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Abstract

We consider the problem to evacuate several regions due to river flooding, where suffi-
cient time is given to plan ahead. To ensure a smooth evacuation procedure, our model
includes the decision which regions to assign to which shelter, and when evacuation
orders should be issued, such that roads do not become congested.

Due to uncertainty in weather forecast, several possible scenarios are simultane-
ously considered in a robust optimization framework. To solve the resulting integer
program, we apply a Tabu search algorithm based on decomposing the problem into
better tractable subproblems. Computational experiments on random instances and an
instance based on Kulmbach, Germany, data show considerable improvement com-
pared to an MIP solver provided with a strong starting solution.
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1. Introduction

World-wide, flood damages have been on the rise and will likely continue to pose
a further increasing risk. The floods in June 2013 are estimated to amount to 12 billion
Euro in losses [Re13], while the floods in India and Pakistan during September 2014
caused over 5 billion US$ and 665 fatalities alone [Re14]. Yearly losses within the EU
are estimated to increase to over 23 billion Euro annually by 2050 [JHSF+14].

Due to highly sophisticated weather forecasts, floods do not hit us completely by
surprise, and do not belong to the class of no-notice emergencies. Therefore, opera-
tions research has great potential to prepare for and to mitigate flood effects. Still, the
literature on optimization models specifically for flood evacuation has been relatively
sparse so far in comparison to other natural disasters [AG06]; for general surveys on
evacuation planning and disaster management, we refer to [HT01, AG06].
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In [KYC05], a game-theoretic model for shelter location and allocation in flood
evacuation planning is presented, which amounts to a bi-level optimization program
that is solved using a genetic algorithm. Other papers include data uncertainty by
developing robust and stochastic optimization models. In [CTC07], a two-stage pro-
gram for flood evacuation is presented that includes the location of storehouses and the
allocation and distribution of resources. To solve this model, sample average approx-
imation is applied. A robust model for issuing evacuation instructions is presented in
[HHH11], which extends the previous work [HHPB10]. An ant colony algorithm is
applied to solve the model.

Robust optimization has been successfully applied also to other problems in disas-
ter management, e.g., in [GDT15, GG14, KWLY11]. For general overviews on robust
optimization, see [KY97, ABV09, BTGN09, GS15].

In this paper we present a model for planning an evacuation due to inland flooding,
that takes the decision when to issue the evacuation orders, and the assignment of
regions to shelters into account. In Section 2 we discuss this model in detail, before
presenting a formulation as an integer program (IP) and showing its NP-hardness in
Section 2.2. Acknowledging the data uncertainty present in our problem, we discuss a
robust model extension in Section 3. To solve this model, we consider a decomposition
of the problem in Section 4 and a Tabu search heuristic in Section 5. Our solution
algorithms are tested in computational experiments that are described in Section 6.
Section 7 concludes our paper and points to further areas of research.

2. Nominal Model Definition

2.1. Model Purpose and Description
To simplify the presentation, we first introduce our flood evacuation model with-

out data uncertainty, i.e., when weather forecasts are reliable. We then extend this
formulation to several scenarios in Section 3.

Consider the following evacuation problem, which we denote as the flood evac-
uation problem (FEP): in foresight of a river flooding, an evacuation plan has to be
determined for a certain landscape (e.g. a city) consisting of an assignment of the
evacuees to one of a number of available shelters and, additionally, an (individual)
evacuation order, i.e. a time at which the instruction to evacuate is issued. The area
of consideration is divided into certain regions (e.g. quarters) and each of the regions
itself is subdivided into several zones (e.g. blocks), see also Figure 1.

When allocating the evacuees to the shelters, not only the overall capacity of the
shelters has to be respected but due to organizational and/or infrastructural reasons
(e.g. registration upon arrival or restricted access roads), the number of people arriving
at a shelter at the same time is not arbitrary but encounters a shelter depending upper
bound. In addition, real world evacuation situations in which evacuation orders are
given but the actual decision when to leave is left to the evacuees show that most often
not all evacuees evacuate immediately: a part might leave right away but others may
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leave a certain time span later than receiving the instruction. Hence, a certain response
time can be observed.

Finally, in the situation of a river flooding, not all areas are exposed to the same
risk from a chronological view. Some areas are flooded earlier than others (those lying
upstream and those closer to the river.)

To incorporate all of these properties we propose the following model (in discrete
time-steps): The regions within the area to be evacuated and the zones within each
region as well as the set of available shelters are known. For each of the zones, there
is a latest notification time at which the evacuation order should be issued at latest.
The violation of these target times will be the criterion when determining an optimal
evacuation plan. Furthermore, the total number of evacuees in a zone (the demand)
is known but, moreover, we know the response profile of the zone: the total demand
is split into the number of people leaving directly after receiving the evacuation order,
the number leaving one time step after that, two time steps delayed, etc. This profile
is given independently for each zone. This allows to model the fact that usually an
evacuee living closer to the waterside will leave earlier than somebody living more
inland and we assume these values to be fixed (e.g. estimated due to evacuees’ behavior
in earlier flooding situations).

For each of the shelters two values are given: on the one hand the total capacity
giving the maximum number of people assigned to the same shelter, and on the other
hand also an accommodation rate giving the maximum number of people arriving at
the shelter per time step. Both capacity constraints are strict. Due to budgeting reasons,
not all available shelters can be used; instead, there is a bound given on the number of
shelters that may be opened.

Then, a feasible evacuation plan determines an assignment of the regions to the
shelters and an evacuation order time individually for each zone such that the overall
capacity of no shelter is exceeded and the number of evacuees arriving at a shelter at
the same time does not exceed the accommodation rate. In particular, all evacuees
from the zones within one region are assigned to the same shelter, but a shelter can
host evacuees from several regions (as long as both the overall capacity restriction and
– at each time – the bound on the number of arriving evacuees from all regions w.r.t.
the respective evacuation orders times and the response profile is fulfilled).

The plan is considered optimal if the number of evacuees being informed (and thus
evacuated) later than their respective target time is minimal.

An example for response profiles of two zones is given in Figures 2(a) and 2(b). If
the shelter accommodation rate is equal to 20, we cannot give an evacuation order for
both zones to start at the first timestep, as the resulting sum of profiles would exceed
the accommodation rate. If we postpone the departure of the second region by three
timesteps, both profiles add up as shown in Figure 2(c), which becomes feasible with
respect to the accommodation rate.

3



river˜ ˜ ˜ ˜

region i

zo
ne

k

shelters

Figure 1: The zonal model (FEP).
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(a) Response profile d1.

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10 12 13

d
2

time

(b) Response profile d2.
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(c) Combined response pro-
file, if d2 is delayed by three
time units.

Figure 2: Example for response profiles with feasible evacuation order when the accommodation rate is
20.

2.2. IP formulation
We now describe an integer programming model for (FEP), beginning with data

and variables in Section 2.2.1, followed by objectives and constraints in Section 2.2.2.

2.2.1. Data and Variables
The following sets are given in the (FEP):

• regions I = {1, . . . , n},
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• zones Ki = {1, . . . , ki} for each region i ∈ I,

• shelters S = {1, . . . ,m}.

For each zone k ∈ Ki we have:

• response profile [dik
0 , . . . , d

ik
tk ], where dik

t is the demand in zone k, in t periods
after the evacuation order is given.
Dik is the overall demand in zone k and Di denotes the overall demand of region i,
that is Dik B

∑
0≤τ≤tk dik

τ and Di B
∑

k∈Ki
Dik,

• desired notification time ∆ik until which the evacuation order should be issued.
The desired notification time should be chosen in a way that, depending on the
respective response profile, all evacuees have left the region before being endan-
gered.

For each shelter j ∈ S we have:

• capacity u j, giving the maximum number of evacuees in shelter j,

• accommodation rate b j, the maximum number of evacuees arriving at j per pe-
riod.

Additionally, we have:

• time horizon T ∈ N. We set T = {1, . . . ,T }.

• maximum number of shelters C, denoting the number of shelters from S that can
be used.

Finally, we assume when any evacuation order is given within the time horizon T ′ ⊆
T , there is sufficient time available within T for the evacuation to be completed (for
the simplicity of notation, we assume T ′ to be the same for all regions and zones).

We furthermore introduce the following variables:

• zi j ∈ {0, 1} =: B to model if the evacuees from region i ∈ I are assigned to
shelter j ∈ S

• xikt ∈ B to model if the evacuation order for zone k ∈ Ki in region i ∈ I is given
at time t ∈ T ′

• s j ∈ B to model if shelter j ∈ S is opened

• yikt j ∈ N is the number of evacuees leaving zone k ∈ Ki in region i ∈ I to
shelter j ∈ S at time t ∈ T .
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2.2.2. Integer Program
Using the above notation, we formulate the (FEP) as follows:

min
∑
i∈I

∑
k∈Ki

∑
τ∈T ′

τ≥∆ik

(τ − ∆ik) · xikt (1)

s.t.
∑
t∈T ′

xikt = 1 for all i ∈ I, k ∈ Ki (2)∑
j∈S

yikt j =
∑
τ≤t

dik
τ xik(t−τ) for all i ∈ I, k ∈ Ki, t ∈ T (3)∑

j∈S

zi j = 1 for all i ∈ I (4)∑
t∈T

yikt j ≤ zi jM for all i ∈ I, k ∈ Ki, j ∈ S (5)∑
i∈I

zi jDi ≤ u js j for all j ∈ S (6)∑
i∈I

∑
k∈Ki

yikt j ≤ b js j for all j ∈ S, t ∈ T (7)∑
j∈S

s j ≤ C (8)

xikt ∈ B for all i ∈ I, k ∈ Ki, t ∈ T ′ (9)
zi j ∈ B for all i ∈ I, j ∈ S (10)
s j ∈ B for all j ∈ S (11)
yikt j ∈ N for all i ∈ I, k ∈ Ki, t ∈ T , j ∈ S (12)

The constant parameter M in constraint (5) is chosen sufficiently large, e.g. M =
∑

i Di.
The objective (1) is to minimize the number of evacuees who are evacuated too

late with respect to the respective notification time ∆ik (weighted with the severity of
the delay). Note that if the evacuation order is issued before ∆ik, then the correspond-
ing term in the objective becomes zero; for delayed evacuation orders, the penalty
increases linearly.

A solution of the IP encodes a solution to the (FEP): for each zone, exactly one
evacuation order is issued (2) and the number of evacuees leaving a zone are com-
puted accordingly (3). All evacuees are assigned to one shelter (4) and, moreover, all
evacuees from one region are assigned to the same shelter (5). The maximum capacity
of each shelter is not exceeded (6) and, at no time, more than the allowed number of
evacuees arrive at a shelter (7). Finally, Constraint (8) ensures that at most C shelters
are being used.

2.3. Hardness
The (FEP) is NP-hard in the strong sense as can be seen e.g. by a reduction from

3-partition:
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3-partition

instance: A = {a1, . . . , a3m} where ai ∈ Z,
∑

i ai = mB and B
4 < ai <

B
2 for

all i.

question: Can A be partitioned into disjoint sets A1, . . . , Am such that∑
a∈A j

a = B for all j?

Given an instance of 3-partition, we construct an instance of (FEP) as follows:
there are 3m regions with only one zone each. The response profile of this zone in
region i is [ai], i.e. there is no delayed response but all evacuees leave right after re-
ceiving the order. The target time is ∆ = m − 1 for all zones, s.t. the best objective
value equals 0 if and only if there is a solution in which all zones receive the evacuation
order within the first m time steps. Additionally there is a single shelter with capacity
3m and accommodation rate B. The time-horizon is sufficiently large. Note that this
construction can be done in polynomial time.

Then, a solution with objective value equal to zero is equivalent to a partition of
the set A into triples of weight B and, hence, solving (FEP) allows answering the 3-
partition problem. As 3-partition is NP-hard in the strong sense (cf. [GJ79]), this
also holds for the (FEP).

2.4. Determining the Time Horizon
We now discuss how the parameter T can be found such that it is large enough to

allow a feasible solution to (FEP); at the same time, finding the smallest possible such
T improves the computational performance when solving (FEP).

To this end, let lik denote the length of the evacuation profile dik, i.e.,

lik = max
{
t ∈ T : dik

t > 0
}
−min

{
t ∈ T : dik

t > 0
}
.

For each shelter j′ ∈ S, we solve a subproblem that determines the maximum sum of
such lengths that can be feasibly assigned to j′. Let di = maxk∈Ki maxt∈T dik

t . For fixed
j′, the optimization problem we consider is given by

max
∑
i∈I

∑
k∈Ki

likzi j′ (13)

s.t.
∑
j∈S

zi j = 1 for all i ∈ I (14)∑
i∈I

Dizi j ≤ u js j for all j ∈ S (15)

dizi j ≤ b js j for all j ∈ S (16)∑
j∈S

s j ≤ C (17)

zi j ∈ B for all i ∈ I, j ∈ S (18)
s j ∈ B for all j ∈ S (19)
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As before, Constraints (14) ensure that every region is assigned to one shelter, while
Constraints (15) and (16) model that both shelter capacity and shelter accommodation
rate are respected. Constraint (17) bounds the number of shelters that can be opened
by C. The objective function (13) aims at finding the worst-case over all assignments
to j′. Solving (13–19) for all shelters, and taking the maximum of all optimal values,
then gives an upper bound on the value of T .

3. The Robust Problem

We now extend the nominal (FEP) model from Section 2.2 to include data uncer-
tainty. To this end, we assume the following setting:

As the severity of a flood cannot be forecasted with complete certainty, there are
different scenarios possible, which should all be taken into account during the planning
step. The set of possible scenarios is called the uncertainty set U. The flood severity
affects both the evacuation profile d and the desired order issue time ∆, such that we
set

U =
{
(d1,∆1), . . . , (dN ,∆N)

}
The assignment of regions to shelters is a question of long-term planning, and

should be done well in advance of the actual evacuation (e.g., shelters must be equipped
for the right number of evacuees, endangered regions must be informed which path to
use during an evacuation, etc.). Hence, the decision variables zi j and s j must be the
same for all scenarios. However, the actual time of notification for the evacuation or-
der can be adapted to the circumstances; hence, variables xikt and yikt j may be decided
upon once the scenario is known to the planner. We therefore adapt a two-stage setting,
and use sets of variables xξ and yξ for each scenario.

We now present an IP formulation using the resulting robust model, which we call
(RFEP). We set N := {1, . . . ,N}.

min ζ (20)

s.t. ζ ≥
∑
i∈I

∑
k∈Ki

∑
τ∈T ′

τ≥∆
ξ
ik

(τ − ∆
ξ
ik) · x

ξ
ikt for all ξ ∈ N (21)

∑
t∈T ′

xξikt = 1 for all i ∈ I, k ∈ Ki, ξ ∈ N (22)∑
j∈S

yξikt j =
∑
τ≤t

dikξ
τ xξik(t−τ) for all i ∈ I, k ∈ Ki, t ∈ T , ξ ∈ N (23)∑

j∈S

zi j = 1 for all i ∈ I (24)∑
t∈T

yξikt j ≤ Mzi j for all i ∈ I, k ∈ Ki, j ∈ S, ξ ∈ N (25)∑
i∈I

zi jDi ≤ u js j for all j ∈ S (26)
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∑
i∈I

∑
k

yξikt j ≤ b js j for all j ∈ S, t ∈ T , ξ ∈ N (27)∑
j∈S

s j ≤ C (28)

xξikt ∈ B for all i ∈ I, k ∈ Ki, t ∈ T , ξ ∈ N (29)
zi j ∈ B for all i ∈ I, j ∈ S (30)
s j ∈ B for all j ∈ S (31)

yξikt j ∈ N for all i ∈ I, k ∈ Ki, t ∈ T , j ∈ S, ξ ∈ N (32)

ζ ≥ 0 (33)

The new variable ζ is used to determine the worst-case over all scenarios with the
help of Constraints (21). The remaining Constraints (22–33) are a direct extension of
Constraints (2–12). Note that (RFEP) is also NP-hard, containing (FEP) as a special
case.

4. Problem Decomposition

To better access model (RFEP) using heuristic solution approaches, we decompose
the problem into two subproblems: Firstly, to find a feasible assignment of regions
to shelters; and secondly, to find a good set of evacuation order times for all zones
assigned to a fixed shelter and under a fixed scenario.

4.1. Finding a Feasible Assignment
To find a feasible assignment, we solve the following problem (similar to the prob-

lem described in Section 2.4). Let d′i := maxk∈Ki maxt∈T maxξ∈N dikξ
t denote the maxi-

mum number of evacuees starting at any zone at any time in any scenario. To help with
the subsequent determination of evacuation order times, we choose a subset of shelters
that maximize the total accommodation rate, using the following integer program:

max
∑
j∈S

b js j (34)

s.t.
∑
j∈S

zi j = 1 for all i ∈ I (35)∑
i∈I

Dizi j ≤ u js j for all j ∈ S (36)

d′i zi j ≤ b js j for all j ∈ S (37)∑
j∈S

s j ≤ C (38)

zi j ∈ B for all i ∈ I, j ∈ S (39)
s j ∈ B for all j ∈ S (40)
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4.2. Evaluating a Feasible Assignment
Let some feasible assignment of regions to shelters be given, i.e., values for z and

s that can be extended to a feasible solution for (RFEP).
For every shelter and every scenario, we check the best possible departure times

of all assigned regions. Let I( j) be the regions assigned to any shelter j ∈ S in this
solution, and set n( j) := |I( j)|. Finding evacuation order times that minimize the total
delay in scenario ξ ∈ U for shelter j (i.e., the process described in Figure 2), which
we call (EV) in the following, is then modeled via the following IP:

min
∑

i∈I( j)

∑
k∈Ki

∑
∆ik≤τ≤T

(τ − ∆
ξ
ik) · xikt (41)

s.t.
∑

t

xikt = 1 for all i ∈ I( j), k ∈ Ki (42)

yikt =
∑
τ≤t

dikξ
τ xik(t−τ) for all i ∈ I( j), k ∈ Ki, t ∈ T (43)∑

i∈I( j)

∑
k∈Ki

yikt ≤ b j for all t ∈ T (44)

xikt ∈ {0, 1} for all i ∈ I, k ∈ Ki, t ∈ T (45)
yikt ∈ N for all i ∈ I( j), k ∈ Ki, t ∈ T (46)

Problem (EV) of evaluating a feasible assignment is in itself already strongly NP-
hard, as the same proof from Section 2.3 can be applied.

5. Heuristic Solution Algorithms

We now introduce heuristic methods for (RFEP) based on the problem decompo-
sition presented in Section 4.

5.1. Heuristic Evaluation of an Assignment
The problem of finding a feasible assignment as described in Section 4.1 is com-

parably small and is computationally easy to handle; therefore, we focus here on the
subsequent evaluation problem (EV). As problem (EV) will need to be solved fre-
quently by an algorithm that examines different possible assignments of regions to
shelters, we consider a procedure that takes little computation time.

To this end, let us assume all zones included in an instance of (EV) are given in a
list determining their priority. We begin with the first element from the list and include
it in the current solution as early as possible, i.e., at time zero. We then proceed with
the subsequent zones from the list and always fix the evacuation order time as early as
possible, such that the accommodation rate of the shelter is never exceeded.

Additionally, we perform a local search over the current list by testing if exchang-
ing any two zones improves the resulting objective value until no further improvement
is reached.
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One natural possibility to determine such a starting list of zones is to sort them by
their desired notification time ∆. Additionally, we use randomly ordered lists to restart
the local search process once a local minimum has been found. The number of such
restarts is a tunable parameter, where more restarts may result in a better objective
value for (EV), but also longer computation times.

Note that there are instances of (EV), where no optimal solution has the structure
of solutions that we consider in this heuristic. It therefore does not even have an
approximation guarantee. As an example, consider an instance with T = 5 and b = 8.
There are three zones that need to be scheduled, with d1 = [7, 6, 4, 2], and d2 = d3 =

[1, 2, 3]. We further have ∆1 = 0 and ∆2 = ∆3 = 1. To obtain a solution with objective
value equal to zero, the first zone needs to depart at time zero. Now, if we schedule
any of the other zones as early as possible, the other zone can only depart at time two,
leading to a delay of one overall. If, however, the other two zones depart at time one,
there is no delay at all. This example shows that it may be impossible for the proposed
heuristic to find an optimal solution to the evaluation problem; however, the reduced
search space gives as speedup for the evaluation as a trade-off.

5.2. A Tabu Search Algorithm
We now combine the heuristic solution of (EV) with an algorithm to inspect dif-

ferent assignments of regions to shelters, including the choice which of the shelters to
open. We therefore operate on both levels of the problem decomposition described in
Section 4, where computation time spent on finding new assignments corresponds to
the exploration part of the algorithm, and computation time spent of finding a good
evaluation to a given assignment to the exploitation side.

Given a feasible assignment, we consider the following local search moves:

• Move all regions assigned to one shelter to a new shelter that was previously
closed.

• Take one region assigned to one shelter and another region assigned to another
shelter, and swap their assignments.

• Take a single region assigned to one shelter and assign it to another shelter (pos-
sibly opening a shelter in the process).

We keep a fixed-size, first-in-first-out Tabu list of previous assignments, that may not
be visited again. To help the exploration process, we also allow infeasible assignments,
and use three penalty parameters: one for exceeding the allowed number of shelters
C, one for exceeding the shelter capacity u j, and one for exceeding the accommoda-
tion rate b j. To this end, we adapt our heuristic procedure for (EV) such that if no
feasible set of evacuation order times exists, we choose one that minimizes the sum of
violations of the accommodation rate. The objective value used for the Tabu search is
then given as a combination of the actual problem objective value, and an additional
weighted sum of penalties.
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Whenever the current solution of our Tabu search is feasible, we reduce the penal-
ties by a small, random amount (such that infeasible solutions become more attractive);
if the current solution is infeasible, these penalties are increased (such that feasible so-
lutions become more attractive). Whenever a solution is encountered that is feasible
and better than the current best, it is immediately chosen; if this is not the case, the
best solution according to the modified objective that is not in the Tabu list is chosen
in each iteration. We randomly shuffle all feasible moves so that they are not always
encountered in the same order.

If there is no solution in the neighborhood that is not also in the Tabu list, we
reset the search. To this end, the best solution found so far is restored, the Tabu list is
emptied, and all penalties are set to their original range.

To guide the search from exploration to exploitation, we use different numbers
of reshuffles in our evaluation heuristic. In each iteration, this number is slightly in-
creased, such that the evaluation of the current neighborhood takes more time, but
potentially better solutions can be found.

6. Experiments

6.1. Setup and Environment
We generate two sets of instances P and Q, such that instances of type P allow a

large number of feasible assignments (requiring an algorithm with good exploration
properties), and instances of type Q allow only few feasible assignments (making ex-
ploitation properties more relevant).

Both types of instances were generated in the following way. Given the number
of regions n, the number of shelters m, the number of scenarios N, and the number
of shelters that can be opened C, we generate all other parameters. We uniformly
randomly choose u j ∈ {300, . . . , 800}, Di ∈ {100, . . . , 400}, and ki ∈ {1, . . . , 5} for all
i and j. We then distribute the number of people Di of region i randomly over the ki

zones within this region. For each scenario, we then further generate d by randomly
distributing the number of people within each zone over the first 20 timesteps, such that
the response profiles are different in each scenario, but the number of evacuees is the
same. We check if a feasible assignment exists; if this is not the case, all parameters are
generated again, until the instance becomes feasible. Finally, we choose ∆ randomly
from {0, . . . , 4} for each zone and scenario.

We show the parameter choice for n, m, and C in Table 1. We generated all in-
stances with two and with five scenarios. For each parameter set, we generated ten
instances (i.e., a total of 340 instances). In the following, we denote by Pn or Qn the
sets of instances with n regions.

Each instance is solved using its MIP formulation and by our Tabu search heuristic.
The MIP solver (Cplex) is provided with a feasible starting solution (otherwise, pre-
liminary experiments showed that in most larger instances, not even a feasible solution
could be found). To this end, we use the decomposed MIPs described in Section 4 and
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P Q
n m C m C
4 6 2 6 2
5 9 3 6 2
6 9 3 6 2
7 12 4 9 3
8 12 4 9 3
9 15 5 9 3

10 15 5 12 4
11 18 6 12 4
12 18 6 12 4

Table 1: Instance parameters.

allow at most half of the total timelimit to be devoted to solving the evaluation prob-
lem. For better comparability, the MIPEmphasis Cplex parameter is chosen so that
lower bounds are neglected and more computation time is spent on finding feasible so-
lutions. For our Tabu search, only the initial assignment is found using a MIP solver;
all evaluations are then carried out using our heuristic algorithm. Each algorithm was
given a timelimit of 10 minutes.

Additionally, we used the MIP solver with an emphasis on lower bounds and a
computation time of 60 minutes for all instances to find strong lower bounds. Because
some lower bounds were equal to zero, we normalized all objective values with an
offset such that the lower bound is always equal to 100.

All experiments were conducted on a computer with a 16-core Intel Xeon E5-2670
processor, running at 2.60 GHz with 20MB cache, using one core per algorithm. To
solve MIPs, CPLEX v.12.6 ([IBM13]) was used. The Tabu search was run five times
for every instance to account for its randomness.

6.2. Results
We present the average gaps over the ten instances of each size in Table 2 for

the P instances, and in Table 3 for the Q instances. The gap is computed as (UB −
LB)/UB, where UB denotes the respective objective value, and LB the lower bound.
In column “IP”, we show the gap when using Cplex, and show the gap for our Tabu
search algorithm in columns “Tab-Min” (the average gap of the best results over the
five runs per instance), “Tab-Av” (the average gap over all runs), and “Tab-Max” (the
average gap of the worst result of the five runs). All values are in percent.

For all P instances, except for P4 with N = 5, even Tab-Max considerably outper-
forms the IP gap. This changes for the Q instances (Table 3), where the Tabu search
still outperforms IP in most cases, but not as distinctly. Even for small instances,
optimality cannot be proved in most cases, which may largely be due to weak lower
bounds.
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N = 2 N = 5
Inst IP Tab-Min Tab-Av Tab-Max IP Tab-Min Tab-Av Tab-Max

P4 24.68 19.83 19.83 19.83 10.91 11.97 11.99 12.04
P5 20.76 15.46 15.53 15.81 30.15 22.23 22.42 22.73
P6 25.49 21.42 21.59 21.90 33.63 25.54 26.59 27.92
P7 25.95 20.33 20.61 20.96 32.42 26.88 27.15 27.87
P8 36.97 30.56 31.15 31.60 45.66 33.68 35.45 37.13
P9 45.38 37.06 38.60 40.99 30.66 22.05 22.40 22.99

P10 35.36 29.64 30.98 32.50 37.04 26.95 28.57 30.73
P11 30.30 21.29 22.88 23.99 40.24 30.79 31.96 33.41
P12 35.53 19.54 21.32 24.60 40.55 32.38 34.15 36.41

Table 2: Average gap for P instances.

N = 2 N = 5
Inst IP Tab-Min Tab-Av Tab-Max IP Tab-Min Tab-Av Tab-Max
Q4 24.68 19.83 19.83 19.83 10.91 11.97 11.99 12.04
Q5 23.16 19.55 20.11 21.00 29.45 31.16 31.23 31.38
Q6 37.45 36.48 36.64 37.02 25.38 24.23 24.75 25.02
Q7 38.96 32.91 33.77 34.87 41.58 40.08 40.52 40.72
Q8 40.72 36.77 37.46 37.94 47.86 43.70 46.09 46.90
Q9 37.58 35.67 36.34 37.07 52.62 49.96 50.73 51.48

Q10 41.52 40.46 41.10 41.76 41.20 35.80 37.06 38.34
Q11 48.38 45.17 46.14 46.79 43.24 42.73 43.57 44.36
Q12 52.35 51.15 52.39 53.05 50.66 49.65 50.83 52.21

Table 3: Average gap for Q instances.

14



To understand these results in more depth, we show the average difference in ob-
jective gap between the starting solution and the final solution of each algorithm in
Tables 4 and 5.

N = 2 N = 5
Inst IP Tab IP Tab

P4 2.99 10.03 2.31 4.86
P5 3.97 10.41 1.30 11.02
P6 1.97 8.63 0.60 9.52
P7 6.66 14.48 0.19 9.31
P8 1.45 11.06 0.00 12.55
P9 0.00 9.21 0.38 11.62

P10 0.00 8.29 0.33 11.11
P11 1.67 11.40 0.00 10.38
P12 1.12 18.71 0.00 10.08

Table 4: Average difference of gap between
starting solution and final solution for P in-
stances.

N = 2 N = 5
Inst IP Tab IP Tab
Q4 2.99 10.03 2.31 4.86
Q5 0.16 6.19 0.48 0.23
Q6 0.00 3.30 0.00 3.36
Q7 0.34 7.03 0.00 3.06
Q8 0.05 5.62 0.00 3.72
Q9 0.00 3.76 0.00 2.66

Q10 1.30 3.76 0.00 6.23
Q11 0.00 3.94 0.00 3.21
Q12 0.00 2.92 0.00 2.43

Table 5: Average difference of gap between
starting solution and final solution for Q in-
stances.

We see that both the MIP solver and the Tabu search are less able to improve their
respective starting solutions for instances of type Q than for instances of type P. Also,
the Tabu search is able to improve upon its starting solution considerably more than
the MIP solver; in fact, the MIP solver does not improve the starting solution at all in
the vast majority of cases. This means that the gaps for IP shown in Table 3 for N = 5
are due to a good exploitation of the starting solution, without any exploration at all.

6.3. Kulmbach Instance
We now apply our model and algorithms to realistic data based on the Kulmbach

district in north Bavaria, Germany. A map of the region can be seen in Figure 3, with
keys to placenames in Tables 6 and 7. Within the Kulmbach district, the Red and
White Main rivers flow together to become the Main river, and within the recent past,
the region was troubled by river floodings.

We assume that some of the people based in the subdistricts colored in red (Latin
letters) need to leave their homes and make way for a shelter based in one of the other
subdistricts (Greek letters). The numbers of evacuees and the numbers of zones within
each region are shown in Table 6; the shelter capacity (which is based on the number
of inhabitants within the region) and their accommodation rate are shown in Table 7.
Of the eight shelters, six may be used.

1Based on graphic by Hagar66 under CC-BY 2.0 license, Wikimedia commons.

15



Kronach
district

Lichtenfels
district

Hof
district

Bayreuth
district

Bayreuth
city

Figure 3: Kulmbach district1

Letter Name Population Evacuees Zones
a Mainleus 6,449 800 3
b Kulmbach (city) 25,985 1,000 4
c Ködnitz 1,583 250 2
d Neuenmarkt 3,040 400 1
e Trebgast 1,603 350 1
f Neudrossenfeld 3,807 700 3
g Himmelkron 3,490 600 2

Table 6: Regions of Kulmbach district
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Letter Name Capacity Acc. rate
α Kasendorf 800 50
β Thurnau 1,400 60
γ Rugendorf 350 40
δ Stadtsteinach 1,100 60
ε Untersteinach 600 80
ζ Ludwigschorgast 350 40
η Wirsberg 600 50
θ Markschorgast 450 30

Table 7: Sheltering regions of Kulmbach district

We generate three scenarios, which correspond to different levels of evacuation
urgency: In the first scenario, profiles d are chosen such that evacuees leave early and
∆ is small; in the second scenario, evacuees leave late and ∆ is larger; the third scenario
is between those two.

Both the IP model with Cplex and our Tabu search algorithm find the same solution
within one minute of computation time, which can be shown to be optimal by running
a subsequent IP with increased timelimit (as in the previous experiments).

The objective value of this solution is 49, which is reached in the first scenario
(the objective values for the other scenarios are 11 and 14, respectively). Region a is
assigned to shelter α, regions c and f are assigned to shelter β, region b to shelter δ,
region g to shelter ε, region e to shelter ζ, and region d to shelter η.

7. Conclusion and Extensions

In this paper we considered the problem of coordinating the evacuation of several
regions due to river flooding. We developed a model that includes for the first time
several unique features of such an evacuation: The timing of evacuation orders with
departure profiles is taken into account, as well as the choosing a set of shelters such
that all evacuees can be accommodated without delays or traffic jams. By including
several scenarios for different flooding outcomes, we take forecasting uncertainty into
account via a robust optimization model.

This model decomposes into two subproblems: Assigning regions to shelters, and
determining departure times for each zone. We developed a Tabu search heuristic that
aims at conciliating exploration and exploitation in the interplay between these two
problem levels. Our computation results show that we considerably outperform a MIP
solver in terms of exploration, even if it is provided with a strong starting solution.

We now discuss possible extensions.
The first extension is to further include regional dependencies; as an example, it

might not be possible to assign a region to any shelter. This can be easily facilitated by
forbidding such assignments in the IP formulation. Furthermore, it is possible to in-
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clude different driving times from regions to shelters: To this end, we can equivalently
assume values for ∆ that depend on the assignment variables z, which in turn can be
linearized in the objective function, as x is a binary variable.

Additionally to the target evacuation time ∆ for each zone k in any region i there
might also be a clearance time ρik specifying the point in time when evacuees from
zone k in region i can return to their homes safely. Then, an evacuation plan must
include not only a time for the zones to evacuate but also a time at which the evacuees
from a zone who are already at a shelter receive the clear order to return home. As
evacuees usually want to be back home as soon as possible we assume no delay for this
but propose an immediate response., i.e. all Dik evacuees actually leave at the issued
time. One essential change by this additional option is that the shelters can be utilized
more efficiently: returning evacuees can vacate spaces for new arrivals, i.e. the total
capacity has to be respected individually at all times.

We model this in the IP-formulation of Section 2.2 by including the following sets
of constraints:∑

t

rikt = 1 for all i ∈ I, k ∈ Ki (47)∑
τ<ρik

rikτ = 0 for all i ∈ I, k ∈ Ki (48)∑
τ≤t−tk

xikτ ≥
∑
τ≤tk

rikτ = 0 for all j ∈ S, t ∈ T (49)

rikt ∈ B for all i ∈ I, k ∈ Ki, t ∈ T . (50)

The capacity constraints (6) are replaced by∑
τ≤t

∑
i

∑
k

(
yikτ j − rikτdik

)
≤ u j for all j ∈ S, t ∈ T . (6’)

The binary variable rikt indicates the clearance order:

rikt =

1, if the evacuees from zone k in region i receive clearance order at time t,
0, else.

Each zone k receives exactly one clear order (47). The times of the orders is valid
as it is, on the one hand, determined not before the given earliest clearance time ρik

(48) and, on the other, not before all evacuees from the zone have actually arrived
at the shelter (49). (Note, that we view ρik as a hard constraint. In contrast, target
time ∆ik is a soft bound and can be violated in turn for an increase in the objective
value. Hence, without constraints (48) an evacuation plan could in fact schedule an
clearance order earlier than the actual evacuation order. We do not want to include
the option that some evacuees are in fact not informed at all.) Finally, the capacity
constraints are replaced by the requirement (6’) that the capacity is respected at all
times by the number of people who are at the shelter in this very moment, i.e. the
difference between the evacuees who have arrived and those having left.
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