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Abstract

Tumour vasculature is known to be ine�cient and abnormal due to poorly regu-

lated angiogenesis during tumour growth. This leads to irregular patterns of blood

�ow which are spatially and temporally heterogeneous. Many investigations into

the characteristics of tumours are invasive and performed on animal models. How-

ever, continuous technological and theoretical advancement is leading to the use

of non-invasive imaging techniques, providing in vivo information on humans.

Here, data recorded using laser Doppler �owmetry (LDF) in malignant melanoma

and control lesions are analysed using techniques designed for application to non-

stationary, time-varying data. Many studies utilising LDF have previously revealed

increased blood �ow in malignant lesions, but very little attention has been paid

to the dynamics of this blood �ow, or how it changes over time. As it has been

demonstrated previously that the oscillations observed within blood �ow data are

physiologically signi�cant, failure to extract these characteristics loses informa-

tion about the underlying dynamical system from which the blood �ow data were

recorded. Signi�cant di�erences in blood �ow dynamics are revealed and used in

the development of a diagnostic test for melanoma.

In addition to the characterization of the blood �ow dynamics in melanoma,

possible causes for the observed changes are investigated and related to two widely

observed characteristics of cancer, intermittent hypoxia and altered cellular energy

metabolism. The former is explored through the analysis of blood �ow and oxy-

genation data recorded during dry static apnoea, whilst the latter is modelled

using coupled phase oscillators.
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1. Introduction

The human body is an incredibly complex biological machine, which, unlike many

man-made machines, functions continuously for the duration of its lifetime. The

number of simultaneously occurring chemical, physical and biological processes

within the body at any one time is almost impossible to comprehend, and yet

these continue without any conscious input. This facilitates not only basic essen-

tial functions, such as breathing, eating and sleeping, but also intelligence, memory

and countless others. These processes occur on all spatial scales within the body,

from the creation of new individual molecules in protein synthesis to the collective

behaviour of whole organs, such as the beating of the heart. Taking the heart

as an example, it is clear that the heart beat is an oscillatory process, without

which oxygen and other essential nutrients could not be delivered to tissues, or

waste products collected. Despite the importance of this oscillation, the existence

of such time-varying behaviour is not always appreciated at smaller scales. In fact,

whilst they may not initially appear as obvious as the heart beat or breathing, os-

cillations have been observed throughout the body, in cellular energy metabolism

[1], blood vessels [2], neurons [3], intracellular calcium [4], plasma membrane po-

tential [5], adenosine triphosphate (ATP) concentrations [6] and mitosis [7], to

name a few. It is therefore very important to understand the nature of these os-

cillations, and crucially, how they are a�ected by their environment. Due to the

complexity of the body, many studies focus on isolated subsystems, removed from

the body, to extract information about biological functions. However, whilst this

has resulted in huge leaps forward in terms of our knowledge of the underlying
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mechanisms of many processes, it cannot be known how much information is lost,

or even how the behaviour is changed, by removing these subsystems from their

natural environment. Considering that they are no longer functioning as part of a

whole, the natural behaviour of these subsystems, and their interactions, cannot

be observed. An example of this can again be seen in the heart. Outside the body,

the pacemaker cells of the heart will contract around 100 times per minute, much

higher than the average resting heart rate. However, once the heart is within the

body it is in�uenced by the autonomic nervous system, which lowers this rate to

around 60 beats per minute. Thus, it is clear that only observing the activity of

individual heart cells does not provide a realistic picture of the behaviour of the

heart in its natural environment within the body.

The continuous development of noninvasive imaging techniques is enabling the

collection of increasing amounts of data in vivo, providing functional information

about the human body in its natural state. Using the method of laser Doppler

�owmetry, at least six distinct oscillations have been observed in microvascular

blood �ow, and have been attributed to various physiological functions, from the

systemic cardiac and respiratory functions down to local regulation of blood �ow at

lower frequencies [2]. Knowledge of these oscillations and their physiological origins

allows pathological states to be investigated in terms of abnormalities in blood �ow

dynamics, and this approach has been used in many studies of various pathologies,

including type 2 diabetes [8], obesity [9] and hypertension [10]. The noninvasive

nature of these studies means that spontaneous oscillations in blood �ow can

be observed in health and disease, and attributed to alterations in physiological

processes depending on the observed dynamics.

One disease in which blood �ow is expected to be altered is cancer, due to the

recruitment of new blood vessels by tumours in a process known as angiogenesis.

Usually, cancers are di�cult to observe within their natural environment, due to

their location within the body, or the requirement for their swift removal. However,

as previously demonstrated [11, 12], skin cancer provides an opportunity to observe
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and characterise noninvasively the blood �ow dynamics in malignant lesions using

laser Doppler �owmetry (LDF).

1.1 Outline of thesis

The main goal of this thesis is to utilise oscillations in microvascular blood �ow to

investigate skin malignant melanoma, in order to test the hypothesis that blood

�ow dynamics are altered in malignant melanoma when compared with atypical

lesions and normal skin. The data and analysis methods are also used to assess

whether local or systemic regulatory processes are altered in this state, and to

extract as much information as possible about the regulation of tumour vasculature

from these observations for use in the development of a diagnostic test. These

oscillations are also investigated in terms of their relationship to tissue hypoxia

and cellular energy metabolism.

Chapter 2 provides an introduction to the physiology of the cardiovascular

system and oscillations in microvascular �ow in the context of skin malignant

melanoma. Chapter 3 describes the relevant measurement techniques used to

acquire the data presented in this thesis.

Chapter 4 introduces dynamical systems and highlights the importance of the

consideration of living systems as nonautonomous. This chapter also presents the

inverse approach techniques used to extract the results presented in this thesis,

and provides a brief review of the inverse approach as applied to the newly-de�ned

class of chronotaxic systems.

Chapter 5 investigates the blood �ow dynamics in skin malignant melanoma,

as compared to controls. The results provide insights into the pathophysiology

of tumour vasculature and are also used in the development of a diagnostic test.

Analysis of data previously recorded during apnoea in free divers is presented in

chapter 6, which provides an opportunity to measure physiological parameters

during oxygen deprivation. The aim of this chapter is to investigate blood �ow

and oxygenation dynamics during hypoxia, which has been implicated in cancer.
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Finally, chapter 7 seeks to investigate the altered cellular energy metabolism

observed in the majority of cancer cells using a model of coupled chronotaxic phase

oscillators.
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2. Physiology

Of all observable processes occurring within the body, very few may be consid-

ered as stationary. The vast majority vary with time, continuously reacting with

each other and their environment. These variations form the very basis of life.

Whilst studying the dynamics of whole systems, for example the cardiovascular

and respiratory systems, we must also consider the single cell and its organelles,

and everything in between. Only when all scales, and thus all oscillators, are

considered, may we truly begin to understand life.

Practical di�culties often make the observation of biological oscillations in vivo

impossible, therefore many studies have focussed on the separation of di�erent

parts of biological dynamical systems which are readily accessible. Problems arise

here with the assumption that biological systems can be characterized by the sum

of their parts, i.e. that they are linear. In fact, the opposite is almost always true.

Living systems on all scales are subject to continuous perturbations, which may

be deterministic or stochastic and may arise from adjacent dynamical systems or

random �uctuations. Isolation of a single component of this large scale system

results in the loss of very important information about its behaviour within the

whole, which is likely to be fundamentally di�erent, limiting the viability and

applicability of any resultant conclusions. To retain all available information, we

must consider living systems in their natural state as far as is possible. It is also

very important to observe their spontaneous dynamics, rather than introducing

unnatural perturbations to the system.

However, before beginning to study the interactions between physiological pro-
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cesses, it is important to understand their basic physiology and the techniques

which are used to observe them.

2.1 The circulatory system

The circulatory system comprises the cardiovascular system and the lymphatic

system, but here the focus will be on the cardiovascular system.

The origins of our current understanding of the cardiovascular system began in

1628, when William Harvey showed that arteries and veins are functionally con-

nected, and that blood circulates [13]. This was in stark contrast to the previous

model presented by the Ancient Greeks, in particular Galen, who viewed the ar-

teries and veins as two distinct networks, and concluded that the blood was food

that had been transformed in the liver for the nourishment of the body [14].

There are around 100,000 miles of blood vessels in the human body [15]. With-

out this transport and feedback system, it would be impossible for the body to

function. Problems arise within the vasculature in many disorders. Thus, it is

of vital importance to understand the mechanisms and processes involved in the

regulation and growth of the vasculature.

2.1.1 The cardiovascular system

We now know that the cardiovascular system is a connected system which includes

the heart, blood, blood vessels and the lungs, and its primary function is to deliver

nutrients continually and e�ciently, via blood circulation, to the whole body and

to remove metabolic waste from the body e�ectively.

2.1.2 The heart

The heart pumps blood around the body, beating around 2.5 billion times in an

average lifetime [16]. The �ve litres of blood found in the average human body

is continuously circulated, with a whole cycle taking around one minute. The
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heart is made up of three layers: the pericardium, a thin outer protective sack,

the myocardium, the specialized cells that make up the thick muscular wall of the

heart, and endocardium, which is the thin inner lining of the heart. The heart

has four chambers: two atria and two ventricles. The atria, at the top of the

heart, are smaller than the ventricles, which are located in the lower heart. The

stronger left ventricle pumps oxygenated blood to the whole body. Deoxygenated

blood returns to the heart into the right atrium, and is then pumped into the right

ventricle, through the tricuspid valve. From the right ventricle, blood is pumped

through the pulmonary valve, through the pulmonary artery to the lungs. The

oxygenated blood returns from the lungs through the pulmonary vein, into the left

atrium. From here, the blood is pumped through the mitral valve into the left

ventricle, where it is once again ready to be pumped to the tissues of the body, via

the aortic valve and the aorta. The heart contains valves to prevent the back�ow

of blood. The heart also contains a muscular wall which divides the left and right

sides, called the septum. This prevents mixing of oxygenated and deoxygenated

blood. The heart itself, as a particularly demanding muscle, also requires its own

oxygen supply, obtained from coronary arteries, which branch from the aorta.

The heart generates regular electrical pulses in order to coordinate pumping

by instructing the cells to contract. The concept of the heart as an electrical

conducting system was �rst appreciated by Sunao Tawara in his 1906 monograph

[17, 18]. Soon after, Keith and Flack discovered the sinoatrial (SA) node [19],

providing an answer to the fundamental question: why does the heart beat? The

SA node, the primary pacemaker of the heart, is located in the right atrium, and

generates a normal sinus rhythm by generating impulses which then spread through

the cells of the heart. This gives rise to the most familiar biological oscillation,

the heart beat.
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2.2 Vascular structure and function

Blood �ow, the movement of the blood through the cardiovascular system, is an

essential process for survival. If blood �ow stops, the brain can only survive

without damage for up to three minutes at physiological temperatures, due to the

lack of oxygen delivery resulting in the irreversible death of neurons [20]. Other

tissues will also die following prolonged periods of inadequate perfusion, known as

ischemia [21].

The blood is the medium by which nutrients are delivered to all cells within the

body, and their waste collected for removal. Blood contains many di�erent cells,

the most abundant being red blood cells, or erythrocytes, the carriers of oxygen.

White blood cells, or leukocytes, are also important for the immune system.

Blood �ow is incredibly complex. Macrovascular �ow dynamics, arising from

large and small arteries, depends on many factors, including the velocity of the

blood, the geometric properties of the vessel and the in�uence of the blood on the

vessel wall. Whilst complicated, these have been used to develop models in which

the main observed characteristics of arterial �ow can be accurately recovered [22].

These models are based on the assumption that the vessel walls are impermeable.

Thus, it immediately becomes clear why di�erent approaches must be used in the

case of the microcirculation, containing capillaries which are necessarily permeable,

allowing the passive di�usion of dissolved gases, ions and solutes across the vessel

wall [23]. This permeability arises from the arrangement of endothelial cells, and

varies with location and function [23]. Consideration of the intrinsic behaviour and

function of the blood vessels, and the role played by the endothelium is therefore

critical for the understanding of the regulation of blood �ow. To assess the rela-

tionship between macro- and microvascular blood �ow dynamics Urban£i£-Rovan

et al. performed measurements of blood pressure and basal skin blood �ow in dia-

betic patients and controls [24]. They found that except from a signi�cant positive

correlation between systolic pressure and the endothelial frequency interval in dia-
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betic patients on the right side of the body, macro- and microvascular changes do

not progress simultaneously. This highlights the requirement for models of macro-

and microvascular blood �ow to be speci�c to each system.

Arteries carry oxygenated blood from the heart to the rest of the body. Two

exceptions to this are the pulmonary artery and umbilical arteries which carry

deoxygenated blood. Arteries are under the most pressure in the vascular system,

as the blood they are transporting is required at large distances from the heart.

They withstand the pressure generated by the heart with their strong muscular

walls. The largest artery is the aorta, directly connected to the left ventricle of the

heart. This then branches into smaller arteries, arterioles, and �nally capillaries.

Arterial walls are made up of many layers. The outer layer, the tunica adven-

titia (or externa), is a strong outer covering composed of connective tissue as well

as collagen and elastic �bres. These �bres allow the arteries to stretch to prevent

overexpansion due to the pressure of the blood �ow. The middle layer, the tunica

media, is composed of smooth muscle and elastic �bres. The inner layer, the tunica

intima, is composed of an elastic membrane lining and smooth endothelium that

is covered by elastic tissues.

Veins transport deoxygenated blood back to the heart and are under less pres-

sure than arteries. Consequently, the muscular middle layer of a vein is thinner

than in an artery. Because of the lower pressure, and the required movement of

blood against gravity, veins contain valves to prevent the back �ow of blood. The

largest veins are the vena cava, the superior vena cava and inferior vena cava,

which transport blood directly to the right atrium of the heart. Smaller veins are

called venules, and are also connected to the capillaries.

2.2.1 The microvasculature

The groundbreaking work of Harvey, whilst proving that arteries and veins were

connected, did not demonstrate how they were connected. In fact, the capillaries

which serve this purpose were observed by Leonardo da Vinci, but he did not link
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Figure 2.1: Capillary structure. Modi�ed from [28].

them to their role in linking arterioles and venules [25]. The mystery was solved in

1661 by Marcello Malpighi, when he observed blood coursing through a network

of small tubes on the lung surface and in the distended urinary bladder of the

frog, and speculated that these capillaries were the connection between arteries

and veins [26, 25]. Independently, Van Leeuwenhoek also observed red blood cells

and their movement through the capillaries in 1688 [27]. These �ndings constitute

the earliest observations of blood �ow in the microvessels.

Capillaries are the smallest vessels in the body, usually measuring around 5-10

µm. They connect arterioles and venules to complete the blood transport network.

The �ow of blood from an arteriole, through a capillary bed and into a venule

is known as microcirculation. The capillary bed is a collection of capillaries which

form an interweaving network, and contains two types of vessels; vascular shunts

and true capillaries. True capillaries are where exchange of substances occurs.

Depending on vasomotor nerves and chemical conditions, the blood can bypass

the capillary bed through the vascular shunt, also called a metarteriole, to divert

blood to another area of the body. At their smallest, capillaries are made up of

only a layer of endothelial cells, to allow fast di�usion of water, oxygen and carbon

dioxide through their walls, amongst other substances.
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2.2.2 The endothelium

Initially considered only as tunnels, in the 1800s Reckinghausen observed that

blood vessels are actually canals lined with cells [29]. These cells were identi�ed

and termed endothelial cells by Wilhelm His in 1865, who di�erentiated the inner

lining of body cavities from epithelium [30, 31], yet the detailed study of the

endothelium only began in the 1950s with Howard Florey describing their structure

but not realising the magnitude of their importance [32].

The realization by Ja�e, Nachman and members of their laboratory that en-

dothelial cells were the key to understanding how the vascular wall worked in

health and disease led to them culturing human umbilical endothelial cells for the

�rst time in 1973 [33] leading to an explosion in the �eld of vascular biology [34].

Vascular endothelial cells form a continuous monolayer in all blood vessels.

Once viewed as an inert barrier between blood and tissues, it is now known that

this vital organ has many essential functions, including maintaining the �uidity of

the blood [35], regulation of the �ow of nutrients and biologically active molecules

[36], and signalling [37]. The endothelium varies between sites, with almost every

organ having its own adaptation of endothelial structure depending on functional

requirements [38]. The endothelium also plays an essential role in angiogenesis,

the development of new blood vessels from existing vasculature, by dividing and

migrating in response to growth factors such as vascular endothelial growth factor

(VEGF) [39] (see below).

However, the �rst crucial role of the vascular endothelium to be discovered was

its e�ect on vascular tone, and thus blood �ow regulation, through the release

of vasoactive substances [36]. This began in 1976, when Moncada and colleagues

discovered that blood vessels secrete a vasodilatory substance, prostacyclin [40].

In 1980, Furchgott and Zawadzki [41] discovered that the vasodilator acetylcholine

(ACh), a very potent vasodilator in vivo, did not always induce the same response

in vitro. They discovered that the reason was that endothelial cells had been acci-

dentally removed during preparation, and deduced that their presence is essential
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for vasodilation to occur using ACh. They also demonstrated that ACh stimulates

the release of a substance termed endothelium-derived relaxing factor (EDRF).

EDRF was later identi�ed as nitric oxide (NO) by Ignarro et al. [42] and indepen-

dently by Palmer et al. [43], both in 1987. A third vasodilator was discovered when

vasodilation was still observed after blocking NO and prostacyclin production, and

named endothelium-derived hyperpolarizing factor (EDHF) [44], and shown to be

distinct from EDRF by Chen et al. [45]. In 1989, another endothelial secretion

was discovered, this time a vasoconstrictor named endothelin [46].

Substances secreted by endothelial cells induce responses within the vascular

wall, resulting in vessel constriction or dilation to modulate the blood �ow as

required. For example, NO acts to relax the smooth muscle cells by activating

guanylyl cyclase, which then raises the cyclic guanosine monophosphate (cGMP)

concentration [47]. This increases the activity of cGMP-dependent protein kinase

(PKG) which in turn activates myosin light-chain phosphatase (MLCP)[47]. This

then induces relaxation by reducing the concentration of phosphorylated myosin

regulatory light-chain subunits in vascular smooth muscle [47]. Via sensing of the

shear stress induced by blood �ow by the anionic polyelectrolyte heparan sulphate

proteoglycan (HS-PG), the endothelial cells act on the smooth muscle cells to in-

duce a �ow-dependent vasodilation in response to increased blood �ow, whilst a

decrease in blood �ow will induce vasoconstriction [48]. This �ow-dependent reg-

ulation by the endothelium was �rst demonstrated in dogs in vivo by Pohl and

colleagues in 1986 [49]. Endothelial dysfunction, mainly characterized through

impaired sensing by a reduction in the availability of vasodilators and an increase

in endothelium-derived contracting factors, has now been associated with many

pathologies, including atherosclerosis [50], other chronic in�ammatory diseases

such as psoriasis, rheumatoid arthritis and in�ammatory bowel diseases [51], hy-

pertension [52], diabetes [53], impaired renal function [54], erectile dysfunction

[55], Alzheimer's disease [56], preeclampsia [57] and obesity [58]. Thus, it is clear

that a focus on vascular regulation is very important in the understanding of the
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development of many diseases, especially at the level of the microvasculature.

2.2.3 Vasomotion and �owmotion

Vasomotion is the rhythmical change in tone exhibited within arteries, predomi-

nantly within the microcirculation [59], but also demonstrated in large muscular

arteries [60, 61]. The mechanisms and physiological importance for vasomotion

are still not fully understood, thus it remains an intense area of research.

Vasomotion was observed for the �rst time by Jones in 1852 in the circulation

of a bat wing [62], and has been widely observed in both humans and animals ever

since, both in vivo and in vitro. Both the in vivo and in vitro approaches provide

their own bene�ts. Studying vasomotion in vivo allows the behaviour of the vessel

walls to be studied in their natural environment, as a�ected by systemic and

local regulatory processes. In contrast, in vitro studies have provided information

about the intrinsic behaviour of the vessels themselves, and allows experimental

conditions to be �nely tuned in order to pinpoint directly the cause of di�erent

phenomena, whilst in vivo their origins may not be so clear due to di�culties

in measurement. In vivo, it is a challenge to observe vasomotion directly, but it

has been demonstrated to be possible using intravital microscopy [63], optical-

resolution photoacoustic microscopy [64], and optical coherence tomography [65].

In vitro, vasomotion with a frequency ranging from 0.01 to 0.3 Hz is seen in

isolated arteries from various species and in blood vessels from di�erent areas of

the body [66, 67]. It has been observed that the frequencies of vasomotion observed

in vitro correspond well with those observed in the myogenic frequency interval

(around 0.1 Hz) in vivo [67, 68], providing evidence for the automated nature of

oscillations observed at myogenic frequencies, and the local in vivo regulation that

the neurogenic and endothelial contributions provide (see below).

The �rst studies of vasomotion in di�erent conditions in vivo used intravital

microscopy, and demonstrated that vasomotion frequency and amplitude are af-

fected by pH, temperature and partial pressure of oxygen changes [69], and arterial
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pressure [70]. Another way to observe vasomotion indirectly in vivo is by measur-

ing the e�ects of these variations in the vascular wall on the blood �owing through

them, which will be oscillatory as a result. This is known as �owmotion [71], and

has since been widely utilised via the application of laser Doppler �owmetry to

study vasomotion noninvasively.

For vasomotion to occur, i.e. for macroscopic oscillations in a blood vessel to be

observed, the oscillations in individual smooth muscle cells must be synchronised

[72]. The origins of these individual cellular oscillations are debated, and could

arise from membrane potential oscillations, cytosolic oscillations (i.e. calcium os-

cillations) or metabolic oscillations [72]. On a completely automated level, in

response to increased blood pressure, a dilation of vessels will act so as to decrease

the pressure [73].

Vasomotion occurs at a wide range of frequencies, which have been shown to

vary depending on vessel size by Colantuoni et al. [74], with the frequency of va-

somotion higher in small arteries than larger vessels in hamsters. This conclusion

was based on the frequency with the largest amplitude in the Fourier transform

of the vessel diameter time series, and thus does not take into account variations

in this frequency, which were clearly present. This study also demonstrated that

vasomotion was strongly suppressed during anaesthesia [74]. This e�ect was later

con�rmed in humans in vivo by Landsverk et al. who found signi�cant reductions

in oscillatory activity associated with myogenic, sympathetic and endothelial re-

lated vasomotion [75] during general anaesthesia, as measured by laser Doppler

�owmetry (see below).

Most available in vivo data on the prevalence of vasomotion has been obtained

using LDF [67], but care must be taken in the interpretation of these results, due

to the single point nature of LDF and the fact that it is not possible to visu-

alise the underlying blood vessels. As a result, it is di�cult to know whether the

measurement area contains only capillaries, or a mixture of vessel types. Another

issue is the systemic in�uences on LDF, and care must be taken to avoid record-
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ing locations at which the cardiac component is very strong and will overpower

more subtle, locally generated oscillations. New techniques which allow imaging

of blood �ow, such as laser Doppler perfusion imaging (LDPI) and laser speckle

contrast imaging (LSCI) may provide solutions to these issues, but LDF has been

shown to be su�cient to study vasomotion non-invasively [76] as long as care is

taken to minimise variability through optimal probe placement and su�ciently

long recording times.

A large proportion of the current knowledge on vasomotion is derived from

animal studies. Vasomotion in humans has been found to depend heavily on

experimental conditions and pathology. Alterations in vasomotion have been ob-

served in many pathological states. Reduced vasomotion has been observed in

type 2 diabetes [8], obesity [9] and hypertension [10]. In the case of type 2 di-

abetes, it was shown that microcirculation could be improved by synchronizing

smooth muscle cell activity and thus increasing vasomotion [8]. Vasomotion in-

duced by electrical stimulation of the cervical sympathetic nerve was also shown

to be abolished at high and low temperatures [77]. The same study provided

evidence that vasomotion enhances tissue perfusion, highlighting its vital role in

oxygen delivery to tissues. The e�ects of temperature on spontaneous vasomotion

in humans in vivo was investigated by Sheppard et al. using local skin cooling and

heating in combination with LDF [78]. They found that local cooling increased

the myogenic response, yet lowered the frequency of vasomotion in this interval,

whilst heating the skin decreased myogenic activity whilst signi�cantly increasing

blood �ow, which demonstrates the maximum, sustained vasodilation of the lo-

cal vessels during heating. The e�ects of di�erent dynamics of the temperature

change were also investigated by Vuksanovi¢ et al. who found that a steady level

of skin blood �ow must be signi�cantly perturbed by a thermal shock to cause

vasodilation/constriction [79]. They also found that the temperature �ow curves

obtained during heating and cooling demonstrated hysteresis, indicating bistable

or multistable blood �ow levels for a given temperature stimulus [79].
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Many e�orts have been made to identify the exact mechanisms involved in

vasomotion, but it is also important to understand why vasomotion occurs, if it

provides any physiological advantages, and if so, what are they? It is strongly

believed that vasomotion provides important bene�ts, particularly for oxygen, ion

and nutrient delivery via the blood, and thus it remains an intense area of research.

2.2.4 The relationship between vasomotion and tissue

oxygenation

Although not universally demonstrated, there is strong evidence to suggest that

there are bene�ts of vasomotion for tissue oxygenation.

In 1991, Bertuglia et al. induced hypoxia and hyperoxia in hamsters and ob-

served the e�ects on vasomotion, by using an edge detection algorithm to track

changes in the diameter of microvessels observed within a skinfold window prepa-

ration and applying the Fourier transform and autoregressive modelling to the

resultant time series to �nd the dominant vasomotion frequency [80]. They found

that hypoxia (8,11, and 15% O2 gas mixture inspiration) increased the frequency

of vasomotion and decreased mean diameters of vessels, whilst hyperoxia (100%

O2) reduced the frequency of vasomotion and also decreased mean diameters in

the smallest vessels. Rücker et al. studied the response of the microvasculature in

tissues to reduced perfusion, and found that these conditions induced vasomotion

in muscle capillaries but not in the periosteum, subcutis or the skin [81]. They con-

cluded that this demonstrated a bene�cial e�ect of vasomotion on the oxygenation

of local tissues.

Theoretical modelling has shown that in well oxygenated tissue, vasomotion

appears to have little e�ect on tissue oxygenation [82]. However, in tissue with

hypoxic regions, blood �ow oscillations with high amplitude and low frequency

(0.025�0.05 Hz) signi�cantly reduced tissue hypoxia [82], but importantly only

when myoglobin was not present, though myoglobin is usually not present under

physiological conditions. This veri�es what was previously modelled by Tsai & In-
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taglietta, that low frequency oscillations are bene�cial for local tissue oxygenation

[83]. This supports vasomotion as an induced response to tissue hypoxia. Using

combined LDF and optical re�ectance spectroscopy (ORS), Thorn et al. revealed

an association between vasomotion at low frequencies associated with endothelium

and oxygen extraction; this does not, however, imply causality [84].

The extensive study of blood �ow dynamics has led to universally accepted

frequency bands of oscillatory activity in blood �ow, as discussed in detail below.

However, the dynamics of resting blood oxygenation are not so well characterised,

but oscillations in oxygenation at rest have recently been demonstrated in skeletal

muscle [85]. Skin blood oxygenation can be studied using optical techniques based

on the absorption spectra of oxy- and deoxygenated haemoglobin, in methods such

as near infrared spectroscopy (NIRS) and optical re�ectance spectroscopy (ORS).

Skin blood oxygenation re�ects the activity of the underlying tissue, which is likely

to result in relatively slow changes due to �nite di�usion times. ORS has been

used to non-invasively study skin oxygenation at rest, and provides a measure

of mean blood oxygen saturation, STO2, at a recording depth dependent on the

spacing of the probe �bres. By recording LDF and ORS simultaneously, Bern-

jak et al. demonstrated signi�cant phase coherence at frequencies below around

0.1 Hz between oscillations in blood �ow and blood oxygen saturation in the skin

microcirculation recorded at the same skin site [86], which may indicate causal

connections between them. It was found that the value of oxygen saturation alone

cannot be accepted as a de�nitive marker of tissue oxygenation, as two di�er-

ent types of oxygenation `swings' were observed, which were indistinguishable in

terms of STO2, but di�erent in terms of oxygenated haemoglobin (HbO2) and de-

oxygenated haemoglobin (Hb) behaviours [87]. HbO2 and Hb can be calculated

from STO2 and relative haemoglobin (rHb) using the relation STO2 = HbO2 ×

100/(HbO2 + Hb) [84], where rHb = HbO2 + Hb. Recently, a study in which

blood �ow and blood oxygenation were measured simultaneously showed that the

relationship between microvascular blood �ow and STO2 at rest and during var-
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ious physiological perturbations, including breath-holds, can be described by a

one-phase association curve �t with a plateau in STO2 of 84% for blood �ow (BF)

> 50 perfusion units (PU) [88]. This study also showed strong evidence for mul-

tiple, synchronized, time-varying oscillations in both microvascular BF and tissue

oxygenation in healthy skin [88], but that although they appear to be modulated

by similar processes, this is not simultaneous.

In summary, vasomotion is a highly variable phenomenon, a�ected by many

di�erent parameters, including blood �ow, blood pressure, tissue oxygenation, en-

dothelial secretions, local and systemic innervation, temperature and health. It has

been widely observed in many settings, and physiological advantages are emerg-

ing. It is therefore of great importance to be able to observe and characterise

vasomotion in vivo in humans.

2.3 Evaluation of microvascular function

2.3.1 Skin microvascular blood �ow

The most widely used technique for the assessment of skin microvascular blood �ow

is laser Doppler �owmetry (LDF), also known as laser Doppler �uxmetry. Based on

the Doppler e�ect, LDF uses laser light to measure the velocity of red blood cells,

identi�ed by how much the frequency of the incident light is shifted. LDF was used

to measure blood �ow in vivo in the undisturbed microcirculation for the �rst time

in human skin by Stern et al. [89, 90], following its use in the rabbit retinal artery

[91]. The resulting signal, the blood �ow, �ux or perfusion, represents not only

the velocity of the red blood cells, but also their concentration. This technology

was further expanded in the technique of laser Doppler perfusion imaging (LDPI)

[92], based on the same principles but scanning a larger area of interest rather

than a single point as in LDF, which can measure only a volume of 1 mm3 or less,

depending on the incident wavelength [93]. LDPI decreases spatial variability,

but the scanning involved means that it cannot match the temporal resolution
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of LDF. Used interchangeably, depending on requirements, these advances paved

the way for a whole new �eld of noninvasive investigation of blood �ow in the

microcirculation in health and disease, which has been shown to vary widely in

di�erent pathologies.

The ability to directly measure the blood �ow in the microcirculation using

LDF has been exploited in many investigations which seek to assess microvascular

function [94]. The most basic tests involve the calculation of mean blood perfusion,

and comparison between di�erent states of health and disease. However, it has

been shown that basal �ux values are highly variable and depend on many factors,

including recording site and skin temperature [93]. Even when taking these factors

into account, microvascular blood �ow is constantly �uctuating in a non-constant

way, as will be discussed below, and thus average �ow values do not provide an

accurate representation of the underlying dynamics.

In an attempt to improve the reliability of results, many studies have used LDF

to evaluate the reactivity of the skin microcirculation by quantifying its response

to well characterised provocations, for example during postocclusive reactive hy-

peremia (PORH). PORH involves a period of arterial occlusion by a cu�. This cu�

is then released following a speci�ed amount of time, and the resulting initial peak

followed by sustained hyperemia in skin blood �ux measured with LDF. Various

parameters are measured, including maximum �ux and time to resting �ux, the

latter of which was shown to have the best discriminative power in distinguishing

between patients with peripheral arterial obstructive disease and healthy controls

[95]. PORH has also been used to demonstrate microvascular dysfunction in many

other pathologies, including diabetes [96], hypertension [97] and chronic renal fail-

ure [98]. The popularity of PORH arises from its apparent high reproducibility

when considering absolute values [99]. Four major factors have been proposed to

be involved in the PORH response: metabolic vasodilators, endothelial vasodila-

tors, the mygogenic response and sensory nerves [93], highlighting the complexity

of this response. Thus care should be taken when attributing this to a single
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mechanism, particularly endothelial function. The assessment of the behaviour

of the endothelium is often the end goal of these studies, as it is known to regu-

late vascular smooth muscle tone, for example by the release of nitric oxide (NO).

Regardless of the reason for the response observed in PORH, it is useful for the

assessment of the e�cacy of pharmacological interventions, such as the treatment

of hypertension [10].

PORH is often performed along with iontophoresis and thermal hyperemia. All

three provocations provide a characteristic �ux response, but they do so by di�er-

ent physiological mechanisms. Iontophoresis involves drug delivery across the skin

by using a local electric current. Two drugs commonly used in the assessment of

the microcirculation with iontophoresis are acetylcholine (ACh) and sodium nitro-

prusside (SNP). ACh indirectly induces smooth muscle relaxation, and therefore

vasodilation, via the stimulation of the release of NO, vasoactive prostanoids and

endothelium derived hyperpolarizing factor from the vascular endothelium [100].

Importantly, ACh will only have a vasodilatory e�ect in the presence of endothelial

cells, as discussed previously [41]. In contrast, SNP is a nitrovasodilator, acting

directly on the smooth muscle cells [101], and therefore does not rely on the pres-

ence of endothelium to induce vasodilation. These di�erent mechanisms allow the

evaluation of endothelial function by comparing ACh and SNP induced vasodila-

tion during iontophoresis [102], as measured by changes in blood �ow using LDF.

However, it has been shown that the current used during iontophoresis may induce

increased blood �ow even in the absence of drugs [103], for example when using

water [104] or NaCl solution [105] as electrolytes. This highlights the importance

of the careful planning of iontophoresis protocol for the purposes of endothelial

assessment, to minimise these e�ects. To investigate the e�ects of voltage on

skin blood �ow, Bandrivskyy et al. studied the varying voltages required during

iontophoresis to maintain a constant current, and found no correlation between

voltage and changes in blood �ow with any of the electrolytes used (deionised

H2O, NaCl solution, ACh and SNP) [103].
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Thermal hyperemia involves local heating of the skin and measurement of the

subsequent increase in cutaneous blood �ow, with the maximum dilation of the

vessels reached at around 42oC in healthy humans [106]. Again, the reproducibil-

ity of thermal hyperemia depends on the parameter studied [107], but when used

correctly provides a simple method for the examination of microvascular and en-

dothelial function [108].

Whilst these provocation techniques for the evaluation of skin microvascular

function are well established and widely used, the exact mechanisms by which they

alter skin blood �ow are still debated, and are known to vary between recording

locations. This leads to uncertainty in exactly which processes are being induced,

and to what extent each one is a�ecting the vasculature, especially in completely

noninvasive studies. Therefore, whilst they remain useful in studies of systemic

conditions and pharmacological testing, where a global di�erence is assessed, they

are not completely reliable in separating speci�c underlying mechanisms of mi-

crovascular regulation, including endothelial function. The perturbations also re-

move any information about the resting state dynamics of the underlying area,

and thus the e�ects of spontaneous vasomotion.

2.3.2 Blood �ow dynamics for the evaluation of skin

microvascular function

Although LDF studies initially only considered average perfusion values or re-

sponses to various stimuli, it was soon discovered that LDF signals contained

much more information than originally thought. Longer recordings led to conclu-

sions that data recorded with LDF is highly variable and not reproducible. In

fact, the opposite is true, once these variations are treated in the correct way.

In healthy skin, sustained oscillations have consistently been observed in blood

�ow signals arising from the microcirculation as recorded by LDF [109, 110, 2].

In light of this fact, studies were performed in which the Fourier transform was

used to extract information about the frequency of these oscillations, but this ap-
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Figure 2.2: Typical blood �ow signal obtained with laser Doppler �owmetry,
with cardiac oscillations and respiratory modulation shown. PU = perfusion units
(arbitrary).

proach is not suitable for such time-varying data. The breakthrough came when

Stefanovska et al. applied the wavelet transform (see Chapter 4.2.3) to LDF sig-

nals [110], allowing the accurate simultaneous observation in time and frequency

of these biological oscillations and their continuously varying characteristics. This

approach is also ideal for the observation of low frequency oscillations, due to

the logarithmic scale of the wavelet transform. This led to many studies which

sought to further characterise the oscillations present in skin blood �ow, and their

physiological origins.

Whilst it is obvious that the beating of the heart has a huge in�uence on the

blood �ow, particularly in larger vessels, the dynamics of blood �ow is also gov-

erned by many other physiological processes. A crucial in�uence, independent of

the systemic heart and respiratory in�uences, is the local phenomenon of vasomo-

tion. In addition to the intrinsic movement of the vessels, and the e�ects of the

vascular endothelium as detailed in section 2.2.2, the amplitude and frequency of

vasomotion is also in�uenced by neurogenic factors. A typical LDF blood �ow

signal is shown in Figure 2.2.

Extensive spectral analysis of signals obtained using LDF has provided a deeper

understanding of the oscillations found in these signals, and their physiological

origins. To date, six distinct frequency intervals have been identi�ed, containing

di�erent oscillatory processes corresponding to various functions within the body

[68, 111, 112, 113]:
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Interval I � Cardiac interval (0.6�2 Hz). A dominant oscillation around 1 Hz

can be detected at all points on the body, and can reliably be attributed to cardiac

function by comparisons with a simultaneously recorded ECG. Depending on the

proximity of the LDF probe to large vessels in addition to the capillaries, the

e�ective contribution of the heart will vary. It is therefore recommended to avoid

LDF measurements in the proximity of these large vessels, to allow observation of

the dynamics at lower frequencies, which generally have lower power contributions.

Interval II � Respiration interval (0.145�0.6 Hz). A slower oscillation around

0.3 Hz has also been observed, and was shown to originate from respiration by

Bollinger et al. in 1993 [114, 115]. The contribution of the respiration to LDF

signals is not as strong as in the cardiac oscillations, and is not always detectable.

Interval III � Myogenic interval (0.052�0.145 Hz). This interval contains oscil-

lations resulting from intrinsic myogenic activity of vascular smooth muscle cells,

as previously discussed in the context of vasomotion. This means that oscillations

in this frequency are inherent to the vessel wall, and have been observed both in

vivo and in vitro [67]. Proof of this classi�cation was shown when oscillations in the

region of 0.11 Hz were unchanged during local and ganglionic nerve blockade [116].

The myogenic response is the passive local regulation of blood �ow by the smooth

muscle cells, in reaction to increased blood pressure [73]. One debated topic in

this area currently is the observation and characterization of waves around 0.1 Hz

which are deemed to be of a di�erent origin to the myogenic response, sometimes

known as Mayer waves, and observed in arterial pressure signals. Although these

waves are usually enhanced during states of sympathetic activation, an underlying

mechanism has still not been identi�ed [117]. The origin of oscillations at this

frequency is still uncertain, and is likely to consist of a combination of di�erent

physiological processes depending on vessel type.

Interval IV � Neurogenic interval (0.021�0.052 Hz). This is where neurogenic

(sympathetic) activity manifests. The involvement of the sympathetic nervous sys-

tem (SNS) in this interval was proven by Söderström et al. using LDF recordings
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on skin �aps in which it is known that there is no sympathetic activity, as com-

pared to LDF recordings on intact skin [73]. Di�erences were observed between

0.02-0.05 Hz, and thus these can be attributed to sympathetic nerve activity. This

activity provides another fundamental mechanism for the control of blood �ow

by rhythmically discharging and in�uencing the relaxation and contraction of the

blood vessels [73], as described by Malpas [118]. Landsverk et al. provided further

evidence for the origin of the oscillations in this interval when evaluating the ef-

fects of brachial plexus block on the skin microcirculation [119], which is known to

induce sympathetic impairment [120]. Using LDF and the wavelet transform they

found that the relative amplitude of the oscillations within the 0.0095 to 0.021

and 0.021 to 0.052 Hz range was reduced, indicating an inhibitory e�ect on both

endothelial and sympathetic activity. The sympathetic origin of oscillations in this

interval was also demonstrated in rats by Bajrovic et al. when the relative energy

of blood �ow signi�cantly decreased in the neurogenic interval (4 times higher

frequency in rats) following partial denervation of the hind limb [121].

Intervals V & VI � Oscillations arising from endothelial activity. This has been

tested using various vasoactive substances, in the presence of endothelial cells, and

following their removal [122, 67]. Interval V, from 0.0095 to 0.021 Hz, was �rst

found to contain oscillations due to endothelial activity through the use of the

endothelial dependent vasodilator acetylcholine (ACh) and the endothelial inde-

pendent vasodilator sodium nitroprusside (SNP) [123]. This endothelial activity

was found to be partly mediated by nitric oxide (NO) [102]. In a later study,

even lower frequency oscillations in the frequency interval 0.005 to 0.0095 Hz were

observed [68], forming interval VI. In contrast to interval V, oscillations in this in-

terval were found not to be NO dependent, arising instead from other endothelial

mechanisms such as endothelium-derived hyperpolarizing factor (EDHF) [68]. To

ensure that these conclusions based on iontophoresis arose as a result of endothe-

lial activity and not as a result of current induced blood �ow increases, Veber et

al. performed iontophoresis using the same protocol as used by Kvandal et al.
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[102] but replacing ACh and SNP with deionised water and NaCl solution [124].

They found that although in iontophoresis with deionised water (a low conduc-

tance electrolyte), cathodal current stimulates more than anodal current, this does

not a�ect a speci�c frequency interval more than the others. They also showed no

di�erence in blood �ow when using iontophoresis with NaCl, a high conductance

solution, and concluded that the di�erences observed previously using ACh and

SNP, both highly conductive solutions, were indeed a result of endothelial activity

[124].

The complexity of blood �ow signals arises from the coupling between all of

these physiological processes, and likely other additional e�ects. Locally, these

manifest through the modulation of vasomotion by the contributions discussed

above. The introduction of this coupled oscillator model of the cardiovascular sys-

tem by Stefanovska & Bra£i£ in 1999 [125, 2] meant that skin blood �ow recordings

could be used to extract information about underlying processes in states with al-

tered microvascular regulation by calculating the contributions of the oscillations

in each frequency interval, usually using time-frequency analysis methods such as

the wavelet transform, and comparing between states and subjects. This approach

has been shown to be reliable and reproducible [76]. The characterisation of blood

�ow dynamics at rest continues to be used to investigate the skin microvascula-

ture in many studies, including in hypertension [10], congestive heart failure [113],

ageing [112], obesity [9], athletes [126], diabetes [127] and critical limb ischemia

[128]. The method has also been extended to the study of blood �ow in cancer,

which will be discussed in detail below.

2.3.3 Skin microvasculature as a model for the

microvasculature

Studies of the skin microcirculation have been used in the assessment of skin mi-

crovascular dysfunction in many pathologies due to the noninvasive nature of the

techniques and the ease with which signals can be recorded using LDF [129]. How-
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ever, many of these studies seek to use the skin microvasculature as a model for

generalized microvascular function, particularly in systemic diseases such as hyper-

tension, diabetes and atherosclerotic coronary artery disease [130]. Although this

approach is seen by some to require more investigation [131, 132], the rationale

behind this assumption is that the circulatory system behaves as a single entity,

with the dynamics observed in skin blood �ow providing a tool for the investiga-

tion of both local and global mechanisms [133], and that the methodologies used

to evoke an integrated vascular response represent physiology that is not unique

to the cutaneous microvascular bed [130]. Therefore, the noninvasive evaluation

of local skin microvascular function in cancer may provide insights into cancer

microvasculature in general.

2.4 Microvascular blood �ow in cancer

Cancer is a large group of diseases, characterized by unregulated cell growth. In

normal, healthy cells, the balance between the creation of new cells by cell division

and the natural death of cells, apoptosis, is tightly regulated. A cell can become

cancerous when the genetic information that it contains is changed in some way,

or mutated. Many cell mutations can occur, but it is those which cause acceler-

ated or uncontrolled growth which are particularly dangerous. Most cells contain

tumour suppressor genes, to prevent cell growth from becoming out of control,

but mutations can cause the loss of this gene, and thus the apoptosis signalling

pathway is disrupted, e�ectively resulting in immortal cells [134]. Carcinogenesis

is not usually the result of just one mutation, but several [135]. Potentially cancer-

ous cells are present in most humans, but the immune system usually recognises

damaged cells and destroys them before they can proliferate. Problems arise when

a cancer cell is allowed to divide. The cells then very e�ciently evolve to adapt to

their surroundings. Cancer cells express growth factors, for the purpose of creating

ideal surroundings and establishing a blood supply, whilst remaining una�ected

by any growth factor inhibition control directed toward them by the host. This
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uncontrolled growth will result in a tumour which could potentially grow inde�-

nitely, diverting the vital nutrients required by the body away from healthy cells

and toward its own cells, stimulating further growth. Once a tumour has a blood

supply, the possibility of the cancer spreading around the body, or metastasizing,

greatly increases. During metastasis, cancer cells can settle anywhere in the body

served by vasculature, and proliferate to form secondary tumours. Therefore, un-

derstanding of tumour vasculature and the �ow dynamics of the blood supply is

of critical importance in the �ght against cancer.

2.4.1 Tumour angiogenesis

Once cancerous cells begin to proliferate, a point will eventually be reached when

this tumour growth cannot be sustained without extra resources from the body.

In order to obtain these resources, and also to e�ectively dispose of the high levels

of waste products produced by the cells, a new blood supply to the tumour must

be established. A tumour can grow up to 1-2 mm before it requires its own blood

supply [136]; at sizes beyond this, di�usion is no longer adequate to satisfy the

demands of the rapidly proliferating cells. At this critical point, the cancer cells will

begin signalling to the body, requesting a greater volume of blood. The existing

blood vessels will then sprout new branches toward the signals, at rates of up to

1mm per day [137]. This process is known as angiogenesis, and is separate to

vasculogenesis, which is the formation of new vessels where there were originally

none.

The origins of angiogenesis research were in the early 20th century. When

observing the growth of blood vessels around tumours in 1939, Ide et al. were the

�rst to suggest that tumours release speci�c factors for the purposes of stimulating

the growth of blood vessels from observations of tumour tissue transplanted into

the rabbit ear [138, 139]. Then, in 1945 Algire & Chalkley demonstrated that

tumours actively attract new blood vessels [140]. In 1968, Greenblatt & Shubik

showed that following tumour transplantation in the hamster cheek pouch stroma,
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a vasoproliferative e�ect was observed even when the tumour was separated from

the vessels by a barrier which blocked the passage of cells [141], con�rming that

there was indeed a di�usible substance which induced angiogenesis.

Judah Folkman, known by many as the father of angiogenesis research [142],

proposed in 1971 that tumour growth is angiogenesis dependent, and that angio-

genesis inhibitors could be used in the treatment of cancer [143], a theory which

was initially not very well received. Also in 1971, in another paper, Folkman et

al. isolated a growth factor responsible for tumour angiogenesis for the �rst time

from human and animal neoplasms [144].

Since this pioneering work led to a huge interest in angiogenesis research, many

angiogenic growth factors have been discovered, with vascular endothelial growth

factor (VEGF) being of particular importance [145]. VEGF was �rst discovered

in 1983 by Senger et al., and was initially called vascular permeability factor [146],

due to its observed e�ects on the permeability of the microvessels in guinea pigs,

hamsters and mice. VEGF is expressed in most types of human cancer, with

increased expression associated with a less favourable prognosis in various can-

cer types [147, 148]. In addition to VEGF, many other angiogenic growth fac-

tors have been observed, including: acidic �broblast growth factor (aFGF), an-

giogenin, basic �broblast growth factor (bFGF), heparinase, hepatocyte growth

factor, interleukin-8, placental growth factor (PGF), platelet-derived endothelial

cell growth factor, pleotropin, prostaglandins E1, E2, transforming growth fac-

tor α(TGFα), transforming growth factor β(TGFβ) and tumour necrosis factor

α(TNFα) [149]. These growth factors then activate receptors in the endothelial

cells of the surrounding vasculature. The endothelial cells in the parent capillary

produce enzymes to break down the basement membrane (a thin sheet of �bres

underlying the epithelium). The endothelial cells then escape from the original ves-

sel, proliferate, and form sprouts, elongating the vascular tree, migrating through

the extra-cellular matrix in the direction of the signals until the required blood

supply is established [150]. This process is known as sprouting angiogenesis, and
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was initially considered exclusively as the mechanism by which tumour vasculature

is established. However, more recently other processes of neovascularization have

been discovered in tumours [151]. Intussusceptive angiogenesis, in which preex-

isting vessels may split in two by the formation of transvascular tissue pillar into

the lumen of the vessel, requires much less time and energy than the proliferation

of endothelial cells. New vessel growth may also be aided by the recruitment of

endothelial progenitor cells which circulate in the blood stream, but this occurs

less in humans than in mouse models where they may contribute up to 100% of

the vasculature [152].

Another interesting, and unexpected, observation arises in some cancer cases.

Folkman et al. observed that while a primary tumour is thriving, it actually

releases angiostatin into the circulation. Angiostatin is an angiogenesis inhibitor,

being investigated for anticancer therapy. This angiostatin prevents metastatic

tumours from forming whilst the primary tumour thrives. Unfortunately, if this

tumour is removed, then so is the source of angiostatin, and metastatic tumours

are much more likely to appear [153].

It has also been found that tumours may develop a secondary circulation sys-

tem of vasculogenic structures lined not by endothelial cells, but tumour cells [151].

This `vasculogenic mimicry' has been observed in melanoma, suggesting that ag-

gressive melanoma cells may generate vascular channels devoid of endothelium,

independently of angiogenesis [154].

Although angiogenesis is a major factor in the development of a tumour from

dormant to malignant, it is not associated only with tumour growth. It also plays

an important role in growth and the healing of wounds. Angiogenesis can also be

used to treat cardiovascular disease, as well as many other conditions characterized

by insu�cient angiogenesis, including chronic wounds [155] and peripheral arterial

disease [156].
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2.4.2 Angiogenesis in melanoma

Human malignant melanoma, the most deadly skin cancer, is a highly metastatic

tumour, with poor prognosis. Initially, melanoma in situ undergoes a radial growth

phase. The onset of angiogenesis during this radial growth phase then leads to the

development of the vertical growth phase, with tumour thickness and stage of

invasion determining prognosis [157]. This then leads to metastatic melanoma

(see Figure 2.3).

Angiogenesis in melanoma is initiated by growth factors including VEGF,

bFGF, aFGF, platelet derived growth factor (PDGF), PGF and transforming

growth factors α and β (TGF-α and β), and is essential for melanoma tumour

growth and metastasis [159]. It has been shown that the secretion of VEGF by

melanoma cells has been correlated to the transition from the radial to the vertical

growth phase [160, 161].

Increased vascularity of cutaneous melanomas has previously been shown to be

an important prognostic factor [162], but this has not been universally observed

[163].
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2.4.3 Blood �ow in cancer

Blood �ow in tumours has long been known to be spatially and temporally het-

erogeneous, for an early review see [164]. Overall perfusion rates vary widely

depending on the recording location within the tumour, the size and stage of the

tumour, and the tumour microenvironment.

Although the functional aim of angiogenesis is to increase tissue perfusion via

the development of new vessels, the process is rarely e�cient in tumours, i.e. in-

creased microvascular proliferation does not necessarily mean an increase in blood

�ow, due to deregulated tumour angiogenesis. It was demonstrated in endometrial

carcinomas that microvascular proliferation was negatively correlated with tumour

blood �ow, and also that low tumour blood �ow is a poor prognostic factor [165].

Once angiogenesis has been initiated by a tumour, new vessels will be rapidly

formed as a result of the release of the growth factors discussed previously. The im-

balance between pro- and anti-angiogenic growth factors that allows this angiogenic

switch results in immature, dysfunctional, dilated, tortuous vessels [166]. Whilst

normal vessels possess a well organized architecture with dichotomous branching,

tumour vessels are disorganized, with trifurcations and branches with uneven di-

ameters [167]. Unlike normal vessels, there is no relationship between vessel size

and red blood cell velocity in tumours [167].

The abnormalities, both in structure and function, of tumour vessels leads to

heterogeneous, intermittent blood �ow [168], and highly permeable vascular walls,

due to fenestration of the endothelium [169], resulting in leaky vessels. These

characteristics may vary across the tumour and even in the same location over

time. Although smooth muscle cells do surround some tumour vessels, usually the

local co-opted vessels rather than the newly formed ones [164], they do not func-

tion as normal contractile cells, thus directly a�ecting their blood �ow regulatory

mechanisms [136].

Physical pressure from the growing tumour also restricts blood �ow [170], and

is also the main reason for the lack of functional lymphatics within tumours [171],
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as lymphatic vessels are not suited to such high pressures.

The endothelial cells which result from angiogenesis may be also distinctly dif-

ferent to normal endothelial cells, being disorganized, loosely connected, branched,

overlapping and sprouting [172, 169], and with fundamental di�erences in terms

of gene expression [173], all of which may limit their ability to act as vascular

regulators, and therefore have an impact on blood �ow.

The combination of inadequate vascular function and altered endothelial cells

found in tumours will inevitably in�uence the dynamics of the blood �ow in tu-

mours due to changes in blood �ow regulation, both intrinsic to the vessel wall

and via endothelial mechanisms.

Various techniques have been used to study blood �ow in tumours in vivo,

including nuclear magnetic resonance imaging [168] and Doppler ultrasound [174].

Recently, laser Doppler techniques such as laser Doppler perfusion imaging (LDPI)

and laser Doppler �owmetry (LDF), traditionally used to characterise microvas-

cular function, have been applied to the study of blood �ow in many cancer types,

including, but not limited to, breast cancer [175], gastric adenocarcinomas [176]

and colorectal cancer [177]. Kragh et al. demonstrated that angiogenic activity

can be estimated in vivo using LDF and NIRS [178].

2.4.4 Noninvasive diagnosis of melanoma

Melanoma is currently diagnosed and treated depending on a number of factors,

including its size, shape and level of metastasis (if any). An initial examination of

melanoma seeks to evaluate the following characteristics [179]:

Asymmetry - Ordinary moles are usually symmetrical, whereas a melanoma will

usually be irregular in shape.

Border � Moles also generally have a well de�ned border, in melanoma, this can

be jagged and irregular.

Colour � A mole rarely has more than one shade of brown. A telltale sign of

melanoma is the presence of di�erent colours, such as brown mixed with black,
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pink, red, white or blue.

Diameter � Normal moles are usually no bigger than 6mm, but a melanoma will

usually be more than 7mm across.

Evolving � Most moles do not change over time, so if any changes in size, colour

or shape are noticed, this could be an indication that the mole has developed into

a melanoma.

The prognosis of melanoma depends on various factors, the main ones being

the thickness of the tumour, and whether it is ulcerated (broken skin). The thick-

ness of the tumour is measured on the Breslow scale [157], with a thickness greater

than 4mm leading to a poor prognosis; ulceration also reduces chances of survival.

Any lesion presented which meets one or more of the clinical features above is con-

sidered clinically atypical, and is usually further investigated by means of pattern

analysis using a microscopy based technique known as dermoscopy [179]. Der-

moscopy is a widely used, non-invasive method of further inspection of an atypical

lesion, and has been shown to reduce the number of biopsies required [180] and

improve diagnostic accuracy of skin malignant melanoma compared to inspection

by the unaided eye [181], but this accuracy strongly depends upon the expertise

of the examiner [182]. With the aid of dermoscopy, vascular structures can be

observed in skin lesions. Despite the improved speci�city provided by dermoscopy,

many biopsies are still performed unnecessarily, causing discomfort and distress to

patients. Therefore, non-invasive techniques for the diagnosis of skin melanoma

remain an active area of research. Various techniques have been developed based

on quanti�cation of changes in colour, shape, size and blood �ow; for a review see

[183]. A high proportion of these are based on digital imaging and other imaging

tools, including magnetic resonance imaging (MRI) and positron emission tomog-

raphy (PET) scans, gene pro�ling, and laser based technologies.

In this thesis, it is the blood �ow, as measured by laser Doppler �owmetry, that

is investigated for the non-invasive characterisation and diagnosis of skin malignant

melanoma.
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2.4.5 Blood �ow in skin cancer

The accessible nature of skin cancer in particular has led to many studies of blood

�ow using laser Doppler techniques in basal cell carcinoma [184, 185, 186, 187]

and melanoma [184, 12, 188]. Compared to other methods [189, 183, 190], laser

Doppler �owmetry is relatively cheap, simple to use, requires little training and

is not subjective, in contrast to many imaging techniques. It is also superior

to Doppler ultrasound, which does not register blood �ow until tumours reach a

thickness of around 0.8mm [191].

In 1992, Tur et al. demonstrated elevated average blood �ow in basal cell

carcinoma and melanoma when compared to non-cancerous skin lesions using LDF

[192], providing a basis for its role in the characterization of tumour blood �ow

and diagnostic potential. Enejder et al. demonstrated how LDPI could be used to

follow the perfusion of BCCs over time following treatment, showing a reduction

in perfusion with healing [185].

The elevated blood �ow observed in melanoma was correlated with vascular-

ization [174], which has been shown to rise gradually during tumour progression

[193].

Stücker et al., due to concerns about the applicability of single point LDF in

pigmented lesions, used LDPI to study blood �ow in benign melanocytic naevi,

malignant melanomas, and basal cell carcinomas, and found signi�cantly higher

�ow values in melanocytic naevi than in basal cell carcinomas, and highlighted the

role of in�ammation in these results [184]. They also concluded that LDPI was

not sensitive enough to distinguish between in�amed melanocytic naevi and malig-

nant melanomas, based on average perfusion values. In a later study, Stucker et al.

further elaborated on their �ndings in an attempt to evaluate LDPI average per-

fusion values for di�erential diagnosis of pigmented skin tumours [11]. They com-

pared malignant melanomas to clinically suspicious dysplastic melanocytic naevi

and basal cell carcinomas, again �nding elevated blood �ow in melanomas. Un-

fortunately, this method only provided a speci�city of 48% when distinguishing
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malignant melanoma from clinically suspicious naevi.

Whilst average blood perfusion values may provide some insight into the tu-

mour blood �ow, it is clear that single point LDF has a relatively low repro-

ducibility when using average values alone, due to the inherent time-variability of

the blood �ow signal, as discussed above. PORH has been performed on basal cell

carcinoma lesions and imaged using laser speckle contrast imaging (LSCI), but

this method limits the recording site to locations on the body in which perfusion

can be successfully occluded, namely the limbs [187].

As skin cancer may occur anywhere on the body, more robust results may be ob-

tained by measuring perfusion in the lesion and in the contralateral site on healthy

skin, to allow location speci�c e�ects to be taken into account. Analysis of these

signals using techniques for the characterization of their intrinsic dynamics then

allows an assessment of the underlying vasculature by investigating the frequency

intervals known to correspond to vascular regulatory processes. Based on this

approach, Häfner et al. directly addressed the question of how to distinguish be-

tween in�ammation and tumour induced angiogenesis by applying wavelet analysis

to LDF signals recorded from basal cell carcinomas and psoriasis [186]. Basal cell

carcinomas were used as a model of tumour associated angiogenesis, whilst psoria-

sis was used as a model of in�ammatory associated angiogenesis. They found that

the blood �ow dynamics observed in both cases were completely di�erent, with re-

duced sympathetic activity observed in basal cell carcinomas but not in psoriasis,

demonstrating that even though in�ammation is present and average blood per-

fusion is increased, psoriasis maintains its vascular regulatory mechanisms, whilst

BCC does not.

Häfner et al. [12] also combined laser Doppler �owmetry with wavelet analysis

in order to quantify altered vasomotion in malignant melanoma and to facilitate

diagnosis between benign and malignant melanocytic lesions in vivo. The conclu-

sion was reached that melanoma blood vessels likely exist independently of auto

regulatory processes by which they would usually be governed. They also found
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arterial pulsation was a dominant feature in blood �ow signals and that this causes

more homogeneous blood �ow and reduces the contributions of other blood �ow

oscillations. However, blood �ow recordings in this study were for only 3.3 minutes,

which according to previously de�ned criteria only allows oscillations to be reliably

viewed down to a frequency of around 0.03 Hz. Indeed, the lowest considered fre-

quency was 0.15 Hz, excluding part of the myogenic, and all of the neurogenic and

endothelial related frequency intervals. It has been shown previously that charac-

teristic oscillations in blood �ow can be found at frequencies much lower than this,

but these will not be visible in such a short recording time. This study also did

not include dysplastic naevi as controls, so the very high sensitivity and speci�city

are likely to be reduced in less clear-cut cases of diagnosis. This provides an op-

portunity to further improve understanding of blood �ow dynamics in melanoma

by increasing the length of recording time and including atypical dysplastic naevi.

2.4.6 Renormalization of the vasculature

The vital role that angiogenesis plays in the development of cancer makes it an

ideal target for anti-cancer drugs. Anti-angiogenic therapy is a highly active area

in cancer research and treatment since it was introduced by Folkman [143, 194].

The aim is to halt tumour growth by preventing angiogenesis, thus starving the

tumour of oxygen, whilst poisoning it with its own waste. The most successful ap-

proach is to target endothelial cells and inhibit their growth [195]. In comparison

with cancer cells, the endothelial cells lining the vasculature are genetically more

stable. This stability means that targeting endothelial cells with anti-angiogenic

therapy will be more advantageous than targeting the cancer cells directly with

chemotherapy, as endothelial cells are less likely to mutate, or acquire drug resis-

tance [196]. As with most areas of cancer research however, there are con�icting

theories. While the idea sounds promising, genetic abnormalities have been shown

in endothelial cells, which means they could also acquire resistance, albeit probably

not as quickly. This cancer of the endothelial cells, or haemangiosarcoma, is a very
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common occurrence in dogs, rare in cats, and very rare in humans [197]. Another

direction of anti-angiogenic therapy is interference with angiogenic factors such as

VEGF and �broblast growth factor (FGF) [195]. Despite promising results, the

e�ects of anti-VEGF therapy in human solid tumours have not been as successful

as expected [166].

Although lots of treatments focus on destroying the tumour vasculature, it

has also been shown that normalization of the vasculature is sometimes possible

and can increase treatment e�cacy. The inability of the blood and lymphatic

vasculature to work e�ciently results in the widely observed characteristics of the

tumour microenvironment, hypoxia and low pH [198]. Hypoxia will arise from the

poor blood perfusion of the area resulting in limited oxygen delivery, while low pH

will be induced by the build up of waste products of the increased metabolism of

rapidly proliferating cells, further exacerbated by a metabolic switch to glycolysis.

The presence of hypoxia reduces the e�cacy of radiation treatment for tumours,

as oxygen is a potent chemical radiosensitizer. Therefore, normalizing tumour

vasculature, whilst perhaps seeming counterintuitive, has been investigated as a

promising direction for the improved e�ectiveness of cancer treatment in hypoxic

tumours by reinstating a functional blood supply and thus facilitating the delivery

of therapeutic agents and normalizing the tumour microenvironment [199, 166].

This suggests that the ability to regulate blood �ow in vessels formed during

tumour angiogenesis may not be completely absent, but may be in�uenced or

suppressed by microenvironmental factors.

2.5 Potential microenvironmental in�uences on

microvascular blood �ow

It is becoming more apparent to cancer researchers that only considering cancer

cells outside of their microenvironment results in the loss of valuable information

and may give rise to unrealistic models. Any cell or collection of cells in situ will be
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continuously interacting with the surrounding cells and tissues. Failure to account

for environmental interaction e�ects is likely the reason that 90% of drugs which

exhibit preclinical activity are relative failures in human models [200]. It is now

accepted by modern cancer biologists that cancer is not only an accumulation of

genetic mutations leading to excessive proliferation, but is also heavily dependent

on the growth environment [200].

2.5.1 Metabolic and microvascular responses to hypoxia

As discussed above, hypoxia is a major feature of solid tumours [201]. Hypoxia

results from inadequate perfusion and contributes to cancer treatment resistance

[202]. It also results in a phenotype which favours tumour progression [202, 203].

As a result, tumour hypoxia is a poor prognostic factor in many malignancies [135].

Severe hypoxia can result in a failure to generate enough energy to maintain

cellular functions. If prolonged, hypoxia will result in cell death. Therefore, cells

have many mechanisms in place to respond e�ciently to hypoxia, and thus try

to regulate cellular oxygen concentration within a narrow range [204]. The main

response to hypoxia in cells is the expression of hypoxia-inducible factors such as

HIF-1α, �rst identi�ed in 1992 by Semenza & Wang [205], which then play a role in

cell proliferation, angiogenesis, metabolism and apoptosis [206]. Signi�cant e�ects

of hypoxia on the microcirculation have recently been demonstrated in rabbits

[207], highlighting the need for further investigation into the dynamics of this

response and the possible links to carcinogenesis.

The expression of hypoxia-inducible factors in response to hypoxia in tumours

has been implicated in the widely observed metabolic switch to glycolysis in cancer

cells [208] (see below). In hypoxic conditions, glycolysis will be the main source of

adenosine triphosphate (ATP) within the cell, even though it is much less e�cient

than oxidative phosphorylation (OXPHOS), which requires oxygen in order to

produce ATP. Local hypoxia may also induce angiogenesis in a tumour through

VEGF-A expression [149, 39], in an attempt to increase blood perfusion, thus
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altering the structure of the tumour microvasculature.

Hypoxia has been implicated as one of many possible causes of cancer [209,

210], with cancer cells taking advantage of some of the hypoxic responses, e.g.

angiogenesis and cell proliferation, whilst suppressing others, e.g. apoptosis [206].

Although hypoxia can be crucial in the evolution and survival ability of tumours

[211], through stimulation of angiogenesis, its role in carcinogenesis is not so clear,

as some cancer cells appear to switch to glucose metabolism before exposure to

hypoxic conditions [212].

The role of hypoxia in melanoma development

The primary microenvironment of melanoma, the skin, is unusual in that it is

known to be hypoxic (1.5-5% O2), at least in some areas. Although highly hetero-

geneous, it has been shown that while the dermis is well oxygenated, the epidermis

is sometimes modestly hypoxic [213]. This hypoxia could be a consequence of the

relatively large distance from super�cial blood vessels, as oxygen will only travel

a �nite distance from capillaries to cells before it is completely metabolized, esti-

mated to be around 180 µm [206]. Knowing the oxygenation status of the skin and

other tissues allows us to reasonably assume that any experiments carried out on

cancer cells above these levels, e.g. in atmospheric oxygen conditions, may not pro-

vide meaningful results. Indeed, it has been shown that cells grow better in mildly

hypoxic environments than in atmospheric levels of O2, with atmospheric con-

ditions actually causing cellular ageing, and human melanocytes bene�ting from

growing in a more physiological environment [214]. Combining this knowledge with

the tendency of tumours to be hypoxic allows us to begin to build up a picture of

the early stages of melanoma. It appears that the skin provides an optimal mi-

croenvironment for melanoma progression, with ideal proliferation conditions and

promotion of avoidance of apoptosis. Physiologically normal hypoxia, as present in

the skin, is not cause for concern. HIF-1 activates many oxygen responsive genes

involved in survival, apoptosis, glucose metabolism and angiogenesis [214]. These
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functions are �nely balanced in normal skin, but are disrupted during severe hy-

poxia (<0.5% O2). This leads to the hypothesis that melanoma may be promoted

by low oxygen conditions in the skin [215].

2.5.2 Cellular energy metabolism

Cellular energy metabolism encompasses many processes, ultimately resulting in

the production of ATP, the fuel continuously used by cells for many essential func-

tions, such as maintenance of ionic balance across their membranes, signalling and

protein synthesis. Every day, we turnover the equivalent of our body weight in

ATP [216]; thus our understanding of every stage of cellular energy metabolism

is of crucial importance. A diagram of cellular energy metabolism can be seen

in Figure 2.4. Novel imaging techniques have provided insights into the function

of metabolic pathways, including methods based on pH changes [217, 218], mea-

surements of nicotinamide adenine dinucleotide (NADH) levels in glycolysis [219],

measurements of mitochondrial membrane potential [220], and direct measure-

ments of ATP release [221]. These have led to the growing understanding that

many diseases can be associated with metabolic dysfunction, including diabetes

[222] and cancer [223, 210, 224, 225].

Two main pathways are involved in the production of ATP: glycolysis, and ox-

idative phosphorylation (OXPHOS). The balance between these energy pathways

is tightly regulated through their mutual interactions, according to supply and

demand [226, 1, 227]. Both processes are required for normal energy production

within a cell; however in a healthy cell, OXPHOS dominates [212]. In contrast,

in a dysfunctional cell, ATP production via glycolysis may increase and dominate

even in the presence of oxygen [228]. This e�ect has been shown to be favoured in

cancer cells [224], known as the Warburg e�ect [229, 212, 230].

ATP may be produced in two cellular locations. Glycolysis occurs in the cyto-

plasm of the cell, and the Krebs cycle and oxidative phosphorylation (OXPHOS)

occur in the mitochondria, considered as the powerhouses of the cell. ATP is pro-
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Figure 2.4: Diagram of cellular energy metabolism. ATP production in a cell
(thick lines) occurs via glycolysis using glucose, and when oxygen is present ATP
is produced via oxidative phosphorylation (OXPHOS) using the products of gly-
colysis. Both processes are oscillatory, and can in�uence each other. Couplings
between these processes, as well as external in�uences are shown by dashed lines.

duced by each process in di�ering ratios depending on cell type and current energy

requirements.

For example, in the absence of oxygen, or in cells with low energy requirements,

such as endothelial and yeast cells, glycolysis may be the primary source of energy

metabolism [231]. Glycolysis is much less e�cient than OXPHOS, producing only 2

ATP molecules for each glucose molecule, compared to 38 ATP molecules resulting

from the combined processes of glycolysis, the Krebs cycle and OXPHOS [206].

Therefore, for cells which consistently require larger amounts of energy and have

functional mitochondria, e.g. cardiac myocytes, the latter pathway is used. In this

case, 88% of the total cellular energy is produced via OXPHOS due to its e�ciency,

with the other 12% being produced equally from glycolysis and the Krebs cycle

[224].

ATP synthesis occurs through complex interactions between metabolic pro-

cesses. Glycolysis converts glucose to pyruvate, and produces ATP and NADH.
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The pyruvate is used during pyruvate decarboxylation, the products of which are

used in the Krebs cycle. This releases more ATP and leads to production of

substrates which are used to create a hydrogen ion gradient across the inner mito-

chondrial membrane. This gradient then drives the production of ATP from ADP

and inorganic phosphate, in the process of oxidative phosphorylation [225].

Evidently, energy metabolism via glycolysis and OXPHOS are complex proce-

dures, subject to many feedback mechanisms at di�erent points in their respective

cycles. This allows the cell continuously to meet energy demands even when sub-

jected to external perturbations. In order to gauge their required rates, based

on current production and requirements, the two processes must be coupled to

maintain the correct balance between supply and demand.

Metabolic oscillations in health and diseases

Metabolic oscillations are dynamical processes dominated by two main compo-

nents, mitochondrial and glycolytic oscillations. These oscillations can be observed

using di�erent techniques, some based on changes in glycolytic intermediates [219],

and some based on observation of changes in mitochondrial membrane potential

[232].

Oscillations attributed to glycolysis have long been observed in many types

of cells, including yeast [233], pancreatic β cells [234, 235, 226] and muscle cells

[1]. Glycolytic oscillations were �rst observed by Duysens & Amesz in 1957 whilst

studying the �uorescence of glycolytic intermediates in yeast [236]. The source of

these oscillations was �rst proposed by Ghosh & Chance [237] as an enzymatic step

catalyzed by phosphofructokinase (PFK) [7]. This is still debated, however. There

is now lots of evidence to suggest that the reaction involving PFK is responsible for

their origin [238, 226, 219], but not exclusively, as glycolytic oscillations in yeast

have been found to have frequencies that are also dependent on glucose trans-

port across the cell membrane [239]. Interestingly, the metabolic switch observed

in cancer cells results in a metabolism which has been shown to have features
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in common with yeast metabolism [228]. In addition to the observation of the

existence of glycolytic oscillations, their presence has been shown to provide an

advantage in maintaining a high ATP/ADP ratio [240].

Oscillations in the mitochondria have been observed since almost 50 years ago

[241], and it was Chance & Yoshioka who demonstrated that they could be sus-

tained over many cycles [242].

Mitochondrial oscillations can be considered in two separate cases. In the

physiological, or healthy, domain, small amplitude oscillations can be observed

in mitochondrial membrane potential ∆ψm. These have been associated with

cycles of oxidation [243, 241], and extramitochondrial factors, such as the plasma

membrane potential ∆ψ or Ca2+ [226]. In cases of oxidative stress or substrate

deprivation, the inner mitochondrial membrane potential may destabilise, causing

depolarization and oscillation [220, 244], forcing synchronous oscillations within

the mitochondrial network [232, 245, 220].

Independent of their cause, metabolic oscillations may manifest as ATP oscil-

lations. ATP oscillations have been observed in the cytosol of human single islet β

cells, which were shown to be a�ected by glucose concentration, with oscillations

present at both low and high glucose concentrations, with those at high concen-

trations exhibiting an increase in their period of oscillation [246]. Kwon et al.

observed ATP oscillations during chondrogenesis, which is the process by which

cartilage is developed, which were found to depend on glycolysis and mitochondrial

respiration, which in turn were revealed to depend on Ca2+ oscillations with an

anti-phase relationship [6]. Measurements in yeast cells with oscillatory glycolysis

revealed oscillations in ATP and also a slow decrease in ATP [247, 248]. It has

also been demonstrated that oscillations in ATP concentration are tightly coupled

to intracellular water dynamics, a�ecting the overall state of the cytoskeleton of

the cell, coupling the chemistry and physics of the system [249].
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Metabolic alterations in cancer

In the 1920s, Otto Warburg discovered that cancer cells display a metabolic switch

to glycolysis, even in the presence of oxygen, a phenomenon now known as the War-

burg e�ect [229]. From these observations, Warburg concluded that the respiration

of all cancer cells is damaged; a conclusion which is still debated [230].

Two of many universal observations in cancer cells are: 1) their metabolism is

altered, and 2) genetic mutations are present [250]. Which, if any, of these is re-

sponsible for carcinogenesis is still unknown, but increasing evidence suggests that

mitochondrial dysfunction plays a key role [212, 251, 225]. Most other properties

observed in cancer cells can be explained as consequences of this dysfunction [224].

The metabolism of a cancer cell has to meet the increased energy requirements

of a constantly proliferating cell, whilst still maintaining the correct balance of

ATP. Too little ATP and the cell will not have enough energy to function, whilst

over-production of ATP will disrupt cellular processes [224]. The excess lactate

secreted by cancer cells can be explained by upregulation of glycolysis, following

increased glucose uptake. Decreased mitochondrial activity has also been observed

in cancer cells [225]. This preference for glycolysis even in the presence of oxygen

can be explained either by mitochondrial dysfunction, or a survival advantage pro-

vided by a switch to glycolysis [251]. Cellular energy metabolism within tumours

is highly heterogenous, with both oxygenated and hypoxic regions [252], depending

on the distance to the local blood supply.

It has been shown that tumour mitochondria are structurally and functionally

abnormal, and incapable of meeting cellular energy requirements [224]. The mi-

tochondrial proton gradient required for OXPHOS is disrupted, which may force

the cell to rely on glycolysis for ATP production, even when oxygen is abundant.

If healthy cells spend prolonged periods of time in this state, without repair of the

mitochondria, it may lead to genetic instability and disorder within the cell [224].

This may cause mutations to arise, and facilitate the onset of carcinogenesis.

Within such complex metabolic processes, in normal and cancer cells, it is un-

44



feasible to assume stationarity of the balance between supply and demand; it is

inevitably time-dependent. Indeed, it has been shown that oscillations are present

in cellular metabolism. Understanding these oscillations and their interactions, and

considering how they are altered during the metabolic transition to a glycolysis

dependent state may prove extremely useful in the characterization of carcinogen-

esis.

E�ects of altered energy metabolism on microvasculature

The global e�ects of the metabolic switch to glycolysis may directly a�ect the

microvasculature, either through alterations in signalling (i.e. initiation of angio-

genesis, as described above) or by changes to the tumour microenvironment.

During aerobic and/or anaerobic glycolysis and ATP hydrolysis, hydrogen ions

are formed and are actively transported out of the cell, through the interstitial

space, to the blood vessels, where they can be transported away from the site

[253]. The altered metabolism in cancer cells, i.e. the high glycolytic rate, coupled

with reduced drainage of waste products due to inadequate tumour vasculature

leads to a build-up of H+ ions which decreases the extracellular pH, i.e. the mi-

croenvironment becomes more acidic [198, 253, 254, 255].

In 1880, Gaskell demonstrated that acid solutions evoke vascular smooth muscle

cell relaxation [256, 257]. Changes in pH modulate the responsiveness of the

smooth muscle cells to vasoconstrictor stimuli [258]. It has since been shown

that altered pH can promote changes in vascular smooth muscle tone, with low

pH values inducing vessel dilation [257]. A reversible abolition of vasomotion

has also been demonstrated outside of a very narrow pH range in hamster cheek

pouch arterioles [69], providing evidence of the importance of microenvironmental

stability for e�ective vascular regulation. Acidic extracellular pH in melanoma was

shown to promote angiogenesis [255].

The reactivity of the blood vessels within a tumour may depend on their origin.

Those which already existed in the host but have been co-opted by the tumour
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[151] may still retain their ability to regulate blood �ow in the right conditions,

whilst vessels arising from tumour induced angiogenesis may never be capable of

such responses due to their inadequate structure [259]. Therefore, the exploitation

of potentially functional and mature blood vessels in tumours by introducing va-

sodilators is an active area of research [259], highlighting the necessity of vascular

regulation.

2.6 Summary

Oscillations in microvascular blood �ow can be quanti�ed in health and disease,

providing a tool for the investigation of pathologies in which vascular regulation is

altered. One such pathology is cancer, which is likely to demonstrate altered blood

�ow dynamics due to many simultaneous factors: the development of new, yet

dysfunctional, vessels via angiogenesis, alterations in cellular energy metabolism

to become more robust to limited nutrient availability, and the subsequent e�ects of

these factors on the tumour microenvironment resulting in reduced vessel reactivity

and inadequate tissue perfusion due to hostile conditions.
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3. Physiological measurement

The observation and measurement of spontaneous dynamics within living systems

is becoming increasingly feasible with the introduction of new measurement tech-

niques based on various physical principles from optical to electrical e�ects. This

chapter describes the techniques used for the acquisition of the data presented in

this thesis.

3.1 Systemic processes

3.1.1 Electrocardiogram

The heart is one of the most important oscillators in the human body. The elec-

trical activity of the heart can be non-invasively monitored in time using an elec-

trocardiogram (ECG). An ECG tracks the electrical changes in the heart during a

heartbeat. The average resting heart rate is between 60 and 90 beats per minute

(BPM), with a resting heart rate outside of these boundaries indicative of an un-

derlying medical condition. In athletes, the resting heart rate is generally lower,

due to an increased stroke volume, which is the volume of blood pumped out of

the heart with each beat. As cardiac output is the product of heart rate and stroke

volume, an increase in the latter allows the required resting cardiac output to be

maintained with a lower heart rate. In addition to monitoring changes in heart

rate, the speci�c waveform observed during one cardiac cycle may provide valu-

able information on the health of the heart. A typical heartbeat ECG is shown

in Figure 3.1. The small upward P wave indicates atrial depolarization, with the
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Figure 3.1: Typical one-cycle ECG trace

initial part representing right atrial depolarization and the terminal portion the

left atrial depolarization. A fraction of a second after the P wave begins, the atria

contract. The Q wave is a downward de�ection after the P wave and represents

septal depolarization. The R wave is usually the easiest wave to identify, and can

thus be used to calculate heart rate, and heart rate variability. It represents early

ventricular polarization. The S wave represents the late ventricular depolarization.

The T wave represents repolarization of the ventricles [260]. All these waves can

di�er in shape, and in some cases be absent, and are used in the early detection

and diagnosis of heart conditions.

3.1.2 Heart rate variability

Heart rate variability (HRV) can be calculated directly from an ECG signal by

marking the locations of the R-peaks, and considering the distance between them

as a complete period of oscillation with phase between 0 and 2π. The instantaneous

frequency is then the reciprocal of the time period between each pair of R-peaks. R-

peaks are chosen because they are the most prominent component of the heart beat,

and are present in every cycle. A disadvantage of this method is that the resolution

depends on the period of oscillation, i.e. no instantaneous frequency or phase

information is available between events. As the sampling frequency of the HRV

obtained from this method will vary depending on the period, linear interpolation
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must be performed on the signal. To retain the same resolution as the original

time series, the instantaneous frequency can also be extracted from the wavelet

transform of the ECG signal using ridge extraction methods, as in nonlinear mode

decomposition (NMD) [261]. HRV can be investigated by studying the obtained

signal using methods which will characterise the temporal �uctuations, for example

the continuous wavelet transform.

Heart rate varies naturally within a breathing cycle; it will slightly increase dur-

ing inspiration and slightly decrease during expiration. This variation is known as

respiratory sinus arrhythmia (RSA) [262]. The presence of RSA indicates e�cient

feedback mechanisms in the heart, it is evidence of the heart constantly respond-

ing to the needs of the body. Whilst the heart rate can be an indicator of general

health, with a low resting heart rate generally associated with a high level of phys-

ical �tness, e.g. in athletes, and a prolonged high resting heart rate, or tachycardia

(>100 bpm) a possible indicator of cardiac problems, it is the variability of the

heart rate which provides us with the most information. For example it has been

shown that heart rate variability decreases with age [112].

Heart rate variability is widely considered as a measure of the performance of

the autonomic nervous system. Lower HRV has been implicated in many physiolog-

ical conditions, such as congestive heart failure, diabetic neuropathy, susceptibility

to sudden death, atherosclerosis and hypertension. It has also been shown to be a

predictor of mortality after myocardial infarction [263]. Decreased HRV has also

been found in major depressive disorder and coronary heart disease, both of which

are hypothesized to be linked to vagal function [264].

3.1.3 Respiration

Respiration can be measured either mechanically, i.e. direct measurement of chest

displacement, or via analysis of expired carbon dioxide levels. Respiratory rate can

be calculated used the marked events method explained above. Using respiration

and heart rate signals it is possible to investigate cardiorespiratory coupling [265].
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Figure 3.2: Diagram demonstrating the principles and recording area of laser
Doppler �owmetry. From [266]

3.2 Blood �ow

3.2.1 Laser Doppler �owmetry

Laser Doppler �owmetry (LDF), exploits the Doppler e�ect to calculate blood

�ow (or �ux) in laser illuminated microvessels (see Figure 3.2). The photons

from a beam of light directed into the tissue will be scattered by both static and

moving particles. The moving red blood cells impart a Doppler shift to the photon,

depending on the scattering angle, the wavelength, and the velocity vector of the

cell [267]. If a wave with frequency ω is scattered from a moving particle with

velocity v, the Doppler shift is

∆ω = |v||kI − ks| cos β, (3.1)
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Figure 3.3: Scattering of a photon with a wave vector kI by a moving red blood
cell with velocity v.

where kI is the incident wave vector, ks is the wave vector of the scattered wave,

and β is the angle between the velocity vector and the scattering vector, de�ned

as kI − kS (see Figure 3.3). If α is the scattering angle, and λ the wavelength of

the light, the Doppler shift can then be written as [267]

∆ω = 2(2π/λ)|v| sin(α/2) cos β. (3.2)

The large number of vessels and moving particles in the microcirculation means

that the photons will inevitably undergo multiple Doppler shifts, giving a range

of shifts even if all particles have the same speed [267]. The Doppler shifted light

will interfere with non-Doppler shifted light on the photodetector, generating a

dynamic speckle pattern, causing the current signal of the detector to �uctuate.

The power spectrum of these �uctuations then provides information about the

�ux and concentration of the red blood cells [267], as the �rst moment of order,

or mean frequency, of the power spectrum is linearly proportional to these values.

These methods do not provide absolute velocity values, therefore blood �ow, or

�ux, is measured in perfusion units (PU). The perfusion signal is the average

concentration multiplied by the average root mean squared velocity of moving red

blood cells.
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Figure 3.4: Example wavelet transform of a laser Doppler �owmetry blood �ow
signal, demonstrating peaks in the six frequency intervals described in Section
2.3.2.

A LDF probe contains an optical �bre, through which laser light propagates,

with an emitter and detector, spaced according to the depth of light penetration

required. This technique has been used extensively to study the microcirculation,

providing essential insights into the oscillations present in blood �ow. Of particular

importance was the discovery of six characteristic peaks in the frequency spectrum

of LDF signals [68] (see Figure 3.4). These peaks have been reliably attributed to

various physiological oscillatory processes as described in Section 2.3.2.

The advantage of LDF is its non-invasiveness, and its ability to measure the

microculatory blood �ow in real time, with a high sampling frequency. A dis-

advantage is that it provides only a single point measurement, and therefore no

spatial information from the surrounding tissue.

3.2.2 Laser Doppler perfusion imaging

Laser Doppler perfusion imaging (LDPI) is based on the same principles as LDF,

but scans many points to create a blood �ow image rather than the single point

information provided by LDF. LDPI is ideal for the spatial imaging of blood �ow
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at the same depth a�orded by LDF, but the scanning time results in relatively

poor temporal resolution.

3.2.3 Laser speckle contrast imaging

When illuminating a di�use object, laser light will produce a random interference

e�ect know as a speckle pattern. If the illuminated object moves, or consists of

moving parts, the speckles over the moving area(s) will �uctuate in intensity in a

manner related to the velocity of the movement. This velocity information can be

extracted by imaging the speckle pattern and calculating the local speckle contrast,

a measure of the blurring caused by intensity �uctuations [268].

Since the discovery of lasers, speckle patterns caused by random interference

have resulted in much research into methods to reduce their e�ects. More re-

cently, this phenomena has been studied in its own right, and has been found

to be applicable to many di�erent areas of science. One area in which it has

proven particularly useful is in biomedical imaging of blood �ow [268, 269]. Laser

speckle contrast imaging (LSCI) provides superior temporal resolution to LDPI,

but cannot penetrate as far into the tissue.

LSCI is based on the fact that movement in an area on which a speckle pattern

is projected will cause blurring upon image capture, to an extent which depends

on the velocity of the movement and the exposure time of the camera [270]. High

velocities will cause the most blurring, and areas in which there is no movement

will retain a static speckle pattern. This blurring is quanti�ed as speckle contrast,

K,

K =
σ

〈I〉
, (3.3)

where σ and 〈I〉 are the standard deviation and mean, respectively, of the intensity

of a grid of pixels from the image. This value can be calculated spatially or

temporally, depending upon the application. A window (typically 5×5 or 7×7

pixels) is moved across the imaged speckle pattern, and its central value set to the

speckle contrast value for the window. Low speckle contrast values correspond to
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high blood perfusion values.

To represent these speckle contrast values in terms of �ux values, Brownian mo-

tion with a Lorentzian power spectrum of the velocity distribution can be assumed,

leading to [271]

K =
σ

〈I〉
=

{
τc
2T

[
1− exp

(
−2T

τc

)]}1/2

, (3.4)

where τc is correlation time (time taken for the autocorrelation to fall to a pre-

determined low level), and T is camera integration time. In theory, the speckle

contrast, K, should vary between 0 (high perfusion) and 1 (very low perfusion,

but in practice it never exceeds 0.5. This allows the simpli�cation of the previous

equation to [271]

K =
σ

〈I〉
=
( τc

2T

)1/2
. (3.5)

If we assume that perfusion is proportional to the mean velocity of scatterers

then perfusion is inversely proportional to the correlation time. Applying this

assumption gives blood �ow in terms of speckle contrast (for �xed exposure time)

[271]:

Flux ∝
(
〈I〉
σ

)2

. (3.6)

LSCI systems are commercially available, but a system can be built at a much lower

cost [272]. A system was developed within the Department of Physics at Lancaster

University using a Raspberry Pi with an infrared camera and an IR laser diode,

with processing performed in MatLab. A raw image and the corresponding laser

speckle image from this system can be seen in Figure 3.5.

3.3 Blood oxygenation

The colour di�erence between oxygenated and de-oxygenated blood can be ex-

ploited via their di�ering absorption spectra to observe relative changes in blood

oxygenation and volume. Blood oxygenation measurements will vary depending

on whether they are measured in an artery or vein. Pulse oximetry measures the
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Infrared laser diode (780nm)

Sample

Diffuse light

Figure 3.5: Top � diagram of the laser speckle imaging setup. Images were
obtained using a Thorlabs DCC1545M camera and a 780nm infrared laser diode.
Image processing was performed in MatLab. Bottom � Flux image map of the
�ngers of the left hand, obtained using an analysis window of 7×7 pixels (left),
and the raw image with visible speckles (right). Regions of high perfusion are
shown in red, whilst regions of low perfusion are dark blue.
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Spatial Temporal Recording Clinical
resolution resolution depth use

Laser Doppler
Poor Excellent Good

Microvascular
�owmetry (LDF) assessment [273]
Laser Doppler perfusion

Good Poor Good Burn depth [274]
imaging (LDPI)
Laser speckle contrast

Good Excellent Poor
Pilot neurosurgical

imaging (LSCI) procedures [275]

Table 3.1: Overview of techniques for the measurement of blood �ow. Speci�c
values depend on the setup used.

saturation of peripheral oxygenation, SpO2, using a probe which is usually placed

on the earlobe or �ngertip. The pulse oximeter transmits light of two wavelengths

into the skin to ascertain absorbance due to arterial blood, whilst correcting for

e�ects from other tissues. Pulse oximetry is particularly useful for detecting sys-

temic alterations in oxygen carriage, for example in hypoxaemia.

Near infrared spectroscopy (NIRS) utilises NIR light to measure relative changes

in haemoglobin concentration. In the optical window between 700 and 900nm, bi-

ological tissues are considered almost optically transparent; therefore haemoglobin

dominates light absorption. Water and other chromophores such as fat and melanin

are assumed not to change over time, allowing observed changes to be attributed

to haemoglobin. Di�erences in the absorption spectra of oxygenated and deoxy-

genated haemoglobin allow the two to be distinguished using at least two light

sources of di�erent wavelengths, one above and one below the isosbestic point

where the absorption is identical (see Figure 3.6). Some systems incorporate a

source at this wavelength to enable calculations of total haemoglobin, to verify

the Hb and HbO2 values. At least two di�erent wavelengths are required for the

calculations, with the inclusion of more wavelengths reducing error. Relative con-

centration is calculated as a function of total photon path length using the modi�ed

Beer-Lambert law [276, 277],

A = εcdDPF +G, (3.7)
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Figure 3.6: Absorption spectra for oxygenated and deoxygenated haemoglobin
(red and dark red lines, respectively) and water (blue line). The optical window in
which biological tissues are considered almost optically transparent is highlighted
in grey (700�900nm).

where A is light attenuation, ε is an extinction coe�cient, c is substance concen-

tration, d is the distance between source and detector, DPF is the di�erential

path length factor and G is signal loss due to scattering. The Beer-Lambert law is

only valid in non-scattering media, and thus is not applicable in biological tissue.

NIRS is widely used to monitor haemodynamic responses to brain activation.

3.4 Summary

Constant technological advancement allows continuous improvements in tempo-

ral and spatial resolution of existing techniques, whilst making new ones feasible.

This is leading to the acquisition of more biological data in vivo than ever before,

providing the opportunity to view functions within the body without perturba-

tion in both healthy and diseased states. With these new possibilities comes the

requirement for new analysis techniques for the optimal extraction of information

from this data.
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4. Dynamical systems

This chapter comprises three main sections. The �rst presents the theoretical back-

ground of dynamical systems, in particular nonautonomous systems and chrono-

taxic systems, followed by a review of the inverse approach to dynamical systems

in Section 4.2. Methods for the detection of chronotaxic systems via the inverse ap-

proach are then reviewed in Section 4.3. Finally, Section 4.4 expands these inverse

approach methods to new scenarios using numerical simulations, and the methods

are also applied for the �rst time to brain dynamics using real experimental EEG

data.

4.1 Introduction

A dynamical system describes the evolution of a state over time, the simplest case

being
dx

dt
= f(x), (4.1)

where the in�nitesimal change in x in in�nitesimal time intervals t is described

by some function f acting on the previous state of x. This di�erential equation

describes the evolution of the system in continuous time. When time is discrete,

iterated maps may be used [278], but only continuous time and thus di�eren-

tial equations are considered in this thesis. A dynamical system which explicitly

depends on time, as is also the case in most biological systems, is known as nonau-
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tonomous, with the simplest case being

dx

dt
= f(x, t). (4.2)

Linear dynamical systems, i.e. those with linear output, are exactly solvable. The

vast majority of biological systems are nonlinear [7], making their analysis more

di�cult, but also more interesting. Unlike linear systems, nonlinear dynamical

systems may exhibit self-sustained oscillations, and in this case will result in a

stable limit cycle in the phase space of the system. A limit cycle is an isolated

closed trajectory, which neighbouring trajectories will either spiral towards or away

from depending on its stability [278].

These considerations of deterministic models are important in the characteri-

zation of the dynamics of biological oscillations.

4.1.1 Nonautonomous systems

The theory of nonautonomous dynamical systems has increasingly been recognised

as a necessity in the treatment of the inherent time-variability of biological systems

[279]. Closer inspection of the dynamics observed in nature suggests that previous

approaches to the characterization of temporal �uctuations in these observations

may be insu�cient. At �rst glance, biological �uctuations may appear random,

leading to their description by stochastic models [280]. The complexity observed in

biological systems has also led to attempts to treat them with chaos theory [281];

however this does not allow for the apparent stability of these systems, irrespective

of their initial conditions or perturbations to their trajectories. Such characteristics

of biological oscillators suggests underlying determinism or control of both their

amplitudes and frequencies even with continuous perturbations. This phenomenon

of biological systems resisting a natural tendency to disorder was discussed in terms

of free energy minimization [282] and separation of internal and external states, but

this approach is still based on random dynamics. A closely related yet more natural
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approach is to consider them as nonautonomous systems, which are explicitly time

dependent. Approaches based on reformulation of nonautonomous systems as

higher dimensional autonomous systems introduce unnecessary complexity whilst

failing to describe accurately the dynamics arising from nature, where systems

are open and subject to continuously variable external perturbations. Many living

systems may be considered as nonautonomous oscillatory systems, with such time-

varying dynamics being observed in individual mitochondria [220], the cardio-

respiratory system [112, 283], the brain [284] and blood �ow [110].

4.1.2 Chronotaxic systems

Although stability of the amplitude dynamics of an oscillator can be achieved

with autonomous self-sustained limit cycle oscillators, the frequency of this oscil-

lation could be easily changed by weak external perturbations [285]. To account

for a case where this frequency of oscillation is also robust to perturbations, yet

time dependent, a completely new approach is required. Thus, nonautonomous

systems with stable yet time-varying frequencies were recently addressed, and for-

mulated as chronotaxic systems [285, 286, 287]. Chronotaxic systems possess a

time-dependent point attractor provided by an external drive system. This allows

the frequency of oscillations to be prescribed externally through this driver and

response system, giving rise to determinism even when faced with strong pertur-

bations.

Chronotaxic (chronos � time, taxis � order) systems were introduced [285, 286,

287] in order to provide a framework in which a nonautonomous dynamical system

may possess time-varying amplitudes and frequencies which are stable, i.e. able to

resist continuous external perturbations.

Nonautonomous dynamical systems, and thus chronotaxic systems, are de�ned

by the following system,

ṗ = f(p); ẋ = g(x,p), (4.3)
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(a) (b)

Figure 4.1: (a) Moving point attractor in a chronotaxic system. (b) Simplest
case of a chronotaxic system, x, driven by p

where p ∈ Rn, x ∈ Rm, f : Rn → Rn, g : Rm × Rn → Rm, where n and

m can be any positive integers. Crucially, the solution x(t, t0,x0) of Eqs. (4.3)

depends on the actual time t as well as on the initial conditions (t0,x0), whereas

the solution p(t − t0,p0) depends only on initial condition p0 and on the time of

evolution t− t0. The driven system x is nonautonomous, i.e. it is described by an

equation that explicitly depends on time. x is assumed to be observable, whilst

the driving system p may not be, as is the case in many real systems. Therefore,

the observable dynamics of x are used to infer information about the evolution of

the system p, with the assumptions that in the case of chronotaxicity it will create

a time-dependent steady state in the dynamics of x, (see Figure 4.1(a))

The system x is considered as a thermodynamically open system, and in addi-

tion to the driving p which makes the system chronotaxic, external perturbations

are also considered, arising from everything outside x and p which may in�uence

the system. In the absence of external perturbations, the dynamics of x will re-

duce to the time-dependent steady state determined by p. This unperturbed state,

also known as a point attractor, is denoted xA(t). Assuming that for any initial

condition x0 at time t0 the solution of the system asymptotically approaches the

time-dependent steady state xA, the condition of forward attraction for xA is the

following,

lim
t→+∞

|x(t, t0,x0)− xA(t)| = 0, (4.4)

which can only be satis�ed when the chronotaxic system is not perturbed. There-

fore, this condition is not su�cient to de�ne the time-dependent point attractor in

a real system, especially when considering the stability of the system at the current
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time t, not the in�nite future. To resolve this, a condition of pullback attraction

must also be satis�ed by xA(t) in a chronotaxic system,

lim
t0→−∞

|x(t, t0,x0)− xA(t)| = 0. (4.5)

Considering the condition 4.5 at all times t > −∞, it follows that xA should also

satisfy the invariance condition, i.e. the condition that xA is a solution of the

system 4.3,

x(t, t0,x
A(t0)) = xA(t). (4.6)

The asymptotic convergence in the in�nite future starting from the in�nite

past allows the dynamics of x(t, t0,x0) to deviate from xA during a certain �nite

time interval, meaning that during this time interval the ability of the system

to resist external perturbations will be absent. Therefore, another condition for

chronotaxicity is that the system should satisfy the condition of contraction. This

means that in phase space there should be a contraction region C(t) within which

any two trajectories x1,x2 of the system inside the contraction region xi(t, t0,x0i) ∈

C(t), i = 1, 2, can only converge,

d

dt
|x1(t, t0,x01)− x2(t, t0,x02)| < 0. (4.7)

This contraction region can be �nite, and thus trajectories may leave the area.

It is therefore required in a chronotaxic system that the contraction region should

contain a �nite area A′, A′ ⊂ C, such that solutions of the system starting in A′

never leave it, ∀t0 < t, ∀x0 ∈ A′(t0), x(t, t0,x0) ∈ A′(t).

Providing the above conditions are met, the dynamics of p may be stochastic

or chaotic, but the dynamics of x, when unperturbed, will still be deterministic.

Real life systems can be modelled by perturbed chronotaxic systems, in which a de-

terministic and a stochastic component may be observed, but the system will still

retain a deterministically de�ned frequency and resist continuous external pertur-

bations provided that they are not too strong, and will revert to the unperturbed
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case in their absence.

The next step following this knowledge of the underlying dynamics of chrono-

taxic systems is to extract the deterministic components in data from living sys-

tems in order to reduce their complexity and study the underlying dynamical

processes.

Example chronotaxic systems and their identi�cation via the inverse approach

are discussed in Section 4.3.

4.2 Inverse approach to dynamical systems

A wide range of observed properties in living systems can be explained by con-

sidering them as nonautonomous. Despite this, di�culties in their analysis as

such have led to many unsuccessful attempts to apply methods more suited to

autonomous systems. In deterministic systems, phase space analysis is usually the

�rst point of call, i.e. reconstruction of the attractor in phase space. This approach

works well for autonomous systems, but does not consider the possibility of time-

dependent attractors [279]. To incorporate time-dependence into these systems,

extra dimensions in phase space are required, introducing unnecessary complexity

to the problem.

Many signal analysis methods assume stationarity of the frequency distribution

of the data, but in nonautonomous systems this assumption is not valid. Single

variable time-series, particularly those from living systems, must be treated as

arising from nonautonomous dynamical systems, due to time-dependent in�uences

of variables other than the one under study. Approaches based on windowing

have been applied in order to attempt to treat time-variability in data, but these

potentially lose crucial information. For example, in phase space reconstruction,

the window may not be of a su�cient size to capture the whole of the attractor,

or its variations in time. Application of the Fourier transform to nonstationary

data will result in a blurred or misleading power spectra, severely limiting its

usefulness. The windowing approach has been applied here with some success,

63



but the windowed Fourier transform introduces frequency resolution limitations

based on window size; the better the time resolution, the worse the frequency

resolution (known as the Gabor limit [288]). The �xed time-frequency relationship

at all scales in a windowed Fourier transform severely limits its usefulness for the

analysis of low frequency oscillations. This problem can be addressed using the

continuous wavelet transform, which provides a logarithmic frequency scale (see

Section 4.2.3). This simultaneous observation of the time and frequency domains is

extremely useful in the visualization of dynamical systems and their time evolution.

As a result, development of wavelet-based methods speci�cally for the treatment

of time-dependent dynamics is now a very active �eld of research [289], including

wavelet phase coherence [290], the synchrosqueezed transform [291] and wavelet

bispectrum [292].

4.2.1 Time domain

Instantaneous frequency and phase

The instantaneous frequency of an oscillation can be obtained as the time deriva-

tive of the phase, assuming that the phase can be de�ned for each cycle, and

that the phase is separable from the amplitude. The calculation of instantaneous

frequency via the marked events method has already been discussed in Section

3.1.2. Another method for the calculation of instantaneous phase is the Hilbert

transform, which converts a real signal into a complex one known as an analytic

signal, containing amplitude and phase information of the oscillation. The Hilbert

transform is superior to the marked events method in that it provides a time res-

olution equal to the sampling frequency, whilst in the marked events method this

resolution can only be equal to the frequency of events, which also means that the

resolution may vary over time. However, the Hilbert transform is quite limited

in terms of the time series to which it can be applied, for example it can only be

used in time series in which a single oscillation is present. As previously discussed,

extraction of instantaneous phase from time-frequency representations provides
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Figure 4.2: Linear interpolation can be used to remove spikes of short duration.
As an example, the spike at around 687 seconds can be seen in the inset in black,
and the interpolation line across it in red. It is important to retain as much of the
original signal as possible, here 99.62% remains.

good resolution whilst allowing the investigation of multi-mode signals.

Preprocessing

Preprocessing of a signal is important to provide optimal conditions for analysis

but it is important to keep data manipulation to a minimum. In data recorded

from living systems, artefacts may arise from movement or other, non-physical,

in�uences. The characteristics of these artefacts determines how they should be

dealt with. If their duration is much shorter than the frequencies of interest, they

can be removed by simple linear interpolation across the spike (see Figure 4.2).

If there are multiple spikes, or their duration is very long, i.e. comparable to the

frequencies being studied, then they should be either cut from the data, if they

occur close to either end, or the data should be discarded. Under no circumstances

should the data be spliced, i.e. joining non-consecutive intervals of data.

Another thing to consider in preprocessing is �ltering. If mean values are to be

calculated, or frequency analysis is to be applied to the signal, the data should be

detrended to remove trends and e�ects of frequencies lower than those of interest,

which may a�ect results. Detrending can best be achieved using a moving average

method, in which a window of a de�ned width in time is moved along the signal,
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Figure 4.3: A detrended blood �ow signal (black). A 200s window was used in
a moving average, to calculate the trend (yellow), removing all frequencies below
0.005 Hz. The mean is also subtracted.

and the central value is set to the mean of the window. This can be used to �lter

or smooth signals, depending on the window size used. For frequency, or time-

frequency analysis, it is also necessary to subtract the average of the signal, as

shown in Figure 4.3.

Detrended �uctuation analysis

The complexity of a time series can be quanti�ed using fractal analysis. Detrended

�uctuation analysis (DFA) is used to determine the statistical self-similarity of a

signal at di�erent timescales, with less strict assumptions about the stationarity

of a signal than the auto-correlation function. The scaling of these �uctuations is

determined by the self-similarity parameter α, where �uctuations at time scales

equal to t/a can be made similar to those at the larger time scale t by multiplying

with the factor aα.

In order to calculate α, the time series is integrated in time and divided into

sections of length n. For each section the local trend is removed by subtracting a

�tted polynomial�usually a �rst order linear �t [293, 112]. The root mean square
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�uctuation for the scale equal to n is then given by

F (n) =

√√√√ 1

N

N∑
i=1

Yn(ti)2, (4.8)

where Y (t) is the integrated and detrended time series and N is its length. The

�uctuation amplitude F (n) follows a scaling law if the time series is fractal. By

plotting logF (n) against log n, the value of α is simply the gradient of the line.

For completely uncorrelated white Gaussian noise the parameter for α has a value

of 0.5, while integrated white Gaussian noise returns a value of 1.5.

4.2.2 Frequency domain

Before analysing a signal in the frequency domain the frequency range which it is

possible to observe based on the characteristics of the data must be considered.

The maximum observable frequency in a signal is equal to half the sampling fre-

quency, de�ned as the Nyquist frequency. This limit prevents aliasing. Aliasing

occurs when the sampling frequency is not su�ciently high to capture accurate

information about the system being observed. The lowest observable frequency is

equal to 1/l, where l is the length of the time series, ensuring that at least one pe-

riod of oscillation is possible in the measured time series. One also cannot resolve

the amplitude of two oscillations which have a di�erence in frequency of less than

1/l. In practice, particularly when dealing with signals from living systems, it is

more reliable to de�ne the lowest frequency of observation as 1/5l [294].

The Fourier transform

Any physical process can be described either in the time domain or in the fre-

quency domain. In the time domain, the values of a quantity f are given as a

function of time, f(t), whereas in the frequency domain the process is described

as the amplitude of the process F as a function of frequency, F (f). Both are

representations of the same function which provide di�erent kinds of information.

67



If time is measured in seconds, the units of frequency will be Hertz, or cycles per

second.

A Fourier series expresses a periodic function as an in�nite series of sines and

cosines,

f(t) = a0 +
∞∑
ω=1

[aω cosωt+ bω sinωt], (4.9)

where ω is the angular frequency and a0, aω and bω are Fourier coe�cients.

Data resulting from biological recordings will involve discrete sampling. For

the basis described above, the discrete Fourier transform (DFT) of a signal is given

by:

Fω =
N−1∑
n=0

f(n)e
2πiωn
N (4.10)

The Fourier transform will show peaks at frequencies of periodic terms contained

in the time series. The Fourier transform is symmetric, with both positive and neg-

ative frequencies calculated. However, negative frequency components are usually

discarded, and the positive components doubled to compensate.

The Fourier transform assumes that the signal on which it is performed is

stationary, i.e. that the frequency components do not vary with time. In the

vast majority of biological signals, there is some degree of time variance, which

even if deterministic will not be distinguishable from stochastic variations in a

basic Fourier transform. The sinusoidal basis of the Fourier transform may also

misrepresent oscillations which have more irregular shapes. An example time series

containing low frequency oscillations between 0.001 and 0.01 Hz is shown in Figure

4.4. The fast Fourier transform (FFT) of this signal is compared with the FFT

of 1/f (or pink) noise, demonstrating that it is di�cult to distinguish between

the deterministic oscillations in the simulated data and the pure noise signal. In

contrast, a continuous wavelet transform of the same data reveals a distinct, time-

varying oscillation, highlighting the bene�ts of considering time and frequency

information simultaneously.
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Figure 4.4: Comparison of the Fourier transforms of simulated low frequency os-
cillations and 1/f noise. (a) Simulated data with oscillations varying in frequency
between 0.001 and 0.01 Hz. (b) FFT of the data in (a). (c) DFA exponent of the
data in (a) suggests anti-correlated. (d) FFT of 1/f noise (pink noise). (e) DFA
exponent of 1/f noise is around 1, as expected. (f) Continuous wavelet transform
of the data in (a), shows oscillations are present with varying frequency.
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4.2.3 Time-frequency analysis

Short time Fourier transform

The Short Time Fourier Transform (STFT) or windowed Fourier transform (WFT)

goes some way to solve the problems with the Fourier transform, by dividing the

signal into `windows' within which the signal can be approximated as a stationary

one. This method provides a time-frequency representation, in which the FFT

is calculated for each window, and the middle value of the window in the STFT

representation set to the resultant FFT values.

The STFT still has its limitations. The window size must be decided depending

on whether the user requires good time resolution or good frequency resolution,

one cannot have both simultaneously [288]. Also, the linear frequency resolution

of the STFT means that it performs poorly in resolving separate oscillatory modes

when analysing low frequency components in data.

Continuous wavelet transform

The optimal solution to the previously discussed limitations is the wavelet trans-

form. This simultaneously examines the signal in time and frequency, and allows

good resolution in both through the use of an adaptive window. If this process is

carried out in discrete steps, it is known as a discrete wavelet transform (DWT)

which has no overlap between frequency bands. If continuous, it is a continu-

ous wavelet transform (CWT). The superiority of the CWT over the FFT when

analysing a chirp signal is demonstrated in Figure 4.5.

The continuous wavelet transform is given by

g(s, t) =
1√
s

∫ ∞
−∞

ψ

(
u− t
s

)
g(u)du,

where s is a scaling factor, t is a location on the signal in time and ψ is the wavelet

function. The wavelet transform is obtained by moving a wavelet function along

all locations of the signal. For each location, a full range of scales of the wavelet is
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Figure 4.5: (a) Nonlinear chirp signal (quadratic) sin(2π × 0.0001 × time2) has
a frequency which increases with time. (b) The Fourier transform is unable to
properly represent the signal in (a) in the frequency domain, due to the time-
variation. (c) The continuous wavelet transform in (c) and the 3D version in (d)
show how the frequency changes with time using a 3D map showing time and
frequency information simultaneously.

used, and can be adjusted depending on the range of frequencies to be investigated.

The value obtained from the convolution of the wavelet function with the signal

at these times and frequencies will be large if there is a good match (if the signals

are out of phase, a large value will still be given but it will vary between real

and imaginary parts if a complex wavelet is used). In this way, a whole picture

of a signal can be created, with the axes time, frequency and amplitude, which

is the value of the transform at each scale as shown in Figure 4.6. The wavelet

power spectrum can be calculated as the modulus square of the wavelet transform

integrated over frequency [289],

PW (ω, t) =

∫ ω+ dω
2

ω− dω
2

|WT (ω, t)|2dω. (4.11)

The time average of PW provides a representation of the whole time series, which

can be used to compare between power spectra of di�erent signals. Whilst this

may seem to be a reduction to the functionality of the Fourier transform, time-

averaged wavelet power provides superior resolution at low frequencies for time-

varying oscillations due to the logarithmic frequency scale (see Figure 4.7).
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Figure 4.6: Example of the translation of wavelets of di�erent scales (top) across
a blood �ow signal (middle) in time. The results of the convolution of the wavelet
with the time series are plotted for each scale and location (bottom).

Wavelet types

There are many di�erent wavelets, each having its own applications. Particularly

useful are complex wavelets, which allow the separation of the phase and amplitude

components of a signal. The wavelet used in this thesis is the Morlet wavelet, a

complex wave within a Gaussian envelope, which has unit standard deviation. The

real and imaginary sinusoids di�er in phase by a quarter of a period [295]. The

complex Morlet wavelet is de�ned as

ψ(u) =
1
4
√
π
ei2πf0ue−u

2/2
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Figure 4.7: Time averaged wavelet transform vs. Fourier transform. Even when
time-averaged, the wavelet transform provides superior resolution at lower frequen-
cies for time-varying oscillations.

The wavelet coe�cients obtained using the complex Morlet wavelet are complex

numbers which de�ne the amplitude and instantaneous phase for each frequency

and time [296].

Cone of in�uence

The CWT integrates over in�nite time, but a real data set has �nite length. As

a result, the wavelet transform becomes ill-de�ned near the time borders, close to

t = 0 or when t approaches the length of the time series. To overcome this, the

signal can be 'padded', i.e. made longer at both ends during the calculation, and

then trimmed to retain only the original time period. Various padding regimes

are used, including zero padding, predictive padding and periodic padding [261].

Even with a padding scheme in place, boundary e�ects are still observed due to

the wavelet running over the edge of the time series, with the una�ected portion

of the wavelet transform known as the cone-of-in�uence.

Implementation

An example algorithm for the implementation of the continuous wavelet transform

is as follows:

1. Decide the frequency limits within which you require the CWT, and create
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a logarithmic scale array, noting that with the Morlet wavelet of f0 = 1,

scale=1/frequency.

2. Calculate the wavelet for each scale, and implement the convolution with the

time series. The �nite duration of the time series will result in the wavelet

transform becoming ill-de�ned near the ends of the signal. To tackle this

problem, the signal is usually padded (see above).

3. The convolution required in the calculation of the CWT can be implemented

using the convolution theorem:

g ∗ h ≡ G(f)H(f), (4.12)

i.e. the Fourier transform of the convolution is the product of the individual

Fourier transforms of the wavelet and the time series [297]. Therefore, the

convolution of the signal and the wavelet is equal to the inverse Fourier

transform of the product of their individual Fourier transforms.

4.2.4 Interactions

Wavelet phase coherence

When using a complex wavelet such as the Morlet wavelet in the wavelet trans-

form, the wavelet coe�cients will also be complex, providing amplitude and phase

information at each time and frequency. The di�erences between instantaneous

phases in two signals can be monitored over time using wavelet phase coherence,

which may reveal phase relationships between them [298].

Wavelet phase coherence is computed by �rst calculating instantaneous phases

at each time tn and frequency fk for both signals φ1k,n and φ2k,n, and then �nding

their relative phase di�erences ∆φk,n = φ2k,n − φ1k,n. The sine and cosine compo-

nents of the phase di�erences are then calculated and averaged in time, and the
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phase coherence de�ned as [298]:

Cφ(fk) =
√
〈cos ∆φk,n〉2 + 〈sin ∆φk,n〉2. (4.13)

The phase coherence Cφ(fk) will have a value between 0 and 1, with a value of

zero suggesting that the phase di�erence changes continuously in time, and thus

that the oscillations are likely to be unrelated, whilst a value of 1 is indicative

of a phase relationship which remains constant in time. However, wavelet phase

coherence values at lower frequencies may be arti�cially high, due to them being

represented by fewer periods of oscillation in the signal. The phase coherence

between even two completely unrelated signals will increase at lower frequencies,

and tend towards 1. Thus, to distinguish true phase coherence from this low

frequency bias, surrogate data can be used to de�ne a boundary above which

phase coherence may be considered signi�cant. Surrogate data testing involves

the generation of time series which are identical to the one being studied in every

way except in the property of interest [299].

Time-localised phase coherence can follow time-variations in the phase rela-

tionships between two signals by using a sliding window, which can be scaled to

always contain the same number of cycles, thus removing the low frequency bias

observed in the time-averaged case [300]. At least 5 cycles of the lowest frequency

oscillation are required to calculate windowed phase coherence, which results in

the loss of information at low frequencies.

Synchronization

Synchronization is the adjustment of rhythms of oscillators to a state in which

the relationship between their phases or amplitudes remains �xed, due to their

weak interaction [301]. Here, only phase synchronization is considered, as phase

dynamics is the main focus of subsequent chapters.

The simplest representation of synchronization is the synchrogram. Based on

the marked events method discussed previously, synchronization can be detected
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between two oscillators as follows: the wrapped phase of one oscillator, usually

the slowest, is sampled at the times of the marked events of the other oscillator,

with the resultant phase values plotted against time. If these events consistently

occur at the same point in the cycle of the slow oscillator, the synchrogram will

display horizontal lines, which suggests synchronization between the oscillators.

The number of horizontal lines determines the synchronization order, for example

2 visible lines when considering one period of the slowest oscillator would mean 2:1

synchronization. Whilst initially useful, synchrograms do not provide a quanti�-

able measure, and synchronization of higher orders is cumbersome to detect with

synchrograms because of having to manually edit the number of cycles over which

to wrap the phase.

To obtain a quanti�able measure, the phase synchronization index or phase

coherence can be calculated [302]. Dynamical Bayesian inference can also be im-

plemented to detect time-varying synchronization.

Dynamical Bayesian inference

Dynamical Bayesian inference can simultaneously detect time-varying synchroniza-

tion, directionality of coupling and time-evolving coupling functions [303, 304].

Following the determination of the phases of two time series, for example using

the continuous wavelet transform, their dynamics is assumed to be described by

[303, 304, 302]

ϕ̇i = ωi + fi(ϕi) + gj(ϕi, ϕj) + ξ(t), (4.14)

where ωi is the natural frequency of the oscillation, fi(ϕi) are the self-dynamics of

the phase, gi(ϕi, ϕj) are the cross couplings, and ξ(t) is a two-dimensional white

Gaussian noise 〈ξi(t)ξj(τ)〉 = δ(t − τ)Eij, included to represent a process in a

real system. Based on the periodic nature of the system, the coupling terms are
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modeled using the Fourier bases

fi(ϕi) =
∞∑

k=−∞

ãi,2k sin(kϕi) + ãi,2k+1 cos(kϕi), (4.15)

and

gi(ϕi, ϕj) =
∞∑

s=−∞

∞∑
r=−∞

b̃i,r,se
2πirϕie2πisϕj , (4.16)

where k, r, s 6= 0. In practice, it is reasonable to assume that the dynamics will

be well described by a �nite number of Fourier terms, denoted Ai,k(ϕi, ϕj). The

corresponding parameters from ãi and b̃i then form the parameter vector c(i)k . The

inference of these parameters utilises Bayes' theorem,

pX (M|X ) =
`(X|M)pprior(M)∫
`(X|M)pprior(M)dM

, (4.17)

where pX (M|X ) is the posterior probability distribution and `(X|M) is the like-

lihood function for the values of the model parametersM given the data X , and

pprior(M) is a prior distribution. The negative log-likelihood function is

S =
N

2
ln |E|

+
h

2

N−1∑
n=0

(
c
(l)
k

∂Al,k(ϕ.,n)

∂ϕl
+ [ϕ̇i,n − c(i)k Ai,k(ϕ.

∗
,n)](E−1)i,j[ϕ̇j,n − c(j)k Aj,k(ϕ.

∗
,n)]

)
,

(4.18)

with implicit summation over repeated indices k, l, i, j. The log-likelihood is a

function of the Fourier coe�cients of the phases [303].

Assuming a multivariate normal distribution as the prior for parameters c(i)k

with means c̄ and covariances
∑

prior, the stationary point of S can be calculated
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recursively from

Ei,j =
h

N
[ϕ̇i,n − c(i)k Ai,k(ϕ.

∗
,n)][ϕ̇j,n − c(j)k Aj,k(ϕ.

∗
,n)], (4.19)

c
(i)
k = (Ξ−1)i,lkwr

(l)
w ,

r(l)w = (Ξprior)
(i,l)
kw c

(l)
w + hAi,k(ϕ.

∗
,n)(E−1)ijϕ̇j,n −

h

2

∂Al,k(ϕ.,n)

∂ϕl
,

Ξi,j
kw = Ξi,j

priorkw + hAi,k(ϕ.
∗
,n)(E−1)ijAj,w(ϕ.∗,n).

The inferred parameters of the coupling functions can be used to determine

whether synchronization results. The presence of synchronization provides ev-

idence that the system could be chronotaxic; however it remains unclear from

which coupling function the stability arises without calculating the direction of

coupling [305],

D =
ε12 − ε21
ε12 + ε21

, (4.20)

where

ε12 =
√
c22 + c24 + ..., (4.21)

ε21 =
√
c21 + c23 + ...,

are the Euclidean norms of the parameters. The odd parameters correspond to

the coupling terms inferred for ϕ1 in the direction 2→ 1, and the even parameters

correspond to the coupling terms inferred for ϕ2 in the direction 1 → 2. See [306]

for further details and an in depth tutorial on dynamical Bayesian inference and

its implementation.

4.3 Identifying chronotaxic systems

Once the properties of an observed system have been recognised as possibly chrono-

taxic, the next problem is how to infer these dynamics and interactions from direct
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observations, i.e. via the inverse approach. In a chronotaxic system, particularly

one found in nature, whilst the underlying dynamics is de�ned by the external

driver, the system will likely still be a�ected by other in�uences and noise, and

these may mask the chronotaxic dynamics if the correct analytical approach is

not applied. For example, the inherent time-variability of the frequency of the

dynamics arising from a chronotaxic system means that it cannot be characterized

accurately by any method based on averaging. This novel class of systems requires

new inverse approach methods, with the focus on the extraction and identi�cation

of the dynamics of the drive system, and its in�uence on the response system.

Here, the currently available inverse approach methods are demonstrated for the

identi�cation of chronotaxicity from a single time series of the response system in

which the phase and amplitude dynamics are separable. These methods are then

applied to numerically simulated and real experimental data.

Two distinct inverse approach methods are utilised in the detection of chrono-

taxicity [302]: phase �uctuation analysis (PFA) and dynamical Bayesian inference

(see previous section on interactions). It should be noted that the current methods

are only applicable to phase dynamics, i.e. the focus is on the ability of the time-

varying frequency to resist continuous external perturbations. The two methods

rely on di�erent inferential bases. Phase �uctuation analysis provides a measure

of statistical e�ects observed in a signal, whilst the dynamical Bayesian inference

method infers a model of di�erential equations and gives a measure of dynamical

mechanisms, i.e. the evaluation of chronotaxicity relies on the inferred parameters

of the model. PFA is said to infer a functional connectivity, while the dynamical

Bayesian inference method infers e�ective connectivity [307]. The optimal method

to use depends on the characteristics of the data, as detailed below.

In order to determine whether a system is chronotaxic, one can observe the

distribution of the �uctuations in the system. If the original distribution of the

perturbations is known, then the stability of the system can be determined relative

to the unperturbed trajectory, which in a chronotaxic system is determined by the
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time-dependent point attractor. How these perturbations grow or decay over time

will depend on the degree of external in�uence on the system, or its chronotaxicity.

Consider a non-chronotaxic phase oscillator with noise [308],

ϕ̇x = ω0(t) + η(t), (4.22)

where ω0(t)>0 is the time-dependent natural frequency and the observed phase

ϕx is perturbed by noise �uctuations η(t). If η(t) is an uncorrelated Gaussian

process, then integrating the system will result in the dynamics of ϕx consisting

of a monotonically increasing phase perturbed by a random walk noise. However,

this is not the case in a chronotaxic phase oscillator,

ϕ̇p = ω0(t), (4.23)

ϕ̇x = εω0(t) sin(ϕp − ϕx) + η(t),

where ϕp is an external phase and |ε| > 0. Here, the point attractor prevents η(t)

from being integrated over to the same extent. This will change the distribution

of the observed noise from Brownian to something closer to white noise, and it is

this di�erence in the distribution in observed phase �uctuations which is exploited

in the inverse approach methods for the detection of chronotaxicity.

4.3.1 Extracting the phase estimates

Given a single time series, the �rst step in determining whether it contains chrono-

taxic phase dynamics is the extraction of the perturbed and unperturbed phases

of any oscillatory modes present, as described above. First, when only consid-

ering phase dynamics, the amplitude and phase should be separated using time-

frequency analysis [289]. Phase information can also be obtained via the analytic

signal generated by the Hilbert transform, but this is only applicable when there

is only one oscillation in the time series [302, 309, 310], which cannot be assumed

in real data. The continuous wavelet transform (see Section 4.2.3) provides an
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optimal time-frequency resolution for the required extraction of the instantaneous

phases of oscillations in a time series. Oscillations can then be traced in the CWT

using a ridge-extraction method [311, 312] or the synchrosqueezed wavelet trans-

form [291]. Following the extraction of the instantaneous frequencies of oscillations

via these methods, the phase ϕx of the observed system is then arg(WT (s, t)), where

s and t denote the determined positions of the oscillations. Once the estimated

perturbed phase ϕx has been extracted, the next step is to obtain the estimated

unperturbed phase ϕA∗x . In order to separate the dynamics corresponding to ϕAx

from the e�ects of the noise perturbations η(t), it can be assumed that the dynam-

ics of ϕAx are con�ned to timescales larger than a single cycle, and that the noise is

weak or comparable in magnitude to this dynamics [302]. Therefore, the estimated

unperturbed phase ϕA∗x can be obtained by �ltering out high frequency components

of ϕ∗x, taking care to retain the dynamics of ϕAx . This can be achieved by smooth-

ing over the instantaneous frequency extracted from the wavelet transform [289].

This can then be integrated over in time to give the estimated driver phase ϕA∗x .

For increased precision of phase extraction, and determination of whether an ex-

tracted oscillatory mode is physically meaningful, nonlinear mode decomposition

may be used [261].

4.3.2 Detecting chronotaxicity

One approach to the detection of chronotaxicity is the application of dynamical

Bayesian inference to the extracted perturbed (ϕx) and unperturbed (ϕAx ) phases

in order to model their interactions. The characteristics of the coupling functions

between ϕx and ϕAx may reveal the dynamics of the system in terms of chrono-

taxicity. Bayesian inference is able to track time-dependent system parameters,

meaning that it is particularly useful for the detection of chronotaxicity in systems

which move in and out of a chronotaxic state. To detect chronotaxicity, Bayesian

inference is applied to ϕ∗x and ϕA∗x (of which the latter is assumed to follow the

same dynamics as ϕp), following their extraction from the time series. The time-

81



evolution of the coupling parameters for each phase is inferred and these are used

to determine the synchronization state of the system, and the direction of coupling

between the phases. In a chronotaxic system we require the driver and response

systems to be almost or fully synchronized, and also that the direction of coupling

is only from the driver ϕAx to ϕx.

The basis of this method is the calculation of the synchronization and direc-

tion of coupling of the system in order to determine chronotaxicity. However, the

more synchronized the driver is with the response system, the less information �ow

occurs between the two. With less information from which to infer parameters,

most directionality methods, including Bayesian inference, become less reliable,

and whilst synchronization may still be accurately detected, the direction of cou-

pling will become less accurate the closer the system gets to synchronization. With

frequent external perturbations, intermittent transitions, and moderate dynamical

noise, there is greater information �ow, and thus the inference is more precise, but

this cannot be assumed in chronotaxic systems. In real systems, the synchroniza-

tion state is not known beforehand; thus a more robust method is required, which

can identify chronotaxicity even in systems close to synchronization.

Phase �uctuation analysis (PFA) is e�ective even when ϕx and ϕp are almost

synchronized [302]. Given the estimates of ϕx and ϕAx , the next step is to analyse

the distribution of �uctuations in the system relative to the unperturbed trajectory

by calculating the phase �uctuations ∆ϕx = ϕ∗x − ϕA∗x .

The distribution of these �uctuations will change depending on whether the sys-

tem is chronotaxic or not. To quantify the distribution of �uctuations, detrended

�uctuation analysis (DFA) is performed on ∆ϕx [293, 112]. For uncorrelated white

Gaussian noise, as is assumed here to perturb the system, α will have a value of 0.5.

Integrated white noise (Brownian noise), which is expected in a non-chronotaxic

system, will return a DFA exponent of 1.5. In reality, a chronotaxic system is

expected to have a DFA exponent between 0.5 and 1, due to the fact that the

decay of perturbations in a chronotaxic system cannot be instantaneous, so some
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Figure 4.8: (a)�(c) 5-second time series of sin(ϕx) (red line) in 3 cases: chrono-
taxic, non-chronotaxic, and chronotaxic with phase slips, from Eq. 4.24. The
grey line shows ϕp (chronotaxic), and ωxt (non-chronotaxic). (d)�(f) ∆ϕx for the
whole time series, detrended with a moving average of 200s. In all cases ωx,p =
2π, h = 0.001, L = 1000 seconds and σ = 0.3. ε = 5 and 0 in the chronotaxic
and non-chronotaxic cases, respectively. DFA exponents, α, are shown. The DFA
exponent of (f) incorrectly suggests the system is non-chronotaxic. To distinguish
between a non-chronotaxic system and a chronotaxic system with phase slips, the
delayed distributions were calculated (see Section 4.3.2) in the non-chronotaxic (g)
and chronotaxic (h) case.

integration of noise may still occur. These values are presented under the assump-

tion that the noise in the system is not strong enough to cause phase slips, which

would cause perturbations to appear over larger timescales even if the system was

chronotaxic. In these cases another approach is required [302].

If there are large perturbations which cause the system to move far enough

forward or behind the current cycle to be attracted instead by an adjacent cycle,

known as a phase slip, this will result in an increased DFA exponent. This can

result from large jumps in the extracted phase �uctuations. To distinguish between

this case, a chronotaxic system with phase slips, and a non-chronotaxic system, one

can consider the fact that in the latter, perturbations may cause ∆ϕx to change by

2π, but these are part of a continuous probability distribution, in contrast to the

chronotaxic case. Phase slips can be detected by calculating the distribution of the
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di�erence between the phase �uctuations ∆ϕx(t) and these �uctuations delayed

by a timescale τ . d∆ϕτx(t) = ∆ϕx(t + τ) − ∆ϕx(t) therefore gives information

about the perturbations of the system over that timescale. When phase slips are

present, the distribution of |d∆ϕτx| changes [302]. An example of this di�erence is

shown in Figure 4.8 (g) & (h), and can also be seen in real biological systems, as

previously demonstrated in the heart rate variability [302].

4.4 Further development of the inverse approach

to chronotaxic systems

4.4.1 Numerical simulations

The basis of the phase �uctuation analysis (PFA) method is the quanti�cation of

the fundamental di�erence between phase �uctuation distributions in oscillatory

systems, depending on their chronotaxicity. Here, this characteristic is illustrated

using the simplest realisation of a chronotaxic system, two unidirectionally coupled

oscillators (see Figure 4.1(b)):

ϕ̇p = ωp

ϕ̇x = ωx − ε sin(ϕx − ϕp) + η(t), (4.24)

where ϕp and ϕx are the instantaneous phases of the driving and the driven os-

cillators, respectively, ωp > 0 and ωx > 0 are the natural frequencies of the

oscillators, ε > 0 is the strength of the coupling and η is white Gaussian noise.

Note that when ε = 0 the system is reduced to ϕ̇x = ωx + η(t) and becomes

non-chronotaxic; when η = 0 and ε > |ωx − ωp| the system becomes chronotaxic

with ϕAx (t) = ϕp(t) + arcsin((ωp − ωx)/ε). The system was integrated using the

Heun scheme [289], with an integration step of 0.001 and noise strength σ = 0.3.

∆ϕx, shown in Figure 4.8, was obtained by subtracting the unperturbed phase

(ϕAx (t) and ωxt in the chronotaxic and non-chronotaxic cases, respectively) from

84



Figure 4.9: Identifying chronotaxicity in signals with more than one oscillatory
mode. (a) The �rst 250 seconds of a time series of a simulated signal containing
two distinct oscillations, with coupling strengths ε = 2 for mode A (chronotaxic)
and ε = 0 for mode B (non-chronotaxic). (b) The continuous wavelet transform
of the signal in (a). (c) The instantaneous frequency (light grey) of both compo-
nents is extracted from the wavelet transform, with central frequency f0 = 0.5,
and smoothed (red), using a polynomial �t. The smoothed frequency is then inte-
grated in time to obtain an estimate of the unperturbed phase, ϕA∗x , which is then
subtracted from the perturbed phase ϕ∗x as extracted directly from the wavelet
transform. (d) & (e) show ∆ϕx = ϕ∗x − ϕA∗x for each mode. (f) & (g) show the
results of DFA analysis on ∆ϕx, with DFA exponents α correctly identifying mode
A as chronotaxic and mode B as non-chronotaxic.

the perturbed phase ϕx, as obtained numerically. DFA was then performed on

∆ϕx, yielding the exponents shown in Figure 4.8. The values of the exponents

demonstrate the di�erences in the noise distributions between chronotaxic and

non-chronotaxic systems. In the chronotaxic case, the noise is closer to white,

whereas in the non-chronotaxic case it is closer to a random walk. It is this di�er-

ence which is exploited in the PFA method.

In many systems, particularly those originating from nature, there will be more

than one oscillation present in a signal, with di�erent chronotaxic characteristics.

To test the PFA method in the case of multiple modes, a signal containing two

distinct oscillations was simulated, with dynamics as described by Eq. 4.24, with
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Figure 4.10: Identifying chronotaxicity using phase �uctuation analysis in a
system of bidirectionally coupled oscillators. The system presented in Eq. 4.26
was simulated in two di�erent states of chronotaxicity. (a) phase trajectories for
the system when ε1 = 0.1, ε2 = 20, ε3 = 0.1 and ε4 = 10. (b) phase trajectories of
the system with ε1 = 0.5, ε2 = 0.1, ε3 = 0.1 and ε4 = 15. (c) 5 seconds of the time
series of both drivers and oscillators for parameters shown in (a). (d) 5 seconds
time series for parameters shown in (b). (e) & (g) phase �uctuations from PFA
on sin(ϕx1) and sin(ϕx2), respectively. (f) & (h) phase �uctuations extracted with
PFA on sin(ϕx1) and sin(ϕx2), respectively.

time varying angular frequencies,

ω̇var(t) = Acos(2πfmt) + η(t)

ωx,p(t) = 2πfp,x + ωvar, (4.25)

where fp and fx are the average frequencies of oscillation in Hz of the chrono-

taxic and non-chronotaxic case, respectively, and fm is the frequency of variation.

Frequencies of oscillation were chosen to vary around 1 and 0.25 Hz in the non-

chronotaxic and chronotaxic cases, respectively, with fm = 0.003. Both systems

were perturbed with white Gaussian noise of strength σ = 0.5. The logarithmic

frequency scale of the wavelet transform is very useful for identifying and sepa-

rating the presence of oscillatory modes, which may otherwise appear as merged

in other time-frequency representations, such as the windowed Fourier transform.

Figure 4.9 shows the results of PFA on the signal. It correctly identi�es mode A
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(around 0.25 Hz) as chronotaxic, and mode B (around 1 Hz) as non-chronotaxic.

In single-variable time series obtained from real dynamical systems, it is highly

unlikely that the observed dynamics will result from a simple, unidirectional con-

stant coupling as described above. Rather, the system may be in�uenced by con-

tinuous perturbations, couplings to other oscillators, and temporal �uctuations in

chronotaxicity. Here, the applicability of the described inverse approach methods

to these more complex cases is demonstrated. Consider a system of two bidirec-

tionally coupled oscillators,

ϕ̇p1 = ωp1 (4.26)

ϕ̇p2 = ωp2

ϕ̇x1 = ωx1 + ε1 sin(ϕx1 − ϕx2)− ε4 sin(ϕx1 − ϕp1) + η(t)

ϕ̇x2 = ωx2 + ε2 sin(ϕx2 − ϕx1)− ε3 sin(ϕx2 − ϕp2) + η(t),

with drivers ϕp1 and ϕp2, and ωp1(t) = 2π − 0.5 sin(2π0.005(t)) and ωp2(t) =

π − 0.5 cos(2π0.005(t)). First, the case of strong in�uence of the driver ϕp1 on

the system is considered, resulting in chronotaxicity of both oscillators. Phase

�uctuation analysis was applied to the system, and successfully identi�ed both

ϕx1 and ϕx2 as chronotaxic (see Figure 4.10(a)).

Secondly, the case in which ϕx1 is chronotaxic but ϕx2 is not is demonstrated.

One can observe that despite continuous in�uences from multiple drivers and other

oscillators, single variable time series arising from the same system can be distin-

guished in terms of their chronotaxic dynamics. Again, PFA correctly distinguishes

between the two oscillators. This could be of great importance when investigating

composite parts of a larger dynamical system, and seeking to identify causal rela-

tionships between observed oscillations. For example, recent advances in cellular

imaging are providing the means to observe the dynamics of individual cellular pro-

cesses in di�erent cellular compartments [313]. Applying inverse approach meth-

ods for the detection of chronotaxicity to these dynamics could provide valuable
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information on the current state of the cell (see Chapter 7).

So far, only those scenarios in which a system constantly remains as either

chronotaxic or non-chronotaxic have been considered. Real dynamical systems

may exhibit time variation in their coupling strengths, allowing the system to

�uctuate between chronotaxic states. In these cases, it is possible to use dynamical

Bayesian inference to track variations of chronotaxicity in time. To demonstrate

this, ε3 was allowed to vary in time in Eq. 4.26, whilst ε1 = ε2 = 0.1 and ε4

= 0, resulting in intermittent chronotaxicity of the oscillator ϕx2. ϕA∗x2 and ϕ∗x2

were extracted from the wavelet transform of sin(ϕx2). Results of the application

of dynamical Bayesian inference to these extracted phases are shown in Figure

4.11. This method is able to track the intermittent changes in chronotaxicity,

through changes in synchronization and direction of coupling, demonstrating its

usefulness for the detection of chronotaxicity in systems where the interactions

between oscillators are time-varying, particularly when the system is intermittently

chronotaxic.

4.4.2 Practical considerations

Both presented methods, phase �uctuation analysis and dynamical Bayesian in-

ference, rely on precise phase extraction of the estimated attractor ϕA∗x and the

perturbed dynamics ϕ∗x. Therefore, the parameters in the respective methods must

be carefully selected depending on the characteristics of the given data.

The continuous wavelet transform provides an optimal compromise between

time and frequency resolution. In the majority of examples used here, f0 = 1

has been used. However, the wavelet central frequency, f0, can be altered to suit

speci�c needs. For example, in a case where there are many phase slips, it may

be necessary to extract the estimate of the attractor, ϕA∗x , with a higher f0 to

obtain a better frequency resolution and smoother dynamics, whilst the perturbed

phase ϕ∗x is extracted using a lower f0, leading to an increased time resolution for

the purpose of locating each phase slip. The parameter f0 may also be increased
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Figure 4.11: Identifying intermittent chronotaxicity using dynamical Bayesian
inference. Bayesian inference was performed on ϕ∗x2 and ϕA∗x2 extracted from
sin(ϕx2) (Eqs. 4.26) with ε3 varying as shown in (d). (a) the CWT of sin(ϕx2).
(b) Instantaneous frequencies extracted from the wavelet transform. ϕA∗x2 was ex-
tracted with f0 = 2 and smoothed using a polynomial �t (red line), whilst ϕ∗x2
was extracted from the CWT with f0 = 0.5 (grey line). Bayesian inference was
applied, using a time window of 90 seconds. The inferred direction of coupling D
can be seen in (c). Positive values show coupling from the driver to the oscillator
only. (d) Isync was calculated and shows excellent agreement with changes in ε3.
Ichrono was also calculated, and was slightly less accurate due to the direction of
coupling becoming negative very brie�y, due to reduced information �ow between
systems to accurately infer parameters during synchronization.

to provide greater distinction between oscillatory modes, but this will be at the

expense of time resolution. It should be noted that modes must be separable in

time-frequency representations in order for these inverse approach methods to be

applicable.

One fundamental assumption of chronotaxicity is that the system under con-

sideration is oscillatory. Although the presented methods can be applied to any

extracted phases, one should take great care to ensure that these phases corre-

spond to a true oscillatory mode, otherwise all results will be meaningless. In the

numerical simulations presented here, the characteristics of the oscillations which

are present are predetermined, and not concealed by noise, allowing their success-

ful extraction directly from the wavelet transform. These extracted phases can be

veri�ed using the speci�ed parameters as a reference signal, and thus the reliability
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of the �nal results can be veri�ed. On the contrary, in real experimental data, the

�rst question must be whether the signal contains any signi�cant oscillations at all.

To determine whether this is the case, the recently developed method of nonlinear

mode decomposition (NMD) may be used. NMD is an adaptive, time-frequency

representation based decomposition tool, which decomposes any given signal into

a set of physically meaningful oscillations (if present) and residual noise. In the

detection of chronotaxicity, the crucial advantage of NMD over other decomposi-

tion methods, such as empirical mode decomposition (EMD) or bandpass �ltering,

is its use of surrogate data testing in order to distinguish between deterministic

and random activity [261]. The success of surrogate testing for the identi�cation of

nonlinear oscillatory modes in neural data has also been demonstrated previously

[314], and more generally in [315]. By verifying the presence of oscillations, and

their underlying nature, e.g. whether they are nonlinear, these methods reliably

inform the user which analysis approach to take. In this way, it is ensured that any

oscillatory modes extracted from real experimental data are physically meaningful,

and that their characteristics, including their instantaneous phases, are accurately

determined. Once a signi�cant oscillatory mode has been located and extracted

using NMD, its smoothed instantaneous frequency provides ϕA∗x for use in phase

�uctuation analysis, ϕ∗x can then be extracted from the wavelet transform as be-

fore, with the parameter f0 chosen to give su�cient time resolution to follow the

noise �uctuations which are removed by NMD. An example of the use of NMD in

PFA is provided in Figure 4.13, and explained further in the application to brain

dynamics below.

The reliability of the presented inverse approach methods increases with data

availability, i.e. a longer time series will give a more reliable result. However, when

recording data from biological systems, it is not often feasible to collect hundreds

of cycles of oscillation. When recording data from live subjects, for example blood

�ow recordings, the time of recording must be a compromise between long time

series and subject comfort. In the case of cellular recordings, such as cell mem-
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brane recordings via the patch clamp technique, the health of the cell can rapidly

deteriorate, and thus a�ect the reliability of results. Therefore, it is useful to de-

termine the lowest possible number of recorded oscillations for which we may still

reliably test for chronotaxicity.

In order to address this question, two unidirectionally coupled phase oscillators

(Eq. 4.24) were simulated for 1000 cycles with frequencies 1 and 0.1 Hz, with h =

0.01 and σ = 0.07. With coupling ε = 2, the system is chronotaxic. The important

parameters to consider in DFA are nmin and nmax, the lower and upper values for

the range of the �rst order polynomial �ts performed in order to calculate α.

The lower value, nmin, is set to be 2 cycles of the slowest oscillation, to ensure

observation of the dynamics over a longer range than one cycle. The smallest nmax

required to still obtain a reliable DFA exponent was observed to be nmax = 3 cycles

of oscillation (see Figure 4.12), provided that the time series is su�ciently long.

The second test seeks to identify the required length of the whole time series when

using these values of nmin and nmax in DFA. The DFA exponent was calculated

from varying lengths of the same noise signals, from 3 to 10 times nmax, to identify

the point where the result is no longer reliable. It was found that the time series

should be at least 8 times nmax in order to obtain a reliable result, therefore at least

24 cycles of the slowest oscillation are required to test for chronotaxicity. However,

if possible, the time series should be at least 10 times nmax [316], to reduce noise by

providing more data windows. Overlapping within DFA is also possible, and will

go some way toward reducing noise, and improve reliability. The results shown in

Figure 4.12 were obtained with an overlap of 0.8.

Whilst the value of the DFA exponent α is expected to be around 0.5 in a

chronotaxic system, and 1.5 in a non-chronotaxic system, it is unlikely to be so

de�nitive in reality. In fact, the value of α will depend on a number of factors. The

type of noise in a real system is not necessarily white; however the point of phase

�uctuation analysis is to identify changes in its distribution. α will also vary de-

pending on how strong the chronotaxicity is in the system, i.e. how strongly driven
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Figure 4.12: In order to test the reliability of the DFA exponent when reducing
nmax, the maximum number of cycles of oscillation used in its calculation was
varied. (a) chronotaxic oscillation of 1 Hz. (b) chronotaxic oscillation of 0.1 Hz.
(c) non-chronotaxic oscillation of 1 Hz. (d) non-chronotaxic oscillation of 0.1 Hz.
The same noise signals were then tested with nmax = 3 for di�erent lengths of
the time series from 10 to 3 times nmax. Based on these results, the time series
should be at least 8 times nmax, thus, there should be at least 24 oscillations in
the time series. However, to ensure universal applicability, the length of the time
series should be at least 10 times nmax, the generally accepted value in DFA [316],
resulting in the requirement of 30 cycles.

the observed oscillator is. In the models presented here, this can be represented

by varying the coupling strength ε; weaker coupling will result in a higher DFA

exponent as the noise is partially integrated. The ratio of the natural frequency

of the chronotaxic oscillator to the frequency of the external driver, or detuning,

may also a�ect the value of α.

4.4.3 Application to brain dynamics

Chronotaxicity will manifest in nature as a result of a driving system which is

strong enough such that the oscillatory response system maintains stability in its

frequency and amplitude, even when subject to continuous external perturbations.

Chronotaxicity was previously demonstrated in the heart rate variability (HRV)

[302], when in�uenced by paced breathing. It has been shown that the main
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direction of coupling between the cardiac and respiratory oscillators is the in�u-

ence of the respiration on the heart rate, known as respiratory sinus arrhythmia

(RSA), and this was clearly demonstrated. Here, an example of the application of

phase �uctuation analysis to real experimental data is provided, in the form of an

electroencephalogram (EEG) recording from an anaesthetised human subject.

Distinct oscillations have long been observed in brain waves, as recorded by

EEG. Brie�y, from lowest to highest frequency, there are at least 5 frequency

bands which have been identi�ed in approximately the following frequency inter-

vals: delta (0.8�4 Hz), theta (4�7.5 Hz), alpha (7.5�14 Hz), beta (14�22 Hz) and

gamma (22�80 Hz). Di�erent frequencies of oscillation have been attributed to

distinct states of the brain. For example, the alpha and theta bands have been

shown to re�ect cognitive and memory performance [317]. One active area of re-

search utilising the information provided by these oscillations is in attempts to

quantify the depth of anaesthesia based on their temporal evolution in di�erent

states of consciousness. Despite the worldwide use of general anaesthesia (GA)

daily, the mechanisms leading to this state are still poorly understood in terms of

how it truly a�ects the brain. Thus, brain-state monitoring is still not an accepted

practice in GA, due to the lack of reliable markers [318]. However, recent studies

in which the spectral power of the oscillations in di�erent frequency bands has

been tracked both temporally and spatially during anaesthesia with propofol have

shown promising results. For example, it was shown that during consciousness,

alpha oscillations are concentrated in occipital channels, whilst during propofol

induced anaesthesia, these oscillations are concentrated in frontal channels [318].

An increase in power in the frequency interval 0.1�1 Hz (delta) was also observed

in this study during anaesthesia. Understanding the mechanisms underlying these

changes in brain function could not only lead to new approaches to anaesthesia

monitoring but may be widely applicable in many areas of neuroscience, including

in the study of various neurological disorders.

It has been clearly demonstrated that phase interactions are highly important
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Figure 4.13: Example of the application of phase �uctuation analysis to an
EEG signal obtained from the forehead of an anaesthetised patient, shown in
(a). (b) The continuous wavelet transform of the EEG signal in (a). (c) Using
nonlinear mode decomposition (NMD)(see text), a signi�cant oscillatory mode in
the alpha frequency band was identi�ed and extracted (dark grey line). (d) The
instantaneous frequency extracted using NMD (grey line), and smoothed using a
moving average of 4 seconds (red line). (e) The extracted phases of the mode from
NMD (grey), smoothed NMD (red), and from the CWT (black) with f0 = 1.5.
(f) ∆ϕx was calculated as ϕ∗x − ϕA∗x . The DFA exponent was calculated and was
1.57, suggesting that the system is not chronotaxic. Checking for phase slips in
(g) shows no change in distribution.

for healthy brain functioning, with by far the most widely reported observations

revolving around phase synchronization, which can, as an example, be used to

infer information about short and long range behaviours [319]. Brain waves arise

from networks of synchronized neurons, and the detected phase of these oscilla-

tions determines the degree of excitability of the neurons, and in�uences precise

discharge times of the cells in the network, therefore a�ecting relative timing of

action potentials in di�erent brain regions [320].

The problem of the extraction of phase from EEG data has been approached

from many directions, some more physically meaningful than others. Early ap-

proaches to the investigation of phase interactions between brain waves used spec-

tral coherence, but this does not separate phase and amplitude components, thus

amplitude e�ects may in�uence coherence values when only phase locking infor-
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mation is required [321]. A widely used phase extraction approach is the use of

the Hilbert transform (see above) to obtain the analytic signal [322], usually pre-

ceded by band-pass �ltering in the frequency interval of interest, highlighting the

necessity of the separation of the oscillation of interest from background brain ac-

tivity, either other oscillations or noise. Lachaux et al. recognised the necessity of

the separation of amplitude and phase when seeking to detect synchrony between

brain waves, introducing phase-locking statistics (PLS) [321] to measure the phase

covariance between two signals, veri�ed by surrogate testing. This method also

allows for non-stationarity in the signal. However, based on very narrow band-pass

�ltering, this method does not allow for time-variability in the natural frequency of

oscillation, but it did highlight the usefulness of complex wavelets in the extraction

of phase dynamics. The Hilbert transform and wavelet convolution methods were

compared in the analysis of neural synchrony, and found not to di�er substantially

[323], but both these methods relied on narrow band-pass �ltering beforehand.

However, the use of band-pass �ltering to extract an oscillatory EEG component

with a time-varying frequency has limited usefulness. An instantaneous frequency

de�ned from the analytic signal obtained from band-passing in a particular fre-

quency range in a real signal containing multiple spectral components and noise

may be ambiguous and meaningless [319]. To address this problem, ridge extrac-

tion methods [311] applied to the complex wavelet transform were used to track

the instantaneous frequency of a single oscillatory mode [319], providing a much

higher precision of phase extraction, and importantly allowing the phase dynam-

ics of nonautonomous systems to be traced accurately in time. Another, rarely

considered, issue when tracing instantaneous frequencies in time is the presence

of high harmonics in the signal. Narrow restriction of the frequency range will

remove these harmonics, and thus remove valuable intra-cycle phase information.

This issue has been addressed directly by the introduction of nonlinear mode de-

composition [261]. The inverse approach methods applied here take into account

all these issues in order to extract accurately the instantaneous phase of brain
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oscillations.

In order to demonstrate the method and search for evidence of chronotaxicity

in the phase dynamics of brain waves, phase �uctuation analysis was applied to

a real EEG signal. The EEG of an anaesthetised subject was recorded for 20

minutes at 1200 Hz (Figure 4.13 (a)) by researchers involved in a previous study -

Brain, Respiration And Cardiac Causalities In Anaesthesia (BRACCIA) (see ethics

declaration). The signal was resampled to 100 Hz by splitting the time series

into windows, and setting their mid-point to their mean. As expected, strong

oscillations were observed in the alpha and delta frequency bands. Nonlinear

mode decomposition extracted the oscillatory mode around 10 Hz in the alpha

frequency band and identi�ed it as physically meaningful through surrogate testing

(Figure 4.13 (c)). The instantaneous frequency of this mode was then smoothed

using a moving average of 4 seconds. This value was chosen to provide the best

match between the instantaneous phase of the extracted nonlinear mode ϕx and

its smoothed version ϕA∗x . As NMD by nature removes the noise from the modes

which it extracts, ϕ∗x must then be extracted from the continuous wavelet transform

with a time resolution which will allow the noise �uctuations to be included in the

extracted mode. Here, it is very important to check that the extracted phase

corresponds to that extracted using NMD (see Figure 4.13 (e)). Once the viability

of the extracted �uctuations is con�rmed, ∆ϕx can be calculated as ϕ∗x − ϕA∗x .

The DFA exponent of ∆ϕx was then calculated, and was 1.57. The distribution

|d∆ϕτx| was calculated to check for phase slips in the extracted phase �uctuations,

but the distribution did not change over any timescale, τ .

The analysis suggests that the alpha oscillation as extracted is not chronotaxic.

However, the current inverse approach methods are based on a single point attrac-

tor and single response system. As discussed by Sheppard et al. [324], the spectral

peaks observed in the EEG, including those observed in the alpha band, result

from frequency synchronization between thousands of neurons. In this sense, the

observed phase is in fact only a statistical measure, highlighting the preferred phase
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of the underlying ensemble of neurons. A method to quantify this was provided by

the mean-�eld variability index, κ, which changes depending on the interactions

in the observed network of oscillators [324]. For a non-interacting network, with

purely random phasors, κ will converge to 0.215, whereas in a state of complete

phase synchronization, κ will tend to zero. Based on the current assumptions of the

inverse approach methods, if the detection of chronotaxicity relied only on phase

dynamics, we would expect the value of κ to tend to zero in a chronotaxic system.

However, when applied to real EEG data, κ was actually greater than 0.215 in

most cases, suggesting amplitude synchrony (possibly intermittent), intermittent

phase coherence, or both. Therefore, it is apparent that in the case of brain dy-

namics, to truly test for chronotaxicity, it must be reconsidered within a network

of many oscillators, as known to be present in the brain, rather than the relatively

low numbers of coupled oscillators considered here. Here, the driving system may

be a subnetwork of synchronized oscillators or the mean-�eld or mean-phase of

ensembles of neurons, in�uencing other areas of the brain in complex ways, with

both temporal and spatial dynamics to take into account.

The presented methods are also restricted by the fact that they are currently

only applicable to determining chronotaxicity in phase dynamics. Traditionally, in

brain dynamics, it is the amplitude of the oscillations observed in the distinct fre-

quency bands which receives the most attention, although consideration of phase

dynamics is gaining popularity [325]. In addition to the dynamics within indi-

vidual frequency bands, there are also interactions between frequency bands [326],

known as cross frequency coupling (CFC). CFCs have not only been observed man-

ifesting themselves as phase-phase interactions [327], but also as amplitude-phase

[328] and amplitude-amplitude interactions [329]. Whilst some e�orts have been

made to isolate phase information in neural oscillations [330], the importance of

amplitude-phase interactions cannot be ignored, for example the observed modu-

lation of gamma amplitude by the phase of theta oscillations has been identi�ed as

a code utilised in multi-item formation in the brain [331]. Other functional roles
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of amplitude-phase coupling have also been highlighted [332]; thus it is clear that

both amplitude and phase must be considered simultaneously to characterise brain

dynamics accurately. Indeed, phase-amplitude coupling has been demonstrated

during anaesthesia [333], meaning that the current inverse approach methods may

be insu�cient to determine chronotaxicity in this system.

4.5 Summary

The recent formulation of chronotaxic systems provided a completely novel ap-

proach to the characterisation of time-varying dynamics in real data. Crucially,

it provides a framework in which systems may be time-varying, both in terms of

their amplitude and phase dynamics, continuously perturbed, and yet still exhibit

determinism. Whilst the apparent complexity of some real time-varying oscillatory

systems previously led to their consideration as stochastic or chaotic, chronotaxic-

ity facilitates a much more natural approach to the description of their dynamics.

The introduction of this approach required the development of new inverse ap-

proach methods for the detection of chronotaxicity in time series arising from

dynamical systems. Here, the currently available methods for the identi�cation of

chronotaxicity from a single time series were reviewed, and various issues regard-

ing their implementation were expanded, in order to facilitate the application of

the methods to any data set containing at least one oscillatory component. This

ability to characterise oscillations in terms of their chronotaxicity, i.e. to deter-

mine whether the observed dynamics arise as a result of in�uence from an external

driver, provides the potential to unlock new information about dynamical systems

and their interactions with their environment.

As they currently stand, the inverse approach methods for the detection of

chronotaxicity are only applicable in systems in which the amplitude and phase

dynamics are separable, as they are applied directly to the extracted phases of the

system, and all amplitude information is discarded. This assumption is valid if one

is considering that the amplitude dynamics of a chronotaxic system corresponds
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to the convergence of the system to the limit cycle, in�uenced only by a nega-

tive Lyapunov exponent and external perturbations, whilst the phase dynamics

corresponds to convergence to the time-dependent point attractor, which is also

characterized not only by a negative Lyapunov exponent and external perturba-

tions, but also by the motion of the point attractor itself [302]. As it is this point

attractor in phase dynamics which we are interested in, separation of amplitude

and phase follows naturally. Using this approach, an example of chronotaxic dy-

namics was successfully demonstrated in a real system, in the case of heart rate

variability [302]. However, in generalized chronotaxic systems [287], the amplitude

and phase are not required to be separable, providing even greater applicability

to real systems, allowing amplitude-amplitude and amplitude-phase interactions,

in addition to the phase-phase dynamics considered in [285, 286]. Therefore, the

incorporation of the ability to identify these new possibilities for chronotaxicity

is crucial in the further development of these inverse approach methods. This

will then provide the means to detect chronotaxicity in systems where amplitude

and phase are not separable, as previously discussed in the case of brain dynamics.

The current de�nition of chronotaxicity is based on a time-varying point attractor,

exerting in�uence over a system such that it can remain stable despite continuous

external perturbations. Numerical results presented here assume that this point

attractor results from a single oscillatory drive system, acting on a maximum of

two coupled oscillators. However, as highlighted in the brain dynamics example,

in reality it must be considered that this point attractor could result from multiple

interacting in�uences, for example a network of oscillators, perhaps acting as one

synchronized drive system.

Regardless of the mechanisms of the underlying oscillations, if they manifest

as a point attractor, characterisation of their chronotaxicity necessitates the ap-

plication of methods which can extract both their phase and amplitude dynamics

with utmost accuracy. Methods reliant on averaging do not provide the required

precision. Both amplitude and phase information can be extracted from the con-
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tinuous wavelet transform, a fact which may be utilised in the further development

of inverse approach methods for the detection of chronotaxicity. Extending these

methods to simultaneously take into account both phase and amplitude dynamics,

whilst incorporating the e�ects of their couplings, may lead to a method based

on an optimal combination of time-frequency representations and e�ective con-

nectivity methods such as dynamical Bayesian inference. This will then provide

even wider applicability to real oscillatory systems such as those observed in brain

dynamics.
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5. Blood �ow dynamics in skin

melanoma

Skin melanoma provides a unique opportunity to monitor the blood �ow of a ma-

lignant tumour in vivo. In this chapter, it will be described how blood �ow data

obtained from the Hospital of Pisa, Italy, were analysed using the techniques dis-

cussed previously to investigate whether blood �ow dynamics is altered in skin

malignant melanoma. The results provide insights into the physiological mecha-

nisms of melanoma vasculature, and were used in the development of a noninvasive

diagnostic test which may prevent many unnecessary biopsies if veri�ed in a larger

study.

5.1 Cancer

In cancer research, attempts to reduce problems to their smallest possible con-

stituents has provided a wealth of new knowledge in �elds such as molecular biol-

ogy and genetics, but a general cure for all cancers seems unfeasible when viewed

from these angles, due to their huge variability between cancer types. New col-

laborations with scientists from increasingly varying �elds is leading to exciting

new perspectives on old problems, with attempts to quantify and understand the

characteristics that all cancers have in common, in addition to how they vary.

These `hallmarks of cancer' are: self su�ciency in growth signals and insensitivity

to anti-growth signals, limitless replicative potential, resistance to cell death, abil-

ity to invade tissues and metastasize, and induction of angiogenesis [334]. There
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Figure 5.1: Diagram showing the layers, components and di�erent cells types
found in the skin. Modi�ed from [335]

are also further emerging hallmarks receiving attention in their own right; the re-

programming of energy metabolism and the evasion of immune destruction [134].

This chapter will focus mainly on the e�ects of angiogenesis, whilst chapter 7 will

address the widely observed phenomenon of altered energy metabolism in cancer

cells.

5.1.1 Skin cancer

Skin cancers are usually divided into two groups, melanoma and non-melanoma

skin cancers (NMSC), of which the latter account for 90% of all skin cancers

registered in the UK and Ireland [336]. There are two main layers in the skin,

the upper layer, or epidermis, and the layer beneath it, known as the dermis (see
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Figure 5.1). The epidermis is made up of three types of cells, squamous cells, basal

cells and melanocytes, all of which may become cancerous, with varying prognoses.

Basal cells are located at the bottom of the epidermis and their carcinogenesis

results in basal cell carcinoma (BCC). BCC is the most common skin cancer in

the UK and Ireland, accounting for 74% of all NMSC diagnoses [336]. It is usually

very slow growing, almost never spreading to other parts of the body, although

it can, very rarely, spread downwards into deeper tissues, and sometimes bones,

causing treatment to be much more di�cult. BCC generally begins as a small

shiny red spot, that may bleed, or develop into an ulcer that will not heal. When

found at an early stage, basal cell carcinoma is most likely to be completely cured,

though some may come back after treatment, known as local recurrence.

Squamous cell carcinoma (SCC) is a cancer of the cells called keratinocytes,

also found in the epidermis. SCC is the second most common skin cancer in the

UK, accounting for 23% of NMSC [336]. Squamous cell carcinoma is a slow growing

cancer, and is rarely aggressive, only spreading if left for a very long time. The

prognosis for SCC is generally very promising.

In contrast, melanoma is the skin cancer with the worst prognosis. Whilst

accounting for only a small proportion of overall incidence, melanoma is responsible

for 75% of all skin cancer related deaths in the USA [337]. Melanoma develops from

melanocytes, found at the very bottom of the epidermis. Half of all melanomas

start in normal skin, with the other half developing from pre-existing moles. New

cases of melanoma continue to increase, especially in young women (15-34) [338].

Skin cancer is still most common in older people, however, as the risk of most

cancers rises with age. Risk factors for melanoma include fair skin, excessive UV

light exposure, sunburn, previous occurrence of melanoma and reduced immunity.

Skin cancer is very rare in children under 14, and also in people with black or

brown skin, as their higher melanin levels provide more natural protection from

the harmful UV rays of the sun. Melanomas grow very quickly, and soon spread to

surrounding layers of skin, underlying tissues and then the rest of the body via the
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circulatory system. Therefore, early diagnosis is most crucial in melanoma above

all skin cancers.

5.1.2 Hypotheses

Combining the aforementioned time-frequency analysis methods and the coupled

oscillator model of the cardiovascular system as observed in blood �ow provides

the tools to test the following hypotheses:

1. Blood �ow regulation within a skin malignant melanoma di�ers from both

healthy skin, and other non-cancerous lesions which share similar character-

istics, such as atypical naevi, benign naevi and psoriasis.

2. Di�erences which arise may be used in the development of a diagnostic test

which can di�erentiate between malignant melanoma and atypical naevi.

5.2 Experimental protocol

To test these hypotheses, 94 patients in total were recruited in the dermatology

unit of the University Hospital of Pisa from February 1st 2011 to May 30th 2013.

55 of these subjects presented with clinically atypical naevi, suspected as malignant

melanoma by a dermatologist, and were sent for excision of the lesion of interest

and subsequent histological examination. A clinically atypical naevus was de�ned

as a skin melanocytic lesion which shared at least three of the clinical features of

melanoma (asymmetry, border irregularity, colour variability or a diameter greater

than 6mm [179]). As a control group, 30 clinically healthy patients were recruited

with typical benign naevi, also known as common moles. Nine patients with

psoriasis were also included in the study, as further controls. Psoriasis patients

were included due to their similar pathology to melanoma, including excessive

cell proliferation and angiogenesis [186], in an attempt to isolate the e�ects of

cancer on blood �ow regulation from those known to be induced by in�ammation

[339]. During histological examination, out of the 55 atypical lesions studied,
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Lesion type
No Total Age range

Locations
cases (Male) (Median)

Melanoma
Super. spread. 6

10(4) 39�80 (62)
Abdomen (1), leg (3), �ank (1),
shoulder (1), arm (2), face (2)

Nodular 3
Lentigo 1
Atypical naevi
Compound 24

33(18) 17�73 (41)

Clavicle (1), leg (6), chest (1),
�ank (1), shoulder (6), lumbar
(2), thorax (7), gluteal (2),
abdomen (4), arm (2), foot (1)

Junctional 6
Baso. epithel. 1
Dysplastic 2
Benign naevi
Compound 3

37(18) 21�78 (46)

Arm (3), ankle (1), shoulder (4),
foot (3), leg (6), �ank (1), thorax
(2), front (1), side (1), abdomen
(8), chest (4), breast (2),
back (1)

Junctional 4
Dermal 2
Blue 1
Acral comp. 1
Clin. benign 26
Psoriasis
Clin. diagnosed 9 9(8) 35�76 (63) Leg (6), shoulder (1), arm (1),

�ank (1)

Table 5.1: Type, gender, age and location information for all subjects studied.

11 resulted in a positive diagnosis for melanoma, 33 were de�ned as histologically

atypical and 11 were histologically typical. For the purposes of blood �ow dynamics

analysis, the 11 clinically atypical yet histologically benign lesions are considered

in the benign group, whilst during calculation of any diagnostic test they will

be considered atypical, due to the initial diagnosis which they received. Patient

information can be found in Table 5.1.

Blood �ow monitoring was carried out on all recruited subjects using laser

Doppler �owmetry (LDF). Recordings occurred in the morning in an air condi-

tioned room (22-24oC), with the subject in supine position, after an acclimatization

period of 20 minutes. Subjects were asked to abstain from food, drugs, alcohol,

co�ee and tea for 8 hours prior to the measurement. Following acclimatization,

blood �ow was monitored in two locations, at the centre (geometric mean) of the

lesion of interest and in the contralateral location on healthy skin. In all cases but

psoriasis, a further recording was made immediately following these two, at the
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Figure 5.2: Diagram of the laser Doppler probe placed above the lesion of interest,
in this case a melanoma lesion.

lesion margin. All recordings were for 30 minutes. Blood �ow was measured using

single point LDF apparatus (Peri�ux PF4, Perimed, Jarfalla, Sweden) equipped

with an unheated probe (PF408). The probe had a �bre separation of 0.25mm.

This allows skin blood �ow to be detected in a tissue volume of around 1 cubic

millimetre. Blood �ow is expressed as arbitrary perfusion units (PU) of output

voltage (1 PU = 10mV). The LDF probe was �xed to the lesion of interest using

an annular double sided adhesive disc (see Figure 5.2). The laser characteristics

were: wavelength � 780nm, bandwidth � 10 Hz-19 kHz, time constant � 0.1s, sam-

pling frequency � 32 Hz. Probe calibration was performed before each session

using a specialized device (Perimed, Jarfalla, Sweden) containing colloidal latex

particles whose Brownian motion provides standardised values. Blood �ow signals

were recorded continuously by an interfaced computer (Compaq, Hewlett Packard,

Netherlands) equipped with dedicated software (Perisoft, Perimed, Jarfalla, Swe-

den).

5.2.1 Exclusion criteria

Patients were excluded if they had one or more of the following conditions: age

> 80 years, congestive heart failure, recent myocardial infarction, serious cardiac
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arrhythmia, chronic in�ammatory diseases, other neoplastic diseases, untreated

arterial hypertension, severe liver diseases, untreated type 2 diabetes mellitus,

type 1 diabetes mellitus, severe renal failure and haemodialysis treatment.

5.3 Analysis

5.3.1 Pre-processing

Signals were inspected for viability prior to analysis. Following this inspection,

5 subjects were removed from the analysis, due to erroneous spikes in the data,

most likely an optical e�ect. Movement artefacts and other obviously non-physical

events in the data were removed using either linear interpolation or by trimming

the signal. This resulted in a �nal data set of recordings from 10 melanomas, 33

atypical naevi, 37 benign naevi and 9 psoriasis lesions.

Other artefacts which appeared to be noise could result from di�erent skin

types, for example glabrous skin, or heterogeneity of the area under observation,

and so were included. Every e�ort was made to retain as much original data

as possible, whilst removing unphysiological artifacts which would greatly alter

the results. In a clinical setting, these artefacts could be minimised by producing

hardware speci�cally designed to deal with these skin lesions, for example improved

probe attachment.

Prior to analysis all data were detrended using a moving average method to

remove low frequency information below the scope of this study, i.e. below the

lower limit of the lowest endothelial interval VI at 0.005 Hz, requiring a window

size of 200 seconds.

5.3.2 Statistics

The distribution of any group to be compared was tested using the Lilliefors test

for normality, which did not consistently �nd normal distributions of data in any

case. Therefore, all statistical tests used were non-parametric, i.e. did not assume
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an underlying distribution, facilitating more robust conclusions. When all groups

were compared, the Kruskal Wallis ANOVA test was used. The Kruskal Wallis

test is used to test whether two or more independent samples originate from the

same distribution, and does not assume a normal distribution. If signi�cance was

found by this, then pairs of groups were then tested using either the Wilcoxon

signed rank test for paired data, or the Wilcoxon rank sum test for unpaired data

[340]. The signed rank test is used to test whether two matched samples come

from the same distribution, whilst the rank sum test does not require that the

samples are matched. For example, to compare two groups of simultaneous blood

�ow recordings within a group, recorded on opposite sides of the body, the signed

rank test would be used. In contrast, to compare the blood �ow recordings on

the left side of the body in one group (e.g. melanoma), to those recorded in

another group (e.g. benign), the rank sum test would be used. Both tests involve

the summation of ranks. Linear regression was computed using the Theil-Sen

estimator [341, 342] which is a nonparametric method for simple linear regression

which is very robust to outliers, and correlation quanti�ed by Kendall's τ [343],

which is a measure of rank correlation (the similarity of the orderings of the data

when ranked). Signi�cance was considered as p < 0.05. All boxes in box and

whisker plots demonstrate the median and 25th and 75th percentiles of the data.

The lowest point of the whiskers is located at q1−w(q3− q1) and the highest point

at q3 + w(q3 − q1) where q1 and q3 are the 25th and 75th percentiles, respectively.

w was 1.5 by default [344]. Points outside this range were classed as outliers.

5.3.3 Time domain analysis

Heart rate and heart rate variability

Instantaneous heart rates were calculated by extracting the cardiac oscillation from

the blood �ow signals recorded in each subject using nonlinear mode decomposi-

tion. Mean heart rates were calculated as the mean of these extracted signals.

Signi�cant di�erences in mean heart rate were found between groups (p = 0.0049),
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Average blood �ow (PU)
Centre Margin Contralateral

Melanoma 126.8 (80.0�158.6) 77.1 (53.4�91.8) 14.2 (11.8�20.6)
Atypical naevi 15.2 (10.1�29.1) 16.6 (10.4�32.5) 12.5 (10.8�16.0)
Benign naevi 18.6 (9.5�23.9) 19.1 (12.2�28.0) 13.9 (11.7�16.9)
Psoriasis 111.3 (85.8�125.6) N/A 15.7 (9.8�17.5)

p 0.0000 0.0004 0.5662

Table 5.2: Medians (inter quartile range) of the means of all blood �ow signals
in perfusion units (PU) for lesion centres, lesion margins and contralateral skin. p
values are as calculated for each location using the Kruskal Wallis test. n = 9, 10,
33 and 37 for psoriasis, melanoma, atypical naevi and benign naevi respectively.

with the melanoma group exhibiting signi�cantly higher heart rates than all other

groups except psoriasis (see Figure 5.3). This may be a result of the signi�cant

di�erence in the distribution of ages between groups, with the melanoma and pso-

riasis groups having a higher median age than the atypical and benign groups. It

has previously been shown that mean heart rate increases with age, and also that

this e�ect varies with gender [345]. However, there was no signi�cant correlation

between age and mean heart rates when considering all subjects (τ = 0.1123, p

= 0.1230). Standard deviation of heart rate was calculated from the extracted

instantaneous heart rates for each group, and were found not to di�er signi�cantly

between groups (p = 0.0622). A signi�cant negative correlation was observed be-

tween age and heart rate variability (τ = -0.3234, p = 0.0000). This e�ect has

been previously demonstrated in healthy individuals [112] and therefore cannot be

linked to the presence of melanoma or psoriasis.

Mean blood �ow

Mean blood �ows were calculated for all subjects and locations (Table 5.4). Blood

�ow recorded at lesion centres di�ered signi�cantly between groups (p = 0.000).

This signi�cance arose from the increased blood �ow in melanoma and psoriasis

when compared with both atypical and benign naevi. No di�erence was found

between melanoma and psoriasis (p = 1), or atypical and benign naevi (p = 0.7418)

in terms of mean blood �ow recorded in the centre of lesions (see Figure 5.4).
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Figure 5.3: (a) Box and whisker plots of mean heart rate for all groups studied.
(b) Scatter plots of age vs. mean heart rate (c) Box and whisker plots of standard
deviation of heart rate calculated for all groups. (d) Scatter plot of age vs. standard
deviation of heart rate for all groups. M � melanoma (n =10), P � psoriasis (n
=9), A � atypical naevi (n =33), AB � histologically benign naevi (n =11), B �
clinically benign naevi (n =26). Outliers in boxplots are shown as red crosses. ns
= not signi�cant. *** = p < 0.001. Theil-Sen regression lines are shown in red in
(b)&(d).

Blood �ow recorded at lesion margins also di�ered signi�cantly between groups (p

= 0.0004), with melanoma mean blood �ow signi�cantly higher than both atypical

(p = 0.0007) and benign lesions (p = 0.0000). As in lesion centres, blood �ow

in atypical and benign lesions did not signi�cantly di�er at lesion margins (p =

0.9531), see Table 5.3. Contralaterally recorded blood �ows on healthy skin did

not di�er between groups (p = 0.5662). When comparing blood �ows for each

subject between sides, i.e. centre vs. contralateral means, central blood �ow was

signi�cantly higher in melanoma (p = 0.0020), psoriasis (p = 0.0039) and atypical

naevi (p = 0.0179), but not in benign naevi (p = 0.3940).

Stucker et al. quanti�ed the di�erences in blood �ow between malignant

melanoma and benign and atypical lesions based on mean blood perfusion values
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Figure 5.4: Box and whisker plots of mean blood �ow calculated for each group
and location. Outliers in boxplots are shown as red crosses. ns = not signi�cant.
*** = p < 0.001. Margin data is not available for psoriasis. n = 9, 10, 33 and 37
for psoriasis, melanoma, atypical naevi and benign naevi respectively.

Individual rank-sum results
P vs. M P vs. B P vs. A M vs. B M vs. A B vs. A

Centre 1 0.0000 0.0001 0.0000 0.0000 0.7418
Margin N/A N/A N/A 0.0000 0.0009 0.9531

Table 5.3: Rank sum comparisons of the distribution of mean blood �ow between
all groups.

of signals recorded using laser Doppler perfusion imaging [11]. They found that the

mean blood �ow recorded in malignant melanomas was always at least 1.8 times

higher than in healthy skin, and used this to develop a diagnostic test with a

sensitivity of 100% and sensitivity of 85% when including clinically benign lesions,

but this was reduced to 48% when only considering clinically suspicious lesions.

Applying this cut o� to the results obtained in the current study by comparing

blood �ow recorded in lesion centres and contralateral skin provides a sensitivity

of 100% and a speci�city of 70% when considering atypical and benign lesions

and 61% when considering only atypical lesions. 10 out of 10 melanoma lesions

met the criteria of mean blood �ow recorded at lesion centres being at least 1.8

times higher than that recorded in contralateral skin, whilst 17 out of 44 atypical

lesions and 4 out of 26 clinically benign lesions also met the criteria and would be

diagnosed as melanoma in this test.

This approach was also applied to the blood �ow signals recorded at lesion

margins in the current study to investigate the e�ect of a di�erent recording lo-
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Subject Sex Age Tumour Clark Breslow Ulceration
(years) size (cm) level depth (mm)

1 F 51 1.1 × 0.7 II 0.45 no
2 F 80 2.5 × 2.5 × 1.5 IV 15 yes
3 M 58 1.2 × 0.7 × 0.4 III�IV 3 yes
4 M 58 1.7 × 1.0 III�IV 0.35 no
5 F 80 1.1 × 0.7 x 0.3 IV 3.1 no
6 M 64 0.6 × 0.5 III 0.7 no
7 F 39 0.4 × 0.3 II 0.2 no
8 F 80 1.8 × 1.3 IV 0.8 no
9 M 74 1.5 × 0.9 II 0.45 no
10 F 43 0.5 × 0.4 III 0.4 no

Table 5.4: Histological characteristics of melanoma lesions.

cation on speci�city. Sensitivity of 100% was achieved using a cuto� of the mean

blood �ow at lesion margins being greater than at contralateral locations by at

least a factor of 1.26. 21 atypical lesions and 12 benign lesions also met this cri-

terion, resulting in sensitivity of 52% when considering only atypical lesions and

53% when also including benign lesions. These values are not an improvement

on the speci�city achieved using dermoscopy [182]. This highlights the necessity

of further investigation beyond average perfusion values in the characterization of

melanoma blood �ow for the purposes of diagnosis.

5.3.4 Histological results

All lesions diagnosed as clinically atypical underwent histological examination at

the 3rd Pathology Unit of Pisa University Hospital, for diagnostic purposes and to

examine the surrounding vasculature. Intra- and peri-lesional vessels were high-

lighted with anti CD34 Mab (Ventana Medical System). Each sample was exam-

ined under low power to identify the region with the highest number of microves-

sels, or `hot spot'. Two 250× �elds (25× objective lens and 10× ocular lens) were

evaluated to assess the number of microvessels, or microvessel density. Figure 5.5

shows highlighted intra- and peri-lesional vessels in a malignant melanoma. Table

5.4 shows diagnostic information for the con�rmed melanoma cases. Intra-lesional
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Figure 5.5: Top � Anti CD34 Mab highlighted vessels in a malignant melanoma
lesion. Provided by Marco Rossi. Each sample was examined to �nd the region
with the highest number of microvessels, or `hot spot'. Bottom � Vessel counts in
the `hot spot' in all histologically examined lesions. M � melanoma (n = 7 intra,
9 peri), A � atypical naevi (n = 23 intra, 27 peri), B � histologically benign naevi
(n = 7 intra, 8 peri). ** = p <0.01, * = p < 0.05.

microvessel density was signi�cantly higher in melanoma than in atypical naevi (p

= 0.0006), but this was not the case for peri-lesional vessels (p = 0.2131) (Figure

5.5). When including all lesions which underwent histological examination, a sig-

ni�cant, positive correlation was found between mean blood �ow at centres and

intra-lesional vessel counts (τ = 0.2360, p = 0.0470) (see Figure 5.6). However,

no correlation was found between mean blood �ows at margins and peri-lesional

vessel counts (τ = 0.0329, p = 0.7679). A signi�cant positive correlation was found

between mean blood �ow at centres and lesion area (τ = 0.3165, p = 0.0009), an

e�ect that is explained by another signi�cant positive correlation found between

lesion area and intra-lesional vessel count (τ = 0.4136, p = 0.0005). This provides

evidence that, as expected, larger lesions have more blood vessels and are more

perfused.
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Figure 5.6: Correlations between histological parameters and mean blood �ows.
(a) Intra-lesion vessel count vs. mean blood �ow. (b) Lesion area vs. mean blood
�ow. (c) Intra-lesion vessel count vs. area. White � melanoma (n = 7), grey
� atypical (n = 23), benign � black (n = 7). * = p < 0.05, *** = p < 0.001.
Theil-Sen regression line is shown in yellow.

5.3.5 Time-frequency analysis

Wavelet analysis was performed on the signals using custom MatLab codes (see

Chapter 4), with a Morlet wavelet of central frequency f0 = 1. Time-averaged

wavelet power was calculated for all signals. Absolute power values were signif-

icantly higher in both psoriasis and melanoma when compared to atypical and

benign naevi. However, in contrast to their mean �ows, the spectra of melanoma

and psoriasis highlight di�erences between the groups at some frequencies in the

neurogenic and myogenic intervals, whereas the power spectra of atypical and

benign naevi do not di�er at any frequency (Figure 5.7). The clear di�erences

between the power spectra at lower frequencies between psoriasis and melanoma

were investigated in order to �nd out whether they could be used to discriminate

between groups. Figure 5.7(c) shows the calculated ratios between the total power

in the cardiac interval and the sum of the power in all low frequency intervals (III,

IV, V & VI). To obtain a sensitivity of 100%, a cut-o� of 0.56 is required for this

data set, as this is the lowest value for this ratio that was observed in melanoma.

Using this as a test gave sensitivities of 55.6%, 63.6% and 84.6% for psoriasis,

atypical naevi and benign naevi, respectively. Whilst promising, this test alone

does not provide adequate speci�city.

The global di�erences in power between groups result in di�culty in the com-
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Figure 5.7: Absolute power spectra for all groups, highlighting the necessity of
normalization. Power of melanoma and psoriasis (a) is much higher than atypical
and benign naevi (b). Signi�cant di�erences are highlighted in yellow. (c) Ratios
between total power in the cardiac interval and the sum of the total power in
frequency intervals III, IV, V & VI were calculated and compared between groups.
Boxplot outliers are shown as red crosses. The grey dotted line shows the threshold
set by the lowest value of the ratio in melanoma. n = 9, 10, 33 and 37 for psoriasis,
melanoma, atypical and benign naevi, respectively.

parison of speci�c oscillatory components, also demonstrated in Figure 5.7. Due

to the lesion speci�c nature of this study, lesions were located at widely varying

sites on the body, which has been shown to have signi�cant e�ect on microvascular

blood �ow recordings [93]. For both of these reasons, normalization is required to

create an accurate picture of blood �ow dynamics. All wavelet power spectra were

normalized through division by their total powers. These were then compared at

all frequencies from 0.005 - 2 Hz (Figure 5.8 (a)�(c)). To quantify spectral dif-

ferences within intervals, and thus allow comparison of oscillations attributable to
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Figure 5.8: (a)�(c) Normalized wavelet power for all groups, with signi�cant
di�erences as determined by the Kruskal Wallis test highlighted in yellow. (d)�(f)
Boxplots of normalized wavelet power in the known frequency intervals. Outliers
are shown as red crosses. *** = p < 0.001, ** = p < 0.01, * = p < 0.05. n = 9,
10, 33 and 37 for psoriasis, melanoma, atypical and benign naevi, respectively.

speci�c physiological processes, the normalized wavelet powers were divided into

six intervals, as de�ned previously (see Chapter 2). Normalized powers in intervals

are shown in Figure 5.8 (d)�(f) and Table 5.5.

At lesion centres, melanomas had signi�cantly lower normalized power in the

frequency intervals associated with myogenic (III) and neurogenic (IV) activity,

and a signi�cantly higher normalized power in the cardiac frequency interval, when

compared to both atypical and benign naevi. At lesion margins, melanoma showed

signi�cantly lower normalized power in intervals III and IV when compared to

benign naevi, but only in interval IV when compared to atypical naevi. As was

the case for lesion centres, normalized power in interval I was signi�cantly higher

in melanoma at margins than both atypical and benign naevi. Melanoma also

showed signi�cantly lower normalized power in the frequency intervals associated

with myogenic, neurogenic and NO-dependent endothelial activity (III, IV & V)
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Figure 5.9: Comparison of mean blood �ows and normalized wavelet power spec-
tra between lesion centres and contralateral skin in (a) psoriasis, (b) melanoma,
(c) atypical naevi and (d) benign naevi. Signi�cant di�erences (p < 0.05) are
highlighted in red. Boxplot outliers are shown as red crosses. ** = p < 0.01, * =
p < 0.05. n = 9, 10, 33 and 37 for psoriasis, melanoma, atypical and benign naevi,
respectively.

when compared to contralateral skin in the same subjects, whilst exhibiting an

increase in normalized cardiac power (interval I). The same comparison in atypical

naevi revealed signi�cantly lower power in intervals IV and V in lesion centres, and

signi�cantly higher power in interval I. In contrast, centre and contralateral powers

only di�ered signi�cantly in interval IV (the centre being lower) in typical benign

naevi, and psoriasis di�ered only in intervals I (centre signi�cantly higher) and the

interval associated with respiration, II (centre signi�cantly lower) (see Figure 5.9).

Comparison of centrally recorded normalized power between atypical and be-

nign naevi revealed no signi�cant di�erences in any interval except the neurogenic

interval IV (center lower), while no di�erences were found during the same com-

parison for data recorded at margins.

5.3.6 Wavelet phase coherence

Wavelet phase coherence was calculated between wavelet transforms calculated

from blood �ow signals recorded at lesion centres and in contralateral skin, to in-
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Normalized power in intervals
I MM AN BN P p

Cent 10.8 (8.2�14.3) 4.9 (2.2�7.3) 4.4 (2.4�5.5) 6.6 (3.8�8.3) 0.0003
Marg 9.4 (5.8�12.2) 3.6 (2.4�6.7) 3.5 (1.9�5.4) 0.0034
Cont 5.2 (2.7�7.1) 2.8 (1.2�4.8) 3.8 (2.6�5.7) 2.3 (1.6�4.7) 0.1331
p 0.0020 0.0004 0.7229 0.0078

II
Cent 1.0 (0.8�1.8) 1.8 (1.3�3.0) 2.2 (1.3�3.0) 1.3 (0.7�1.8) 0.1571
Marg 1.6 (0.9�2.3) 2.1 (1.4�3.5) 2.3 (1.3�3.7) 0.5163
Cont 1.5 (1.2�2.8) 1.9 (1.5�2.8) 2.0 (1.2�3.1) 2.8 (2.2�4.4) 0.6101
p 1 0.6877 0.3305 0.0039

III
Cent 1.7 (0.9�2.7) 4.7 (2.6�7.5) 4.8 (3.6�7.6) 3.0 (2.8�10.3) 0.0006
Marg 2.8 (2.0�4.0) 4.8 (3.0�8.0) 5.3 (3.6�8.2) 0.0230
Cont 5.7 (2.1�6.7) 4.7 (3.2�7.0) 4.6 (3.0�6.0) 4.0 (2.2�5.0) 0.7257
p 0.0020 0.9501 0.1184 0.2500

IV
Cent 1.0 (0.6�1.7) 1.9 (1.4�3.5) 2.6 (1.9�4.3) 1.8 (1.6�3.0) 0.0005
Marg 1.2 (1.0�2.0) 1.8 (1.3�3.1) 2.4 (1.5�4.5) 0.0408
Cont 3.1 (1.8�5.1) 3.9 (3.3�5.7) 4.2 (2.5�5.4) 3.3 (2.6�4.8) 0.4845
p 0.0020 0.0001 0.0074 0.0977

V
Cent 1.0 (0.6�1.7) 1.8 (1.0�3.7) 2.0 (1.5�2.6) 1.5 (1.2�1.8) 0.0746
Marg 1.2 (0.7�2.5) 1.6 (0.9�2.3) 1.8 (1.0�3.4) 0.6096
Cont 2.2 (1.4�2.5) 3.4 (1.5�4.4) 3.0 (1.2�3.7) 3.2 (2.1�3.5) 0.3417
p 0.0039 0.0049 0.1868 0.0547

VI
Cent 1.9 (0.6�3.0) 1.5 (0.8�2.4) 1.5 (1.1�2.7) 2.6 (1.4�4.9) 0.8659
Marg 1.2 (0.6�1.9) 1.5 (0.9�2.4) 1.6 (1.0�2.6) 0.5098
Cont 0.8 (0.7�1.4) 1.6 (1.1�3.4) 2.1 (0.9�3.9) 2.8 (1.6�5.2) 0.1867
p 0.6953 0.4915 0.7229 0.9102

Table 5.5: Normalized power values for all studied frequency intervals. Results
of signi�cance testing from the Kruskal Wallis test (between groups) and the sign
rank test (between centres and contralateral) are shown. Signi�cant di�erences (p
< 0.05) are highlighted in grey.
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Figure 5.10: Signi�cant wavelet phase coherence calculated by subtracting the
95th percentile of 100 IAAFT surrogates per subject. (a) Phase coherence between
recordings from lesion centres and contralateral skin. (b) ANOVA results for all
groups. (c) p values from the ranksum test between melanoma and psoriasis. (d)
p values between melanoma and atypical naevi. (e) p values between melanoma
and benign naevi. Signi�cant di�erences (p < 0.05) are highlighted in yellow. n =
9, 10, 33 and 37 for psoriasis, melanoma, atypical and benign naevi, respectively.

vestigate whether the phase relationships of the observed oscillatory components

di�er between groups [298]. Wavelet phase coherence could not be calculated be-

tween blood �ow at lesion margins and contralateral skin because these signals

were not recorded simultaneously. Signi�cant coherence was de�ned as coherence

values above the 95th percentile of 100 IAAFT surrogates. Signi�cant phase co-

herence was found in all groups, in intervals I, II, III & IV (see Figure 5.10).

However, whilst coherence di�ered signi�cantly between groups according to the

Kruskal Wallis test, this di�erence was mainly as a result of di�erences between

psoriasis and benign naevi. Melanoma di�ered from atypical naevi at a very small

number of frequencies in the respiration interval and di�ered from atypical naevi

and benign naevi in the upper part of the cardiac interval, as a result of the higher

heart rate demonstrated in melanoma subjects.
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Figure 5.11: Evaluation of the discriminatory power of ratios between cardiac
and myogenic/neurogenic power. I/III and I/IV Ratios are shown for lesion cen-
tres and margins, with sensitivities shown based on a cut-o� of the lowest value
observed in melanoma (shown by grey dashed line). Boxplot outliers are shown
as red crosses. n = 9, 10, 44 and 26 for psoriasis, melanoma, atypical and benign
naevi, respectively.

5.3.7 Non-invasive diagnosis of melanoma

For the development of a diagnostic test, it is important that the di�erences ob-

served are not only signi�cant, but that they are su�ciently discriminatory to

provide a cut-o� point which can be used to distinguish between groups. The

main signi�cant di�erences observed in this study arise from di�erences in mean

blood �ow, di�erences in normalized cardiac power in lesion centres and margins,

and di�erences in normalized myogenic and neurogenic power in lesion centres

and margins. As melanoma exhibits a signi�cant increase in normalized cardiac

power at centres and margins when compared to all other groups, and a decrease

in normalized power in the neurogenic and myogenic frequency, the ratio between

these two parameters is likely to be higher in melanoma than in other groups.

Therefore, the ratios of I/III and I/IV power were calculated for centres and mar-

gins for all groups and compared in order to assess their success in discriminating

between groups. As shown in Figure 5.11, these ratios are much more successful

in lesion centres than in lesion margins, and the I/III ratio alone provides better

speci�city than the I/IV ratio. Di�erences in normalized cardiac power were also

compared between groups in order to ascertain whether the diagnostic test could

be improved further. A minimum normalized cardiac power of 0.0038 was found

for both lesion centres and lesion margins, and used as a cut-o�. In lesion centres,
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this cut-o� provided a speci�city of 43% in atypical and 50% in benign lesions.

At lesion margins these values were 59% and 50%, respectively, showing that this

test is more successful at lesion margins. Using these three tests, mean blood

�ow ratio, cardiac/myogenic and cardiac/neurogenic ratio and normalized cardiac

power, the combination which gave the highest speci�city overall was revealed to

be, for melanoma:

1. Mean blood �ow recorded at margin/ mean blood �ow at the contralateral

location > 1.26,

2. Normalized cardiac power at the lesion margin > 0.0038 and

3. Total power in I / total power in IV in wavelet power spectrum calculated

from blood �ow recorded in lesion centres > 3.7.

Combining these characteristics results in a sensitivity of 100% and a speci�city

of 90.9% in discriminating between melanoma and atypical naevi, based on the

available data (see Figure 5.12). Values for all parameters for each subject are

shown in Table A.1.

5.4 Summary

With respect to the hypotheses presented previously, clear di�erences have been

demonstrated in blood �ow dynamics between melanoma, psoriasis, atypical naevi

and benign naevi, contributing to our understanding of the physiological processes

occurring within melanoma microvasculature. In addition, a diagnostic test has

been developed based on LDF recordings and wavelet analysis which di�erentiates

between melanoma and atypical naevi with sensitivity 100% and speci�city 90.9%,

based on the presented data. As demonstrated in previous studies on melanoma

blood �ow [346], it was observed in this study that melanomas had signi�cantly

higher blood �ow when compared with atypical and benign naevi, both in lesion

centres and at lesion margins, and also when compared to contralateral healthy
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Figure 5.12: Sensitivity and speci�city ranges for the diagnostic parameters
based on the available data. (a) Ratio between mean blood �ow at the margin
and mean blood �ow in contralateral skin. (b) Normalized wavelet power in the
cardiac interval. (c) Ratio between the power in the cardiac interval and the power
in the neurogenic interval. (d) Results of diagnostic test for all naevi. The score
is how many of the criteria were met by the lesion being tested. Boxplot outliers
are shown as red crosses. M � melanoma (n = 10), A � atypical naevi (n = 44),
B � benign naevi (n = 26).

skin. The latter was also the case for atypical naevi and psoriasis, but not for

benign naevi. Histological examination of melanoma showed an increased number

of blood vessels in lesion centres compared to atypical naevi, which can be at-

tributed to the increased angiogenesis occurring within the melanoma vasculature

[153, 193]. A signi�cant positive correlation between intra-lesional vessel density

and blood �ow at the centres of melanomas was found, which is in agreement with

the fact that it is not only the number and velocity of erythrocytes in microvessels,

but also vessel density which in�uences microcirculatory blood �ow [346]. Though

signi�cant, this correlation was not as strong as expected, likely due to the fact

that melanomas are characterized by irregularly shaped microvessels which also

exhibit increases in cross sectional area, features which are not quanti�ed through

the vessel count performed in this study. This correlation was not found between

blood �ow at margins and peri-lesional vessel count, due to the heterogeneity of

melanoma vasculature, and it being unlikely that the margin signals were recorded
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in the same place as the vessel count was performed. In terms of blood �ow dynam-

ics, melanomas, despite their increased blood �ow, had signi�cantly reduced power

in the frequency intervals associated with myogenic and neurogenic activity, when

compared to atypical naevi and benign naevi. This abnormality in melanoma has

important relevance from a pathological and a therapeutic point of view, in light

of results of recent experimental and human studies [77, 84] suggesting that blood

�ow dynamics is essential for e�cient nutrient delivery and removal of waste from

tissues. In fact, without adequate removal of the by-products of glycolysis, such as

lactic acid, the tumour microenvironment becomes more acidic [198], with conse-

quent reduction in vessel reactivity [257]. It has also been shown that many cancer

treatments fail due to hypoxia induced by the inadequacy of the blood perfusion

to the tumour site [202]. In addition, signi�cantly lower normalized power in the

frequency intervals related to myogenic, neurogenic and NO dependent endothe-

lial activity (III, IV & V) was observed in melanoma when compared to healthy

skin in the same subjects. This was also observed in intervals IV & V in atypical

naevi and interval IV in benign naevi. Taking into account that atypical naevi are

more prone to development into malignant melanoma than benign naevi [179], this

similarity in blood �ow dynamics between melanomas and atypical naevi suggests

that the transformation from benign melanocytic lesion to melanoma could be a

gradual process.

Due to the large number of false positives in the clinical identi�cation of

melanoma, a number of non-invasive approaches have been developed over the

years to provide an objective means of evaluating and diagnosing skin melanoma.

However, the current gold-standard in melanoma diagnosis is still examination of

a skin lesion by the trained eye of a physician, followed by histological examination

of an invasive excisional biopsy of the skin specimen. Therefore, the diagnosis of

melanoma by non-invasive methods remains an active area of research. In line

with this aim, a cut-o� was developed based on di�erences in blood �ow dynamics

between melanomas and atypical naevi, with a sensitivity of 100% and speci�city
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90.9%. Considering that the clinical accuracy of diagnosing melanoma in this

study was around 20%, the cut-o� appears to be very promising as a compli-

mentary method to biopsy. Psoriasis was also chosen as a control lesion in this

study, due to its similarity to malignant melanoma in terms of angiogenesis and

microvasculature characteristics, including elongated and dilated vessels and in-

creased endothelial cell proliferation [186]. In agreement with this similarity, no

signi�cant di�erences in mean blood �ow between melanoma and psoriasis lesions

were found. On the contrary, melanomas and psoriasis lesions di�ered in terms

of their blood �ow dynamics in frequency intervals I & IV. The rhythmical be-

haviour of blood �ow in psoriasis lesions was previously studied and compared to

that in skin basal cell carcinomas [186]. Similarly to the melanoma group in our

study, basal cell carcinomas di�ered from psoriasis lesions in terms of blood �ow

dynamics, showing a reduction in power of the neurogenic dependent frequency

interval compared to healthy skin, a �nding which was not observed in psoriasis

lesions in the same study. However, basal cell carcinomas have been shown to be

less perfused than melanomas [184].

A limitation of this study was the variations in age distribution between groups,

with the melanoma and psoriasis patients being signi�cantly older. It has been

shown previously that physiological processes, such as heart rate and heart rate

variability, and microvascular responses to vasoactive substances, change with in-

creasing age. To completely rule out the e�ects of age on results, further re-

cruitment of age matched melanoma or atypical naevi patients would be required.

Another possible limitation of this study is that many of the subjects (6 out of

10 melanoma and 6 out of 9 psoriasis) had arterial hypertension, a pathological

condition which has been shown to reduce skin vasoreactivity and to perturb blood

�ow dynamics [10]. However, all hypertensive patients enrolled in this study had

normal blood pressure values due to antihypertensive treatment, a condition which

was shown to normalize blood �ow dynamics in hypertensive patients in a previ-

ous study [10]. Consistent with normalization of blood �ow dynamics in treated
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hypertensives, signi�cant di�erences between hypertensive and non-hypertensive

subjects in spectral power were not observed in any frequency intervals analysed in

healthy skin. A further limitation of this study is the relatively low reproducibility

of single point LDF measurements that was observed in studies averaging relatively

short time segments. However, in this study, recordings were for 30 minutes, al-

lowing more reliable characterization of the signal, including its time-variability

[76]. Furthermore, this limitation of LDF measurements was less important here,

due to the fact that blood �ow signals were analysed in terms of their frequency

components, through the use of the continuous wavelet transform. Now that the

diagnostic markers have been identi�ed, recording time may be reduced to 15

minutes, enhancing the clinical applicability of the method.

In conclusion, this study showed changes in both mean blood �ow, and blood

�ow dynamics in melanomas, in comparison to atypical naevi, benign naevi and

psoriasis lesions, allowing a better understanding of melanoma microvascular physi-

ology. A diagnostic cut-o� for the di�erentiation of melanoma from atypical naevi

is presented, developed based on di�erences observed in both blood �ow, and

blood �ow dynamics, extracted through wavelet analysis. Whilst this method is

very promising, further research is necessary before it can be recommended in the

replacement of biopsy for the diagnosis of melanoma.
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6. Oxygenation and blood �ow

dynamics

As discussed previously, blood �ow dynamics has been used as a model for mi-

crovascular health, and has been shown to be altered in various pathologies. This

chapter aims to assess whether simultaneously recorded skin blood �ow and oxy-

genation are altered in terms of their dynamics during dry static apnoea using free

diver data recorded in a previous study [347], and age and sex matched control

data recorded in non-divers speci�cally for this thesis. In addition to the com-

parison of the divers with controls, new analysis on data recorded during apnoea

provides further insights into the local e�ects of hypoxia on blood �ow and oxygen

dynamics. This may provide information about blood �ow and oxygen dynamics

during hypoxia, and thus may provide clues to the behaviour of the vasculature in

tumours.

6.1 Hypothesis

This study aims to investigate blood �ow and oxygen dynamics during dry static

apnoea in trained free divers. The extensive training of these divers provides longer

breath-holds than are possible with normal untrained humans. It may therefore

be possible to observe previously unseen dynamics during this prolonged oxygen

deprivation, i.e. whether this induces hypoxia in these subjects, and how this a�ects

their physiological regulation of blood �ow and blood oxygenation, in particular

the dynamics of these parameters. Observations in this scenario may be applicable
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to the state of hypoxia in general.

6.2 Experimental protocol

In a previous study [347], 16 free divers were monitored according to the following

protocol. Sensors were attached to the skin of each subject as shown in Figure 6.1

and explained in detail below. The protocol involved a period of 30 minute resting

recordings of all physiological parameters. The divers were then asked to follow

a further protocol involving breathe-ups, breath-holds and one short rest period.

The structure of this protocol is shown in Figure 6.10 and explained further in

Section 6.3.3. Before investigating whether blood �ow and oxygen dynamics are

altered during apnoea, it is necessary to �nd out whether the apnoea training

regularly performed by free divers has permanently altered their physiology. To

investigate the similarities and di�erences between divers and non-trained individ-

uals, the previous study based on this data used control subjects from [86], but

this study did not use the TOSCA500 (see below), so arterial oxygen saturation

and transcutaneous carbon dioxide could not be compared. These data sets also

di�ered in that all data recorded by the O2C device were recorded in di�erent

locations. In the study in [86], they were placed on the right shinbone and centre

of the inner right forearm, whilst in the divers they were placed on the right foot

dorsum and the volar aspect of the right arm, approximately 70mm from the elbow

[347]. To provide the possibility of a more accurate comparison of physiological

data during the rest period, 16 age- and sex-matched, healthy controls were re-

cruited, following the exact protocol of the free divers at rest, with the addition

of 10 extra minutes of recording time. As in the diver group the controls were re-

cruited provided they met the following criteria: they had not consumed ca�eine

on the day of the experiment, alcohol in the 24 hours prior to the experiment, or

food within the previous 4 hours, they were healthy as determined by a medical

questionnaire, they had normal blood pressure (i.e. did not exceed 150 mm Hg),

and their body mass index did not exceed 30.
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Figure 6.1: Location and function of probes in the apnoea study and in the
control group. EEG was not measured in the control group. Modi�ed from [347]

6.2.1 Measured parameters

Electrocardiogram

ECG was measured at 1200 Hz, using a three lead setup, with one electrode on

each shoulder and one on the lowest left rib. The electrodes used were disposable

Ag/AgCl electrodes (40493D)(Philips Healthcare, UK).

Arterial oxygen saturation

Based on the di�erences in absorption of light by oxyhaemoglobin and deoxy-

haemoglobin, and pulsatile changes in blood volume, the arterial oxygen satura-
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Subject 1 2 3 4 5 6 7 8
Age (D|C) 21|20 29|28 31|32 34|33 39|38 45|45 25|25 28|28

Sex F F F F F F M M
Subject 9 10 11 12 13 14 15 16

Age (D|C) 31|30 34|34 35|34 36|36 38|38 38|40 39|41 41|42
Sex M M M M M M M M

Table 6.1: Free divers were age matched (± 2 years) and sex matched. D =
Divers, C = controls.

tion, SpO2, can be measured using pulse oximetry. In this study, SpO2 was mea-

sured at the right ear lobe, using the TOSCA500 (Radiometer, UK), which uses a

two-wavelength pulsatile system of LEDs to distinguish between oxygenated and

deoxygenated blood [348]. Red (658nm) and infrared (880nm) light are passed

through the capillary bed of the earlobe to a photodetector, connected to the

TOSCA500 where parameters are calculated based on the absorption of light in

the tissue. The TOSCA500 calculates functional saturation, the amount of oxy-

genated haemoglobin as a percentage of the haemoglobin that can carry oxygen,

and does not include dysfunctional haemoglobin, e.g. carboxyhaemoglobin. Unlike

some other pulse oximeters, the TOSCA500 corrects the SpO2 signal by subtracting

contributions arising from venous blood movement [348].

Respiration

In free divers, respiration was measured using two di�erent methods, due to dif-

�culties with accommodating the range required during apnoea. Respiration was

measured in terms of chest volume changes using either a respiration wire (not

available for some divers) or a Velcro belt consisting of a TSD201 conductance

transducer [347]. It is the latter method that was used in the control group pre-

sented here.

Blood �ow

Skin blood �ow was measured using laser Doppler �owmetry in eight locations

on each subject. Four of the measured signals were recorded using Moor In-
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struments (UK) LDF recording equipment, consisting of one DRT4 laser Doppler

monitor with two channels, and two Moor Servers with one channel each. The

Moor Doppler probes 1 and 2 were placed on the medial malleolus of the left and

right ankles, respectively. Moor probes 3 and 4 were placed over the protrusion

of the ulna on the left and right wrists, respectively. These locations were chosen

to ensure that the measurement area consists only of microvasculature, and not

larger vessels such as arterioles, whose large volume lead to di�erent blood �ow

dynamics than that observed in the microvessels. The other four LDF signals were

recorded using the O2C (LEA Medizintechnik, Germany), which allows simulta-

neous recording of blood �ow at two depths in the same location (see Figure 6.2).

O2C probe 1 was placed on the top of the right foot, and O2C probe 2 on the

right forearm as described previously.

Oxygenation parameters

Relative amount of haemoglobin (rHb) and venous oxygen saturation (STO2) were

measured by the O2C device, in the same locations as the O2C blood �ow de-

scribed above. Each O2C probe provides recordings from two tissue depths, due

to two di�erent separations of emitters and detectors. One set of signals, recorded

with a �bre separation of 2mm, arises from shallow tissue, whilst simultaneous

recording with a �bre separation of 8mm also allows the observation of physiolog-

ical parameters from deeper tissue.

6.3 Results

6.3.1 Statistics

The distribution of any group to be compared was tested using the Lilliefors test

for normality, which did not consistently �nd normal distributions of data in any

case. Therefore, all statistical tests used were non-parametric, i.e. did not assume

an underlying distribution. Comparisons within the diver group were made using
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Figure 6.2: Diagram of the two tissue depths measured by the O2C. The depth
of recording depends on the spacing between the light source and the detector.
Larger spacing will result in deeper recordings. The laser light is used to measure
blood �ow and blood velocity, whilst the white light is used to measure venous
oxygen saturation (STO2) and relative haemoglobin (rHb).

the Wilcoxon signed rank test, and comparisons between the divers and control

group were made using the Wilcoxon rank sum test. Signi�cance was considered

as p < 0.05.

6.3.2 Comparison of divers and controls at rest

Sixteen age and sex matched controls were recruited in order to compare the resting

state in non freediver controls with that of the previously measured freedivers. This

was to ascertain whether the regular training undergone by free divers a�ects their

physiological parameters, in particular their resting blood �ow and oxygenation

dynamics. Information on the two groups of subjects can be found in Table 6.1.

Systemic comparisons

Heart rate, heart rate variability (HRV), respiration and arterial oxygen saturation

(SpO2) were compared between groups at rest. Mean heart rate was found by

extracting the instantaneous frequency of the heart activity from the ECG signal,

and calculating the mean. To ensure the extracted heart rate signals were correct,

they were also compared with the heart rate recorded by the TOSCA 500 at the

ear lobe. Both methods were found to provide the same results. Mean heart
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Figure 6.3: (a) Example instantaneous heart rate as extracted from the ECG
(black line), and as recorded by the TOSCA 500 (red line). (b) Mean heart rates
were found not to di�er signi�cantly between divers and controls using the rank
sum test (pECG = 0.25, pTOSCA = 0.15). n = 16 for both groups.

Figure 6.4: Median time averaged wavelet power of heart rate variability (HRV).
Signi�cant di�erences between divers and controls are highlighted in grey. n = 16
for both groups.

rates are shown in Figure 6.3. No signi�cant di�erences in heart rate were found

between the divers and the controls (pECG = 0.25, pTOSCA = 0.15), con�rming

the result obtained in [347] with a di�erent control group. Heart rate variability

was investigated using peak detection of the R-peaks (see Section 4.2.1) in the

ECG signal before resampling (1200 Hz), to provide precise temporal resolution.

Heart rate variability signals were calculated based on the varying time intervals

between R-peaks (see Chapter 3.1.2), and their wavelet transform calculated. Time

averaged wavelet power of heart rate variability was compared between divers and

controls, with signi�cant di�erences found at frequencies below around 0.08 Hz,

with the exception of the interval 0.031�0.048 Hz (see Figure 6.4).

This is a similar result to the previous study involving this data, where di�er-
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Figure 6.5: (a) Example arterial oxygen saturation, SpO2, time series recorded
from the right earlobe of a diver (red line) and a control subject (black line) using
the TOSCA500. (b) Mean SpO2 did not di�er signi�cantly between groups (p
= 0.6109). (c) Median wavelet power of SpO2 for both groups. Signi�cance was
tested at each frequency, signi�cant di�erences are highlighted in light grey. (d)
Peak locations compared between divers (red) and controls (black). Peak locations
were signi�cantly higher frequency in divers (p= 0.0348). Outliers are shown as red
crosses, one outlier not shown. (e) Standard deviation of SpO2 di�ered signi�cantly
between groups (p = 0.0021). n = 16 in all cases. ** = p < 0.01.

ences in HRV were found below 0.04 Hz [347]. Respiration rates were calculated

from signals from either the respiration belt or wire, depending on which gave

clearer peaks. These signals were then smoothed to facilitate peak detection, and

the di�erences between peaks calculated to provide the respiration rate variabil-

ity. Respiration rates could only be recovered from 14 out of 16 divers, thus their

matched controls were also not used in this comparison. Mean respiration rates

did not di�er signi�cantly between groups (p = 0.9817), with a median respiration

rate of 0.24 Hz in both groups.

Arterial oxygen saturation SpO2 was recorded at the right earlobe using the

TOSCA500 device. No signi�cant di�erences in mean SpO2 were found between

the divers and their controls (p = 0.6109). However, a signi�cant di�erence was

observed in the standard deviation, with the divers exhibiting higher variability

in their SpO2 levels (p = 0.0021). Comparisons were also made between absolute

minimum and maximum values, which were found not to di�er signi�cantly (p
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Figure 6.6: Respiration responds to reductions in SpO2. Troughs in the arterial
oxygen saturation appear to induce an increase in the amplitude of the respiration
to compensate.

= 0.0678 and p = 0.2828, respectively). The observed di�erences in standard

deviation highlighted the necessity of further investigation into the time-dependent

dynamics of SpO2 in both groups. Wavelet transforms of the SpO2 signals were

calculated, and their time-averages compared between groups. As the TOSCA500

provides absolute values of SpO2, the spectra were not normalized. Signi�cant

di�erences were found across the frequency spectrum, as demonstrated in Figure

6.5(c), with a clear peak in the median wavelet power around 0.016 Hz visible in

both groups. This low frequency peak was observed in all subjects, at varying

peak frequencies, shown in Figure 6.5(d). If more than one peak was present in

the spectrum, the peak with the highest magnitude was considered. The locations

of this peak di�er signi�cantly between groups, with the controls demonstrating

peak SpO2 power at lower frequencies (p = 0.0348).

It is well known that breathing is closely linked with changes in arterial blood

oxygenation. Blood oxygen levels are continuously monitored within the carotid

body, a small cluster of chemoreceptors situated at the bifurcation of the carotid

artery. Even very small decreases in blood oxygenation are sensed immediately,

and this leads to cardiovascular and respiratory re�exes, including variations in

breathing rate or amplitude to compensate [349]. Figure 6.6 demonstrates that in

the case of decreasing SpO2, the breathing pattern alters to normalize SpO2 levels.

Therefore, to investigate the relationship between SpO2 and respiration at rest,

and whether this relationship is altered in freedivers, wavelet phase coherence was

calculated between the two signals for both groups. Figure 6.7(a) shows the re-
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sults of wavelet phase coherence calculations between SpO2 and respiration for the

divers and their controls. The bias at low frequencies of wavelet phase coherence

calculations (see Chapter 4.2.4) was accounted for by calculating 100 iterative am-

plitude adjusted Fourier transform (IAAFT) surrogate data sets [299] per subject

and considering all phase coherence above the 95th percentile of the surrogate data

set as statistically signi�cant. This allowed comparison of wavelet phase coher-

ence between groups, and it was found that there were no signi�cant di�erences

in total phase coherence between respiration and SpO2 in divers and controls (p =

0.3462). However, comparisons of signi�cant phase coherence between groups at

each frequency revealed signi�cant di�erences around 0.015 and 0.093 Hz, with the

divers exhibiting lower coherence in both cases. The di�erence around 0.015 Hz

is likely due to the previously discussed higher frequency of oscillations of SpO2.

The median phase coherence appears to show a double peak in both groups, but

inspection of the coherence in individual subjects shows that this is not a universal

observation. Comparison of the phase coherence between SpO2 and respiration in

divers and their matched control shows a narrower range of coherence in divers in

the majority of cases.

Another well known phenomenon is respiratory sinus arrhythmia, where the

heart rate varies depending on the phase of the respiration cycle (see Section 3.1.2)

[350]. This cardio-respiratory interaction was also investigated using wavelet phase

coherence between the respiration and heart rate variability at rest in both groups.

No signi�cant di�erences in total phase coherence were observed (p = 0.6625), but

signi�cant di�erences were observed at the individual frequencies highlighted in

Figure 6.7(b), with divers showing higher phase coherence at lower frequencies.

Local comparisons

Eight blood �ow signals were recorded in total, one on each wrist, one on each

ankle, two from the right forearm, and two from the top of the right foot, as

shown in Figure 6.1. Mean blood �ows are compared between divers and controls
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Figure 6.7: (a) Median wavelet phase coherence between SpO2 and respiration
for divers and controls. (b) Median wavelet phase coherence between respiration
and heart rate variability. Only signi�cant coherence is shown, as calculated from
subtracting the 95th percentile of 100 IAAFT surrogates. Total coherence did not
di�er signi�cantly between groups, but signi�cant di�erences (p < 0.05) were found
at some frequencies using the rank sum test, highlighted in grey. n = 14 in both
cases.

in Table 6.2.

Signi�cant di�erences in mean blood �ow were observed only in the right and

left wrists. Interestingly, the di�erence in the left wrist is due to the divers having

a signi�cantly lower mean blood �ow, whilst the di�erence in the right wrist is the

opposite; the divers have higher mean blood �ow.

To investigate the time-dependent dynamics of blood �ow, and whether these

vary between groups, wavelet transforms were calculated for all blood �ows, and

their time-averaged wavelet power compared between groups. To take into account

the fact that blood �ow is not an absolute value, and possible small variations in

recording location, the power spectra were normalized by dividing them by their

total power. Comparisons were made at each frequency using the Wilcoxon rank

sum test, and signi�cant di�erences were revealed in all cases (see Figure 6.8). In

addition to testing the whole spectrum, the total power in each of the previously

de�ned frequency intervals was calculated and compared, to look for trends in the

di�erences between groups. Di�erences in normalized power were observed in 5

out of 8 blood �ow recording locations in the cardiac interval (I), with the power
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Location
Blood �ow (PU)

p
Divers Controls

Left ankle 10.33 (9.08�11.56) 10.99 (8.19�14.61) 0.4178
Right ankle 9.76 (8.02�12.79) 12.87 (9.15�14.90) 0.3365
Left wrist 10.20 (8.15�19.66) 19.54 (14.00�25.67) 0.0167
Right wrist 15.24 (14.09�25.41) 12.15 (10.10�15.55) 0.0365

Right foot (S) 6.49 (3.92�10.30) 10.11 (4.76�28.95) 0.2662
Right foot (D) 37.37 (18.89�45.60) 48.20 (35.27�70.09) 0.1092
Right arm (S) 17.35 (12.45�25.51) 19.48 (13.86�33.67) 0.5095
Right arm (D) 42.87 (24.96�102.65) 65.85 (45.98�96.08) 0.3179

Table 6.2: Mean blood �ows calculated for all locations and compared between
divers and controls. Values shown are medians and inter-quartile ranges of the
means. Signi�cance was tested using the Wilcoxon rank sum test. Signi�cant
di�erences are highlighted. Grey � signi�cant increase in controls, pink � signi�cant
decrease in controls. S � shallow, D � deep. n = 16.

in the divers signi�cantly lower in all of these cases. In the respiration interval (II),

di�erences in normalized power were observed in half of the recording locations,

and again power was lower for the divers than the controls. The myogenic interval

(III) displayed signi�cant di�erences in only 3 out of 8 recording locations. In two

locations (right ankle and left wrist), the myogenic power was lower in the diver

group, in contrast to the right arm where it was higher in the diver group. In 5 of

8 locations changes in normalized power were observed in the neurogenic interval

(IV). In all cases the power was higher in the diver group. Power in interval V

(endothelial), di�ered signi�cantly in 4 out of 8 recording locations, with divers

showing higher power in all cases. Finally, in the lower endothelial interval (VI)

di�erences were revealed in 5 out of 8 recording locations, with divers again showing

higher power across all cases. All these di�erences are shown in Figure 6.8 and

Table 6.3.

Mean venous oxygenation values (STO2) and relative haemoglobin (rHb) values

as measured using the O2C can be seen in Table 6.4. Only values recorded from

shallow tissue are considered, as testing of the equipment revealed characteristic

peaks in the signal which records oxygenation in deeper layers even when attached

to the calibration standard. These signals were therefore deemed unreliable and
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Location
p value

I II III IV V VI
Left ankle 0.0005 0.0400 0.1011 0.0039 0.0000 0.0000
Right ankle 0.0185 0.3558 0.0332 0.0302 0.0039 0.0035
Left wrist 0.3365 0.0167 0.0205 0.5591 0.1269 0.0621
Right wrist 0.0079 0.7774 0.1092 0.3179 0.8653 0.8065

Right foot (S) 0.1576 0.0063 0.6923 0.0098 0.2662 0.0400
Right foot (D) 0.9850 0.0167 0.1689 0.0864 0.5847 0.6647
Right arm (S) 0.0021 0.0864 0.3558 0.0302 0.0185 0.0050
Right arm (D) 0.0006 0.2067 0.0063 0.0021 0.0035 0.0013

Table 6.3: Results of signi�cance testing of the total normalized power in fre-
quency intervals on blood �ow intervals between divers and controls (see Figure
6.8) using the Wilcoxon rank sum test. Signi�cant di�erences are highlighted.
Grey � signi�cant increase in controls, pink � signi�cant decrease in controls. n =
16 for both groups.

Location
STO2 (%)

p
Divers Controls

Right foot (S) 29.52 (18.48�37.53) 47.18 (35.75�55.98) 0.0027
Right arm (S) 52.94 (40.89�56.86) 52.43 (44.47�56.12) 0.9850

Location
rHb (%)

p
Divers Controls

Right foot (S) 52.40 (46.95�62.75) 57.25 (50.52�64.57) 0.4624
Right arm (S) 44.62 (36.16�52.75) 49.09 (44.37�56.20) 0.1011

Table 6.4: STO2 and rHb means calculated for both locations and compared
between divers and controls. Values shown are medians and inter-quartile ranges
of the means. Signi�cance was tested using the Wilcoxon rank sum test. Signi�cant
di�erences are highlighted in grey. S � shallow. n = 15.

have been excluded from the analysis. Mean STO2 values di�ered signi�cantly

between divers and controls in the right foot (controls higher, p = 0.0027), but

not in the right arm. Standard deviations of STO2 did not di�er signi�cantly

between divers and controls at the right foot or the right arm (p = 0.0734 & 0.4397,

respectively). Mean rHb values did not di�er signi�cantly between groups in either

recording location (p = 0.4624 & 0.1011, respectively). Standard deviation of rHb

did not di�er signi�cantly at the right foot (p = 0.4856), but was signi�cantly

higher in controls in the right arm (p = 0.0010).

Wavelet transforms of the STO2 signals were calculated. One STO2 signal

recorded contained sustained unphysiological peaks, thus was removed from the
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Figure 6.9: Comparison of STO2 wavelet power between groups and locations.
Signi�cant di�erences are highlighted in grey. n = 15 for both groups.

following analysis, in addition to its counterpart from the control group. Dif-

ferences in STO2 are shown in Figure 6.9 for the remaining 15 divers and their

controls. Signi�cant di�erences between STO2 wavelet power in divers and con-

trols was observed below 0.026 Hz at both locations and below 0.4 Hz in the right

foot.

6.3.3 Blood �ow and oxygen dynamics during apnoea

Following the comparison of the freedivers with non-diving controls, it is apparent

that the blood �ow and oxygen dynamics of people trained to regularly deal with

hypoxemia and hypoxia di�er from those who are untrained. In order to assess

the underlying mechanisms of this altered physiological state, here the blood �ow

and oxygenation signals of the freedivers are characterised during and between

breath-holds, to ascertain how their bodies respond to oxidative stress. The results

presented in this section cannot be compared with a control group, as it would

be physically impossible and dangerous for the non-divers to attempt such long

periods of apnoea. Therefore, controls are provided in the form of rest periods

within the apnoea protocol.

Data were recorded from the free divers [347] as shown in Figure 6.10. The

volunteers were supine and asked to remain as still as possible throughout. A

sequence of instructions was played to the volunteers from a pre-recorded cassette

tape. The volunteers were advised that they should breath normally if they felt
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Rest 1 Rest 2

Figure 6.10: Timeline of free diver breath-hold protocol for the data previously
recorded in [347]. The breath-hold portion of the protocol begins after 2100 sec-
onds. Breath-holds are numbered. The length of breath-holds 5 & 6 varied between
subjects. The 30 minute relaxed period and the breath-hold period were separated
by a �ve minute free period in which the subjects were able to move.

any discomfort.

The resting period shown in the �rst 30 minutes is that investigated in Sec-

tion 6.3.2. This was followed by a �ve minute period of free breathing in which

movement was allowed; this section is not analysed. The breath-hold protocol was

then applied, beginning with 4 consecutive sets of 150 seconds breathe-up, fol-

lowed by 150 seconds of breath-hold. These were followed by another 150 second

breathe-up before a `best endeavours' breath-hold, subject to safety constraints. A

period of relaxed breathing for approximately 540 seconds followed, before a �nal

naive `best endeavours' breath-hold. No countdown warning was given for the �nal

breath-hold. The heart rate, arterial blood oxygen saturation and transcutaneous

carbon dioxide were monitored throughout, to maintain safe levels. These were

determined as a heart rate of 35 to 135 beats per minute, arterial oxygen satura-

tion > 75% and transcutaneous partial pressure of carbon dioxide within the range

3kPa to 8kPa. This protocol provides 6 breath-holds per subject for analysis, with

breath-holds 5 & 6 varying in length between subjects (see Table 6.9).

The experiments were undertaken within the Physics Department at Lancaster

University. Each volunteer was required to provide certi�cation from a physician

con�rming a recent examination of cardiovascular and respiratory health.

Example signals as recorded from one subject are shown in Figure 6.11, and

example wavelet transforms of a respiration, blood �ow and STO2 signal are shown

in Figure 6.12. The data are considered in two parts. The �rst part consists of
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Figure 6.13: (a) Example heart rate signals from four breathe-up periods from
one free diver. (b) Example heart rate signals from four breath-hold periods for
the free diver in (a). (c) Boxplots of mean heart rates for all free divers during rest
(R), breath ups (BU) and breath-holds (B). (d) Boxplots of standard deviation of
heart rates for all free divers during the three states. (e) Example SpO2 signals
from four breathe-up periods from one free diver. (f) Example heart rate signals
from four breath-hold periods for the free diver in (e). (g) Boxplots of mean
SpO2 for all free divers the three states. (h) Boxplots of standard deviation of
SpO2 for all free divers during the three states. Outliers are shown as red crosses.
Signi�cant di�erences were found in both mean and standard deviation of heart
rate and SpO2, and are discussed in detail in Section 6.3.3 of the text. n = 16 for
all comparisons, which were performed with the Kruskal Wallis test.

the �rst �ve breathe-up periods and the breath-hold which immediately followed

them. The second part, consisting of the longest resting period in the breath-hold

protocol for which breathe-ups were not permitted, followed by the only naive

breath-hold, provides an opportunity to compare data in a more natural scenario.

Systemic changes during apnoea

First, the signals were investigated in the �rst part of the breath-hold period, as

described above, in terms of their average values, and compared between the rest-

ing state, the breathe-up state, and during breath-holds. For the breathe-up and

breath-hold periods, �ve data sets were available for each subject. These data sets

were averaged for each subject, ensuring that a paired signed-rank signi�cance
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test could be performed on the data to account for baseline perfusion di�erences

between subjects. Mean heart rate as measured by the TOSCA500 di�ered signif-

icantly between the three states (p = 0.0003). Further inspection highlighted that

this di�erence arose from the resting heart rate being signi�cantly lower than in

both the breathe-up and breath-holds periods (p = 0.0004 in both cases). How-

ever, heart rate did not signi�cantly di�er between the breathe-up and breath-hold

periods (p = 0.4691). Similarly, the standard deviation of the heart rate di�ered

signi�cantly between groups (p = 0.0020), and again the values at rest were lower

than in both breathe-ups and breath-holds (p = 0.0008 & p = 0.0016, respectively).

The standard deviation of the heart rate did not signi�cantly di�er between the

breathe-up and breath-hold states (p = 0.1477) (see Figure 6.13).

SpO2 was compared between the same three states, at rest, during breathe-ups

and during breath-holds, and signi�cantly di�ered in terms of both mean (p =

0.0200) and standard deviation (p = 0.0000). Mean resting SpO2 was signi�cantly

lower than during breathe-ups (p = 0.0061), but did not signi�cantly di�er to SpO2

during breath-holds (p = 0.2343). Mean SpO2 also signi�cantly di�ered between

the breathe-up and breath-hold periods (p = 0.0006), with breath-holds exhibiting

lower mean SpO2. Standard deviation of SpO2 was signi�cantly lower in the resting

period than during breathe-ups (p = 0.0038) and breath-holds (p = 0.0005). SpO2

during breathe-ups showed signi�cantly lower standard deviation of SpO2 than

during breath-holds (p = 0.0023).

Systemic changes during naive apnoea

To investigate how heart rate and SpO2 changes during a naive breath-hold, these

parameters were also compared between the 30 minute rest period (rest 1), the

short rest period during the breath-hold protocol (rest 2) and breath-hold 6 which

immediately follows it, importantly after no breathe-ups. An example of the signals

from these groups is shown in Figure 6.14. Mean heart rate di�ered signi�cantly

between these groups (p = 0.0010) with mean heart rate during the breath-hold
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Figure 6.14: (a)�(c) Example heart rate signals recorded from one subject using
the TOSCA500 during rest 1, rest 2 and breath-hold 6. (d) Boxplots of mean
heart rates, which di�ered signi�cantly between groups (p = 0.0010). (e) Boxplots
of standard deviation of heart rate, which di�ered signi�cantly between groups
(p = 0.0162). (f)�(h) Example SpO2 signals from one subject during the three
states. (i) Boxplots of mean SpO2, which did not di�er signi�cantly (p = 0.5933).
(j) Boxplots of standard deviation of SpO2 which di�ered signi�cantly between
groups (p = 0.025). Outliers are shown as red crosses. n = 16 for all comparison,
which were performed with the Kruskal Wallis test.

higher than both rest 1 (p = 0.0000) and rest 2 (p = 0.0003). Heart rate during

rest 2 was also signi�cantly higher than rest 1 (p = 0.0002). Standard deviation

also signi�cantly di�ered between groups (p = 0.0162). SD of heart rate during

rest 2 was signi�cantly lower than in rest 1 (p = 0.0125) and breath-hold 6 (p =

0.0084). Standard deviation of heart rate did not di�er signi�cantly between rest

1 and breath-hold 6 (p = 0.3894). Mean SpO2 did not di�er signi�cantly between

groups (p = 0.5933), but standard deviation did (p = 0.025), with SD of SpO2

signi�cantly higher in B6 than rest 1 (p = 0.0034), but not rest 2 (p = 0.7615).

SD of SpO2 did not signi�cantly di�er between R2 and R1 (p = 0.0730).

Local changes during apnoea following breathe-up

Blood �ows recorded from all eight locations were compared in terms of mean �ows

and standard deviation of �ow, between resting, breathe-up and breath-hold states.

The results of signi�cant tests between groups for all locations and all divers are

shown in Table 6.5. The signi�cance values reported under the heading `All' are
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the results of the Kruskal Wallis ANOVA test on all groups, which does not �nd

signi�cant di�erences in most cases. This is likely due to the fact that di�erent

mechanisms and conditions are being tested between groups, and therefore the test

may not be appropriate in this context, but is included for completeness. Based

on the results of the signed-rank paired test between groups it was found that

at all blood �ow recording locations, mean blood �ow is signi�cantly lower during

breath-holds than during breathe-ups. In �ve out of eight recording locations mean

blood �ow is also signi�cantly lower than that recorded at rest. Even in the three

cases which were not signi�cant (left ankle, right wrist and right arm (deep)), the

median blood �ow was lower during breath-holds than at rest.
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Figure 6.15: Example blood �ow, STO2 and rHb signals, during the breathe-
up period and during breath-holds. Signals are not all from the same subject,
but were chosen to represent cases in which signi�cant di�erences were revealed.
(a)&(b) Example blood �ow signals from the right arm (shallow) of one diver
during breathe-ups and breath-holds. (c)&(d) Boxplots of mean and standard
deviation of blood �ow for all subjects at the right arm (shallow). (e)&(f) Example
STO2 signals from the right foot (shallow) of one diver during breathe-ups and
breath-holds. (g)&(h) Boxplots of mean and standard deviation of STO2 for all
subjects at the right foot (shallow). (i)&(j) Example rHb signals from the right
arm (shallow) of one diver during breathe-ups and breath-holds. (k)&(l) Boxplots
of mean and standard deviation of rHb for all subjects at the right arm (shallow).

Standard deviation of blood �ow was found to be signi�cantly lower during

breath-holds than during breathe-ups at all recording locations. In three out of

eight locations standard deviation of blood �ow is also signi�cantly lower during

breath-holds than at rest.

Mean values of STO2 and rHb signals were compared between the same three

states. Results are shown in Table 6.6. In both recording locations, on the right

foot and right arm, mean STO2 was signi�cantly lower during breath-holds than

during breathe-ups. On the right foot, STO2 was also signi�cantly lower during
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breathe-ups and breath-holds than during rest. On the right arm, mean rHb val-

ues signi�cantly increased during breathe-ups when compared to rest, and during

breath-holds when compared to rest and breathe-ups. In contrast, no signi�cant

changes in mean rHb were observed on the right foot. The standard deviation of

STO2 di�ered signi�cantly on the right arm, with reduced SD during breathe-ups

and breath-holds when compared to rest, but not on the right foot. Only one

signi�cant di�erence in the standard deviation of rHb values was observed, with a

lower SD of rHb during breathe-ups than during rest on the right foot. Example

signals can be seen in Figure 6.15.

Local changes during naive apnoea

Comparisons of mean blood �ow between the initial 30 minute rest period (R1),

and the approximately 540 second rest period (R2), showed signi�cant di�erences

in 3 out of 8 recording locations, with the right foot exhibiting lower mean blood

�ow (p = 0.0032) whilst the two recordings from the right arm showed an increase

(p = 0.0340 & p = 0.0113). Standard deviation of blood �ow did not di�er signi�-

cantly between states R1 and R2 except in the shallow recording of the right foot

(p = 0.0437). Mean blood �ow was signi�cantly reduced in 2 out of 8 locations

(right ankle & right foot (S)) when comparing R1 with breath-hold 6 (B6) (see

Table 6.7), whilst the standard deviation of blood �ow was signi�cantly reduced in

half of all locations. When comparing R2 with B6, mean blood �ow was revealed

to be signi�cantly reduced in 3 out of 8 locations. The standard deviation of �ow

in this case di�ered in only 2 locations.

Oxygenation parameters were also compared between R1, R2 and B6 (see Table

6.8). Mean STO2 only signi�cantly di�ered on the right foot, where it was lower in

B6 than in R1. Standard deviation of STO2 signi�cantly di�ered in both locations

between R1 and R2, with a decrease observed in both. SD of STO2 also signi�cantly

di�ered on the right arm between R1 and B6 (decrease) and R2 and B6 (increase).

Mean rHb values signi�cantly increased on the right arm, in all tested comparisons,
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Figure 6.16: Example of the e�ect of involuntary contractions on LDF signals.
Top - Large deviations in the respiration signal (black line) are observed during the
latter part of the breath-hold, caused not by breathing but by involuntary chest
contractions, which directly a�ect the blood �ow signal (red line) recorded at the
left wrist. Bottom - windowed phase coherence demonstrates very high coherence
between the respiration and blood �ow signals once contractions begin.

whilst on the right foot the only signi�cant di�erence was an increase in B6 from

R2. Standard deviation of rHb did not di�er in the right foot, but decreased in

R2 when compared to R1 on the right arm, and increased in B6 when compared

to R2.

Involuntary chest contractions

In the majority of subjects, involuntary chest contractions were observed during

the latter part of breath-holds. These phenomena, and many physiological param-

eters related to them were studied in [347]. These physical movements of the chest

directly a�ect many of the recorded signals, with those most sensitive to move-

ment, including LDF, most a�ected. Therefore great care must be taken when

interpreting signals recorded during this period. An example of involuntary con-

tractions, and their e�ect on a blood �ow signal, is shown in Figure 6.16. It is clear

that any time-frequency analysis on these a�ected signals may lead to unreliable

results. Therefore, the in�uence of the contractions must be removed from the

signals, either by subtraction of their e�ect on the blood �ow, or removal of the
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latter part of the signal. Attempts were made to extract the e�ects of respiration

from the LDF signals using nonlinear mode decomposition, using the respiration

signal as a reference, but this was unsuccessful in the majority of cases. When

an extraction was successful, NMD returned a sinusoidal waveform, which is not

precise enough for this purpose. Wavelet phase coherence was calculated between

respiration and all blood �ow signals during breath-hold six. Although signi�cant

coherence was not found in all instances during contractions, the uncertainty of

how much each LDF signal is a�ected by the involuntary contractions necessitates

the exclusion of all data recorded for their whole duration. Therefore, only the

periods before they begin are considered. Updated signal lengths are presented in

Table 6.9.

Blood �ow and oxygenation dynamics during naive apnoea

It is clear from the presented results that there is a huge di�erence in the way the

body reacts to apnoea depending on whether it follows a period of breathe-ups or

not. Thus, only signals recorded during the naive breath-hold (B6) are considered

in this section. Whilst the investigation of the studied parameters in terms of av-

erage values has revealed insights into systemic and local physiological behaviour,

these do not provide any information regarding the time-evolution of these param-

eters, and whether this varies between states. To extract this information from the

data, time-frequency analysis methods are required. The rest period of approxi-

mately 540s allows the observation of oscillatory activity down to the neurogenic

interval to be studied, but not all breath-holds are long enough to allow the neu-

rogenic interval to be studied. In most cases, this rest period contained a large

peak at the beginning, as the parameters recovered from the previous breath-hold.

This peak was removed for time frequency analysis to avoid the increased power at

lower frequencies in which this would result. The lengths of breath-holds �ve and

six for each subject are recorded in Table 6.9, with and without periods involving

chest contractions.
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Subject
B5 length B6 length B5 length R length B6 length

(s) (s) BC (s) (s) BC (s)
1 183.6 161.2 114.7 574.0 94.2
2 168.6 41.1 157.5 597.3 41.1
3 210.6 192.8 124.4 550.3 83.9
4 232.7 158.8 131.3 541.1 90.2
5 294.3 216.9 240.2 470.3 157.5
6 225.6 159.8 87.6 540.4 71.7
7 247.8 225.4 176.5 515.4 192.3
8 338.2 105.3 166.0 423.4 100.6
9 248.6 266.7 248.6 524.1 206.1
10 127.2 82.4 113.7 651.3 79.8
11 245.1 260.0 209.0 519.0 210.5
12 234.3 199.9 114.0 536.2 87.3
13 212.8 221.9 146.1 561.7 134.5
14 398.1 350.2 246.3 386.7 244.7
15 240.3 293.6 150.2 528.4 137.4
16 194.8 189.5 157.9 569.0 138.3

Table 6.9: Lengths of breath-holds �ve and six for all subjects, and their lengths
after removing periods a�ected by involuntary contractions (BC).

The varying length of breath-hold 6 led to varying lower limits of frequencies

observable in the wavelet transform. To allow reliable comparisons between groups

in di�erent frequency intervals, spectra were required to span the whole frequency

interval to be included in the calculations for that interval, for example, to be

included in comparisons in the neurogenic interval, data must be available in the

frequency spectrum down to at least 0.021 Hz. Breath-hold 6 for subject 2 was

very short (41 seconds) and so subject 2 was removed from the analysis. Many

signals from subject 10 contained unphysiological spikes, thus subject 10 was also

removed from this analysis. Based on these constraints, the following data are

calculated from 14 subjects in frequency intervals I, II & III, and 4 subjects in

intervals I, II, III & IV. Due to this small sample size available in the neurogenic

interval, care must be taken with interpretation of the results. Before analysis,

signals were detrended with a moving average with a window size of 50 seconds.

Wavelet transforms of blood �ows were calculated for all recording locations, and

their time-averages compared between R2 and B6.
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Figure 6.18: Boxplots of absolute wavelet power in frequency intervals I�IV dur-
ing rest (black) and during breath-hold 6 (red) for both STO2 recording locations
in 14 subjects down to the myogenic interval and 4 subjects down to the neurogenic
interval. Statistically signi�cant di�erences are denoted with yellow asterisks. *
= p < 0.05, ** = p <0.01, *** = p < 0.001. Outliers are shown in red.

Signi�cant di�erences were revealed in all locations, as shown in Figure 6.17.

Comparisons of power in individual frequency intervals revealed signi�cant di�er-

ences in cardiac power in all locations, with a lower power observed during B6

than in R2 in all cases. In the respiration interval, 5 out of 8 locations showed

signi�cant di�erences in power, with the power being lower during breath-hold,

as expected. Only blood �ow recordings from the right arm showed signi�cant

di�erences in the myogenic interval (p = 0.0134 (shallow), p = 0.0419 (deep)),

whilst no di�erences were observed in the neurogenic interval. Comparisons of

STO2 recorded at the right foot and right arm revealed signi�cant di�erences only

in the respiration interval (p = 0.0134 and 0.0009, respectively).

This approach to the characterization of blood �ow dynamics, i.e. applying sta-

tistical tests at all frequencies for all subjects, may not be optimal if the natural

frequencies of vasomotion varies between subjects, as is likely the case. Whilst this

spectral averaging approach would highlight any systematic, large di�erences be-

tween states, it may cause small variations to be overlooked, due to averaging over

many di�erent frequencies and subjects. To ensure that individual di�erences in

blood �ow dynamics were taken into account, all blood �ow signals were inspected

for signatures of vasomotion, and their characteristics recorded. Using again the

blood �ow signals recorded during the rest period R2 and the naive breath-hold
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Figure 6.19: Example blood �ow signal recorded during rest and breath-hold 6.
(a) Blood �ow recorded in subject 14, during R2 and B6, the beginning of the
breath-hold is shown by a red line. (b) Continuous wavelet transform of R2. (c)
CWT of B6. (d) Time averaged wavelet power spectra for the rest period (black
line) and breath-hold 6 (red line). In this case the power and frequency of low
frequency oscillations are reduced during breath-hold.

B6, signals were investigated provided that they met the following criteria: 1) sus-

tained oscillations were present in the resting portion of the signal, 2) the length

of B6 is long enough to include at least two of these oscillations, 3) there is no

transient present at the start of B6, or if there is, it does not completely dominate

the spectrum. An example of one of the tested blood �ow signals is shown in

Figure 6.19. In this case, the oscillations present during R2 are reduced in both

power and frequency during breath-hold. The peaks of oscillatory activity were

recorded for all signals which met the criteria in order to ascertain whether there

were any common e�ects of apnoea on blood �ow dynamics. In total, 39 data sets

met the above criteria. Power and frequency of the dominant peaks were recorded

in each data set during R2 and B6. To allow the observation of lower frequencies,

the wavelet transform was calculated with a less strict cone of in�uence, at the

expense of reducing accuracy. All signals were carefully inspected to ensure that
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recorded peaks were real. Based on individual di�erences in power and frequency,

no distinct patterns arose for the alterations in vasomotion during apnoea. During

apnoea, the power of oscillations increased in 18 out of 39 cases, and decreased

in 21. The frequency of oscillations increased in 14 out of 36 cases and decreased

in 20, with no change in 2 cases, showing a slight preference for a decrease in

frequency of oscillations.

6.4 Summary

This chapter aimed to determine whether blood �ow and oxygenation dynamics

are altered during apnoea. Apnoea provides an opportunity to study physiological

parameters during a state of oxygen deprivation. In a previous study, free divers

were recruited and requested to follow a protocol involving periods of rest and

breath-holds. The very nature of the training practised by the free divers means

that their physiology may be permanently altered in order to adapt to the de-

mands of long periods of apnoea. To investigate the extent of these alterations, a

control group of age- and sex-matched, healthy, non-divers were recruited. Clear

di�erences were found between divers and controls. Whilst mean heart rate did

not vary between the groups, heart rate variability signi�cantly varied below 0.04

Hz, with the divers showing more variability in their heart rates. This could indi-

cate that their hearts are much more e�cient at responding to the needs of their

bodies, an adaptation that could have arisen from their apnoea training. Similarly,

arterial oxygen saturation recordings showed no di�erence in mean values between

divers and controls but signi�cantly higher variability in divers.

Wavelet phase coherence analysis between respiration and SpO2 showed signi�-

cant coherence in both groups, showing that the observed peaks in SpO2 are related

to respiration, and this coherence di�ered signi�cantly between divers and controls,

with coherence in divers occurring in a slightly narrower range. Phase coherence

was also calculated between respiration and heart rate variability, to investigate

whether respiratory sinus arrhythmia is altered in divers. The results suggest that
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this phase coherence signi�cantly di�ers between groups at lower frequencies, with

divers demonstrating higher coherence, perhaps due to their increased heart rate

variability. Comparisons of blood �ow between divers and controls did not reveal

a global di�erence in mean blood �ows, with signi�cant di�erences found only

in the right and left wrists, which are only two out of eight recording locations.

In contrast, signi�cant di�erences were found in the time-averaged normalized

wavelet power spectrum in all recording locations, at varying frequencies between

groups. The blood �ow dynamics results show that the normalized power spectra

of the divers di�er in that they generally show a decrease in power in the cardiac

frequency interval, and an increase in power in the lower frequency intervals IV,

V, and VI. This again points to an increased e�ciency in free divers, this time

at a local level. As vasomotion is bene�cial to tissue perfusion, an increase in

vasomotion in divers could suggest that their mechanism of substrate delivery is

optimised due to their apnoea training. However, the normalization of these blood

�ow spectra necessitates careful interpretation of the results. The di�erences seen

could also arise from the observed reduction in cardiac power, which may not be

related to the e�ciency of tissue perfusion, but the elasticity and regulation of

the vessels themselves. It has previously been shown that vessel elasticity reduces

with age [351], and that this may cause the cardiac component of an LDF signal

to dominate the spectrum. This is because of a gradual decline in the health of the

blood vessels, but may be applicable here. It is possible that the divers may have

healthier, more e�cient vasculature in general than their counterparts; this may

also manifest as the result seen here. Another possibility is that the vasomotion

in the control group is less synchronized, and thus the power at each frequency

would be more variable and lead to lower power overall.

Signals recorded during apnoea were used to characterise blood �ow and oxy-

genation dynamics during a period of reduced oxygen intake. The most interesting

states to consider would be hypoxaemia, a systemic low concentration of oxygen

in the blood, or hypoxia, a local reduction in oxygen. Unfortunately, whilst hy-
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poxaemia did occur during some breath-holds, it corresponded to the periods in

which involuntary chest contractions were observed in some divers, meaning that

the data recorded during these periods was not reliable. Hypoxia, a local lack of

oxygen, was also observed very rarely, de�ned for the O2C device as an oxygen

saturation of <10%. The values recorded by the O2C are relative however, so

the di�erences in local oxygenation were considered, rather than considering this

possibly unreliable marker of hypoxia.

The data recorded during the apnoea protocol were considered in two parts.

Part 1 consisted of data recorded in breath-holds following breathe-ups, and part

2 considered naive breath-holds. Part 1 compared physiological parameters during

the 30 minute rest period (R1), the breathe-up periods (BU) and the breath-

holds following them (BH), whilst part 2 compared the long rest period (R1),

short rest period preceding breath-hold 6 (R2) and breath-hold 6 (B6). In both

parts, systemic di�erences were observed between R1 and breath-hold. Mean heart

rate was signi�cantly increased during breath-hold in both parts, as was standard

deviation of SpO2. However, whilst standard deviation of heart rate was increased

in breath-holds during part one, there was no signi�cant di�erence in part 2. Mean

SpO2 did not change in either part between R1 and breath-holds, but di�erences

were observed when taking into account the intermediate signals from the breathe-

up period in part 1 and the R2 period in part 2. This highlights the fact that

neither period BU nor R2 can be considered as a true rest period, as they di�er

signi�cantly from the data recorded in R1. This leads to the question of whether

the breath-holds following these periods would be a�ected by such changes. The

closest to rest is the period R2, as there is no arti�cial breathing for the purposes

of lung packing, and thus breath-hold 6 is the closest to a natural breath-hold

available in this data.

Mean blood �ows were calculated for each part. The di�erences found between

mean blood �ows in breath-holds and rest periods heavily depended on whether

they were preceded by a breathe-up period or not. In part 1, mean blood �ow
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signi�cantly decreased during breath-hold in �ve out of eight recording locations

when comparing to R1 and in all recording locations when comparing to BU. In

contrast, in part 2, mean blood �ow was only signi�cantly reduced in two recording

locations when comparing to R1 and 3 recording locations when comparing to R2.

This highlights the e�ect breathe-ups can have on the mean blood �ow of the

subsequent breath-hold. In terms of mean STO2, the results were similar between

part 1 and part 2, with a decrease in mean STO2 observed on the right foot but

not the right arm in both parts, when comparing the breath-hold to the true rest

period R1. Mean rHb showed a signi�cant increase on the right arm but not on

the right foot in both cases.

In light of the di�erences introduced to blood �ow and oxygenation recordings

by breathe-ups, blood �ow and oxygenation dynamics analyses were only per-

formed for naive breath-holds. In order to observe directly the di�erences induced

by apnoea, the power spectra of R2 and B6 were compared for each subject. The

short time periods of available data, made shorter by removal of data recorded

during involuntary chest contractions, limit the information available at lower fre-

quencies. All included subjects could be compared down to the myogenic frequency

interval, whilst 4 subjects provided recordings long enough for the neurogenic in-

terval to be compared. Possibly as a result of this small sample size, no signi�cant

di�erences were found in interval IV for any recording location. Signi�cant di�er-

ences in the myogenic interval (III) were only observed in the right arm, at both

shallow and deep recording locations. In both cases, the power in interval III is

signi�cantly lower during breath-hold than during rest. Cardiac power decreased

signi�cantly during breath-hold in all recording locations. These results suggest

that apnoea does not have a signi�cant e�ect on local blood �ow dynamics overall,

at least in free divers. However, this does not mean that there would not be a

signi�cant e�ect in untrained individuals.

Inspection of the data from each subject revealed unique responses for each

individual, with some signals showing barely any di�erence during apnoea, whilst
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others showed signi�cant alterations in their oscillatory activity. Therefore, each

data set was individually inspected for evidence of vasomotion, i.e. sustained os-

cillations, in the rest period R2. If these were found, the absolute power and the

frequency of the most prominent peak in the spectrum was recorded, both during

R2 and B6 to see if this activity was altered during apnoea. Results from this

analysis proved to be inconclusive, with no signi�cant trends revealed, other than

a slight preference for a decrease in frequency of oscillations during apnoea.

The main results of this chapter reveal the physiological di�erences between

normal healthy humans and free divers, in terms of systemic and local dynamics

of blood �ow and oxygenation. Di�erences likely arise from increased e�ciency of

delivery of nutrients as a direct result of the training of the divers, possibly coupled

with a genetic predisposition to be able to deal with such conditions. Whilst

a very interesting state to observe, it is clear that divers possess very speci�c

physiological responses, and thus no conclusions can be drawn about blood �ow

and oxygenation dynamics in normal humans from these data. Further research

would be necessary to enable the same observations in non-divers. As it would

be impossible for untrained individuals to follow a protocol involving such long

periods of apnoea, the desired state of oxygen deprivation could be achieved using

an altitude simulation device, which simulates the reduced oxygen partial pressures

found at high altitudes. In a carefully controlled environment, this protocol could

provide the opportunity to safely study the hypoxic state, and also provide much

more opportunity to ensure the protocol for each individual was identical, rather

than the varying breath-hold lengths studied here.

In summary, this chapter demonstrates the following:

� The physiology of free divers is permanently altered when compared to non-

diving controls, in terms of heart rate variability and arterial oxygen vari-

ability.

� Wavelet phase coherence analysis showed that divers exhibit higher phase co-

herence between respiration and heart rate variability at frequencies around
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0.025�0.075 Hz.

� Comparisons of mean blood �ow between divers and controls at rest showed

no global di�erences, whilst the time-averaged normalized wavelet power

spectra were signi�cantly di�erent in all recording locations, generally show-

ing a decrease in power in the cardiac frequency interval and an increase in

intervals IV, V & VI in divers when compared to controls. This suggests an

increased e�ciency in local blood �ow regulation in divers.

� These results suggest that the training undertaken by free divers has sig-

ni�cantly altered their physiology, to meets the demands of regular oxygen

deprivation.

� Breathe-ups signi�cantly alter the physiological response in the subsequent

breath-hold, and thus cannot be used as a rest period for accurate compar-

isons.

� During apnoea, in general, mean heart rate increases, the cardiac contri-

bution to blood �ow decreases, mean blood �ow decreases and mean STO2

decreases.

� In cases where sustained oscillations were present, indicating the presence

of vasomotion, the frequency of these oscillations decreased in the majority

of cases during apnoea. This agrees with the model presented by Goldman

and Popel [82], in that low frequency oscillations appear to be most useful

for e�ective tissue oxygenation.

� The results presented in this chapter from the apnoea protocol go into more

detail than previously [347] regarding the blood �ow dynamics observed dur-

ing breath-holds. The previous study only considered vasomotion in one

volunteer during apnoea.
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7. Modelling metabolic oscillators

Energy production within a living cell is far from constant. Variations in sup-

ply and demand may result in continuous �uctuations of adenosine triphosphate

(ATP) concentration. Recently developed experimental techniques for the obser-

vation of cellular metabolism, including �uorescence microscopy [232, 220] and

�uorescence resonance energy transfer (FRET) biosensors [219], clearly illustrate

metabolic �uctuations, though sometimes they are overlooked due to averaging

[352] or considered as purely stochastic [353]. However, whilst their existence is

not universally accepted, metabolic oscillations have been observed in many stud-

ies in the mitochondria [245, 241, 220], in glycolysis [243, 227, 354, 219] and in

both simultaneously [1].

Thus, both glycolysis and oxidative phosphorylation (OXPHOS) can be con-

sidered as biological oscillators with variable frequencies depending upon external

concentrations of oxygen and glucose [241, 239]. Moreover, they are coupled and

can drive and modulate each other [226, 1, 227], which is essential to the main-

tenance of su�cient ATP levels. It is these interactions which determine the

metabolic state of a cell. When the conditions within a system change (e.g. in hy-

poxic or cancerous cells), the interactions between metabolic oscillators also change

[1, 227], thus changing the oscillatory dynamics of metabolism. These changes are

complex and not well understood.

In addition to being oscillatory, energy production in a cell is inherently time-

dependent. Taking a single snapshot in time of a system with time-varying dy-

namics, be it a single cell or a whole organ, cannot provide su�cient information
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about its past or future evolution, or its interactions with its environment. In-

stead, it must be considered as a non-autonomous dynamical system [355, 289] to

fully gain a realistic understanding of its behaviour. Thus, in this chapter, cellu-

lar metabolism is modelled using non-autonomous oscillatory dynamical systems,

with the aim of characterizing these oscillations in healthy and altered metabolic

states. More speci�cally, coupled chronotaxic phase oscillators were used to in-

vestigate the interplay between glycolytic and mitochondrial involvement in ATP

production in the presence of glucose and oxygen. It is demonstrated that using

this model it is possible, in di�erent scenarios, to identify which metabolic path-

way plays the dominant role. In particular, the metabolic dysfunction which is

well known to be present in cancer is considered. It is shown that chronotaxicity

may change during the transition from the normal to cancerous state, and be used

to detect this transition. Finally, it is demonstrated how this method could lead

to the observation and identi�cation of these states experimentally. This could

provide an opportunity to follow the temporal evolution of metabolic dysfunction,

and its possible links to carcinogenesis.

7.1 Modelling cellular energy metabolism

A simple diagram of cellular energy metabolism was presented in Fig. 2.4. Here,

cellular energy metabolism is modelled using the following assumptions, based on

the observed characteristics of cellular energy metabolism discussed previously:

1. Energy metabolism in a cell consists of two main processes, glycolysis and

mitochondrial respiration.

2. Oscillations have been observed in both glycolysis and mitochondrial respi-

ration.

3. ATP is produced within a cell through a combination of these pathways,

depending on the state of the cell.
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4. Cellular energy metabolism responds to environmental changes, up or down-

regulating glycolysis as necessary, through sensing of ATP levels.

5. Glycolytic oscillations have been shown to depend on sugar transport, and

mitochondrial membrane potential oscillations have been associated with

cycles of oxidation, in addition to plasma membrane potential oscillations

and Ca2+.

Characteristics 1 & 2 are represented by two phase oscillators. Glycolysis is

considered as one oscillator, the glycolytic oscillator (GO). Mitochondrial respira-

tion, i.e. the Krebs cycle and OXPHOS, is represented by another oscillator, the

mitochondrial oscillator (MO). The output of both the GO and MO is oscillatory

ATP, denoted ATPGO and ATPMO, respectively. In accordance with 3 & 4, these

oscillators are bidirectionally coupled. The dependence of the GO on the MO is

represented by a repulsive coupling, to replicate the downregulation, via inhibi-

tion of phosphofructokinase (PFK) [226], of ATP produced by glycolysis when

mitochondrial ATP output is high. Glycolysis is not completely suppressed, but

remains at a level which is su�cient to provide the substrates required for the MO

to remain the dominant pathway. Based on this coupling, reduction of ATPMO,

as expected in the transition towards cancer, will reverse the inhibition of PFK

in the GO, causing increased ATPGO. Thus, oscillations in metabolism would be

driven by glycolysis, due to it becoming the primary producer of ATP. This is

exactly what has been observed experimentally at near anoxia [227], as well as

under semi-anaerobic conditions [1]. In this case however, it also has to be consid-

ered that glycolysis will be more responsive to ATPMO oscillations, as they provide

glycolysis with information on the current status of the mitochondria. Taking this

into account, the MO has an increased ability to modulate the GO in this state.

The dependence of the MO on the GO is represented by an attractive coupling

due to the dependence of mitochondrial respiration on the products of glycoly-

sis. Here, nicotinamide adenine dinucleotide (NADH) is considered as the primary

in�uencing factor of the MO, representing glycolytic output. Considering this cou-
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pling in an altered state [211], increasing NADH levels from up-regulated glycolysis

will positively a�ect the ATPMO production. Here, it must also be considered that

the mitochondrial oscillator has a �nite ability to utilise NADH, which will be low-

ered if the mitochondria are damaged, even if all required substrates are available.

This is represented as a saturation of the response, and thus in ATPMO output. As

the system moves towards this saturation, the in�uence of glycolysis on the MO

decreases, until being completely lost at saturation. This is in contrast to a state

with lower NADH concentration, where the GO is capable of modulating the MO.

Requirement 5 is represented in the model by two further oscillators, introduc-

ing external substrate availability in the form of oxygen for the MO and glucose

for the GO. These drivers unidirectionally in�uence the GO and MO with variable

coupling strengths.

Taking all of the above interactions into account leads to a phase oscillator

model of cellular metabolism,

ϕ̇g = ωg + ε1 sin(ϕg − ϕm)− ε4 sin(ϕg − ϕgluc);

ϕ̇m = ωm − ε2 sin(ϕm − ϕg)− ε3 sin(ϕm − ϕox),

(7.1)

where ϕg, ϕm, ϕgluc and ϕox are the phases of the GO, the MO, the glucose driver

and the oxygen driver, respectively, ε1 is the strength of the coupling from the

MO to the GO, ε2 the coupling strength of the GO to MO, ε3 the strength of the

oxygen driver on the MO and ε4 the strength of the glucose driver on the GO (see

Figure 7.1). Parameters ωg and ωm in (7.1) represent the natural frequencies of

GO and MO, respectively, and may be time-varying. ϕgluc and ϕox may also be

time-varying.

Only the interactions discussed above are included in the model, as shown

in Figure 2.4; other possible interactions between the GO and MO are neglected.

Changes in the strength of these interactions de�ne changes in the global dynamics
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GO MO

Glucose
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Figure 7.1: Model (7.1) of metabolic oscillations in a cell. The glycolytic and
mitochondrial oscillators (GO and MO, respectively) are represented by two phase
oscillators coupled to each other via repulsive ε1 (due to the inhibitory nature
of the in�uence of the MO on the GO) and attractive coupling ε2 (due to the
excitatory in�uence of the GO on the MO). Oscillators may be made chronotaxic
due to attractive couplings ε3 and ε4 to the glucose and oxygen drivers. The
GO and MO oscillators are chronotaxic when synchronised to an external driver
directly or via another oscillator.

of the system. Thus, despite its simplicity, the level of detail in the model is

su�cient to describe changes in metabolic states.

7.1.1 Determining metabolic states through chronotaxicity

When observing the frequency or amplitude of metabolic oscillations, it is di�cult

to deduce any information about the metabolic state of the cell from a single time

series, as their variability may seem negligible [352]. The nonautonomous nature

of the system means that these frequencies or amplitudes can �uctuate irrespective

of the current metabolic conditions, making it di�cult to study state transitions.

In this case, a parameter which changes exclusively during metabolic transitions

is needed. As it is expected that the interactions within the system will change

during transitions, a measure of these changes will allow the observation of switches

between metabolic states.

Metabolic oscillations as observed experimentally appear to be time-variable

yet very stable. Indeed, several studies of mitochondrial and glycolytic oscillations

demonstrate that metabolic �uctuations within a cell are not fully stochastic, but

they appear to have non-autonomous and deterministic oscillatory components,
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e.g. [232, 220, 1]. This suggests that although they exhibit time-dependent dynam-

ics, these dynamics are stable and resistant to external continuous perturbations

within certain ranges. Therefore, these oscillations may re�ect underlying deter-

ministic processes, which may be used to identify the state of a cell. The stability

of the observed dynamics will change as the interactions in the system change,

therefore making it possible to observe metabolic transitions. This property of

stability, or ability to resist external perturbations, is described by the recently

introduced theory of chronotaxic systems [285, 286, 302, 287] (see Section 4.1.2).

Based on measurements from healthy cells and those with altered metabolism, the

apparent stability of glycolytic and mitochondrial oscillations suggests that they

may have chronotaxic properties. Chronotaxicity may exist when oscillations are

modulated [1, 227]; thus changes in the modulation, which will occur during a

transition to an altered metabolic state such as that observed in a cancer cell, will

be re�ected in chronotaxicity.

7.2 Numerical simulations

The phase oscillator model presented above was simulated numerically with vary-

ing parameters using the Heun integration scheme with a time step of 0.1s and

white Gaussian noise added to the right hand side of Equations 7.1. Each param-

eter set was simulated for a period of 10,000 seconds. For each set of parameters,

the chronotaxicity of both the GO and the MO were tested. An oscillator was

considered to be chronotaxic if it was synchronized with an external driver, either

glucose or oxygen. Oscillators were considered synchronized if their phase di�er-

ence remained within a 2π interval during the second half (5,000 seconds) of the

full time-series (10,000 seconds). This condition restricts oscillators from making

phase slips, after allowances for transient e�ects.

Synchronization to the unidirectionally coupled driver results in the existence

of a point attractor, a key component of a chronotaxic system. In more complex

con�gurations of this system, it is possible that a point attractor during synchro-
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Glycolytic Mitochondrial
A ωgluc ωox
B ωgluc ωgluc
C ωg ωm
D ωox ωox
E ω∗ ω∗

F ωgluc ω∗∗

G ω∗∗ ωox

Table 7.1: Approximate characteristic frequencies of GO and MO in the regions
shown in Figure 7.3. In A, B & D each oscillator is synchronized to either its
driver or to the other oscillator. In these cases, frequencies are in�uenced by
the driving oscillators. In C, the oscillators are not synchronized to anything,
hence the characteristic frequencies are determined by the natural frequencies of
the oscillators. In E oscillators are synchronized to each other only, hence the
frequency ω∗ corresponds to the frequency of a synchronized state assuming ε∗ =
ε4 = 0, and it can be found from the condition of synchronization φ̇m − φ̇g = 0,
ω∗ = (ε1ωm− ε2ωg)/(ε1− ε2). In F & G one oscillator is synchronized to its driver
whilst the other is somewhere between the two drivers.

nization sometimes does not satisfy the contraction condition, Equation 4.7. In

this case, there is at least one direction in phase space where trajectories temporar-

ily diverge and deviate from the point attractor. However, as this is a temporal

deviation, it is unlikely to in�uence the observed dynamics. Therefore, the syn-

chronization of oscillators in the model presented is studied and considered as ap-

proximate chronotaxicity. Example phase trajectories for each region are shown in

Figure 7.2 and explained below. Seven di�erent types of dynamics were revealed,

shown in Figure 7.3. Approximate frequencies of these oscillations in di�erent

regions are summarised in Table 7.1.

The characteristics of the observed regions are as follows:

A � GO synchronized with glucose, MO synchronized with oxygen, GO & MO

not synchronized. Both GO & MO are chronotaxic.

B � GO synchronized with MO, both synchronized with glucose. Both GO &

MO are chronotaxic.

C � No synchronization. Neither GO nor MO are chronotaxic.
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D � GO synchronized with MO, both synchronized with oxygen. Both GO &

MO are chronotaxic.

E � GO synchronized with MO. Both oscillators experience multiple phase

slips. Neither GO nor MO are chronotaxic.

F � GO synchronized with glucose, MO not synchronized with oxygen, GO &

MO not synchronized. GO is chronotaxic, MO is not chronotaxic.

G � GO not synchronized with glucose, MO synchronized with oxygen, GO &

MO not synchronized. GO is not chronotaxic, MO is chronotaxic.
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Figure 7.2: Phase trajectories of the 7 types of dynamics which have been ob-
served in the model shown in Equation 7.1. In all cases ε3 = ε4 = 0.025. Cases
A, B, D, F & G show chronotaxicity in at least one oscillator, whilst the other
cases do not. The transition from the state where the system is chronotaxic due
to glucose to a state where it is chronotaxic due to oxygen is shown with black
arrows (top left).
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Figure 7.3: Chronotaxicity plot for ε1 vs. ε2 with ε3 = ε4 = 0.25. In this example,
the model was simulated for varying values of ε1 vs. ε2 whilst the in�uence of the
glucose and oxygen drivers remained the same. The type of dynamics observed
for each pair of values is shown with the colours shown on the right, showing the
GO as a circle on the left, the MO on the right, and their drivers as arrows from
the top and bottom, respectively. Dominant couplings are shown in black, whilst
absent or weak couplings are shown in grey.
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Figure 7.4: Changing modulation from glucose and oxygen, ε3 = ε4. Glucose and
oxygen drivers may in�uence the system equally, as in Figure 7.3, but their values
can change. (a) ε3 = ε4 = 0.025. (b) ε3 = ε4 = 0.05. (c) ε3 = ε4 = 0.1. With
increasing in�uence of drivers, chronotaxic areas increase. (d) and (e) represent
a state in which the glucose driver has a larger in�uence on the system than the
oxygen driver, i.e. ε4 > ε3. (f) represents a state in which the oxygen driver has
a larger in�uence on the system than the glucose driver. In all cases ωg = 2π/200
and ωm = 2π/100. Colour code as in Figure 7.2 & 7.3.
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Figure 7.3 demonstrates the dynamics of the system when the in�uence from

the glucose and oxygen drivers is equal and relatively small. This results in a

large range of values for which the system is not chronotaxic. Increasing the

in�uence of glucose and oxygen on the system increases the proportion of cases

which are chronotaxic in the range studied (see Figure 7.4). Figure 7.4 also shows

the dynamics of the system when ε3 and ε4 are not equal.

So far, all simulations have been performed using the natural frequencies ωg =

2π/200 and ωm = 2π/100. Changing these frequencies, and thus the detuning

within the system will also have an e�ect on the dynamics of the system. Figure

7.5 shows the dynamics of the system with changing natural frequencies of the

GO and MO, with equal and unequal in�uences from glucose and oxygen. In a

real cell, it is highly unlikely that the natural frequencies of the oscillators or the

drivers will be constant. Therefore, in order to check the dynamics of the system

in the case of time-varying natural frequencies, the frequencies of the drivers,

glucose and oxygen, were allowed to vary in time. Thus, instead of the drivers in

Equation 7.1 being ϕgluc/ox = ωgluc/oxt they become
∫
ωgluc/ox(t

′)dt′. The drivers

were modelled as a slow sinusoid modulated by white Gaussian noise, and their

periods of oscillation were allowed to vary in the ranges: GO = 4 - 7 minutes and

MO = 2 - 3 minutes. This gives ranges for ωgluc of 0.0151 - 0.0264, and ωox of

0.0352 - 0.0522. The drivers were generated with a modulation frequency of 0.0003

Hz, and are shown in Figure 7.6.

It was demonstrated that chronotaxicity is found in the same regions as in the

non-variable case, with slight changes at the boundaries, but this may not hold

for very large variations, which may increase the frequency detuning su�ciently

to destroy the synchronization and thus the chronotaxicity.

7.2.1 Detection of chronotaxicity via the inverse approach

Following the dynamics of the system in terms of its chronotaxicity, the evolution

of the system from the normal to an altered metabolic state can be observed. One
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Figure 7.5: E�ects of changing frequencies of GO and MO when ε3 = ε4 and
ε3 6= ε4. Di�erent natural frequencies of oscillations may be considered, for ex-
ample in di�erent cell types. Changing frequency detuning will a�ect regions of
chronotaxicity. In (a)�(c) ε3 = ε4 = 0.025. (c) shows the chronotaxicity plot for
the system as considered in the main text, with natural frequencies ωg = 2π/200
and ωm = 2π/100. (a) shows the e�ects of increasing ωg. (b) shows the e�ects
of reducing ωg. In (d)�(f) ε3 = 0.01 and ε4 = 0.1. The frequency of GO may
increase due to upregulated glycolysis, while the frequency of MO may decrease
due to mitochondrial dysfunction. (d) 'Healthy' natural frequencies in the case
where glucose is the dominant driver. (e) Substrate dependencies as in (d) but
with faster glycolytic and slower mitochondrial oscillations. (f) E�ect of �xing the
glycolytic frequency and increasing the mitochondrial frequency.

pathway considered is the transition of the system from region B (chronotaxic

with glucose driver) to region D (chronotaxic, but now with oxygen driver), via

regions C and E (both non-chronotaxic). Identi�cation of the chronotaxicity of

the system, and its dominant driver, allows the identi�cation of the current sta-

tus of the metabolism, and whether it is in transition to an unfavourable state.

Utilising chronotaxicity as the de�ning parameter of the system is superior to the

consideration of synchronization alone, as it can be identi�ed experimentally from

any single time series. To demonstrate the applicability of this approach to real

metabolic systems, inverse approach methods for the detection of chronotaxicity
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Figure 7.6: E�ect of a time-varying driver on the chronotaxic dynamics of the
phase oscillator model. The dynamics are very similar, the only di�erence be-
ing that the boundaries between states are not as well de�ned, due to the slight
di�erences in frequency detuning.
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Figure 7.7: Phase �uctuation analysis results from simulated ATP dynamics in
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chronotaxic or not in all cases. Time series shown are sin(ϕg,m).

were applied to the dynamic ATP signals arising from the model to ensure that

numerical and inverse approach chronotaxicity tests give the same results.

Methods for the detection of chronotaxicity were demonstrated in a complex

real life system � the cardiorespiratory system [302]. This study demonstrated

evidence of chronotaxicity in the heart rate variability when in�uenced by paced

breathing. In the case of cellular energy metabolism studied here, it would be

su�cient to have measurements of only ATPGO and ATPMO to determine the

chronotaxicity of each metabolic oscillator. To demonstrate this, inverse approach

methods were applied to the signals obtained from the di�erent regions shown in

Figure 7.3 to identify their chronotaxicity status (see Figure 7.7). The chrono-

taxicity of each oscillator was determined separately, using only single time series.

Phase �uctuation analysis (PFA) (see Section 4.3.2) was used to distinguish be-

tween chronotaxic and non-chronotaxic dynamics. PFA shows very good agree-

ment between the chronotaxicity as calculated by the model using synchronization

conditions, and chronotaxicity as calculated via the inverse approach with no prior

knowledge. This illustrates that the method is a very promising tool for the ob-
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Figure 7.8: Example of the detection of chronotaxicity from a single ATP time
series using phase �uctuation analysis. (a) Example ATP signal obtained from the
model (region B) and its continuous wavelet transform. (b) The phase is extracted
twice, one with good frequency resolution (smoothed) and once with good time
resolution (noisy). DFA is performed on the di�erence between these phases (c)
and the DFA exponent is obtained (d). In this case, α = 0.5363, therefore the
signal is chronotaxic. From the wavelet transform we can see that the frequency
is around that expected during glycolysis, and thus we can say that the system is
chronotaxic due to the glucose driver.

servation and identi�cation of chronotaxicity in real systems, where the dynamics

is unknown. A detailed example of PFA as applied to an ATP signal is shown in

Figure 7.8.

7.2.2 Experimental veri�cation

In order to measure the required ATP levels as described, FRET-based ATP

biosensors could be used, which allow the measurement of ATP levels in di�er-

ent cellular compartments [313], and could therefore be used to isolate the dy-

namics of each oscillator. The methods described in [247] and [248] could also be

used. Applying the inverse approach test for chronotaxicity as described above to

these data would provide valuable information about the current metabolic state
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of the cell, in terms of whether it is externally driven, or attracted to a moving

point attractor. In addition, the connection between ATP and cell membrane po-

tential may be utilised. As the intracellular ATP concentration determines the

work of ATP-dependent membrane pumps (e.g. Na-K-pumps and H+-pumps),

it determines the cell membrane potential according to the causal theory of the

cell membrane potential [356]. Therefore, oscillations in ATP may be visible in

oscillations of cell membrane potential.

7.2.3 Veri�cation of the glycolytic oscillator

Another way to test the chronotaxicity of glycolytic oscillations in particular is to

utilise the closely linked dynamics of intracellular ATP and NADH arising from

glycolysis. It has been shown previously that both ATP and NADH are oscil-

latory in yeast cells during glycolytic activity, and that these oscillations have

the same frequency but are out of phase by around 180°[248, 249]. This means

that measurements of NADH in yeast cells may be used to provide an approxi-

mation of ATP dynamics. Although the amplitude of these parameters will di�er,

their phase relationship will remain the same, and can thus be represented by the

phase oscillator model. Using this information, the model can be tested for the

case of the glycolytic oscillator based on NADH measurements, which are more

readily available. Glycolysis in yeast cells is one of the most widely studied and

well characterised biological oscillators. It was previously thought that glycolytic

oscillations only arose as a result of synchronization between yeast cells, but re-

cently Gustavsson et al. demonstrated glycolytic oscillations in individual isolated

yeast cells [357, 358]. Importantly, the observed oscillations, whilst occurring with

similar frequencies, were not synchronized. As the external glucose level in these

experiments was constant, the oscillations must occur as a result of an internal

mechanism, which is a possible cause of chronotaxicity in the model.

Here, data recorded by Gustavsson et al. [357] is tested for chronotaxicity,

to investigate the applicability of the model to real metabolic oscillators. Sac-
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charomyces cerevisiae cells were harvested at the time of diauxic shift, starved of

glucose for 3 hours and then stored at 0�4°C until use. The cells were then placed

in a micro�uidic chamber at a distance of ∼ 10µm apart using optical tweezers.

The cells were covered with 20 mM glucose solution for 4 minutes before �ows

were increased in order to cover the cells with 20 mM glucose/5 mM KCN solu-

tion. NADH �uorescence was monitored for 60 minutes at a sampling frequency

of 0.25 Hz. NADH in individual yeast cells was shown to oscillate following star-

vation and the addition of cyanide. In this state, glycolysis can be the only means

of energy production, as cyanide halts respiration, e�ectively removing the e�ects

of the mitochondrial oscillator. It is therefore expected that the metabolic state

induced in this experimental setup should correspond to the `altered' state, i.e. re-

gion B in Fig. 7.3, where glycolytic oscillations drive the dynamics of the system,

and the GO is chronotaxic.

NADH data was available from 34 yeast cells, 6 of which did not demonstrate

visible oscillations so were excluded from the analysis. It was demonstrated in Sec-

tion 4.4 that at least 30 cycles of oscillation are required to test for chronotaxicity,

therefore all cells which did not meet this requirement were excluded. 16 cells met

this criteria. PFA was then applied to the remaining NADH signals to determine

whether the oscillations observed in these cells exhibited hallmarks of chrono-

taxicity. The model was used to numerically simulate the GO in a chronotaxic

(ε1 = 0, ε2 = 0, ε3 = 0, ε4 = 0.25, σ = 0.2) state using the instantaneous frequency

extracted from the real experimental data. To make the system chronotaxic, the

extracted frequency was used as the driver ωgluc of the glycolytic oscillator. This

provided a chronotaxic oscillator with the same oscillation frequency as the exper-

imental data, allowing the DFA exponent α to be compared between cases (see

Fig. 7.9). Due to the relatively short recording time causing variation between

simulations, they were repeated 3 times and the average value of α taken. The

mean value of α for the 16 included cells was 0.768, compared to α = 0.772 in the

chronotaxic simulations. The distributions of exponents did not signi�cantly di�er
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between those calculated in the cells and those calculated in the simulated chrono-

taxic system (p = 0.86) as calculated using the Wilcoxon ranksum test. This shows

that the model, although simple, incorporates enough features to allow the cal-

culation of the presented characteristic, chronotaxicity, and that evidence of this

characteristic appears to be present in yeast glycolytic dynamics. This veri�es

the applicability of the model to the glycolytic oscillator. Further investigation is

required into the mitochondrial oscillator, and other metabolic states.

7.2.4 Links to carcinogenesis

To link the model to real metabolic dynamics in cancer, evidence provided in the

study of cardiomyocytes in a state of metabolic stress [227] is used, as well as in

the study of yeast cells under semianaerobic conditions [1]. Yeast cells have been

shown to have metabolic similarities with cancer cells [228]. Both studies [1, 227]

conclude that glycolysis drives metabolic oscillations, while MO modulates GO.

Here, the driving is represented by the fact that glycolysis in�uences the amount

of ATP produced, which determines the amplitude around which oscillations take

place. In turn, the modulation of GO by MO manifests as MO in�uencing the

frequency of GO.

Based on previous studies [1, 227], the cancerous state is considered to corre-

spond to the dynamics of the model in which the phase of GO entrains the phase

of MO. In the model, the necessary (but not su�cient) condition for entrainment

of GO by MO is ε2 > ε1. In contrast, the normal state may correspond to the

case where the phase of MO entrains the phase of GO, and consequently the nec-

essary condition of this is ε1 > ε2. However, it may also be possible that in the

normal state both oscillators remain driven only by their external drivers, with

their mutual interactions not strong enough for entrainment.
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7.3 Summary

This chapter proposes a quanti�able characteristic, chronotaxicity [285, 302, 287],

of metabolic oscillations for the purpose of describing the transition of a cell from

a state with healthy energy metabolism, to a state where it is altered or abnormal,

in particular the metabolic switch to glycolysis observed in many cancer cells.

The ability to observe this transition in just a single time series was demonstrated

using a very general qualitative model of metabolic oscillations, with the advantage

that it captures only the most general and universal oscillatory dynamics and

interactions. As a result, this model does not depend on details which vary across

cancer states, thus being more likely to be applicable to cancer cells in general.

Oscillations are often overlooked in experimental studies, as if there are several

oscillations present in the system, they may cancel each other out [352]. Alter-

natively, due to their highly complex nature, they are often treated as stochastic,

e.g. [353]. Even in cases when oscillations and the interactions between them have

been studied, the exact characteristics of their amplitude and phase relations have

not been considered. The interactions of oscillatory processes may be amplitude-

amplitude, phase-phase, or phase-amplitude, resulting in many possible scenarios

of metabolic regulation. Here, for the sake of simplicity, the model is restricted

to phase-phase interactions, justi�able by the nature of chronotaxicity relying on

phase synchronization in the current case.

Particular attention has been paid to the time-variability of characteristic fre-

quencies of oscillations as one of the key properties of living systems. Namely,

the exchange of energy and matter involved in each process is always associated

with imperfect timing, or a fundamental inability to instantaneously match supply

and demand, resulting in time-varying oscillatory dynamics that is now captured

within the theory of chronotaxic systems. Using this simpli�ed version of chrono-

taxic phase oscillators, a possible new way of studying metabolic processes within

a cell has been introduced.
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Cellular energy metabolism may be a�ected by many more processes and in-

teractions than those considered here. The simplicity of the model could easily

facilitate the inclusion of further couplings, for example in the consideration of cal-

cium dynamics or genetic factors in energy production. Calcium has been shown

to in�uence mitochondrial dynamics directly via many pathways [359], whilst ge-

netic mutations can have a direct e�ect on mitochondrial function [360]. These

e�ects could be included in the model as in�uences to couplings, extra oscillators,

or adaptations of the external drivers.

Chronotaxicity in cellular energy metabolism could arise as a result of a number

of in�uences, all of which would require experimental veri�cation. The required

drive system could be provided by external oscillatory in�uences. In the case of

glycolysis, the time-varying availability of glucose may be considered as the drive

system of the GO. Similarly, the dynamical oxygen availability may be considered

as the drive system of the MO. Alternatively, if glucose and oxygen are abundant

within the cell, they are unlikely to be the driver for each process. In this case,

it is assumed that the inner structure of the oscillator, i.e. �nite reaction times,

provides the stable, time-dependent point attractor which de�nes a chronotaxic

system. Here, these cases are not considered separately, and the external resources

glucose and oxygen are presented as the drivers which de�ne the chronotaxicity of

the oscillators, independent of the exact mechanism by which this occurs. As it

is only the change in chronotaxicity which is of importance here, knowledge of its

speci�c origins, whilst interesting, is not essential.

The exact shape of the metabolic oscillations is also not described here, as this

would not impact the outcome of the chronotaxicity detection methods. Here it

is shown that chronotaxicity can identify dynamical changes during the metabolic

transition from a normal to an altered metabolic state in the model. Finally,

inverse approach methods show that these changes can be measured in the model

with no prior knowledge of whether the system is chronotaxic or not, as well as in

real complex systems, similarly to the application to the cardio-respiratory system
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in [285, 302].

In summary, a simple model of cellular energy metabolism has been introduced

with the aim of capturing the oscillatory dynamics of cellular energy metabolism

in a healthy cell, and one in which cellular metabolism is altered, for example a

cancer cell. Transitions between di�erent types of dynamics, representing di�erent

metabolic states, were followed by considering their chronotaxicity. This means

that from a single oscillatory ATP time series it can be determined whether the

system is driven, i.e. whether its frequencies are prescribed by some deterministic

process. It is also possible to extract the characteristics of the driver, and thus

these can be compared during metabolic transitions. This information could be

used to monitor cells during hypoxia or carcinogenesis. Evidence of chronotaxicity

in energy metabolism was shown in real experimental data, in glycolytic oscilla-

tions in yeast cells. This demonstrates the applicability of the model to cellular

energy metabolism. However, further experimental veri�cation is required for the

mitochondrial oscillator.
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8. Concluding remarks

8.1 Summary

In brief, the main aspects of this thesis are as follows:

� The physiological background of microvascular �ow oscillations in health and

disease is reviewed.

� The techniques required for the measurement of the physiological parameters

considered are discussed.

� A background to nonautonomous dynamical systems, in particular chrono-

taxic systems, is presented, and inverse approaches for their detection are

elaborated upon.

� The blood �ow dynamics of melanoma and control lesions were compared

using the presented techniques, and an accurate noninvasive diagnostic test

was developed.

� The role of hypoxia in microvascular �ow dynamics was explored using data

previously recorded during apnoea in free divers, and a control group re-

cruited speci�cally for this comparison.

� The possible role of altered cellular energy metabolism in cancer on the

results observed in the melanoma microvasculature were considered using a

coupled chronotaxic phase oscillator model.
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� The glycolytic oscillator in the phase oscillator model was veri�ed using real

experimental data recorded from yeast cells, which demonstrated that the

system was chronotaxic.

The primary aim of this thesis was to investigate blood �ow dynamics in skin

melanoma. Blood �ow data recorded using laser Doppler �owmetry were anal-

ysed using time series analysis techniques tailored speci�cally to the underlying

properties of these time series, namely that they are oscillatory, nonstationary,

nonlinear and nonautonomous. The required analysis techniques were reviewed.

These analyses provided new insights into the melanoma vasculature, based on dif-

ferences in the oscillations present in blood �ow as measured in healthy skin and

benign moles when compared to cancerous lesions. The previous characterization

of these oscillations allows the observed spectral di�erences to be attributed to

the oscillations associated with vasomotion, in both the myogenic and neurogenic

frequency intervals. This could be a result of a microvascular detachment from

local regulatory mechanisms, a reduction in vessel reactivity due to the harsh tu-

mour microenvironment, or a loss of synchronization between smooth muscle cells.

The observed di�erences in melanoma were large enough to facilitate the devel-

opment of a set of criteria which have been successfully used in a diagnostic test

with a sensitivity of 100% and speci�city of 90.9%. Whilst further data collection

would be necessary before this technique could be considered for routine clinical

practice, this work provides the foundations for the development of a quick, easy,

noninvasive diagnostic test which could signi�cantly reduce the number of biopsies

required in melanoma diagnosis.

In addition to the investigation into melanoma, blood �ow and oxygenation

dynamics were explored in data previously recorded from free divers during periods

of dry static apnoea and in speci�cally recruited control subjects at rest, in order

to ascertain whether free divers di�er from non-trained individuals in terms of

their oscillatory physiological signals at rest, and whether the characteristics of

these signals are altered in divers when comparing rest periods to those obtained
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during breath-holds. The aim of this part of the thesis was to identify whether any

di�erences in blood �ow or oxygenation dynamics could be observed as a result

of oxygen deprivation, or hypoxia, and to compare them to the changes in blood

�ow dynamics observed in melanoma lesions. If similar behaviour was found, this

could then be considered a hallmark of hypoxia, well known to occur in tumours.

Contrary to the observations in melanoma, blood �ow dynamics during apnoea

did not vary in the frequency intervals associated with vasomotion, but did vary

signi�cantly in the cardiac and respiration intervals, as expected. This suggests a

much more systemic response than the local e�ects observed in melanoma lesions.

However, it was shown that the divers were physiologically very di�erent to their

age and sex matched controls, which may explain the lack of local e�ects of the

oxygen deprivation for which they have likely built up an e�cient response.

Another, almost universal, hallmark of cancer was also investigated. Cellular

energy metabolism was modelled as a system of coupled chronotaxic phase oscilla-

tors, based on experimental observations of metabolic oscillations in many studies.

The newly introduced class of chronotaxic systems were considered in this context,

and used as a model to explain the underlying stability of metabolic oscillations,

and their seemingly intrinsic frequencies. Using this property of chronotaxicity, it

was shown that transitions between metabolic states in the model could be iden-

ti�ed numerically. It was also shown that chronotaxicity can be identi�ed via the

inverse approach from a single time series. This was demonstrated in simulated

and real experimental data. Altered cellular energy metabolism can directly a�ect

the tumour microenvironment, and this change is considered as a potential cause

of the altered blood �ow regulation observed in cancer.

8.2 Original contributions

The original contributions of this work are listed below:

� The inverse approach to chronotaxic systems presented previously has been
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developed further in terms of application speci�cally to signals containing

low frequency oscillations, and determining the minimum number of cycles

required for successful detection of chronotaxicity.

� These inverse approach methods were also applied for the �rst time to brain

dynamics, with the alpha wave of an anaesthetized patient turning out not

to be chronotaxic, highlighting the further developments required for the

detection of chronotaxicity in networks of oscillators.

� The blood �ow dynamics of melanoma, psoriasis, atypical naevi and benign

naevi were compared in the frequency interval 0.005�2 Hz. Time-averaged

normalized power signi�cantly di�ered between groups in the intervals asso-

ciated with cardiac, myogenic and neurogenic activity.

� The observed di�erences in blood �ow dynamics between melanoma and

atypical naevi, the most di�cult lesion to distinguish from melanoma, were

developed into a diagnostic test with sensitivity of 100% and speci�city of

90.9%.

� Signi�cant wavelet phase coherence was observed between blood �ow signals

recorded in the centre of lesions and on contralateral skin, in intervals I, II

& III, but this coherence did not signi�cantly di�er between groups, except

in the cardiac interval, due to a signi�cant di�erence in mean heart rate

between groups.

� Arterial oxygen saturation was compared between divers and controls and

investigated using wavelet analysis. It was found to contain low frequency

oscillations which were coherent with respiration, but this coherence did not

di�er between divers and controls. The peak frequency of these oscillations

was higher in divers than in controls at rest, and the standard deviation of

arterial oxygen saturation was higher in divers than in controls at rest.

� Normalized wavelet powers calculated from blood �ows recorded at rest

191



showed a signi�cantly lower cardiac power in divers than in controls in 5

out of 8 locations, and increased power at lower frequencies in divers in 5

out of 8 locations when compared to controls.

� Where a change in frequency of vasomotion could be observed during apnoea,

it was found to decrease in the majority of cases.

� A model of cellular energy metabolism was developed using chronotaxic

phase oscillators, and numerically simulated with varying parameters to rep-

resent di�erent metabolic states. Of particular interest was the metabolic

switch to glycolysis observed in most cancer cells, which was represented in

the model by an upregulation of glycolysis due to a decrease in the ATP

produced by the mitochondria. It was shown that this transition may be

detected using the inverse approach methods for the detection of chronotaxi-

city, though this requires experimental veri�cation.

� The inverse approach for the detection of chronotaxicity was applied to real

energy metabolism data for the �rst time. Recorded in yeast cells, results

from the analysis of this data provided evidence of chronotaxicity of the

glycolytic oscillator during an altered metabolic state.

8.3 Future work

Future directions of this work are expected to include the following:

� Further development of the inverse approach to chronotaxic systems to be

applicable to amplitude dynamics in addition to the current applications to

phase dynamics.

� Consideration of chronotaxicity in a network of coupled oscillators, for ex-

ample neurons in the brain.

� Possible use of altitude simulation as a means to induce a more controlled
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oxygen deprivation for the study of blood �ow and oxygenation dynamics in

hypoxia.

� Recruitment of more patients with melanoma, di�cult to diagnose lesions

and more controls to build up the data set used in the diagnostic test for

melanoma.

� Development of a `melanometer', a device which can characterise blood �ow

dynamics in skin lesions.

� Inclusion of the e�ects from other important cellular oscillators in the energy

metabolism model, especially calcium.

� Acquisition of experimental intracellular ATP recordings and application of

the presented inverse approach methods for the detection of chronotaxicity,

to verify the mitochondrial oscillator in addition to the glycolytic oscillator.
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A. Diagnostic test values
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B. Sample size and statistical power

calculations

This appendix considers the statistical power of the diagnostic test for melanoma

developed in Chapter 5.

Sample size is rarely reported in diagnostic accuracy studies [361], so no stan-

dard treatment of the problem exists. Consider the main hypothesis, that: statis-

tically signi�cant alterations in skin blood �ow dynamics will be observable when

comparing skin malignant melanoma with atypical naevi and healthy skin. Also

consider our secondary aim, to consider the utilisation of any observed di�erences

in the noninvasive diagnosis of skin melanoma.

Based on the aims and outcomes of this study, it may be concluded that it is

an observational study. Important considerations in sample size calculation are as

follows [362]

� The null hypothesis - there is no di�erence between blood �ow dynamics in

melanoma and atypical naevi.

� The alternative hypothesis - there is a di�erence between blood �ow dynam-

ics in melanoma and atypical naevi.

� The level at which we wish to avoid a type I error (pα) - A type I error is

the incorrect rejection of the null hypothesis, i.e. �nding di�erences where

there are none, usually set to 0.05.
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� The level at which we wish to avoid a type II error (pβ) - A type II error

in the incorrect acceptance of the null hypothesis, i.e. stating there is no

di�erence when there is, typically 0.8.

� What di�erence do we want to detect? What is the magnitude of this dif-

ference?

� Standard deviations of the variables of interest.

� The distribution of the data. Many statistical tests and sample size calcu-

lations are based on assumptions of normal distributions. In our study, the

non-normal distribution of data warranted the use of non-parametric tests.

The same criteria which caused us to use these tests will apply to sample

size calculations, and inevitably lead to the need for larger sample sizes.

Power of signi�cance tests

Statistically signi�cant di�erences in blood �ow were revealed between groups.

Here the statistical power of the tests used to obtain these results is assessed. As

not all distributions of �nal test parameters were normal (as determined by the

Lilliefors test), these di�erences were found using non-parametric tests, namely

the Wilcoxon rank sum test for unpaired data (the parametric equivalent is the t

test for independent samples), and the signed rank test for paired data (parametric

equivalent - paired t test). When comparing more than one group, the Kruskal

Wallis ANOVA test was used (parametric equivalent - one way analysis of variance,

F test). The statistical power of these tests will depend on sample size.

Sample size, e�ect size, signi�cance level and power are related, and given any

three, one can simply calculate the fourth, based on a normal distribution. When a

normal distribution cannot be assumed, the situation is more complex. Neverthe-

less, the required parameters from the existing data are calculated in order to give

an estimate of the required sample size, the missing variable. Asymptotic relative

e�ciency (ARE), loosely describes the ratio of sample sizes required (parametric
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to non-parametric) for a parametric procedure to have the same ability to reject a

null hypothesis as the corresponding nonparametric procedure. It has been shown

that the ARE of the Wilcoxon-Mann-Whitney (rank sum) test is always at least

0.864, regardless of the underlying population [363]. Although this value may in-

crease depending on the data, this worst case scenario will be used in the following

calculations, and therefore increase all calculated sample sizes by 15%.

E�ect size

Three sets of parameters used in the �nal test are to be considered. E�ect sizes

are calculated for all cases, and the smallest e�ect size will be used in calculations,

as this will result in the largest requirement for sample size. In these compar-

isons, only the di�erence between parameters in the melanoma and atypical naevi

groups are considered, as atypical naevi provide the biggest diagnostic challenge,

and from observations are more similar to melanoma in their blood �ow charac-

teristics than benign naevi, thus providing a more rigorous test of statistical power.

Test 1 - Ratio of mean blood perfusion at lesion margins and contralateral skin,

recorded simultaneously.

Test 2 - Normalized spectral power of cardiac interval at the lesion margin.

Test 3 - Ratio of total spectral power in the cardiac and neurogenic frequency

intervals in blood perfusion at lesion centres.

E�ect size can be calculated as Cohen's d,

d =
x̄1 − x̄2

s
,

where s is the standard deviation and x̄1− x̄2 is the di�erence between the two

means of the samples. The standard deviation required can be a pooled standard

deviation of the two groups, but this should not be used if the two standard

deviations are likely to be systematically di�erent. Therefore, the control standard

deviation is used in the calculation. E�ect sizes are therefore obtained for tests 1,
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2 and 3 of 1.393, 1.095 and 3.536, respectively. The e�ect size of parameter 2, the

smallest e�ect size, is taken forward into the sample size calculation. Sample size

was calculated using the `pwr' package in R, the statistical programming language.

R was used to compute the required sample size of the melanoma group (n1), to

perform a two sample, independent, one tailed, t-test, based on the following input:

n2 - sample size of the atypical naevi group. There are 33 subjects, but because

the tests used are non parametric, this will be reduced according to the extra

15% requirement explained above. The e�ective sample size thus becomes

28.696 subjects. Rounding down gives n2=28.

d - e�ect size - the e�ect size calculated from parameter 2 - 1.095 is used.

sig.level - probability of a type I error, α. As standard, this is set to 0.05

power - the probability that the test will correctly reject the null hypothesis (1-β,

where β is the probability of a type II error). As standard, this is set to 0.8.

alternative - speci�es whether the test is two tailed, or one tailed (less or greater). Here,

greater is used.

pwr.t2n.test(n2=28, power=0.8, d=1.095, sig.level=.05, alternative="greater")

t test power calculation

n1 = 6.658445

n2 = 28

d = 1.095

sig.level = 0.05

power = 0.8

alternative = greater
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The test indicates that a sample size of at least 6.658 (rounded up to 7) is

required to provide adequate statistical power. Including a further 15% to account

for the non-parametric nature of the tests leads to a minimum required sample

size of 8.05, which is rounded up to 9. As there are currently 10 subjects in the

malignant melanoma group, the null hypothesis that there are no di�erences in

blood �ow dynamics in the cardiac interval can be rejected. As all other test

parameters resulted in even larger e�ect sizes, one would expect to also be able

to reject the null hypotheses that those parameters do not di�er between groups.

This is demonstrated by using the e�ect size from parameter 1 and observing the

reduction in n1 that is required to maintain su�cient statistical power:

pwr.t2n.test(n2=28, power=0.8, d=1.393, sig.level=.05, alternative="greater")

t test power calculation

n1 = 3.789535

n2 = 28

d = 1.393

sig.level = 0.05

power = 0.8

alternative = greater

Here it can be seen that increasing the e�ect size has provided an even lower

estimate for the sample size n1, and is thus still within the scope of our data

collection.
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