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Abstract

In the era of big data, huge amounts of data are generated and updated every day, and their processing
and analysis is an important challenge today. In order to tackle this challenge, it is necessary to develop
specific techniques which can process large volume of data within limited run times.

TEDA is a new systematic framework for data analytics, which is based on the #ypicality and
eccentricity of the data. This framework is spatially-aware, non-frequentist and non-parametric. TEDA
can be used for development of alternative machine learning methods, in this work, we will use it for
classification (TEDAClass). Specifically, we present a TEDAClass based approach which can process
huge amounts of data items using a novel parallelization technique. Using this parallelization, we make
possible the scalability of TEDAClass. In that way, the proposed approach is particularly useful for
various applications, as it opens the doors for high-performance big data processing, which could be
particularly useful for healthcare, banking, scientific and many other purposes.
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1. Introduction

Huge amounts of data are generated every day in the modern society, mostly in a digital form. This
makes the old approach to store all data items and for further processing and analysis impossible and
gives rise to the term big data. Big data can be defined as a scale of dataset that goes beyond existing
database management tool capabilities of data collection, storage, management, and analysis capabilities
[1]. Although, the most common trait of big data is Volume, it is typically defined by more Vs such as
Volume, Variety, Velocity, Veracity, Volatility, etc.

There are many different applications in which Big Data techniques are applicable: data mining,
predictive analytics, geo-analysis, natural language processing and pattern recognition. Nowadays, since
the computational power and reliability of the contemporary computers continue to grow, the data
mining problems for big data is becoming widespread. These problems are shifting from the instrument
for government, large corporations, banks to mass users. Big Data can be classified taking into account
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the data type: (1) Structured (data are stored in fixed field), (2) Semi-structured (data are not stored in
fixed field but the data includes metadata or schema), and (3) Unstructured (data are not stored in fixed
field).

While processing structured and semi-structured data poses problems related primarily to the storage,
retrieval and tagging, when unstructured data is concerned the primary problem is organising and
making sense from it. Nowadays, unlike in the past century, vast majority of the data is unstructured.
Simpler algorithms, such as retrieval, search and clustering can be approached using Map-Reduce
\cite {SinghReddy14jobd} and through parallelisation can be scaled into a number of processing units
(PU). More complex machine learning algorithms, however, such as classification, prediction, image
processing etc., which are often iterative, are significantly more difficult to parallelise and scale up.

In this paper, we propose an algorithm for classification of Big Data based on the recently introduced
TEDACIass (Typicality and Eccentricity based Data Analytics) approach [2]. TEDAC]ass itself is a
neuro-fuzzy classifier which can be of zero or first order. The zero order TEDAClass has the class label
as output. The first order version is using a mixture of (linear) regression models combined by a fuzzy
weight proportional to their local density [3]. TEDAC]ass is based on the recently proposed alternative
data analytics called TEDA [2] [4] [5].

It is important to stress that the proposed approach has been designed as a context-independent approach.
It means that it is not restricted to any particular application. The proposed approach also does not have
restrictive prior assumptions that are typical for alternative statistical, fuzzy rule-based and other
approaches. This is due to being completely data-driven and based on the data density derived from data
items.

This paper is organized as follows: In the next section, the background and related work to the proposed
problem are discussed. In addition, the TEDA framework on which the proposed approach is based on
is also outlined. Section 3 details the structure of the proposed parallelization approach (called
TEDAC assgpp). Section 4 describes initially an intuitive illustrative example (IRIS classification data),
and one larger realistic approach (ETL1 data set) presents the experimental settings and the obtained
results. Finally, Section 5 makes the conclusions and outlines the future work.

2. Background and Related Work

Different scientific fields are becoming increasingly data-driven which also requires new approaches to
be developed within the Computer Science to reflect this. For example, social computing [6] is becoming
a discipline on its own; same is true for the bioinformatics [7], econometrics, astronomy is increasingly
data-driven [8], etc. are examples of these fields. Big data require new type of computational approaches
and techniques in order to be able to process efficiently large volumes of data within limited run times.

Various approaches where proposed specifically for Big Data recently, like those described in [9].
Perhaps the most popular approach is Hadoop and Map-reduce [10], but it is applicable to simpler
problems such as information storage and retrieval, clustering, samples-centred approaches such as
SVM etc. Most of the Big Data specific approaches are adaptations of previously existing and well
known machine learning approaches, for example, $k$-means clustering [11], SVM [12], fuzzy and
probabilistic clustering Fuzzy logic algorithms [13].

In the following subsections the two important aspects of the proposed approach are explained in
more detail: 1) the parallelization structure, and ii) the TEDA classifier.
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2.1.1. Data processing parallelization

The parallelization concept is about partitioning the data into chunks and processing them by several
independent (possibly distributed) processors in parallel. Partial results of different processors are then
merged in order to obtain the overall result. It is clear that simpler problem such as counting words in a
document (sum of sums) or finding a maximum or mean value (max of maxes or mean of means) that
are needed for storage and retrieval, clustering or SVM are easy to parallelise. More complex problems,
however, such as classification, prediction, image processing etc. which require iterative solutions are
significantly more difficult to parallelize. The specific manner different processors work and their results
are merged is essential for the final result.

We propose two different types of architecture for data processing (Figurel) and use one of them which
is based on parallelization of the TEDAC]lass classification algorithm. The Data Distributor node
distributes the data in blocks (data chunks). The Data Processor nodes obtain a result from the data
chunk provided to them. Functioning of all the nodes is exactly the same (the only difference is the data
that are being provided). Finally, the Fusion Centre node merges the partial results obtained by the
different Processor nodes.

Pipeline Processing

Initial| Data 1 Execution of the N
Data | Distributor, Data Processors:

Data
Processor 1
Data
Processor 2
Initial info Data info Data info InfoN-1 Data Final
Processor 1 Processor 2 Processor N Results
Processor N
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Data
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Data
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Figure 1. Different data processing architectures

In what follows the two architectures are briefly explained:

1. Pipeline Processing (Figure 1 - top): A pipeline is configured as a series of processing nodes.
The data is divided into chunks and each node receives sequentially its corresponding data
chunk. Each node receives the meta data (partial result from the predecessor node, e.g. means or
cluster centres, sum scalar products, etc). It then updates it using its own data chunk and forwards
the results to the next node. The last node produces the overall result. This scheme preserves the
order of processing in the sequential algorithm. It reduces the amount of data being processed
by and, thus, the computational complexity and burden on each node. However, it does not
reduce the time needed to solve the problem. Therefore, such a pipeline (sequential) architecture
can be useful in solving a number of problems in parallel. Let’s imagine, we have a number of
different problems (or data sets) where this number is not bigger than the number of processors
(N). Then the pipeline architecture can be used to solve all these problems at the same time by

11



Evolving Classifier TEDAC]lass for Big Data D.Kangin, P.Angelov, J.A.Iglesias, and A.Sanchis

the first processor starting to process the first data chunk of the first problem; the second
processor then starts to process the first data chunk of the second problem and so on. When the
first data processor is ready with the partial result of the first problem (using the first data chunk)
and the second processor is ready with the partial data of the second problem etc. the processors
swap the meta data between them in such a way that the second processor now continues to
process the first data chunk, the first processor — the Nth chunk etc. In this way, the pipeline
architecture can be used to reduce both the computational complexity and time required to solve
(up to) N different problems. In addition, this architecture can guarantee obtaining exactly the
same result as if all the data is being processed by a single processor [14].

2. Parallel Processing (Figure 1- bottom): In contrast to the pipeline architecture, in this case we
have a full parallelization. Initially, the data is divided and the different chunks are sent to the
individual processing nodes in a parallel manner. The nodes sent their partial result when ready
to the Data Fusion Centre. This architecture offers full parallelisation, but does not involve a
synchronisation and obtaining exactly the same result as if all the data is being processed by a
single processor which is the case for the pipeline (sequential) architecture. Instead, the result
can be approximately the same gaining reduction in time and computational complexity.

Further in this paper we will consider TEDACIass classifier benefiting from the parallel architecture.
We will expand on the sequential architecture for TEDAClass and other algorithms in subsequent
publications.

2.1.2. TEDAClass

In this section, we will outline the main characteristics of the TEDA framework. More details about this
alternative data analytics framework can be found elsewhere [2] [4] [5].

The TEDA framework is based on the spatially-aware concepts of typicality and eccentricity which
represent the density and proximity in the data space. The Typicality and Eccentricity-based Data
Analytics (TEDA), is a data driven, parameters and assumptions free approach which differs from the
traditional probability theory, the approaches based on belief and possibility, or those based on
subjective experts such as fuzzy logic. In what follows, it is briefly outlined.

Let us consider the data samples sequence: {x;, X5 ... Xy ...}, X; € R", i € N, where k is a time index
within the data sequence. We can define some particular distance d(x, y) (Mahalanobis, cosine or any
other which seems to be appropriate within the problem context) between the vectors of the data sample
set. We can also calculate the accumulated proximity: 7% (x) = ¥¥_, d(x, x;), k > 1. Here we shortly
denote f = ¥ (x;).

Figure 1: Possible architectures for data processing parallelisation.

The eccentricity (§) of a particular j™ (j > 1) data sample is defined as:

ke k
k _ 2 2% d(xjx;) k k
§ = DL B AT =17y > 0.k >2 ey
The typicality (7) of a particular j**(j > 1) data sample is defined as:
k
r}‘:l—fj’-‘,k>2,z k>0 2)
i=1
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These definitions can be normalized (see [2] [4] [5]) with the advantage that they do not require any
prior assumption such as having infinite amount of data, independence of the individual data vectors,
smooth pre-defined distributions, having positive likelihood of infeasible values, etc. which are typical
for the traditional probability theory [15]. For example, the normalized typicality (t) of a particular

i (j > 1) data sample is defined as:

Tk
t}czk—jz,k>2. (3)
In addition, and it is very important for the use in big data problems, these definitions can be calculated
recursively by updating only the global or local mean (u) and scalar product (X).
TEDA framework applies to various types of underlying models, but in this paper we will consider

the specific neuro-fuzzy approach recently introduced by Angelov and Yager called AnYa [16]:

F={R;},i=1N,Ri(x): IF (x~x;) THEN y; = X" 6; 4)

where F is a fuzzy rule set, R; is a particular rule of this set, y; € C,x € R", F: R™ - C, R" is a feature

space, C is a class space, x; is cluster representative point (focal point), 0; is a design matrix for linear

regression, ~ is a closeness relation (fuzzy association/membership) of the point x to the fuzzy rule
R;(x).

The procedure of classification using TEDAClass, as well as a learning algorithm, is the same as for
eClass [17] and AutoClass [3]. The main difference of TEDAClass algorithm is that the inference is
based on the ratio of the local #ypicality and eccentricity rather than on the de-fuzzification as it is in
eClass. The firing rate of each AnYa type fuzzy is derived as a ratio of the normalised typicality:

ko b
Wi =$N k ©)
j=1t
where normalised typicality t¥ is given over all the elements assigned to this fuzzy rule.

3. The Proposed Approach TEDAClassspp

The approach presented in this paper (TEDAClasspp, which stands for TEDAClass, Big Data
parallelized) is based on the TEDACIass classifier executed by each data processor node in parallel
manner (Figure 1-bottom). Using the parallelization it is possible to scale up the classification algorithm.

The proposed parallel architecture reminds the well-known client-server architecture [18]. The
‘Fusion Centre’ block has a role similar to that of a server, whilst the ‘Data Processor’ nodes have a role
similar to that of clients.

Despite the original TEDAClass approach [5] being online and dynamically evolving, in this paper
we use a much more limited offline version of TEDAClass in order to avoid the expensive
communication between the processing nodes and the Data Fusion Centre. In our realization, the Data
Fusion Centre controls the processing of the entire data and holds all the meta data such as means, sum
scalar products, number of data clouds formed, etc.

The data is separated into chunks and passed to the Processors where the data clouds are being
formed and parameters of the regression models in the consequent parts are being updated; then these
partial results are being then passed to the Data Fusion Centre which merges the data clouds and updates
the parameters.

3.1.1. Our algorithm description
In this section, the algorithm description is presented. Here we consider the case of Mahalanobis
distance without loss of generality.
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1) Fusion Centre initialisation:u* = @, ,ul;rx = @, N is a count of data processors, Np is
the cardinality of the data set, N, is the cardinality of a data chunk, X is a data set with
cardinality Nj,.

2) Fusion Centre: Select first Ny = min(N./N , Np) objects from the data set and transmit
first N, data to the data processor.

Nyg .
3) Data Processor 1: calculate the parameters of the clusters (the mean {, 1, covariances
{ME\Q;T) }, i = 1...Ng, where N, is the number of clouds and i is a current cloud, N, ; is
i

a support of the i-th cloud) as in traditional TEDAClass and transmit it back to the Fusion
Centre.

4) Fork=N0+1,N0+1+Nc,...N_ch0

a.  Fusion Centre: Divide Xy = {X ... Xiyn} into N¢ groups {Gy, Gy, ... Gy},
preferably of equal size.

N . N: : .
b.  Data Processor (j = 1: N): update the means {y; ;" }, covariances {M(XI;T) ]_},1 =
, ;

1.. NjCI, where NjCl is the number of the data clouds found by each Data Processor
J, 11s the current data Cloud according to the equation (6) and (7) and N ]c1 isa
number of data items to process at each Data Processor j. Update the fuzzily-

weighted RLS parameters according to (11) and (12).

c. Fusion Centre: Update the means {u?‘i}, covariances {HI(\I;XT) },i =1..Ng, where
i

N is the number of data clouds, according to the equations (8) and (9), and then
merge the data clouds that are close to each other.

After the step 4.2, the Data Processor gets back the meta data about all data clouds from the Fusion
Centre. Then, it performs the TEDAC]lass algorithm as in [2]. When adding a new data item xy to the j-
th data cloud with support N;, the means are accumulated for the i-th data clouds for j-th Data Processor
are given as follows:

L. N:.: —1 . X
0 _ Nl,] e NL,] 1 k
.ui,j - 0; #i,j - Ni'j #i,j + Nl',]' ) (6)
iy Ni; =1 n,. - XXk
0 _ Nij _ Ny Nyj-1 kK
Heaox) i = Oy, = TN e TN, @)

At step 4.3, the Fusion Centre obtains the data from all the data clouds, and then merges them when

the following criteria is satisfied, or otherwise adds it to the set of Fusion Centre clouds:

Ry ={Rij>i,R; € F,tf(uF) > T(k)},
i.e. typicality in given instant of time for any rule does not exceed a threshold T (k), depending on the
instant of time, that shows that the data clouds are too close to each other. The merger is carried out
according to the following equations:

k—N;; rk-n;; Nij n;;
u= 0 === =t (1)
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k - N i k—N; ; N 7 N; ;
0 — K — L Lj Ly Nij 9
My, = OBy, PR P Wil P W ©

where uivj” is the mean of i-th cluster of j-th data processor, and [ is the index of the cluster within the
Fusion Centre.

To obtain the overall classifier, we apply fuzzily weighted recursive least squares (RLS) method to
build up the linear regression for each of the data clouds. This regression is used to estimate @; and

resolves the following least-squares problem:
k KT ok (yk k1T gk ;

(Yt - [w¥] @z) (Yi - [¥] Gi) — min, (10)
where Y; is the matrix of ground-truth output results for the i-th fuzzy rule, ©; is a design matrix, ¥; =
{xw}(x)} is a matrix of the RLS inputs with the membership weights w* (x). The RLS regression [3].
is updated at each of the Data Processors as:

0 = O ! + CAwS (v — Wi Oy, 0 =0, @

ck-1ykpk]" ck-1
ck=ckt-= l[T‘] —,Ct=Ql 3)
L+ [we] ¢t
and similarly on the Fusion Centre using the Data Processors regression values C} and ©F as an input.

4. Experimentation

This section is divided in two subsections: first, on the simple illustrative example we demonstrate
how our approach works. This is then followed by a more realistic example.

4.1.1. Hlustrative Example

To illustrate the different stages of the algorithm we use the well-known Iris dataset [19] for
classification. It contains 50 samples/vectors for each of the 3 different classes, representing types of
the Iris flower. Figure 2 demonstrates how the proposed TEDAClassgp, approach works. On the top of
the figure, we can see the projection on the first 2 axes of all data samples with different classes shown
with different colour and symbol. In this particular case, we used 5 Data Processors because the data set
is small and the aim is simply to illustrate the work process and to proof the concept. Thus, the Data
Distributor node divides the data in 5 different chunks. Each of the Data Processors then applies
TEDAClass to the specific data chunk and obtains the AnYa type rules. Data clouds [3] are then formed
which do not have a specific shape or parameters. However, for illustrative purposes only we depicted
on the Figure 2 the 2D ellipses of the respective covariance matrices (only those having support >2 are
presented on the images). Then the Data Fusion Centre node merges the data clouds (we can observe in
the bottom right of the figure the result of this process again simplified for a 2D illustration).
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Figure 2: Example — How the proposed approach works.

4.1.2. Experimentation Results

In order to evaluate the newly proposed TEDAClassgp, algorithm, we applied it fo the so called
ETL]I data set (http://projects.itri.aist.go.jp/etledb/etln/etl1/etl1.htm) which consists of 12,888 different images of
handwritten digits labelled with its corresponding digit. Each sample is represented by a 64 x 64 image.
For the training, 1,857 digits were selected, and 11,031 images were selected for validation. The Matlab
software was written to evaluate the proposed approach. .

To make the image data tractable for the vector classification algorithm, the feature extraction is first
carried out by the method proposed in [20]. This method trivially combines Gabor filter based gist
descriptor [21] combined with Haar features [22]

The results of applying TEDA Classgp, to this data set are shown in (Table 1 and figure 3) and they
demonstrate that approximately the same high accuracy can be achieved by each Data Processor
working with only part of the data (up to 1/5th) and thus the data being processed much faster since we
are using several (up to 5) Data Processors. Although, the number of data clouds is increasing
significantly, they are being reduced by merging and other techniques subsequently.

The proposed classifier is tailored for parallel processing of Big Data by splitting the data into chunks
and processing them independently yet achieving approximately the same classification result (using 1
or 5 data processors). The proposed parallelisation technique allows reducing both, the computational
complexity and time required to process all the data tremendously (in the order of N, O(N), where N is
the number of Data Processors). From the update equations we can see, that the update depends linearly
from the number of fuzzy rules. We also observed that the more data we process, the more complex
patterns we can find. Therefore, more data clouds are being created. Therefore, the overall gain can be
even more because of the growing complexity of the data patterns within the large chunks (one can see
it from the table 1 and figure 3, where the relative computational time is the part of the training time
comparing to the training time for one data processor). In the overall solution, we accumulate all the
patterns in the final node, and in this case we do not operate with a huge amount of data, but only with
fuzzy rule merger. This means, that we do not deal with Big Data directly in the Data Fusion Centre,
but delegate it to the Data Processors, and the increase of the d ata chunks gives the parallelisation at
least in number of nodes times.
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4.2. Table 1: ETL1 Performance dependency of # nodes

#Data Processors Accuracy #Data Clouds | Computational time compared to one node
1 0.9540 79 1
2 0.9517 103 0.3835
3 0.9491 227 0.2504
4 0.9490 232 0.2371
5 0.9428 454 0.1256

Accuracy
Computational efforts
&

1

4 5

1 2 E] 4 5 2 3
The number of data processors

The number of data processors

Figure 3: Accuracy (left) and Computational Time (right) depending of the number of nodes.

5. Conclusions and Future Work

In this article, a new algorithm for processing Big Data is proposed. The approach is based on the
classifier TEDAClass and it gives new opportunities for application of this algorithm for huge amounts
of data. It is obtained by adapting the original algorithm to a block-wise processing of the data. This
approach gives new opportunities to distribute the data processing for the algorithm and to bring new
applications to this method. The results give a strong evidence of the proposed concept, showing no
significant reduction in the accuracy while the computational complexity and time required are reduced
by a factor of N. Same as the original TEDAClass, the proposed TEDAClassgp, approach does not need
prior assumptions (except the number of the Data Processors we will use). In addition it can be recursive
and thus online and real-time (not completely exploited in this paper). These characteristics make this
method a good candidate for the problems in which thousands or millions of data units need to be
processed fast.
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