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Abstract 

In most medical research, treatment effectiveness is assessed using the Average Treatment Effect 

(ATE) or some version of subgroup analysis. The practice of individualized or precision 

medicine, however, requires new approaches that predict how an individual will respond to 

treatment, rather than relying on aggregate measures of effect. In this study, we present a 

conceptual framework for estimating individual treatment effects, referred to as Predicted 

Individual Treatment Effects (PITE). We first apply the PITE approach to a randomized 

controlled trial designed to improve behavioral and physical symptoms. Despite trivial average 

effects of the intervention, we show substantial heterogeneity in predicted individual treatment 

response using the PITE approach. The PITEs can be used to predict individuals for whom the 

intervention may be most effective (or harmful). Next, we conduct a Monte Carlo simulation 

study to evaluate the accuracy of Predicted Individual Treatment Effects. We compare the 

performance of two methods used to obtain predictions: multiple imputation and non-parametric 

random decision trees (RDT).  Results showed that, on average, both predictive methods 

produced accurate estimates at the individual level; however, the RDT tended to underestimate 

the PITE for people at the extreme and showed more variability in predictions across repetitions 

compared to the imputation approach.  Limitations and future directions are discussed. 

 

Keywords:  Predicted Individual Treatment Effects (PITE), Heterogeneity in Treatment Effects, 

Individualized medicine, multiple imputation, random decision trees, random forests, individual 

predictions
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1. Introduction 

Understanding and predicting variability in treatment response is an important step for the 

advancement of individualized approaches to medicine. Yet, the effectiveness of an intervention 

assessed in a randomized clinical trial is typically measured by the average treatment effect 

(ATE) or a type of subgroup analysis (e.g., statistical interactions). The ATE (or conditional 

ATE for subgroup analysis) forms the basis of treatment recommendations for the individual 

without considering individual characteristics (such as genetic risk, environmental risk exposure, 

or disease expression) that may alter a particular individual‘s response. Even in the case of 

cutting-edge, personalized protocols, treatment decisions are based on subgroups defined by a 

few variables (e.g., disease expression, biomarkers, genetic risk) (1-4), which may mask large 

effect variability. The ideal health care scenario would be one in which treatment 

recommendations are based on the individual patient‘s most likely treatment response, given 

their biological and environmental uniqueness. While the reliance on aggregate measures is 

partially justified by long-established concerns over the dangers of multiplicity (false positives) 

in subgroup analyses (5-11), the avoidance of false positives has come at the cost of 

understanding individual heterogeneity in treatment response. We propose that a principled 

statistical approach that allows for prediction of an individual patient‘s response to treatment is 

needed to advance the effectiveness of individualized medicine.
1
 Individual-level predictions 

would provide prognostic information for an individual patient, and allow the clinician and 

patient to select the treatment option(s) that would maximize benefit and minimize harm. 

                                                           
1
 We define individualized medicine in this study broadly as the tailoring of interventions to the 

individual patient. Our definition overlaps with aspects of the fields of precision medicine, 

personalized medicine, individualized medicine, patient-centered/patient-oriented care, and other 

related fields. 
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This paper proposes a framework for estimating individual treatment effects. Based on the 

principles of causal inference, we define a Predicted Individual Treatment Effect (PITE) and 

compare two different methods for deriving predictions. The PITE approach builds upon existing 

methods for identifying heterogeneity in treatment effects (HTE) and has direct implications for 

health care practice. The structure of this paper proceeds as follows. Section 2 describes the 

theoretical foundations and methodological literature from which the PITE approach is derived. 

Section 3 outlines the PITE approach and the predictive models compared in this paper. In 

Section 4, we demonstrate the utility of the PITE approach using an applied intervention aimed 

to reduce behavioral and physical symptoms related to depression. In Section 5, we present a 

Monte Carlo simulation study to validate the PITE approach using two methods for deriving 

predictions – multiple imputation and random decision trees (RDT). We compare relative 

performance of each estimator in terms of both accuracy parameter bias and variability stability 

of in the estimator. This paper concludes in Section 6 with implications and next steps. 

 

2. Theoretical foundations 

Our definition of individual causal effects is rooted in the potential outcomes framework (12, 

13). A potential outcome is the theoretical response of each unit under each treatment arm, i.e., 

the response each unit would have exhibited if they had been assigned to a particular treatment 

condition. Let Y0 denote the potential outcome under control and Y1 the potential outcome under 

treatment. Assuming that these outcomes are independent of the assignment other patients 

receive (Stable Unit Treatment Value Assumption; SUTVA) (14, 15), individual-level treatment 
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effects are defined as the difference between the responses under the two potential outcomes:  Y-

1-Y0. The fundamental problem of causal inference, as described by Neyman (12), Rubin (13), 

Rubin (15), and Holland (16), is that both potential outcomes for an individual cannot typically 

be observed. A single unit is assigned to only one treatment condition or the control condition, 

rendering direct observations in the other condition(s) (the counterfactual condition) and, by 

extension, observed individual causal effects, impossible. 

 

Instead, researchers often focus on average treatment effects (ATE), which under the SUTVA 

assumption will simply equal the difference in expectations, 

 ATE = E[Y1 - Y0] = E(Y1) - E(Y0) = E(Y|treatment) - E(Y|control). 

Replacing the expectations by observed sample means under treatment and control yields 

estimates of treatment effects at the group-level. While the advantage of this approach is that 

treatment effects can be estimated in the aggregate, this comes at the cost of its disadvantage is 

that all information about variability of treatment effects within the population is lostminimizing 

information about individual variability in effects. This is problematic when used for individual 

treatment decision-making because an individual patient likely differs from the average 

participant in a clinical trial (i.e., the theoretical participant whose individual effect matches the 

average) on many biologic, genetic, and environmental characteristics that explain heterogeneity 

in treatment response. When the individual patient differs from the average participant, the 

average treatment effect is can be an (potentially highly) inaccurate estimate of the individual 

response.  

 

Formatted: German (Germany)
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2.1 Heterogeneity in Treatment Effects (HTE) 

There is growing recognition of the importance of individual heterogeneity in treatment 

response, which has led to a rapid growth of methodological development in the area (1, 17-32). 

Methods are designed to estimate HTE while avoiding problems associated with classical 

subgroup analysis. Modern HTE methods place the expectation for heterogeneous treatment 

response at the forefront of analysis and define a statistical model that captures this variability. 

Proposed approaches for estimating HTE are diverse and include: the use of instrumental 

variables to capture essential heterogeneity (17, 23), LASSO constraints in a Support Vector 

Machine (21), sensitivity analysis (33), the derivation of treatment bounds to solve identifiability 

issues (34, 35), regression discontinuity designs (36), general growth mixture modeling (37), 

boosting (38, 39), predictive biomarkers (40, 41), Bayesian additive regression trees (BART) 

(26), Virtual Twins (18), and a myriad of other tree-based/recursive partitioning methods (22, 32, 

42-50) and interaction-based methods (51-54). Generally, the aim of existing methods has been 

the detection of differential effects across subgroups or the estimation of population effects given 

known heterogeneity. Most HTE methods have not been validated for individual- level 

prediction (an exception includes 17). The focus remains at the level of the subgroup. We argue 

that the estimation of the individual treatment effect itself is a meaningful and important result, 

without the aggregation to subgroups. There are important clinical implications for detecting 

how an individual would respond, independent of the subgroup they belong. Thus, in this study, 

we build upon and extend existing methods to validate their use at the individual individual-

level. 
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Individual-level predictions are particularly important when estimating a patient‘s treatment 

effect in an applied setting. This type of prediction – i.e., predicting responses for out-of-sample 

individuals, or individuals not involved in the original clinical trial – can help bridge the gap 

between treatment planning in a clinical setting (e.g., What are the chances that this particular 

individual will have a positive, null, or iatrogenic response to treatment?”) and the results of 

clinical trials (e.g., “What is the average treatment effect for a pre-specified subpopulation of 

interest?‖). Individual-level predictions can support data-informed medical decision-making for 

an individual patient, given that patient‘s unique constellation of genetic, biological, and 

environmental risk. It is a realistic scenario to imagine the case where a physician has access to 

medical technologies that input data on the patient (e.g., genetic risk data, environmental risk 

exposure) to obtain a precise estimate (PITE) of the patient‘s predicted treatment prognosis, 

rather than relying on the ATE of a Phase III clinical trial for treatment decision making. 

 

3. Methodology: Predicted Individual Treatment Effects (PITE). 

Let the PITE be defined for individual i based on the predicted outcome ( ) given observed 

covariates u and Treatment condition T as: 

,, 

which is the difference between the predicted value under treatment and predicted value under 

control for each individual. The major difference between the PITE approach and the ATE 

approach is that the PITE approach estimates a treatment effect for each individual, rather than a 

single effect based on means. There is no single summative estimate; rather, the estimand is the 

individual-level prediction. 

Formatted: Font:
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3.1. Predictive models 

A strength of the PITE approach framework is its generality. We suspect that there are multiple 

methods that can be used to obtain predictions in the PITE framework, and that there will be no 

single predictive methods that is best across all scenarios (55). In this paper, we contrast two 

distinct methods for deriving predictions: multiple imputation of missing data and RDT. These 

two methods were selected because they have been shown to handle a large number of covariates 

and because, particularly the RDT approach, has been designed to work with out-of-sample 

individuals. Also, they come from distinct statistical traditions, rely on their own set of 

assumptions, and have been applied in rather different ways. In this study, we specifically focus 

on how well different methods estimate PITEs with a continuous outcome variable.  

 

.  

We test how the PITE approach works with these very different HTE methods.  

 

In this section, we provide a brief overview of the predictive methods employed in this study. 

TheImportantly, our purpose is not to present an exhaustive comparison of the methodological 

approachesbe exhaustive of the broader methodological approach or present a general 

mathematical proof of their predictive ability, but rather to highlight differences in the two 

methods and to give the reader a basic understanding of the selected approaches used. A 

complete comparison of the predictive methods outside the context of the PITEs is beyond the 

scope of this study. Instead, we focus on a side-by-side comparison of the two methods for 

Formatted: Line spacing:  Double
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estimating PITEs. A simple example of how the methods differ within the PITE framework and 

outside the PITE framework is the case of extreme predicted values. An individual may obtain a 

rather high prediction under treatment (potentially even at the extremes) when estimated using 

either predictive method. A comparison of the methods outside the PITE framework would focus 

on how well the estimator predicted this value at the extreme. Both predictive methods may 

perform well in this case, but it is not the focus of the PITE. The focus of the PITE is the 

difference between predicted values under each treatment arm. Thus, if this same individual also 

has a high predicted value under control, the PITE estimate will be rather small, perhaps even 

near-zero. Detecting this effect requires a much more nuanced estimator at the individual-level. 

While the two are clearly related, the PITE has much more practical utility than the predictions 

under treatment or control separately and warrants explicit empirical attention.  

 

In the following subsections, we provide a brief overview of the predictive methods employed in 

this study. 

We focus exclusively on a continuous outcome variable in this study.  

 

3.1.1. Parametric multiple imputation. In a potential outcomes framework, each individual has a 

potential response under every treatment condition. Yet, there is only one realized response (i.e., 

the response under the counterfactual condition is never observed). Conceptualized in this way, 

the unobserved values associated with the counterfactual condition could be considered a 

missing data problem and handled with modern missing data techniques. Since missingness in 

the PITE approach is completely due to randomization, missingness is known to be completely at 

random. 
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Multiple imputation is a flexible method for handling a large class of missing data problems 

optimally used when data is assumed to be missing at random (56, 57). Multiple imputation was 

originally developed to produce parameter estimates and standard errors in the context of 

missingness (58) and has been expanded to examine subgroup effects (59). In this paper, we test 

an extension of the multiple imputation model to obtain individual-level effects. We suggest that 

the missingness in the counterfactual condition could be addressed by imputing m >1 plausible 

values, based on a large set of observed baseline covariates. The predicted individual treatment 

effect (PITE) could then be defined as the average difference between values of Y1  and Y0 across 

imputations, for which data are now available for every individual. 

 

We focus on a regression-based, parametric model to derive imputations, implemented through 

the chained equations algorithm (also referred to as sequential regression or fully conditional 

specification) in the imputation process (60). Chained equations is a regression-based approach 

to imputing missing data that allows the user to specify the distribution of each variable 

conditional upon other variables in the dataset. Imputations are accomplished in four basic steps, 

iterated multiple times. First, a simple imputation method (e.g., mean imputation) is performed 

for every missing value in the dataset. These simple imputations are used as place holders to be 

improved upon in later steps. Second, for one variable at a time, place holders are set back to 

missing. This variable becomes the only variable in the model with missingness. Third, the 

variable with missingness becomes the dependent variable in a regression equation with other 

variables in the imputation model as predictors. Predictors include a vector of selected covariates 

and their interactions. The same assumptions that one would make when performing a regression 
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model (e.g., linear, logistic, Poisson) outside of the context of imputation apply. Imputations are 

drawn from the posterior predictive distribution. Last, the missing values on the dependent 

variable are replaced by predictions (imputations) from the regression model. These imputed 

values replace the place holders in all future iterations of the algorithm. These four basic steps 

are repeated for every variable with missingness in the dataset. The cycling through each 

variable constitutes one iteration, which ends with all missing values replaced by imputed values. 

Imputed values are improved through multiple iterations of the procedure. The end result is a 

single dataset with no missing values. By the end of the iterative cycle, the parameters 

underlying the imputations (coefficients in the regression models) should have converged to 

stability, thereby producing similar imputed values across iterations and avoiding any 

dependence on the order of variable imputation.   

 

3.1.2. Random Decision Trees. RDT is a recursive partitioning method derived from the fields of 

machine learning and classification. RDTs fall under the broader class of models known as 

Classification and Regression Trees (CART) and have been commonly employed by others for 

finding HTE (22, 32, 42-50). CART analysis operates through repeated, binary splits of the 

population (―the parent node‖) into smaller subgroups (―the child nodes‖), based on Boolean 

questions that optimize differences in the outcome; for example, is X ≥ θj?, where X is the value 

of a predictor variable and θj represents an empirically-determined threshold value. The A 

recursive partitioning algorithm searches the data for the strongest predictors and splits the 

population based on empirically-determined thresholds; for example, is X ≥ θj?, where X is the 

value of a predictor variable and θj represents an empirically-determined threshold value. The 

splitting procedure continues until a stopping rule is reached (e.g., minimum number of people in 
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the final node, number of splits, variance explained). The final node (or, ―terminal node‖) 

reflects homogeneous subsets of similar cases, and, by extension, an estimate of an individual‘s 

predicted values.  

 

A very simple version of a single decision tree appears in Figure 1. The fictitious population 

(―parent node‖) comprised N=1000 individuals for whom the analyst wanted to divide into 

subgroups defined by their expected response on hypothetical outcome variable Y. CART 

analyses work by exploring the data for the most salient predictors of outcome response. In this 

case, Xi was identified as the most salient predictor, which split the population in to two groups 

based on the empirically-defined threshold of 5.  For individuals with Xi < 5, their expected 

response on the outcome was 100. For the remaining N=450 individuals, more splits of the data 

were possible in order to create homogenous groups. The model searched the data for another 

salient predictor, and selected Xj=NO. Individuals who responded ―NO‖ on item Xi had an 

expected response of 0, whereas those who responded ―YES‖ had an expected response of 200. 

No more splits were available based on a rule specified by the analyst a priori.  

 

There are certain problems associated with implementing a single decision tree, such as that 

depicted in Figure 1. One issue with single decision trees When a single decision tree is that 

when single trees are grown very large, trees are observed to overfit the data, resulting in low 

bias but high variance (55). ; therefore, a forest of many decisions trees is grown and predictions 

are averaged across trees. To circumvent this limitations, RDTs are construct a series of decision 

trees, where each tree is ―grown‖ on a bootstrapped sample from the original data. A ―forest‖ of 
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many decisions trees is grown and predictions are averaged across trees. Optimal splits are 

identified from a set of randomly selected variables at each split (or ―node‖). To avoid over-

fitting, the analyst typically ‗trims‘ the tree at a point where the predictive power is balanced 

against over-fitting. When a single decision tree is grown very large, trees are observed to overfit 

the data, resulting in low bias but high variance (60); therefore, a forest of many decisions trees 

is grown and predictions are averaged across trees. An advantage of RDTs is that this is a 

nonparametric method that does not require the data to meet any assumptions regarding the 

distribution or specification of the model. As a result, RDTs can fit data with a large number of 

predictors, data that are non-normally distributed, or data with that have complex, higher-order 

interactions. 

 

4. Applied example: Predicting treatment effects in behavioral medicine 

The PITE approach for understanding variability in treatment effects has applicability to a broad 

range of behavioral and physical health outcomes. In this section, we demonstrate the utility of 

the approach using a program for the prevention of depression among new mothers. Data came 

from the Building Stronger Families/ Family Expectations randomized trial (61), a federally-

funded intervention for unmarried, romantically-involved adults across eight research sites; only 

data from Oklahoma (n=1,010) was used due to differences in implementation across sites. Data 

are publically available for can be obtained research purposes subjected toby application to the 

Inter-university Consortium for Political and Social Research (62). At the 15-month impact 

assessment, there was an overall positive impact of the program such that women in the 

treatment group experienced significantly less depression than those in the control group. 

However, the effect size (measured as the standardized mean difference of the impact, or 
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treatment effect divided by the standard deviation of the outcome in the control group) of this 

impact was rather small (Cohen‘s d = -.22), posing a challenge to the overall clinical value of the 

program. This is a common scenario in many health interventions, where, despite significant 

gains, small overall effects suggest that the practical impact of the intervention is limited. 

Interpretation of this overall effect may misconstrue the true impact of the intervention, making 

it unlikely for an applied practitioner to recommend the program to a patient.  

 

In this demonstration, we tested whether the utility of the PITE approach for providing 

predictions for a new set of individuals (out-of-sample individuals). We used the PITE approach 

to extend the findings of the original trial to determine can be used to calculate predicted 

responses for out-of-sample individuals. If so,  particular individuals the program could be 

targeted to those for whom it the intervention is most likely to show positive results, despite 

minimal impact on average. Specifically, we used trial data to estimate predictive models, then 

used these use these models to predict how a new individual would respond to treatment.  

 

 

4.1. Methods 

From June 2006 through March 2008, 1,010 unmarried couples from Oklahoma were 

randomized into treatment (n=503) and control (n=507) conditions. In order to create the 

conditions of out-of-sample prediction, we randomly removed 250 individuals from the original 

sample and saved them for out-of-sample estimation. Predictive models were built on the 

remaining 710 760 individuals only. Outcome data from the 250 out-of-sample individuals was 
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ignored to create a scenario similar to an applied setting where treatment recommendations are 

made before outcomes are known. 

 

BSeventy-five baseline covariates (n=75) came from in-person surveys that assessed 

demographics, education and work, relationship status and satisfaction, parenting, financial 

support, social support, and baseline levels of depression. For all items (except marriage status 

and number of children) ratings from both mother and father were included. Separate mother and 

father ratings were included due to inconsistent responses. If items required consistency in order 

to be valid (e.g. whether the couple was married, number of children), inconsistent responses 

were set to missing. Maternal depression at 15-month follow-up, the primary outcome variable, 

was measured using a 12-item version of the Center for Epidemiologic Studies Depression scale 

(CES-D) (63). Factor scores, created in Mplus software (64), were used (standardized) for the 

observed outcome variable, maternal depression. Missingness on the baseline covariates was 

handled via single imputation using bootstrap methods, as implemented in the mi package (65) in 

R version 3.1.3 (66). The same imputed values were used for both treatment and control 

conditions. Handling of missing data on baseline covariates has not yet been systematically 

studied. We relied on a comprehensive set of Ddiagnostics to determine the quality of 

imputations (which showed  suggest that the single imputation method matched the underlying 

distribution of the covariates well); however, . We acknowledge potential limitations of 

missingness on baseline covariates. We buffered against potential threats by using different data 

to generate the predictive model and for predictions (out-of-sample estimation) and by using 

thorough diagnostics to identify potential problems; however, the best approach for integrating 

missingness into these models remains an empirical question..  
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4.1.1. Estimation of predictive models. Imputations were conducted using the package mi (65) in 

R software version 3.1.3 (66). One hundred imputations were created per repetition under a 

Bayesian linear regression. Convergence was assessed numerically using the  statistic, which 

measures the mixing of variability in the mean and standard deviation within and between 

different chains of the imputation (65). Imputations under treatment and control were conducted 

separately so that interactions with treatment were captured. The mean prediction across 

imputations was taken as the estimated predicted effect (PITE). RDT were also grown in R using 

the randomForest
®

 (67) package with all of the default settings, except tree depth. Tree depth 

was selected to minimize root mean square error (RMSE) in each treatment condition; 

specifically, RMSE was minimized under treatment when minimum node size equaled 12 and 

when minimum node size equaled 100 under control. For both the imputation and RDT methods, 

separate predictive models were estimated under treatment and control. This allowed for the 

estimation of predicted values under both treatment and control (which are needed to calculate 

PITE); and, by default, ensured that all one-way interactions between treatment and the 

covariates were modeled. Interactions with treatment were captured by growing two separate 

forests, one for each treatment condition.Imputations under treatment and control were 

conducted separately so that interactions with treatment were captured. 

 

4.1.2. Calculation of predicted values. Once predictions were obtained, the PITE was calculated 

for the set of out-of-sample individuals. We assumed that the sample used to build the predictive 

model for both treatment and control (the training sample) was representative of the target 

population (the population we want to predict in). Out-of-sample predicted effects were 
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calculated by multiplying the coefficients estimated by the predictive models to the baseline 

covariates of out-of-sample individuals. The PITE was taken as the difference of the fitted values 

under treatment and control. Observed Y values were not used to calculate the PITE in order to 

minimize overfitting to the data. In preliminary runs, there was significantly more variability in 

the out-of-sample predictions when observed data was used in the PITE calculation, . which we 

We identified this inflated variance to be related to the an overfitting of observed data (i.e., a 

predictive model that described random error in the data in addition to the underlying 

relationship) to the in-sample casesduring model building. . This led to an overly deflated 

correlation between the true treatment effect and PITE. This problem was avoided by using 

predicted values under both treatment conditions in the calculation of the PITE. 

 

4.2. Results 

For both the imputation method and RDT method, we estimated a predictive model on n=710 

760 in-sample individuals. These can be considered individuals from the original clinical trial. 

There were no issues of model convergence for either estimator, though the imputation approach 

took a few hours longer to estimate than the RDT approach, which was completed in minutes. 

We then calculated predictions for the retained n=250 out-of-sample individuals, which we 

treated as out-of-sample individuals for whom we were testing whether the intervention would 

be effective.  

 

Results are presented in Figure 12. As indicated, the PITE approach was able to detect variability 

in individual effects, were captured using both the imputation and RDT methods. For certain 
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individuals, the intervention would improve depressive symptoms; for others, participation in the 

program would be not recommended. We note that, in this demonstration, we illustrate 

predictions for n=250 individuals so that heterogeneity in predictions can be seen. In applied 

practice, a PITE could be estimated for a single individual. The strength and direction of the 

prediction could then be used during treatment planning for that individual.  

 

Comparing across predictive methods,  The RDT approach tended to produce estimates closer to 

the mean, whereas the imputation approach provided a wider range of PITE values. The 

simulation study in the next section is intended to test which is providing more accurate and 

stable predictions.  Results show that for some individuals there was a strong positive effect of 

the intervention while for others the intervention was harmful or had no effect.  

 

5. Simulation Study 

One of the limitations of the applied example is that we do not know the true effects of the 

individuals in the sample, making the accuracy of the estimates unknown. In this section, we 

present the results of a Monte Carlo simulation study used to test the quality of these estimated 

individual effects.  

 

5.1 Methods 

Data were generated in R software version 3.1.3 (66). A total of n=10,000 independent and 

identically distributed observations cases were generated. 50% of the cases (n=5,000) were used 
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for the derivation of predictive models, and the remaining n=5,000 cases were reserved for out-

of-sample estimation. Observations Cases were randomly assigned to balanced treatment and 

control groups.  

 

Following the design of the BSF trial, data were generated with the same number of categorical 

covariates as the applied data. The true value under control was generated as . The 

true treatment effect for each individual was linearly related to a set of seven binary baseline 

covariates, generated using the following equation:  

. 

We included 68 nuisance variables whose coefficients (X8 through X75) were set to zero. Binary 

covariates (generated from a random binomial distribution with the probability of endorsement 

equal to .5) were used to resemble the design of the data in the motivating example, which 

included only categorical predictors. No modifications would be necessary to extend to 

continuous predictors. Effect sizes were selected so that the mean effect was near zero (but not 

completely symmetric around zero) with individual effect ranging from small to large. Since the 

PITE approach is designed to detect HTE without pre-specifying the variable(s) responsible for 

the differential effects, we wanted to include a comprehensive set of potential 

moderatorspotential confounders, most of which end up being nuisance variables. Effect sizes 

were selected so that the mean effect was near zero (but not completely symmetric around zero) 

with individual effect ranging from small to large. Thus, we additionally included 68 nuisance 

variables whose coefficients (X8 through X75) were set to zero. The true response under treatment 

(Yt) was defined as  for that individual.  
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One hundred repetitions of the simulated data were generated. Baseline covariates (and by 

extension the true treatment effects) were set to be the same across repetitions. This established a 

scenario where the same individual was repeated, allowing for intuitive interpretations about the 

number of times an individual‘s predicted value reflects the true treatment effect. Yc (and by 

extension Yt)
 
varied across repetitions. The procedures for estimating the predictive models and 

for calculating PITEs in this simulation study were identical to those used in the applied example 

(above).  

 

We note that since this is our first study on the PITE approach, we specifically designed these 

conditions to be optimal in the sense of a correctly-specified model with no major violations of 

model assumptions (e.g., all effect moderators observed and exchangeability of the in-sample 

and out-of-sample individuals) and a large sample size. While this may limit generalizability to 

other scenarios, we see this study as the first study of a larger program of research that will 

gradually test more complex scenarios that are more consistent with a range of applied examples. 

The primary purpose of this simulation is to test the feasibility of predicting individual-level 

response, particularly among out-of-sample individuals. This type of prediction is rather different 

from traditional, group-based statistical approaches and warranted tests under optimal conditions 

before pushing the boundaries of the approach under varying scenarios. Our primary focus in this 

paper is on point estimation of predicted effects. We acknowledge that variance calculations 

(e.g., confidence credible intervals) will be critical before dissemination. We , and see this as 

ahave begun developing credible intervals next step in the development of  for the PITE 

approach and will continue this important area of workmethod.. 
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5.2 Results 

We tested the performance of the PITE approach by comparing estimation quality at the 

individual-level. Specifically, we were interested in two aspects of estimator quality: bias 

(accuracy in predictions) and variability (stability) of point estimates across multiple repetitions. 

We explored estimation bias and the variability of the estimates across repetitions. Because the 

PITE is an individual-level estimate, all statistics were calculated within individuals across 

repetitions. We defined bias as how accurately the PITE recaptured true treatment effects, which 

was Bias was calculated as the mean difference between true and predicted values across 100 all 

repetitions for each individual. We examined the accuracy of the estimate for each individual, 

rather than a single summative measure for the whole sample; . similarly, vVariability was 

defined as the stability or reliability of  the predicted values refers to the variability of an 

individual‘s predicted treatment effect across repetitions. Variability provided information about 

the degree of similarity (or dissimilarity) of repeated predictions for an individual. Examination 

of both bias (accuracy) and variability (stability) provides a more comprehensive understanding 

of the quality of PITE estimates. Although the PITEs may be highly accurate (near the true value 

on average across repetitions), actual values may be highly variable across repetitions 

(unstable/unreliable), which would limit the usability of the method in applied realms. If so, this 

would give us less confidence in the method (particularly from an applied perspective), even 

though accuracy was good on average. Because we were also interested in comparing the 

performance of imputations and RDTs as underlying predictive methods, we additionally 

compared We tested bias and variability separately, as well as the composite measure, Root 

Mean Squared Error, which combines information about both bias and variability to understand 
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estimator quality overall. In addition to formally testing estimation qualityLast, we additionally 

examined the relationship between observed and predicted values within single repetitions as a . 

This was descriptive in nature descriptive measure for and aided in understanding model 

performance.  

 

Using both methods,Neither multiple imputation nor RDTs models  experienced convergence 

converged with no problems or other problems with estimation. The imputation approach took 

significantly longer (required parallelization of R) and required extensive computational 

resources (e.g., RAM). Without parallelizing, the imputation approach took roughly two to three 

weeks to complete the full simulation (all repetitions).  

 

5.2.1. Predictive Bias  

In this study, we use the term bias to refer to the predictive accuracy of the estimator, or  refers to 

how well the predicted treatment effects for each individual recapture that individual‘s true 

treatment effect across all repetitions: , where  represents the predicted value for 

individual i, is the value of the true treatment effect for individual i, and R is the total number 

of repetitions, R=(1,…,r). Measures of bias are not scaled in this evaluation, since we used a 

side-by-side evaluation of methods with the same conditions compared across methods. Overall, 

across individuals, both the imputation and RDT approach appear to be unbiased accurate 

estimators of the true treatment effect (imputation: mean bias= -.0023; RDT: mean bias= .0028). 

Yet, estimates of bias varied across individuals, particularly for the RDT approach. Figure 2 3 

shows the distribution of bias across individuals using the imputation (red) and RDT (blue) 
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methods. While the imputation method produced fairly unbiased estimates for all individuals, the 

RDT method showed substantial bias for some individuals. In fact, despite being unbiased at the 

mean, the range of estimated bias across individuals ranged from -0.8711 to 0.8536 using the 

RDT method (compared to -0.0688-0.0600 using the imputation method).  

 

To further explore for whom the RDT method may be producing biased results, we examined 

bias as a function of the true treatment effect. As seen in Figure 43, there is minimal relation 

between bias and a true treatment effect for the imputation method, but a fairly strong relation 

between an individual‘s true treatment effect and bias for the RDT method. The RDT method 

performs well for individuals in the mid-range, but does not provide accurate estimates of 

treatment effects for individuals at the extremes.  

 

We then investigated, within one randomly selected repetition, the relationship between the true 

Y under treatment and control, and the predicted Y for the same condition. This was intended to 

diagnose potential pitfalls in the estimation. Results are presented in Figure 45. The top row 

shows the scatterplot for the imputation method, the bottom row uses the RDT method. Using 

both estimators, the PITE approach performed as expected. There was no relationship between 

predicted values and true values under control (which is consistent with the data generation) and 

a moderate relationship under treatment. Figure 5 6 shows the plots of true versus predicted 

treatment effect (Yt-Yc) using the imputation method (left) and RDT (right), with colors 

representing the treatment condition to which the individual was randomized. Consistent with 

previous results, the imputation method produced estimates that were highly related to true 
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values without any apparent bias in the parameter space. The RDT method produced estimates 

with more error in the prediction, particularly at the tails of the distribution. Extreme true values 

tended to be downward biased. It is worth note however that this bias would not alter clinical 

decision making – i.e., individuals whose true treatment effect was negative were estimated to 

have a negative effect and those whose true treatment effect was positive had an estimated 

positive effect.  

 

Put together, these results show that both the imputation and RDT methods produce, on average, 

unbiased accurate estimates of the true treatment effect. But, the RDT showed bias in the 

magnitude of the treatment effect for individuals at the extremes in this simulation scenario.   

 

 

5.2.2. Variability of the estimator 

We were interested in assessing the variance of the estimator and comparing the variance across 

estimators. Variance was calculated as the average squared deviation from the mean predicted 

individual treatment effect across repetitions, 

 

where R=1…r is the number of repetitions and i refers to the individual subject. Variance in this 

context refers to how stable or reliable the predicted treatment effects are across multiple 

repetitions for the same individual.  
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Results are shown in Figure 67. We note that, unlike bias (which is judged based on its distance 

from zero), we do not have a pre-existing criterion to aid in the interpretation of variability. This 

is, in part, a reason for comparing across predictive methods. We rely on the comparison of 

predictive methods to understand how much variability can be expected (lower the better) and to 

examine differences across predictive methods.  The RDT estimator showed slightly more 

variability in predictions across simulations, indicating that the predicted values are less stable 

when this predictive method is used. Across individuals, the average variability for the 

imputation estimator was .0312 (range=.0175-.0486); average variance for the RDT estimator 

was .0406 (range=.0232-.0718). Moreover, for the RDT estimator there seemed to be certain 

individuals for whom variability was elevated in the RDT approach. This however did not appear 

to be a function of the true treatment effect (see Figure 77). 

 

5.2.3. Root Mean Square Error (RMSE) 

RMSE was used as a composite measure for estimator comparison that takes both bias and 

variability into account. Results are shown in Figure 78. Given the previous results, it is 

unsurprising that the RMSE favors the imputation method under these simulation conditions (see 

Figure 78). 

 

6. Discussion 
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Presently, there is a gap between the theory of individualized medicine and the statistical tools 

available to help implement individualized medical decision-making. Medical treatment 

recommendations are typically determined based on ATE, which predict response at the 

population or group-l level. Even when differential effects between subgroups are identified, 

these differential effects are defined by only a few broad-based variables that may or may not be 

meaningful for an individual patient in a clinical setting. In this paper, we presented a novel 

framework, Predicted Individual Treatment Effects (PITE), which extends newly developed 

methods for estimating HTE (1, 17-32) to estimate treatment response at the individual level. We 

use trial data to build  predictive models under treatment and control and then obtain model-

based potential outcomes for each individual. The difference between the two potential outcomes 

is taken as the predicted treatment effect for that individual.  

 

We began by first demonstrating the feasibility of the approach on applied data, whose original 

impact analysis - a group-level RCT - showed small average effects. Our re-analysis of the data 

using the PITE approach showed that the intervention did indeed have positive impacts for 

certain individuals (and iatrogenic effects for others). The PITE approach was used in 

conjuncture with clinical data to obtain a prediction for individuals who may be seeking 

treatment but are unsure whether the intervention would have an effect for them (out-of-sample 

individuals). Unlike the ATE, which provided critical information about the effectiveness 

overall, the PITE provided an estimate about how the individual would respond, given baseline 

risk. This information can be substantial variability in effects -- ranging from large positive 

effects to large iatrogenic effects. Although more work is needed on this method before strong 

inferences on this applied example are made, this variability is quite informative and can be 
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potentially useful for informing future iterations of the program by targeting only those for 

whom the program would have a positive effect.  

 

The second aim of this study was to test the accuracy quality of the PITE estimates. We focus on 

two aspects of estimator quality: 1) the accuracy (closeness) of the PITE compared to the true 

treatment effects for each individual (BIAS); and 2) the stability of the PITE estimates over 

multiple repetitions of the data (VARIABILITY). Bias was judged compared to the gold-

standard of no difference between estimate and true value. Variability however did not have an 

independent measure to aid in interpretation; thus, we relied on the comparison across predictive 

methods and descriptive information to interpret results.  

 

Overall, our results are favorable for the feasibility of the PITE approach. Using two very 

different predictive methods, we were able to obtain fairly accurate individual-level predictions 

on average. At the individual-level, imputations performed very well in terms of high accuracy 

and stability for all individuals. In contrast, the RDT approach showed some important 

limitations. Despite being having low bias on average, RDTs produced biased estimates of the 

PITE approach and compare estimates obtained using two fairly distinct predictive methods 

(multiple imputation and RDT). Both predictive methods performed reasonably well. On 

average, both multiple imputation and RDT produced unbiased estimates of individual-level 

effects. However, there was evidence that, in this simulated condition, the RDT method 

produced biased estimates for individuals with the strongest treatment response (extreme values 

of true treatment effect)with extreme values. The RDT method also produced more variable 
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estimates of predicted effects across the repetitions than the imputation method, Additionally, 

there was less stability in PITE estimates using the RDT approach than the imputation approach, 

at least in indicating that the imputation method may be more stable in scenarios that match our 

data-generation model. Put together, these findings suggest that the RDT approach may not be a 

suitable estimator of PITE, despite having favorable properties for uncovering HTE in general 

(55, 68).  

 

 

 

A strength of the PITE approach is its generality in terms of underlying predictive methods. We 

expect that nearly any established method for estimating HTE can potentially be used to derive 

predictions. In this way, the PITE approach marks a first step to integrating a diverse 

methodological literature on HTE and provides a framework for increasing the clinical utility of 

established methods.We expect that many established methods for estimating HTE can be used 

to derive predictions. We focused on two rather distinct methods in this study; and, d Despite the 

outperformance of the imputation methods  in our analysisin this study, we emphasize that there 

is likely no single optimal predictive method (55). The scenario we designed in this simulation 

was correctly specified for the imputation method (e.g., involved all the right covariates and 

interaction), therefore it was not surprising that the imputations worked very well. A similar 

finding is reported by Hastie, Tibshirani (69), where a linear model is shown to perform better 

than RDT in a scenario where the true model is linear. The correctly specified design was 
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intentional, as the purpose was, in some sense, proof of concept that using methods designed for 

HTE can be used for individual predictions.   

 

Future work is planned that will explore the limits of the methods under conditions of increased 

complexity. We anticipate that, for example, as higher-order interactions are introduced to the 

data, the RDT method (along with other tree-based methods) will outperform the imputation 

approach. This expectation is based on the way that imputations and RDTs handle interactive 

effects. Whereas RDTs can easily accommodate interactions without any additional model 

specifications, imputations require the interactions to be specified in the imputation model. This 

creates a scenario in which the analyst must have a priori theory about which higher-order 

interactions are driving heterogeneity in effects (which is arguably an unlikely situation), and a 

sufficient sample size to estimate a rather large and complex imputation equation. It is likely that 

inclusion of multiple higher-order interaction to an already large imputation model will cause 

estimation problems and/or encounter problems of statistical power. In addition, another 

important area of future work for expanding the PITE framework is the handling of missingness 

of observed data. In this study, we used single imputation of covariates and Full Information 

Maximum Likelihood (FIML) on outcomes in the applied study. The implications of this 

approach need to be more fully explored. A likely limitation of the PITE method is the case of 

differential attrition, particularly when imbalanced drop-out is informative. While missingness 

on the outcome is itself non-problematic, we suspect that informative differential attrition will 

lead to bias on the estimate of the response on treatment and, consequently, the PITE, unless the 

mechanism driving the differential attrition of modeled. 
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Related, wWe acknowledge that the fundamental purpose of the potential outcomes framework 

is to come up with causal estimates at the population-level. In this study, we presented an 

extension of the potential outcomes framework where we derived model-based estimates of 

potential outcomes under both treatment and control. Since the models tested in this study were 

correctly specified, additional work is needed to understand the assumptions required for these 

model-based individual estimates (rather than population estimates) as pure, causal effects.  

Related, this study presents a computer-assisted simulation as a conjecture of the PITE 

framework. We do not see this as a complete replacement for a formal mathematical proof, 

however, given our purposes of understanding the method and the conditions under which the 

method works, we see this approach as well-fitting.  

 

The PITE approach marks a first step to integrating a diverse methodological literature on HTE 

and provides a framework for increasing the clinical utility of established methods. The PITE 

approach directly focuses on A notable contribution of the the PITE approach is the estimation of 

predicted effects for individuals who were not part of the original clinical trial. While 

extrapolation to external data is possible with many tree-based and regression-based models, this 

practice is often not empirically tested for accuracy and therefore rarely advised. In this study, 

we explicitly focus on out-of-sample predictions. This is an important aspect of this work 

because it - along with the focus on individual-level estimation - holds the This holds the 

potential to transform the ways in which treatment decisions in the practice of behavioral and 

health medicine are made. This type of prediction can greatly advance individualized medicine 

medical practiceby providing . It is a realistic scenario to imagine the case where a physician has 

access to medical technologies that input data on the patient (e.g., genetic risk data, 
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environmental risk exposure) to obtain a precise estimate (PITE) of the patient‘s predicted 

treatment prognosis, rather than relying on the ATE of a Phase III clinical trial for treatment 

decision making. This type of prediction would greatly enhance individualized care by 

interventionists and patients providing access to important individual-level data during treatment 

selection, prior to the initiation of a treatment protocol.  The customization of treatment to the 

individual can potentially enhance the quality and cost-efficiency of services by allocating 

treatments to only those who are most likely to benefit.  

 

The Authors declare that there is no conflict of interest.
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