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√
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sented, using data with integrated luminosities of 0.15 nb−1 and 4.2 pb−1, respectively, in

a wide transverse momentum (0.5 < pT < 150 GeV) and pseudorapidity (|η| < 2) range.

For Pb+Pb collisions, the spectra are presented as a function of collision centrality, which

is determined by the response of the forward calorimeters located on both sides of the in-

teraction point. The nuclear modification factors RAA and RCP are presented in detail as

a function of centrality, pT and η. They show a distinct pT-dependence with a pronounced

minimum at about 7 GeV. Above 60 GeV, RAA is consistent with a plateau at a centrality-

dependent value, within the uncertainties. The value is 0.55± 0.01(stat.)± 0.04(syst.) in

the most central collisions. The RAA distribution is consistent with flat |η| dependence

over the whole transverse momentum range in all centrality classes.
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1 Introduction

High-energy heavy-ion (HI) collisions produce a hot and dense matter, the quark-gluon

plasma, in which quarks and gluons become deconfined [1–4]. Charged hadrons of high

transverse momentum (pT) are a tool that can be used to study this strongly interacting

matter [5, 6]. Since the start of the LHC operation with heavy ions in 2010, it has been

possible to study charged-particle production in HI collisions in a new energy regime.

The first results from the LHC experiments showed that jets emerging from the medium

created in such collisions have lower energy than expected in the absence of medium ef-

fects [7, 8]. The measurement of fully reconstructed jets by the ATLAS experiment revealed

that the energy loss of the high-energy partons in the medium, commonly referred to as

jet quenching, results in a lower yield of jets at fixed pT. The yield is suppressed in central
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collisions with respect to the yield in pp collisions by factor of two to four [9, 10]. Addi-

tional important information about the energy-loss mechanism is provided by the study of

jet fragmentation functions [11, 12]. These show an enhancement in the charged-particle

fragment yield in central collisions with respect to those measured in the peripheral ones

for transverse momentum pT . 4 GeV, a reduction for 4 GeV . pT . 30 GeV and a small

enhancement for pT & 30 GeV.

As jets lose energy and the pattern of jet fragmentation is modified in HI collisions,

it is expected that the resulting spectrum of hadrons, which originate from parton frag-

mentation, is also modified. The results from the LHC experiments [13, 14] established

that hadron suppression at the LHC is larger than that measured at RHIC [1–4]. At pT
values of 6–7 GeV the suppression reaches a factor of five for nucleus-nucleus collisions at a

centre-of-mass energy per nucleon-nucleon pair
√
sNN = 200 GeV and a factor of seven at

√
sNN = 2.76 TeV. Results from the LHC experiments show that the suppression diminishes

at higher pT.

Several theoretical models attempt to describe the behaviour of the data at high

pT [15, 16], using previous measurements by ALICE and CMS; however the behaviour

above pT ≈ 50 GeV is not strongly constrained by the data. An attempt was made to pre-

dict the behaviour of the suppression at a fixed pT as a function of rapidity [17], but such

dependence has not yet been measured. The ATLAS tracking system has a wide rapidity

coverage and thus allows to measure this pseudorapidity dependence.

The suppression of hadron production in HI collisions can be quantified using the

nuclear modification factor (RAA), a ratio of the measured charged-particle production yield

in HI collisions to the expected rate based on the charged-particle production in nucleon-

nucleon collisions. Collisions with complete nuclear overlap are called central collisions,

and as the distance between nuclear centres increases, the collisions become more and

more peripheral. The hard scattering rate is higher in more central collisions because of

greater nuclear overlap where more nucleons in one nucleus can hard-scatter with nucleons

in the other. Such an enhancement is expected by the Glauber model to be proportional

to the product of nucleon densities in the transverse plane; the ratio is corrected for this

by 〈TAA〉, which is estimated as the number of nucleon-nucleon collisions over their cross

section [18]. Neglecting isospin effects, the nucleon-nucleon hadron-production cross section

can be approximated by the corresponding pp cross section, σNN ≈ σpp, and thus the

nuclear modification factor can be expressed as

RAA =
1

〈TAA〉
1/Nevt d2NPb+Pb/dηdpT

d2σpp/dηdpT
, (1.1)

where Nevt is the number of Pb+Pb events, d2NPb+Pb/dηdpT is the differential yield of

charged particles in Pb+Pb collisions and d2σpp/dηdpT is the differential charged-particle

production cross section measured in pp collisions. It is expected that in the absence of

nuclear effects, the ratio RAA will be unity in the region of pT where hadron production is

dominated by hard scattering processes.

The modifications of the particle spectra can also be studied using the nuclear modifi-

cation factor RCP, defined as the ratio of the charged-particle yield in each centrality class
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to the yield in a chosen peripheral class, both scaled by their corresponding 〈TAA〉. The

nuclear modification factor RCP is defined as

RCP(pT, η) =
〈TAA,P〉
〈TAA,C〉

1/Nevt,C d2NPb+Pb,C/dηdpT

1/Nevt,P d2NPb+Pb,P/dηdpT
, (1.2)

where indices P and C denote quantities obtained in peripheral collisions and for a given

centrality, respectively. Measuring RCP is another way to examine the suppression of

hadron production in HI collisions.

This paper presents a high-statistics measurement of charged-hadron spectra, RAA and

RCP in the transverse momentum range 0.5 < pT < 150 GeV in Pb+Pb collisions using

data recorded by the ATLAS experiment in the 2010 and 2011 HI physics runs of the

LHC at
√
sNN = 2.76 TeV, and the pp data at the same value of

√
s recorded in the 2011

and 2013 physics runs. The total integrated luminosity of the combined Pb+Pb sample is

0.15 nb−1, and that of the combined pp sample is 4.2 pb−1.

2 The ATLAS detector

The measurements presented in this paper were performed using the ATLAS inner detec-

tor (ID), calorimeter, muon spectrometer, and the high-level trigger and data acquisition

systems [19]. The ID measures charged-particle tracks within the pseudorapidity1 interval

|η| < 2.5 using a combination of silicon pixel detectors (Pixel), silicon microstrip detectors

(SCT), and a straw tube transition radiation tracker (TRT), all immersed inside a 2 T axial

magnetic field. All three tracker systems are composed of a barrel and two symmetrically

placed end-cap sections. The Pixel is composed of three layers of sensors with nominal pixel

size 50µm× 400µm. The SCT barrel section contains four layers of double-sided modules

with 80µm pitch sensors, while the end-caps consist of nine layers of double-sided modules

with radial strips having a mean pitch of 80 µm. The two sides of each layer in both the

barrel and the end-caps have a relative stereo angle of 40 mrad. The TRT contains up to

73 (160) layers of staggered straws interleaved with fibers (foils) in the barrel (end-cap).

Charged particles in the barrel region with pT & 0.5 GeV and |η| < 1.0 typically traverse 3

layers of silicon pixel detectors, 4 layers of double-sided microstrip modules, and 36 straws.

The calorimeter system consists of a liquid argon (LAr) electromagnetic (EM) calorime-

ter covering |η| < 3.2, a steel-scintillator sampling hadronic calorimeter covering |η| < 1.7,

two LAr hadronic calorimeters covering 1.5 < |η| < 3.2, and two LAr forward calorimeters

(FCal) covering 3.1 < |η| < 4.9. The two FCal modules are composed of tungsten and

copper absorbers with LAr as the active medium, which together provide ten interaction

lengths of material. The hadronic calorimeter has three sampling layers longitudinal in

shower depth in |η| < 1.7 and four sampling layers in 1.5 < |η| < 3.2, with a slight overlap

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the

polar angle θ as η = − ln tan(θ/2).
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of the two regions. It has a ∆η × ∆φ granularity of 0.1 × 0.1 for |η| < 2.5 and 0.2 × 0.2

for 2.5 < |η| < 4.9.2 The EM calorimeter is segmented longitudinally in shower depth into

three compartments with an additional pre-sampler layer. It has a granularity that varies

with layer and pseudorapidity, but which is generally much finer than that of the hadronic

calorimeter. The middle sampling layer, in which EM showers typically deposit the largest

fraction of their energy, has a granularity of 0.025× 0.025 over |η| < 2.5.

The minimum-bias trigger scintillator (MBTS) counters are located at a distance of

3.56 m along the beamline from the centre of the ATLAS detector and cover 2.1 < |η| < 3.9

on each side. Each MBTS counter consists of 16 scintillator pads. Signals from the pads

were used as an input to the trigger system in the 2010 run and the time difference between

hits in the two sides of the MBTS was used to select good events in both the 2010 and

2011 runs.

The zero degree calorimeter (ZDC) consists of two arms, positioned at z = ±140 m

from the centre of the ATLAS detector, and detects neutrons and photons with |η| > 8.3.

Signals from the ZDC are used by the trigger systems. The ZDC trigger thresholds were

set just below the single-neutron peak on each side.

The selection of events was done in several steps. First, events were required to satisfy

a hardware-based level-1 (L1) trigger. The L1 trigger selects events with energy deposition

in the calorimeters above a preset level, or events with signals from the ZDC. Such events

are further processed by software-based high-level triggers (HLT).

3 Datasets

This analysis uses data from the 2010 and 2011 Pb+Pb data-taking at
√
sNN = 2.76 TeV

and data from the 2011 and 2013 pp data-taking at the same centre-of-mass energy,√
s = 2.76 TeV. A summary of all data samples used in this analysis is given in table 1.

All 2010 Pb+Pb data were collected with a minimum-bias (MB) trigger. It required

a presence of a neutron or photon on either side of the ZDC or presence of a hit in the

MBTS on each side of the ATLAS detector.

In the 2011 data-taking, events were recorded with a MB trigger and a jet trigger. The

transverse energy measurements used by the trigger system is evaluated at the electromag-

netic scale. The MB events were required either to have the transverse energy, ET, in the

whole calorimeter exceeding 50 GeV at the L1 trigger or to have an ID track reconstructed

in the event in coincidence with the ZDC signals on both sides. For a jet trigger, events

were preselected for reconstruction by the HLT if they deposited a transverse energy of

ET > 10 GeV in the calorimeters at L1 or if the ZDC produced signals in coincidence on

both sides of the detector. Such events were analysed by the HLT using a jet-finding algo-

rithm on calorimeter towers after underlying-event subtraction [20]. All events containing

a jet found with the anti-kt algorithm [21] with radius parameter R = 0.2 and with ET,

estimated in the trigger system, of at least 20 GeV were accepted. The HLT uses algorithms

very similar to those used in the offline jet reconstruction.

2An exception is the third sampling layer which has a segmentation of 0.2× 0.1 up to |η| = 1.7.
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Pb+Pb data

Year Trigger Centrality Recorded Sampled NN collisions

2010 MB 0–80% 4.2× 107 4.2× 107 1.8× 1010

2011 MB 0–80% 4.2× 107 8.0× 108 3.4× 1011

2011 Jets 0–80% 1.3× 107 8.0× 108 3.4× 1011

2011 Jets 0–5% 2.5× 106 5.0× 107 8.4× 1010

2011 Jets 60–80% 3.3× 106 2.0× 108 5.3× 109

pp data

Year Trigger Recorded Luminosity Collisions

2011 MB 1.6× 107 0.2 pb−1 1.3× 1010

2011 Jets 6.5× 107 0.2 pb−1 1.3× 1010

2013 MB 5.5× 106 4.0 pb−1 2.6× 1011

2013 Jets 6.8× 105 4.0 pb−1 2.6× 1011

Pb+Pb simulation samples

Year Underlying event Hard scattering Total events

2010 HIJING PYTHIA 5× 106

2011 Data PYTHIA 2.2× 107

pp simulation samples

Year Hard scattering Total events

2011 PYTHIA 3.5× 107

2013 PYTHIA 1.9× 107

Table 1. Summary of the data and simulation samples used in the analysis. “MB” stands for

minimum bias. For Pb+Pb data, the column “Recorded” lists how many events for a given data-

taking period, trigger and centrality interval were written to disk. “Sampled” is the total number

of events, of which only a fraction were recorded. The “NN collisions” column in Pb+Pb lists

the number of binary nucleon-nucleon collisions equivalent to the “Sampled” events based on the

Glauber model [18]. For pp data, the meaning of the column “Recorded” is analogous. “Luminosity”

is the total luminosity for a given run, while “Collisions” gives the equivalent number of proton-

proton collisions for that luminosity. For the simulation samples, the tables specify the origin of

the underlying event (for the Pb+Pb samples) and the hard scattering event. The last columns

sum up the total number of generated events. These events may be further broken down, such as

by kinematic selection on the underlying hard scattering (see text).
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The pp data with
√
s = 2.76 TeV were obtained in two designated runs in 2011 and

2013. In 2011, the MB trigger required a coincidence of MBTS signals. Events selected

with the jet trigger in 2011 were required either to satisfy the requirement of MBTS signals

in coincidence and a jet with ET > 10 GeV or to have an area of ∆η ×∆φ = 0.8 × 0.8 in

the calorimeters with deposited transverse energy more than 10 GeV at L1.

In 2013, the MB trigger required an event to be randomly selected at L1 in filled bunch

crossings and a track to be reconstructed in the ID system. Due to a different trigger menu

designed to take advantage of the higher instantaneous luminosity, only a small fraction of

MB events was recorded in 2013 compared to 2011. The jet triggers in the 2013 data-taking

used different jet ET thresholds. For the jet-triggered samples with the lowest thresholds,

jet ET = 10 GeV and 20 GeV, events were randomly selected by the L1 trigger and then by

the HLT using anti-kt jet algorithm with a radius parameter of R = 0.4 and requiring an

energy estimate above the corresponding ET threshold. For the jet-triggered samples with

thresholds of ET = 40 GeV and 50 GeV, events at L1 were required to deposit transverse en-

ergy above 5 GeV and 10 GeV, respectively, in an area of ∆η×∆φ = 0.8×0.8 in the ATLAS

calorimeters. For the jet-triggered samples with thresholds ET = 60 GeV and 75 GeV,

events were selected by requiring a transverse energy deposition above 15 GeV at L1. Due

to the limited DAQ bandwidth, the jet-triggered samples were recorded with different

prescales depending on the ET threshold, and these prescales were chosen to evolve with

the instantaneous luminosity in the LHC fill. The prescale indicates which fraction of events

that passed the triger selection were selected for recording by the data acquisition system.

The integrated luminosities of the pp samples, after application of the event selection

criteria, are given in table 1. After accounting for the nuclear thickness, the luminosities

in Pb+Pb and pp samples are comparable, as can be seen in the “NN collisions” column.

A Monte Carlo (MC) simulation was used to correct the detector-level charged-particle

spectrum for track reconstruction efficiency loss, detector resolution and the contribution

of tracks not produced by primary particles. The track reconstruction performance was

simulated in the HI environment. The particles were generated by the PYTHIA event

generator [22] version 6.423 with parameters chosen according to the so-called AUET2B

parameter set (“tune”) [23]. Five samples of
√
s = 2.76 TeV pp hard scattering events

were produced in exclusive intervals of transverse momentum of outgoing partons in the

2→ 2 hard scattering process, with boundaries at 17, 35, 70, 140, 280 and 560 GeV. Each

PYTHIA event was embedded in the underlying event of a HI collision, which was obtained

using different techniques for the 2010 and 2011 data analyses.

In the 2010 data analysis the environment of Pb+Pb collisions was simulated using

106 events, the same for all five samples, with
√
sNN = 2.76 TeV. They were produced

by the HIJING event generator [24] with default parameters, except that jet quenching

was disabled. To simulate the effects of elliptic flow in Pb+Pb collisions, a parameterized

centrality-, η- and pT-dependent cos 2φ modulation with randomly selected event plane

based on previous ATLAS measurements [25] was imposed on the particles after genera-

tion. The detector response in the resulting MC events was evaluated using GEANT4 [26]

configured with geometry and digitization parameters matching those of the 2010 Pb+Pb

– 6 –
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Centrality 〈Npart〉 〈TAA〉 [mb−1]
〈TAA〉
〈T 60−80%

AA 〉
0–1% 401 ± 1 29.0 ± 0.5 70.2 ± 8.2

0–5% 382 ± 2 26.3 ± 0.4 63.6 ± 7.4

5–10% 330 ± 3 20.6 ± 0.3 49.8 ± 5.6

10–20% 261 ± 4 14.4 ± 0.3 34.9 ± 3.7

20–30% 186 ± 4 8.73 ± 0.26 21.1 ± 2.4

30–40% 129 ± 4 5.05 ± 0.22 12.2 ± 1.0

40–50% 85.6 ± 3.5 2.70 ± 0.17 6.5 ± 0.4

50–60% 53.0 ± 3.5 1.34 ± 0.12 3.2 ± 0.1

60–80% 22.6 ± 2.3 0.41 ± 0.05

Table 2. Centrality classes used in this analysis. The mean number of participants, 〈Npart〉,
the mean value of nuclear overlap function, 〈TAA〉, and its ratio to the most peripheral 60–80%

centrality class as estimated using a Glauber Monte Carlo model are also presented.

run [27].

In the 2011 data-taking a separate Pb+Pb event sample was recorded which contained

approximately 3× 106 MB events to be used as the underlying events in the MC samples.

Approximately 4.3 × 106 hard scattering PYTHIA events (for each of the five different

kinematic selections) were overlaid on these data. Thus, the simulations for the 2011

analysis contains an underlying event contribution identical to the data.

The pp simulated events were generated by PYTHIA, using the same tune as for

Pb+Pb, and reconstructed with the detector conditions matching those from the data-

taking period. Minimum-bias and hard scattering samples were simulated for both runs.

The MB simulation contained 30× 106 and 2× 106 events corresponding to 2011 and 2013

runs respectively. The hard scattering samples were produced in several kinematic regions

similarly to the HI samples. For the 2013 samples, the kinematic regions were defined using

generated leading jet pT. The total number of events in the hard scattering samples was

5× 106 and 17× 106 for 2011 and 2013 conditions, respectively.

4 The centrality of Pb+Pb collisions

The centrality of Pb+Pb collisions is characterized using the total transverse energy (
∑
ET)

measured at the electromagnetic scale by the FCal [25]. A detailed study based on a

Glauber Monte Carlo model [18] using pp data at
√
s = 2.76 TeV estimated the fraction

of the total Glauber cross section passing the trigger and the event selection cuts used in

this analysis as f = (98 ± 2)%. Taking into account the visible fraction of the total cross

section and using the
∑
ET distribution, the Pb+Pb event sample is divided into different

centrality classes, defined by the percentiles shown in table 2. For the measurement of

RCP defined in eq. (1.2), the “peripheral” reference class is chosen to be 60–80% while the

“central” class refers to the remaining classes of more central collisions.
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The mean number of participating nucleons, 〈Npart〉, as well as TAA are estimated for

each centrality class with the same Glauber calculation. The values are shown in table 2,

with uncertainties determined by varying the geometric description, as well as the value

of f , used in the Glauber calculation. The last column of table 2 shows the ratio of 〈TAA〉
in each centrality class to that in the most peripheral (60–80%) centrality class.

5 Charged-particle track selection

Charged-particle tracks are reconstructed using the ID system in the pseudorapidity region

|η| < 2.5 and over the full azimuth. The minimum pT of reconstructed tracks in the Pb+Pb

samples is 0.5 GeV. The abundance of particles produced in HI collisions results in increased

occupancies in the ID subsystems causing a deterioration of the ID tracking performance

in the most central HI collisions. The degradation of the tracking performance at high

occupancy manifests itself in three different ways: a decrease of the tracking efficiency, a

worsening in the track momentum resolution and the reconstruction of fake tracks. Fake

tracks are composed of randomly associated hits in the detector layers. These phenomena

are discussed in this section.

The analysis of the charged-particle spectra presented in this paper refers to primary

charged particles directly produced in the nucleus-nucleus interactions with a mean lifetime

greater than 0.3× 10−10 s, or long-lived charged particles created by subsequent decays of

particles with a shorter lifetime [28]. All other particles are considered secondary. Tracks

produced by primary and secondary particles are referred to in what follows as primary

and secondary tracks, respectively. An exception is made for muons and electrons coming

from the decays of W and Z bosons, whose contributions are excluded from the results,

as these leptons follow binary scaling [29–32] and they would affect results with different

behaviour. Reconstructed tracks arising from a spurious association of detector-layer hits

which originate from different particles and result in a reconstructed track are considered

to be fake tracks.

In the MC simulation the categorisation of a particle relies on the matching of a

reconstructed track to a generated particle. The matching is done based on contributions

of generated particles to the hits in the detector layers. A reconstructed track is matched

to a generated particle if it contains hits produced primarily by this particle. The matching

procedure is explained in ref. [27]. In addition, the reconstructed track pT is required to

be within the range from 0.5pgenT to 1.5pgenT to be considered as successfully reconstructed,

where pgenT is the generated transverse momentum of the particle.

5.1 Modelling of track reconstruction parameters

In HI collisions, the occupancies of the three tracking subsystems increase to different

degrees. The Pixel detector occupancy is below 1% even in the most central collisions. The

corresponding number for the SCT detector is below 10%, while the occupancy in the TRT

reaches 90%. To account for the high occupancy in Pb+Pb events, the track reconstruction

is configured differently from that in pp collisions [33, 34]. In Pb+Pb reconstruction, a larger

weight is assigned to hits in the Pixel and SCT detectors, thus resulting in a procedure more
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Figure 1. (a) The average number of Pixel hits per track, (b) the average number of SCT hits per

track, (c) the average number of TRT hits per track, (d) the average number of SCT holes per track,

measured in Pb+Pb events in 0–5% (circles) and 20–30% (squares) centrality classes and in pp events

(diamonds) as a function of η. The data from the 2010 Pb+Pb run and 2011 pp runs are compared

to the corresponding distributions obtained from simulations shown with filled histograms.

robust against fake track production. All tracks reconstructed in HI collisions are extensions

of the track candidates from these two subsystems; TRT-based tracks are not used.

The simulation reasonably reproduces the centrality dependence of the track recon-

struction parameters which define the quality of the track. Figure 1 shows the average

number of Pixel, SCT and TRT hits and the average number of SCT holes in Pb+Pb

events for the 0–5% and 20–30% centrality classes and in the pp data. An SCT hole is

defined by the absence of a hit, predicted by the track trajectory, in a given detector layer.

The prediction takes both the detector geometry and the active detector area into account.

In HI data processing, tracks with holes in the Pixel detector are rejected at earlier stages

by the ID track reconstruction. The number of TRT hits is shown only for the pp data,

where it plays the most important role.

All parameters shown in figure 1 are sensitive to the momentum distribution of the

tracks; therefore the MC tracks were reweighted in pT to match the distributions measured

in the data. The TRT covers the pseudorapidity interval |η| < 2, which limits the analysis

of the pp data and RAA to this interval, but the TRT hits requirement is necessary to

improves track sample purity at high pT. To avoid possible bias at low pT, only tracks
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Pb+Pb requirements

Basic For systematic uncertainty

Pixel hits ≥ 2, BL hit ≥ 1, BL hit (if exp.) ≥ 3 layers

SCT hits ≥ 7 ≥ 6 ≥ 8

SCT holes =0

pp requirements

Basic For systematic uncertainty

Pixel hits ≥ 1, BL hit (if exp.) ≥ 2

SCT hits ≥ 6 ≥ 5 ≥ 7

SCT holes ≤1

TRT hits ≥ 8 ≥ 10

Table 3. Track selection criteria for Pb+Pb and pp events. “Basic” cuts are used by default in the

analysis. Other cuts are used only for estimation of systematic uncertainties. “BL hit” denotes for

the requirement of a hit in the innermost pixel layer, so-called B-layer. “BL hit (if exp.)” denotes

for the same requirement, but only if such a hit is expected by the track reconstruction algorithm.

The TRT hit requirement is applied only to tracks with pT > 6 GeV.

above pT of 6 GeV are required to have hits in the TRT. The results with and without such

requirement are consistent in the 2–10 GeV interval.

The mean number of Pixel and SCT hits as a function of η shows a relatively weak cen-

trality dependence, whereas the number of SCT holes increases significantly with centrality.

This trend shows the effect of the large occupancy on the SCT pattern-recognition algo-

rithm. A hole on a track may appear if a hit in the SCT is assigned to another track. The

fake-track rejection in Pb+Pb collisions requires that there is no hit sharing between tracks.

An increased number of SCT holes is an indication of a deterioration of the track quality.

Tracks where a SCT hole is present are rejected from the analysis to limit the fake rate.

Tracks are selected for the analysis if they have pT > 0.5 GeV and satisfy all of the

quality requirements summarized in table 3. In addition, tracks are required to have

|η| < 2.5 in Pb+Pb samples and |η| < 2.0 in pp samples.

5.2 Requiring pointing to the primary vertex

In Pb+Pb collisions the vertex finding and fitting algorithm [35] provides accurate primary

vertex (PV) reconstruction. In the most peripheral collisions used in this analysis, the PV

reconstruction precision is better than 20 µm in the transverse plane, allowing for efficient

separation of tracks that are produced in primary interactions from those that arise from

later decays. In more central collisions the PV precision improves inversely proportional to

the square root of the number of reconstructed primary tracks in the events. Since the rate

of in-time pile-up events in the 0–5% Pb+Pb collisions was less than 5×10−3, only one PV

is considered in each event. For each track, the distance of closest approach to the PV is
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Figure 2. Distance of closest approach of the track trajectory to the PV in the plane transverse to

the beam direction, d0, (a) in 60–80% peripheral collisions of the MB sample, (b) in 0–5% central

collisions of the MB sample, (c) in 0–5% central collisions for the tracks matched to jets in the

jet-triggered sample, (d) in 0–5% central collisions of the MB sample after applying cuts on the d0
and z0 sin θ significances (see text). The z-axis dNtrack/(dpTdd0) uses a logarithmic scale and is the

same for all panels. White areas in the distributions are at least eleven orders of magnitude below

the maximum in panel (b).

determined in the transverse and longitudinal directions (d0 and z0 sin θ respectively), along

with the errors of these quantities (σd0 and σz0 sin θ) obtained from the covariance matrix

of the track fit. They allow for efficient discrimination of tracks arising from secondary

particles or tracks with poorly measured pT.

Figure 2 shows scatter plots of the d0 parameter versus pT under different conditions.

The distributions of z0 sin θ, not shown here, are similar. The widths of the d0 distributions

increase with decreasing pT due to the increase of multiple scattering. All tracks satisfy the

selection criteria listed in section 5.1. Figure 2(a) shows the d0 versus pT scatter plot for all

tracks in the MB events in the 60–80% centrality interval. The width of the d0 distribution

decreases with increasing transverse momentum of the tracks. At very high pT it approaches

the limit of about 10µm defined by the Pixel detector resolution. At pT < 2 GeV and large

|d0| a significant fraction of tracks originate from weak decays (mainly K0
S and Λ0) inside

the pixel detector. At higher pT, the region with |d0| exceeding 100µm is unpopulated.

The distribution of track parameters shown in figure 2(a) is similar to that in pp collisions,

since both systems have relatively low occupancy and thus similar ID tracking performance.

The d0 distributions in the 0–5% most central collisions, shown in figure 2(b), are differ-

ent from those in peripheral collisions. In central collisions, the d0 distribution extends to

large values even for high-pT tracks. To understand the origin of these tracks it is necessary

to compare figure 2(b) to a distribution obtained from a sample of events measured under

the same occupancy conditions obtained for the jet-triggered sample, shown in figure 2(c).
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The tracks included in figure 2(c) satisfy the condition ∆R =
√

(∆η)2 + (∆φ)2 < 0.4,

where ∆η and ∆φ are the difference in pseudorapidity and azimuthal angle respectively

between the directions of the tracks and the jet axis. Matching tracks to jets is further

described in section 5.3. Since most tracks with low pT are produced via soft interactions,

the yield of these tracks is suppressed by the angular matching to jets.

At high pT, the tracks matched to jets represent a sample with relatively fewer fake

tracks compared to the one shown in figure 2(b), which is characterized by the presence

of large d0 values at high pT. The shape of the d0 distribution is similar to that seen in

peripheral collisions. This leads to the conclusion that in central collisions, tracks pop-

ulating the region at high pT and large |d0| in figure 2(b) are not due to a modification

of the d0 distribution of high-pT tracks, but rather to mismeasured momentum of low-pT
charged particles caused by increased occupancy in the SCT detector. The d0 and z0 sin θ

parameters of the tracks remain properly measured by the Pixel detector, which has a low

occupancy even in most central Pb+Pb collisions.

Accurate estimates of the impact parameter resolution, σd0
and σz0 sin θ, use all hits,

including the SCT hits which define the momentum of the track. An overestimated mo-

mentum of the track corresponds to a straighter trajectory with lower multiple scattering.

The σd0 and σz0 sin θ for such mismeasured tracks are overestimated with respect to the

measured pT. This effect is seen in figure 3, which shows the average value of the d0 un-

certainty, 〈σd0〉, as a function of track pT, measured in the 0–5% most central collisions.

Averaging is done over all tracks in the MB sample. The squares represent all reconstructed

tracks. Above pT of 10 GeV the 〈σd0〉 distribution changes very little with pT due to con-

tamination by tracks from low-pT charged particles with badly measured pT. Applying

the track selection requirements explained in section 5.1 reduces the average σd0
as shown

by diamond symbols (the same sample as shown in figure 2(b)). At high pT, 〈σd0〉 is still

much larger than that for tracks in the jet-triggered sample which are shown with stars.

From these considerations, it can be concluded that the significances, d0/σd0 and

z0 sin θ/σz0 sin θ, for mismeasured tracks from low-pT particles are much larger than for

correctly reconstructed tracks. Rejecting tracks with absolute value of either the transverse

or longitudinal impact parameter significance higher than 3.0 from the sample of tracks

shown in figure 2(b) produces the scatter-plot presented in figure 2(d). The distribution

at high pT more closely resembles the distribution shown in figure 2(a), except for the

low-pT tracks, where the cuts on the impact parameter significance reject a large fraction

of secondary particles. The 〈σd0〉 for these tracks, shown with circles in figure 3, is much

closer to the values for tracks in jets up to track pT of 100 GeV and to the results of the

MC simulation shown in the figure as a histogram.

Tracks are selected for analysis in Pb+Pb samples if they satisfy the requirements

|d0|/σd0 < 3.0 and |z0 sin θ|/σz0 sin θ < 3.0. Otherwise tracks are not considered to origi-

nate in the primary vertex. In addition σd0/〈σd0〉 is also required to be < 3.0.

In pp collisions the PV precision in the transverse plane is about 80 µm for events

with 20 tracks and improves to 30µm for events with 70 tracks [35]. The presence of a jet

in an event typically increases the vertex reconstruction precision by contributing tracks.
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Figure 3. The average uncertainty of the transverse impact parameter, 〈σd0〉, as a function of

track pT, measured in the 0–5% central collisions. Squares represent all tracks before applying

cuts. Diamonds denote tracks after track selection requirements (section 5.1). The circles, mostly

overlapping the stars, are for the tracks satisfying PV pointing requirements, and stars are the

same for the tracks also matched to jets above pT > 20 GeV (explained in section 5.3). The filled

histogram is the result for the simulated tracks from primary particles plotted as a function of

reconstructed track pT and satisfying the same requirements as in the data.

However, using PV pointing cuts similar to those used in the Pb+Pb analysis introduces

a correlation between the track selection criteria and the jet multiplicity, which can bias

track selection. Therefore, only a loose requirement of |d0| < 1.5 mm is used in the pp track

selection to suppress the contribution of secondary tracks.

5.3 Matching tracks to calorimetric jets

Tracks are required to be matched to jets in order to remove the contribution of fake tracks

at high pT. Calorimetric jets are reconstructed using the anti-kt algorithm with the radius

parameters R = 0.2, 0.3, 0.4 and 0.5. In HI collisions, the jet kinematics are obtained by

performing the reconstruction on ∆η × ∆φ = 0.1 × 0.1 towers prior to underlying-event

subtraction and then iteratively evaluating and subtracting the estimated underlying-event

contribution from each jet at the calorimeter cell level, accounting for the effects of elliptic

flow modulation in Pb+Pb collisions [25]. The details of the jet reconstruction in Pb+Pb

collisions are described in ref. [20]. The inputs to the jet algorithm are topological clusters

of calorimeter cells without a background subtraction procedure, as described in ref. [36].

In both the HI and pp collisions, jets in jet-triggered samples are required to be matched

to the online reconstructed jets used by the corresponding jet trigger. This ensures that

the tracks correspond to the jets which fired the trigger. No such requirement was used for

jets in the MB samples.

High-pT tracks are produced by particles formed during parton fragmentation to jets,

except for those produced by leptons (`) coming from decays of electroweak bosons, pri-
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Figure 4. The fraction of tracks in the MB samples, within all tracks in such sample, residing

in a cone of size ∆R = 0.4 around the direction of a jet as a function of the track pT. All tracks

satisfy the requirements listed in section 5.1 and 5.2. Circles represent pp data using R = 0.4 jets.

Squares and diamonds represent Pb+Pb data using R = 0.2 jets in the centrality intervals 0–5%

and 60–80%, respectively.

marily W± → `±ν and Z → `+`−. The contribution of leptons from W and Z decays is

removed from the data by identifying tracks corresponding to muons in the ATLAS muon

spectrometer and assuming the contribution of electrons is the same. The contribution of

leptons is the largest at pT around 40 GeV and in the most central Pb+Pb collisions where

it reaches 5%. The matching of tracks to jets is studied in the data. Figure 4 shows the

fraction of tracks, selected by applying the requirements described above, which reside in

a cone of size ∆R = 0.4 centred on the jet axis in the Pb+Pb and the pp MB samples.

At pT < 10 GeV many tracks cannot be matched to jets due to the limited centrality-

dependent reconstruction efficiency for jets with low pT [37, 38]. At pT & 15 GeV all tracks

reconstructed in the pp data, shown with circles, reside within the cone around the direc-

tion of a jet. In peripheral Pb+Pb collisions, shown with diamond symbols, all tracks with

pT & 20 GeV are within the cone of a jet. In central collisions, shown with squares, in the

same pT range about 99% of all tracks are found within the cone of a jet; however, above

40 GeV this fraction diminishes due to the contributions of misreconstructed tracks.

Tracks with pT > 15 GeV in pp collisions and pT > 20 GeV in Pb+Pb collisions both

in the MB and jet-triggered samples are required to be within a cone of ∆R = 0.4 around

the jet direction. The jet is reconstructed with a radius parameter of R = 0.2 in Pb+Pb

and R = 0.4 in pp collisions.

In addition to the requirement of an angular matching, the track pT is also compared to

the ET of the jet. The track-to-jet energy balance was studied in the MC simulation. The

results are sensitive to the description of parton fragmentation in simulation. In Pb+Pb

data the jet fragmentation is modified due to medium effects [11] that are not included in
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Figure 5. The yield of tracks with reconstructed momentum pT matched to a jet with measured

transverse energy ET. The left panel shows the Pb+Pb yield divided by 〈TAA〉 obtained by em-

bedding PYTHIA events into the 0–5% most central Pb+Pb data. The right panel shows the pp

cross section as simulated by PYTHIA. Track and jet selections are explained in the text. Lines

correspond to the expression ET = 0.8× pT − 10 GeV.

the PYTHIA generator. Therefore, the track-to-jet energy balance cut is chosen such that

it only rejects very unbalanced pairs of tracks and jets.

The results are shown in figure 5 as a two-dimensional distribution of the track pT
versus ET of the jet in the 0–5% most central Pb+Pb collisions on the left and in pp

collisions on the right. The histograms show the ET of the jet to which the track is

matched vs. the track pT. The reconstructed pT of the track is typically lower than the

measured jet energy, reflecting the fragmentation process. Matches of tracks to jets with

ET less than the track pT result from the finite resolution of the jet energy measurement

or track momentum reconstruction, or from badly reconstructed or fake tracks. The solid

line shown in the plot corresponds to ET = 0.8× pT− 10 GeV which was chosen as the cut

of the track-to-jet energy balance.

5.4 Merging triggered data samples

The samples obtained with different triggers are combined to construct the spectra, which

are equivalent to the unbiased MB spectra and extended to the highest pT values allowed

by the luminosity. This is done separately for each data-taking period. The simulation

samples are merged by summing the hard scattering and MB distributions according to

their cross sections. The data distributions are corrected using the summed MC samples

corresponding to the given run period. After applying corrections described in section 6,

the data samples are merged from different running periods.

In the data, tracks with pT low enough to not require matching to a jet as explained

in section 5.3, are taken entirely from the MB samples. They have the proper mixture of

all processes presented in the collisions.
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Figure 6. Ratios of the number of tracks from different pp triggered samples to a smooth param-

eterization (“fit”) describing the combined sample. Open circles show the ratio for the combined

sample of all tracks. Filled circles show the MB sample. Other filled markers show the contributions

of tracks in jet-triggered samples. Only one sample is used for all jets with the same ET (see text).

Some samples are combined for visibility of the plot. Open squares show the total number of tracks

in the sample of the jet trigger ET > 40 GeV.

Tracks with pT above the track-to-jet matching requirement are taken from both the

MB and jet-triggered samples. These tracks are required to be matched to a jet, including

those from MB samples. Jet-triggered samples are used when the corresponding jet trigger

efficiency reaches 90%. Efficiencies of the jet triggers defined with respect to the MB triggers

are evaluated in refs. [37, 38]. The jet trigger prescale factor is smaller for triggers with

higher thresholds. When a jet trigger with a higher threshold also reaches 90% efficiency

its sample is larger than the sample with lower jet threshold, and therefore the use of the

jet sample with the lower threshold trigger is discontinued. This procedure guarantees

that each track matched to a jet is used only once in all samples, even if the same jet was

recorded by more than one trigger.

After correcting for average prescale of each sample, the selected tracks are added

to produce a single combined sample as explained above. The contributions of triggered

samples to the combined sample are shown in figure 6 for the 2013 pp data. The data are

divided by a power-law parameterization to better reveal the contributions from each sam-

ple. Open circles around unity depict the combined sample of all tracks. The contribution

of the MB sample below the track-to-jet matching pT threshold (15 GeV), shown with filled

circles, coincides with the combined distribution. At higher pT, the tracks from the MB

sample contribute only when they are matched to low-energy jets. This part is also shown

with filled circles.

At even higher pT, tracks come predominantly from the event samples obtained with

jet triggers. Their pT distributions are shown with filled markers; some trigger samples
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are combined for plot clarity. The contributions from such samples first rise and then

decrease, except for the two lowest-threshold trigger samples where only the decrease is

presented, and for the highest-threshold trigger sample with ET > 75 GeV. Since jets are

selected from each trigger only in an exclusive ET range, the contribution of tracks to the

total spectrum rises and falls with ET. The effect of such a jet trigger interval selection is

demonstrated by comparison of closed squares (with selection) and open squares (without

selection) corresponding to the jet trigger with ET threshold of 40 GeV. Without applying

a jet trigger interval selection the ratio starts at low pT at a value significantly below unity.

The ratio then rises to unity where it remains flat, consistent with the combined sample of

all tracks. However, the statistical uncertainty of the ratio is significantly larger than that

for the samples obtained with the higher jet trigger thresholds due to the difference in the

integrated luminosity associated with each trigger.

6 Acceptance and efficiency corrections

Corrections to the reconstructed yields in each sample are applied at different stages of

the analysis in order to remove detector effects, reconstruction biases and to correct to the

particle level. They are derived from data and simulation.

The correction for the fraction of events recorded with different jet and MB triggers is

assigned as a weight to each track selected for the analysis. The jet trigger efficiency correc-

tion is applied in the same way. The trigger efficiencies are measured in analyses published

in refs. [37, 38]. This correction is relatively small, since each jet trigger is used only to se-

lect jets for which it is at least 90% efficient. The correction for the MB trigger efficiency in

Pb+Pb collisions is negligible in all centrality intervals analysed. In the pp data a correction

for the vertex reconstruction efficiency is applied. The vertex reconstruction efficiencies are

estimated as a function of number of reconstructed tracks in the same way as in ref. [28].

The correction is very small and reaches unity when four or more tracks are selected within

an event. After applying these corrections, samples are merged as described in section 5.4.

After the raw spectra from different triggers are merged, they are corrected for sec-

ondary, fake and misreconstructed tracks. The merged spectra are multiplied by the frac-

tion of primary tracks, which is defined as the number of primary tracks divided by the

total number of tracks, i.e. including secondary, fake and misreconstructed tracks. The

fractions are estimated in the MC simulation for 20 bins in η with a width of 0.25, 9 cen-

trality intervals, and separately for positively and negatively charged particles. They are

found to have only a weak dependence on particle charge and the sign of η. However, they

are dependent on |η| for |η| > 1. Thus, the corrections were merged into seven |η| bins for

both charges combined in order to have smaller statistical uncertainty at higher pT. At low

pT this correction is dominated by secondary particles and reaches 10% at |η| > 2.25 in the

most central Pb+Pb collisions. It decreases at low |η| and in more peripheral collisions.

In the pp data samples it does not exceed 4% at any measured η. At pT > 4 GeV the

contributions of fakes and secondaries do not exceed 1% in any of the samples and remain

at this value up to pT ≈ 70 GeV. At the highest measured pT, misreconstructed tracks

contribute significantly, as shown in figure 7.
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Figure 9. Track reconstruction efficiency as a function of pT for five centrality classes for Pb+Pb

and for pp in two |η| regions. The discontinuity of the pp efficiency at 6 GeV is caused by the change

in the TRT hit requirements (see section 5.1). The width of the band represents the systematic

uncertainty.

The spectra are then corrected for the track momentum resolution with an iterative

Bayesian unfolding procedure [39]. Results are obtained with two iterations. The migra-

tion matrices used are shown in figure 8 as functions of the generated particle transverse

momentum (pgenT ) and reconstructed transverse momentum of the associated track (precT ).

The migration matrices are consistent for both particle charges and for the same η ranges

as for the primary fraction correction and are therefore combined.

The unfolded spectra are corrected for the reconstruction efficiency using the efficiency

estimated in simulation, defined as the number of primary charged particles matched to

reconstructed tracks divided by the total number of generated primary particles. The track

reconstruction efficiencies are estimated as a function of reconstructed particle pT, |η| and

charge. They are found to agree in the same regions as the primary fractions and are also

combined for both charges of particles, both sides of |η| and for |η| < 1. The efficiencies

are smoothed by fitting to minimize the effect of statistical fluctuations at high pT in the

simulation. A sample of efficiency curves is shown in figure 9.

7 Systematic uncertainties

The systematic uncertainties of the measurements presented in this paper arise from several

sources, which are summarized at the end of this section in table 4. Uncertainties related

to the absolute normalization of the spectra come from the uncertainties of the integrated

luminosity of the pp sample and event selection efficiency in Pb+Pb. The systematic

uncertainties related to the event selection include the uncertainties on the jet trigger

efficiencies used in the Pb+Pb and pp event samples. Uncertainties related to the selection
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of tracks include possible differences in the data and in the MC simulation. Finally, there

are uncertainties in the determination of the applied corrections.

Systematic uncertainties are evaluated by varying parameters in the analysis for each

source and observing the effects on the corrections and yields. Variations are applied simul-

taneously to the Pb+Pb and pp data, so that final uncertainties on RAA and RCP properly

reflect the correlated changes in the numerator and denominator. The total systematic

uncertainties are determined by adding the uncertainties from each source in quadrature.

7.1 Absolute normalization

The uncertainty on the integrated luminosity of the pp samples is 3% and is taken into

account in the invariant cross section and in the RAA measurements presented in this paper.

It was estimated in a fashion similar to that previously described by ATLAS [40]. The

uncertainty on the fraction of events in the MB sample in Pb+Pb collisions is evaluated

in ref. [41] to be 2% for both the 2010 and 2011 runs. This uncertainty affects both

the boundaries of the centrality intervals and the centrality-related geometric parameters,

〈TAA〉. The largest effect is in the 90–100% centrality interval, which is not considered in

the paper. To avoid double counting in the results presented in this paper, the uncertainty

due to the event fraction in the MB sample is included only in the uncertainties of 〈TAA〉
and 〈Npart〉 as given in table 2.

7.2 Event selection

The uncertainties on the determination of the jet trigger efficiencies in different jet sam-

ples in the pp sample are evaluated in the analysis published in ref. [38]. The resulting

uncertainty on the spectra from this contribution does not exceed 3%.

In 2011 the Pb+Pb events were recorded if the anti-kt jet reconstruction algorithm

found a jet with radius parameter R = 0.2 and ET > 20 GeV after underlying-event

subtraction. The trigger efficiency in Pb+Pb events was studied in the inclusive jet analysis

published in ref. [37]. This reaches 90% for jets with ET > 40 GeV and has a weak centrality

dependence. The systematic uncertainties on the charged-particle spectra related to the

jet trigger efficiency uncertainty is 1%, less than in pp, because only one jet trigger was

used in the Pb+Pb data-taking.

7.3 Track selection

The uncertainty due to the track selection reflects possible differences in performance of the

track reconstruction algorithms in data and in MC simulation. To estimate this uncertainty,

the track quality requirements described in section 5.1 and the vertex pointing requirement

described in section 5.2 were tightened or loosened in both data and MC simulation. The

resulting uncertainty is below 1% at pT below 10 GeV and rises with increasing pT, reaching

a maximum of 10% at the highest measured pT for Pb+Pb and 4% for pp collisions.

Fake and secondary particles passing the tracking requirements create a small con-

tamination at low pT and are accounted for through the primary fraction correction. The

uncertainty of this contamination is due to the unknown relative contributions of primary,
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secondary and fake tracks. The uncertainty is estimated by comparing the fraction of pri-

mary tracks, as defined in this paper, to the fraction of tracks with a reconstructed impact

parameter consistent with the particle arising from the primary vertex. In central colli-

sions, the uncertainty is 5% at the lowest measured pT and decreased to 0.5% at 1 GeV, in

all centralities.

The uncertainty due to fake and secondary particles production at high pT is highly

correlated with the uncertainty associated with the procedure for matching generator-level

particles to reconstructed tracks. The uncertainty is at most 3% at the highest measured

pT. In table 4, the high-pT part of the uncertainty on fake and secondary particles is

included in the uncertainty of the matching.

7.4 Correction procedure

These uncertainties reflect the possible impact of variations in the derivation of the applied

corrections. The uncertainty associated with matching generated particles to reconstructed

tracks is correlated with the uncertainty associated with fake and secondary particles at

high pT. The correlated part of the uncertainty was removed. To estimate this systematic

uncertainty, generator-level to reconstructed-level matchings in simulation with different

requirements were considered. The main contribution comes from additional constraints on

the transverse momentum of reconstructed track, with respect to the generated transverse

momentum of the particle to which the track is matched. The uncorrelated part of this

uncertainty is below 1% up to 50 GeV and then rapidly increases with increasing pT. At

the highest measured pT, it reaches 20% for Pb+Pb and 15% for pp yields.

The uncertainty associated with the unfolding reflects the need to choose a specific

number of iterations to use in the unfolding procedure. It is estimated by changing the

number of iterations, and observing the effect on the charged-particle yields. The uncer-

tainty remains less than 1% at low pT and increases at high pT where it reaches 8%.

The uncertainty on the pT resolution reflects possible differences in the distortion of

track pT in MC simulation and data. To estimate this uncertainty, the pT resolution (the

width of the 1− pgenT /precT distribution) was increased to 1.1 times the nominal width. The

10% broadening was estimated from the resolution of muon pT in the data. The uncertainty

is 1% at low pT, but reaches 20% at very high pT.

The systematic uncertainty on the efficiency correction has several contributions. The

first is the difference in the distributions for different η ranges and both charges before

merging, as explained in section 6. This uncertainty is not higher than 2%. The second

contribution is from the uncertainty on the particle composition, estimated from compar-

isons of the relative rates of different identified particles types between simulation and the

data measured by the ALICE collaboration [42]. This uncertainty is at most 3%. Both

corrections play an important role only at low pT. The third uncertainty comes from

the uncertainty associated with smoothing the track reconstruction efficiency correction at

high pT. This reaches 2% at the highest pT. The more significant uncertainty at high pT
comes from the uncertainty associated with the cross sections of the MC samples. These

were varied, which resulted in an uncertainty of 5% at the highest pT due to the different

acceptance and efficiency corrections of the MC samples.
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Systematic uncertainties [%]

Spectra RCP RAA Strongest

Source Pb+Pb pp variation

Luminosity 3 3

〈TAA〉 1.5–13 centrality

〈TAA〉/〈T 60−80%
AA 〉 3.8–12 centrality

Jet trigger efficiency 1 3 1 3 pT

Track selection 10 4 10 10 pT

Fake and secondary tracks 5 0.5 5 5 pT, centrality

Matching gen — rec 20 15 15 13 pT

Unfolding 8 2 4 2 pT

pT resolution 20 7 14 12 pT

Efficiency correction 5 1 4 4 pT, η

Detector material 2–6 2–6 η

Table 4. Maximum values of systematic uncertainties in percent for the charged-particle spectra

and the nuclear modification factors RCP and RAA. “Fake and secondary tracks” reflect only the

uncertainty at low pT; the high-pT part is included in “Matching gen — rec”.

The systematic uncertainty associated with possible mismodelling of the detector ma-

terial is 2% for |η| < 1 and reaches 6% in the highest |η| region [28].

In general, the uncertainties associated with individual sources do not exceed 10%.

The exceptions are the track momentum resolution, on the fake tracks at high pT and on

the calculation of TAA.

8 Results

The corrected charged-particle spectra measured in Pb+Pb collisions at
√
sNN = 2.76 TeV

are shown in figure 10 for the pseudorapidity range |η| < 2 and for five centrality intervals:

0–5%, 10–20%, 30–40%, 50–60% and 60–80% in the pT range 0.5–150 GeV. In figure 11,

charged-particle Pb+Pb spectra in the 0–5% centrality interval are shown for eight regions

of |η|. Both figures show the spectra divided by the 〈TAA〉 of the corresponding central-

ity interval compared with the charged-particle production cross sections measured in pp

collisions at
√
s = 2.76 TeV.

The charged-hadron yields in peripheral Pb+Pb collisions, depicted by diamond mark-

ers in figure 10, show a pT dependence similar to that of pp collisions. Going from peripheral

to central collisions, the TAA-scaled Pb+Pb yields increasingly deviate from the pp spectra.

This deviation is largest for pT less than 1 GeV and in the pT range 3–30 GeV.

Figure 12 shows the nuclear modification factor RCP for four centrality classes (0–5%,

10–20%, 30–40%, 50–60%) with respect to the 60–80% class. The RCP as a function of pT
reaches a minimum of 0.22 ± 0.03(syst.) at pT ≈ 7 GeV in the 0–5% centrality class. The
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Figure 10. Fully corrected charged-particle transverse momentum spectra for |η| < 2 shown with

filled markers in five centrality intervals: 0–5%, 10–20%, 30–40%, 50–60% and 60–80% as well as

the fully corrected charged-particle transverse momentum pp cross section shown by open circles.

Statistical uncertainties are smaller than the marker size. Systematic uncertainties are shown by

open boxes. The different centrality intervals are scaled down by powers of ten for plot clarity.

Each centrality interval is divided by the corresponding 〈TAA〉 and plotted together with the pp

cross section scaled by the same factor shown with solid lines. The total systematic uncertainty on

the Pb+Pb spectra includes the uncertainty of 〈TAA〉.

statistical uncertainty of the value at the minimum is negligible. The measurement of RCP

is restricted to pT < 95 GeV because it is limited by the small sample size in the 60–80%

centrality class.

Figure 13 shows the nuclear modification factor RAA as a function of pT in five cen-

trality intervals: 0–5%, 10–20%, 30–40%, 50–60% and 60–80% constructed as the ratio of

the Pb+Pb to pp distributions from figure 10. Figure 14 shows RAA for 0–5% collisions in

eight |η| ranges constructed as the ratio of the Pb+Pb to pp distributions from figure 11.
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Figure 11. Fully corrected charged-particle transverse momentum spectra produced in eight |η|
ranges shown with filled markers for the centrality interval 0–5%. Statistical uncertainties are

smaller than the marker size. Systematic uncertainties are shown with open boxes. The distributions

in different |η| intervals are scaled down by powers of ten for plot clarity. Pb+Pb spectra are divided

by their corresponding 〈TAA〉 and plotted together with the cross section measured in pp collisions.

These results are shown with open markers of the same style. The total systematic uncertainty of

the Pb+Pb spectra includes the uncertainty of 〈TAA〉.

The RAA measured as a function of pT shows a characteristic non-flat pT shape which

becomes more pronounced for more central collisions. They first increase with increasing

pT reaching a maximum at pT ≈ 2 GeV, a feature commonly associated with the Cronin

effect [43]. Then, RAA decreases with higher pT reaching a minimum at pT ≈ 7 GeV, where

the charged-particle suppression is strongest. The rate of charged particles is noticeably

suppressed even in the 60–80% centrality interval, reaching a minimum of 0.66±0.09(syst.),

where the effects of jet quenching are expected to be smallest. The suppression is strongest

in the most central 0–5% collisions, where the minimum is 0.14± 0.01(syst.). The statisti-
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60–80% forms the denominator. Statistical uncertainties are shown with vertical bars and systematic
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A
A

R

1

0.2

 [GeV]            
T

p
1 10 210

|<2.0η|

ATLAS

p+p, Pb+Pb 

 = 2.76 TeV NNs, s
-1 = 0.15 nb

PbPb

int
, L-1 = 4.2 pb

pp

intL

 60 - 80 %
 50 - 60 %
 30 - 40 %
 10 - 20 %
 0 - 5 %

Figure 13. The dependence of the nuclear modification factor RAA on pT measured in the centrality

intervals 0–5%, 10–20%, 30–40%, 50–60% and 60–80%. Statistical uncertainties are shown with

vertical bars and systematic uncertainties with brackets.
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Figure 14. TheRAA dependence on pT measured in eight |η| ranges for the centrality interval 0–5%.

Statistical uncertainties are shown with vertical bars and systematic uncertainties with brackets.

The different |η| ranges are scaled down by powers of two for plot clarity.

cal uncertainties in this pT region are negligible compared to the systematic uncertainties.

Above this pT, RAA generally increases with increasing pT up to ≈ 60 GeV and then reaches

a plateau, consistent with zero slope, at a value of 0.55 ± 0.01(stat.) ± 0.04(syst.) for the

most central collisions.

The comparison of the RAA values with previous measurements from CMS [13] and

ALICE [14] in the most central (0–5%) interval, common to all three experiments, is

shown in figure 15. For this comparison the ATLAS RAA values are evaluated in the

pseudorapidity interval |η| < 1, the interval used by the CMS experiment. The ALICE

experiment used a similar pseudorapidity interval, |η| < 0.8. The comparison reveals

agreement of the measurements within their uncertainties. In other centrality intervals

common to ATLAS and ALICE, the results agree as well. The ATLAS results extend the

pT reach and precision of the previous measurements.
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Figure 16. The RAA values plotted as a function of 〈Npart〉 measured in four transverse

momentum intervals corresponding to the maximum RAA (1.7 < pT < 2.0 GeV), minimum

RAA (6.7 < pT < 7.7 GeV), intermediate RAA (19.9 < pT < 22.8 GeV) and plateau of RAA
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all but a few cases, are shown with vertical bars and the systematic uncertainties with brackets.
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Figure 17. Fully corrected charged-particle pseudorapidity distributions for four transverse mo-

mentum intervals defined in the text: maximum, minimum, intermediate and plateau. The different

pT ranges are scaled down by powers of ten. Markers are shifted from the centres of the bin for

plot clarity. For each pT range, data are shown in the centrality intervals: 0–5%, 10–20%, 30–40%,

50–60% and 60–80%. The statistical uncertainties, which are typically smaller than the size of

markers, are shown with vertical bars and the systematic uncertainties with brackets or grey bands.

Pb+Pb spectra are divided by the corresponding 〈TAA〉 and plotted together with the cross section

measured in pp collisions, shown with the open circles. The total systematic uncertainty of the

Pb+Pb spectra includes the uncertainty of 〈TAA〉.
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vertical bars and systematic uncertainties with brackets. Markers are shifted from the centres of

the bin for plot clarity.

Figure 16 shows RAA as a function of the mean number of participating nucleons,

〈Npart〉, in the four momentum intervals corresponding to the local maximum of RAA in

the region 1.7 < pT < 2.0 GeV, the local minimum in the region 6.7 < pT < 7.7 GeV, the

plateau region 59.8 < pT < 94.8 GeV and to the pT interval where RAA has an intermediate

magnitude, between the minimum and plateau value, in the region 19.9 < pT < 22.8 GeV.

In all momentum intervals RAA decreases with 〈Npart〉, however the decrease is strongest for

the minimum interval and weakest in the plateau region. In the maximum and intermediate

momentum ranges the RAA values are consistent for 〈Npart〉 < 100, but then deviate at

larger 〈Npart〉. In the most central collisions, RAA in the maximum interval is comparable

to that in the plateau pT region. Comparing the plateau region to the RAA dependence on
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〈Npart〉 measured with the jets of comparable energy [9], both distributions show similar

trend. They have also similar values for peripheral collisions, but in the more central

collisions the jet RAA reaches lower values.

To further investigate the nature of the suppression mechanism, the pseudorapidity

dependence of RAA was studied. Figure 17 shows the charged-particle cross section in

pp collisions and the TAA-scaled yield in Pb+Pb collisions, dσ/dη, measured in the same

centrality intervals as the spectra and RAA, integrated over the pT intervals used to char-

acterize the shape of RAA in figure 16. The dσ/dη distributions for Pb+Pb, divided by

their corresponding 〈TAA〉, are compared to the pp cross section. The shapes of the Pb+Pb

dσ/dη distributions change slightly within the four specified pT ranges. At fixed pT, the

shapes agree for different centrality intervals as well as for the pp data.

Figure 18 shows RAA measured in the four defined pT intervals as a function of pseudo-

rapidity. For all pT intervals RAA shows little dependence on |η| and is generally consistent

with a flat behaviour within the statistical and systematic uncertainties.

9 Summary

A precise measurement of inclusive charged-hadron production in Pb+Pb collisions at
√
sNN = 2.76 TeV and in pp collisions at

√
s = 2.76 TeV is presented in the pT interval

from 0.5 to 150 GeV. The data were collected with the ATLAS detector at the LHC, and

correspond to 0.15 nb−1 of Pb+Pb collisions and 4.2 pb−1 of pp collisions. The results

extend those of previous analyses, having a wider reach in pT and increased precision, and

they are important input to theoretical calculations.

In all centrality and rapidity intervals studied, the nuclear modification factor, RAA,

shows a characteristic shape with a local maximum at pT ≈ 2 GeV decreasing to a minimum

at pT ≈ 7 GeV. It increases again towards higher pT with a change in the slope at pT ≈
60 GeV, where the rise becomes much less steep. Above this pT, the pT dependence is

consistent with a flat behaviour within statistical and systematic uncertainties. This shape

is present in all measured centrality and pseudorapidity intervals, but it has the largest

maximum-to-minimum ratio in the most central collisions. The RCP distribution follows a

similar pattern, although the suppression is milder.

For the 0–5% most central collisions RAA reaches a value of 0.14 ± 0.01(syst.) at the

minimum. Then RAA increases with increasing pT up to ≈ 60 GeV. Above this pT, RAA is

consistent with reaching a plateau at the value of RAA = 0.55± 0.01(stat.)± 0.04(syst.).

In the individual pT intervals the shape of the charged-hadron pseudorapidity distri-

bution is similar in all Pb+Pb centrality intervals and in the pp data. At fixed pT, the

RAA values are consistent with a flat behaviour in |η|, within the statistical and systematic

uncertainties, in the pseudorapidity range |η| < 2. A similar flat behaviour was found for

jet RAA as well [9], although the pT dependence is very different.

The RAA values decrease with increasing 〈Npart〉 in all measured pT intervals, but the

〈Npart〉 dependence is strongest around the minimum of RAA (pT ≈ 7 GeV) and weakest in

the pT region above 60 GeV.
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P. Bussey53, C.P. Buszello167, J.M. Butler22, A.I. Butt3, C.M. Buttar53, J.M. Butterworth78,

P. Butti107, W. Buttinger25, A. Buzatu53, S. Cabrera Urbán168, D. Caforio128, O. Cakir4a,

P. Calafiura15, A. Calandri137, G. Calderini80, P. Calfayan100, L.P. Caloba24a, D. Calvet34,

S. Calvet34, R. Camacho Toro49, S. Camarda42, D. Cameron119, L.M. Caminada15,

R. Caminal Armadans12, S. Campana30, M. Campanelli78, A. Campoverde149, V. Canale104a,104b,

A. Canepa160a, M. Cano Bret76, J. Cantero82, R. Cantrill126a, T. Cao40,

M.D.M. Capeans Garrido30, I. Caprini26a, M. Caprini26a, M. Capua37a,37b, R. Caputo83,

R. Cardarelli134a, T. Carli30, G. Carlino104a, L. Carminati91a,91b, S. Caron106, E. Carquin32a,

G.D. Carrillo-Montoya146c, J.R. Carter28, J. Carvalho126a,126c, D. Casadei78, M.P. Casado12,

M. Casolino12, E. Castaneda-Miranda146b, A. Castelli107, V. Castillo Gimenez168,

N.F. Castro126a,g, P. Catastini57, A. Catinaccio30, J.R. Catmore119, A. Cattai30,

G. Cattani134a,134b, J. Caudron83, V. Cavaliere166, D. Cavalli91a, M. Cavalli-Sforza12,

V. Cavasinni124a,124b, F. Ceradini135a,135b, B.C. Cerio45, K. Cerny129, A.S. Cerqueira24b,

A. Cerri150, L. Cerrito76, F. Cerutti15, M. Cerv30, A. Cervelli17, S.A. Cetin19b, A. Chafaq136a,

D. Chakraborty108, I. Chalupkova129, P. Chang166, B. Chapleau87, J.D. Chapman28,

D. Charfeddine117, D.G. Charlton18, C.C. Chau159, C.A. Chavez Barajas150, S. Cheatham153,

A. Chegwidden90, S. Chekanov6, S.V. Chekulaev160a, G.A. Chelkov65,h, M.A. Chelstowska89,

C. Chen64, H. Chen25, K. Chen149, L. Chen33d,i, S. Chen33c, X. Chen33f , Y. Chen67,

H.C. Cheng89, Y. Cheng31, A. Cheplakov65, E. Cheremushkina130, R. Cherkaoui El Moursli136e,

V. Chernyatin25,∗, E. Cheu7, L. Chevalier137, V. Chiarella47, J.T. Childers6, A. Chilingarov72,

G. Chiodini73a, A.S. Chisholm18, R.T. Chislett78, A. Chitan26a, M.V. Chizhov65, K. Choi61,

S. Chouridou9, B.K.B. Chow100, D. Chromek-Burckhart30, M.L. Chu152, J. Chudoba127,

J.J. Chwastowski39, L. Chytka115, G. Ciapetti133a,133b, A.K. Ciftci4a, D. Cinca53, V. Cindro75,

A. Ciocio15, Z.H. Citron173, M. Ciubancan26a, A. Clark49, P.J. Clark46, R.N. Clarke15,

W. Cleland125, C. Clement147a,147b, Y. Coadou85, M. Cobal165a,165c, A. Coccaro139, J. Cochran64,

L. Coffey23, J.G. Cogan144, B. Cole35, S. Cole108, A.P. Colijn107, J. Collot55, T. Colombo58c,

G. Compostella101, P. Conde Muiño126a,126b, E. Coniavitis48, S.H. Connell146b, I.A. Connelly77,

S.M. Consonni91a,91b, V. Consorti48, S. Constantinescu26a, C. Conta121a,121b, G. Conti30,

F. Conventi104a,j , M. Cooke15, B.D. Cooper78, A.M. Cooper-Sarkar120, K. Copic15,

T. Cornelissen176, M. Corradi20a, F. Corriveau87,k, A. Corso-Radu164, A. Cortes-Gonzalez12,

G. Cortiana101, G. Costa91a, M.J. Costa168, D. Costanzo140, D. Côté8, G. Cottin28, G. Cowan77,
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M. Pagáčová48, S. Pagan Griso15, E. Paganis140, C. Pahl101, F. Paige25, P. Pais86, K. Pajchel119,

G. Palacino160b, S. Palestini30, M. Palka38b, D. Pallin34, A. Palma126a,126b, Y.B. Pan174,

E. Panagiotopoulou10, C.E. Pandini80, J.G. Panduro Vazquez77, P. Pani147a,147b,

N. Panikashvili89, S. Panitkin25, D. Pantea26a, L. Paolozzi134a,134b, Th.D. Papadopoulou10,

K. Papageorgiou155, A. Paramonov6, D. Paredes Hernandez155, M.A. Parker28, K.A. Parker140,

F. Parodi50a,50b, J.A. Parsons35, U. Parzefall48, E. Pasqualucci133a, S. Passaggio50a,

F. Pastore135a,135b,∗, Fr. Pastore77, G. Pásztor29, S. Pataraia176, N.D. Patel151, J.R. Pater84,

T. Pauly30, J. Pearce170, B. Pearson113, L.E. Pedersen36, M. Pedersen119, S. Pedraza Lopez168,

R. Pedro126a,126b, S.V. Peleganchuk109,c, D. Pelikan167, H. Peng33b, B. Penning31, J. Penwell61,

D.V. Perepelitsa25, E. Perez Codina160a, M.T. Pérez Garćıa-Estañ168, L. Perini91a,91b,
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A. Strubig106, S.A. Stucci17, B. Stugu14, N.A. Styles42, D. Su144, J. Su125, R. Subramaniam79,

A. Succurro12, Y. Sugaya118, C. Suhr108, M. Suk128, V.V. Sulin96, S. Sultansoy4d, T. Sumida68,

S. Sun57, X. Sun33a, J.E. Sundermann48, K. Suruliz150, G. Susinno37a,37b, M.R. Sutton150,

Y. Suzuki66, M. Svatos127, S. Swedish169, M. Swiatlowski144, I. Sykora145a, T. Sykora129, D. Ta90,

C. Taccini135a,135b, K. Tackmann42, J. Taenzer159, A. Taffard164, R. Tafirout160a, N. Taiblum154,

H. Takai25, R. Takashima69, H. Takeda67, T. Takeshita141, Y. Takubo66, M. Talby85,

A.A. Talyshev109,c, J.Y.C. Tam175, K.G. Tan88, J. Tanaka156, R. Tanaka117, S. Tanaka132,

S. Tanaka66, A.J. Tanasijczuk143, B.B. Tannenwald111, N. Tannoury21, S. Tapprogge83,

S. Tarem153, F. Tarrade29, G.F. Tartarelli91a, P. Tas129, M. Tasevsky127, T. Tashiro68,

E. Tassi37a,37b, A. Tavares Delgado126a,126b, Y. Tayalati136d, F.E. Taylor94, G.N. Taylor88,

W. Taylor160b, F.A. Teischinger30, M. Teixeira Dias Castanheira76, P. Teixeira-Dias77,

K.K. Temming48, H. Ten Kate30, P.K. Teng152, J.J. Teoh118, F. Tepel176, S. Terada66,

K. Terashi156, J. Terron82, S. Terzo101, M. Testa47, R.J. Teuscher159,k, J. Therhaag21,

– 43 –



J
H
E
P
0
9
(
2
0
1
5
)
0
5
0

T. Theveneaux-Pelzer34, J.P. Thomas18, J. Thomas-Wilsker77, E.N. Thompson35,

P.D. Thompson18, R.J. Thompson84, A.S. Thompson53, L.A. Thomsen36, E. Thomson122,

M. Thomson28, W.M. Thong88, R.P. Thun89,∗, F. Tian35, M.J. Tibbetts15, R.E. Ticse Torres85,

V.O. Tikhomirov96,ah, Yu.A. Tikhonov109,c, S. Timoshenko98, E. Tiouchichine85, P. Tipton177,

S. Tisserant85, T. Todorov5,∗, S. Todorova-Nova129, J. Tojo70, S. Tokár145a, K. Tokushuku66,

K. Tollefson90, E. Tolley57, L. Tomlinson84, M. Tomoto103, L. Tompkins144,ai, K. Toms105,
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122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
123 National Research Centre “Kurchatov Institute” B.P.Konstantinov Petersburg Nuclear Physics

Institute, St. Petersburg, Russia
124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
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