering of bedrock (Tranter et al., 1996).  In addition, glaciers that reside in 

tectonically active zones may have a third chemical input from geothermal and volcanic 

activity (Sigvaldason, 1963).  Therefore, the unique chemical signature of glacial meltwater 

will be a combination of the water source and any chemical weathering of local geology 

during its transportation to the glacier snout (Tranter et al., 1997).  How much chemical 

weathering occurs in a glaciated basin will depend on four factors suggested by Tranter et al. 

(1996):   

1. The reactive mineralogy 

2. Reactive surface area to water ratio 

3. Duration of water-rock contact 

4. Availability of other chemical species (e.g.O2, CO2, H
+
) 

In addition, Hodson et al. (2000) suggest that a glacier’s thermal regime will affect the rate of 

chemical weathering.  Cold based glaciers will have very low rates of chemical denudation 

whereas polythermal or warm based glaciers will have much higher rates.  This reflects an 

increase in water-rock contact when compared with cold based glaciers.  Moreover, chemical 

weathering in polythermal glaciers may be accelerated by cold ice at the glacier margins 

preventing the drainage of sub-glacial runoff to the glacier snout and thus prolonging water-

rock contact (Hodson et al., 2000).  Chemical weathering provides the majority of base 

cations to glacial meltwater as well as increasing the concentration of dissolved ions such as 

HCO3
-
 and SO4

2-
.  The atmosphere provides sea salt, carbon dioxide, oxygen, nitrate and 

sulphate aerosols (Tranter et al., 1996).  In addition, recent research has shown that subglacial 

microbial communities have the ability to influence meltwater chemistry by providing a 

secondary source of nitrate (Wynn et al., 2007).   
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Meltwater was initially believed to be composed of two endmembers: subglacial and 

englacial (Collins, 1977).  However, Tranter et al. (1993) introduced the terminology “quick 

flow” and “delayed flow” to better reflect the residence time of the meltwater within the 

glacier.  Quick flow tends to dominate at periods of highest discharge (in paradox to river 

systems).  This reflects its rapid flow through conduits as opposed to delayed flow which 

utilises a series of cavity systems along the glacier bed (Tranter et al., 1993).  Tranter et al. 

(1997) went further and subdivided glacial meltwaters from the Haut Glacier d’Arolla in 

Switzerland into three separate categories (Figure 3). 

 

Figure 3:  The geochemical relationship between different types of glacial runoff (Tranter et 

al., 1997) 
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Mode 1 represents very dilute meltwater that has undergone minimal interaction with 

surficial geology.  Mode 2 waters are very similar to bulk runoff but with smaller 

concentrations of major ions.  Tranter et al. (1997) suggest that this represents subglacial 

meltwater that exchanges with channel water on a daily basis.  Finally, Mode 3 waters are 

significantly more concentrated in major ions than bulk runoff, particularly with regard to 

Ca
2+

, HCO3
-
, SO4

2-
 and CO2 reflecting significant interaction with the country rock.  This 

water type is believed to be associated with a flow path through a distributed cavity system at 

the glacier’s base.  This confirms the assumption by Tranter et al. (1996) that the flow path of 

meltwater will affect its chemistry.   
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1.4.4  Chemical Evolution 

To understand how a glacier’s chemistry originates requires a series of assumptions to be 

made (Hodson et al., 2000; Tranter et al., 1993).  For example, by assuming that all Cl
-
 is of 

marine origin (Hodson et al., 2002; Hodson et al., 2000) this allows the marine component of 

the major cations to be calculated if the standard marine ratio to chlorine is known.  This 

technique appears to work well in stable cratonic environments where the assumption that all 

chlorine is marine derived is fairly accurate.  However, in regions of active volcanism such as 

the study area in Iceland, magmatic chlorine will be degassing as a result of active volcanism 

and therefore any chemical analysis derived from this assumption should be interpreted with 

a degree of caution. 

1.4.4.1 Acquisition of Base Cations 

Tranter et al. (1993) conducted one of the first series studies into the chemistry of glacial 

meltwater by assuming that base cations are acquired by either simple dissolution or acid 

hydrolysis.   

Equation 3: Acid Hydrolysis 

CaAl2Si2O8(s)  + 2H
+

(aq)  ↔  Ca
2+

(aq) + H2Al2Si2O8(s)   

Where the aqueous protons are provided by either dissociation of CO2 or the oxidation of 

sulphides (Equation 4) (Tranter et al., 1993): 

Equation 4: Sulphide Oxidation 

4FeS2(s) + 15O2(aq) + 14H2O(aq)  ↔  16H
+

(aq) + 4Fe(OH)3(s) + 8SO4
2-

(aq)  

Anorthite Feldspar Weathered Feldspar Surface 
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Equation 3 (acid hydrolysis) assumes the breakdown of the feldspar end member anorthite.  

As anorthite is in solid solution with the potassium endmember albite then it is likely that 

albite is also undergoing acid hydrolysis and thus providing potassium. 

Equation 5: Acid Hydrolysis of Albite 

KAlSi3O8(s) + H
+

(aq)  ↔  K
+

(aq) + HAlSi3O8(s)  

Tranter et al. (1997) added to this model by showing that meltwater can acquire major cations 

and anions by carbonation reactions with glacial floor.  This was expanded on by Tranter et 

al. (2002a) who identified the two main carbonation reactions occurring as carbonation of 

carbonates (Equation 6) and carbonation of silicates (Equation 7).  In addition, Tranter et al. 

(2002a) show that these reactions are most likely to occur in warm based glaciers with 

channelized drainage systems allowing free access to atmospheric gases. 

Equation 6: Carbonation of Carbonates 

CaCO3(s) + CO2 + H2O  ↔  Ca
2+

(aq) + 2HCO3
-
   

Equation 7: Carbonation of Silicates 

CaAl2Si2O8 + 2CO2 + 2H2O  ↔  Ca
2+

(aq) + 2HCO3
-
(aq) + H2Al2Si2O8(s) 

  

Albite Feldspar Weathered Feldspar Surface 



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 20 

1.4.4.2 Acquisition of Major Anions 

The major anions consist of the four chemical species:  Cl
-
, NO3

-
, SO4

2-
 and HCO3

-
 with 

SO4
2-

 and HCO3
-
 being the most abundant.  Both chlorine and nitrate are assumed to have 

only one source with all chlorine originating from sea salt and all nitrate being provided by 

the atmosphere (Hodson et al., 2002).  However, Wynn et al. (2007) demonstrate that nitrate 

is also produced in the subglacial environment by the microbial assisted oxidation of 

ammonium and the mineralisation of organic nitrogen.  Sulphate has three sources (Hodson et 

al., 2000): marine, atmospheric and crustal.  The marine sulphate component can be 

calculated based on its ratio to marine chloride.  Atmospheric sulphate is then deduced from 

the difference between snowpack sulphate and the calculated marine sulphate.  The 

remainder is assumed to be crustal (Hodson et al., 2000).  The crustal component will vary 

depending on the local geology but tends to make up the majority of sulphate in glacier 

meltwater with the snowpack only contributing 1-2% (Tranter et al., 1996).  The major 

crustal source of SO4
2-

 is from the oxidation of sulphides (Equation 4), also expressed as 

coupled sulphide oxidation – carbonate dissolution. (Equation 8). 

Equation 8: Sulphate oxidation coupled with carbonate dissolution 

4FeS2(s) + CaCO3(s) + 15O2(aq) + 14H2O(aq)  ↔  16Ca
2+

(aq) + 16HCO3
-
 + 

4Fe(OH)3(s) + 8SO4
2-

(aq)  

Hodson et al. (2002) noted that the equivalence ratio of sulphate to bicarbonate should always 

be 1 according to Equation 8.  However, in practice, it is often significantly less, which 

suggests there must be other sources of bicarbonate.  Hodson et al. (2002) suggest that a 

number of sources contribute to total bicarbonate including: carbonation of carbonates and 

silicates (Equations 6 and 7); acid neutralisation of snowpack nitrate by carbonates; sulphide 
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oxidation (Equation 4) and oxidation of organic carbon.  Any bicarbonate not accounted for 

by these processes is assumed to be atmospheric (Hodson et al., 2000).  Table 1 summarises 

the different sources of major anions according to Hodson et al. (2000). 
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Table 1:  The calculations and assumptions behind major anion concentrations.  Taken from 

Hodson et al. (2000) 

Solute Component Provenance 

Calculation 

Comments & 

Assumptions 

Cl
— All Cl

—
 marine

 
Total Cl

— 

 

No lithogenic Cl
—

,
 

 no volatilization of 

snowpack Cl
— 

SO4
2— Sea salt SO4

2— 

 
sea

(SO4
2—

/Cl
—

) x 
total

Cl
— 

Marine SO4
2—

/Cl
—

 

ratio is 0.051
 

SO4
2— Aerosol SO4

2— 

 

snowpack
(SO4

2—
/Cl

—
) x 

total
Cl

—

(
seasalt

SO4
2—

)
 

Use site specific SO4
2—

/Cl
— 

SO4
2— Crustal SO4

2— 

 

total
SO4

2—__
 (

seasalt
SO4

2—

+
aerosol

SO4
2—

)
 

Snowpack SO4
2—

 

not preferentially eluted with 

respect to Cl
—

 no 

volatilization of snowpack 

SO4
2— 

NO3
— Aerosol NO3

— total
NO3

— 
No crustal NO3

—
sources, no 

volatilization of snowpack 

NO3
— 

HCO3
— Aerosol hydrolysis 

HCO3
— 

total
NO3

—
 + 2(

aerosol
SO4

2—
)

 
Carbonates neutralise acidic 

snow aerosols  

HCO3
—

 SO – CD HCO3
— 

2(
crustal

SO4
2—

)
 

Oxidation of crustal sulphide 

is by carbonate dissolution 

HCO3
—

 Silicate HCO3
— 

 

1.58[Si] or 3.4[*Na
+
 + *K

+
] in 

equivalent concentrations  

 

HCO3
—

 Carbonate Carbonation 

HCO3
—

 

0.5[
total

HCO3
—

 
__ 

(
aerosol 

hydrolysis
HCO3

—
 + 

SO – CD
HCO3

-
 

+ 
sil

HCO3
—

)] 

Half from atmosphere half 

from carbonates 

HCO3
— Atmospheric HCO3

— silicate
HCO3

—
 + 

carbonate 

carbonation
HCO3

— 

Acid aerosols neutralised by 

carbonates only; No SO4
2-

 

from evaporates all Si, *Na
+
 

and *K
+
 from silicate 

carbonation, no subglacial Si 

precipitation, no HCO3
—

 due 

to oxidation of organic 

carbon or simple carbonate 

hydrolysis 

SO: Sulphide Oxidation   CD: Carbonate Dissolution 
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1.4.5  Chemical Indicators of Subglacial Geothermal Activity 

Initial studies into glacial chemistry focused on Arctic and Alpine glaciers in stable tectonic 

environments (Hodson et al., 2002; Tranter et al., 1997a).  Recently however, attention has 

turned to glaciers in tectonically active regions such as Iceland where a geothermal or 

volcanic chemical input must be considered (Galeczka et al., 2014).  The danger posed by 

jökulhlaups resulting from subglacial geothermal activity lead Elefsen et al. (2002) to suggest 

for permanent monitoring stations to be set up to measure electrical conductivity and 

discharge.  It is argued that a coupled increase in electrical conductivity and discharge is 

indicative of subglacial geothermal activity melting the glacier rather than increased 

precipitation or melting of glacier ice; which would lower conductivity.  This is expanded on 

by Kristmannsdóttir et al. (2002a) who demonstrated that conductivity during jökulhlaups can 

be more than double the Icelandic average of 20-300µScm
-1

.  During jökulhlaups 

Kristmannsdóttir et al. (2002a) note a particular increase in hydrogen sulphide, mercury, 

silica and calcium, the latter most likely reflecting an increase in the weathering of bedrock 

by hot geothermal fluids.  The association of hydrogen sulphide with subglacial geothermal 

activity was also noted by Lawler et al. (1996) and demonstrates the ubiquitous nature of the 

compound in geothermally active areas.  In addition, Kristmannsdóttir et al. (2002b) argue 

that a significant increase in total dissolved solids will be noted in geothermally derived 

glacial meltwaters.  However, despite hydrogen sulphide appearing an initially promising 

candidate as a subglacial geothermal indicator, Kristmannsdóttir et al. (2002b) point out that 

both hydrogen sulphide and mercury will be rapidly oxidised once in free contact with the 

atmosphere.   

A thorough chemical investigation into two major jökulhlaups from the Vatnajokull ice cap 

was carried out by Galeczka et al. (2014) who identified three parameters that affect the 
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chemical composition of glacial meltwaters that undergo interaction with geothermal or 

volcanic fluids: 

1. Heat and gas supply 

2. Overburden pressure and its subsequent effect on gas solubility 

3. Interaction with the local geology. 

In addition, Galeczka et al. (2014) demonstrate a chemical distinction between waters 

affected by geothermal activity and those derived from a sub-glacial eruption.  Specifically, 

an increase in SO4
2-

, Cl
-
 and F

-
 during volcanic eruptions is noted.  Of particular interest to 

this study is the increase in chorine concentrations.  As river chlorine concentrations in 

Iceland have been relatively constant since 1972 (Gislason and Torssander, 2006) any 

deviation above the norm is likely to be indicative of sub-glacial volcanic activity. 
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1.4.5.1 Isotopic Signals of Anoxic Conditions 

The equations presented thus far have assumed that the subglacial meltwaters have had free 

access to atmospheric oxygen.  Bottrell and Tranter (2002) point out that this is unlikely to 

always be the case and therefore other oxidising agents must be present.  It is suggested that 

iron will successfully oxidise sulphate under anoxic conditions (Equation 9): 

Equation 9: Sulphide Oxidation under Anoxic Conditions 

FeS2 + 14Fe
3+

 + 8H2O    2SO4
2-

 + 15Fe
2+

 16H
+
  

When sulphate is produced under oxic conditions (Equation 4) 3.5 out of the 4 oxygen 

molecules will come from free atmospheric oxygen.  However, when the sulphate ion is 

produced under anoxic conditions the oxygen molecules will be exclusively from water 

(Wynn et al., 2006).  These two sources are isotopically distinct with atmospheric oxygen 

being strongly enriched in 
18

O at +23.7‰ whereas oxygen derived from water molecules will 

have a negative isotopic signature (Bottrell and Tranter, 2002).  When atoms from free 

atmospheric oxygen are incorporated into sulphate there is an additional fractionation of -

8.7‰ but this does not have an effect great enough to make the two sources of oxygen 

indistinguishable (Bottrell and Tranter, 2002). 

However, the intermediary reaction between sulphide and sulphate produces sulphoxy ions 

(SO3
2-

) which will undergo isotopic exchange with water in such a way that the original 

signal is obscured (Bottrell and Tranter, 2002).  This problem is resolved by only analysing 

the final oxygen atom on the sulphate ion (Wynn et al., 2006).  Thus if the less than 25% of 

the oxygen ions are sourced from free atmospheric oxygen anoxic conditions must have been 

present (Bottrell and Tranter, 2002). 
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This was applied to the case of an Icelandic glacier by Wynn et al. (2015) who postulated that 

seasonal variations in the isotopic signature to sulphate molecules reflect subglacial 

geothermal activity.  By utilising the technique described above, Wynn et al. (2015) show 

that anoxic conditions prevail in summer which is when a fully oxidised quick flow drainage 

system should dominate.  This is interpreted as representing the influx of reduced geothermal 

gases into the system. The fully oxygenated waters in winter are explained due to the 

persistence of low altitude melting and the continued presence of a channelized system at the 

snout of the glacier during the winter months.   
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1.5  The Role of Noble Gases in the Cryosphere 

Noble gases occupy group 18 in the periodic table and are characterised by their low 

chemical reactivity.  This allows them to be widely employed as geochemical tracers as they 

are generally independent of biological or chemical influence (Ito et al., 2011).  Perhaps the 

most profound use of the noble gases in the earth sciences was using the ratio of helium-3 to 

helium-4 to show the influence of magmatic fluids on different tectonic settings (Lupton and 

Craig, 1981; O'Nions and Oxburgh, 1988; Oxburgh and O'Nions, 1987) which had profound 

implications for theories on the formation of continental crust.  Recently, noble gases have 

been employed to understand processes in the cryosphere as conventional proxies such as 

water isotopes have been shown to vary on a local scale (Jouzel et al., 1997; Winckler and 

Severinghaus, 2013).  Although still in its infancy, isotopic analysis of noble gases from ice 

cores has been successfully employed in reconstructing paleotemperatures (Craig and Wiens, 

1996); dating ice cores (Buizert et al., 2014) and understanding hydrothermal interaction at 

the glacier bed (Jean-Baptiste et al., 2001).   
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1.5.1  Reconstructing Paleotemperatures 

Water isotopes are the primary method by which past temperature is reconstructed in ice 

cores (Petit et al., 1999) despite the fact that they have been shown to underestimate 

paleotemperatures by up to a factor of two (Winckler and Severinghaus, 2013).  Furthermore, 

present day correlation between water isotopes and temperature does not necessarily imply 

that this can be extrapolated back in geologic time (Jouzel et al., 1997).  Moreover, it has 

been demonstrated that isotopic exchange between the atmosphere and cryosphere has varied 

both temporally and spatially (Jouzel et al., 1997).  However, Winckler and Severinghaus 

(2013) state that these variations can be overcome by using the noble gases to analyse past 

temperatures.  This is due to the fact the noble gases are unreactive and therefore will not be 

affected by any biological process or chemical reaction.   

Paleothermometry from ice cores by noble gas analysis can be acquired in one of two ways 

(Winckler and Severinghaus, 2013): 

1.  Thermal fractionation of noble gases in the firn layer. 

2.  Temperature dependent solubility of noble gases in seawater. 

  



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 29 

1.5.2  Paleothermometry from Thermal Fractionation  

The stratigraphy of a glacier is typically composed of four layers:  Snow; granular ice; firn 

and glacial ice.  The granular ice and firn layer represent the metamorphism of snow into ice 

with a typical base of 50-100m (Winckler and Severinghaus, 2013).  Thermal fractionation of 

noble gases occurs in the firn layer such that heavier isotopes preferentially occupy colder 

regions.  Furthermore, gases diffuse in firn an order of magnitude quicker than heat and 

therefore the isotopic composition of the firn will always reach equilibrium with the firn 

temperature (Winckler and Severinghaus, 2013).  Therefore, by studying the isotopic ratio of 

noble gases in bubbles trapped in ice the paleotemperature of the firn layer can be 

established.  Craig and Wiens (1996) provide a different approach by using the ratio of 

krypton to argon to understand the thickness of the firn layer in ice.  Noble gases and their 

isotopes are gravitationally fractionated in a snowpack depending on their atomic weight and 

the thickness of the firn.  Therefore, the concentration of heavier isotopes will be elevated in 

glacial ice to a greater extent than lighter isotopes, with respect to atmospheric values.  The 

thickness of the firn layer will be governed by mean annual temperature and therefore 

fractionation of isotopes relative to atmospheric concentrations will give an indication of the 

temperature at the time of deposition (Craig and Wiens, 1996).  This technique is still in its 

infancy (Winckler and Severinghaus, 2013) but with further research could provide a more 

reliable record of past temperature than current isotopic techniques.  
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1.5.3  Paleothermometry from Solubility of Noble Gases in Seawater 

The heavier noble gases (xenon and krypton) are highly soluble in water with a strong 

temperature dependence (Headly, 2008).  Assuming that the atmospheric-ocean inventory of 

noble gases is constant then the dissolved component of xenon and krypton in ice cores will 

represent the atmospheric component of noble gases at that time (Ritz et al., 2011).  

Therefore, it can be assumed the remainder is present as the dissolved component in seawater 

and thus can give a quantitative estimate of past ocean temperature.  The assumption that the 

ocean-atmosphere noble gas inventory is constant is adhered to by the majority of workers 

(Ritz et al., 2011; Winckler and Severinghaus, 2013) except for argon-40 which is constantly 

degassed from the Earth’s mantle (Bender et al., 2008).  At present this technique is only 

theoretical (Ritz et al., 2011) and certain complications such as the effect of convection in the 

firn layer have to be considered (Winckler and Severinghaus, 2013).  Despite this Winckler 

and Severinghaus (2013) conclude that this method remains the most promising candidate for 

deep ocean temperature throughout geologic time. 
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1.5.4 Argon Degassing through Time Recorded in Noble Gas 

Concentrations in Ice Cores 

Argon is the most abundant noble gas in the Earth’s atmosphere due to radiogenic 
40

Ar being 

produced by the decay of 
40

K (Winckler and Severinghaus, 2013).  This is in contrast to most 

noble gases which have a constant inventory on a timescale of 10
5
 to 10

6
 years.  The current 

atmospheric inventory of 
40

Ar is equal to the total 
40

Ar degassing over Earth history (Bender 

et al., 2008) and therefore understanding the rate of degassing will have important 

implications for geodynamics and crustal formation.  Recent work has analysed argon in 

hydrothermal quartz (Pujol et al., 2013) to establish the composition of the atmosphere in the 

Archean.  However, this does not provide a continuous record and therefore very little can be 

inferred about the fluctuations of argon degassing throughout Earth history.  Ice cores, by 

contrast, provide an accurate record of atmospheric composition for the last 800kyr.  This 

was utilised by Bender et al. (2008) who showed that the atmospheric composition of argon 

has been increasing by 1.1 ± 0.1 x 10
8
 mol/yr.  In addition, Bender et al. (2008) argues that 

this rate has been relatively constant and can therefore be used in the dating of ice of 

unknown age.  Furthermore, ice cores will not be affected by in situ radiogenic decay of 
40

K 

as in the lithosphere and can therefore provide an accurate history of argon degassing through 

the Quaternary. 
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1.5.5  Distinguishing Cosmic and Terrestrial Dust 

Ice cores contain dust particles that have a lithogenic or cosmic origin.  Noble gases provide a 

unique insight into understanding the provenance of cryospheric dust particles and how their 

flux has varied over time.  Cosmic dust is enriched with helium-3 due to interaction with the 

solar wind whereas the terrigenous component is typically enriched in helium-4 (Winckler 

and Severinghaus, 2013).  Muller and MacDonald (1997) suggested that Quaternary glacial 

cycles were being driven by fluctuations in cosmic dust to Earth due to the continued 

changing of the Earth’s inclination.  Analysis of ice cores has shown that cosmic dust flux 

has varied over the past 30,000 years (Winckler and Fischer, 2006) but not in accordance 

with glacial cycles, thus disproving the theory of (Muller and MacDonald, 1997) which was 

well received at the time.  Finally, analysis of noble gases has the potential to infer the 

provenance of terrestrial dust particles by comparing the measured ratio of helium to a 

constant crustal proxy. Winckler and Severinghaus (2013) suggest Ca or 
232

Th and compare 

with the local geology.   
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1.5.6  The Potential of Helium isotopes as Geothermal Indicators 

Helium is the second most abundant element in the solar system but due to the formation 

mechanisms of the terrestrial planets, it remains relatively rare on Earth (Oxburgh and 

O'Nions, 1987).  Helium-3 and helium-4 comprise the two stable isotopes of helium of which 

helium-4 is vastly more abundant.  However, the ratio of helium-3 to helium-4 is not constant 

across the lithosphere resulting in diagnostic crustal heterogeneities (Lupton and Craig, 

1981).  Specifically, isotopic composition is correlated with tectonic setting which is 

summarised by Torgersen and Jenkins (1982): 

 Hotspots:     14-25Ra 

 Mid-Ocean Ridge:    8Ra 

 Destructive Plate Boundary: 2-8Ra 

 Atmospheric:    1Ra 

 Stable Continental Crust:   0.01-0.1Ra 

Where Ra = (
3
He/

4
He)atmosphere (Winckler and Severinghaus, 2013) 

The reason for such variation in helium isotope ratios becomes clear when the two terrestrial 

sources of helium-3 are considered: 

1. Radioactive decay of uranium and thorium 

2.  The remnant of “primordial helium” that was incorporated into the Earth during its 

formation (O'Nions and Oxburgh, 1988).   

Primordial helium has been shown to be outgassing at regions of crustal thinning or mantle 

upwelling (Lupton and Craig, 1981) resulting in higher concentrations of helium-3.  

Moreover, radiogenic 
3
He/

4
He ratios are typically four orders of magnitude smaller than 
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primordial helium and thus the signature of mantle derived primordial helium can be 

distinguished from that formed by radioactive decay (Oxburgh and O'Nions, 1987).   

Currently, there is no anthropogenic source of helium-3 although atmospheric nuclear bomb 

tests during the cold war resulted in significant “fallout” of radiogenic isotopes, including 

helium-3.  This has been used to date old (pre-cold war) and young (post-cold war) ice in 

glaciers situated in stable cratonic environments (Cecil et al., 1998).  However, in areas of 

active mantle outgassing, anthropogenic input is considered negligible when compared with 

the mantle derived signal (Oxburgh and O'Nions, 1987). 

(Lupton and Craig, 1981) were among the first to demonstrate elevated levels of helium-3 at 

a mid-ocean ridge setting.  This was followed by Oxburgh and O’Nions (1987) who 

demonstrated that continental crust undergoing active extension also degasses primordial 

helium and that this has important implications for theories of continental formation (O'Nions 

and Oxburgh, 1988).  This led to helium isotopes in geothermal and volcanic gases being 

measured by Welhan et al. (1988) who concluded that helium isotope ratios correlate with the 

presence of magma beneath a hydrothermal system and that coupled with a high heat signal 

(>200°C) are indicative of magma at depths of less than 10km.  More recently, helium 

isotopes have been measured in geothermal systems and have been shown to have the 

potential to be a non-destructive indicator for sites of geothermal energy (Kennedy and van 

Soest, 2007).  A regional study of the actively rifting Basin and Range province in the USA 

was carried out by Kennedy and van Soest (2007) who concluded that helium isotopes 

correlate with the severity of crustal deformation on a km scale.  Finally, Jean-Baptiste et al. 

(2001) used helium isotopes in ice cores to resolve any geothermal input into a sub-glacial 

lake.  Therefore, the use of helium isotopes is well documented in the analysis of mantle 

degassing at areas of crustal thinning and has been shown to correlate with areas of more 

intensive crustal thinning and geothermal activity (Kennedy and van Soest, 2007).   
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1.5.6.1 Potential for Helium Isotopes as a Sub-Glacial Geothermal 

Indicator in Iceland 

It has already been demonstrated by Jean-Baptiste et al. (2001) that helium isotopes can be 

used to determine lithospheric-cryospheric interaction.  Furthermore, helium isotopes are 

already widely used in geomorphology for surface cosmogenic dating (Blard et al., 2014; 

Cerling, 1990).  In addition, Jean-Baptiste et al. (2001) state that any crustal contamination of 

helium will depend on the length of time the ice is in contact with the bedrock as well as the 

helium flux.  Temperate Icelandic glaciers are continually in motion and therefore the length 

of time a particular section of ice is in contact with the bedrock will be minimal.  

Furthermore, Hoke et al. (2000) showed that although primordial helium can be stored in 

fluid inclusions in olivine it is typically three orders of magnitude less than the concentration 

of helium in geothermal waters.  Therefore, given the demonstrated use of helium isotopes in 

determining geothermal activity, their proven relationship with shallow magma and their 

ability to influence the chemistry of overlying ice sheets, it seems plausible that measuring 

the helium isotopes of glacial meltwater will give an indication of the geothermal input at the  

bed of the glacier.  
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Chapter 2:  Site Description 

2.1  Vatnajokull Ice Cap 

The Vatnajokull ice cap ( Figure 4) is located in south east Iceland and is the largest ice mass 

in Europe (Gudmundsson et al., 1997) with a total area of 8100km
2
 (Aðalgeirsdóttir et al., 

2006).  The ice sheet reached its maximum extent around 1890 but is currently in rapid 

retreat and could disappear in as little as 200 years (Aðalgeirsdóttir et al., 2006).  In addition, 

the ice cap is underlain by active volcanoes many of which have erupted in the recent past 

(Gudmundsson et al., 1997).  Furthermore, recent research has demonstrated a link between 

glacial retreat and increased magma production beneath the ice cap (Pagli and Sigmundsson, 

2008).  Vatnajokull is described by Aðalgeirsdóttir et al. (2006) as “one of the most sensitive 

glaciers in the world” making identifying any link between geothermal activity and glacial 

retreat even more vital.   

2.2  Öræfajökull volcanic system 

The study glacier, Virkisjökull is situated above the Öræfajökull volcanic system.  

Öræfajökull has erupted twice in recorded history (1362 and 1728) with the 1362 eruption 

being the largest and deadliest Icelandic plinian eruption in historical times (Guðmundsson et 

al., 2008).  One of the principal dangers of an eruption at Öræfajökull is the potential for 

large scale glacial floods to ensue making a chemical method of quantifying ice-volcano 

interaction more pressing.   
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2.3  Virkisjökull Glacier 

Virkisjökull is one of the outlet glaciers from the Vatnajokull ice cap (Figure 4) and is 

currently monitored by the British Geological Survey (BGS), but has received very limited 

attention in the published literature (Bradwell et al., 2013; Everest and Bradwell, 2003).  It is 

known to be in rapid retreat (Bradwell et al., 2013) with a large section of the snout classified 

as “dead ice” that is no longer a part of the active glacier system (Everest and Bradwell, 

2003).  The glacier drains into a lake that is extremely variable in its water content depending 

on prevailing weather conditions.  The lake is drained by the Virkisá river which is a coherent 

stream until it passes underneath the road bridge from where it forms an anastomosing series 

of channels that are continually in transition.  In order to understand groundwater flow at 

Virkisjökull, BGS drilled a series of boreholes at various positions in the sandur (Figure 5).  

All boreholes were drilled to a depth of 15m except for L2 and L3 which were drilled to a 

depth of 9m.  Together with samples from the bridge, lake outlet and a moraine groundwater 

spring termed “car park spring” these form the main sites for investigation.   
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Figure 4:  Map of the Vatnajokull and Myrdalsjokull ice caps in south-east Iceland showing 

the location of Virkisjökull glacier (Everest and Bradwell, 2003).  
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Figure 5:  Map of all sample sites at Virkisjökull glacier.  Henceforth prefix are used for Upper boreholes (U), Middle boreholes (M) and Lower boreholes (L).  

Boreholes are numbered from east to west.  The snout of Virkisjökull is visible in the extreme north east with the Virkisá river trending north east to south west. 
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2.4  Hydrology of Virkisjökull catchment from the Virkisá River 

Temperature measurements for the Virkisá River show a clear distinction between winter and 

summer with temperatures after April generally higher than during the winter months (Figure 

6).  This rapid increase in temperature is not reflected in the discharge until around the 

beginning of June where discharge suddenly increases and becomes more variable (Figure 7).  

This is likely to represent the time when subglacial cavities become connected to allow a 

subglacial channel system to transport the seasonally stored meltwater from higher up the 

glacier into the proglacial lake.  Around mid-October river temperatures begin to decrease 

with an associated decrease in river discharge.  Thus, river discharge and temperature 

measurements appear to operate in two distinct seasons: summer (June to October) and 

winter (November to May).   
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Figure 6:  Temperature of the Virkisá River over the course of 2014.  Data property of Dr Andrew Black of University of Dundee 
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Figure 7:  Discharge of the Virkisá River over the course of 2014.  Data property of Dr Andrew Black of University of Dundee 
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Chapter 3:  Methods 

3.1  Additional Data 

The main field campaign was carried out during spring 2015 between 26/03/15 and 1/04/15. 

A further two days of fieldwork was conducted at Sólheimajökull glacier between 3/04/15 

and 4/04/15.  These samples formed the primary basis for sulphate isotope analysis.  In 

addition, to these samples BGS supplied data on major ion chemistry; trace metals, pH, 

conductivity, temperature and noble gas concentrations, collected between 2011 and 2015.  

Furthermore, three samples were collected from waters affected by the Bárðarbunga eruption.  

One sample was collected from waters upstream of the lava flow and two downstream from 

the lava flow.  These will form an important end member as volcanically influenced waters. 

3.2  Field Methods 

In total 17 samples were collected from Virkisjökull glacier.  Each site was measured for pH, 

conductivity and temperature using the WTW Mutli 340i pH-conductivity probe.  This was 

calibrated for conductivity at the start of fieldwork and then once again on the 29/04/15.  pH 

was calibrated every morning with the calibration fluids at a similar temperature to the waters 

being measured (0-5
o
C).  A one litre sample was taken from each site.  The bottle used was 

washed out three times with the sample water prior to the final sample being taken.  Each 

sample was then filtered through a 0.45µm cellulose nitrate membrane filter using a Nalgene 

filter unit and the flow regulated using a Nalgene hand pump.  Again, this was flushed with 

sample water prior to the main bulk of sample being filtered.  For each sample taken, 60ml of 

filtered water was set aside for bulk chemical analysis and 8ml for oxygen-deuterium 

isotopes.   
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3.2.1  Sulphate Isotope Field Collection 

Approximately 1litre of filtered water was passed through a 1ml volume of cation and 1ml 

volume anion ion exchange resin.  All resins were pre-conditioned with 1M HCl.  Water was 

passed through the 50W-X8 cation resin first.  This resulted in the removal of cations from 

solution, replaced by the H
+
 counter-ion on the resin. The availability of H

+
 ions also serves 

to neutralise any bicarbonate in the waters.  This water is then directed into the anion resin 

(AG2-X8) onto which any sulphate becomes attached (Figure 8).  Because of the dilute 

nature of precipitation and glacial ice, 5ml resin volumes were used for these sample types to 

allow sufficient water (up to 6l) to be processed. This allowed a measurable concentration of 

sulphate to be obtained whilst preventing resin over-load (and thereby ‘self-elution’) with the 

ion composition in such a large sample. 
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Figure 8:  Field set up of cation and anion exchange resins to elute sulphate.  The sample 

water is loaded into the reservoir and then allowed to flow through plastic tubing into the 

resins.  Waste water is collected at the base.   
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3.2.2  Noble gas sampling 

Four samples for noble gases were collected during spring 2015.  Water from the sample site 

was allowed to pass through a copper tube for approximately 1 minute.  The down flow end 

of the copper tube was then sealed shut first by crushing the end of the copper tube.  Once the 

downstream end was sealed shut, the upstream end of the copper tube was crushed.  This is to 

minimize any mixing with atmospheric air.  Noble gas samples were also collected by BGS 

during summer 2011, 2013 and winter 2012 using the same method.   
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3.3  Laboratory Analysis 

3.3.1  Major Anions 

Major anions (Cl
-
, SO4

2-
, F

-
 and NO3

-
) were measured using the Dionex ICS4000 in the 

centre for sustainable water management laboratories at Lancaster University.  Six calibration 

standards were run at the beginning of the analysis for concentrations between those shown in 

Table 2 and limits of detection were calculated at three times the standard deviation.  

Calibration standards return to within 18% of the expected value for lowest calibration and to 

within 0.5% for the highest calibration. 

Table 2:  Low and high calibration standards for major anion analysis 

Calibration Fluorine (ppm) Chlorine (ppm) Sulphur (ppm) Nitrogen (ppm) 

Low Calibration 0.25 2 1 1 

High Calibration 5 50 25 10 

 

3.3.2  Major Cations 

Major cations, were measured on the ICP-OES at Lancaster University.  Samples were 

acidified using 0.1M nitric acid and then transferred into 15ml centrifuge tubes.  The limit of 

detection was calculated as three times the standard deviation of the blank analyses (0.1M 

nitric acid).  A check standard, calibration standard and blank was run after every nine 

samples.  Five calibration standards were run at the beginning of the analysis within range of 

the expected concentrations (0ppm to 25ppm for Na
+
, K

+
 and Mg

2+
 and 0ppm to 80ppm for 

Ca
2+

).  Final results were extracted in counts per second and manually converted to 

concentration.   
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3.3.3  Trace Metals 

Trace metals, were measured on the ICP-OES at Lancaster University.  Samples were 

acidified using 0.1M nitric acid and transferred into 15ml centrifuge tubes.  The limit of 

detection was calculated as three times the standard deviation of the blank analyses (0.1M 

nitric acid).  A check standard, calibration standard and blank was run after every nine 

samples.  Five calibration standards were run at the beginning of the analysis between 0ppb 

and 1000ppb for all trace metals except strontium were calibrations were run between 0ppb 

and 300ppb.  Final results were extracted in counts per second and manually converted to 

concentration.   

3.3.4  Sulphate Isotope Preparation 

In order to extract the sulphate from the anion resins, each was flushed three times with 0.5ml 

1M ultrapure HCl. The eluent was collected in a 1.5ml micro-centrifuge tube.  0.2ml of 1M 

BaCl2 was added to the acidified samples and allowed to crystallise in the refrigerator for 

approximately 48 hours.  The samples were then centrifuged at 3500rpm for twenty minutes, 

and then washed with milliQ water.  This process was repeated 3 times.  The samples were 

then left to dry in the heating cupboard and transferred to a desiccator until analysis. 
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3.3.4.1 Sulphate Isotope Analysis 

Both 
34

S/
32

S and 
18

O/
16

O of the barium sulphate were measured using an Elementar Pyrocube 

elemental analyser connected to an Isoprime 100 mass spectrometer at the University of 

Lancaster.  To measure the sulphur isotope composition 400µg ±20µg was measured into a 

tin capsule.  Approximately 600µg of vanadium pentoxide was added into each capsule.  The 

capsules were then sealed shut and pressed to ensure all air was extracted.  Each sample was 

dropped into the elemental analyser furnace at 1050°C to ensure complete combustion to 

SO4.  To measure 
18

O/
16

O ratios, 400µg ±20µg of barium sulphate was measured out into a 

silver capsule.  Approximately 600µg of carbon black was then added to each capsule.  

Finally, these samples were left to dry in the oven at 40°C overnight to ensure no excess 

moisture.  Pyrolysis at 1450°C produced CO from which 
18

O/
16

O ratios were measured.  

Sulphur isotopic ratios were corrected to VCDT using international standards NBS-127 and 

SO6 (δ
34

S +21.1‰ and 0.5‰ respectively) and oxygen isotopic ratios were corrected to 

VSMOW using NBS-127 and SO6 (δ
18

O +9.3‰ and -11.3‰ respectively).  An in house 

standard, MLSG, was run throughout to ensure precision (δ
34

S +16.1‰ δ
18

O -7.8‰).  

Finally, oxygen isotopes were blank subtracted to remove background values.  The 

oxic/anoxic threshold was then calculated for each sample individually according to the 

equation laid out by Bottrell and Tranter (2002) as:  

δ
18

OThreshold  =  (23.7-8.7)  x  0.25  +  (0.75  x  δ
18

OWater)       Equation 10 
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3.3.5  Oxygen-Deuterium Isotope Analysis 

Water isotopes (δD and δ
18

O) were measured using the Elementar Pyrocube elemental 

analyser connected to the Isoprime 100 mass spectrometer.  δ
18

O was measured using 

pyrolysis over glassy carbon beads at 1450°C.  Deuterium-hydrogen concentrations were 

measured by the reduction of hydrogen at 1050°C over a chromium catalyst.  Lab tap water 

was measured repeated throughout to ensure precision (δD -39.15‰, δ18
O -6.25‰).  For 

oxygen analysis, standards had a precision of ±0.5‰ and deuterium analysis precision was 

±1‰. 
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Chapter 4:  Oxygen Deuterium Isotopes:  Results and Discussion 

4.1  Introduction 

Oxygen and deuterium isotopes are used in an effort to isolate the major hydrological inputs 

into the Virkisjökull catchment.  This is done with the primary focus of identifying sites 

dominated by glacial meltwater and sites dominated by precipitation.  Classifying sites in this 

way provides a focus when attempting to resolve any subglacial geothermal input.   
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4.2  Results 

Figure 5 shows the location of each sample site.  Samples were classed as either: ice, lake 

outlet, car park spring, glacial meltwater, bridge, shallow sandur groundwater, upper 

boreholes, middle boreholes, lower boreholes and precipitation.  Samples termed glacial 

meltwater cover a wide range of localities but predominantly involve supraglacial streams, 

glacial snout meltwater and ice-marginal streams that all appear to originate from melting ice.  

Furthermore, samples termed shallow sandur groundwater cover a large area but are formed 

of springs and groundwater fed rivers in the outwash sandur.  These springs are continually 

changing location and therefore no consistent sample site could be identified.   

Figure 9 shows all deuterium-oxygen isotopic data collected by the BGS and Lancaster 

University between 2011-2015.  Samples have an isotopic composition ranging from -16‰ to   

-7‰ for δ
18

O values and -130‰ to -50‰ for δD values.  Samples plot close to the local 

meteoric water line according to data from GNIP (2015).  The complete dataset from the 

BGS can be found in Appendix 2 in an excel spreadsheet.  Oxygen-deuterium results from 

waters analysed at Lancaster University can be found in Appendix 1 in table form or on the 

original excel spreadsheet in Appendix 2.     
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Figure 9:  All data collected at Virkisjökull glacier from 2012-2015 by BGS and Lancaster University.  Water collected from near the 2014 

Bárðarbunga eruption is also displayed.  
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Figure 10:  Oxygen deuterium data from precipitation at Reykjavik (GNIP).  Red circle highlights range of data for groundwaters and blue 

circle highlights range of data for glacial meltwater from Figure 9. 
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4.3  Discussion 

Samples appear to be portioned into two distinct groups.  Samples with relatively low δ
18

O 

and δD values tend to be those heavily influenced by glacial meltwater.  Samples that have a 

relatively heavier isotopic signal are groundwaters with the exception of the deep 

groundwater borehole (termed bedrock groundwater on Figure 9) which was drilled to a 

depth of 156m into bedrock.  Without incorporating dating techniques it is impossible to 

determine the age of this groundwater with any degree of certainty.  Therefore, although it 

plots within the range of glacial values it is possible that other past processes were 

responsible for this shift and therefore it is excluded from this discussion.  The remaining 

samples are divided into the two groups: groundwaters and glacial waters and analysed for 

seasonal trends and variations within sites.  Finally, weekly trends in the isotopic composition 

of the car park spring and lagoon outlet are analysed from spring 2015 data. 
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4.3.1  Seasonal Variations in Groundwater 

Figure 11 shows the variation in deuterium oxygen isotope composition with season for 

groundwaters.  The sites measured on the sandur (all boreholes and shallow sandur 

groundwater) show significant variation but this appears to have no correlation with season.  

The car park spring however, does show variation with season (Figure 12).  The lack of a 

seasonal relationship in the sandur groundwaters suggests that most of these sites are derived 

from a well-mixed precipitation fed aquifer.  This is reinforced by the fact that the majority of 

groundwater values lie in the inter-quartile range of precipitation values: -6.93‰,-49.05‰ 

and -9.30‰,-66.25‰ (data from GNIP Reykjavik).  Those with lighter values are therefore 

suggested to have a significant input from glacial meltwater.  Upper boreholes with a lighter 

isotopic composition are exclusively derived from borehole U1.  This borehole is situated 

adjacent to the river draining the proglacial lake and therefore is likely to have a substantial 

component from glacial meltwater.  Borehole U2 is located 100m from the river and shows a 

heavier isotopic signature with little seasonal variation which suggests it is derived from a 

well-mixed deep aquifer.  A significant number of the lower boreholes also show lighter 

values than would be expected if they were entirely precipitation derived.  This is surprising 

given their location over 4km from the glacial front in the sandur.  It is likely that this is a 

reflection of the braided nature of the proglacial river at this point on the sandur allowing 

glacial meltwater to percolate through a large area.  In addition, this explains the lack of 

glacial water observed in the middle boreholes which are located further upstream where the 

river is still more tightly constrained to a single channel flow regime.  The car park spring 

however, does show seasonal variation and its location adjacent to the lake outlet should 

reveal more about the distribution of glacial meltwater in the proglacial moraines. 
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Figure 11:  Deuterium-oxygen isotope values for groundwater sites separated by season. 
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4.3.1.1 Seasonal Variation in the Car Park Spring 

Figure 12 shows the variation in the deuterium-oxygen isotopic composition of the car park 

spring over two and a half years.  The isotopic composition of the water shows a clear 

distinction with season with the heaviest values occurring in summer and the lightest values 

in winter.  This is likely a reflection of the dominant input in summer being rain, whereas in 

winter it will be seasonal snowmelt from the tundra surface.  Why the other groundwater fed 

sites do not show such a clear seasonal variation is a reflection of the different geographies of 

the sites.  All other groundwater measurements occurred on the sandur which will contain 

water sourced from a very large area and therefore not be as susceptible to changes in 

precipitation type.   
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Figure 12:  Variation in the isotopic composition of the car park spring with date over a 2.5 year period. 
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4.3.2  Seasonal Variation in Glacial Waters 

Figure 13 shows the variation of surficial waters and ice with season.  Overall, summer 

values show relatively lower concentrations of 
18

O and deuterium than winter measurements.  

This could be interpreted in one of two ways.  The most likely scenario would be that 

increased summer temperatures cause the melting of ice and snow from higher up the glacier 

which will have relatively lower oxygen deuterium values due to the altitude effect.  This is 

reinforced by the fact that glacial samples collected during spring 2015 have values very 

similar to those of groundwaters samples, reflecting the lack of glacial melt due to the cold 

conditions.  Thus summer glacial meltwater samples have isotopically lighter values than 

winter.  It could also be argued, as it has been by Wynn et al. (2015) at Sólheimajökull 

glacier, that the relative decrease in δ
18

O and δD values in summer is a reflection of increased 

geothermal activity during the summer months causing rapid melting of higher altitude snow 

and ice.  The former mechanism appears the more likely candidate given the lack of any 

obvious geothermal signals although minor geothermal effects on oxygen-deuterium data 

alone cannot be ruled out.   

4.3.2.1 Seasonal Variation in Ice 

The isotopic composition of ice varies considerably which is to be expected given that all 

samples were taken from below the ice fall where the ice will be a well-mixed amalgamation 

of different aged sources.  Thus, no obvious correlation between sample altitude and the 

isotopic composition of the ice was noted. 
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Figure 13:  Isotopic composition of surficial waters and ice by season 
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4.3.2.2 Isotopic Variation in the Lake Outlet (Spring 2015) 

The lake outlet was measured continuously during the field campaign of spring 2015 (Figure 

14).  Overall, a trend towards isotopically lighter values is observed, albeit a very slight one:  

change in δ
18

O = -0.19‰ and δD = -1.68‰.  These values lie very close to the limit of 

detection for the mass spectrometer and therefore most likely represent a constant sourcing 

during the sampling period.  This is interpreted as being the result of the intensely cold period 

during spring 2015 restricting inputs into the proglacial lake to basal ice melt.   
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Figure 14:  Variation in oxygen and deuterium isotope concentration by date for the lake outlet sample site. 
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4.4  Summary 

1. Samples can be divided into two distinct groups by their oxygen-deuterium isotopic 

composition:  Glacial meltwater samples occupying the isotopically lighter end of the 

samples measured and groundwater samples occupying the heavier end.   

2. Groundwater samples with the exception of the car park spring show no seasonality 

suggesting that they are fed from a well-mixed aquifer. 

3. The car park spring does show seasonality which is suggested as being a reflection of 

the main input in summer being rainwater and surface snowmelt in winter.  This 

suggested the car park spring is a locally fed groundwater spring. 

4. Glacial meltwater samples (lake outlet and bridge) do show seasonality with 

isotopically light waters occurring in summer.  This is suggested to be due to 

increased summer melting of glacial ice and snow from a higher altitude which will 

have a relatively lighter isotopic composition.   

5. Oxygen deuterium isotope data leaves open the possibility of a geothermal regime 

operating underneath Virkisjökull but does not actively support this conclusion.  In 

order to better understand whether a subglacial geothermal regime is in operation in 

Virkisjökull we need to analyse chemistry that is diagnostic of geothermal activity.  

Sulphur isotopes were successfully employed by Wynn et al. (2015) as a subglacial 

geothermal indicator and shall form the focus of the next chapter.   
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Chapter 5:  Sulphur Isotopes:  Results and Discussion 

5.1  Introduction 

Oxygen-deuterium isotopes have provided an insight into the hydrological system operating 

at Virkisjökull and have demonstrated the partitioning of sites into two major groups: 

precipitation fed groundwater and glacial meltwater.  Sulphur isotopes provide a means of 

resolving the major chemical inputs into these waters and thus providing a more complete 

hydrological model of the Virkisjökull area.  Moreover, they have the potential to isolate a 

subglacial geothermal source.  Identifying the sites most likely to hold a chemical signature 

of subglacial geothermal activity will be guided by the oxygen-deuterium analysis.   

5.2  Sulphur Isotopes Results 

Sulphate concentrations were measured for all sites sampled during spring 2015 and for 

selected sites sampled by BGS between summer 2011 and winter 2014.  Sulphur isotopes 

were only measured for a selected group of sites including all those sampled during spring 

2015, three from winter 2014 (borehole U1, borehole M3 and bridge), two from summer 

2014 (lake outlet and bridge) and three from winter 2014 (car park spring, lake outlet and 

bridge).  In addition, six sulphur isotope samples were measured from Sólheimajökull glacier 

during spring 2015 and 3 from the Bárðarbunga eruption site.  Figure 15 shows sulphate 

concentrations vs the sulphur isotopic ratio for Virkisjökull.  SO4 concentrations range in 

value between 4.5ppm for the bridge sample collected in winter 2014 to less than 0.5ppm for 

ice and precipitation.  There is significant variation in the sulphate isotopic ratio of 

Virkisjökull samples from 17.27‰ for precipitation to 3.6‰ for borehole U1 collected during 

winter 2014.  Not plotted on this diagram are samples collected from the Bárðarbunga 

eruption.  These have the highest sulphate concentrations measured of 15ppm and the lowest 
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sulphate isotope composition at -1.24‰.  All data can be found in table form in Appendix 1 

or as an excel spreadsheet in Appendix 2. 

 

Figure 15:  Selected Virkisjökull sites sampled between summer 2014 and spring 2015 

comparing sulphate concentration to sulphur isotope composition.  Circled are samples 

collected during spring 2015 (excluding “ice” and “precipitation”) and dashed lines highlight 

the proposed mixing between chemical endmembers.  Bedrock sulphur values taken from 

Wynn et al. (2015). 

  

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

0.00 5.00 10.00 15.00 20.00 

SO
4

 (
p

p
m

) 

δ34S (‰) 

Lake Outlet 

Car Park Spring 

Glacier Ice 

Precipitation 

U1 

M3 

Bridge 

Bedrock Sulphur 



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 67 

5.3  Sulphur Isotopes:  Discussion 

5.3.1  Mixing between Meteoric and Bedrock Sources (Spring 2015) 

There are three possible major inputs into the Virkisjökull sulphate budget:  Atmospheric 

sulphur, bedrock sulphur and geothermal sulphur.  Atmospheric marine sulphate is relatively 

fixed at a +21‰ (Rees et al., 1978) and this is reflected in the sulphur isotope composition of 

the precipitation measured during spring 2015 at + 17.3‰ (Figure 15).  This is to be expected 

given Virkisjökull’s coastal location.  Virkisjökull is situated above predominantly basalt 

terrain and which in Iceland has a sulphur signature of −2 to +0.4‰ (Torssander, 1989).  

Therefore, (with the exception of ice) samples collected during spring 2015 appear to 

represent a binary mixing between a bedrock sulphate signature and precipitation sulphate 

signature (Figure 15).  This binary mixing was also observed in the oxygen-deuterium 

isotopes.  The car park spring values plot closest to the precipitation endmember as this is a 

locally precipitation fed spring that will have undergone relatively little contact with the local 

geology.  Plotting slightly more towards the bedrock endmember is the borehole M3 which is 

derived from a well-mixed precipitation fed aquifer; based on oxygen-deuterium data.  Water 

from this site will have had a longer contact time with the local geology than the car park 

spring and therefore shows a slightly more bedrock based signature.  Finally, the lake outlet 

and upper borehole U1 plot closest to the bedrock endmember reflecting the large input of 

glacial meltwater into these sites that has undergone significant contact with the country rock 

in a subglacial setting.  There is therefore a clear distinction in sulphate isotopic signature of 

the various sites sampled during spring 2015 which appears to reflect the relative inputs of 

bedrock and precipitation sulphate into each site.  Glacier ice collected during the spring 

2015 field campaign shows relatively lighter sulphur isotope values.  This reflects the 

exposure of glacier ice to atmospheric sulphur inputs that will cause a trend towards lighter 

values than precipitation.  These inputs include deposition of aerosols from anthropogenic 
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pollution, volcanic aerosols and deposition of ash particulates.  Therefore, the temporal 

exposure of glacial ice to these inputs relative to precipitation results in a lighter sulphur 

isotope signature.   
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5.3.2 Mixing between Meteoric and Bedrock Sources (Winter 

2014 – Spring 2015) 

Other sites shown on Figure 15 were measured at different times of the year and all show 

significantly lighter isotopic values than those collected in spring 2015.  There are three 

possible explanations for this isotopic variability: 

1. Excessive ice melting at other times of the year compared to spring 2015.  

2. Variation in the sulphate content of precipitation. 

3. Sub-glacial input of geothermal gases interacting with the glacier hydrological system. 

5.3.3  Sulphur Isotope Signature of Ice Melt 

Ice melt forms an endmember to a second binary mixing trend between bedrock and ice 

sulphate signatures.  Due to the temperate nature of the southern Icelandic climate, ice melt 

makes a significant contribution to the hydrological system throughout the year.  However, 

during spring 2015 continuous sub-zero temperatures ensured that ice melt contribution was 

very small and thus precipitation dominated as an endmember.  This pendulum effect 

between meteoric endmembers of the binary mixing trends is entirely governed by the 

prevailing weather conditions. 
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5.3.4  Isotopic Variation in Precipitation Fed Sites 

For sample sites devoid of any glacial melt input (borehole M3 and car park spring), variation 

in the isotopic signatures between seasons can be explained by deviations in the sulphur 

isotope composition of precipitation throughout the year (Figure 15).  The sulphate isotopic 

composition of precipitation has been shown to vary significantly depending on relative 

inputs of marine aerosols, volcanic aerosols, anthropogenic emissions and continental 

biogenic emissions (Jenkins and Bao, 2006).  Inputs from volcanic aerosols will likely have 

been more significant for samples taken after summer 2014 due to the eruption at 

Bárðarbunga.  This appears the most likely mechanism which has likely caused a single car 

park spring value to show a significantly lighter isotopic composition than those measured in 

spring 2015.  Borehole M3 which also shows significantly lighter isotope values than those 

measured in spring 2015 was collected prior to the eruption of Bárðarbunga and therefore it is 

likely that this was caused by a combination of variation in precipitation sulphate and water-

rock contact time.   
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5.3.5  Geothermal Indicators 

The isotopic signature of geothermal sulphate is poorly constrained but current estimates vary 

between +4.2‰ for H2S (Robinson et al., 2009b; Wynn et al., 2015) and 0‰ for magmatic 

sulphur (Nielsen et al., 1991).  Isotopic values from volcanically influenced waters at 

Bárðarbunga showed a sulphur isotope ratio of 0‰ (this study).  These isotopic values lie 

close to the bedrock endmember, thus rendering source discrimination difficult.  However, 

identifying a geothermal signal from sulphate has been approached in at least three separate 

ways:   

1. Comparing sulphate equivalence to major univalent and divalent cations respectively 

(Robinson et al., 2009b). 

2. Comparing sulphate: chlorine ratios to the sulphur isotope composition (Robinson and 

Bottrell, 1997). 

3. Using sulphate oxygen isotopes to determine the anoxic/oxic regime operating in the 

glacial hydrological system to determine whether geothermal gases are being oxidised in 

an open channelized system (Wynn et al., 2015).   

Robinson et al. (2009b) identified that geothermal waters will have relatively elevated values 

of sulphate compared to calcium and magnesium.  In addition, Robinson et al. (2009b) show 

that if weathering of carbonates and sulphides is the only input of major cations and sulphur 

then coupled sulphide oxidation and carbonate dissolution must be occurring.  This will 

produce a Ca + Mg: SO4 ratio of 2:1 (Figure 16).  Thus, deviation from this line suggests a 

system with multiple inputs.   
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Figure 16:  Comparing Ca +Mg equivalence to sulphate equivalence for selected 

Virkisjökull sites.  Dashed line represents coupled sulphide oxidation and carbonate 

dissolution (hereafter referred to as coupled SO-CD).   

Data presented in Figure 16 shows significant excess in calcium and magnesium at nearly all 

sites than would be expected if purely coupled SO-CD is occurring.  The apparent excess in 

calcium and magnesium is most readily explained by the weathering of calcium silicates.  

Samples that were directly affected by the eruption at Bárðarbunga show significant excess of 

sulphate.  This was also observed in geothermally influenced waters by Robinson et al. 

(2009b).  All but two samples collected at Virkisjökull show the opposite trend to that 

expected if there was a dominant geothermal influence.  In addition, there is no clear 

distinction between precipitation derived sites (such as the car park spring) and glacial 

meltwater sites (such as the lake outlet).  This implies that there is no extra (geothermal) 

sulphate component being supplied to subglacial waters that is not already present in 
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sulphate that would be expected given the concentration of divalent cations.  These samples 

are primarily derived from glacial meltwater which is where a geothermal signal is most 

likely to be present.  However, these samples were collected during the height of the 

Bárðarbunga eruption in the north west of Vatnajokull.  Moreover, the precipitation fed car 

park spring waters sampled during this period also plot very close to the boundary line.  

Therefore, these samples have likely had a heightened influence from volcanic aerosols and 

ash deposition.   

Another approach adopted by Robinson and Bottrell (1997) suggests comparing sulphate/ 

sulphate + chlorine to the sulphur isotope ratio (Figure 17).  Using this technique Robinson 

and Bottrell (1997) successfully demonstrated that precipitation, volcanic rocks and 

geothermal fluids all plot in distinct zones.  Results from Bárðarbunga agree with Robinson 

and Bottrell (1997) by having a sulphate/ sulphate + chlorine ratio of close to 1.  Given the 

lack of data on volcanic rocks it can only be assumed that the basaltic geology has a similar 

isotope composition as described by Torssander (1989) of 0‰.  Sulphate chlorine ratios are 

taken from Clarke 1967 and are assumed to be around average for igneous rocks and basalts.  

Using this data gives a sulphate to sulphate +chlorine ratio of between 0.75 and 0.90.  Thus, 

Figure 17 reinforces the binary mixing described by Figure 15 as no samples appear to be 

being “pulled” towards the geothermal endmember.  This is further backed up by Figure 18 

which shows the variation in fluorine with respect to sulphate.   



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 74 

 

Figure 17:  Sulphur isotope ratios vs sulphate/sulphate + chlorine ratios for all Virkisjökull 

and Bárðarbunga sites.  Boxes highlight approximate positions of various endmembers (based 

on Robinson and Bottrell, 1997).  

Fluorine is primarily derived from a geothermal or volcanic input and the lack of distinction 

between precipitation fed sites (car park spring and borehole M3) and glacial water fed sites 

(lake outlet, bridge and borehole U1) reinforces the argument for very little geothermal 

activity occurring underneath Virkisjökull (Figure 18).  The minor quantities of fluorine 

found in these waters are likely to be the result of a combination of aerosol deposition and 

bedrock weathering.  Therefore, analysis of sulphur isotopes coupled with bulk chemistry 

suggests that there is very little geothermal activity occurring underneath the Virkisjökull 

glacier.  The final technique applied was using sulphate isotopes to identify any signals of 

anoxia that may result from oxidation of geothermal gases as outlined by Wynn et al. (2015).   
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Figure 18:  Showing fluorine and sulphate concentrations from all Virkisjökull and 

Bárðarbunga sites.   
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5.4  Summary 

1. Samples collected from Virkisjökull can be represented as a three way mixing 

between endmembers of “ice”, “precipitation” and “bedrock” sulphate sources.  During 

spring 2015 when very little ice melt occurred, due to unseasonably low temperatures, an 

apparent binary mixing occurred between precipitation and bedrock.  At other times of the 

year when temperatures are higher, ice melt dominates as an endmember.  The governance of 

this model is prevailing weather conditions which will dictate the relative inputs of ice melt 

and precipitation into the hydrological system. 

2. Samples collected during spring 2015 show a clear distinction by site which is 

interpreted as representing the relative contact time with the country rock.  The car park 

spring plots closest to the precipitation endmember reflecting its situation as a locally sourced 

moraine spring.  This is in agreement with oxygen-deuterium isotopes which show the car 

park spring to be a predominantly precipitation fed site with little input from long term 

residence groundwater.  The lake outlet sites and borehole U1 plot towards the bedrock end 

member.  This is interpreted as reflecting the input of glacial meltwater into these sites which 

has undergone significant contact time with the country rock.  Finally, borehole M3 plots 

between the car park spring and lake outlet.  This is interpreted as reflecting its sourcing from 

a well-mixed aquifer source with very little input from glacial meltwater. 

3. Analysis of sulphur isotopes and concentrations coupled with other major chemistry 

has shown there to be a very weak or non-existent geothermal source operating underneath 

the Virkisjökull glacier.  All but two samples plotted to the left of the coupled SO:CD line 

suggesting that there was very little extra input of sulphate.  This was reinforced by analysis 

of SO4/(SO4 +Cl) ratios which again demonstrated Virkisjökull samples to plot significantly 

apart from the volcanically influenced Bárðarbunga samples.  Finally, analysis of fluorine 



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 77 

concentrations, which can only be derived in significant concentrations from volcanic sources 

shows a significant disparity between Virkisjökull and Bárðarbunga sites.    
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Chapter 6:  Geochemical Signals of Anoxia 

6.1  Introduction 

Although sulphur isotopes failed to provide any evidence of a geothermal heat source 

underneath Virkisjökull, they successfully identified the chemical composition of waters in 

the catchment being derived from a three way mixing between ice melt, precipitation and 

bedrock.  How great an influence bedrock weathering exerts on the chemistry of the waters is 

related to their residence time.  Therefore, samples that showed more of a bedrock signal 

should also demonstrate chemical signals of longer residence times.  Analysis of oxygen 

isotopes of sulphate provides a geochemical method to resolve whether conditions of anoxia 

are present at the time the sulphate was incorporated into the waters.  In the absence of any 

external reducing agents (e.g. geothermal gases) this provides a way of partitioning waters by 

their relative residence times.  However, as demonstrated by Wynn et al. (2015) they can also 

provide a means of identifying geothermal gases influencing the redox conditions at the 

glacier bed.   

6.2  Geochemical Signals of Anoxia:  Results 

Samples analysed for SO4 oxygen isotopes are shown in Figure 19 plotted against their 

anoxic threshold value.  Values range from +8.51‰ (precipitation) to -4.66‰ for borehole 

U1 sampled during winter 2014.  Ice was not measured for sulphate oxygen isotopes due to a 

lack of barium sulphate precipitate.  This is likely a reflection of the low sulphate 

concentration in this sample.  The anoxic-oxic threshold is represented by the dotted line on 

Figure 19.  Only water from sample U1 collected during winter 2014 can be described as 

anoxic.  All other waters plot in the oxic regime.  Data can be found in table form in 

Appendix 1 or on an excel spreadsheet in Appendix 2.   
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Figure 19:  Oxygen isotope composition of sulphate vs the calculated anoxic-oxic threshold 

value (calculated using technique outlined by Bottrell and Tranter (2002)) for all Virkisjökull 

samples.   
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6.3  Geochemical Signals of Anoxia:  Discussion 

With the exception of U1 (winter 2014) all samples plot in the oxic regime, where oxic 

implies greater than 75% of oxygen on the sulphate ion are derived from atmospheric 

oxygen.  However, within this there is variability between samples.  There appears to be a 

trend between the car park spring and lake outlet samples such that the latter plot closer to the 

anoxic/oxic boundary.  This suggests that there is a greater proportion of free atmospheric 

oxygen available to waters in the car park spring than lake outlet.  This is most likely a 

reflection of the relative water-rock contact time of the respective waters.  The precipitation 

derived car park spring will have undergone relatively little contact with the local geology 

and thus plots closest to the precipitation endmember.  Water from the lake outlet will have 

undergone significant residence times underneath the glacier and thus more oxygen will be 

used up in water-rock weathering reactions.  This agrees with sulphur isotope data that 

showed glacial derived waters to have a greater affiliation with a bedrock chemical signature.   
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6.3.1  Variation in Redox Conditions in Groundwaters 

There appears to be significant variation in the redox state of groundwaters in the proglacial 

sandur.  Borehole M3 was concluded to be derived from a well-mixed aquifer.  Therefore, the 

seasonal variation in borehole M3 is most likely a reflection of the seasonal variation in 

groundwater residence time.  The one anoxic sample was taken from borehole U1 in winter 

2014.  This borehole is situated adjacent to the Virkisá river and from oxygen-deuterium 

analysis it was concluded that this borehole was fed from a mixture of glacial meltwater and 

local groundwater.  Therefore, anoxic waters must be derived from either glacial meltwater or 

local groundwater.  The fact that all samples taken from Virkisá river (bridge and lake outlet) 

plot in the oxic regime suggest that water of glacial origin is oxic.  Therefore, the anoxic 

source is likely to be derived from local groundwater and unlikely to be geothermally 

influenced. 
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6.3.2  Seasonal Variation in Redox Conditions 

Figure 20 highlights the variation in the sulphate isotopic composition of all Virkisjökull sites 

with season.  Both spring 2014 and spring 2015 samples appear to plot on a mixing line 

between precipitation and glacial influenced groundwater.  This is suggested to be the result 

of: 

1. Increased water rock contact time downstream from the glacier pulling samples down 

towards the sulphur bedrock signature of 0‰. 

2. Increasing mixing with groundwater that will have undergone significant water rock 

interaction and thus display a mildly anoxic signature as in U1 (spring 2014).   

Alternatively, a mixing between geothermal waters and precipitation would also explain this 

trend.  However, waters that show a similar sulphate oxygen signature to Bárðarbunga have a 

significantly different sulphur isotope signature.  In addition, no mixing with a geothermal 

source was noted in the analysis of sulphate concentrations (Figure 17), which reinforces the 

case for the sulphate being derived from a bedrock rather than geothermal source.   
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Figure 20:  Isotopic composition of all Virkisjökull sites and Bárðarbunga sites.  Blue circles 

highlight when samples were taken at Virkisjökull.  Red circle highlights the Bárðarbunga 

sites. 

Winter 2014 samples appear to have a lighter sulphur isotope composition than the spring 

2014 samples and thus do not plot on the same mixing line.  As discussed in the sulphur 

chapter, this could be down to a number of factors including anthropogenic emissions, 

volcanic aerosols or geothermal input.  Sulphate oxygen isotope data supports a combination 

of the first two as the waters are still oxic and therefore it is unlikely that any geothermal 

gases in significant volumes are interacting with the waters.  In addition, the clustering of 

samples during winter 2014 is not noted during other times of the year, suggesting a common 

input into each sample site.  This is surprising given that the car park spring is predominantly 

precipitation derived and the bridge and lake outlet are predominately glacial water and 

groundwater derived.  Therefore, any sulphate source causing this similarity must be able to 

interact with each of these water types.  Given that the winter 2014 samples were taken at the 
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height of the Bárðarbunga eruption it is suggested that volcanic aerosols and ash deposition 

interacting with the glacier meltwater and precipitation resulted in a general overall decrease 

in the sulphur isotope composition at each site.   
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6.4  Seasonal Variations in Redox Conditions 

Work on the redox state of glacial meltwaters was first advanced by Tranter et al. (2002b) 

and Bottrell and Tranter (2002) who demonstrated that conditions of anoxia appear to vary by 

season.  In alpine systems, it was concluded that anoxic conditions prevail in the winter 

months when the hydrological system becomes isolated from atmospheric oxygen.  This is a 

result of the winter hydrological system in alpine glaciers being composed of a series of sub-

glacial cavities that are isolated from the atmosphere.  In summer, increased temperatures 

result in an oxidised and channelized hydrological system whereby sub-glacial water has 

access to free atmospheric oxygen (Bottrell and Tranter, 2002).  This was expanded on by 

Wynn et al. (2006) who showed the same relationship also operated in polar glaciers and that 

the transition from anoxic winter conditions to oxic summer conditions was very rapid.  In 

Icelandic glaciers, Wynn et al. (2015) identified seasonality in the redox state of sub-glacial 

waters but found the opposite relationship than that observed in polar and alpine systems.  

This inverse alpine relationship was interpreted as the result of the continuous melting of the 

glacier front during winter due to the temperate climate of Iceland allowing for a well-

connected hydrological regime to operate all year round.  However, in the summer months 

melting higher up the glacier tapped into the geothermal fields of the Katla volcanic system 

which resulted in reducing geothermal gases using up all the free atmospheric oxygen in the 

sub-glacial hydrological system.  Thus anoxic conditions prevailed in the summer.  

At Virkisjökull a third case appears to be occurring with oxic conditions all year round.  

Using the Wynn et al. (2015) model for Icelandic glaciers this would suggest that melting is 

occurring in all seasons allowing for a well-connected, oxidised hydrological system to be 

operating.  This is in agreement with observations at other Icelandic glaciers (Björnsson and 

Pálsson, 2008; Wynn et al., 2015).  Therefore, the presence of an oxic signal in the summer 

suggests that reducing geothermal gases are not present in sufficient quantity to cause anoxia 
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in the sub-glacial environment.  Thus, sulphate oxygen isotopes suggest that Virkisjökull has 

a well-connected sub-glacial hydrological system that is in operation all year round.  

Furthermore, oxygen isotopes are in agreement with sulphur isotopes and major chemistry 

data that point towards a weak to non-existent level of sub-glacial geothermal activity. 
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6.5  Summary 

1. All samples except borehole U1 (spring 2014) plot in the oxic regime (Figure 19).  

Variation in the oxygen isotope signature of the sulphate is interpreted as representing the 

relative water-rock contact time of the respective samples.  This explains why the lake 

outlet samples plot closer to the anoxic/oxic boundary than the car park spring samples.  

This is in agreement with sulphur and oxygen-deuterium isotope analysis. 

 

2. There is significant seasonal variation between sites (Figure 20).  It is suggested that this 

is the result of variation in the water-rock contact time of the various sites and seasonal 

changes in groundwater residence time.  A geothermal source was excluded based on the 

oxic nature of nearly all samples and the difference in δ34
S between the geothermally 

influenced Bárðarbunga waters and all Virkisjökull samples.   

 

3. Polar and Alpine subglacial waters are known to switch rapidly between oxic conditions 

in the summer and anoxic conditions in the winter (Wynn et al., 2015).  In a geothermally 

influenced glacier the opposite is found to be true with anoxic conditions in the summer 

and oxic conditions during the winter (Wynn et al., 2015).  Virkisjökull appears to 

represent a third endmember such that oxic conditions prevail all year round.  This is 

suggested to be the result of the temperate nature of Icelandic glaciers allowing a fully 

oxidised subglacial hydrological system to operate all year round.   
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Chapter 7:  Noble Gases:  Results and Discussion 

7.1  Introduction 

Oxygen-deuterium isotopes demonstrated how the Virkisjökull catchment is dominated by 

two endmembers: precipitation fed groundwater and glacial water.  This was followed by 

sulphur isotopes demonstrating the major chemical inputs into the catchment waters to be 

precipitation, ice melt and bedrock weathering and that this was strongly influenced by 

weather conditions.  Sulphate oxygen isotopes complimented this by identifying the variation 

in relative water-rock contact time at different sites, which was in agreement with the relative 

contribution of bedrock weathering described by sulphur isotopes.  In addition, a fully oxic, 

subglacial channelized system was suggested to be in operation all year round at Virkisjökull.  

The final geochemical tool applied to the Virkisjökull glacier and catchment is the noble 

gases.  Although a relatively new field for glaciologists, their potential is immense.  Of 

particular interest to this study is their ability to distinguish basal ice melt from englacial ice 

melt (firn) and supraglacial melt.  It is expected therefore, that noble gases will be able to not 

only identify the presence of ice melt but also its stratigraphic origin from within the glacier.  

This provides a method for further focusing more conservative tracers of geothermal activity 

as well as the potential to resolve the hydrological pathways of basal ice melt compared to 

englacial and supraglacial melt.  It should be noted that basal ice is not referred to in the strict 

glaciological sense but as ice below the firn interface. 
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7.2  Fractionation of Noble Gases in the Cryosphere 

Noble gases trapped as air bubbles in glacial ice vary in their concentration stratigraphically 

through the glacier (Weißbach, 2014).  This fractionation is caused by three processes: 

1. Gravitational fractionation. 

2. Thermal fractionation. 

3. Preferentially degassing of neon and argon at firn-ice interface (Huber et al., 2006; 

Severinghaus and Battle, 2006). 

 

Figure 21:  The stratigraphy of noble gases in a glacier.  If the atmospheric ratio of Xe/Ne is 

RA then it can be inferred that some increase in the Xe/Ne ratio is to be expected down the 

glacier relative to atmospheric ratios.   

Therefore, it is suggested that basal meltwater will have a different noble gas signature 

compared to supraglacial and englacial (firn) melt.  The diurnal and seasonal variation of the 

atmospheric noble gas concentration is not expected to affect the model suggested here as 

once the noble gases are enclosed in the firn layer they will be equilibrated with the 

temperature of the firn and therefore fractionation effects will be occurring from the same 

inventory of noble gases.   

In terms of identifying a geothermal signal, the above model is very appealing given its 

ability to distinguish surface melt from potentially geothermally derived basal melt.  The 

Xe/Ne = RA 
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above model has been used successfully by Weißbach (2014) as a geochemical signal for 

Pleistocene ice melt in an Estonian aquifer.  However, to the author’s knowledge this is the 

first time such a technique has been applied to a modern glacier to resolve the various 

components of ice melt in the proglacial sandur.  Although not a standalone signal of 

geothermal activity, noble gases can identify the sites that contain proportionally the greatest 

volume of basal ice melt and thus give a focus for more standard geochemical signals of 

geothermal activity (e.g. sulphate and fluorine concentrations).    
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7.3  Using Noble Gases to Quantify Basal Ice Melt 

In order to quantify the relative contribution of basal ice melt, the total concentration of each 

noble gas must be resolved into its major inputs.  These are termed: atmosphere, excess air 

and basal ice melt.  The concentration of noble gases present at equilibrium with the 

atmosphere in a non-saline water body at low temperatures are taken from Kipfer et al. 

(2002) and are shown in Table 3. 

Table 3:  Equilibrium concentrations for Ne, Ar, Kr and Xe.  Concentrations were measured 

at 4°C and at 458m above sea level (Kipfer et al., 2002). 

Ne (cm
3
 STPg

-1
) Ar (cm

3
 STPg

-1
) Kr (cm

3
 STPg

-1
) Xe (cm

3
 STPg

-1
) 

2.03x10
-7

 4.23x10
-4

 1.03x10
-7

 1.55x10
-8

 

 

Therefore, the noble gas concentration of each site, if in equilibrium, should be the 

concentrations shown in the table above.  The fact that all concentrations plot above this 

value is primarily due to the component termed “excess air.” 
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7.3.1  Excess Air 

Excess air is ubiquitous in groundwaters and is believed to be the result of small pockets of 

air trapped in the soil and subsurface interacting with recharging waters and causing them to 

exhibit noble gas concentrations in excess of equilibrium (Kipfer et al., 2002).  Although still 

not fully understood (Aeschbach-Hertig et al., 2000), three major models have been proposed 

to explain excess air and allow a quantitative analysis of the relative contribution to each 

noble gas: 

1. Unfractionated excess air model (UA) (Heaton and Vogel, 1981) 

2. Partial re-equilibrium model (PR) (Stute et al., 1995) 

3. Closed equilibrium model (CE) (Aeschbach-Hertig et al., 2000) 

Each of these models makes a prediction of the relative input of each noble gas to the excess 

air component (Figure 22-Figure 24). 

 

Figure 22:  Relative contribution of each noble gas to “excess air” according to the UA 

model. 
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Figure 23:  Relative contribution of each noble gas to “excess air” according to the PR 

model. 

 

 

Figure 24:  Relative contribution of each noble gas to “excess air” according to the CE 

model.  
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In the current literature the CE model is the most commonly employed (Kipfer et al., 2002).  

Furthermore, Weißbach (2014) used the CE model when calculating the relative input of 

glacial ice to groundwater and therefore it will be the model used to calculate excess air in 

this study. 
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7.3.2  Calculating Basal Ice Melt Contribution 

The contribution of glacier ice to the total concentration of a noble gas (X) can be described 

in the following equation: 

XIce Melt = XMeasured  –  (XEquilibrium   +  XExcess Air)  Equation 11 

In order to allow an absolute value for excess air to be calculated, neon is assumed to have no 

ice melt component.  To a first order approximation this is valid given that neon is depleted in 

basal ice given the mechanisms outlined in (Section 7.2) and that excess air has a much larger 

effect on neon than the heavier noble gases Figure 24.  Therefore for neon the equation 

becomes: 

NeExcess Air = NeMeasured  –  NeEquilibrium    Equation 12 

This value for excess air in neon is calculated as a percentage of the measured value and this 

allows the excess air component for the heavier noble gases to be scaled proportionally 

according to the CE model (Figure 24): 

XExcess Air = X(NeExcess Air/NeCE Model)    Equation 13 

Finally, using this scaled value for excess air, Equation 11 can be employed and the relative 

contribution of ice melt calculated.  In order to isolate the percentage contribution of basal ice 

melt, xenon is used given that it is likely to be the most elevated at the glacier bed compared 

to atmospheric values according to the mechanisms laid out in Section 7.2.   

  



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 96 

7.4  Noble Gases: Results 

Table 4 shows the measured concentrations of noble gases collected by BGS between 

September 2011 and April 2013 and the percentage difference between equilibrium and 

measured concentrations as predicted by the CE model.  The majority of concentration 

measurements show elevated values of neon compared to equilibrium and less of a disparity 

for the heavier gases.  Using these values the contribution of ice melt to this “extra” noble gas 

was calculated (Table 5).  As expected, argon shows very little contribution from ice melt 

whereas the heavier noble gases do.  The ice melt contribution to the inventory of xenon is 

particularly high although values are variable, ranging from 0% (lake outlet and M3) to 14% 

(L1).  Based on the fractionation effects described in Section 7.2 xenon should show the most 

elevated values of ice melt.  Therefore, proportions of ice melt according to xenon 

concentrations will form the basis for quantifying ice melt and attempting to resolve a 

geothermal signal.  Raw data can be found in Appendix 2 along with an excel spreadsheet for 

calculations of basal melt contribution. 
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Table 4: The measured concentrations of noble gases Ne, Ar, Kr and Xe along with the percentage above equilibrium according to Kipfer et al. (2002).  It is 

postulated that the excess noble gases will be a combination of ice melt and excess air.  

 

  

Date Sample 

site 

[Neon] 

cm³STP/g 

Ne Above 

Equilibrium 

(%) 

[Argon] 

cm³STP/g 

Ar Above 

Equilibrium 

(%) 

[Krypton] 

cm³STP/g 

Krypton 

Above 

Equilibrium 

(%) 

[Xenon] 

cm³STP/g 

Xenon Above 

Equilibrium 

(%) 

Sep-11 Lake 

Outlet 

2.84E-07 28.54 4.93E-04 14.17 1.14E-07 9.32 1.75E-08 11.21 

Sep-11 Lake 

Outlet 

2.76E-07 26.33 4.74E-04 10.83 1.11E-07 6.89 1.68E-08 7.48 

Apr-12 Bridge 2.32E-07 12.56 4.76E-04 11.15 1.17E-07 11.94 1.85E-08 16.00 

Apr-12 Bridge 2.28E-07 10.81 4.73E-04 10.64 1.14E-07 9.29 1.83E-08 15.29 

Sep-12 U1 2.89E-07 29.64 5.20E-04 18.65 1.25E-07 17.53 1.94E-08 19.98 

Sep-12 U2 2.72E-07 25.40 4.86E-04 12.97 1.21E-07 14.87 1.92E-08 19.35 

Sep-12 M1 2.86E-07 29.00 4.84E-04 12.64 1.23E-07 16.46 1.99E-08 22.00 

Sep-12 M2 3.96E-07 48.77 5.31E-04 20.28 1.17E-07 11.72 1.87E-08 17.08 

Sep-12 L1 2.64E-07 23.21 4.91E-04 13.88 1.26E-07 18.05 1.95E-08 20.36 

Sep-12 L2 3.61E-07 43.76 5.42E-04 21.89 1.24E-07 17.02 1.92E-08 19.13 

Sep-12 L3 2.93E-07 30.63 4.99E-04 15.18 1.25E-07 17.68 1.97E-08 21.38 

Apr-13 U1 2.63E-07 22.70 5.03E-04 15.95 1.26E-07 18.19 1.82E-08 14.87 

Apr-13 M3 2.42E-07 16.01 4.30E-04 1.56 1.03E-07 -0.15 1.49E-08 -4.06 

Apr-13 L3 2.20E-07 7.88 4.47E-04 5.33 1.11E-07 6.96 1.69E-08 8.18 
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Table 5:  Calculated contribution of basal ice melt for Ar, Kr and Xe 

 

 

 

 

 

 

 

 

 

 

 

Date Sample site Ar Ice 

(%) 

Kr Ice (%) Xe Ice (%) 

Sep-11 Lake Outlet 0 0 3 

Sep-11 Lake Outlet 0 0 0 

Apr-12 Bridge 3 6 12 

Apr-12 Bridge 4 4 12 

Sep-12 U1 0 4 11 

Sep-12 U2 0 4 12 

Sep-12 M1 0 4 13 

Sep-12 M2 0 0 3 

Sep-12 L1 0 8 14 

Sep-12 L2 0 0 6 

Sep-12 L3 0 4 13 

Apr-13 U1 1 8 8 

Apr-13 M3 0 0 0 

Apr-13 L3 0 3 6 
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7.5  Noble Gases:  Discussion 

Results for the contribution of ice melt to each site are shown schematically for both winter 

and summer in Figure 25 and Figure 26 respectively.   
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Figure 25:  Sites sampled for noble gases during April 2012 and April 2013.  Size of circles represents the relative contribution of basal ice melt according to 

concentrations of Xe. 
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Figure 26:  Sites sampled for noble gases during September 2011 and September 2012.  Size of circles represents the relative contribution of basal ice melt 

according to concentrations of Xe. 
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7.5.1  Contribution of Basal Ice Melt to Proglacial Melt Waters 

Proglacial discharge waters (lake outlet and bridge sites) show a distinct seasonal contrast in 

basal melt input.  Given that the bridge site drains from the lake outlet, their hydrological 

inputs are likely to be similar.  The lake outlet was sampled in summer and noble gases 

suggest that, proportionally, very little basal ice melt was contributing to the lake’s noble gas 

inventory.  This seems unlikely given that the glacier drains into the lake itself.  However, 

two reasons are suggested to explain this apparent paradox: 

1. In the summer months the major hydrological input into the lake outlet will be surface 

melt from the winter snowpack and surface runoff from precipitation.  This will 

significantly dilute any noble gas signature of basal ice melt. 

2. The permeable nature of the proglacial sandur (MacDonald et al., 2012) will allow for a 

significant volume of basal meltwater to be transported as groundwater and not mix in the 

lake itself. 

Thus, analysis of noble gases concludes that although the lake has a significant component of 

ice melt (from water isotope analysis) the relative contribution of basal ice during the summer 

months is minimal.   

The bridge site was measured during winter 2012 and shows a significant component of basal 

ice melt.  Given the reasons outlined above this suggests that surface melt is at a minimum 

during the winter months and therefore the relative contribution of basal melt is at an annual 

maximum.  The lack of surface melt diluting any basal melt signature stands to reason given 

the colder temperatures in the winter months.  Furthermore, given the distance between the 

lake outlet and bridge sites (3km) some interaction with glacial groundwater with a basal 

meltwater component is likely.   
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Therefore, noble gases have demonstrated  that a significant component of basal meltwater is 

transported by groundwater rather than surface flow.  If this is the case then a significant 

component of glacial meltwater should be observed in many of the borehole sites. 
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7.5.2  Contribution of Basal Ice Melt to Sandur Groundwater 

Groundwater in the proglacial sandur is measured by the three sets of boreholes (Upper, 

Middle and Lower) which, with one exception, show an input from basal meltwater.  Taking 

each set in turn reveals spatial and seasonal variation in the contribution of basal ice melt. 

7.5.2.1 Contribution of Basal Ice Melt to the Upper Boreholes 

Water isotopes demonstrated a strong glacial signal for borehole U1 but suggested borehole 

U2 was predominantly fed by precipitation.  However, noble gases indicate that the upper 

boreholes (U1 and U2) have a significant component of basal ice melt throughout the year.  

Borehole U1 was measured during both summer and winter and shows more of an input from 

basal meltwater during the summer.  Noble gases also suggest a component of basal 

meltwater to borehole U2.  Water isotope analysis ruled out a large glacial component for this 

borehole.  However, this apparent discrepancy demonstrates the potential power of the noble 

gas technique in that it cannot only distinguish basal melt from bulk ice melt but can also 

resolve signals of glacial meltwater that are too dilute for water isotopes to display.  

Therefore, noble gases suggest a year round flow of groundwater derived from basal melt in 

the region of the upper boreholes.  
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7.5.2.2 Contribution of Basal Ice Melt to the Middle Boreholes 

The middle boreholes do not show the same similarity as the upper boreholes in terms of 

basal melt contribution.  Borehole M1 shows a significant component of glacier meltwater, 

most likely reflecting its proximity to the river.  Boreholes to the east M2 and M3 show 

decreasing volumes of basal meltwater with distance from the river with borehole M3 

showing no basal melt input at all.  This is in agreement with water isotopes which 

demonstrated that M2 and M3 were most likely derived from a precipitation fed aquifer.  

However, water isotopes also demonstrated that M1 had minimal glacial input.  It is 

suggested that this is again the result of water isotopes not being able to distinguish a signal 

of glacial meltwater to the level of detail that the noble gases can.  Therefore, noble gas 

analysis at the middle boreholes suggests that basal glacial meltwater is strongly confined to 

the area around the river channel in agreement with work done at other glaciers in Iceland 

(Robinson et al., 2009a). 

7.5.2.3 Contribution of Basal Ice Melt to the Lower Boreholes 

Finally, lower boreholes all show a contribution of glacial melt regardless of season.  

Borehole L3 was measured twice and as was observed in the upper boreholes it shows 

increased basal melt during the summer months.  The fact that all lower boreholes show a 

signal of basal ice melt suggests that it is no longer confined to the main channel.  Again, this 

is in agreement with water isotopes that demonstrated significant variation in the isotopic 

composition of the lower boreholes, suggesting glacial input.  This was put down to the 

braided nature of the river in the area around the lower boreholes.  Furthermore, the river in 

the vicinity of the lower boreholes has been shown to be seasonally variable in its lateral 

extent (O'Dochartaigh et al., 2012).  Thus, the distribution of glacial meltwater in the region 

around the lower boreholes will vary with the position of the main river channels.   
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7.5.3  Signals of Geothermal Activity 

Noble gases have provided a way of identifying the proportions of basal ice melt into each 

site.  This does not by itself demonstrate geothermal activity but does give a focus for where 

more conservative tracers of geothermal activity can be applied.  This is done in Figure 27 

where concentrations of fluorine which is primarily derived from a volcanic or geothermal 

source are plotted against basal ice melt contribution.    

 

Figure 27:  Concentrations of fluorine vs the percentage of basal ice melt according to xenon 

concentrations. 

If a geothermal signal were present, a linear relationship would be expected between basal ice 

melt contribution and chemical indicators of volcanic activity.  Figure 27 demonstrates that 

this is not the case.  On the contrary, the relationship between fluorine concentrations and 

basal ice melt input suggests that there is no direct link between them.  Therefore, using noble 

gases to isolate sites dominated by basal ice melt would conclude, alongside sulphur and 
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sulphate oxygen analysis, that there is a very weak to non-existent geothermal regime 

operating underneath the Virkisjökull glacier.    
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7.6  Summary 

Quantifying basal ice melt from direct measurement has proved elusive to glaciologists with 

most studies focusing on modelling of airborne or satellite data (Depoorter et al., 2013; 

Fahnestock et al., 2001; Pritchard et al., 2012).  Noble gases however, have demonstrated 

their potential to do just that and provide a focus for chemical studies of subglacial 

geothermal activity.  The main findings are: 

1. Sites that have been measured in summer and winter show an increase in the contribution 

of basal ice melt during the summer months. 

2. Basal ice melt is only a very small contributor to the proglacial lake.  Given that oxygen 

deuterium isotopes pointed at a strong glacial signal in the proglacial lake there must still 

be a significant component of glacial ice melt.  This suggests that the lake is primarily fed 

by supraglacial runoff, precipitation and melting of englacial ice rather than basal ice 

melt.  However, further sampling would be needed to confirm this. 

3. Basal ice melt is extracted from the glacier via groundwater flow as well as surface flow.  

This explains the lack of ice melt in the proglacial lake and its dominance in the sandur 

groundwater and the Virkisá river.   

4. In agreement with Robinson et al. (2009a)  ice melt appears confined to the main channel 

until the river becomes braided where the spatial extent increases.   

5. There appears to be no correlation with distance from the glacier snout and a decreasing 

ice melt contribution to the groundwater as observed in other glacier groundwater systems 

(Robinson et al., 2009a).  This is in agreement with water isotopes that demonstrated a 

glacial signal in the lower boreholes but not in the middle boreholes.   

6. Alongside sulphur and sulphate oxygen analysis noble gases do not provide any evidence 

for the presence of a geothermal regime operating underneath the Virkisjökull glacier. 
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Chapter 8:  Conceptual Hydrological Model 

Figure 29 summarises the hydrological regime operating in the Virkisjokull 

catchment.  Oxygen-deuterium isotopes revealed a glacial catchment dominant by two 

endmembers: precipitation and glacial ice melt with ice melt proving to be the 

dominant input into the proglacial lake and sites directly influenced by the Virkisá 

River.  Oxygen deuterium isotopes demonstrated that north of the bridge, only one 

borehole (U1) was influenced by bulk glacial meltwater ().  This suggests that the 

Virkisá River is the main mechanism by which ice melt is removed from Virkisjökull.  

Once the river passes under the bridge it becomes braided and this is reflected in the 

oxygen-deuterium isotopes recording an ice melt signature in all the lower boreholes.  

However, the river channels are in a continuous state of change in the region of the 

lower boreholes and thus depending on their position at the time of sampling an ice 

melt signature may or may not be picked up.  Oxygen-deuterium isotopes also 

revealed a seasonality in proglacial discharge waters which was interpreted as 

reflecting increased melting from higher up the glacier during the summer months.   

 

Due to fractionation effects during the compression of firn to ice, noble gases provide 

a method of quantifying the relative proportion of basal ice melt in the system.  This 

revealed basal ice melt to be a relatively weak component in the lake outlet but 

making up greater than 10% in both upper boreholes and M1.  Although water isotope 

data suggested both U2 and M1 to be precipitation fed the sensitivity of noble gases to 

basal ice melt suggests a weak glacial input that was too small to be identified by 

water isotopes.  This suggests that although a large amount of ice melt is removed via 

the lake as demonstrated by oxygen-deuterium isotopes, a proportion of basal ice melt 

is removed by groundwater flow and mixes with the Virkisá River further 
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downstream.  In addition, both oxygen-deuterium isotopes and noble gases show the 

lower boreholes to have a strong glacial melt signature which suggests it is the 

dominant hydrological input even 8km from the glacier snout.  Only the car park 

spring and boreholes M2 and M3 revealed no glacial input reflecting the confinement 

of glacial meltwater to the Virkiá River.  The middle boreholes (M2 and M3) showed 

no seasonality in their oxygen-deuterium isotope composition which is interpreted as 

representing their derivation from a well-mixed precipitation fed aquifer.  The car 

park spring did show a variation in its isotope composition with season which reflects 

its origin from local precipitation.  All sites demonstrated that their chemistry is 

derived from the mixing of three sources: bedrock weathering, ice melt and 

precipitation.  The variation between sites reflects the difference in water-rock contact 

time such that glacial meltwaters show an increased bedrock signal compared to 

precipitation fed sites.  Furthermore, the seasonal variation in water chemistry can be 

explained by the fluctuating inputs of ice melt and precipitation, a process that is 

entirely governed by the prevailing weather conditions.   

 



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 111 

Figure 28:  Highlighting approximate distribution of ice melt in the Virkisjökull catchment based on oxygen-deuterium isotopes and the more sensitive noble 

gases.  Arrows indicate the direction of water flow with the size of the arrow representing the relative proportion of ice melt.  Red arrows indicate basal ice melt 

as predicted by noble gases and black arrows indicate bulk ice melt as described by water isotopes. 

Proglacial Lake 

L3 

L2 

L1 

M1 
M2 

U1 

U2 

M3 



Geochemical Signals of Volcanic Unrest at Virkisjökull glacier, Iceland Page 112 

Chapter 9:  Conclusions 

Using a suite of chemical analyses alongside field observations, the hydrochemical regime 

operating in the Virkisjökull region has been investigated with emphasis on resolving any 

geothermal activity occurring underneath the glacier.  Oxygen-deuterium isotopes 

demonstrated a hydrological system that is dominated by two endmembers: precipitation fed 

groundwater and glacial meltwater.  Seasonality in glacial meltwater samples suggested 

increased melting from higher up the glacier associated with increased summer temperatures 

whereas a lack of seasonality in all sandur groundwater sites hinted at the presence of a well-

mixed aquifer in the proglacial sandur.  Seasonality was observed in moraine groundwaters 

next to the glacier (car park spring) suggesting that these moraine groundwaters are more 

sensitive to precipitation.  Sulphate isotopes demonstrated that the sulphate signature of 

waters in the Virkisjökull region is a product of a three way mixing between precipitation, ice 

melt and bedrock.  The dominant input during the spring 2015 campaign was precipitation 

due to the unseasonably cold temperatures reducing ice melt to a minimum.  This mixing 

process is related directly to the prevailing weather conditions.  Analysis of sulphate isotopes 

suggested that an oxic regime operates in the Virkisjökull glacier all year around.  This is 

contrary to that observed by Wynn et al. (2015) at Sólheimajökull glacier and to the 

seasonality observed in Alpine and Polar glaciers (Tranter et al., 2002b; Wynn et al., 2006).  

Finally, noble gases have demonstrated their potential as a geochemical signature of basal ice 

melt.  Analysis of the xenon concentrations provided a tool for quantifying the input of basal 

ice melt to each site which demonstrated that the majority of basal meltwater is removed via 

groundwater rather than through the proglacial bulk meltwater channels.  This provides a 

powerful new tool to the field of glaciology that will allow for a more complete 

understanding of the melting processes in glaciers.  Taken together these geochemical tools 
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revealed no obvious signal of geothermal activity underneath the Virkisjökull glacier and thus 

it must be concluded that any geothermal activity associated with the Öræfajökull volcanic 

system is either spatially distinct or exerting a weak to non-existent influence on the 

hydrochemical regime of the Virkisjökull glacier. 
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9.1  Future Work 

The relationship between glaciers and geothermal activity remains an exciting and 

understudied area of the earth sciences.  To enable further understanding in this area, the 

following steps should be taken: 

1. Measuring helium isotopes in glacial meltwaters remains the most promising candidate 

for identifying a subglacial geothermal signal.  A comparative study between a glacier 

that is known to be geothermally influenced (e.g. Sólheimajökull) and a glacier that lies 

above stable continental crust (Alpine or Polar glacier) would determine the validity of 

the technique. 

2. Utilizing noble gases to determine the proportion of basal ice melt in proglacial waters 

has demonstrated a new and novel technique to understand the distribution of glacial 

meltwater in the sandur.  Furthermore, its ability to distinguish basal from bulk ice melt 

allows a far more complete model for ice melt to be constructed than previously 

demonstrated.  This technique should be employed at other glaciers in order to develop it 

further and to increase understanding of basal melting. 

3. It is possible that due to Virkisjökull’s small size, any geothermal regime is not operating 

at a large enough spatial extent to affect its meltwater chemistry.  Therefore, a similar 

chemical study of neighbouring glaciers would confirm whether this is the case.  

Furthermore, an expanded study would allow for a more complete understanding of 

interactions between the lithosphere and cryosphere in the southern portion of the 

Vatnajokull ice cap. 
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Appendix 1 

Oxygen-Deuterium Results for Samples measured at Lancaster University 

Spring 2014 

 

 

 

 

Summer 2014 

Sample Code Sample Site Day δ
18

O (‰) δD (‰) 

Virkisá Road Bridge Bridge  Unknown -11.29 -79.40 

Virkisá Lake 

Outflow 

Lake Outlet Unknown -11.40 -80.20 

14 Bar 010203 Bárðarbunga (Upstream 

from Magma) 

Unknown -12.83 -91.52 

14 Bar 060708 Bárðarbunga 

(Downstream from 

Magma) 

Unknown -12.96 -92.37 

14 Bar 121314 Bárðarbunga 

(Downstream from 

Magma)  

Unknown -12.87 -92.48 

 

Winter 2014 

Sample Code Sample Site Day δ
18

O (‰) δD (‰) 

Bridge Bridge 12/12/2014 -11.27 -79.16 

Sandur Spring Sandur Spring 12/12/2014 -8.41 -61.95 

Car Park Spring Car Park Spring 12/12/2014 -9.68 -72.41 

Lake Outlet Lake Outlet 12/12/2014 -11.08 -79.14 

  

Sample Code Sample Site Day δ
18

O (‰) δD (‰) 

U1 Borehole U1, ~10m 

from river. 

03/05/2014 -10.46 -75.7 

M3 Borehole M3, ~500m 

from river. 

03/05/2014 -9.04 -66.4 

River Virkisá river by road 

bridge 

03/05/2014 -11.16 -78.3 
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Spring 2015 

Sample Code Sample Site Day δ
18

O 

(‰) 

δD (‰) 

AMcD-Virkis 1.1 Ice-marginal Spring  26/03/2015 -10.34 -74.88 

AMcD-Virkis 1.2 Snowmelt stream 26/03/2015 -10.39 -77.52 

AMcD-Virkis 1.3 Lake Outlet 26/03/2015 -10.44 -74.26 

AMcD-Virkis 2.1 Main Channel Sandur 27/03/2015 -10.47 -74.30 

AMcD-Virkis 2.2 Groundwater Spring 

Sandur 

27/03/2015 -8.75 -63.30 

AMcD-Virkis 2.3 Precipitation 27/03/2015 -12.74 -85.16 

AMcD-Virkis 3.1 Car Park Spring 28/03/2015 -9.58 -69.59 

AMcD-Virkis 3.2 Lagoon Outlet 28/03/2015 -10.50 -74.91 

AMcD-Virkis 4.1 Car Park Spring 29/03/2015 -9.59 -68.74 

AMcD-Virkis 5.1 U1 30/03/2015 -9.74 -70.41 

AMcD-Virkis 5.2 M3 30/03/2015 -8.73 -64.04 

AMcD-Virkis 5.3 Car Park Spring 30/03/2015 -9.35 -68.37 

AMcD-Virkis 5.4 Lake Outlet 30/03/2015 -10.78 -75.65 

AMcD-Virkis 6.1 Glacier Ice 31/03/2015 -10.44 -74.73 

AMcD-Virkis 6.2 Lake Outlet 31/03/2015 -10.62 -75.39 

AMcD-Virkis 7.1 Lake Outlet 01/04/2015 -10.63 -75.94 

AMcD-Virkis 7.2 Car Park Spring 01/04/2015 -9.36 -67.99 

AMcD-Sol Bridge 

93 

Sólheimajökull Bridge 03/04/2015 -9.69 -66.30 

AMcD-Sol MZ 93 Sólheimajökull Mixed 

Zone 

03/04/2015 -9.89 -69.26 

AMcD-Sol Lagoon 

Outlet 93 

Sólheimajökull Lagoon 

Outlet 

03/04/2015 -10.08 -67.36 

AMcD-Sol Bridge 

94 

Sólheimajökull Bridge 04/04/2015 -10.03 -67.32 

AMcD-Sol MZ 94 Sólheimajökull Mixed 

Zone 

04/04/2015 -10.01 -68.41 

AMcD-Sol Lagoon 

Outlet 94 

Sólheimajökull Lagoon 

Outlet 

04/04/2015 -10.03 -68.63 
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Sulphate Isotope Results for Samples measured at Lancaster University 

Spring 2014 

Sample 

Code 

Sample Site Day δ
34

S 

(‰) 

SO4 δ
18

O 

(‰) 

δ
18

O 

Threshold 

(‰) 

Anoxic? 

U1 Borehole U1, ~10m from river.   03/05/2014 3.6 -4.66 -4.05 YES 

M3 Borehole M3, ~500m from 

river. 

03/05/2014 5.8 -1.12 -2.99 NO 

River Virkisá river by road bridge 03/05/2014 4.5 -2.49 -4.58 NO 

 

Summer 2014 

Sample 

Code 

Sample Site Day δ
34

S 

(‰) 

SO4 δ
18

O 

(‰) 

δ
18

O 

Threshold 

(‰) 

Anoxic? 

Virkisá 

Road 

Bridge 

Bridge   5.20  -4.67 NO 

Virkisá 

Lake 

Outflow 

Lake Outlet  5.79  -4.75 NO 

14 Bar 

010203 

Bárðarbunga (Upstream from 

Magma) 

 2.47  -5.83 NO 

14 Bar 

060708 

Bárðarbunga (Downstream 

from Magma) 

 -1.17 -4.33 -5.93 NO 

14 Bar 

121314 

Bárðarbunga (Downstream 

from Magma)  

 -1.24 -3.82 -5.86 NO 

 

Winter 2014 

Sample 

Code 

Sample Site Day δ
34

S 

(‰) 

SO4 δ
18

O 

(‰) 

δ
18

O 

Threshold 

(‰) 

Anoxic? 

Bridge Bridge 12/12/2014 4.40 0.81 -4.66 NO 
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Sandur 

Spring 

Sandur Spring 12/12/2014 5.90 6.45 -2.51 NO 

Car Park 

Spring 

Car Park Spring 12/12/2014 5.41 1.79 -3.46 NO 

Lake 

Outlet 

Lake Outlet 12/12/2014 4.75 0.33 -4.52 NO 

 

Spring 2015 

Sample 

Code 

Sample Site Day δ
34

S 

(‰) 

SO4 δ
18

O 

(‰) 

δ
18

O 

Threshold 

(‰) 

Anoxic? 

AMcD-

Virkis 1.1 

Ice-marginal Spring  26/03/2015 10.04 5.08 -3.96 NO 

AMcD-

Virkis 1.2 

Snowmelt stream 26/03/2015 9.81 5.94 -3.99 NO 

AMcD-

Virkis 1.3 

Lake Outlet 26/03/2015 7.10 0.66 -4.04 NO 

AMcD-

Virkis 2.1 

Main Channel Sandur 27/03/2015 8.19 2.48 -4.06 NO 

AMcD-

Virkis 2.2 

Groundwater Spring Sandur 27/03/2015 10.68 6.37 -2.76 NO 

AMcD-

Virkis 2.3 

Precipitation 27/03/2015 17.27 8.51 -5.76 NO 

AMcD-

Virkis 3.1 

Car Park Spring 28/03/2015 11.34 5.68 -3.39 NO 

AMcD-

Virkis 3.2 

Lagoon Outlet 28/03/2015 8.16 2.28 -4.08 NO 

AMcD-

Virkis 4.1 

Car Park Spring 29/03/2015 10.97 5.13 -3.40 NO 

AMcD-

Virkis 5.1 

U1 30/03/2015 7.30 1.84 -3.51 NO 

AMcD-

Virkis 5.2 

M3 30/03/2015 8.86 2.48 -2.75 NO 

AMcD-

Virkis 5.3 

Car Park Spring 30/03/2015 10.41 4.09 -3.22 NO 
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AMcD-

Virkis 5.4 

Lake Outlet 30/03/2015 7.97 1.29 -4.29 NO 

AMcD-

Virkis 6.1 

Glacier Ice 31/03/2015 6.43    

AMcD-

Virkis 6.2 

Lake Outlet 31/03/2015 7.78 1.62 -4.17 NO 

AMcD-

Virkis 7.1 

Lake Outlet 01/04/2015 7.65 1.94 -4.17 NO 

AMcD-

Virkis 7.2 

Car Park Spring 01/04/2015 9.91 4.10 -3.22 NO 

AMcD-Sol 

Bridge 93 

Sólheimajökull Bridge 03/04/2015 6.64 0.93 -3.47 NO 

AMcD-Sol 

MZ 93 

Sólheimajökull Mixed Zone 03/04/2015 6.36 1.21 -3.63 NO 

AMcD-Sol 

Lagoon 

Outlet 93 

Sólheimajökull Lagoon 

Outlet 

03/04/2015 6.57 1.08 -3.77 NO 

AMcD-Sol 

Bridge 94 

Sólheimajökull Bridge 04/04/2015 7.07 1.00 -3.73 NO 

AMcD-Sol 

MZ 94 

Sólheimajökull Mixed Zone 04/04/2015 6.25 -0.09 -3.71 NO 

AMcD-Sol 

Lagoon 

Outlet 94 

Sólheimajökull Lagoon 

Outlet 

04/04/2015 6.74 -0.47 -3.73 NO 

 


