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our experiments, our results show a similar percentage accuracy 
compared to metrics computed with separate object types. Future 
work can further investigate the reason for this discrepancy. A 
larger number of object types and a larger dataset may give more 
insightful results. 

One limitation to the current learning method is that the 
distance function is a simple Euclidean distance metric. Hence the 
learned style metrics are limited in their expressive power, and 
more complex non-linear functions can allow the metrics to better 
represent human preferences. 
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