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Abstract: 

The purpose of the current study is to provide guidance on a process for 
including latent class predictors in regression mixture models. We first 
examine the performance of current practice for using the 1-step and 3-
step approaches where the direct covariate effect on the outcome is 
omitted. None of the approaches show adequate estimates of model 
parameters. Given that the step-1 of the three-step approach shows 
adequate results in class enumeration, we suggest using an alternative 
approach: 1) decide the number of latent classes without predictors of 
latent classes and 2) bring the latent class predictors into the model with 
the inclusion of hypothesized direct covariates effects. Our simulations 
show that this approach leads to good estimates for all model parameters. 

The proposed approach is demonstrated by using empirical data to 
examine the differential effects of family resources on students’ academic 
achievement outcome. Implications of the study are discussed. 
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Abstract 

The purpose of the current study is to provide guidance on a process for including latent 

class predictors in regression mixture models. We first examine the performance of current 

practice for using the 1-step and 3-step approaches where the direct covariate effect on the 

outcome is omitted. None of the approaches show adequate estimates of model parameters. 

Given that the step-1 of the three-step approach shows adequate results in class enumeration, we 

suggest using an alternative approach: 1) decide the number of latent classes without predictors 

of latent classes and 2) bring the latent class predictors into the model with the inclusion of 

hypothesized direct covariates effects. Our simulations show that this approach leads to good 

estimates for all model parameters. The proposed approach is demonstrated by using empirical 

data to examine the differential effects of family resources on students’ academic achievement 

outcome. Implications of the study are discussed. 
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Modeling Predictors of Latent Classes in Regression Mixture Models 

 

In psychological research it is often the case that individual differences are expected in 

the relation between a predictor and an outcome (Fagan, Van Horn, Hawkins, & Jaki, 2013; Van 

Horn et al., 2009; Wong, Owen, & Shea, 2012). An increasingly common exploratory method 

for examining differential effects is regression mixture models, an extension of the finite mixture 

model in which latent classes capture discrete differences in the effects of interest (Desarbo, 

Jedidi, & Sinha, 2001; Wedel & Desarbo, 1994). One of the primary purposes of regression 

mixture models is to understand the processes underlying differential effects. This is typically 

accomplished by including predictors of the latent classes in the mixture model. 

This paper focuses on two approaches for including predictors of latent classes in 

regression mixtures. In the first approach predictors are included when estimating latent classes. 

The second approach starts by estimating the latent class portion of the model in isolation and 

then brings in predictors of the latent classes. We specifically focus on problems caused by 

misspecifying the model when not including direct effects of latent class predictors on the 

outcome in both approaches. This paper aims to provide recommendations for the inclusion of 

latent class predictors in regression mixture models. We first overview regression mixture 

models and review previous studies examining the model building process in latent class analysis. 

Regression mixture models. The analytical basis of regression mixture models can be 

found in finite mixture modeling, which includes a categorical latent variable (referred to here as 

a “latent class” variable) to describe the underlying mean and covariance structure of observed 

data (J. Magidson & Vermunt, 2004; McLachlan & Peel, 2000). These models assume that a 

mixture of subpopulations can be used to explain the structure of the overall population. A 
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regression mixture is a specific type of mixture model where the latent classes are defined in part 

by qualitative differences in the effects of a predictor variable on an outcome, thus allowing for 

heterogeneity between classes in this effect. 

Figure 1 presents the model in which there are four primary constructs operating in the 

basic regression mixture model with a latent class predictor. The continuous outcome variable 

(y), the predictor of the outcome (x), latent classes (C) defined in part by differences in the 

effects of x on y, and predictors of the latent classes (z) which may have a direct effect on y, a 

direct effect on c, and be correlated with x. The model can be written as: 

Yi|X,k =  β0k +  β1kxi + β2zi + εik,                                                        

εik ~ N(0, �2
k )       [eq. 1], 

where k denotes the given class, β0k is the intercept for class k, β1k is the class-specific regression 

coefficient that captures the differential effect of predictor x on the outcome y across latent 

classes, β2 is the effect of class predictor on the outcome (dotted line in Figure 1), and �2
k is the 

residual variance for class k. Individual cases are assigned to latent classes using a multinomial 

equation as a function of the overall latent class probabilities and potentially also as a function of 

the latent class predictor, z: 

                                                                            

Pr��� = �|
�� = exp	��� + ��
��∑ exp	��� + ��
������ , 
                                                              [eq. 2] 

where αk is the log odds of being in class k versus the reference class when all covariates, z, 

equal zero, γk is the class-specific effect of z. Z acts as an explanatory variable, predicting latent 

class membership and therefore also explaining the heterogeneity in regression weights captured 
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by latent classes. For simplicity this model includes single variables for x, z, and y, and this can 

be extended to include multiple variables in each role. 

Introducing latent class predictors in Mixture Models. There have been a number of 

papers debating the process of introducing latent class predictors in the framework of latent class 

analysis and growth mixture modeling (Asparouhov & Muthén, 2014; Bakk, Tekle, & Vermunt, 

2013; D. Huang, Brecht, Hara, & Hser, 2010; G.-H. Huang & Bandeen-Roche, 2004; Li & Hser, 

2011; Lubke & Muthén, 2007; B. O. Muthén, 2004; Vermunt, 2010). Vermunt (2010) outlines 

two distinct methods: a one-step estimation method and a stepwise (three-step) estimation 

method. In the one-step approach, latent classes are estimated jointly with their predictors in one 

overall model. Therefore, the predictors of the latent classes help to define each latent class. In 

contrast, the three-step approach involves first identifying the latent classes based only on their 

indicators without the class predictor(s). In the second step, participants' posterior membership 

probabilities from the first step are used to create the most likely class membership. In the third 

step, the most likely class variable is then used as an outcome variable and regressed on the 

latent class predictor variables while adjusting for the uncertainty in class assignments 

(Asparouhov & Muthén, 2014; Bakk et al., 2013; Vermunt, 2010). 

While some studies argue that the one-step approach results in more reliable parameter 

estimates (Asparouhov & Muthén, 2014), other studies argue that the three-step approach (Bakk 

et al., 2013; Vermunt, 2010) more closely follows the logic of the typical latent class analyses. 

The reasoning for the one-step approach, which involves estimating the full model, is that it 

includes the most information because latent class predictors are allowed to assist with 

classification. Thus, using this approach should improve class enumeration and reduce standard 

errors (Clark & Muthén, 2009). However, inclusion of class predictors in one step greatly 
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increases the number of parameters possible in the model, which increases the chances of any 

model misspecifications associated with the latent class predictors. The rationale for the three-

step approach is that the class predictors are kept distinct from the classes themselves thus they 

do not change the interpretation of the classes and no explicit assumptions about class predictors 

are made. Because many researchers view class predictors as logically being introduced after a 

classification model has been built, the classification model and the predictor model are 

developed separately in many research studies, which map on to the three-step approach (Liu & 

Lu, 2011, 2012; Wong & Maffini, 2011; Wong et al., 2012). One of the benefits of using the 

three-step approach over the one-step approach is that the classification model does not make 

assumptions about class predictors. In other words, class enumeration, which is accomplished at 

the first step, should not be affected by any model misspecifications associated with a latent class 

predictor. On the other hand, because the classification model and the predictor model are 

separately analyzed, the three-step approach does assume no direct relationship between the 

latent class predictor and the outcome variable.  

Omitted direct effect of latent class predictors on outcomes.  In practice it is common to 

assume that class predictors are unrelated to outcomes (Ding, 2006; Liu & Lu, 2011, 2012; 

Schmeige, Levin, & Bryan, 2009). Asparouhov and Muthén (2014) conducted a simulation study 

to examine the effects of omitted direct effects on the three-step estimation in the context of 

latent class analysis (LCA) and growth mixture models. They compared three approaches: a 

three-step approach excluding direct effects, a three-step approach including direct effects, and a 

one-step approach including direct effects. The three-step approach including direct effects was 

conducted by adding the covariate at step 1 to account for the direct covariate effect on the class 

indicator variables while the covariate effect on the class probability is still analyzed at step 3. 
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They found that the three-step approach omitting the direct effects performed poorly showing 

substantial bias in regression weights. The three-step approach including the direct effects 

performed better than the one without the direct effect in the model, but the biases substantially 

increased when the number of direct effects was large and the class separation was low (i.e., 

entropy < 0.6). In this case the one-step approach outperformed the other two alternatives, which 

was expected given that the datasets were generated based on the one-step approach. In their 

study, however, the one-step approach omitting the direct effects was not examined because the 

focus of the study was on the three-step estimation method.  

Class separation in regression mixture models. As shown in previous studies, low class 

separation indicated by low entropy has a large impact on results of the mixture model (Bakk, 

Oberski, & Vermunt, 2014; Bakk et al., 2013; Lubke & Muthén, 2007; Park, Lord, & Hart, 2010; 

Vermunt, 2010). Entropy is a measure of classification accuracy expressed as 

kn

pp
E ikikki

k
ln

)ˆlnˆ(
1

−∑∑
−= , 

where n is the sample size, k is the number of latent classes, and p�
ik

 denotes the estimated 

conditional probability for individual i in class k . Entropy is scaled to be 1 indicating perfect 

classification while 0 indicating chance classification (Ramaswamy, DeSarbo, Reibstein, & 

Robinson, 1993). Although there may be also differences in intercept and residuals, when latent 

classes are separated primarily by differences in regression weights, many observations do not 

clearly belong to one class which leads to low entropy. As Van Horn et al. (2014) showed, low 

entropy is typical in regression mixtures and is not an indicator of model misfit. Assigning 

individuals to classes using most likely class membership with poor class separation and low 

entropy can cause a problem for estimating the covariate effects in three-step approach (Bakk et 

al., 2013; Vermunt, 2010). Although the three-step approach provides an adjustment for 
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classification error by fixing the class proportion, it still requires a certain level of classification 

accuracy and the quality of results has been shown to decrease along with entropy (Bakk et al., 

2014). 

Direct covariate effect in Regression Mixture Model.  We believe that the issues which 

arise when including predictors of class membership are more complex in regression mixture 

models than in other mixture models and that the topic warrants a separate evaluation. Besides 

the impact of typically low entropy in regression mixtures on the performance of the 3-step 

model, low entropy also results in less stable model solutions such that each model assumption 

and parameter can impact the substantive conclusions (George, Yang, Jaki, et al., 2013; George, 

Yang, Van Horn, et al., 2013; Kim et al., In press; Van Horn et al., 2012). Failure to model 

important parameters has been shown to bias model results (Kim et al., In press), but additional 

model complexity from including unneeded parameters may also hurt model performance in 

terms of the reduced power. Additionally, unlike LCA in which latent classes are identified using 

the assumption of local independence, latent classes in regression mixtures are identified based 

on the assumptions made about the conditional distribution of error terms.  

Because we believe that regression mixtures are substantively different from other 

mixture models in this regard, we focus our review of the inclusion covariates on studies which 

used regression mixtures. In his demonstration of the application of regression mixtures in 

educational research, Ding (2006) included two predictors of the latent class (i.e., gender and 

race) and apparently did not model the direct effects of covariates on the outcome. Liu and Lu 

(2012) employed regression mixture models to examine the differential effect of students’ 

academic stress on depressive symptoms including gender and school climate as latent class 

predictors in the model. While testing the effects of two covariates on the latent class 
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membership, the direct covariate effects on the outcome were not reported in the results of the 

study. Likewise, Schmeige et al. (2009) did not mention testing this direct effect when using 

regression mixture models to examine the heterogeneity in the effect of risky sexual behavior on 

alcohol use among criminally-involved adolescents. Of the applied regression mixture models 

which examine predictors of latent classes, Van Horn et al.’s study (2009) only appears to have 

modeled direct effects of the covariates. We found no previous study that specifically examined 

approaches to including predictors of latent classes in regression mixtures. 

Study aims 

The purpose of the current study is to provide guidance on a process for including latent 

class predictors in regression mixture models. One of the common assumptions made in this 

process is that there is no direct effect of the latent class predictor on the outcome variable. The 

first goal of this study is to examine the impact of omitting the direct effect on class enumeration 

and parameter estimates in generally used one-step and three-step estimation approaches. We 

estimate four different models: (1) the one-step approach including the direct effect, (2) the one-

step model excluding the direct effect, (3) the three-step approach excluding the direct effect, and 

(4) the three-step approach including the direct effect.  

First, we analyze the most general one-step approach including the direct effect to 

validate the data-generating process; we expect no bias in class enumeration and the parameter 

estimates.  Next, we examine the effect of omitting the direct effect in the one-step approach. We 

expect too many latent classes will be identified because additional classes will be required to fit 

the data due to the omitted direct effect. Third, we examine the effect of omitting the direct effect 

in the three-step approach. We followed the three-step approach by Vermunt (2010), which starts 

with the classification model at step 1, classifies individuals using highest posterior probabilities 
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at step 2, and assesses the covariate effect on the latent classes at step 3. As in most uses of the 3-

step approach, the direct effect of latent class predictor on the outcome variable is omitted at step 

1. We expect class enumeration to show minimal bias because the latent classes are solely 

determined by the effect heterogeneity. However, when the latent class predictor and the 

predictor with differential effects are correlated, regression weights should be overestimated 

because the ignored direct effect will be attributed to the predictor variable. The covariate effect 

on the latent class membership is expected to be overestimated because the direct relationship 

between the covariate and outcome is not taken into account. Last, we examine the performance 

of the adjusted three-step approach proposed by Asparouhov and Muthen (2014) by including 

the direct covariate effect on the latent class indicator at the first step. We hypothesize that when 

there is a covariate effect on the latent class, class enumeration will still show minimal bias. 

However, the parameter estimates for the direct covariate effect will be overestimated due to the 

failure to model the covariate effect on the latent class. We also expect that both 3-step 

approaches will show less stable results because of the problems using this approach with weak 

class separation. 

Our second goal is to show the model building process for including a latent class 

predictor in regression mixture models in an applied dataset. First, we analyze an ‘unconditional 

model’ which includes no latent class predictors and thus where the focus of the model is on 

differences between classes in regression weights. Next, we then bring the latent class predictors 

into the unconditional model and examine substantive differences in the model results. We do 

not focus on a formal test for whether the models are different or not, in practice it is nearly 

always the case that model results change. The important question is whether the class predictors 

substantively change the interpretation of the results such that the same differential effects are 
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not observed. This proposed method would be problematic if exclusion of a latent class predictor 

presents substantial bias in class enumeration when there actually is a significant effect in a 

population model. Asparouhov and Muthen (2014) argue that this may be the case in LCA, but it 

is not clear that this would typically be the case in regression mixtures. Finally, we use an 

applied dataset to show the effects of omitting the direct effect from the latent class predictors to 

an outcome variable. 

Methods: Simulation Study 

Data generation. This study uses Monte Carlo simulations to examine the impact of the 

omitted direct effect of a latent class predictor in regression mixtures. We generated data using R 

(R Development Core Team, 2010) for a 2-class model as a true population model. Two different 

regression weights (i.e., β10 = 0.20 for small effect group and β20 = 0.70 for large effect group) 

were used for generating the data for each class. We adopt these regression weights for this 

simulation study because we believe that if the model cannot capture a difference in effect sizes 

of at least this large (the difference between a small and a large correlation), it is of limited use in 

capturing the differential effect of x on y. While holding the regression weights constant for the 

two classes across simulation conditions, we manipulated the degree of direct effect (y on z; 0 

and 0.50), covariate effect (c on z; odds ratio of 1, 2, and 3), and correlation between x and z (0 

and 0.50). Thus, a total of 12 separate conditions (2 X 3 X 2) with 500 replications for each 

model are used to generate the data using the following equations: 

y
i|c=1

=0.0+0.20xi+ � 0

0.50
� zi+ei  ~N(0, .96), 

y
i|c=2

=0.5+0.70xi+ � 0

0.50
� zi+ei  ~N(0, .51), 
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Pr�ci=k|zi�=

exp(0.0+ � 0

0.69

1.12

� zi)

1+exp(0.0+ � 0

0.69

1.12

� zi�
. 

Although previous studies showed that regression mixture models are sensitive to non-normal 

errors (Van Horn et al., 2009), we only considered normally distributed residual variances in this 

study because normality is beyond the scope of this paper. Entropy is not manipulated in the 

study because changing entropy requires changing the effect sizes and the variance components, 

which precludes comparing model results across all simulation conditions. Given that entropy is 

a function of conditional probability given the number of subjects and classes, it is changed 

depending upon the effect of latent class predictor (C on z), class differences in intercepts, and 

class specific residuals. We chose a sample size of 3000 for each class with a total of 6000 in 

each dataset because regression mixture models are considered as a large sample method (Fagan, 

Van Horn, Hawkins, & Jaki, 2012; Van Horn et al., 2009) and samples of this size are available 

in many publicly available datasets. Sample R code for generating the dataset is included in the 

Appendix. 

Data analysis. Mplus 7.1 (L. K. Muthén & Muthén, 1998-2012) employing the maximum 

likelihood estimator with robust standard errors (ESTIMATOR=MLR) was used for estimating 

the regression mixture models. Four types of regression mixture models were analyzed to 

investigate the optimal strategy for including the latent class predictor(s) in the model: (1) 

correctly specified one-step model, (2) omitting the direct effect of y on z in one-step model, (3) 

three-step approach excluding the direct effect of y on z (4) adjusted three-step approach 

including the direct effect of y on z at step 1. The class-specific residual variances are estimated 

for all four approaches given that a previous study show that equality constraint on the residual 
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variances across classes has a substantial impact on the bias in class enumeration and parameter 

estimates (Kim et al., In press). Determining the appropriate number of latent classes is the first 

step of estimating a regression mixture model, which involves testing a series of models with an 

increasing number of latent classes in order to assess the fit of the model. For each type of model 

specification, we started with a traditional regression model (i.e., 1-class model) followed by 

adding one more class into the model. Given that the true population model was a 2-class model, 

we analyzed a model with 1, 2, and 3 classes. Additionally, we analyzed a model with 4 and 5 

classes for some simulation conditions to examine the degree of bias in class enumeration when 

3-class model was selected in majority of simulations. If a 5-class model showed better model fit 

than a 4-class model, we stopped adding more classes and concluded that the model selected too 

many classes. Latent class enumeration is based on the Bayesian information criterion (BIC; 

Schwarz, 1978) and the sample size adjusted BIC (aBIC; Sclove, 1987). Better model fit is 

indicated by smaller values in BIC and aBIC. Because previous literatures in regression mixture 

models have shown that Akaike Information Criteria (AIC; Akaike, 1974) is likely to select too 

many classes, we have not considered using the AIC in this study; see (Nylund, Asparauhov, & 

Muthen, 2007; Van Horn et al., 2009) for further discussion. 

Following class enumeration, we also assessed the accuracy of parameter estimates in all 

four approaches. Because of the label switching problem in latent class analysis (McLachlan & 

Peel, 2000; Sperrin, Jaki, & Wit, 2010; Tueller, Drotar, & Lubke, 2011), we first sorted the two 

classes by the slope coefficients so that the smaller effect size class was always labeled as Class-

1 and the larger effect size class to be Class-2. To assess the accuracy of the estimated 

parameters, we present the average parameter estimates and the standard deviation of the 

parameter estimates across all 500 simulations. Among all the estimated parameters, we focus on 
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the regression weights (intercepts and slopes) for the two classes (i.e., β00, β01, β10 and β11) and 

the covariate effect on the class membership (γ0). For the adjusted three-step approach, we also 

assess the accuracy of the direct effect (i.e., β2), which is estimated at the first step.  

Results: Simulation Study 

Class enumeration.  All models with 1 and 2 classes converged while the convergence 

rate for the 3-class model ranged from 96% to 100% across all simulation conditions. The true 

population value for entropy was estimated using a single simulation from a dataset with 100,000 

subjects generated and analyzed using a 2-class regression mixture model. The estimated entropy 

values for the correctly specified model are given in Table 1. As expected, entropy under the 

current study setting are very low. Table 1 shows the class enumeration results for four different 

model specifications across 12 simulation conditions in terms of the covariate effect (C on z), 

correlation between the predictor variables (x with z), and direct covariate effect on outcome (y 

on z). First, the one-step approach including the direct effect shows that the true 2-class model is 

selected in nearly all simulations using both the BIC and aBIC, indicating that the data are 

properly generated. Second, when omitting the direct effect in the one-step approach, class 

enumeration results are severely biased. As shown in Table 1, if there is no relationship between 

the class predictor and the outcome (β2 = 0; condition 1, 2, 5, 6, 9, and 10) regardless of the 

correlation between X and z and the covariate effect on class membership (C on z), the 2-class 

model is correctly selected in most simulations. However, once there is a direct effect of y on z 

(β2 = 0.5; condition 3, 4, 7, 8, 11, and 12), the 2-class model is not properly captured, but the 3-

class model is always selected over the true 2-class model. To further examine the effect of the 

omitted direct effect in class enumeration, we analyzed additional models with 4 and 5 classes 
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for all 500 simulations for each condition
1
. Results showed that multiple additional classes were 

required to account for the omitted direct covariate effect on the outcome with the aBIC typically 

selecting 5 or more classes and the BIC usually indicating 4 or more classes.  

In the three-step approach, the number of latent classes is determined at the first step, 

which uses the unconditional model excluding the latent class predictor z. As shown in Table 1, 

excluding the covariates has no serious impact on the latent class enumeration in both traditional 

three-step approach (omitting the direct effect) and the adjusted three-step approach (including 

the direct effect). As we expected, class enumeration is robust to excluding the class predictor 

from the model. When omitting the direct effect, the true two classes are selected using the BIC 

in above 99% of simulations and the aBIC in 96% or above. When including the direct effect, the 

detection rates are above 99% using the BIC and above 93% using the aBIC across all simulation 

conditions.  

Accuracy of parameter estimates.  To ensure that the data generating process was proper, 

we first analyzed the correctly specified 1-step approach including the direct effect and 

confirmed that there was no bias in parameter estimates
2
. The accuracy of the parameter 

estimates from the 2-class model are assessed using the mean (M) and the standard deviation (SD) 

of the parameter estimates across 500 simulations. Table 2 presents the parameter estimates for 

the class-specific intercepts (β00 and β01) and slopes (β10 and β11), direct covariate effect on the 

outcome y (β2), covariate effect on the class probability (γ0), and the intercept of the class 

probability (α0) when omitting the direct effect y on z in the 1-step approach. As shown in Table 

2, we found no bias in the estimated parameters when there was no direct effect in the population 

model (β2 = 0; condition 1, 2, 5, 6, 9, and 10) as we had no problem in class enumeration. This is 

                                                           
1
 Result tables for all simulation conditions are available from the first author upon request. 

2
 Result table for the correctly specified model is available from the first author upon request. 
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reasonable given that the model is appropriately specified; constraining the y on z path to be zero 

is identical with omitting the corresponding path. When a moderate direct effect is omitted in the 

one-step approach, however, bias in the estimated parameters is substantial (see Table 2; 

condition 3, 4, 7, 8, 11, and 12). The intercept differences between the two classes are 

substantially overestimated and the regression weights for Class-1 are substantially 

overestimated while the weights for Class-2 are underestimated, which leads to get no clear 

differences in regression weights between classes. Thus the interpretation of the results changes 

substantially when the direct effect is omitted. The latent classes are mainly differentiated by the 

intercept differences not the regression weights. Next, the covariate effect on class probability (C 

on z; γ0) is also biased when the moderate direct effect is omitted. Results consistently show that 

the covariate effect is increased under all six conditions in which the moderate direct effect is 

omitted, which indicates that the omitted direct effect of y on z is carried through the indirect 

effect of C on z. Bias in the estimated covariate effect is larger when the predictor x is not 

correlated with the latent class predictor z.  

To ease the understanding of substantive changes in differential effects, we present 

example density plots when omitting the direct covariate effect. Figure 2 presents the density 

plots for the differences in slope coefficients from the 2-class models when omitting the direct 

effect of y on z. The two top panels in Figure 2 show that the two classes were well separated 

with the peak around the true population values (β10 = .20 and β11 = .70) for condition 5 and 6, 

which has no direct effect (β2 = 0). The bottom two panels in Figure 2 show the density of the 

two regression weights when omitting the direct effect under the moderate covariate effect. 

Effects of misspecification are seen in regression weights for each class, which are shifted 

towards each other. We note that the class assignment strategy (i.e., the smaller effect was 
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assigned to be Class-1 in every simulation) means that these results are overly optimistic. Class 

enumeration results support this argument because in many cases the true two classes are not 

selected but more number of classes are selected over the 2-class model.  

Next, Table 3 presents the parameter estimates when omitting z from the first step of the 

three-step approach. In the table, class-specific intercepts and slopes are obtained from the first 

step while the covariate effect (γ0) is estimated at step 3. Class-specific intercept coefficients 

(true β00=0.0 and β01=0.5) are adequately estimated in most conditions except when there is at 

least a moderate covariate effect and the direct effect. For condition 7, 8, 11, and 12, intercept 

coefficients for Class-1 are underestimated (ranged -0.17 to -0.33) while those for Class-2 are 

overestimated (ranged 0.61 to 0.72), which makes the intercept differences between the two 

classes to be larger than the true value. On the other hand, we have found no bias in the 

regression weights (slope coefficients) except for the condition 4, 8, and 12, which contains a 

moderate correlation between x and z. When the latent class predictor is moderately related to 

the covariate (rxz = 0.5), the regression coefficients are substantially overestimated for both 

classes when omitting the direct effect. This is expected because the direct and indirect (through 

the class membership) effect of the covariate z should be carried through the predictor x. 

Although parameters are upwardly biased, the difference in the regression weights and the 

substantive interpretation of the latent classes is still properly captured by the three-step 

approach unlike the case with the direct effect in the one-step approach omitted. On the other 

hand, the class mean at step 1 (true α0=0.0), which is the probability of being assigned to be in 

Class-1, is biased when there is at least a moderate covariate effect and a correlation between x 

and z. For condition 6, 8, 10, and 12, the class mean is underestimated (ranged -0.26 to -0.54) 

indicating that more subjects are assigned to be in Class-2. 
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While class differences in regression weights are recovered relatively well using the 

three-step approach, we found substantial bias in the effect of the latent class predictor on the 

class probability, γ0. As shown in Table 3, the covariate effect is properly estimated only when 

there is no direct effect and zero correlation of x with z. Even when there is no direct covariate 

effect (true β2=0), the indirect covariate effect (C on z) tends to be affected by excluding the 

covariate z from the model if there is a correlation between the predictor x and covariate z. For 

condition 6 and 10, the covariate effect (γ0) is underestimated while sampling variability is 

increased. When there truly is a moderate direct effect and it is omitted (condition 3, 4, 7, 8, 11, 

and 12), bias in the indirect covariate effect is substantially increased with larger sampling 

variability. For condition 4, especially, we observe an extreme value of C on z in some 

simulations (see footnote in Table 3), indicating unstable results of the three-step approach. We 

excluded the extreme values (i.e., absolute value above 10) in calculating the mean and standard 

deviations of γ0 in that condition. Even after excluding the extreme cases, results show that the 

covariate effect is severely biased with substantial sampling variability.  

Last, Table 4 presents the parameter estimates when including the direct effect in the 

three-step approach following the adjustment proposed by Asparouhov and Muthen (2014). In 

this adjusted approach, the latent class predictor z is included in the first step to take into account 

the direct relationship between the class predictor and the outcome variable. Thus in Table 4, 

class-specific intercepts (β00, β01) and slope coefficients (β10, β11) and the direct effect (β2) are 

obtained from step 1 while the covariate effect (γ0) is estimated at step 3. As shown in results, 

although the regression weights for the two latent classes are slightly overestimated when there is 

a relationship of x with z (condition 6, 8, 10, and 12), they are relatively well estimated and the 

magnitude of differential effects are captured adequately across all simulation conditions. The 
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direct effect of y on z obtained in step 1 appears to suffer primarily from increased sampling 

variability. Next, the primary focus of this paper, the covariate effect (C on z) obtained from step 

3 in this case, shows bias in almost all scenarios except when the covariate is not related with the 

class membership as well as the predictor x. The covariate effect is slightly overestimated when 

there actually is no effect on the class probability but there is a correlation between x and z 

(condition 2 and 4). The sampling variability is noticeably increased under these conditions. 

When there is a moderate (γ0=.69) or a large (γ0=1.10) covariate effect, which corresponds to the 

odds ratio of 2 and 3 respectively, the covariate effect is underestimated in all simulation 

conditions (condition 5 through 12). Bias increases when the predictor x is related with the latent 

class predictor z, and sampling variability is substantial when the latent class predictor z is 

correlated with x.  

Conclusion: Simulation study 

The simulation study shows that omitting the direct effect produces substantial bias in 

class enumeration in the one-step approach while it has no impact on class enumeration in either 

three-step approach. However, as expected given low levels of entropy, neither three-step 

approach adequately achieves the goal of estimating the effect of the covariate on the latent class 

in all scenarios. The three-step approach in which the covariate is omitted in step-1 shows 

adequate results for the effects of the covariate on class membership only when there is neither a 

direct effect of the covariate on the outcome nor a correlation between the covariate and the 

primary predictor (x). Otherwise the effect of the covariate on the latent class is often 

overestimated. The three-step approach in which the main effect of the covariate on the outcome 

is included in step-1 shows adequate results only when there is no effect of the covariate on the 

latent classes. In either case, the primary reason for utilizing a 3-step approach, to estimate the 
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effects of covariates on latent classes, is not well served. The 1-step approach including the 

direct effect is the only approach, which leads to adequate estimates of the effect of the covariate 

on the latent classes. However, the results from step-1 of the three-step approach without the 

covariate suggest that it is also adequate to omit a covariate as a first step in model estimation. In 

this case there is no evidence of bias in class enumeration and in all cases the substantive 

meaning of the latent classes remains valid although when the covariate is correlated with the 

predictor (x), regression weights in each class are overestimated.  

Model building process in regression mixtures. The results from this simulation study 

suggest another option for including covariates. Given that the three-step approach shows that 

excluding the covariates from the step-1 has minimal impact on latent class enumeration, using 

the model with no covariates (i.e., unconditional model) for latent class enumeration is a 

reasonable first step in the model building process. It substantially reduces the amount of time 

needed to build an optimal model because researchers do not need to reanalyze the model 

whenever they include or exclude covariates. While the number of detected latent classes should 

be reliable for further analysis, the effect sizes for the regression coefficients are not trustworthy 

because the omitted covariate(s) impact estimates of regression weights. Simulations show that 

neither three-step method results in adequate estimates for the effects of the covariates on the 

latent classes.  

Thus, we next suggest that once latent classes are established, the covariates should be 

brought into the model with the entire model re-estimated as in the 1-step approach, including 

the hypothesized direct effect of covariates on the outcome. The important point here is to 

compare the class-specific regression weights capturing effect heterogeneity from the different 

models. Although we expect some differences between the two results in terms of the effect sizes, 
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the substantive meaning of the heterogeneous effects captured in the unconditional model should 

remain in the conditional model. Our simulations show that this approach leads to good estimates 

for all model parameters. The advantage of this model building process is that it gives the 

investigator information about whether model results are driven by the covariate. A substantial 

change in differential effects suggests strong covariate influence on the model or model 

instability and should be used as diagnostic criteria for indicating that model results need to be 

examined more carefully and may not valid. We also note that no evidence of a direct effect of 

the covariate on the outcome in the conditional model may indicate dropping that effect from the 

model to reduce model complexity. 

Applied Example. Use of the model building process with applied data. 

To demonstrate the proposed model building process for including latent class predictors 

in regression mixtures, we analyzed data from a previously published study, which examined 

heterogeneity in the effects of family resources on academic achievement (Van Horn et al., 2009). 

In the study, differential effects of the four types of family resources (i.e., money, basic needs, 

time spent-self, and time spent-family) on three student achievement outcomes (i.e., math, 

reading, and language) were examined taking into account the two covariates (i.e., sex and 

ethnicity) for model specification. This study found three latent classes – i.e., a class with the 

strong effect of basic needs (42%) on the academic achievement, another class being resilient to 

the effects of a lack of basic needs (36%), and the last class showing low academic achievement 

with no effect of basic needs (22%) – when including ethnicity as a covariate. The relationships 

of sex and ethnicity with latent classes were added after class enumeration in the unconditional 

model. Since this study found significant effects of sex and ethnicity on class membership (Van 

Page 20 of 37

URL: https://mc.manuscriptcentral.com/hsem  E-mail: gmarcoulides@education.ucsb.edu

Structural Equation Modeling: A Multidisciplinary Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

MODELING LATENT CLASS PREDICTORS  21 

 

Horn et al., 2009), we used these two demographic variables in the current study. Male and other 

ethnicity students were used as the reference group for sex and ethnicity variables, respectively. 

In this example, we reanalyzed the data using the model building approach proposed. We 

first conducted an unconditional regression mixture model, which included the predictors (i.e., 

four family resources) and outcomes with no covariates. Because class enumeration in the 

unconditional model was found to be robust to the effect of latent class predictors in the 

simulation study above, we decided the number of latent classes using the unconditional model. 

Next, we brought latent class predictors into the model with and without specific direct effects 

from sex and ethnicity to student achievement outcomes. We then checked for substantive 

changes in class enumeration and parameter estimates from the unconditional model. We also 

analyzed the full model, which included all possible direct effects from the latent class predictors 

to the outcomes, to compare the model results.  

After analyzing 1- through 4- class unconditional regression mixture models (Model A in 

Table 5), we found three latent classes to identify the heterogeneity of the family resources on 

student achievement outcomes, which was similar to the findings of the previous study (Van 

Horn et al., 2009). Next, we included the two covariates (i.e., sex and ethnicity). We analyzed 

three regression mixture models, which differed in the assumptions for the direct effect from the 

latent class predictor(s) to the outcomes. Table 5 presents the parameter estimates from four 

different models: (A) an unconditional regression mixture model, (B) a model including two 

covariates but omitting the direct effects from the covariates to the outcomes, (C) a model 

including two covariates with one direct effect, and (D) a model including two covariates with all 

possible direct effects. Model (C) replicates the one from the original study (Van Horn et al., 

2009) with respect to the direct effect of ethnicity to the outcomes are included while the direct 
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effect of sex to the outcomes are omitted
3
. To present the model results, we focus on the two of 

the three latent classes, which show the differential effects of basic needs (i.e., strong vs. resilient) 

on the student achievement outcomes given that the third class is only differed by the lower 

intercepts. We compare the model results focusing on changes in the differential effects as a 

result of changing the model assumptions. We note that we do not intend to interpret all the 

regression coefficients in detail because the purpose of this applied example is demonstrating the 

model building process in regression mixtures. 

As shown in Table 5, the unconditional model (Model A) identified the two classes 

showing differential effects of the basic needs on the student achievement for one class having a 

stronger effect while the other class showing resiliency across all three outcomes. When both 

direct effects from sex and ethnicity to student achievement outcomes were omitted in Model (B), 

we found that the differential effect disappeared and the sampling variability increased 

substantially. To validate the class enumeration, we reanalyzed the 1-class through 4-class 

regression mixture models for Model (B) and found that both the BIC and aBIC selected the 4-

class model as the optimal model. This indicates that the covariates strongly affect the latent 

class enumeration. A substantial change in the substantive differences in the effects and 

increased sampling variability can be an indication of model instability after introducing the 

covariates into the regression mixture model. In Model (C), when including just the direct effect 

from ethnicity to the student outcomes but omitting the direct effect of sex, the differential effect 

of basic needs is retained with one class showing stronger effect of basic needs on the student 

achievement and another class showing no significant effect of basic needs. The differential 

effects in Model (C) are relatively consistent with those in the unconditional model. Last, we 

                                                           
3
 The covariate, sex, is not included in the regression mixture model in the original study (Van Horn et al., 2009) 

after verifying that the results are consistent for both male and female students.   
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relaxed the assumptions associated with the covariates and estimated all possible direct effects to 

the outcome variables (Model D). Although there are some changes in class proportions, the 

overall interpretation of the two latent classes remains the same with Model (A) and Model (C). 

The standard errors of the regression weights are relatively larger than the other two models 

possibly due to reduced power from the increase in number of estimated parameters.  

Conclusion: Applied study 

We demonstrated our proposed model building approach to including covariates using 

data from a previously published study. In the first step, we analyzed the unconditional 

regression mixture model to determine the number of latent classes in the effects of family 

resources on academic achievement. The 3-class model was selected as the best fitting model in 

which two of the three classes showed the difference in the effects of basic needs on the 

academic achievement. In the next step, sex and ethnicity were included as covariates to 

understand the characteristics of the unobserved latent classes. Results showed that the 

differential effect disappeared when omitting the direct effect of ethnicity on academic 

achievement while it was retained when omitting the direct effect of sex. This finding is 

supported by the original study (Van Horn et al., 2009), where boys and girls showed no 

difference on the number of latent classes and the overall interpretation of the classes. The 

current example highlights the importance of examining the relationship between the latent class 

predictors and the outcomes. Misspecifying the direct effect from the covariates to the outcomes 

can substantially change regression mixture results. Although the true model specification is not 

known in practice, researchers should be aware of the consequences of misspecifying the latent 

class predictors in regression mixtures and should compare the model results before and after 

including the covariates. 
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Discussion 

There has recently been much discussion in the literature on methods for assessing the 

effects of covariates on latent classes (Bakk et al., 2014; D. Huang et al., 2010; Lubke & Muthén, 

2007). While this literature suggests that mixtures, such as regression mixtures, which very low 

class separation might behave differently (Asparouhov & Muthén, 2014; Bakk et al., 2013; Li & 

Hser, 2011; Vermunt, 2010), until now there was no solid basis for giving advice to users of 

regression mixtures. Although this study tested limited simulation conditions under specific 

regression mixture scenario, it shows clearly that misspecifying the covariate to outcome 

relationship in the 1-step model can lead to dramatic problems in terms of class enumeration and 

parameter estimates. The alternative 3-step approaches get around the problems with class 

enumeration, but in general they result in bias in the effects of the covariate on the latent class, 

the entire purpose of including the covariate in the first place. While there are scenarios where 

these approaches work (and additional simulation conditions would find more or less problems), 

the user of these methods should be aware of the potential problems. Only the correctly specified 

1-step approach led to good latent class enumeration and parameter estimates in our simulations. 

However, as our applied example has shown, there are also potential problems with simply 

estimating all possible model paths. The increased number of free parameters increases model 

complexity, which possibly results in larger standard error, less power, and less stable model 

results. We also concur with the intuitive rationale for estimating classes separately from 

covariates, which lies behind the 3-step approach.  

 Our conclusion is that there is no simple ‘one size fits all’ solution to how to include 

predictors of latent classes in regression mixtures. Rather, we recommend a model building 

process where the model is first estimated with no predictors of latent classes. Once a stable 
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solution for class enumeration has been obtained, class predictors are then brought into the 

model with a fixed number of latent classes and their effects on parameter estimates and possibly 

class enumeration is examined. When covariates are brought into the model, it is important that 

the direct effects of the covariates on the outcome are considered as well. This will prevent the 

solution being dominated by possibly false assumptions about the latent class predictors. 

Additionally, this model building process has diagnostic value; when results change substantially 

by including covariates into the model, then the model should be reexamined. While not tested in 

this paper, there is no obvious reason why this model building approach to adding covariates 

would not be successful for other mixture models as well. For many mixtures a 3-step approach 

performs quite well, however, the 3-step approach still assumes that there is no direct effect of 

the covariates on the class indicators. Testing this assumption by bringing covariates into the 

model and looking for substantive changes in results as well as evidence of direct effects is good 

practice and has value as a tool for checking the stability and sensitivity of model results.  

One viable approach to deciding which direct effects of the covariates should be included 

in the mixture model is using residual statistics, such as, bivariate residual (BVR; Magidson & 

Vermunt, 2001) and expected parameter change measure (EPC; Oberski & Vermunt, 2014), 

which can be requested in most SEM based statistical software (e.g., LatentGold, Mplus, and 

LISREL). BVR is a fit index measuring the degree to which the bivariate cross-table between a 

pair of observed variables fit the model (Vermunt & Magidson, 2013), which can detect a local 

dependence. Based on the value of BVR, the omitted direct effects can be brought back into the 

model to increase the model fit (Oberski, 2015). Similarly, EPC is a measure for detecting local 

dependencies in latent class models (Oberski & Vermunt, 2014). EPC shows the change in 

parameter estimates when freely estimating a corresponding model component in the alternative 
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model. Although the use of both BVR and EPC have been suggested for detecting local 

dependence in latent class analysis, they should perform in a similar manner in regression 

mixtures to guide the direct covariate effects.  

 This study has some significant limitations, the most important of which is that, like any 

simulation study, we look at a relatively small set of the possible regression mixtures models. 

While we do not know how many different situations these results generalize to, we believe that 

the finding that a misspecified 1-step approach as well as both 3-step approaches currently in the 

literature can fail dramatically under certain conditions is important. The fact that this can 

happen means that investigators should check their results to confirm that it did not happen in 

their case. Given that there are straightforward ways to check the results, we believe that our 

primary conclusions hold even though they are based on a limited set of simulations. Another 

limitation in the process we have suggested is that it is quite subjective. We expect that 

parameter estimates will change when covariates are included in the model. We have made the 

distinction between substantive changes which change the model interpretation and those which 

simply move parameter estimates. However, this distinction is arbitrary and subject to 

interpretation by the investigator. Given that we expect some changes more than just chance, we 

do not believe that a statistical test for differences is appropriate. Probably the most reasonable 

approach to this problem is to assure that all results are reported so that readers can determine on 

their own whether they agree with results. Finally, our simulations did not stress the model at all, 

especially with regards to distributional assumptions. In real data, none of these problems occur 

in isolation and it is likely that factors such as the direct effect of covariates, distributional 

assumptions, assumptions about linearity, and sample size interact. Future research to assess 

these interactions would be very interesting although also incredibly difficult. 
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Table 1. Class enumeration results for four model specifications. 

Study conditions Model specification 

No. C on z x with z y on z Entropy
a
 

True (1-step) Omit y on z (1-step) Omit z (3-step) Adjusted 3-step 

BIC ABIC BIC ABIC BIC ABIC BIC ABIC 

1 0 0 0 .127 100.0% 98.8% 100.0% 99.2% 100.0% 97.4% 100.0% 98.6% 

2 0 .5 0 .128 100.0% 99.2% 100.0% 99.4% 100.0% 99.0% 100.0% 98.8% 

3 0 0 .5 .129 100.0% 99.0% 0.0% 0.0% 99.8% 97.4% 99.8% 97.8% 

4 0 .5 .5 .135 100.0% 99.2% 0.0% 0.0% 100.0% 98.2% 99.8% 97.6% 

5 -.69 0 0 .189 100.0% 99.4% 100.0% 99.4% 100.0% 97.8% 100.0% 97.6% 

6 -.69 .5 0 .210 100.0% 98.7% 100.0% 99.4% 99.8% 96.2% 100.0% 97.0% 

7 -.69 0 .5 .192 100.0% 98.8% 0.0% 0.0% 99.8% 98.4% 99.6% 98.0% 

8 -.69 .5 .5 .198 100.0% 98.6% 0.0% 0.0% 100.0% 98.6% 100.0% 97.8% 

9 -1.1 0 0 .264 100.0% 99.0% 100.0% 99.4% 100.0% 98.6% 100.0% 97.8% 

10 -1.1 .5 0 .296 100.0% 98.4% 100.0% 98.6% 99.4% 94.6% 99.8% 93.8% 

11 -1.1 0 .5 .264 100.0% 98.6% 0.0% 0.0% 100.0% 98.0% 100.0% 98.8% 

12 -1.1 .5 .5 .287 100.0% 98.7% 0.0% 0.0% 100.0% 97.2% 100.0% 94.8% 

Note. 
a
N=100,000 was used to obtain the entropy value. 
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Table 2. Parameter estimates when omitting the direct effect in the 1-step approach 

Study conditions Estimated parameters 

No. C on z x with z y on z 
Class 1 Class 2 

C on z (γ0) Int.Prob (α0) 
Intercept (β00=.00) Slope (β10=.20) Intercept (β01=.50) Slope (β11=.70) 

1 0 0 0 -.01 (.05) .20 (.04) .50 (.04) .70 (.03) .00 (.07) -.02 (.25) 

2 0 .5 0 .00 (.05) .20 (.04) .50 (.04) .70 (.03) .01 (.06) .02 (.24) 

3 0 0 .5 -.36 (.04) .40 (.02) .88 (.04) .51 (.02) -2.29 (.12) .07 (.19) 

4 0 .5 .5 -.39 (.07) .48 (.02) .88 (.07) .59 (.02) -2.03 (.24) .06 (.19) 

5 -.69 0 0 .00 (.04) .20 (.04) .50 (.03) .70 (.03) -.71 (.09) .00 (.20) 

6 -.69 .5 0 -.01 (.04) .20 (.04) .50 (.03) .70 (.03) -.70 (.08) .00 (.21) 

7 -.69 0 .5 -.42 (.04) .34 (.02) .92 (.03) .57 (.02) -2.57 (.13) -.01 (.17) 

8 -.69 .5 .5 -.38 (.04) .44 (.02) .98 (.03) .69 (.02) -2.37 (.12) .28 (.18) 

9 -1.1 0 0 .00 (.04) .20 (.03) .50 (.02) .70 (.02) -1.12 (.12) .02 (.19) 

10 -1.1 .5 0 .00 (.04) .20 (.03) .50 (.03) .70 (.02) -1.11 (.11) .01 (.20) 

11 -1.1 0 .5 -.44 (.04) .31 (.02) .94 (.03) .59 (.02) -2.80 (.14) -.03 (.17) 

12 -1.1 .5 .5 -.39 (.04) .42 (.02) 1.00 (.03) .72 (.02) -2.64 (.13) .30 (.18) 
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Table 3. Parameter estimates from the traditional three-step approach 

Study conditions Estimated parameters 

No. C on z 
x 

with z 
y on z 

Class 1 Class 2 Step-1 Step-3 

Intercept 

(β00=.00) 

Slope 

(β10=.20) 

Intercept 

(β01=.50) 

Slope 

(β11=.70) 

Class mean 

(α0=.00) 
C on z (γ0) 

Int.Prob 

(α0=.00) 

1 0 0 0 -.01 (.05) .20 (.04) .50 (.04) .70 (.03) -.02 (.25) -.02 (.25) -.01 (.08) 

2 0 .5 0 .00 (.05) .20 (.04) .50 (.04) .70 (.03) .02 (.24) .07 (.41) .02 (.27) 

3 0 0 .5 -.03 (.11) .19 (.06) .50 (.06) .70 (.06) -.07 (.43) -2.73 (.65) -.46 (.77) 

4
a
 0 .5 .5 -.02 (.09) .45 (.06) .51 (.06) .95 (.05) -.02 (.42) -2.53 (2.20) .51 (1.46) 

5 -.69 0 0 .00 (.05) .20 (.04) .50 (.04) .70 (.03) .00 (.23) -.70 (.12) .00 (.25) 

6 -.69 .5 0 .02 (.07) .20 (.06) .48 (.03) .69 (.03) -.26 (.30) -.40 (.34) -.25 (.35) 

7 -.69 0 .5 -.17 (.10) .20 (.05) .66 (.05) .70 (.04) -.02 (.29) -3.73 (.50) -.26 (.62) 

8 -.69 .5 .5 -.20 (.17) .44 (.06) .61 (.05) .93 (.05) -.38 (.38) -2.16 (.75) -.45 (.64) 

9 -1.1 0 0 .00 (.05) .20 (.04) .50 (.03) .70 (.03) .01 (.26) -1.09 (.16) .01 (.30) 

10 -1.1 .5 0 .04 (.10) .20 (.07) .47 (.04) .69 (.03) -.37 (.34) -.70 (.32) -.37 (.40) 

11 -1.1 0 .5 -.24 (.09) .20 (.04) .72 (.05) .70 (.04) -.01 (.24) -3.89 (.43) -.18 (.54) 

12 -1.1 .5 .5 -.33 (.24) .45 (.07) .64 (.05) .91 (.05) -.54 (.42) -2.29 (.64) -.73 (.66) 

Note. 
a
Three cases with extreme value for the C on z class probability (< -10) are excluded from calculating the mean of the parameter estimates. 
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Table 4. Parameter estimates from the adjusted three-step approach including the direct covariate effect at step-1 

Study conditions Estimated parameters 

No. 
C on 

z 

x 

with 

z 

y on z 

Class 1 Class 2 Step-1 Step-3 

Intercept 

(β00=.00) 

Slope 

(β10=.20) 

Intercept 

(β01=.50) 

Slope 

(β11=.70) 

Class mean 

(α0=.00) 
y on z (β2) C on z (γ0) 

Int. Prob 

(α0=.00) 

1 0 0 0 .01 (.05) .20 (.04) .50 (.04) .70 (.03) -.02 (.25) .00 (.01) -.01 (.07) -.02 (.25) 

2 0 .5 0 .00 (.05) .20 (.04) .50 (.04) .70 (.03) .02 (.24) .00 (.01) .07 (.41) .02 (.27) 

3 0 0 .5 -.01 (.05) .19 (.04) .50 (.04) .70 (.03) -.03 (.25) .50 (.01) .00 (.08) -.03 (.25) 

4 0 .5 .5 -.01 (.05) .20 (.04) .50 (.04) .70 (.03) .00 (.25) .50 (.01) .08 (.39) .01 (.28) 

5 -.69 0 0 .02 (.05) .20 (.04) .48 (.04) .70 (.03) .00 (.25) .06 (.01) -.49 (.10) .00 (.26) 

6 -.69 .5 0 .05 (.06) .17 (.06) .46 (.03) .66 (.03) -.26 (.31) .06 (.01) -.29 (.37) -.25 (.36) 

7 -.69 0 .5 .02 (.05) .20 (.05) .48 (.04) .70 (.03) .00 (.26) .56 (.01) -.48 (.11) -.01 (.27) 

8 -.69 .5 .5 .04 (.06) .17 (.06) .46 (.03) .66 (.03) -.27 (.30) .56 (.01) -.27 (.28) -.27 (.32) 

9 -1.1 0 0 .04 (.05) .20 (.05) .46 (.04) .70 (.04) .01 (.29) .09 (.01) -.77 (.15) .01 (.31) 

10 -1.1 .5 0 .09 (.10) .16 (.07) .44 (.03) .65 (.04) -.35 (.37) .09 (.01) -.57 (.41) -.35 (.44) 

11 -1.1 0 .5 .04 (.05) .20 (.05) .46 (.04) .70 (.03) .02 (.28) .59 (.01) -.77 (.16) .01 (.31) 

12
a
 -1.1 .5 .5 .09 (.06) .17 (.08) .44 (.04) .66 (.04) -.32 (.38) .59 (.01) -.64 (.62) -.31 (.53) 

Note. 
a
There was one extreme value (i.e., -90.03) and excluded from calculating the mean of the parameter estimates. 
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Table 5. Parameter estimates from 3-class model for applied study 

Model A. Unconditional B. Omitting both direct effects 
C. Omitting direct effect of 

sex 
D. Full model 

Class  Resilient Basic needs Resilient Basic needs Resilient Basic needs Resilient Basic needs 

proportion 40.90% 35.70% 49.10% 37.70% 58.70% 17.60% 64.20% 9.60% 

Parameter Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. 

Reading 
                

 

Intercept 488.55 .76 490.44 .58 491.48 .45 483.86 .75 489.44 .83 486.48 1.51 489.85 .77 486.49 2.82 

 

Basic needs -.16 .91 4.28 .92 .56 .63 1.13 38.19 -.25 .55 4.12 1.26 .00 .68 6.00 1.52 

 

Money 2.38 .93 2.00 .79 2.06 .46 2.03 6.45 1.91 .50 1.76 1.30 1.79 .44 2.35 2.43 

 

Time-self -.06 .80 -.55 .71 .13 .43 -1.39 7.09 .06 .49 -1.13 1.47 .17 .40 -2.78 2.71 

 

Time-family -.47 .73 -2.42 .88 -1.27 .50 -.51 .90 -.90 .48 -1.70 1.30 -1.07 .40 -1.45 1.39 

Math 

                

 

Intercept 491.11 .71 486.52 .72 489.92 .31 484.68 .52 490.71 .75 481.91 1.24 490.99 .54 485.53 2.55 

 

Basic needs -.07 .63 3.37 .65 .06 .44 1.14 46.36 .22 .42 2.21 .73 .28 .48 3.00 1.74 

 

Money 1.25 .60 1.19 .71 1.61 .36 .86 7.80 1.23 .34 1.33 1.11 1.29 .34 .92 1.72 

 

Time-self .48 .53 -.55 .63 .02 .35 -.57 8.58 .07 .34 -1.02 1.10 .18 .33 -1.85 1.58 

 

Time-family -.80 .49 -1.70 .62 -1.10 .39 -.55 .95 -.88 .36 -1.50 .94 -1.09 .32 -.65 1.26 

Language 

                

 

Intercept 104.70 .33 100.41 .55 105.90 .13 96.96 .38 102.34 .27 98.28 .96 102.93 .61 97.35 4.66 

 

Basic needs 1.08 .28 3.98 .61 .53 .19 1.59 67.20 .19 .22 4.03 .98 .36 .38 5.95 1.23 

 

Money .63 .36 2.00 .50 .82 .18 1.34 11.33 .77 .21 1.30 .86 .79 .19 1.66 1.58 

 

Time-self -.25 .34 -.73 .43 -.04 .19 -1.26 12.46 -.10 .20 -1.71 .83 -.05 .19 -3.30 2.48 

  Time-family -.40 .32 -2.00 .61 -.74 .20 -.55 1.25 -.49 .22 -1.26 .81 -.64 .20 -1.02 1.14 
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Figure 1. Path diagram of a regression mixture model with X predicting outcome Y and covariate 

Z predicting latent class membership C 
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Figure 2. Slope coefficients (y on x) of two classes when omitting the direct covariate effect in 1-

step approach 
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