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Figure 1: Two examples of 3D scene composition created with our style similarity metric that considers geometry, color, and texture.

ABSTRACT

The idea of style similarity metrics has been recently developed
for various media types such as 2D clip art and 3D shapes. We
explore this style metric problem and improve existing style
similarity metrics of 3D shapes in four novel ways. First, we
consider the color and texture of 3D shapes which are important
properties that have not been previously considered. Second, we
explore the effect of clustering a dataset of 3D models by
comparing between style metrics for a single object type and style
metrics that combine clusters of object types. Third, we explore
the idea of user-guided learning for this problem. Fourth, we
introduce an iterative approach that can learn a metric from a
general set of 3D models. We demonstrate these contributions
with various classes of 3D shapes and with applications such as
style-based similarity search and scene composition.

Keywords: 3D modeling, style similarity, crowdsourcing,
learning

Index Terms: [.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Modeling Packages

1 INTRODUCTION

Metric learning was introduced in the machine learning
community for computing distance functions [Kull3]. The
concept of metric learning has recently been applied to various
problems in computer graphics for computing distance functions
that correspond to style similarity metrics for 2D clip art [Garl4],
infographics [Sall5], and 3D shapes [Liul5, Lunl5]. Our work is
inspired by these previous works and we focus on style similarity
metrics of 3D shapes in this paper. We start with the same overall
framework of computing 3D shape features, collecting human
preferences of style data with crowdsourcing, and learning a style
similarity distance function between pairs of 3D shapes. In
contrast, we improve existing work with four novel contributions.
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Our first contribution is in considering the color and texture of
3D shapes in addition to their geometry within the style similarity
metric. To the best of our knowledge, the state-of-the-art previous
works [Liul5, Lunl5] focus only on geometric features. We
compute additional features corresponding to the color and texture
of each 3D model, and study the role of these features towards the
style metric in addition to geometric features such as curvatures,
shape distributions, and shape diameter functions. We hypothesize
that color and texture features would be dominant over geometric
features. We test this hypothesis by observing the relative values
of the set of learned weights that correspond to the features, and
by observing the results of style-based similarity searches of 3D
models with colors and textures.

The second contribution considers learning style metrics on a
dataset of 3D models by clustering them. If the 3D shapes
represent multiple object types, we can cluster them and learn
style metrics in different ways. We can have a metric for each pair
of object types (e.g. chairs->tables, forks=>spoons) which we
hypothesize will be more accurate, but there will be N? metrics if
there are N object types. We can also build clusters of object types
(e.g. “furniture” for chairs and tables, “cutlery” for forks and
spoons). We will have K? metrics if there are K clusters, which
can be much smaller if K is much smaller than N. However, we
hypothesize that these metrics will be less accurate as they
combine 3D shapes of different types. While Liu et al. [Liul5]
compared between learning from triplets (i.e. data generated from
queries) of two object types (e.g XY, and Y 2X) and all triplets,
they did not explore further the clustering of object types that we
propose. Our “clustering” is intuitive as the 3D models are
typically divided into high-level clusters such as cutlery and then
more specific object types such as forks, spoons, and knives.

The third contribution is to explore the idea of user-guided
learning for the style metric problem. We experiment with
learning both generic and user-guided metrics of style similarity.
The generic metric is based on the crowdsourced style matching
preferences, while a user-guided metric is based only on one
user’s style preferences (although they can also be combined). If a
user is not satisfied with the search results from a crowdsourced
metric, our interface allows the user to provide information (e.g.
re-rank the results) and create new training data for learning a



user-guided style similarity metric. We hypothesize that this user-
guided concept will be beneficial in some cases.

Our fourth contribution is to introduce an iterative approach to
learn a metric that can learn from a general set of 3D models. The
motivation is that previous work constructs the crowdsourcing
queries either randomly which can lead to many queries that
provide irrelevant data [Liul5], or by manually placing all 3D
models into carefully-constructed groups in order to generate
useful queries [Lun15]. We thereby develop an approach where an
initial set of queries are used to learn a metric, which is then
iteratively used to generate further queries and metrics. We
hypothesize that this iterative process can generate useful queries
without tedious manual processing.

We demonstrate the above four contributions with various
classes of 3D shapes (e.g. furniture, tableware, and cutlery) and
build tools to show the applications of style-based similarity
search and 3D scene composition. We obtain empirical results to
test our hypothesis in each case. Our results will help to improve
the development of style similarity metrics of 3D shapes.

1.1 Related Work

Style Similarity Metrics. There has been a recent interest in
research in style-based similarity metrics of both 2D and 3D
content. The idea is to compute a style-based distance function
between pairs of 2D or 3D objects. In the case of 2D content, such
distance functions have been developed for 2D clip art [Garl4],
font selection [ODo14], and infographics [Sall15].

In the case of 3D content, the state-of-the-art methods for
computing style similarity metrics of 3D shapes [Liul5, Lunl5]
are most closely related to our work. Liu et al. constructs part-
aware feature vectors for predicting style compatibility between
3D furniture models from different object classes. Lun et al.
creates a style-similarity measure based on geometric elements of
the 3D shapes. Our work is different in the four contributions
described above.

In particular, we give more details here on how data is collected
in previous methods that is different from our approach. While
Liu et al. [Liul5] learn a distance metric on randomly generated
crowdsourcing queries, Lun et al. [Lunl5] learn it on
crowdsourcing queries that are selected from groups of 3D models
that are manually pre-classified. However, if the number of 3D
models is large, constructing queries (i.e. in the form of triplets of
3D models) at random can result in a large number of queries for
which humans do not provide consistent responses. Such queries
do not provide useful information for the learning process. On the
other hand, Lun et al. [Lun15] constructs most of the queries by
first manually placing the 3D models into meaningful groups,
from which more useful queries can be generated. However, a
manual pre-processing of the 3D models is required. In addition,
these queries typically have obvious responses such that the
crowdsourcing step seems unnecessary. In this paper, we thereby
take an iterative approach to learn a metric, somewhat similar to
an adaptive selection method to generate queries [Taml11]. Our
iterative approach does not generate random queries (except
possibly in the first iteration) and does not require a manual pre-
grouping of the 3D models.

3D Shape Retrieval. Our work is related to the area of 3D shape
retrieval [Fun05, Tan08] as one of our applications is in style-
based search of 3D shapes. Our key difference is in the “style-
based” aspect with our crowdsourced and learned style metric.

Personalized Content Retrieval and User-Guided Learning.
Personalized information retrieval [Pasl0] involves learning a
user specific model of perceived relevance to present reordered

search results. There exists previous work in personalized image
search [San12, Kov13]. Prior work in 3D content-based retrieval
focuses on learning with crowdsourced data. CueFlik [Fog08]
allows users to re-rank search results for the problem of image
search, and to create their own rules which can then be used to
improve the search. Our work explores the idea of user-guided
learning to learn user-guided style metrics for 3D shapes.

1.2 Overview

Figure 2 shows an overview of our approach. We collect a dataset
of 3D models from online sources (step 1). We then compute
various shape descriptors or features (including color/texture
features) for each 3D model (step 2). We generate queries
containing triplets of 3D models and place them on Amazon
Mechanical Turk to collect crowdsourced data regarding style
preferences of the 3D shapes (step 3). The features and collected
data are then used to compute a style similarity measure with an
iterative approach (step 4). The style metric can be used in various
applications, including style-based search of 3D models (step 5).
An individual user can re-rank the models in our interface
according to their style preferences, and this information can then
be used to compute a user-guided style metric.
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Figure 2: Overview of our framework. Our novelty is in considering
color/texture features (step 2), exploring the learning of metrics with
different clusters of 3D shapes (all steps), user-guided learning
(steps 4 and 5), and an iterative approach (steps 3 and 4).

2 DATASET AND 3D MESH FEATURES

2.1 Dataset

We collected a dataset of 3D models (Figure 3) from the
following sources: 3D Warehouse, Threeding.com, Thingiverse,



and Lun et al. [Lunl5]. The object types can be categorized into
“tableware” (teapots, sugar bowls, creamers), “cutlery” (knives,
spoons, forks), “living” room furniture (sofas, coffee tables), and
“dining” room furniture (chairs, tables). Our choice of texture
images is inspired by commonly used patterns in real life. For
example, dining room furniture mainly uses wooden shades and
textures while living room furniture uses fabric shades and
textures. We have 17 models x 5 textures for each type of
tableware, 21 x 7 for each type of cutlery, 18 x 7 for each type of
living room furniture, and 21 x 7 for each type of dining room
furniture.
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Figure 3: Example 3D models. The rows correspond to tableware,
cutlery, living room furniture, and dining room furniture.

2.2 Geometric Features

We compute shape descriptors on the dataset of 3D models. We
represent each vertex of each 3D model with a 2728-dimensional
feature vector (x). Before computing features, all models are
oriented in the same direction and scaled to have similar
proportions within each object type. We use an over-complete set
of features and let the learning decide the relative importance of
each feature.

We aim to capture both global and local shape properties. The
features are not new on their own. Please refer to previous work
[Osa01, Sur03, Che03, Lunl15] for details of them. We include the
histograms for the following features (with the number of
histogram bins in brackets): shape distribution (128), curvature
(gauss, mean, max, min: 128 each), shape diameter (128), light
field descriptor (470), voxel gradient (192), voxel gradient
direction (128), silhouette centroid distances (192), silhouette
Fourier descriptor (57), silhouette Zernike moments (108),
silhouette D2 descriptor (192), silhouette  gradient (192),
silhouette gradient direction (96), and shape histogram (192). For
these geometric features, there are a total of 2587 dimensions in
the feature vector.

The first three features above are computed on a dense
uniformly-sampled version of a model’s surface. For the
remaining features above, the model is voxelized (300x300%300),
and silhouettes along x, y, and z directions are obtained by
projecting the voxel space along the three axes respectively.

2.3 Color and Texture Features

We capture color and texture properties with the following
features (inspired by [Garl4]): average HSV of the top five
dominant colors (3), hue histogram (32), saturation histogram
(32), value histogram (32), and local binary patterns (42). Our
feature vector has a total of 141 dimensions of such features.

These features are extracted for each 3D model from its
associated information about material and texture (.mtl and .png
files). Figure 4 shows the textures that we used. To maintain
uniformity, all texture images are cropped and resized to 512x512.

A 3D shape may have more than one texture. For example, a
3D model of a chair may consist of a wood texture for its seating
area and a steel texture for its legs. We handle multiple textures
by computing the same features above for each texture and
combining their histograms.
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Figure 4: Textures used with our 3D models. The rows correspond
to “dining”, “living”, “tableware”, and “cutlery”.

3 COLLECTING STYLE SIMILARITY INFORMATION

This section describes the process of collecting data from humans
about the style similarity of 3D shapes. Since it is difficult for
humans to provide absolute similarity values (for example, to
provide a real number to say how stylistically similar a chair
model is to a table model), we ask humans to provide relative
values. We differentiate between crowdsourced data collection
with many users (similar to recent work in this topic [Liul5,
Lun15]) and user-guided data collection.

3.1 Crowdsourced Data Collection

We collect data by gathering the preferences of a large number of
humans by posting tasks on Amazon Mechanical Turk. This idea
is similar to previous work [Garl4, Liul5, Lunl5] and we
describe our process here for completeness. The key is to collect
data in the form of triplets where we have three objects (A, B, C)
and A is more similar in style to B than C. To collect such triplets,
we create queries where a human is presented with a 3D model of
one object type X and six models of object type Y. Figure 5 shows
some example queries. The task is to identify which two of the six
of type Y are more similar in style to the model of type X. For
each task, we get eight triplets. If we let the two preferred type Y
be Y; and Y, and the rest be Y3 to Yy, the eight triplets are of the
form (X, Yla Y3-Y6) and (X, Y2, Y3-Y6).

We generate images of the 3D models such as the one in Figure
5 and post them as HITs (Human Intelligence Tasks) on
Mechanical Turk. Each HIT contains 25 tasks and we paid $0.15
for each HIT. We can choose the 3D models in these tasks
manually or with an iterative approach (Section 4.2). We generate
tasks with various pairs of object types, as indicated in Figure 6.

Each human “Turker” is initially given written instructions and
an example task with the responses (two pairs) already chosen by
us. We ask Turkers to specifically pay attention to the overall
shape, shape of parts, color, and texture before providing their
preferences. For the crowdsourced data collection, we had 220
users and collected 48,000 triplets.
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Figure 5: Four example HIT tasks. For each task, users were
asked to select two pairs of models out of the six that are more
similar in style compared to the others. Users were instructed to

compare the following to make their decision: number of parts and
their arrangement, color, texture, dimensions of parts and overall
shape, curviness of parts and overall shape.
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Figure 6: Object types in HIT task. Pairings of 3D model types for
which crowdsourcing queries were generated.
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3.2 User-Guided Data Collection

We also investigate to see if we can learn user-guided metrics and
hence we collect data from individuals. We do not use Mechanical
Turk here as it can be difficult to require a specific Turker to work
on many HITs to collect the needed data (as many Turkers would
do just one HIT). Hence we have users who directly use our tools
in our lab to collect personalized data. We have two ways to
collect such data and we use both of them and combine the data.
We first built a tool to allow users to specify their own
preferences by interactively re-ranking search results. The idea is
that if a user is not satisfied with the results from the
crowdsourced metric, he/she can re-rank the results to generate
training data which can then be used to learn a user-guided metric.
The tool (Figure 7 top) allows a user to visualize all 3D models of
an object type on the left scrollable panel, where the models can
be ranked according to their style similarity to a selected 3D
model in the current environment on the right. A user is first
asked to perform a search with the tool using the crowdsourced
metric. The user can then re-arrange the ranked results based on
his/her preferences of how well they match in style with a model
selected in the current environment. The user is asked to
specifically place the ten “closest match” at the top since we use
them to generate triplets data. The user interface consists of
dragging and dropping the images of the 3D models interactively
with the mouse to re-order them. If there is a long list of 3D
models in the scrollable panel, the user can also move the mouser
cursor over a 3D model and press a key on the keyboard to move
it to the top of the ranking. After re-arranging the models, the user
clicks a button to generate new triplets according to the ranking.
The triplets are of the form (A, B, C) where A is the selected
model in the environment, B is one of the top ten ranked models,
and C is one of the other models (not ranked as top ten). Such
triplets indicate that for the selected model A, the model B is more

similar in style to it than C. This process generates 10*(n-10)
triplets where n is the number of models we have for the object
type being ranked. Hence we choose this method as it is an
effective way to generate a large number of triplets.

The user can then use another tool (Figure 7 bottom) to
generate more ftriplets. For this tool, the user can choose two
object types X and Y, and the system randomly chooses one
model of type X and six models of type Y. The format of these six
pairs of models is the same as the HIT task. The user chooses two
of the six and the system generates eight corresponding triplets.
This task can be repeated as the user wishes to generate triplets.

For this user-guided data collection process, we had five users
who collected data for various object types. Each user generated

just over 30,000 triplets and took about 45 minutes.
R -omm

Figure 7: User-Guided Data Collection. Top: A tool for the user to
specify style preferences. Right window shows a 3D environment.
Left window shows a list of 3D models of an object type. This list
can be ranked based on the style similarity compared to the
selected model on the right. The user can interactively drag and
drop these models to re-rank them to specify their own style
preferences, and then the metric can be re-trained. Bottom:
Another tool for the user to generate as many additional triplets as
he/she wishes. It uses a format that is similar to the HIT tasks.

4 LEARNING SIMILARITY METRIC

In this section, we describe our framework for learning a style
similarity metric with the feature vector and similarity data
described in Sections 2 and 3. The framework is based on metric
learning and is inspired by previous methods [Garl4, Sall5]. Our
work takes an iterative approach to compute a style metric.

4.1 Style Metric Computation

We use a metric learning approach to compute a distance between
two 3D models based on their style similarity. Let x and y be the
feature vectors for two 3D models, and we wish to compute the
distance between them:

dx,y) =/ (x—PTW (x—y)




The learning formulation and solution to solve for W is the same
as in previous approaches [Garl4, Sall5], and hence we do not
repeat the details here but refer the reader to the previous works.

4.2 lterative Approach

We take an iterative approach to learn a metric and the idea is to
gradually build a better W matrix. We take the following steps for
each pair of object types X and Y:

(1) Initialize W eyprent to identity matrix or random matrix
(2) Repeat
(3) Generate triplets of the form (X, Y, Yj),
where X; is a random 3D model of type X,
Y; is 3D model with feature vector y;
such that d(x;, y;) < d(x;, y) for all Y models
computed with W yprene in the d() function,
and Y; is random 3D model of type Y that is not Y;
(4) Use above triplets to learn W,
(5) Set Wcurrent = Wnew

We post HITs on Amazon Mechanical Turk to collect data and
learn the weight matrix in each iteration. We choose to repeat the
iteration process until the accuracy improves by less than two
percent. We can compute the prediction accuracy of a metric
learned with a set of triplets by performing five-fold cross
validation on them.

The reliability of Turkers was an issue when collecting
crowdsourced data. For each HIT, we manually choose 5 control
tasks out of 25 as control questions to check the quality of the
responses. We only accept a HIT if 80% or more of the control
questions match with our responses. In each iteration, we keep re-
posting the rejected HITs until we get the desired number of HITs.

We noticed that the HIT rejection rate tends to be high in the
initial iterations (as high as 60% in some cases). This is because
the initial iterations produce essentially “random” triplets (i.e. Y;
and Y; being random due to the initial W). Hence it was difficult
for Turkers to provide good responses without paying proper
attention and many of them gave responses that seem random. As
we progress towards more iterations, the learned W matrix
becomes more effective and the triplets become less “random”.

5 RESULTS AND APPLICATIONS

We present the results towards each of our four contributions. We
use the applications of style similarity based 3D model search and
3D scene composition to demonstrate our work.

Color and Texture Features. Figure 8 shows several plots of the
learned weight matrices and these are learned with the iterative
approach to show the best results. We experimented with both
diagonal and full matrices and found no significant difference.
Hence we choose to learn diagonal matrices and plot the log of the
diagonal values (which correspond to the relative importance of
the feature values). The plots show that one of the color-related
feature (LBP) consistently dominates over the other color and
geometry features, and this is true across the four categories.
Hence we suggest the use of this feature (LBP [Oja02]) for future
development of these kinds of style similarity metrics. The other
pattern we observe in these plots is that there is consistency in the
2600+ feature values again across the four categories, which
shows that our method is robust.

Figure 8: Log plots of the learned weights for (from top left)

“dining”, “living”, “tableware”, and “cutlery”. The weights correspond
to features in the feature vector, in the order described in Section 2.

There are 13 geometric features and 5 color/texture features.

Figure 9 shows the results of style similarity based search with
our style metric. The top five search results for each query 3D
model show that while both geometry and color/texture are
important, color/texture is considered first when attempting to
match style before geometry is considered. This is true across the
different types of shapes that are shown. In the second last row of
Figure 9, the red sofa happens to match well with the query model
as their curvatures are similar. In Figure 1, we use our style
similarity metric with our search tool to compose 3D scenes. As
the 3D models that are preferred by the crowdsourced metric are
placed at the top of the search results, it is easier to find models
that match in style with a selected shape.

Hence we have empirical evidence to support our hypothesis
that color/texture features are dominant over geometry features, in
the plots of weights and in the style based search results.

Clustering of Object Types. Table 1 shows the accuracy results
for different pairings of object types and clusters. We do not take
the iterative approach here to ensure that the randomness does not
affect the results. We instead created HITs manually to cover the
range of 3D models in each object type. We took 5 HITs with
acceptable responses (after control questions) for each pair of
object types, and generated a total of 6040 triplets. For the
clustering into groups, the idea is that chairs/tables can be a
“furniture” cluster and forks/spoons can be a “cutlery” cluster. We
combine the collected triplets from the separate types to create the
triplets data for the clusters.

Chairs and| Forks and

Chairs| Tables| Forks| Spoons
Tables Spoons

Chairs 66.73 | 34.52| 50.44 Chairs 66.73 42.24
Tables | 73.29 41.67| 47.52 Tables 73.29 42.99
Forks | 64.25 | 51.19 80.19 Forks 61.94 80.19

Spoons| 38.87 | 61.17 |61.38 Spoons| 50.16 61.38

Chairs and| Forks and Chairs, Tables, Forks,

Tables Spoons and Spoons
Chairs i o Chairs
Tables Tables
56.84
Forks Forks

51.83 72.21

Spoons Spoons

Table 1: Cross-validation percentages for different pairings of
object types and clusters. We learn metrics for X->Y, where X
(and Y) is the type or cluster in each row (and column).



Figure 9: Style similarity based search results with our crowdsourced metric.
Each row first shows the query model and then the top five ranked models.



Observing the results from Table 1, we see that the percentages
for some object types (e.g. chairs and tables) are comparable to
the results with the iterative approach (shown below). We
intentionally compared across different object types here (e.g.
forks—>tables) and hence some pairings give low percentages as it
may be difficult to compare between some object types. This does
not affect what we aim to show: the tradeoff between learning
metrics for specific object types versus clusters of object types.

We observe that the percentages of the clustered pairings are
somewhat averaged from the percentages of the separated
pairings. We hypothesized that the clustered metrics would be less
accurate, as they may be mixing object types that are quite
different. However, our empirical results show no clear consensus
of whether the metrics from specific object pairings or clustered
pairings is better.

Since we combine the triplets data to learn a style metric during
this “clustering” process, we also tested whether the number of
triplets would have been a variable that affects the percentages
(i.e. more triplets data may lead to a higher percentage). Table 2
shows the results where we randomly take half of the triplets in
each case and re-calculate the percentage. These results show that
the number of triplets does not affect the percentage.

Chairs and| Forks and Chairs, Tables, Forks,

Tables Spoons and Spoons
Chairs Chairs
72.30 40.68
Tables Tables
56.36
Forks Forks

5212 71.10

Spoons Spoons

Table 2: We randomly take half of the original triplets
(compared to Table 1) in each of these five cases and re-
calculate the cross-validation percentages.

User-Guided Style Similarity Metrics. Figure 10 shows that the
user-guided results are interestingly somewhat different from the
crowdsourced results. For example, the color and shape of the legs
of the furniture pieces are different between the two results. For
the “cutlery” example, the crowdsourced results mainly match
with the color/texture features, while the user-guided results
include a spoon that has very similar geometry (i.e. round-shaped
handle) but different color/texture. The individual user in this case
was attentive to the geometry of the cutlery in addition to their
color/texture. These results demonstrate that we can learn a style
metric for individual users that is different from the crowdsourced
metric, providing evidence for our hypothesis that the user-guided
concept can be beneficial in some cases. However, since the
overall color and shape preferences among different people are
still mostly consistent, the differences in the user-guided metrics
may only be subtle.

Iterative Learning Approach. We collected 10 HITs of
crowdsourced data in each iteration. The experiments (Figure 11)
support our hypothesis that the iterative process can generate
useful HITs, and can avoid having to randomly generate triplets
[Liul5] or to manually group the 3D models in advance [Lunl5].
We found that we can stop after three iterations, and this was
consistent across the four object categories.
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Figure 10: Comparison between crowdsourced (first row
in each case) and user-guided (second row in each case) results
for “dining”, “living”, and “cutlery” categories. Each row first shows
the query model and then the top five ranked models from style
similarity based search.

Dining Living Cutlery  Tableware

100%
90%
80%
70%
60%
50% ® First
40% = Second”
30% Iteration

. hird
20% Iteration
10% = Fourth
0% Iteration

Figure 11: Cross-validation percentages for the iterative

learning for “dining” (chairs>tables), “living” (sofas—>coffee tables),
“cutlery” (spoons—>forks), and “tableware” (teapots->sugar bowls).

6 DiscussION, LIMITATIONS, AND FUTURE WORK

Crowdsourcing and learning approaches have recently been
successfully applied to various computer graphics problems. In
particular, this approach has been applied to compute a style
similarity metric for 3D models. In this paper, we further explore
this problem and provide four new contributions.

In addition to the color and texture features, other properties
such as construction material (e.g. glass or metal) and how
textures are mapped to 3D shapes (not just the texture image) can
be taken into consideration in future work when computing
features.

The results from our clustering experiments are different from
the results presented in Liu et al. [Liul5] although they do not
cluster the object types as we do. In their “all triplets” scenario
where triplets of different pairs of object types are combined, their
results show a better percentage accuracy compared to when the
triplets of different objects types are separated trained to form
metrics. In the case where we combined the four object types in



our experiments, our results show a similar percentage accuracy
compared to metrics computed with separate object types. Future
work can further investigate the reason for this discrepancy. A
larger number of object types and a larger dataset may give more
insightful results.

One limitation to the current learning method is that the
distance function is a simple Euclidean distance metric. Hence the
learned style metrics are limited in their expressive power, and
more complex non-linear functions can allow the metrics to better
represent human preferences.
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