
MOTIONS OF GRID-LIKE REFLECTION FRAMEWORKS

DEREK KITSON AND BERND SCHULZE

Abstract. Combinatorial characterisations are obtained for symmetric and anti-symmetric in-
finitesimal rigidity of two-dimensional frameworks with reflectional symmetry in the case of
norms where the unit ball is a quadrilateral and where the reflection acts freely on the vertex
set. At the framework level, these characterisations are given in terms of induced monochrome
subgraph decompositions, and at the graph level they are given in terms of sparsity counts and
recursive construction sequences for the corresponding signed quotient graphs.

1. Introduction

Recent work in geometric rigidity has seen an analysis of frameworks in which the standard
Euclidean norm is replaced by a non-Euclidean norm (see [6, 7, 8, 9]). In this article we continue
this theme. In particular, we consider two-dimensional frameworks and norms for which the
unit ball is a quadrilateral (eg. the `1 or `∞ norms). Such frameworks are grid-like in the sense
that the allowable motions constrain vertices adjacent to any pinned vertex to move along the
boundary of a quadrilateral which is centred at the pinned vertex and obtained from the unit
ball by translation and dilation. By way of motivation, consider a two-dimensional formation
of mobile autonomous agents with the added constraint that each agent may only move in a
straight line and may only move in the direction of one of the two coordinate axes. The problem
of maintaining rigid formations of autonomous agents is a well-known application of geometric
rigidity theory and its associated “pebble game” algorithms (see for example [3]). However, with
this restricted mobility, standard Euclidean rigidity is no longer applicable and we are instead
lead to consider rigidity with respect to the `∞ norm.

There are three main aims of this article. The first is to formally introduce and develop
symmetric and anti-symmetric infinitesimal rigidity for Z2-symmetric frameworks in normed
linear spaces (see Section 2). This development includes an analysis of orbit matrices and a
derivation of necessary sparsity counts on associated signed quotient graphs. Analogous to the
Euclidean situation (see [4, 18, 19], for example), these orbit matrices and sparsity counts are
important tools for rigidity theory in general normed spaces. The second aim is to characterise
symmetric and anti-symmetric rigidity for grid-like 2-dimensional frameworks with reflectional
symmetry, where the reflection acts freely on the vertex set. A combination of these results
yields a characterisation for general infinitesimal rigidity in terms of the corresponding signed
quotient graphs (see Section 3.1). The third aim, which is in the spirit of Laman’s theorem
(see [10, 20, 22]), is to provide complete characterisations for graphs which admit placements
as rigid grid-like frameworks with reflectional symmetry. This is achieved in Section 3.2 for
both symmetric and anti-symmetric infinitesimal rigidity. The results on symmetric rigidity
are analogous to the corresponding results for Euclidean reflection frameworks in [4, 11]. It
is important to note, however, that unlike the Euclidean situation (see [18]), the respective
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characterisations of graphs which admit symmetric or anti-symmetric rigid placements as grid-like
reflection frameworks cannot be combined to characterise graphs which admit rigid placements as
grid-like reflection frameworks. This is due to the fact that the respective sets of symmetric and
anti-symmetric rigid grid-like realisations of a graph may be disjoint (see Fig. 6 for example).
Note that a combinatorial characterisation of graphs that admit a realisation as a grid-like
isostatic reflection framework was recently given in [9]. However, as shown in [8, 9], such a
framework must have a vertex which is fixed by the reflection.

In Section 2 we consider the rigidity of a Z2-symmetric framework in a general normed linear
space (X, ‖·‖). As in the case of Z2-symmetric Euclidean frameworks [5, 15, 16], each infinitesimal
flex may be decomposed in a unique way as a sum of a symmetric and an anti-symmetric
flex. Moreover, the rigidity operator is shown to admit a corresponding block decomposition
which leads in a natural way to a consideration of orbit matrices. We then derive necessary
counting conditions, in terms of an associated signed quotient graph, for frameworks which are
symmetrically or anti-symmetrically isostatic.

In Section 3 we consider grid-like frameworks with reflectional symmetry. The results of
Section 3.1 reside at the framework level while those of Section 3.2 may be viewed as graph-
theoretic statements. In Section 3.1 we provide complete characterisations of symmetric, anti-
symmetric, and general infinitesimal rigidity. These characterisations are expressed in terms
of edge colourings for the signed quotient graph which are induced by the positioning of the
framework relative to the unit ball. In Section 3.2 we provide a complete characterisation of
graphs which admit a symmetric or anti-symmetric rigid placement as a grid-like reflection
framework. These characterisations provide the sufficiency direction for the necessary counting
conditions derived in the general theory of Section 2. The proof applies an inductive construction
for signed quotient graphs together with the results of Section 3.1. We note that these matroidal
counts can be checked in polynomial time using a straightforward adaptation of the algorithm
described in [4, Sect. 10] (see also [1]).

2. Z2-symmetric frameworks in normed spaces

Throughout this article G = (V,E) will denote a finite simple undirected graph with vertex
set V and edge set E. An edge e ∈ E which is incident to vertices v, w ∈ V will be denoted
vw. An automorphism of G is a bijective map h : V → V with the property that vw ∈ E if and
only if h(v)h(w) ∈ E. The group (under composition) of graph automorphisms of G is denoted
Aut(G). Consider the multiplicative group Z2 with elements {1,−1}. A Z2-symmetric graph is
a pair (G, θ) consisting of a graph G and a group homomorphism θ : Z2 → Aut(G). When there
is no danger of ambiguity, θ(−1)v will be denoted by −v for each vertex v ∈ V and (−v)(−w)
will be denoted by −e for each edge e = vw ∈ E. The action θ is assumed throughout to be free
on the vertex set of G which means that v 6= −v for all v ∈ V . It will not be assumed that the
action is free on the edge set of G and so there may be edges e ∈ E such that e = −e. Such an
edge is said to be fixed by θ. The vertex orbit of a vertex v ∈ V under the action θ is the pair
[v] := {v,−v}. The set of all vertex orbits is denoted V0. Similarly, the edge orbit of an edge
e ∈ E is the pair [e] := {e,−e} and the set of all edge orbits is denoted E0.

2.1. Symmetric and anti-symmetric motions. Let (X, ‖ · ‖) be a finite dimensional normed
real linear space. A rigid motion of (X, ‖ · ‖) is a family of continuous paths {αx : [−1, 1] →
X}x∈X , such that αx(t) is differentiable at t = 0 with αx(0) = x and ‖αx(t)− αy(t)‖ = ‖x− y‖
for all pairs x, y ∈ X and all t ∈ [−1, 1].

The rigidity map for G = (V,E) and (X, ‖ · ‖) is defined by,

fG : X |V | → R|E|, (xv)v∈V 7→ (‖xv − xw‖)vw∈E .
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The directional derivative of the rigidity map fG at a point p ∈ X |V | and in the direction of a
vector u ∈ X |V | is denoted DufG(p),

DufG(p) = lim
t→0

1

t
(fG(p+ tu)− fG(p)) .

A bar-joint framework in (X, ‖ · ‖) is a pair (G, p) where p = (pv)v∈V ∈ X |V | and pv 6= pw for
all vw ∈ E. A subframework of (G, p) is a bar-joint framework (H, pH) (or simply (H, p)) where
H = (V (H), E(H)) is a subgraph of G and pH = (pv)v∈V (H). A subframework (H, p) is spanning
in (G, p) if H is a spanning subgraph of G and proper if H 6= G.

An infinitesimal flex for (G, p) is a vector u ∈ X |V | such that DufG(p) = 0. The collection

of all infinitesimal flexes of (G, p) forms a linear subspace of X |V |, denoted F(G, p). It can be

shown (see [7, Lemma 2.1]) that if {αx}x∈X is a rigid motion of (X, ‖·‖) then (α′pv(0))v∈V ∈ X |V |
is an infinitesimal flex of (G, p). An infinitesimal flex of this type is said to be trivial and the
collection of all trivial infinitesimal flexes forms a linear subspace of F(G, p), denoted T (G, p).
A bar-joint framework is said to be infinitesimally rigid if every infinitesimal flex is trivial and
isostatic if, in addition, no proper spanning subframework is infinitesimally rigid.

If the rigidity map fG is differentiable at p then the differential is denoted dfG(p). In this case,
(G, p) is said to be well-positioned in (X, ‖ · ‖) and dfG(p) is referred to as the rigidity operator
for (G, p). Note that the rigidity operator dfG(p) satisfies,

dfG(p)u = (ϕv,w(uv − uw) )vw∈E ,(1)

for all u = (uv)v∈V ∈ X |V | where ϕv,w : X → R is a linear functional defined by,

ϕv,w(x) = lim
t→0

1

t
(‖pv − pw + tx‖ − ‖pv − pw‖), ∀x ∈ X.

In this way the rigidity operator may be represented by a rigidity matrix of linear functionals
with rows indexed by E and columns indexed by V . (For details see [8]).

Let Isom(X, ‖ · ‖) denote the group of linear isometries of (X, ‖ · ‖). A bar-joint framework
(G, p) is said to be Z2-symmetric with respect to an action θ : Z2 → Aut(G) and a group
representation τ : Z2 → Isom(X, ‖ · ‖) if τ(−1)(pv) = p−v for all v ∈ V .

Lemma 2.1. Let (G, p) be a well-positioned bar-joint framework in (X, ‖ · ‖) which is Z2-
symmetric with respect to an action θ : Z2 → Aut(G) and a representation τ : Z2 → Isom(X, ‖·‖).

(i) X |V | may be expressed as a direct sum X |V | = X1 ⊕X2 where,

X1 = {(xv)v∈V ∈ X |V | : x−v = τ(−1)xv, ∀ v ∈ V },

X2 = {(xv)v∈V ∈ X |V | : x−v = −τ(−1)xv, ∀ v ∈ V }.

(ii) R|E| may be expressed as a direct sum R|E| = Y1 ⊕ Y2 where,

Y1 = {(ye)e∈E ∈ R|E| : y−e = ye, ∀ e ∈ E},

Y2 = {(ye)e∈E ∈ R|E| : y−e = −ye, ∀ e ∈ E}.
(iii) With respect to the direct sum decompositions,

X |V | = X1 ⊕X2, and, R|E| = Y1 ⊕ Y2,
the differential dfG(p) may be expressed as a direct sum of linear transformations,

dfG(p) = R1 ⊕R2,

where R1 : X1 → Y1 and R2 : X2 → Y2.
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Proof. Each (xv)v∈V ∈ X |V | may be expressed as a sum a+b where a =
(
1
2(xv + τ(−1)(x−v))

)
v∈V

and b =
(
1
2(xv − τ(−1)(x−v))

)
v∈V . Note that a ∈ X1 and b ∈ X2. Similarly, each (ye)e∈E ∈ R|E|

may be expressed as a sum a+b where a =
(
1
2(ye + y−e)

)
e∈E ∈ Y1 and b =

(
1
2(ye − y−e)

)
e∈E ∈ Y2.

To prove (i) and (ii) it only remains to note that X1 ∩X2 = {0} and Y1 ∩ Y2 = {0}.
To prove (iii), let vw ∈ E and note that if (xv)v∈V ∈ X1 then,

ϕv,w(xv − xw) = ϕ−v,−w(τ(−1)(xv − xw)) = ϕ−v,−w(x−v − x−w).

Similarly, if (xv)v∈V ∈ X2 then,

ϕv,w(xv − xw) = ϕ−v,−w(τ(−1)(xv − xw)) = ϕ−v,−w(−(x−v − x−w)) = −ϕ−v,−w(x−v − x−w).

By equation 1), dfG(p)(X1) ⊂ Y1 and dfG(p)(X2) ⊂ Y2 and so the result follows. �

A vector u = (uv)v∈V ∈ X |V | will be called symmetric if u ∈ X1 and anti-symmetric if u ∈ X2.
The vector spaces of symmetric and anti-symmetric infinitesimal flexes of (G, p) are respectively
denoted F1(G, p) and F2(G, p). Similarly, the vector spaces of symmetric and anti-symmetric
trivial infinitesimal flexes are respectively denoted T1(G, p) and T2(G, p). A straight-forward
verification shows that F(G, p) = F1(G, p)⊕F2(G, p) and T (G, p) = T1(G, p)⊕ T2(G, p).

The following observation will be applied in the next section.

Lemma 2.2. Let (G, p) be a well-positioned and Z2-symmetric bar-joint framework in (X, ‖ · ‖).
If the group of linear isometries Isom(X, ‖ · ‖) is finite then,

(i) dim T (G, p) = dimX.
(ii) dim T1(G, p) = rank(I + τ(−1)).

(iii) dim T2(G, p) = rank(I − τ(−1)).

Proof. It is shown in [7] that if Isom(X, ‖ · ‖) is finite then T (G, p) = {(x, . . . , x) ∈ X |V | : x ∈
X}. Part (i) is an immediate consequence of this while (ii) and (iii) follow on considering the
definitions of X1 and X2. �

Definition 2.3. A Z2-symmetric bar-joint framework (G, p) in (X, ‖ · ‖) is said to be,

(1) (anti-) symmetrically infinitesimally rigid if every (anti-) symmetric infinitesimal flex of
(G, p) is a trivial infinitesimal flex.

(2) (anti-) symmetrically isostatic if it is (anti-) symmetrically infinitesimally rigid and no Z2-
symmetric proper spanning subframework of (G, p) is (anti-) symmetrically infinitesimally
rigid.

Let G = (V,E) be a Z2-symmetric graph with V0 the set of vertex orbits and E0 the set of
edge orbits. The subset of E0 consisting of edge orbits for edges in G which are not fixed is
denoted E′0.

Lemma 2.4. Let (G, p) be a well-positioned and Z2-symmetric bar-joint framework in (X, ‖ · ‖).
(i) If (G, p) is symmetrically infinitesimally rigid then,

|E0| ≥ (dimX)|V0| − dim T1(G, p).
(ii) If (G, p) is anti-symmetrically infinitesimally rigid then,

|E′0| ≥ (dimX)|V0| − dim T2(G, p).

Proof. Consider the decompositions constructed in Lemma 2.1. Note that dimX1 = (dimX)|V0|,
dimX2 = (dimX)|V0|, dimY1 = |E0| and dimY2 = |E′0|. (In the case of Y2 the dimension is
determined by the number of edge orbits for edges which are not fixed). If (G, p) is symmetrically
infinitesimally rigid then T1(G, p) = F1(G, p) = kerR1 and so,

|E0| ≥ rankR1 = (dimX)|V0| − dim kerR1 = (dimX)|V0| − dim T1(G, p).
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A similar argument applies if (G, p) is anti-symmetrically infinitesimally rigid.
�

Lemma 2.5. Let (G, p) be a well-positioned and Z2-symmetric bar-joint framework in (X, ‖ · ‖).
If (G, p) is anti-symmetrically isostatic then G contains no fixed edges.

Proof. Suppose e = v(−v) is a fixed edge in G and let H = G−e. Then there exists a non-trivial
anti-symmetric infinitesimal flex u ∈ F2(H, p). Note that u ∈ ker dfH(p) and the linear functional
ϕv,−v satisfies,

ϕv,−v(uv−u−v) = ϕ−v,v(τ(−1)(uv−u−v)) = ϕ−v,v(−(u−v−uv)) = −ϕ−v,v(u−v−uv) = −ϕv,−v(uv−u−v).

Thus ϕv,−v(uv−u−v) = 0 and so, from equation (1), it follows that u ∈ ker dfG(p). In particular,
u is a non-trivial anti-symmetric infinitesimal flex of (G, p). �

Let Z and W be linear subspaces of X such that X = Z⊕W and suppose W has dimension 1.
A linear isometry T ∈ Isom(X, ‖ · ‖) is called a reflection in the mirror Z along W if T = I − 2P ,
where I : X → X is the identity operator on X and P : X → X is the linear projection with
range W and kernel Z.

Lemma 2.6. Let (K2, p) be a placement of K2 in (X, ‖ · ‖) which is Z2-symmetric with respect
to an action θ : Z2 → Aut(G) and a representation τ : Z2 → Isom(X, ‖ · ‖). If θ acts freely on
V (K2) and τ(−1) is a reflection then (K2, p) is symmetrically isostatic.

Proof. Let v and −v be the vertices of K2 and let u ∈ F1(K2, p) be a symmetric infinitesimal
flex of (K2, p). The isometry τ(−1) has the form τ(−1) = I − 2P where P is a projection as
described above. Note that,

ϕv,−v(Puv) =
1

2
ϕv,−v((I − τ(−1))uv) =

1

2
ϕv,−v(uv − u−v) = 0.

Thus uv ∈ Z or W ⊂ kerϕv,−v. Note that pv − p−v = (I − τ(−1))pv = 2P (pv) ∈ W . Thus if
W ⊂ kerϕv,−v then,

‖pv − p−v‖ = ϕv,−v(pv − p−v) = 0,

and so pv = p−v which is a contradiction. We conclude that uv ∈ Z and so u−v = τ(−1)uv = uv.
Thus u is a trivial infinitesimal flex. �

2.2. Signed quotient graphs. The quotient graph G0 = G/Z2 for a Z2-symmetric graph (G, θ)
has vertex set V0 consisting of the vertex orbits for (G, θ) and edge set E0 consisting of the edge
orbits. An edge [e] ∈ E0 is regarded as incident to a vertex [v] ∈ V0 if e (equivalently, −e) is
incident to either v or −v in G. In general, G0 is not a simple graph as if e ∈ E is a fixed edge
in G then [e] is a loop in G0. Also, if e = vw and e′ = v(−w) are distinct edges in G then [e]
and [e′] are parallel edges in G0.

Let Ṽ0 = {ṽ1, . . . , ṽn} be a choice of representatives for the vertex orbits of (G, θ). A signed
quotient graph (or quotient Z2-gain graph [4, 18]) is a pair (G0, ψ) consisting of a quotient graph
G0 and an edge-labeling (or gain) ψ : E0 → Z2 where ψ([e]) = 1 if either e or −e is incident to

two vertices in Ṽ0 and ψ([e]) = −1 otherwise. See Figure 1 for an example.
In the following, G will be referred to as the covering graph of (G0, ψ) and, to simplify notation,

ψ([e]) will be denoted ψ[e]. Note that the covering graph is required to be a simple graph and so
signed quotient graphs are characterised by the following two properties.

(1) If two edges [e] and [e′] in G0 are parallel then ψ[e] 6= ψ[e′].
(2) If [e] is a loop in G0 then ψ[e] = −1.
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The gain of a set of edges F in a signed quotient graph (G0, ψ) is defined as the product
ψ(F ) = Π[e]∈F ψ[e]. A set of edges F is balanced if it does not contain a cycle of edges, or, has the
property that every cycle of edges in F has gain 1. A subgraph of G0 is balanced in (G0, ψ) if it is
spanned by a balanced set of edges, otherwise, the subgraph is unbalanced. (See also [4, 23, 24]).

(a)

1 1
1

−1

−1

(b)

Figure 1. A Z2-symmetric graph (G, θ), where θ describes the reflectional sym-
metry shown in (a) and a corresponding signed quotient graph (G0, ψ) (b).

Lemma 2.7 ([4, 23]). Let (G0, ψ) be a signed quotient graph for a Z2-symmetric graph (G, θ)
and let H0 be a balanced subgraph in (G0, ψ). Then,

(i) H0 is a balanced subgraph in (G0, ψ
′) for every gain ψ′ induced by a choice of vertex orbit

representatives for (G, θ), and,

(ii) there exists a choice of vertex orbit representatives Ṽ0 for (G, θ) such that the induced gain
ψ′ satisfies ψ′[e] = 1 for all [e] ∈ E(H0).

A subgraph of G0 will be referred to as balanced if it is balanced in (G0, ψ) for some (and
hence every) gain ψ induced by a choice of vertex orbit representatives.

Definition 2.8. A subgraph of G0 for which every connected component contains exactly one
cycle, each of which is unbalanced, is called an unbalanced map graph in G0.

If a representative vertex is replaced by the vertex −, then a new signed quotient graph
(G0, ψ

′) is obtained, where ψ′[e] = −ψ[e] if [e] is incident with [v], and ψ′[e] = ψ[e] otherwise. This

is referred to as a switching operation on [v].

2.3. Orbit matrices and sparsity counts. Let (G, p) be a well-positioned and Z2-symmetric

bar-joint framework in (X, ‖ · ‖) and let Ṽ0 be a choice of vertex orbit representatives.

Definition 2.9. A symmetric orbit matrix for (G, p) is a matrix of linear functionals on X,
denoted O1(G, p) or simply O1, with rows indexed by E0 and columns indexed by V0.

The matrix entry for a pair ([e], [v]) ∈ E0 × V0 is given by,

O1([e], [v]) =


ϕṽ,ψ[e]w̃ if [e] = [vw] and [e] is not a loop,

2ϕṽ,−ṽ if [e] is a loop at [v],

0 otherwise,

where ṽ, w̃ ∈ Ṽ0 are the representative vertices for [v] and [w] respectively and ψ is the gain on

G0 induced by Ṽ0.

Each symmetric orbit matrix determines a linear map O1(G, p) : X |V0| → R|E0|. Explicitly,
the row entries of O1(G, p) which correspond to an edge orbit [e] = [vw] which is not a loop are,

[v][w][e]0 · · · 0ϕṽ,ψ[e]w̃0 · · · · · · 0ϕw̃,ψ[e]ṽ0 · · · 0,

while if [e] is a loop at a vertex [v] then the row entries are,

[v][e]0 · · · 0 2ϕṽ,−ṽ 0 · · · 0.
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Lemma 2.10. Let (G, p) be a well-positioned and Z2-symmetric bar-joint framework in (X, ‖·‖).
If O1 is a symmetric orbit matrix for (G, p) then there exist linear isomorphisms,

S1 : X |V0| → X1, T1 : R|E0| → Y1,

such that the following diagram commutes.

X |V0| R|E0|

X1 Y1

O1

S1 T1

R1

In particular, R1 and O1 are (isomorphically) equivalent linear transformations.

Proof. Let Ṽ0 be the choice of vertex orbit representatives from which O1(G, p) is derived. Each

vertex v ∈ V is expressible in the form v = γvṽ for some γv ∈ Z2 where ṽ ∈ Ṽ0 is the chosen
representative for [v]. Define,

S1 : X |V0| → X1, (x[v])[v]∈V0 7→ (τ(γv)x[v])v∈V ,

T1 : R|E0| → Y1, (y[e])[e]∈E0
7→ (y[e])e∈E .

Let u = (u[v])[v]∈V0 ∈ X |V0|. It is sufficient to compare the entries of (T1 ◦ O1)u and (R1 ◦ S1)u
in Y1 (note that these entries are indexed by E).

Suppose e = vw ∈ E is an edge in G which is not fixed. Then the edge orbit [e] is not a loop
in the quotient graph G0 and so the entry of O1(u) corresponding to [e] is given by,

ϕṽ,ψ[e]w̃(u[v])− ϕψ[e]ṽ,w̃(u[w]) = ϕṽ,ψ[e]w̃(u[v])− ϕṽ,ψ[e]w̃(τ(ψ[e])u[w])

= ϕṽ,ψ[e]w̃(u[v] − τ(ψ[e])u[w]).

This is also the entry of (T1 ◦ O1)u corresponding to e. Note that e = (γvṽ)(γww̃) where
ψ[e] = γvγw. Thus, the entry of (R1 ◦ S1)u corresponding to e is,

ϕv,w(τ(γv)u[v] − τ(γw)u[w]) = ϕγv ṽ,γww̃(τ(γv)u[v] − τ(γw)u[w])

=
(
ϕṽ,ψ[e]w̃ ◦ τ(γv)

)
(τ(γv)u[v] − τ(γw)u[w])

= ϕṽ,ψ[e]w̃(u[v] − τ(ψ[e])u[w]).

Now suppose e = ṽ(−ṽ) ∈ E is a fixed edge in G. The edge orbit [e] is a loop in the quotient
graph and so the entry of (T1 ◦ O1)u corresponding to e is 2ϕṽ,−ṽ(u[ṽ]). Likewise, the entry of
(R1 ◦ S1)u corresponding to e is,

ϕṽ,−ṽ(u[ṽ] − τ(−1)u[ṽ]) = ϕṽ,−ṽ(u[ṽ]) + ϕ−ṽ,ṽ(τ(−1)u[ṽ])

= ϕṽ,−ṽ(u[ṽ]) + ϕṽ,−ṽ(u[ṽ])

= 2ϕṽ,−ṽ(u[ṽ]).

�

Consider again a Z2-symmetric bar-joint framework (G, p) and fix an orientation on the edges
of the quotient graph which lie in E′0 (i.e. the edges in G0 which are not loops).

Definition 2.11. An anti-symmetric orbit matrix for (G, p) is a matrix of linear functionals on
X, denoted O2(G, p) or O2, with rows indexed by E′0 and columns indexed by V0.
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The matrix entry for a pair ([e], [v]) ∈ E′0 × V0 is given by,

O2([e], [v]) =


ϕṽ,ψ[e]w̃ if [e] = [vw] and [e] is oriented from [v] to [w],

ψ[e]ϕṽ,ψ[e]w̃ if [e] = [vw] and [e] is oriented from [w] to [v],

0 otherwise,

where ṽ, w̃ ∈ Ṽ0 are the representative vertices for [v] and [w] respectively and ψ is the gain on

G0 induced by Ṽ0.

The row entries of O2(G, p) corresponding to an edge orbit [e] oriented from [v] to [w] are,

[v][w][e]0 · · · 0ϕṽ,ψ[e]w̃0 · · · · · · 0ψ[e] ϕw̃,ψ[e]ṽ0 · · · 0.

Lemma 2.12. Let (G, p) be a well-positioned and Z2-symmetric bar-joint framework in (X, ‖·‖).
If O2 is an anti-symmetric orbit matrix for (G, p) then there exist linear isomorphisms,

S2 : X |V0| → X2, T2 : R|E
′
0| → Y2

such that the following diagram commutes.

X |V0| R|E′
0|

X2 Y2

O2

S2 T2

R2

In particular, R2 and O2 are (isomorphically) equivalent linear transformations.

Proof. Each vertex v ∈ V is expressible in the form v = γvṽ for some γv ∈ Z2 where ṽ ∈ Ṽ0 is
the chosen representative for [v]. For each edge e = vw ∈ E which is not fixed, define γe = γv if
[e] is oriented from [v] to [w]. Also define,

S2 : X |V0| → X2, (x[v])[v]∈V0 7→ (γvτ(γv)x[v])v∈V ,

T2 : R|E
′
0| → Y2, (y[e])[e]∈E′

0
7→ (γey[e])e∈E ,

where, in the definition of T2, we formally set γey[e] = 0 if e is a fixed edge of G. The com-
mutativity of the diagram can now be verified in a manner analogous to the proof of Lemma
2.10.

�

Let (H, p) be a Z2-symmetric framework. If H0 is balanced then, by Lemma 2.7, there exists a

choice of vertex orbit representatives Ṽ0 such that the induced gain is identically 1 on the edges
of H0. It follows that H0 may be identified with the vertex-induced subgraph on Ṽ0 in H. With
this identification, (H0, p) is a well-defined subframework of (H, p).

Lemma 2.13. Let (G, p) be a well-positioned and Z2-symmetric bar-joint framework in (X, ‖ ·‖)
and let (H, p) be a Z2-symmetric subframework of G.

(i) If (G, p) is symmetrically isostatic then,

|E(H0)| ≤ (dimX)|V (H0)| − dim T1(H, p),

and if H0 is balanced in G0 then,

|E(H0)| ≤ (dimX)|V (H0)| − dim T (H0, p).
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(ii) If (G, p) is anti-symmetrically isostatic then,

|E(H0)| ≤ (dimX)|V (H0)| − dim T2(H, p),
and if H0 is balanced in G0 then,

|E(H0)| ≤ (dimX)|V (H0)| − dim T (H0, p).

Proof. By Lemma 2.10, if (G, p) is symmetrically isostatic then O1(H, p) is row independent and,

|E(H0)| = rankO1(H, p) = (dimX)|V (H0)|−dim kerO1(H, p) ≤ (dimX)|V (H0)|−dim T1(H, p).
If H0 is balanced then for some choice of vertex orbit representatives each edge of H0 has gain
1. By the remark preceding the lemma, (H0, p) is a well-positioned framework in (X, ‖ · ‖) and,
by equation (1), dfH0(p) = O1(H, p). Thus,

|E(H0)| = rankO1(H, p) = rank dfH0(p) ≤ (dimX)|V (H0)| − dim T (H0, p).

This proves (i) and the proof of (ii) is similar.
�

3. Grid-like frameworks with reflectional symmetry

In this section we consider bar-joint frameworks in (R2, ‖ · ‖P) where the norm ‖ · ‖P has the
property that the closed unit ball P = {x ∈ R2 : ‖x‖P ≤ 1} is a quadrilateral. (The `1 and `∞

norms are familiar examples of such norms. In general, every absolutely convex quadrilateral
is the closed unit ball for a unique norm on R2 defined by the Minkowski functional for the
quadrilateral). The norm is expressed by the formula,

‖x‖P = max
j=1,2

|F̂j · x|, ∀x ∈ R2,

where P =
⋂
j=1,2 {x ∈ R2 : |x · F̂j | ≤ 1}. Note that the boundary of P consists of four facets

±F1, ±F2 and that for each j = 1, 2, F̂j is the unique extreme point of the polar set of P for

which Fj = {x ∈ P : F̂j · x = 1}. Also note that each facet Fj determines a linear functional,

ϕFj : X → R, x 7→ F̂j · x.

3.1. Monochrome subgraph decompositions. Let (G, p) be a bar-joint framework in (R2, ‖·
‖P) and let F be a facet of P. An edge vw ∈ E is said to have the induced framework colour
[F ] if pv − pw is contained in the cone of F or −F . The subgraph of G spanned by edges with
framework colour [F ] is denoted by GF and referred to as an induced monochrome subgraph of
G. Note that if (G, p) is well-positioned then each edge vw has exactly one framework colour [F ]
and the linear functional ϕv,w is given by either ϕF or ϕ−F . The following result was obtained
(for d-dimensional frameworks) in [7].

Theorem 3.1. Let (G, p) be a well-positioned bar-joint framework in (R2, ‖ · ‖P). Then (G, p)
is isostatic if and only if the monochrome subgraphs GF1 and GF2 are both spanning trees in G.

We will now prove symmetric analogues of the above theorem for frameworks with reflectional
symmetry. Let (G, p) be Z2-symmetric with respect to θ : Z2 → Aut(G) and τ : Z2 → Isom(R2, ‖·
‖P) where τ(−1) is a reflection in the mirror kerϕF1 along kerϕF2 . Then for each edge e ∈ E, both
e and −e have the same induced framework colour and this will be referred to as the framework
colour of the edge orbit [e]. Define GF,0 to be the monochrome subgraph of the quotient graph
G0 spanned by edges [e] with framework colour [F ].

In the following, the set of vertex orbit representatives for G will be denoted by Ṽ0 = {1, . . . ,n }
and Ṽ1 will denote the set {−1, . . . ,−n}.
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Theorem 3.2 (Symmetrically isostatic frameworks). Let (G, p) be a well-positioned and Z2-
symmetric bar-joint framework in (R2, ‖ · ‖P) where P is a quadrilateral and G 6= K2. Suppose
θ acts freely on V and τ(−1) is a reflection in the mirror kerϕF1 along kerϕF2. The following
are equivalent.

(i) (G, p) is symmetrically isostatic.
(ii) GF1,0 is a spanning unbalanced map graph in G0 and GF2,0 is a spanning tree in G0.

Proof. (i) ⇒ (ii) Suppose there exists a vertex [v0] ∈ V0 \ V (GF1,0). Choose a non-zero vector
x ∈ kerϕF2 and for all v ∈ V define,

uv =

 x if v =0,
−x if v = −0,
0 otherwise.

Then u is a non-trivial symmetric infinitesimal flex for (G, p). Similarly, if there exists a vertex
[v0] ∈ V0 \ V (GF2,0) then choose a non-zero vector x ∈ kerϕF1 . For all v ∈ V define,

uv =

{
x if [v] = [v0],
0 otherwise.

Again, u is a non-trivial symmetric infinitesimal flex for (G, p). In each case we obtained a
contradiction and so GF2,0 and GF2,0 are both spanning subgraphs of G0.

Suppose GF1,0 has a connected component H0 which is a balanced subgraph of G0. Then by
Lemma 2.7, by applying switching operations if necessary, we may assume each edge of H0 has
trivial gain. Thus, if H is the covering graph for H0, then there is no edge vw ∈ E(H) with

v ∈ Ṽ0 and w ∈ Ṽ1. Choose a non-zero vector x ∈ kerϕF2 and for all v ∈ V define,

uv =

 x if [v] ∈ V (H0) and v ∈ Ṽ0,
−x if [v] ∈ V (H0) and v ∈ Ṽ1,
0 otherwise.

Then u is a non-trivial symmetric infinitesimal flex for (G, p) which is a contradiction. Thus
each connected component of GF1,0 is an unbalanced subgraph of G0.

Suppose GF2,0 is not connected, and let H0 be a connected component of GF2,0. Choose a
non-zero vector x ∈ kerϕF1 and for all v ∈ V define,

uv =

{
x if [v] ∈ V (H0),
0 otherwise.

Again u is a non-trivial symmetric infinitesimal flex for (G, p) and this is a contradiction. Thus
GF2,0 is a connected spanning subgraph of G0.

By Lemma 2.2, dim T1(G, p) = rank(I + τ(−1)) = 1. Thus by Lemmas 2.4 and 2.13, |E0| =
2|V0| − 1. Note that each connected component of GF1,0 must contain a cycle (since it is unbal-
anced) and so if GF1,0 has n connected components, H1, H2, . . . ,Hn say, then |E(Hj)| ≥ |V (Hj)|
for each j and,

|E(GF1,0)| =
n∑
j=1

|E(Hj)| ≥
n∑
j=1

|V (Hj)| = |V0|.

Since GF2,0 is connected it must contain a spanning tree and so |E(GF2,0)| ≥ |V0| − 1. It follows
that |E(GF1,0)| = |V0|, |E(GF2,0)| = |V0| − 1 and |E(Hj)| = |V (Hj)| for each j. Thus GF1,0 is an
unbalanced spanning map graph and GF2,0 is a spanning tree in G0.

(ii) ⇒ (i) Suppose (ii) holds and let u be a symmetric infinitesimal flex of (G, p). Let v ∈ V
and note that since GF1,0 has a unique unbalanced cycle, the covering graph for H0 is a connected
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subgraph ofGF1 which contains both v and−v. In particular, there is a path vv1, v1v2, . . . , vn(−v)
in GF1 from v to −v and so,

uv − u−v = (uv − uv1) + (uv1 − uv2) + · · ·+ (uvn − u−v) ∈ kerϕF1 .

Also note that uv − u−v = (I − τ(−1))uv = 2Puv ∈ kerϕF2 . Thus uv = u−v for all v ∈ V .
Since u−v = τ(−1)uv it also follows that uv ∈ kerϕF1 for all v ∈ V . Let e = vw ∈ E. It
is clear that uv − uw ∈ kerϕF1 . Since GF2,0 is a spanning tree in G0 there exists a path in
GF2,0 from [v] to [w] with gain γ′ say. Thus there exists a path in GF2 from v to γ′w and so
uv − uw = uv − uγ′w ∈ kerϕF2 . We conclude that uv = uw for all vw ∈ E and so u is a trivial
infinitesimal flex of (G, p). To see that (G, p) is symmetrically isostatic note that |E0| = 2|V0|−1
and apply Lemma 2.4. �

The following theorem characterises anti-symmetric isostatic frameworks and is a counterpart
to the previous theorem. While the statement and proof are similar there are some key differences.
In particular, the roles of the monochrome subgraphs are reversed.

Theorem 3.3 (Anti-symmetrically isostatic frameworks). Let (G, p) be a well-positioned and
Z2-symmetric bar-joint framework in (R2, ‖ · ‖P) where P is a quadrilateral. Suppose θ acts
freely on V and τ(−1) is a reflection in the mirror kerϕF1 along kerϕF2. The following are
equivalent.

(i) (G, p) is anti-symmetrically isostatic.
(ii) GF1,0 is a spanning tree in G0 and GF2,0 is a spanning unbalanced map graph in G0.

Proof. (i) ⇒ (ii) Suppose there exists a vertex [v0] ∈ V0 \ V (GF1,0). Choose a non-zero vector
x ∈ kerϕF2 . For all v ∈ V define,

uv =

{
x if [v] = [v0],
0 otherwise.

Similarly, suppose there exists a vertex [v0] ∈ V0\V (GF2,0). Choose a non-zero vector x ∈ kerϕF1

and for all v ∈ V define,

uv =

 x if v =0,
−x if v = −0,
0 otherwise.

In each case u is a non-trivial anti-symmetric infinitesimal flex for (G, p).
Suppose GF2,0 has a connected component H0 which is a balanced subgraph of G0. Then,

using some switching operations if necessary, we may assume H0 has trivial gain. Choose a
non-zero vector x ∈ kerϕF1 and for all v ∈ V define,

uv =

 x if [v] ∈ V (H0) and v ∈ Ṽ0,
−x if [v] ∈ V (H0) and v ∈ Ṽ1,
0 otherwise.

Similarly, suppose GF1,0 is not connected, and let H0 be a connected component of GF1,0. Choose
a non-zero vector x ∈ kerϕF2 and for all v ∈ V define,

uv =

{
x if [v] ∈ V (H0),
0 otherwise.

Again, in each case u is a non-trivial anti-symmetric infinitesimal flex for (G, p). The remainder
of the proof is similar to Theorem 3.2.

(ii)⇒ (i) Apply an argument as in Theorem 3.2 but with the roles of GF1,0 and GF2,0 reversed.
�
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The previous two theorems can be combined to obtain the following characterisation of general
infinitesimal rigidity, again expressed in terms of monochrome subgraph decompositions in the
quotient graph.

Corollary 3.4 (Infinitesimally rigid frameworks). Let (G, p) be a well-positioned and Z2-symmetric
bar-joint framework in (R2, ‖ · ‖P) where P is a quadrilateral. Suppose θ acts freely on V and
τ(−1) is a reflection in the mirror kerϕF1 along kerϕF2. The following are equivalent.

(i) (G, p) is infinitesimally rigid.
(ii) G0 contains a spanning subgraph H0 such that the monochrome subgraphs HF1,0 and HF2,0

are both connected spanning unbalanced map graphs.

Proof. (i)⇒ (ii) If (G, p) is infinitesimally rigid then it is both symmetrically and anti-symmetrically
infinitesimally rigid. By removing edge orbits from G we arrive at a Z2-symmetric subgraph A
such that (A, p) is symmetrically isostatic. By Theorem 3.2, AF1,0 is a spanning unbalanced map
graph in G0. Similarly, by removing edge orbits from G we arrive at a Z2-symmetric subgraph B
such that (B, p) is anti-symmetrically isostatic. By Theorem 3.3, BF2,0 is a spanning unbalanced
map graph in G0. Now H0 = AF1,0 ∪BF2,0 is a spanning subgraph of G0 which satisfies (ii).

(ii) ⇒ (i) Suppose (ii) holds and let H be the covering graph for H0. Note that HF1,0 is a
spanning unbalanced map graph in H0 and HF2,0 contains a spanning tree in H0. By Theorem
3.2, (H, p) is symmetrically infinitesimally rigid. Similarly, HF1,0 contains a spanning tree in H0

and HF2,0 is an unbalanced spanning map graph in H0. Thus by Theorem 3.3, (H, p) is anti-
symmetrically infinitesimally rigid. It follows that (H, p), and hence also (G, p), is infinitesimally
rigid.

�

3.2. Existence of rigid placements with reflectional symmetry. In this section, necessary
and sufficient conditions are obtained for a Z2-symmetric graph to have a well-positioned sym-
metric or anti-symmetric infinitesimally rigid realisation as a grid-like reflection framework. A
signed quotient graph (G0, ψ) is (2, 2, 1)-gain-sparse if it satisfies

(i) |F | ≤ 2|V (F )| − 2 for every balanced F ⊆ E0;
(ii) |F | ≤ 2|V (F )| − 1 for every F ⊆ E0.

If, in addition, |E0| = 2|V0| − 1, then (G0, ψ) is said to be (2, 2, 1)-gain-tight.
We will now describe a number of recursive operations on a (2, 2, 1)-gain tight signed quotient

graph (G0, ψ). See also [4, 14, 18] for a description of some of these moves.

Definition 3.5. A Henneberg 1 move is an addition of a new vertex [v] and two new edges [e1]
and [e2] to (G0, ψ), where [e1] and [e2] are incident with [v] and are not both loops at [v]. If [e1]
and [e2] are parallel edges, then the gain labels are assigned so that ψ[e1] 6= ψ[e2].

If [e1] and [e2] are non-parallel and neither is a loop then the move is called H1a. If these
edges are parallel the move is called H1b. If one of the edges is a loop, then the move is called
H1c. See also Figure 2.

Definition 3.6. A Henneberg 2 move deletes an edge [e] of (G0, ψ) and adds a new vertex [v]
of degree 3 to (G0, ψ) as follows. The edge [e] is subdivided into two new edges [e1] and [e2]
(both incident with [v]) so that the gains of the new edges satisfy ψ[e1] · ψ[e2] = ψ[e]. Finally, the
third new edge, [e3], joins [v] to a vertex [z] of (G0, ψ) so that every 2-cycle [ei][ej ], if it exists,
is unbalanced.

Suppose first that the edge [e] is not a loop. If none of the edges [ei] are parallel, then the
move is called H2a. If two of the edges [ei] are parallel (i.e., [z] is an end-vertex of [e]), then the
move is called H2b. If the edge [e] is a loop, then the move is called H2c. See Figure 3.



MOTIONS OF GRID-LIKE REFLECTION FRAMEWORKS 13

(a) (b) (c)

Figure 2. Henneberg 1 moves (with gain labels of edges omitted): (a) H1a-move;
(b) H1b-move; (c) H1c-move.

(a) (b) (c)

Figure 3. Henneberg 2 moves (with gain labels of edges omitted): (a) H2a-move;
(b) H2b-move; (c) H2c-move.

Definition 3.7. A vertex-to-K4 move removes a vertex [v] (of arbitrary degree) and all the edges
incident with [v], and adds in a copy of K4 with only trivial gains. Each removed edge [x][v] is
replaced by an edge [x][y] for some [y] in the new K4, where the gain is preserved. If the deleted
vertex [v] is incident to a loop, then this loop is replaced by an edge [y][z] with gain −1, where
[y] and [z] are two (not necessarily distinct) vertices of the new K4.

See Figure 4(a).

(a) (b)

Figure 4. (a) Vertex-to-K4-move. (b) Edge-to-K3-move (vertex splitting). Gain
labellings of edges are omitted.

Definition 3.8. An edge-to-K3 move (also called vertex splitting [12, 21]) on a vertex [v] which is
incident to the edge [v][u] with trivial gain and the edges [v][ui], i = 1, . . . , t (which may include
the edges [v][u] and [v][v] with gain −1), removes [v] and its incident edges, and adds two new
vertices [v0] and [v1] as well as the edges [v0][v1], [v0][u] and [v1][u] with trivial gains. Finally,
each edge [v][ui] (with [ui] 6= [v]), i = 1, . . . , t, is replaced by the edge [v0][ui] or the edge [v1][ui]
so that the gain of the new edge [vj ][ui], j ∈ {0, 1}, is the same as the gain of the deleted edge
[v][ui]. The loop at [v] (if it exists) is replaced by a loop either at [v0] or [v1] with gain −1.

See Figure 4(b).
For each of the above moves, an inverse move performed on a (2, 2, 1)-gain-tight signed quotient

graph is called admissible if it results in another (2, 2, 1)-gain-tight signed quotient graph.

Theorem 3.9 (Symmetrically isostatic graphs). Let ‖ · ‖P be a norm on R2 for which P is a
quadrilateral, and let G be a Z2-symmetric graph where the action θ is free on the vertex set of
G. Let (G0, ψ) be the signed quotient graph of G. The following are equivalent.

(i) There exists a representation τ : Z2 → Isom(R2), where τ(−1) is a reflection in the
mirror kerϕF1 along kerϕF2, and a realisation p such that the bar-joint framework (G, p)
is well-positioned, Z2-symmetric and symmetrically isostatic in (R2, ‖ · ‖P);
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(ii) (G0, ψ) is (2, 2, 1)-gain tight;
(iii) (G0, ψ) can be constructed from a single unbalanced loop by a sequence of H1a,b,c-moves,

H2a,b,c-moves, vertex-to-K4 moves, and vertex splitting moves.

Proof. (i) ⇒ (ii). Suppose (G, p) is a well-positioned symmetrically isostatic framework in
(R2, ‖ · ‖P). Then we clearly have |E0| = 2|V0| − 1 since, by Lemma 2.2, the space of symmetric
infinitesimal trivial flexes is of dimension 1 (spanned by the infinitesimal translation along the
mirror). Similarly, by Lemma 2.13, there does not exist an edge subset F of E0 with |F | >
2|V (F )| − 1, for otherwise the symmetric orbit matrix of (G0, ψ) would have a row dependence.
So it remains to show that we have |F | ≤ 2|V (F )|−2 for every balanced edge subset F . However,
this also follows immediately from Lemma 2.13.

(ii)⇒ (iii). Suppose (G0, ψ) is (2, 2, 1)-gain tight. If (G0, ψ) is a single unbalanced loop, then
we are done. So suppose (G0, ψ) has more than two vertices. Then (G0, ψ) has a vertex [v] of
degree 2 or 3. If there exists a vertex [v] which is incident to two edges (one of which may be
a loop), then there clearly exists an admissible inverse H1a,b- or c-move. If there is no such
vertex, then there is a vertex [v] which is incident to three non-loop edges, and [v] has either
two or three neighbours. If [v] has two neighbours [a] and [b], and [v], [a], [b] induce a graph
with 5 edges (i.e., a 2K3 − [e]), then there exists an admissible inverse H2c-move. Otherwise,
we may use the argument in [14] for (2, 2, 1)-gain-tight signed graphs to show that there exists
an admissible inverse H2b-move. If [v] has three distinct neighbours, then it was again shown in
[14] that there exists an admissible inverse H2a-move for [v], unless [v] and its three neighbours
[a], [b] and [c] induce a K4 in (G0, ψ) with gain 1 on every edge (plus possibly an additional edge
with gain −1).

In this case there is an admissible inverse vertex-to-K4 move, unless there exists a vertex
[x] /∈ V (K4) such that [x][a] and [x][b] are edges in (G0, ψ) which have the same gain. Let A0

denote the K4 and let A1 be the graph consisting of A0 together with the vertex [x] and the edges
[x][a] and [x][b]. By switching [x], we may assume that the gains of [x][a] and [x][b] are both 1.
Note that [x][a] and [x][b] cannot both have a parallel edge, and so, without loss of generality,
we assume that the edge [x][a] with gain −1 is not present.

If there exists a vertex [y] /∈ V (A1) and edges [y][a] and [y][x] with the same gain then let
A2 denote the union of A1 with [y] and these two edges (see Fig. 5). By switching [y] we may
assume that all edges in A2 have gain 1. Again, note that [y][a] and [y][x] cannot both have a
parallel edge, and so, without loss of generality, we assume that the edge [y][a] with gain −1 is
not present. If there exists a vertex [z] /∈ V (A2) and edges [z][y] and [z][a] with the same gain
then let A3 denote the union of A2 with [z] and these two edges. Continuing this process we
obtain an increasing sequence of subgraphs A1, A2, A3, . . . of G0 each of which is balanced and
satisfies |E(Ai)| = 2|V (Ai)| − 2. This sequence must terminate after finitely many iterations
at a subgraph At of G0. Let [w] be the vertex in At\At−1 and suppose [w] is incident to the
vertices [i] and [j] in At−1. By switching [w] we may assume that all edges in At have gain 1.
By construction, one of the edges incident to [w] in At, [w][i] say, does not have a parallel edge
and has the property that there is no vertex [k] /∈ V (At) which is adjacent to both [w] and [i]
such that the edges [k][w] and [k][i] both have the same gain.

Clearly, there cannot exist a subgraph H0 of (G0, ψ) with |E(H0)| = 2|V (H0)| − 1 which
contains [w] and [i], but not [j], for otherwise At ∪H0 violates the (2, 2, 1)-gain-sparsity counts.
To see this note that |E(At−1 ∪H0)| = 2|V (At−1 ∪H0)|− 1 and At ∪H0 is obtained by adjoining
the edge [w][j] to At−1 ∪ H0. Similarly, there cannot exist a balanced subgraph H0 of (G0, ψ)
with |E(H0)| = 2|V (H0)| − 2 which contains [w] and [i], but not [j]. To see this, note that
At ∩ H0 must be connected since otherwise At ∪ H0 violates the (2, 2, 1)-gain-sparsity counts.
By [4, Lemma 2.5], At ∪ H0 is balanced and so, by Lemma 2.7, we may assume every edge in
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At∪H0 has gain 1. Note that At−1 and H0 have a non-empty (balanced) intersection. Therefore,
|E(At−1 ∪ H0)| = 2|V (At−1 ∪ H0)| − 2. However, if we add the edge [w][j] to At−1 ∪ H0, then
this creates a balanced subgraph of G0 which violates the (2, 2, 1)-gain-sparsity counts. It follows
that an inverse edge-to-K3 move on the edge [w][i] is admissible.

[c]

[v]

[b]

[a]

[x]

[y]

Figure 5. Illustration of the subgraph A2 in the proof of Theorem 3.9 (ii) ⇒
(iii). All edges have gain 1.

(iii)⇒ (i). We employ induction on the number of vertices of G0. If G0 is a single unbalanced
loop with vertex [v], choose pv /∈ kerϕF1 and set p−v = τ(−1)pv. Then (G, p) is well-positioned
and Z2-symmetric and so the statement holds by Lemma 2.6.

Now, let n ≥ 2, and suppose (i) holds for all signed quotient graphs satisfying (iii) with at
most n−1 vertices. Let (G0, ψ) have n vertices, and let (G′0, ψ

′) be the penultimate graph in the
construction sequence of (G0, ψ). If (G′0, ψ

′) is a single unbalanced loop, then (G0, ψ) is obtained
from (G′0, ψ

′) by a H1b-, H1c-, or vertex-to-K4 move. The loop of G′0 belongs to the induced
monochrome subgraph G′F1,0

of G′0, and for each of the three moves, it is easy to see how to

place the new vertex (vertices) so that the induced monochrome subgraphs GF1,0 and GF2,0 of
G0 have the property that GF1,0 is a spanning unbalanced map graph and GF2,0 is a spanning
tree of G0 (see also the discussion below). The result then follows from Theorem 3.2. Thus, we
may assume that G′0 has at least two vertices.

In this case, it follows from the induction hypothesis and Theorem 3.2 that there exists a
well-positioned Z2-symmetric realisation p′ of the covering graph G′ of (G′0, ψ

′) in (R2, ‖ · ‖P)
(where the reflection τ(−1) is in the mirror kerϕF1) so that the induced monochrome subgraphs
G′F1,0

and G′F2,0
of G′0 are both spanning, G′F1,0

is an unbalanced map graph, and G′F2,0
is a tree.

By Theorem 3.2 it now suffices to show that the vertex (or vertices) of G \G′ can be placed in
such a way that the corresponding framework (G, p) is Z2-symmetric and well-positioned, the
induced monochrome subgraphs GF1,0 and GF2,0 are both spanning in G0, GF1,0 is an unbalanced
map graph, and GF2,0 is a tree.

Choose points x1 and x2 in the relative interiors of F1 and F2 respectively. Suppose first that
(G0, ψ) is obtained from (G′0, ψ

′) by a H1a-move, where [v] ∈ G0 \G′0 is adjacent to the vertices
[v1] and [v2] of G′0 with respective gains γ1 and γ2. Set pw = p′w for all vertices w in G with
[w] 6= [v]. Let a ∈ R2 be the point of intersection of the lines L1 = {τ(γ1)p1 + tx1 : t ∈ R} and
L2 = {τ(γ2)p2 + tx2 : t ∈ R} and let B(a, r) be an open ball with centre a and radius r > 0.
Choose p to be any point in B(a, r) which is distinct from {pw : w ∈ V (G′)} and which is not
fixed by τ(−1). Set p− = τ(−1)p. Then (G, p) is a Z2-symmetric bar-joint framework and, by
applying a small perturbation to pṽ if necessary, we may assume that (G, p) is well-positioned. If
r is sufficiently small then the induced framework colours for [v][v1] and [v][v2] are [F1] and [F2]
respectively. Thus, the induced monochrome subgraphs of (G0, ψ) are GF1,0 = G′F1,0

∪ {[v][v1]}
and GF2,0 = G′F2,0

∪ {[v][v2]}. Clearly, GF1,0 is a spanning unbalanced map graph and GF2,0 is
a spanning tree of G0. For an illustration of the monochrome subgraphs of the signed quotient
graph see Fig. 2(a). The edges of GF1,0 are shown in gray and the edges of GF2,0 are shown in
black.
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If (G0, ψ) is obtained from (G′0, ψ) by a H1b-move, then the proof is completely analogous to
the proof above. (See Fig. 2(b)).

Suppose (G0, ψ) is obtained from (G′0, ψ
′) by a H1c-move, where [v] ∈ G0 \ G′0 is incident to

the unbalanced loop [e] and adjacent to the vertex [w] of (G′0, ψ
′) with gain γ. If we choose p

to be any point on the line L = {τ(γ)p + tx2 : t ∈ R}, then the induced framework colouring
for [v][w] is [F2]. Moreover, as we have seen before, the induced framework colouring for the
loop [e] is [F1]. It follows that we may place and − in such a way that (G, p) is well-positioned
and Z2-symmetric, and the induced monochrome subgraphs of G0 are GF1,0 = G′F1,0

∪ {[e]} and

GF2,0 = G′F2,0
∪ {[v][w]}. Clearly, GF1,0 is an unbalanced spanning map graph and GF2,0 is a

spanning tree of (G0, ψ). (See Fig. 2(c)).
Next, we suppose that (G0, ψ) is obtained from (G′0, ψ

′) by a H2a-move where [v] ∈ G0 \ G′0
subdivides the edge [e] into the edges [e1] and [e2] with respective gains γ1 and γ2, and [v] is
also incident to the edge [e3] with end-vertex [z] and gain γ3. Without loss of generality we
may assume that [e] ∈ G′F1,0

. Let a ∈ R2 be the point of intersection of the line L1 which

passes through the points τ(γ1)p1 and τ(γ2)p2 with L2 = {τ(γ3)p + tx2 : t ∈ R}. Let B(a, r)
be the open ball with centre a and radius r > 0 and choose p to be a point in B(a, r) which
is distinct from {pw : w ∈ G′} and which is not fixed by τ(−1). Set p− = τ(−1)p. As above,
(G, p) is Z2-symmetric and we may assume it is well-positioned. If r is sufficiently small then [e1]
and [e2] have induced framework colour [F1] and [e3] has framework colour [F2]. The induced
monochrome subgraphs of G0 are GF1,0 = (G′F1,0

\{[e]}) ∪ {[e1], [e2]} and GF2,0 = G′F2,0
∪ {[e3]}.

Clearly, GF1,0 is a spanning unbalanced map graph and GF2,0 is a spanning tree of G0. (See
Fig. 3(a)).

The cases where (G0, ψ) is obtained from (G′0, ψ
′) by a H2b- or a H2c-move can be proved

completely analogously to the case above for the H2a-move. Note, however, that for the H2c-
move, the edges [e1] and [e2] are forced to be in the subgraph GF1,0. (See Fig. 3(b),(c)).

Next, we suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a vertex-to-K4-move, where the

vertex [v] of G′0 (which may be incident to an unbalanced loop [e]) is replaced by a copy of K4

with a trivial gain labelling (and [e] is replaced by the edge [f ]). It was shown in [7, Ex. 4.5] that
K4 has a well-positioned and isostatic placement in (R2, ‖ · ‖P). Moreover, we may scale this
realisation so that all of the vertices of the K4 lie in a ball of arbitrarily small radius. For any such
realisation, the induced monochrome subgraphs of K4 are both paths of length 3. Let B(p, r) be
the open ball with centre p and radius r > 0. Choose a placement of the representative vertices of
the new K4 to lie within B(p, r) such that the vertices are distinct from {pw : w ∈ V (G′)\{,−}},
none of the vertex placements are fixed by τ(−1) and the resulting placement of the new K4 is
isostatic. If r is sufficiently small then the edge [f ] (if present) has the induced framework colour
[F1]. It can be assumed that the corresponding Z2-symmetric placement of G is well-positioned.
Moreover, the induced monochrome subgraphs GF1,0 and GF2,0 of G0 clearly have the desired
properties. (See Fig. 4(a)).

Finally, we suppose that (G0, ψ) is obtained from (G′0, ψ
′) by an edge-to-K3-move, where the

vertex [v] of G′0 (which is replaced by the vertices [v0] and [v1]) is incident to the edge [v][u] with
trivial gain and the edges [v][ui], i = 1, . . . , t, in G′0. Without loss of generality we may assume
that [v][u] ∈ G′F1,0

. If we choose p0 = p and p1 to be a point on the line L = {p + tx2 : t ∈ R}
which is sufficiently close to p, then the induced framework colour for [v0][v1] is [F2] and the
induced framework colour for [v0][u] and [v1][u] is [F1]. (Again we may assume the framework
is well-positioned). Moreover, all other edges of G′0 which have been replaced by new edges in
G0 clearly retain their induced framework colouring if p1 is chosen sufficiently close to p. It is
now easy to see that for such a placement of 0 and 1, (G, p) is Z2-symmetric and for the induced
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monochrome subgraphs GF1,0 and GF2,0 of G0 we have that GF1,0 is a spanning unbalanced map
graph and GF2,0 is a spanning tree of (G0, ψ). (See Fig. 4(b)). This completes the proof.

�
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Figure 6. A symmetrically isostatic (but not anti-symmetrically isostatic) re-
flection framework in (R2, ‖ · ‖∞) (a) and its signed quotient graph (G0, ψ) (b).
An anti-symmetrically isostatic (but not symmetrically isostatic) reflection frame-
work in (R2, ‖ · ‖∞) (c) with the same signed quotient graph (G0, ψ). The edges
of the induced monochrome subgraphs GF1 and GF1,0 are shown in gray colour.
(G0, ψ) does not admit an infinitesimally rigid realisation in (R2, ‖ · ‖∞) with
reflection symmetry since |E0| < 2|V0|.

Example 3.10. The smallest signed quotient graph (G0, ψ) whose covering graph G can be
realised as a Z2-symmetric framework in (R2, ‖ · ‖P) which is anti-symmetrically isostatic is
the graph 2K3− shown in Figure 6 (b,d). Figure 6 (c) illustrates such a realisation (G, p)
in (R2, ‖ · ‖∞). To obtain a realisation (G, p̃) in (R2, ‖ · ‖P) construct a linear isometry T :
(R2, ‖ · ‖∞)→ (R2, ‖ · ‖P) and set p̃v = T (pv) for each v ∈ V .

A 2K3 − [e] edge joining move joins a signed quotient graph 2K3 − [e] to (G0, ψ) via one new
edge of arbitrary gain, where 2K3 − [e] consists of 3 vertices and 5 edges.

Theorem 3.11 (Anti-symmetrically isostatic graphs). Let ‖ · ‖P be a norm on R2 for which P
is a quadrilateral, and let G be a Z2-symmetric graph with respect to the action θ which is free on
the vertex set of G. Let (G0, ψ) be the signed quotient graph of G. The following are equivalent.

(i) There exists a representation τ : Z2 → Isom(R2), where τ(−1) is a reflection in the
mirror kerϕF1 along kerϕF2, and a realisation p such that the bar-joint framework (G, p)
is well-positioned, Z2-symmetric and anti-symmetrically isostatic in (R2, ‖ · ‖P);

(ii) (G0, ψ) has no loops and is (2, 2, 1)-gain tight;
(iii) (G0, ψ) can be constructed from 2K3 − [e] by a sequence of H1a,b-moves, H2a,b-moves,

vertex-to-K4 moves, vertex splitting moves and 2K3 − [e] edge joining moves.

Proof. (i) ⇒ (ii). Suppose (G, p) is a well-positioned anti-symmetrically isostatic framework
in (R2, ‖ · ‖P). Then, by Lemma 2.5, (G0, ψ) cannot contain a loop. The rest of the proof is
completely analogous to the proof of Theorem 3.9 ((i) ⇒ (ii)), since the space of anti-symmetric
infinitesimal trivial flexes is also of dimension 1, by Lemma 2.2.

(ii) ⇒ (iii). Suppose (G0, ψ) is (2, 2, 1)-gain tight with no loops. If (G0, ψ) is a 2K3 − [e],
then we are done. So suppose (G0, ψ) has more than three vertices. Then (G0, ψ) has a vertex
[v] of degree 2 or 3. It was shown in [14] that there exists an admissible inverse Henneberg 1a,b-
or 2a,b-move for [v], unless [v] either has three distinct neighbours [a], [b] and [c] in (G0, ψ) and
[v], [a], [b], [c] induce a K4 with gain 1 on every edge (plus possibly an additional edge with gain
−1) or [v] has two distinct neighbors [a] and [b], and [v], [a], [b] induce a 2K3 − [e].

In the first case, there is an admissible inverse vertex-to-K4 move or an admissible inverse
vertex splitting move, as shown in the proof of Theorem 3.9 ((ii) ⇒ (iii)). Thus, we may
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assume that every vertex of degree 3 is in a copy of 2K3 − [e]. But now we may use a similar
argument as in the proof for the characterisation of (2, 2, 1)-gain-tight signed quotient graphs
given in [14] (see also [13, Lemma 4.10]) to show that at least one of the copies of 2K3 − [e]
has the property that there is exactly one edge which joins a vertex [x] /∈ 2K3 − [e] with a
vertex in 2K3 − [e]. For a signed quotient graph (H,φ) with vertex set V (H) and edge set
E(H), we define f(H) = 2|V (H)| − |E(H)|. Let Y = {Y1, . . . , Yk} be the copies of 2K3 − [e]
in (G0, ψ). Then the Yi are pairwise disjoint and satisfy f(Yi) = 1 for all i. Let W0 and F0 be
the sets of vertices and edges of (G0, ψ) which do not belong to any of the Yi. Then we have

f(G0) =
∑k

i=1 f(Yi) + 2|W0| − |F0|, and since f(G0) = 1, |F0| = 2|V0| + k − 1. Every vertex in
W0 is of degree at least 4. So if every Yi is incident to at least two edges in F0, then there are at
least 4|W0|+ 2k edge-vertex incidences for the edges in F0. But then we have |F0| ≥ 2|W0|+ k,
a contradiction. If there exists a Yi with the property that none of the vertices of Yi are incident
with an edge in F0, then G0 = Yi, contradicting our assumption that G0 has more than 3 vertices.
It follows that there exists an inverse 2K3 − [e] edge joining move.

(iii) ⇒ (i). We employ induction on the number of vertices. For the signed graph 2K3 − [e],
the statement follows from Example 3.10.

Now, let n ≥ 4, and suppose (i) holds for all signed quotient graphs satisfying (iii) with at
most n − 1 vertices. Let (G0, ψ) have n vertices, and suppose first that the last move in the
construction sequence of (G0, ψ) is not a 2K3 − [e] edge joining move. Then we let (G′0, ψ

′) be
the penultimate graph in the construction sequence of (G0, ψ). By the induction hypothesis and
Theorem 3.3, there exists a well-positioned Z2-symmetric realisation of the covering graph of
(G′0, ψ

′) in (R2, ‖ · ‖P) (where the reflection τ(−1) is in the mirror kerϕF1) so that the induced
monochrome subgraphs G′F1,0

and G′F2,0
of G′0 are both spanning, G′F1,0

is a tree, and G′F2,0
is

an unbalanced map graph. By Theorem 3.3 it suffices to show that the vertex (or vertices) of
G\G′ can be placed so that (G, p) is well-positioned, Z2-symmetric and the induced monochrome
subgraphs GF1,0 and GF2,0 of G0 are both spanning, GF1,0 is a tree and GF2,0 is an unbalanced
map graph.

If (G0, ψ) is obtained from (G′0, ψ
′) by a H1a-, H1b-, H2a-, H2b-, vertex-to-K4, or edge-to-K3

move, then we may use exactly the same placement for the vertex (or vertices) of G \ G′ as in
the proof of Theorem 3.9 to obtain the desired realisation of G.

So it remains to consider the case where the last move in the construction sequence of (G0, ψ)
is a 2K3 − [e] edge joining move. Suppose (G0, ψ) is obtained by joining the signed quotient
graphs (G′0, ψ

′) and (G′′0, ψ
′′) by an edge [f ] with end-vertices [u] ∈ G′0 and [v] ∈ G′′0, where

G′′0 = 2K3 − [e]. By the induction hypothesis, Theorem 3.3, and Example 3.10, the covering
graphs of (G′0, ψ

′) and (G′′0, ψ
′′) can be realised as Z2-symmetric frameworks (G′, p) and (G′′, q)

in (R2, ‖·‖P) (where the reflection τ(−1) is in the mirror kerϕF1) so that the induced monochrome
subgraphs G′F1,0

and G′F2,0
of G′0, and G′′F1,0

and G′′F2,0
of G′′0, are all spanning, G′F1,0

and G′′F1,0

are trees, and G′F2,0
and G′′F2,0

are unbalanced map graphs. Now, consider the line L which

passes through the points p and τ(−1)p, and translate the framework (G′′, q) along the mirror
line kerϕF1 (thereby preserving the reflection symmetry of (G′′, q)) so that the points q̂ and
τ(−1)q̂ of the translated framework (G′′, q̂) lie on L. If there are vertices of (G′, p) and (G′′, q̂)
which are now positioned at the same point in (R2, ‖ ·‖P), then we perturb the vertices of (G′′, q̂)
slightly without changing the induced colourings of the edges of G until all of the vertices have
different positions. Then [f ] has induced framework colour [F1], the realisation of G is well-
positioned, and the induced monochrome subgraphs of G0 are GF1,0 = G′F1,0

∪G′′F1,0
∪ {[f ]} and

GF2,0 = G′F2,0
∪G′′F2,0

. Clearly, GF1,0 is a spanning tree and GF2,0 is a spanning unbalanced map
graph of G0.

�
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Note that the final argument in the proof of Theorem 3.11 can immediately be generalised
to show that in the recursive construction sequence in Theorem 3.11 (iii), we may replace the
2K3− [e] edge joining move with an edge joining move that joins two arbitrary (2, 2, 1)-gain tight
signed quotient graphs by an edge of arbitrary gain.

4. Further remarks

At the graph level, we provided characterisations for symmetric and anti-symmetric infinites-
imal rigidity in terms of gain-sparsity counts and recursive constructions (see Theorems 3.9 and
3.11). However, a characterisation in terms of monochrome subgraph decompositions (analogous
to the results in Section 3.1) was not given, as it is not clear whether for an arbitrary decom-
position of a signed quotient graph into a monochrome spanning unbalanced map graph and a
monochrome spanning tree, there always exists a grid-like realisation of the covering graph with
reflectional symmetry which respects the given edge colourings. These realisation problems are
non-trivial [8, 9] and even arise in the non-symmetric situation [6].

It is easy to see that a necessary count for the existence of a 2-dimensional infinitesimally
rigid grid-like Z2-symmetric realisation of a graph G is that its signed quotient graph (G0, ψ)
contains a spanning subgraph with F edges which is (2, 2, 0)-gain-tight, i.e., |F | = 2|V (F )|,
|F ′| ≤ 2|V (F ′)| − 2 for every balanced F ′ ⊆ F , and |F ′| ≤ 2|V (F ′)| for every F ′ ⊆ F . This is
because (G0, ψ) needs to contain two monochrome connected unbalanced spanning map graphs,
by Corollary 3.4. However, these conditions are clearly not sufficient.

Finally, it is natural to ask whether the results of this paper can be extended to grid-like
frameworks in the plane with half-turn symmetry. A necessary condition for a grid-like half-
turn-symmetric framework to be symmetrically isostatic is that the associated signed quotient
graph (G0, ψ) satisfies |E0| = 2|V0|, as there are no symmetric trivial infinitesimal flexes with
respect to the half-turn symmetry group. In fact, (G0, ψ) must clearly be (2, 2, 0)-gain-tight. A
combinatorial characterisation of (2, 2, 0)-gain-tight graphs, however, has not yet been obtained
(see also [14]). For anti-symmetric isostaticity, the situation is much easier, as we need (G0, ψ)
to satisfy |E0| = 2|V0| − 2 and |F | ≤ 2|V (F )| − 2 for every F ⊆ E0, and these types of signed
quotient graphs have been described in [14].

More generally, it would of course also be of interest to extend the results of this paper to
frameworks with larger symmetry groups and to different normed spaces.
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