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First measurement of muon-neutrino disappearance in NOvA
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This paper reports the first measurement using the NOvA detectors of v, disappearance in a v, beam.
The analysis uses a 14 kton-equivalent exposure of 2.74 x 10%° protons-on-target from the Fermilab NuMI
beam. Assuming the normal neutrino mass hierarchy, we measure Am3, = (2.527079) x 1073 eV? and
sin® @55 in the range 0.38-0.65, both at the 68% confidence level, with two statistically degenerate best-fit
points at sin’@; = 0.43 and 0.60. Results for the inverted mass hierarchy are also presented.
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Neutrino oscillation is a powerful tool for probing
fundamental neutrino properties [1-10]. For the case of
three-flavor mixing, this process is governed by two
independent mass-squared splittings, Am3, and Am3,,
and the unitary mixing matrix Upyns [11]. This matrix,
which describes the linear combinations of neutrino mass
eigenstates that constitute the neutrino flavor states, is
parametrized by three angles 6,3, 6,3, and 6;,, and a CP-
violating phase Ocp. 6,3 has the largest measurement
uncertainty of all mixing angles and is consistent with
maximal mixing (0,3 = x/4) within current experimental
uncertainties [6-10]. The observation of v, disappearance,
as reported here, is used to measure Am3, and sin’ 6.
Precise knowledge of 6,5 is an input into future v, and 7,
appearance measurements that may determine whether v4

I —
Deceased.

or vz is the lightest mass eigenstate (normal or inverted
mass hierarchy, respectively), whether 0,3 > /4 or
0,3 < m/4, and whether neutrinos violate CP symmetry.
This paper reports the first measurement by the NOvA
experiment of sin’6,; and Am3, via v, disappearance.
Neutrinos produced in the NuMI beam line at Fermilab
[12] are observed in the NOvA near detector (ND) on the
Fermilab site and the NOVA far detector (FD) 810 km from
the NuMI target along the Ash River Trail, MN [13]. The
14-kton FD is positioned on the surface, 14.6 mrad off-axis
from the NuMI beam. The 290-ton ND, 100 m under-
ground and 1 km from the NuMI target, is also positioned
off-axis to allow a measurement of an unoscillated neutrino
energy spectrum that closely matches the unoscillated
spectrum at the FD. The kinematics of two-body 7z —
u + v, decay in the NuMI decay pipe results in a neutrino
energy spectrum in the off-axis detectors that peaks close to
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2 GeV, near the first maximum of the v, disappearance
probability at the FD. The neutrino energy spectrum has a
FWHM of approximately 1 GeV.

The NOvVA detectors are functionally identical, seg-
mented, tracking calorimeters. The detectors are designed
to provide sufficient sampling of hadronic and electromag-
netic showers to allow efficient separation of the v, and v,
charged current (CC) interaction signals from the neutral
current (NC) interaction backgrounds. The basic unit of the
NOvVA detector is a long liquid-scintillator-filled cell with
highly reflective white polyvinyl chloride (PVC) walls and
cross sectional size 3.9 cm by 6.6 cm. The liquid scintillator
comprises 62% of the fiducial mass of each detector, and a
minimum ionizing particle deposits approximately
1.8 MeV of energy for each centimeter traveled in the
scintillator of each cell. The PVC cells have a length of
15.5 min the FD, and 3.9 m in the ND. Each cell contains a
Kuraray Y11 wavelength-shifting 0.7 mm diameter fiber
[14] that runs the length of a cell, loops, and returns to the
readout end where both ends of the fiber terminate on a
single pixel of a Hamamatsu avalanche photodiode (APD)
[15] operated in proportional gain mode.

Planes of PVC cells with their long axes alternating
between horizontal and vertical orientations allow three-
dimensional reconstruction of tracks and showers. The FD
consists of 896 planes of 384 cells each and is 59.8 m in
length. The ND is 15.3 m in length and consists of 192
contiguous upstream PVC planes with 96 cells each. At the
downstream end of the ND a muon range stack is formed of
11 pairs of active vertical and horizontal PVC planes, with a
10 cm thick steel plane between each pair. The muon range
stack is two-thirds the height of the bulk ND and thus the
active horizontal planes have 64 cells rather than 96. The
muon range stack is used to improve the containment
of muons produced in the upstream active volume of the
detector.

The digitization and processing of APD signals is
continuous and dead-time-free. The signals produce
pulse-height and timing information for any signal above
a pulse-height threshold corresponding to approximately
75% of that expected for the passage of a minimum
ionizing particle through a detector cell at the end furthest
from the APD in the FD. Data are recorded in 550 us -long
trigger windows roughly centered on the 10 us -long NuMI
spills. Additional trigger windows are taken out of time
with the beam spill to collect cosmic ray events for
calibration and background studies.

The neutrino beam used in this study is generated by
colliding 120 GeV protons from the Fermilab main injector
onto a 1.2 m graphite target. Two magnetic horns located
downstream of the target focus charged particles of one
sign along the beam direction and defocus charged particles
of the opposite sign. With the horns focusing positive
mesons, simulations predict that the NOVA off-axis detec-
tors are exposed to a neutrino beam composed of 97.6% v,
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1.7% v, and 0.7 v, + v, for neutrino energies between 1
and 3 GeV.

In both detectors, we measure the energy spectrum of
muon-neutrino CC interactions, primarily on carbon nuclei.
The flavor and energy of the incident neutrino is deter-
mined by identifying the lepton flavor in the final state and
assigning all the energy deposited by the final state particles
to the neutrino. The measured FD neutrino spectrum is fit to
a predicted spectrum based on measurements of the
unoscillated spectrum in the ND and the effect of neutrino
oscillations. Monte Carlo simulations are used to correct for
beam flux and acceptance differences between the two
detectors.

The simulation of the neutrino flux produced by the
NuMI beam line is based on FLUGG [16] which uses the
FLUKA [17] and GEANT4 [18] simulations. It includes a
full simulation of the production of hadrons by the
120 GeV primary proton beam interacting with the
NuMI target and the propagation of those hadrons through
the target, magnetic horns, and along the decay pipe. The
generation of neutrino interactions in the NOvA detector
and surrounding rock is performed using the GENIE
simulation [19]. GENIE simulates the primary interaction
inside the nucleus, the production of all final-state particles
in the nucleus (hadronization), and the transport and
rescattering of the final-state particles through the nucleus
(intranuclear transport). For this analysis, three charged-
current neutrino interaction types categorized by GENIE
dominate the signal: quasielastic (QE), baryon resonance
production (RES) and deep-inelastic scattering (DIS). The
transport, energy loss, interactions and decays of final state
particles within the detector volume are simulated by
GEANT4. The GEANT4 simulation uses a description
of the geometry and material content of the detectors. The
simulated energy deposition in the liquid scintillator is
converted to a corresponding number of photoelectrons
observed in the APD using a model of light production,
capture and propagation in the fiber that is based on test-
stand measurements. This photoelectron signal is then
converted to digitized quantities in the same format as
data collected from the detectors using a model of the
readout electronics response, also based on test-stand
measurements.

The FD data used in this analysis come from an exposure
of 3.45x 10%° protons-on-target (POT). This includes
periods during FD construction when a fraction of the
detector was live. On average, 79.4% of the detector was
live over the data set, which corresponds to a full FD 14 kton-
equivalent exposure of 2.74 x 10?° POT. The varying size of
the FD is accounted for in the simulation. In addition, data
collection in the ND began later than in the FD. The resulting
ND data sample, which was recorded with a fully instru-
mented detector, corresponds to 1.66 x 10?° POT.

The energy response of each channel in the detector
is individually calibrated using cosmic-ray muons. The
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observed signals for muon energy depositions at different
distances along the length of each cell are used to
characterize the signal attenuation in the fiber of that cell.

Event reconstruction and characterization starts from
calibrated cell data that are grouped into collections based
on their proximity in both space and time [20,21]. The cell
data in each collection is assumed to arise from the same
primary neutrino or cosmic-ray event. The cell energy
depositions in these events are then used to reconstruct
charged particle trajectories. In this analysis the
reconstruction of muon tracks produced in v, CC inter-
actions is performed using an algorithm based on the
Kalman filter technique [22,23].

A multivariate analysis implementing a k-Nearest
Neighbor algorithm [23-25] is used to identify a muon
track in the reconstructed event. The resulting muon
identification (ID) is based on the measured dE/dx,
amount of multiple scattering along the track, total track
length, and the fraction of track planes that have over-
lapping hadronic activity. The muon identifier was trained
separately for each detector using simulated v, interactions.
For events with multiple tracks, the primary muon candi-
date is the track with the highest muon ID. Events are
selected as v, CC if the primary track has a muon ID score
greater than 0.75. The distribution of the muon identifica-
tion variable for the primary tracks of contained ND data
and simulated neutrino events is shown in Fig. 1.

The reconstructed neutrino events are required to be fully
contained in the detectors to ensure an accurate measure-
ment of the neutrino energy, to reject muons produced by

10777 LEE
E ND, 1.66 x 10%° POT 3
B —— Simulated Selected Events P
------ Simulated Background
10°

—¢— Data

i)
C
[0}
>

oot E

o 3

10° > -

E oy T T

0 0.2 0.4 0.6 0.8 1

Muon ID
FIG. 1. The muon identification variable in the ND for con-

tained neutrino events. For each event only the largest muon ID of
all reconstructed tracks is shown. Events with muon ID greater
than 0.75 are selected for analysis. The simulated distribution
(solid red) and its background component (dashed blue) are also
shown. The number of events in the simulated distribution is
normalized up for display purposes to remove a 7.2% offset after
selection criteria are applied. The shaded band represents the bin-
to-bin uncertainties only, suppressing the 20%—-30% normaliza-
tion uncertainties due primarily to neutrino flux and cross
sections.
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neutrino interactions in the rock surrounding the detectors,
and to reduce the cosmic-ray background in the FD. In
order to contain hadronic activity, the selection criteria
require that the event has no energy depositions in the two
cells and planes that are nearest to the detector edge. To
ensure that the muon is contained, requirements are placed
on the start and end positions of the primary track. In the
ND, the forward projection of the track must be 4 or more
cell-widths away from the edge of the detector and the
backward projection of the track must be 8 or more cell-
widths away from the detector edge. A more stringent
projection requirement of 10 cells in both the forward and
backward directions is applied in the FD, due to the larger
cosmic-ray rate for the surface detector. To ensure that the
energy resolution in the ND is comparable to the FD, an
additional containment requirement is applied in which
both the interaction vertex and all but 30 MeV of energy
deposited in cells not associated with the selected muon
must be upstream of the muon range stack.

Therate of reconstructed cosmic ray-induced events in the
FD is 148 kHz. The corresponding background within the
10 ps beam window, mostly muons, is reduced using criteria
determined from the high-statistics out-of-spill-time data
sample and from simulated neutrino interactions. The event
containment and muon identification criteria described
above reduce this background rate in the FD by a factor
of approximately 200. Additional selection criteria based on
the primary track angle, which is generally beam-directed
for neutrino-produced muons and downwards-directed for
cosmic rays, as well as the number of energy deposits in cells
in the event, further reduce the background by two orders-
of-magnitude. A final three orders-of-magnitude in back-
ground rejection, removing the most signal-like cosmic rays,
is achieved with a boosted decision tree. This multivariate
algorithm utilizes eleven variables, based on the recon-
structed tracks (direction, multiple scattering, length, num-
ber of tracks, and fraction of cells with energy deposits
associated to the muon track), event calorimetry, and general
event topology (proximity to detector top and edges).

Approximately 57% of simulated contained v, CC
events with less than 5.0 GeV of visible energy pass all
of the FD selection criteria, whereas the cosmic back-
ground with visible energy below 5.0 GeV is reduced by a
factor of 1.2 x 107. With this level of rejection the cosmic
background contributes 4.1% of selected FD v, CC events.
The uncertainty on the cosmic background was determined
using the out-of-spill data and is negligible for this analysis.
The background from contained NC events within the same
visible energy range is estimated using simulation to
contribute 6% of selected FD v, CC events, which is a
99% reduction. The v, and v, CC interactions are negligible
backgrounds in both detectors.

In the ND, the selected sample is estimated by simulation
to be 98% pure, with 2% NC contamination. Since the ND
is underground, the cosmic-ray background is negligible.
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FIG. 2. Reconstructed track length (left) and track angle 8, relative to the detector longitudinal axis, along the beam direction (right)
for the primary muons in selected v, CC interactions in the ND. The simulated distributions follow the conventions of Fig. 1.

Backgrounds from muons produced by neutrino inter-
actions in the surrounding rock are also negligible after
containment requirements are applied. After all selection
criteria, approximately 500,000 events remain in the ND
data sample.

The reconstructed neutrino energy E, of a contained v,
CC event is given by

E, :Eﬂ+Ehad7 (1)

where E, is the estimated energy of the primary muon track
based on its reconstructed path length through the detector
and E,q is the estimated energy of the hadronic shower
based on the sum of all calibrated energy deposition in the
event not attributed to the muon [26]. To achieve better E,
agreement between data and simulation in the ND, the Ej 4
calibration scale in data is set 14% higher than that for
simulation.

Figure 2 shows the reconstructed muon track parameters
for v, CC events in the ND. Figure 3 shows the Ej,q

r — ]
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FIG. 3. Reconstructed hadronic energy Ey,q for selected v, CC

interactions in the ND, both with (black circles) and without (gray
squares) the 14% offset described in the text. The simulated
distributions follow the conventions of Fig. 1.

distribution both with and without the 14% difference in
E,.q calibration scale between data and simulation. A
corresponding +14% uncertainty is assessed on the had-
ronic energy scale, and is included in all of the uncertainty
bands shown. Figure 4 shows the final E, distribution. The
energy resolution for reconstructed v, CC events is
estimated from simulation to be 7%.

The prediction for the FD neutrino energy spectrum is
based on the observed ND neutrino energy spectrum, with
corrections for acceptance and flux differences derived
from simulation. First, the small NC background, estimated
from simulation, is subtracted from the ND data spectrum.
The resulting background-subtracted spectrum is then
converted into a true neutrino energy spectrum via a
mapping derived from simulation. This true neutrino
energy spectrum is then used to construct a spectrum in
the FD by multiplying it by the energy-dependent ratio of
FD-to-ND selected events from simulation. Oscillation
probabilities for a given set of oscillation parameters are
then applied, by energy bin, to the predicted true FD energy

100 —_—
C ND, 1.66 x 10 POT ]
80 - —— Simulated Selected Events |
- T e Simulated Background —
[ —4— Data ]
[yl
S 60— —
=3 L i
" B i
*qc: | -
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T T U OPORPOR RO s .
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Reconstructed Neutrino Energy (GeV)

FIG. 4. Reconstructed neutrino energy E, for selected v, CC
interactions in the ND. The simulated distributions follow the
conventions of Fig. 1.
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spectrum, which is then mapped to a reconstructed neutrino
energy spectrum using FD simulation. The extrapolated v,
CC energy spectrum is then combined with beam-induced
backgrounds (NC, v, CC, and v, CC) predicted from
simulation, and the background spectrum measured using
events selected from outside of the beam spill window.

Systematic uncertainties in the calibration, flux estimate,
cross sections, hadronization modeling, particle-transport
modeling and exposure differences between the two detec-
tors are assessed by varying these aspects of the simulation.
Because the detectors are functionally identical, many
systematic uncertainties largely cancel in the measurements
of sin” 63 and Am3,. The uncertainties and their impact are
summarized in Table I.

For the beam-induced backgrounds, which are small, a
normalization uncertainty of 100% is assigned. The cosmic
background, measured from out-of-spill data, has negli-
gible uncertainty and is therefore not included as a penalty
term in the oscillation fit. The neutrino interaction cross
section and hadronization uncertainties are determined by
altering each cross section and hadronization parameter by
its predetermined uncertainties in the GENIE simulation,
which vary in size from 15% to 25%, as specified in
Ref. [27]. Uncertainties in particle-transport modeling are
assessed by comparing alternative hadronic models in the
GEANT4 simulation. The beam flux normalization uncer-
tainty in each detector is dominated by beam-line hadron
production uncertainties. This uncertainty is approximately
20% near the peak of the spectrum, estimated by comparing
simulated pion and kaon yields in the NuMI target to
measured yields for interactions of 158 GeV protons on a
thin carbon target in the NA49 experiment [28,29]. The
detector exposure uncertainty, which accounts for uncer-
tainties in detector mass and periods of data collection
when only one detector was operational, is 1%.

The uncertainty in muon energy scale is 2%, driven by
detector mass and muon energy-loss modeling. The uncer-
tainty in calorimetric (hadronic) energy scale is 14.9%, the
quadrature sum of the 14% uncertainty assigned to reflect
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the difference in Ej,y scales used in data and simulation,
and 5% derived from comparisons of muon and Michel
electron data and simulation. An additional relative 5.2%
calorimetric energy uncertainty is taken uncorrelated
between the two detectors. The main component of this
is a 5% uncertainty derived from muon and Michel electron
studies. An additional 1.4% comes from potential
differences in E,q scale between the ND and FD due to
their differing neutrino spectra (primarily due to oscilla-
tions). To estimate this uncertainty, the simulated ND
kinematic distributions were fit to data by adjusting some
or all of the normalizations, hadronic energy scales, and
muon energy scales of QE, RES, and DIS events separately
in the simulation. The fit results were then applied to FD
simulation, and the largest relative energy offset seen
between detectors across the ensemble of fits was 1.4%.
The largest normalization offset seen was 1%, which is also
taken as an uncertainty.

Upon applying the FD event selection criteria to the full
data set reported here, a total of 33 v, CC candidate events
are observed for reconstructed neutrino energies below
5 GeV. The total expected background is 3.4 events, which
includes 2.0 £2.0 NC events and 1.4 +0.2 cosmic-ray
events. In the absence of neutrino oscillations, 211.8 &
12.5 (syst.) candidate events are predicted. The energy
spectrum for the sample is shown in Fig. 5.

Using a three-flavor neutrino oscillation model that
includes matter effects, the data are fit for sin? 0,3 and
Am3, assuming either the normal or inverted mass hier-
archy. The fit is a log-likelihood maximization comparing
the neutrino energy spectrum of the data to that of the
extrapolated simulation over 18 bins from 0.5 to 5.0 GeV.
Systematic effects and constraints on all other oscillation
parameters are taken into account in the fit with penalty
terms. Central values and uncertainties for ), and Am3,
are taken from Ref. [30]. We constrain sin’(26,3) to
0.086 = 0.005, a weighted average of recent results
[4—6]. 6¢cp is unconstrained. The resulting allowed region,
calculated using the Feldman-Cousins technique [31], is

TABLE I.  Impact of the sources of uncertainty on the expected sensitivity of the measured values for sin? @3 and Am3, evaluated at

the test point of sin® 6,3 = 0.5 and Am3, = 2.5 x 1073 eV2.

Source of uncertainty

Fractional uncertainty sin” 03 (+%)

Fractional uncertainty Am3, (£%)

Absolute calorimetric energy calibration (14.9%)
Relative calorimetric energy calibration (5.2%)
Muon energy scale (2%)

Cross sections and final state interactions (15%-25%)
NC and v, CC backgrounds (100%)
Particle-transport modeling

Beam flux (21%)

Normalization (1.4%)

Other oscillation parameters

Total systematic uncertainty

Statistical uncertainty

4.1 2.6
34 0.6
22 0.8
0.8 0.6
3.0 0.6
1.5 0.6
1.3 0.3
0.4 0.2
1.8 22
6.8 3.7
17.0 4.5
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FIG. 5. The reconstructed energy for FD selected events. The

black data points show the statistical uncertainties. The short-
dashed green histogram corresponds to the predicted spectrum in
the absence of oscillations. The solid brown histogram corre-
sponds to the best-fit prediction with systematic effects included.
The long-dashed red histogram corresponds to the best-fit
prediction when the effects from the systematic shifts in the fit
are removed. The light-red band represents the systematic
uncertainty on the no-systematics (red) prediction. The blue,
open-circled points represent the background, mostly NC and
cosmic-ray muons.

shown in Fig. 6. One-dimensional 68% confidence level
(C.L.) ranges for each of Am3, and sin? 03 are obtained
by maximizing the profile likelihood ratio of each
parameter [30].

Assuming the normal hierarchy, we measure Am3, =
(2.5270%) x 1073 €V? and sin® 0,5 in the 68% C.L. range
[0.38, 0.65], with two statistically degenerate best-fit values
of sin’@,; of 0.43 and 0.60. Assuming the inverted
hierarchy, we measure Am3,=(—-2.56+0.19)x103eV?
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FIG. 6. The best-fit (solid black circles) and allowed values
(solid black curve) of sin?6y; and Am3, from this analysis
assuming the normal mass hierarchy. The dashed contour lines
are results from T2K [10] and MINOS [9].

and sin? 0,3 in the 68% C.L. range [0.37, 0.64], with two
statistically degenerate best-fit values of sin®,; of 0.44
and 0.59. The best-fit parameters in both hierarchies yield a
prediction of 35.4 events in the FD.

In conclusion, the first NOVA measurement of sin” 6,5
and Am2, through observation of the disappearance of
muon neutrinos is reported. The results, based on less than
10% of the planned exposure of the NOVA experiment, are
consistent with maximal 0,3 mixing as well as with current
results from [6-10].
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